3.4. Принципиальная схема. Импульсные блоки питания для IBM PC
3.4. Принципиальная схема
Импульсные источники питания данного класса имеют несколько различных модификаций схемотехнической реализации отдельных вспомогательных узлов. Принципиальных различий в их рабочих характеристиках нет, а разнообразие объясняется множеством производителей блоков питания. Поэтому при описании узлов и каскадов источников питания и особенностей их функционирования будут также приведены и графические иллюстрации вариантов их исполнения. Для подробного обсуждения принципа построения и функционирования блока питания компьютеров типа AT/XT в качестве базовой выбрана модель, принципиальная схема которой показана на рис. 3.2.
Рис. 3.2. Принципиальная схема импульсного блока питания
На принципиальной схеме не показан сетевой выключатель, так как он относится к системному модулю компьютера. В самом блоке питания по входу первичной электрической сети установлен предохранитель – необходимый элемент системы защиты. Предохранитель предназначен для отключения импульсного источника питания от питающей сети при возникновении в нем неисправностей и не используется для сохранения работоспособности активных элементов источника питания, так как обладает высокой тепловой инерционностью. Процессы пробоя развиваются лавинообразно, остановить их может только электронная защита. Предохранитель способен лишь предотвратить лавинообразное нарастание процесса, который разрушает конструктивные элементы блока питания и повреждает проводники печатной платы.
Терморезистор TR1, также подключенный по входу первичной цепи, имеет отрицательный коэффициент сопротивления. Этот элемент имеет максимальное значения сопротивления в холодном состоянии, то есть в момент включения источника. Основным назначением терморезистора TR1 является ограничение пускового тока, протекающего по входной цепи блока питания. При включении источника питания возникает скачок тока, так как конденсаторы сглаживающего фильтра C10 и C11 в начальный момент времени не заряжены и их сопротивление крайне мало. По мере их заряда уровень тока, протекающего по входным цепям блока питания, постепенно снижается. Под действием тока терморезистор TR1 медленно разогревается, а его сопротивление снижается. После выхода на рабочий режим сопротивление TR1 имеет значение десятых долей Ома и практически не влияет на общие энергетические показатели блока питания.
После терморезистора и предохранителя в первичную цепь источника питания включен сетевой фильтр. В конструкции фильтра использованы элементы, которые должны обеспечивать значительный уровень затухания помех, проникающих в источник питания и исходящих из него. В отсутствие сетевого фильтра блок питания можно применять только в идеальных условиях, при полном отсутствии приборов, способствующих возникновению помех. Но даже в этом случае целесообразность его установки вполне оправдана, так как фильтр значительно ограничивает уровень паразитных колебаний, проникающих в сеть от самого источника с импульсным преобразователем. Конструкцию входного фильтра рассчитывают из условий, обеспечивающих работу блока питания при кратковременных бросках и провалах сетевого напряжения. Стандарт отечественной сети переменного тока допускает изменение напряжения в диапазоне 220 В ±15 %. Но стандарт не может предусмотреть уровней кратковременных импульсных помех, источником которых являются приборы и устройства на основе электродвигателей, электромагнитных пускателей. Импульсные помехи от таких приборов могут проникать во вторичные цепи источника питания и оказывать негативное влияние на функционирование нагрузочных элементов. Наличие входного фильтра способствует устранению или значительному ослаблению влияния внешних помех на работоспособность блока питания и элементов нагрузки, подключенных к его вторичным цепям.
Помехоподавляющий фильтр представляет собой звено П-типа, состоящее из конденсаторов C1 – C4 и дросселя T, две обмотки которого намотаны в одном направлении на общий сердечник из материала с высоким значением магнитной проницаемости. Обмотки имеют одинаковое количество витков. Конденсаторы C3 и C4 включены последовательно, точка их соединения подключается к корпусной клемме блока питания. В отечественной сети выполняется заземление нулевого провода и поэтому точка соединения обязательно должна подключаться через корпус к «нулю». Таким образом, один из конденсаторов C3, C4 оказывается зашунтированным, а второй подключается параллельно конденсатору C2. Если корпус источника питания с таким фильтром оставить без подключения к защитному «нулю», то в средней точке емкостного делителя образуется напряжение, равное половине входного питающего напряжения.
Емкостное сопротивление конденсаторов C1 и C2 фильтра на частоте питающей сети достаточно большое и составляет примерно 145 кОм. Такое сопротивление не оказывает заметного влияния на помехи с частотой, близкой к частоте промышленной сети. Импульсные же помехи, имеющие спектр от десятков килогерц до нескольких мегагерц, замыкаются через малое сопротивление этих конденсаторов, и поэтому происходит значительное снижение их уровня. Полностью нейтрализовать помеху, проникающую из сети, одними конденсаторами не удается, и для более глубокой фильтрации применяется индуктивный элемент – дроссель Т1. По конструкции и техническому смыслу дроссель T1 больше похож на трансформатор, поэтому в специальной литературе иногда его называют нейтрализующим трансформатором. Каждая из обмоток дросселя включена в цепь потенциального проводника. По одной из обмоток протекает ток прямого направления, по второй – возвратный ток. Направление токов противоположно, но их величины абсолютно одинаковы. Токи, протекающие по каждой из обмоток, будут создавать магнитные потоки, равные по величине, но противоположные по направлениям. Взаимно противоположные потоки будут компенсировать друг друга. Ни один из потоков не будет преобладающим, а значит, не будет происходить намагничивание сердечника и индуктивность обмоток дросселя будет иметь максимально возможное значение. Это положение справедливо независимо от уровня тока потребления блока питания. Магнитные потоки, создаваемые колебаниями помехи, также взаимно компенсируются. Индуктивное сопротивление обмоток дросселя прямо пропорционально частоте протекающего тока.

С помощью селектора уровня входного напряжения S1 выполняется переключение входной цепи блока питания для работы от сетевого напряжения с номинальными уровнями 220 или 115 В. Переключатель имеет только два состояния: замкнутое и разомкнутое. Разомкнутое состояние переключателя устанавливается, когда напряжение сети равно 220 В. Контакты переключателя замыкаются для подключения блока питания к сети с пониженным напряжением. Естественно, что при сохранении энергетического баланса, ток потребления и соответственно нагрузка на входные цепи источника питания при пониженном входном напряжении увеличивается в два раза по сравнению с режимом работы от 220 В. Действие переключателя достаточно подробно рассмотрено в главе 2 при описании аналогичного узла источника питания для компьютеров ATX форм-фактора. Следует еще раз отметить, что коммутация переключателя S1 при его замыкании переводит схему выпрямителя на работу в режиме удвоителя напряжения.
Диодный мост выпрямителя нагружен на два электролитических конденсатора C10 и C11, включенных последовательно, а таже на силовой каскад импульсного преобразователя. Конденсаторы входят в состав фильтра, сглаживающего выпрямленное пульсирующее напряжение. Параллельно каждому из конденсаторов С10 и С11 сглаживающего фильтра включены высокоомные резисторы соответственно R17 и R18, создающие цепь разряда конденсаторов при отключении источника питания от сети. Резисторы выбраны с такими номиналами сопротивления, чтобы не оказывать влияния на работу ВЧ преобразователя.
Вся остальная электрическая схема блока питания предназначена непосредственно для генерации, усиления импульсных сигналов и их преобразования во вторичные напряжения, поступающие на элементы нагрузки. Этапы функционирования импульсного преобразователя приведены ниже в последовательности, соответствующей изложению материала в главе 2.
Но прежде чем перейти к детальному разбору функционирования отдельных каскадов, следует дать общую схему развития процессов, происходящих в блоке питания непосредственно после его включения в сеть. Именно начальный этап включения блоков питания для компьютеров AT/XT коренным образом отличается от более поздних модификаций, используемых в ATX системах.
В блоке питания, схема которого представлена на рис. 3.2, нет узла, аналогичного вспомогательному автогенератору ATX преобразователя, от которого блок управления получает первичное питание для запуска генератора импульсных последовательностей.


Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРеспринцип работы, принципиальная схема и проверка его работоспособности
Сегодня комплектующие для десктопного ПК устаревают очень быстро. Единственным исключением является блок питания (БП). Конструкция этого устройства не претерпела серьезных изменений за последние 15 лет, когда на рынке появились БП форм-фактора ATX. Принцип работы и принципиальная схема блока питания для компьютера мало чем отличаются у всех производителей.
Структура и принцип работы
Типовая схема компьютерного блока питания стандарта ATX показана ниже. По своей конструкции это классический БП импульсного типа, основанный на ШИМ-контроллере TL 494. Сигнал к началу работы этого элемента поступает с материнской платы. До формирования управляющего импульса активным остается лишь источник дежурного питания, выдающий напряжение в 5 В.
Выпрямитель и ШИМ-контроллер
Чтобы было проще разобраться с устройством блока питания компьютера и принципом его работы, нужно рассмотреть отдельные структурные элементы. Начать стоит с сетевого выпрямителя.
Основная задача этого блока заключается в преобразовании переменного сетевого электротока в постоянный, который необходим для функционирования ШИМ-контроллера, а также дежурного источника питания. В состав блока входит несколько основных деталей:
- Предохранитель F1 – необходим для защиты БП от перегрузки.
- Терморезистор – он расположен в магистрали «нейтраль» и призван снижать скачки электротока, возникающие в момент включения ПК.
- Фильтр помех – в его состав входят дроссели L1 и L2, конденсаторы C1- C4, а также Tr1, имеющие встречную обмотку. Этот фильтр позволяет подавлять помехи, неизбежно возникающие при работе импульсного БП, могут негативно воздействовать на работу теле- и радиоаппаратуры.
- Диодный мостик – находится сразу за фильтром помех и позволяет преобразовать переменный электроток в постоянный пульсирующий. Для сглаживания пульсаций предусмотрен емкостно-индукционный фильтр.
На выходе из сетевого выпрямителя напряжение присутствует до того момента, пока БП не будет отключен от розетки. При этом ток поступает на дежурный источник питания и ШИМ-контроллер. Именно первый структурный элемент схемы представлен на рисунке.
Он представляет собой преобразователь малой мощности импульсного типа. В его основе лежит транзистор Т11, задачей которого является генерация питающих импульсов для микросхемы 7805.
После транзистора ток сначала проходит через разделительный трансформатор и выпрямитель, основанный на диоде D 24. Используемая в этом БП микросхема обладает одним довольно серьезным недостатком – высоким падением напряжения, что при больших нагрузках может вызвать перегрев элемента.
Основой любого преобразователя импульсного типа является ШИМ-контроллер. В рассматриваемом примере он реализован с помощью микросхемы TL 494. Основная задача модуля ШИМ (широтно-импульсная модуляция) заключается в изменении длительности импульсов напряжении при сохранении их амплитуды и частоты. Полученное выходное напряжение на импульсном преобразователе стабилизируется с помощью настройки длительности импульсов, которые генерирует ШИМ-контроллер.
Выходные каскады преобразователя
Именно на этот элемент конструкции ложится основная нагрузка. Это приводит к серьезному нагреву коммутирующих транзисторов Т2 и Т4. По этой причине они установлены на массивные радиаторы. Однако пассивное охлаждение не всегда позволяет справляться с сильным тепловыделением, все БП оснащены кулером. Схема выходного каскада изображена на рисунке.
Перед выходным каскадом расположена цепь включения БП, основанная на транзисторе Т9. При пуске блока питания на этот элемент конструкции напряжение в 5 В подается через сопротивление R 8. Это происходит после формирования сигнала к пуску ПК на материнской плате. Если возникли проблемы с работой источника дежурного питания, то БП может после пуска сразу отключиться.
Сейчас все производители используют практически аналогичные схемы блоков питания компьютеров. Вносимые ими изменения не оказывают серьезного влияния на принцип работы устройства.
Распиновка главного коннектора
Сначала БП форм-фактора ATX для соединения с системной платой оснащались разъемом на 20 пин. Однако совершенствование вычислительной техники привело к необходимости использовать дополнительно еще 4 контакта. Современные блоки питания могут оснащаться 24-пиновым разъемом в одном корпусе или иметь 20+4 пин. Все контакты коннекторов стандартизованы и вот основные из них:
- +3,3 В – питание материнской платы и центрального процессора.
- +5 В – напряжение необходимо для работы некоторых узлов системной платы, винчестеров и внешних устройств, подключенных к портам USB.
- +12 В – управляемое напряжение, используемое HDD и кулерами.
- -5 В – начиная с версии ATX 1.3 не используется.
- -12 В – сегодня применяется крайне редко.
- Ground – масса.
Распределение нагрузки и возможные неисправности
Напряжение, выдаваемое источником питания, предназначено для различных нагрузок. Таким образом, в зависимости от конфигурации конкретного ПК, потребление энергии в каждой цепи источника питания может меняться. Именно поэтому в технических характеристиках БП указывается не только общая мощность устройства, но и максимальное потребление электротока для каждого типа выходного напряжения.
При апгрейде «железа» ПК следует помнить об этом факте. Например, установка мощного современного видеоускорителя приводит к резкому повышению нагрузки в цепи 12 В. Чтобы ПК работал корректно, возможно потребуется и замена блока питания. Чаще всего неполадки с работой БП связаны со старением элементов его конструкции либо существенным недостатком мощности.
Не стоит забывать и о том, что перегрев выходного каскада может быть связан с накоплением большого количества пыли внутри блока питания. Электролитические конденсаторы, установленные в сетевом выпрямителе и выходных каскадах, больше других деталей склонны к старению.
В первую очередь это касается продукции малоизвестных брендов, использующих дешевые комплектующие. По сути, именно элементная база и качество деталей отличает хорошие устройства от дешевых. Провести ремонт БП самостоятельно может только человек, имеющий определенный набор знаний в области электроники. Однако современные устройства, изготовленные известными брендами, отличаются высокой надежностью. При соблюдении правил обслуживания ПК, проблемы с ними возникают очень редко.
ПРИНЦИПИАЛЬНАЯ СХЕМА ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ СТАТЬЯ ПОДГОТОВЛЕНА НА ОСНОВЕ КНИГИ А. В. ГОЛОВКОВА и В. Б ЛЮБИЦКОГО "БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT" ИЗДАТЕЛЬСТВА «ЛАД и Н» ПРИМЕР ПОСТРОЕНИЯ ОДНОГО ИЗ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ Подводя итог всему сказанному, для полноты картины приведем в качества примера полное описание
принципиальной схемы для одного из 200-ваттных импульсных блоков питания (производство Тайвань PS6220C)
(рис.
Рисунок 56. Схема электрическая принципиальная импульсного блока питания ИБП PS-6220C На выходе выпрямителя BR1 включены сглаживающие емкости фильтра С1, С2. Транзисторы, используемый в компьютерных импульсных блоках питания
Адрес администрации сайта: [email protected]
|
Схемы блоков питания | 2 Схемы
Схемы самодельных блоков питания на различные напряжения и ток — простые БП для начинающих и мощные двухканальные регулируемые лабораторные источники питания со всеми защитами.
Попробовал недавно собрать схему мощного лабораторного блока питания 0-30 В с защитой 0-10 А, работает нормально. Принципиальная схема, печатная плата и файлы в общем архиве. …
В этой статье представим два самых простых регулируемых блока питания на базе популярных микросхем LM317 и LM337. Конструкции были сделаны из дешевых и легкодоступных деталей. …
Этот мощный самодельный блок питания состоит из двух отдельных модулей: управляющей части со стабилизатором и инвертора. В данной конструкции блока питания отсутствует силовой трансформатор (как …
Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности. …
Разрешите представить на суд уважаемых радиолюбителей и читателей сайта 2Схемы довольно необычный лабораторный источник питания с регулировками напряжения 0 — 20 В и током защиты …
Блок питания — комплект для самостоятельной сборки из одного зарубежного радиоконструктора, только тут трансформатор 2x 9 В 2,5 A, соответственно снижен в 2 раза предел …
Предпосылкой к проекту было создать простой и дешевый преобразователь напряжения. Постоянное напряжение 12 В при выходном переменном значении около 220 В и нагрузочной способности до …
Радиопередатчик, которым по долгу службы иногда пользуюсь, имеет напряжение 12 В, поэтому блок питания к нему требуется достаточной мощности. Купить готовый можно, но это же …
Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из …
Источник питания для некоторых планшетов, например Asus Eee, имеет нестандартное напряжение 9,5 В, 2,3 А. На рынке нет стабилизатора для этого напряжения, поэтому схема должна …
Понижающий преобразователь постоянного напряжения на TL494 представляет собой типичный ШИМ-контроллер и силовые транзисторы IRFZ44N. Катушка 40 мкГн участвует в преобразовании входного напряжения 12 Вольт в …
Очередная полезная покупка с сайта AliExpress — электронная нагрузка с тестером емкости аккумуляторов, хотя производитель дал модулю другое название: «тестер разрядки аккумулятора». Куплено было устройство …
Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения …
Это обзор китайского блока питания на 2,5 А, где есть плавная регулировка напряжения в диапазоне 3-24 В. Существуют и другие версии этого блока питания, например: …
Трудно назвать проект полностью самодельным, если всего-то надо спаять между собой несколько готовых модулей, но для начинающих радиолюбителей такой подход будет вполне оправдан, поэтому редакция …
Данное электронное устройство предназначено для преобразования низкого постоянного напряжения в диапазоне 8-32 В в более высокое постоянное напряжение на выходе (до 410 В) [1-2]. Устройство …
Здравствуйте все посетители сайта 2 Схемы. Представляем очередной девайс для самостоятельное сборки, которое работает как зарядное устройство гелевой батареи. Представленное ЗУ состоит из трансформатора ТС25/6 …
Как раньше делали радиосхемы и электронные устройства? Радиолюбители сами изготавливали печатные платы и сами паяли каждую деталь, но времена меняются и теперь соединив пару-тройку покупных …
Построить нерегулируемый лабораторный блок питания на несколько различных напряжений можно на основе двойного триггера D-типа (микросхема CD4013) и старого блока питания ATX, взятого из любого …
Если у вас завалялись в радиозакромах пару транзисторов 2N3055 с радиаторами, блок питания и китайский цифровой вольтметр — возможно собрать из всего этого такую нужную …
Импульсный Лабораторный Блок Питания - Блоки питания (импульсные) - Источники питания
Вот Финальная схема и печатка, расчеты трансформаторов + некоторые вспомогательные данные...
Копирайты:
1. Автор силовой схемы - Старичок
2. Автор схемы управления - Старичок + Falanger
3. Автор схемы управления куллером - Владимир65
P.S 1. В схеме так же не указан выходной LC фильтр для дополнительного подавления пульсаций - он состоит из дросселя от комп БП индуктивностью 10мкГн на ферритовом стержне + конденсатора 220мкФ х35V
2. Принципиальная схема в целом правильная, но некоторые номиналы деталей изменены, к примеру диод Шотки на выходе 20100 стоит, ибо указанный на схеме при 30В пробъет (номинал остался от 5В схемы Старичка)), в общем подходите творчески, сверяйтесь с печатной платой, на ней почти все номиналы деталей подписаны.
3. Везде, где на деталях написано FB, это ферритовая бусина, предназначена для снижения импульсных помех, при отсутствии таковых, можно просто впаять перемычки.
Напряжение регулируется очень плавно от 30В и до 23 милливольт (предварительно подстоечником установил верхний предел в 30В). Тишина стоит во всем диапазоне регулировки...
Вот, посадил плату в корпус БП... На штатные болты... Под болты (со стороны печатных дорожек) положил изолирующие шайбы, на всякий случай, что бы не было замыкания печатных дорожек на корпус... Проверил пробником, замыкания нет... На неделе буду думать, про лицевую стенку и прочие украшения...
Решил с корпусом сильно не изгаляться... Просто из пластика выпилил переднюю панель и покрасил коробку... Временно все собрал, что бы поглядеть, что получилось...
Не... чета крутилки какие то массивные... Может так лучше?
АРХИВ:Скачать
Принципиальная схема импульсного блока питания ЗУСЦТ, принцип работы
Материал данной статьи предназначен не только для владельцев уже раритетных телевизоров, желающих восстановить их работоспособность, но и для тех, кто хочет разобраться со схемотехникой, устройством и принципом работы импульсных блоков питания. Если усвоить материал данной статьи, то без труда можно будет разобраться с любой схемой и принципом работы импульсных блоков питания для бытовой техники, будь то телевизор, ноутбук или офисная техника. И так приступим...
В телевизорах советского производства, третьего поколения ЗУСЦТ применялись импульсные блоки питания - МП (модуль питания).
Импульсные блоки питания в зависимости от модели телевизора, где они использовались, разделялись на три модификации - МП-1, МП-2 и МП-3-3. Модули питания собраны по одинаковой электрической схеме и различаются только типом импульсного трансформатора и номиналом напряжения конденсатора С27 на выходе фильтра выпрямителя (см. принципиальную схему).
Функциональная схема и принцип работы импульсного блока питания телевизора ЗУСЦТ
Рис. 1. Функциональная схема импульсного блока питания телевизора ЗУСЦТ:
1 — сетевой выпрямитель; 2 — формирователь импульсов запуска; 3 — транзистор импульсного генератора, 4 — каскад управления; 5 — устройство стабилизации; 6 — устройство защиты; 7 — импульсный трансформатор блока питания телевизоров 3усцт; 8 - выпрямитель; 9 — нагрузка
Пусть в начальный момент времени в устройстве 2 будет сформирован импульс, который откроет транзистор импульсного генератора 3. При этом через обмотку импульсного трансформатора с выводами 19, 1 начнет протекать линейно нарастающий пилообразный ток. Одновременно в магнитном поле сердечника трансформатора будет накапливаться энергия, значение которой определяется временем открытого состояния транзистора импульсного генератора. Вторичная обмотка (выводы 6, 12) импульсного трансформатора намотана и подключена таким образом, что в период накопления магнитной энергии к аноду диода VD приложен отрицательный потенциал и он закрыт. Спустя некоторое время каскад управления 4 закрывает транзистор импульсного генератора. Так как ток в обмотке трансформатора 7 из-за накопленной магнитной энергии не может мгновенно измениться, возникает ЭДС самоиндукции обратного знака. Диод VD открывается, и ток вторичной обмотки (выводы 6, 12) резко возрастает. Таким образом, если в начальный период времени магнитное поле было связано с током, который протекал через обмотку 1, 19, то теперь оно создается током обмотки 6, 12. Когда вся энергия, накопленная за время замкнутого состояния ключа 3, перейдет в нагрузку, то во вторичной обмотке достигнет нулевого значения.
Из приведенного примера можно сделать вывод, что, регулируя длительность открытого состояния транзистора в импульсном генераторе, можно управлять количеством энергии, которое поступает в нагрузку. Такая регулировка осуществляется с помощью каскада управления 4 по сигналу обратной связи — напряжению на выводах обмотки 7, 13 импульсного трансформатора. Сигнал обратной связи на выводах этой обмотки пропорционален напряжению на нагрузке 9.
Если напряжение на нагрузке по каким-либо причинам уменьшится, то уменьшится и напряжение, которое поступает в устройство стабилизации 5. В свою очередь, устройство стабилизации через каскад управления начнет закрывать транзистор импульсного генератора позже. Это увеличит время, в течение которого через обмотку 1, 19 будет течь ток, и соответственно возрастет количество энергии, передаваемой в нагрузку.
Момент очередного открывания транзистора 3 определяется устройством стабилизации, где анализируется сигнал, поступающий с обмотки 13, 7, что позволяет автоматически поддерживать среднее значение выходного постоянного напряжения.
Применение импульсного трансформатора дает возможность получить различные по амплитуде напряжения в обмотках и устраняет гальваническую связь между цепями вторичных выпрямленных напряжений и питающей электрической сетью. Каскад управления 4 определяет размах импульсов, создаваемых генератором, и при необходимости отключает его. Отключение генератора осуществляется при уменьшении напряжения сети ниже 150 В и понижении потребляемой мощности до 20 Вт, когда каскад стабилизации перестает функционировать. При неработающем каскаде стабилизации, импульсный генератор оказывается неуправляемым, что может привести к возникновению в нем больших импульсов тока и к выходу из строя транзистора импульсного генератора.
Принципиальная схема импульсного блока питания телевизора ЗУСЦТ
Рассмотрим принципиальную схему модуля питания МП-3-3 и принцип ее работы.
Рис. 2 Принципиальная схема импульсного блока питания телевизора ЗУСЦТ, модуль МП-3-3
Открыть схему блока питания телевизора ЗУСЦТ с высоким разрешением >>>.
В ее состав входит низковольтный выпрямитель (диоды VD4 — VD7), формирователь импульсов запуска (VT3), импульсный генератор (VT4), устройство стабилизации (VT1), устройство защиты (VT2), импульсный трансформатор Т1 блока питания 3усцт и выпрямители на диодах VD12 — VD15 со стабилизатором напряжения (VT5 — VT7).
Импульсный генератор собран по схеме блокинг-генератора с коллекторно-базовыми связями на транзисторе VT4. При включении телевизора постоянное напряжение с выхода фильтра низковольтного выпрямителя (конденсаторов С16, С19 и С20) через обмотку 19, 1 трансформатора Т1 поступает на коллектор транзистора VT4. Одновременно сетевое напряжение с диода VD7 через конденсаторы С11, С10 и резистор R11 заряжает конденсатор С7, а также поступает на базу транзистора VT2, где оно используется в устройстве защиты модуля питания от пониженного напряжения сети. Когда напряжение на конденсаторе С7, приложенное между эмиттером и базой 1 однопереходного транзистора VT3, достигнет значения 3 В, транзистор VT3 откроется. Происходит разрядка конденсатора С7 по цепи: переход эмиттер-база 1 транзистора VT3, эмиттерный переход транзистора VT4, параллельно соединенные, резисторы R14 и R16, конденсатор С7.
Ток разрядки конденсатора С7 открывает транзистор VT4 на время 10 - 15 мкс, достаточное, чтобы ток в его коллекторной цепи возрос до 3...4 А. Протекание коллекторного тока транзистора VT4 через обмотку намагничивания 19, 1 сопровождается накоплением энергии в магнитном поле сердечника. После окончания разрядки конденсатора С7 транзистор VT4 закрывается. Прекращение коллекторного тока вызывает в катушках трансформатора Т1 появление ЭДС самоиндукции, которая создает на выводах 6, 8, 10, 5 и 7 трансформатора Т1 положительные напряжения. При этом через диоды одно-полупериодных выпрямителей во вторичных цепях (VD12 — VD15) протекает ток.
При положительном напряжении на выводах 5, 7 трансформатора Т1 происходит зарядка конденсаторов С14 и С6 соответственно в цепях анода и управляющего электрода тиристора VS1 и С2 в эмиттерно-базовой цепи транзистора VT1.
Конденсатор С6 заряжается по цепи: вывод 5 трансформатора Т1, диод VD11, резистор R19, конденсатор С6, диод VD9, вывод 3 трансформатора. Конденсатор С14 заряжается по цепи: вывод 5 трансформатора Т1, диод VD8, конденсатор С14, вывод 3 трансформатора. Конденсатор С2 заряжается по цепи: вывод 7 трансформатора Т1, резистор R13, диод VD2, конденсатор С2, вывод 13 трансформатора.
Аналогично осуществляются последующие включения и выключения транзистора VT4 блокинг-генератора. Причем нескольких таких вынужденных колебаний оказывается достаточным, чтобы зарядить конденсаторы во вторичных цепях. С окончанием зарядки этих конденсаторов между обмотками блокинг-генератора, подсоединенными к коллектору (выводы 1, 19) и к базе (выводы 3, 5) транзистора VT4, начинает действовать положительная обратная связь. При этом блокинг-генератор переходит в режим автоколебаний, при котором транзистор VT4 будет автоматически открываться и закрываться с определенной частотой.
В период открытого состояния транзистора VT4 его коллекторный ток протекает от плюса электролитического конденсатора С16 через обмотку трансформатора Т1 с выводами 19, 1, коллекторный и эмиттерный переходы транзистора VT4, параллельно включенные резисторы R14, R16 к минусу конденсатора С16. Из-за наличия в цепи индуктивности нарастание коллекторного тока происходит по пилообразному закону.
Для исключения возможности выхода из строя транзистора VT4 от перегрузки сопротивление резисторов R14 и R16 подобрано таким образом, что, когда ток коллектора достигает значения 3,5 А, на них создается падение напряжения, достаточное для открывания тиристора VS1. При открывании тиристора конденсатор С14 разряжается через эмиттерный переход транзистора VT4, соединенные параллельно резисторы R14 и R16, открытый тиристор VS1. Ток разрядки конденсатора С14 вычитается из тока базы транзистора VT4, что приводит к его преждевременному закрыванию.
Дальнейшие процессы в работе блокинг-генератора определяются состоянием тиристора VS1, более раннее или более позднее открывание которого позволяет регулировать время нарастания пилообразного тока и тем самым количество энергии, запасаемой в сердечнике трансформатора.
Модуль питания может работать в режиме стабилизации и короткого замыкания.
Режим стабилизации определяется работой УПТ (усилителя постоянного тока) собранного на транзисторе VT1 и тиристоре VS1.
При напряжении сети 220 Вольт, когда выходные напряжения вторичных источников питания достигнут номинальных значений, напряжение на обмотке трансформатора Т1 (выводы 7, 13) возрастает до значения, при котором постоянное напряжение на базе транзистора VT1, куда оно поступает через делитель Rl — R3, становится более отрицательным, чем на эмиттере, куда оно передается полностью. Транзистор VT1 открывается по цепи: вывод 7 трансформатора, R13, VD2, VD1, эмиттерный и коллекторный переходы транзистора VT1, R6, управляющий электрод тиристора VS1, R14, R16, вывод 13 трансформатора. Этот ток, суммируясь с начальным током управляющего электрода тиристора VS1, открывает его в тот момент, когда выходное напряжение модуля достигает номинальных значений, прекращая нарастание коллекторного тока.
Изменяя напряжение на базе транзистора VT1 подстроечным резистором R2, можно регулировать напряжение на резисторе R10 и, следовательно, изменять момент открывания тиристора VS1 и продолжительность открытого состояния транзистора VT4, тем самым устанавливать выходные напряжения блока питания.
При уменьшении нагрузки (либо увеличении напряжения сети) возрастает напряжение на выводах 7, 13 трансформатора Т1. При этом увеличивается отрицательное напряжение на базе по отношению к эмиттеру транзистора VT1, вызывая возрастание коллекторного тока и падение напряжения на резисторе R10. Это приводит к более раннему открыванию тиристора VS1 и закрыванию транзистора VT4. Тем самым уменьшается мощность, отдаваемая в нагрузку.
При понижении напряжения сети соответственно меньше становится напряжение на обмотке трансформатора Т1 и потенциал базы транзистора VT1 по отношению к эмиттеру. Теперь из-за уменьшения напряжения, создаваемого коллекторным током транзистора VT1 на резисторе R10, тиристор VS1 открывается в более позднее время и количество энергии, передаваемой во вторичные цепи, возрастает. Важную роль в защите транзистора VT4 играет каскад на транзисторе VT2. При уменьшении напряжения сети ниже 150 В напряжение на обмотке трансформатора Т1 с выводами 7, 13 оказывается недостаточным для открывания транзистора VT1. При этом устройство стабилизации и защиты не работает, транзистор VT4 становится неуправляемым и создается возможность выхода его из строя из-за превышения предельно допустимых значений напряжения, температуры, тока транзистора. Чтобы предотвратить выход из строя транзистора VT4, необходимо блокировать работу блокинг-генератора. Предназначенный для этой цели транзистор VT2 включен таким образом, что на его базу подается постоянное напряжение с делителя R18, R4, а на эмиттер пульсирующее напряжение частотой 50 Гц, амплитуда которого стабилизируется стабилитроном VD3. При уменьшении напряжения сети уменьшается напряжение на базе транзистора VT2. Так как напряжение на эмиттере стабилизировано, уменьшение напряжения на базе приводит к открыванию транзистора. Через открытый транзистор VT2 импульсы трапецеидальной формы с диода VD7 поступают на управляющий электрод тиристора, открывая его на время, определяемое длительностью трапецеидального импульса. Это приводит к прекращению работы блокинг-генератора.
Режим короткого замыкания возникает при наличии короткого замыкания в нагрузке вторичных источников питания. Запуск блока питания в этом случае производится запускающими импульсами от устройства запуска собранного на транзисторе VT3, а выключение — с помощью тиристора VS1 по максимальному току коллектора транзистора VT4. После окончания запускающего импульса устройство не возбуждается, поскольку вся энергия расходуется в короткозамкнутой цепи.
После снятия короткого замыкания модуль входит в режим стабилизации.
Выпрямители импульсных напряжений, подсоединенные ко вторичной обмотке трансформатора Т1, собраны по однополупериодной схеме.
Выпрямитель на диоде VD12 создает напряжение 130 В для питания схемы строчной развертки. Сглаживание пульсаций этого напряжения производится электролитическим конденсатором С27. Резистор R22 устраняет возможность значительного повышения напряжения на выходе выпрямителя при отключении нагрузки.
На диоде VD13 собран выпрямитель напряжения 28 В, предназначенный для питания кадровой развертки телевизора. Фильтрация напряжения обеспечивается конденсатором С28 и дросселем L2.
Выпрямитель напряжения 15 В для питания усилителя звуковой частоты собран на диоде VD15 и конденсаторе СЗО.
Напряжение 12 В, используемое в модуле цветности (МЦ), модуле радиоканала (МРК) и модуле кадровой развертки (МК), создается выпрямителем на диоде VD14 и конденсаторе С29. На выходе этого выпрямителя включен компенсационный стабилизатор напряжения собранного на транзисторах. В его состав входит регулирующий транзистор VT5, усилитель тока VT6 и управляющий транзистор VT7. Напряжение с выхода стабилизатора через делитель R26, R27 поступает на базу транзистора VT7. Переменный резистор R27 предназначен для установки выходного напряжения. В эмиттерной цепи транзистора VT7 напряжение на выходе стабилизатора сравнивается с опорным напряжением на стабилитроне VD16. Напряжение с коллектора VT7 через усилитель на транзисторе VT6 поступает на базу транзистора VT5, включенного последовательно в цепь выпрямленного тока. Это приводит к изменению его внутреннего сопротивления, которое в зависимости от того, увеличилось или уменьшилось выходное напряжение, либо возрастает, либо понижается. Конденсатор С31 предохраняет стабилизатор от возбуждения. Через резистор R23 поступает напряжение на базу транзистора VT7, необходимое для его открывания при включении и восстановления после короткого замыкания. Дроссель L3 и конденсатор С32 — дополнительный фильтр на выходе стабилизатора.
Конденсаторы С22 — С26, шунтируют выпрямительные диоды для уменьшения помех, излучаемых импульсными выпрямителями в электрическую сеть.
Сетевой фильтр блока питания ЗУСЦТ
Плата фильтра питания ПФП подсоединена к электрической сети через соединитель Х17 (А12), выключатель S1 в блоке управления телевизором и сетевые предохранители FU1 и FU2.
В качестве сетевых предохранителей используются плавкие предохранители типа ВПТ-19, характеристики которых позволяют обеспечить значительно более надежную защиту телевизионных приемников при возникновении неисправностей, чем предохранители типа ПМ.
Назначение заградительного фильтра — воспрепятствовать проникновению в электрическую сеть импульсных помех, создаваемых источником питания для бытовой радиоаппаратуры.
На плате фильтра питания находятся элементы заградительного фильтра (C1, С2, СЗ, дроссель L1) (см. принципиальную схему).
Резистор R3 предназначен для ограничения тока выпрямительных диодов при включении телевизора. Позистор R1 и резистор R2 — элементы устройства размагничивания маски кинескопа.
При ремонте бытовой аппаратуры следует неукоснительно соблюдать правила техники безопасности.
РЕМОНТ БЛОКА ПИТАНИЯ ДЛЯ НОУТБУКА
Покупая ноутбук или нетбук, точнее расчитывая бюджет на это прибретение, мы не учитываем дальнейших сопутствующих расходов. Сам лэптоп стоит допустим 500$, но ещё сумка 20$, мышь 10$. Аккумулятор при замене (а его гарантийный ресурс всего пару лет) потянет на 100$, и столько же будут стоить блок питания, в случае его сгорания.
Именно о нём и пойдёт тут разговор. У одного не очень состоятельного знакомого, недавно перестал работать блок питания для ноутбука acer. За новый придётся отдать почти сотню долларов, поэтому вполне логичным будет попробовать починить его своими руками. Сам БП представляет собой традиционную чёрную пластиковую коробочку с электронным импульсным преобразователем внутри, обеспечивающим напряжение 19В при токе 3А. Это стандарт для большинства ноутбуков и единственное отличие между ними — штеккер питания:). Сразу привожу здесь несколько схем блоков питания — кликните для увеличения.
При включении блока питания в сеть ничего не происходит — светодиод не светится и на выходе вольтметр показывает ноль. Проверка омметром сетевого шнура ничего не дала. Разбираем корпус. Хотя проще сказать, чем сделать: винтов или шурупов тут не предусмотрено, поэтому будем ломать! Для этого потребуется на соединительный шов поставить нож и стукнуть по нему слегка молотком. Смотрите не перестарайтесь, а то разрубите плату!
После того, как корпус слегка разойдётся, вставляем в образовавшуюся щель плоскую отвертку и с усилием проводим по контуру соединения половинок корпуса, аккуратно разламывая его по шву.
Разобрав корпус проверяем плату и детали на предмет чего-нибудь чёрного и обугленного.
Прозвонка входных цепей сетевого напряжения 220В сазу же выявила неисправность — это самовосстанавливающийся предохранитель, который почему-то не захотел восстановиться при перегрузке:)
Заменяем его на аналогичный, либо на простой плавкий с током 3 ампера и проверяем работу БП. Зелёный светодиод засветился, свидетельствуя о наличии напряжения 19В, но на разъёме по прежнему ничего нет. Точнее иногда что-то проскакивает, как при перегибе провода.
Придётся ремонтировать и шнур подключения блока питания к ноутбуку. Чаще всего обрыв происходит в месте ввода его в корпус или на разъёме питания.
Обрезаем сначала у корпуса — не повезло. Теперь возле штекера, что вставляется в ноутбук — снова нет контакта!
Тяжёлый случай — обрыв где-то посередине. Самый простой вариант, разрезать шнур пополам и оставить рабочую половинку, а нерабочую выкинуть. Так и сделал.
Припаиваем назад соединители и проводим испытания. Всё заработало — ремонт закончен.
Осталось только склеить половинки корпуса клеем "момент" и отдать блок питания заказчику. Весь ремонт БП занял не больше часа.
Originally posted 2019-02-12 08:49:13. Republished by Blog Post Promoter
Принципиальная схема блока питания представлена ниже.
Контекст 1
... на этом этапе выпрямитель преобразует напряжение 18 В переменного тока от трансформатора в пульсирующее напряжение постоянного тока. Для этого использовался полный мостовой выпрямитель. Он состоит из четырех диодов (серия IN 4001), расположенных, как показано на рис. 2. Во время положительных полупериодов диоды D2 и D3 смещены в прямом направлении, и ток течет через клеммы. В отрицательном полупериоде диоды D1 и D4 смещены в прямом направлении.Так как ток нагрузки в обоих полупериодах имеет одинаковое направление, сигнал двухполупериодного выпрямителя появляется на клеммах ...
Контекст 2
... Блок-схема состоит из 4 ступеней для выпрямления напряжения сети 240 В (AC) до 12 В (постоянного тока), батарейное питание и релейный переключатель. Описание каждой ступени приведено ниже: Эта ступень состоит из понижающего трансформатора 240 В / 18 В. Он преобразует подачу напряжения 240 В (переменного тока) из сети в 18 В (переменного тока), предохранитель на 1 А (F1) был встроен в первичную обмотку трансформатора для защиты от избыточного тока.Затем напряжение 18 В переменного тока передается на выпрямительный каскад. Был выбран понижающий трансформатор 220/18 В, поскольку для работы регулятора требовалось более 12 В. На этом этапе выпрямитель преобразует напряжение 18 В переменного тока от трансформатора в пульсирующее напряжение постоянного тока. Для этого использовался полный мостовой выпрямитель. Он состоит из четырех диодов (серия IN 4001), расположенных, как показано на рис. 2. Во время положительных полупериодов диоды D2 и D3 смещены в прямом направлении, и ток течет через клеммы.В отрицательном полупериоде диоды D1 и D4 смещены в прямом направлении. Поскольку ток нагрузки в обоих полупериодах имеет одинаковое направление, на выводах появляется сигнал двухполупериодного выпрямителя [13]. Пульсирующее постоянное напряжение, выходящее из каскада выпрямителя, преобразуется в постоянное постоянное напряжение с помощью фильтрующего конденсатора (C1). Этот конденсатор является электролитическим конденсатором большой емкости. Он заряжается (то есть накапливает энергию) в течение полупериода проводимости, тем самым препятствуя любым изменениям напряжения.
Таким образом, ступень фильтра отфильтровывает пульсации (или пульсации) напряжения.Выходной сигнал каскада фильтра незначительно меняется при изменении тока нагрузки или выходного напряжения, и это напряжение питания 18 В постоянного тока, что превышает требования схемы. По этим причинам регулятор LM 7312 был использован для стабилизации напряжения, а также для снижения его с 18 В до постоянного постоянного тока 12 В. не используется. Он мощный, прочный и отлично работает.
В настоящее время компьютер становится электроприбором, необходимым для каждого дома, потому что он очень полезен.
Но срок службы очень быстро устаревает. Есть новая программа. Желаемая машина с высоким КПД. Всегда можно поменять на новое. (К современному).
-Где старые компы? Скорее всего, он будет отброшен как спам. Это может быть очень ценно для многих, в том числе и для меня. Многие соседи всегда давали мне старый компьютер для работы над проектами.
-Первое, что мне нравится использовать, это мощность, пусть даже старая, но мощная, долговечная и отлично работает. Но это всегда должно быть правильно заземлено. Для предотвращения утечки тока или поражения электрическим током. Нормальное напряжение составляет 3,3 В, 5 В, 12 В и многое другое.
5V 12V 15A max Цепь питания с коммутационным режимом
Это цепь питания с коммутационным режимом 5V 12V, макс 15A. Это старая схема блока питания ПК мощностью 200 Вт . Эта схема подходит для ремонта. В качестве основной я использую популярную микросхему TL494 . В схеме имеется сдвоенный выход на 2 части.
- 5V 15A и -5V 1A
- 12V 10A и -12V 1A
TL494, который является популярным IC PWM
Источник: я не знаю источник.
Я надеюсь, что эта схема может в рядах проверять медитацию на ремонте компьютера у друзей. Думаю, снова используйте номер интегральной схемы TL494. И по-прежнему использовать транзисторную мощность.
Ремонт компьютера Dell GX620 с собой
Я давно пользуюсь компьютером Dell GX620, потому что он хорош и долговечен. Я потерял его несколько дней назад. Мой друг, который занимается ремонтом компьютеров, сказал, что проблема с блоком питания. Он сказал мне купить его на amazon.com, они очень хорошие, у него невысокая стоимость и бесплатная доставка. Подробнее
Иногда замена цепей питания компьютера серии может оказаться нецелесообразной. Потому что покупать его не было или могло быть слишком дорого.
Отремонтировать блок питания ЭБУ до поиска неисправности. Это хорошее решение. Какие нормальные цепи таким образом питаются. Часто сначала разрабатывается как дешевое оборудование. Такие как предохранители резисторы. Маленькие транзисторы. Или конденсаторный тип, дружественный к электролизу, часто проблема, решение для выхода из строя, особенно на старых компьютерах около 10 лет.
Для простоты ремонта нам нужна схема. Я предлагаю следующие схемы…
-Иногда вам, возможно, придется использовать старый компьютер. Дети будут изучать основы или играть в простые игры. Цепь питания повреждена. Что делать?
- Основные моменты девятого автодрома - это старая технология, это простая часть. Но иногда бывает сложно найти схемы. Собираю старую, планирую руководство ремонтом или модификацией не ограничивается. Имеется 5 схем, как показано ниже.(см. ниже!)
200W PC блок питания коммутации 110V-220V
Это будет блок питания ПК для компьютера снова интересная схема. Может быть преимущество с друзьями по занятию может починить компьютер? Подумайте, что характерно. Импульсный источник питания 200 Вт, размер источника переменного напряжения 2, уровень 110 В и 220 В можно использовать не спеша. И все же используйте напряжение во многих группах + 5В, + 12В, -12В, достаточно, чтобы использовать для малогабаритного компьютера или источника питания AT. Когда увидите схему, вы подумаете, что использовать интегральную схему IC TL494, источник питания, будет опорным оборудованием.Сделайте так, чтобы схема была несложной или легко ремонтировалась. Детали другие, пожалуйста, посмотрите в схеме лучше.
Схема блока питания ПК Compaq 200W
Сегодня в гости к другу приходит друг, который занимается ремонтом компьютеров. Он думает, что я делаю итоги круга на сайте. Тогда дайте Compaq блок питания 200Watt Circuit держать анонс на сайте. Он принес с другого сайта, уже не могу вспомнить название. Как я вижу, не уверен, что да, схема Compaq Computer или нет.Но поблагодари своего друга. Мне хорошо часто давай всегда. По крайней мере, надеюсь, что эта трасса может быть полезна друзьям.
Старый компьютер Схема питания ПК на TL494
Мой старший брат занимается ремонтом компьютера. Однажды встретившись с проблемой переключения блока питания, компьютер потерял. Это старая схема. Затем я помогаю искать отдачу. Получите эту схему думаю можете не согласиться. Но достаточное использование может заменить. Если друзья встретят такую же проблему, попробуйте, пожалуйста. Он может выдавать выходное напряжение 5 В, + 12 В, -12 В. Использование интегральной схемы TL494 быть столп оборудования легко найти хорошее.
. Подать на напряжение 110В и 220В выбрать включенный переключатель SW1. Это еще одна деталь, которую друг видит в схеме.
Схема блока питания компьютера 230Вт 220В
Здесь схема блока питания компьютера 230Вт 220В.
он использует IC-TL494 и транзистор.
Out put 5V, 12V
250W china Схема блока питания компьютера
Мой друг спрашивает о схеме переключения блока питания.Которые производят от модели Китайской Народной Республики схема все. Быть китайцам сложно искать много схем. Затем я пытаюсь найти много схем. Встречайте эту схему. Думаю, может да. Потому что здесь китайцы контролируют все детали оборудования. Но должен просить прощения, друзья. С этой моделью схема не ясна, но может ли хватить в рядах прибыли? Несколько то немного, когда видят хорошее, в результате видят положение оборудования понимает не очень сложно. Существует интегральная схема TL494 с выходным напряжением +12 В, -12 В и + 5 В.
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy . Блок-схема регулируемого источника питания
, принципиальная электрическая схема, рабочая
ВВЕДЕНИЕ
Почти все основные бытовые электронные схемы нуждаются в нерегулируемом переменном токе для преобразования в постоянный постоянный ток для работы электронного устройства. Все устройства будут иметь определенный лимит питания, и электронные схемы внутри этих устройств должны обеспечивать постоянное напряжение постоянного тока в пределах этого лимита.Этот источник постоянного тока регулируется и ограничен по напряжению и току. Но питание от сети может быть нестабильным и может легко вывести из строя электронное оборудование, если оно не будет должным образом ограничено. Эта работа по преобразованию нерегулируемого переменного тока (AC) или напряжения в ограниченный постоянный ток (DC) или напряжение, чтобы сделать выход постоянным независимо от колебаний входа, выполняется регулируемой схемой источника питания.
Все активные и пассивные электронные устройства будут иметь определенную рабочую точку постоянного тока (точка Q или точка покоя), и эта точка должна достигаться источником питания постоянного тока.
Источник питания постоянного тока практически преобразован в каждую ступень электронной системы. Таким образом, общим требованием для всех этих фаз будет источник постоянного тока. Все системы с низким энергопотреблением могут работать от аккумулятора. Но в устройствах, долгое время эксплуатируемых, батареи могут оказаться дорогостоящими и сложными. Лучший используемый метод - это нерегулируемый источник питания - комбинация трансформатора, выпрямителя и фильтра. Схема представлена ниже.
Нерегулируемый источник питания - схема
Как показано на рисунке выше, небольшой понижающий трансформатор используется для понижения уровня напряжения в соответствии с потребностями устройства.В Индии доступен источник питания 1 Ø с напряжением 230 В. На выходе трансформатора пульсирующее синусоидальное переменное напряжение преобразуется в пульсирующее постоянное с помощью выпрямителя. Этот выходной сигнал подается на схему фильтра, которая уменьшает пульсации переменного тока и пропускает компоненты постоянного тока. Но есть определенные недостатки в использовании нерегулируемого источника питания.
Недостатки нерегулируемого источника питания
1. Плохое регулирование - При изменении нагрузки выходная мощность не кажется постоянной.Выходное напряжение изменяется на большую величину из-за сильного изменения тока, потребляемого от источника питания. В основном это связано с высоким внутренним сопротивлением блока питания (> 30 Ом).
2. Основные отклонения в питающей сети переменного тока - Максимальные отклонения в питающей сети переменного тока равны 6% от номинального значения. Но в некоторых странах это значение может быть выше (180–280 вольт). Когда значение выше, выходное напряжение постоянного тока будет сильно отличаться.
3. Изменение температуры - Использование полупроводниковых приборов в электронных устройствах может вызвать колебания температуры.
Эти изменения выходного постоянного напряжения могут вызвать неточную или неустойчивую работу или даже выход из строя многих электронных схем. Например, в генераторах частота будет сдвигаться, выход передатчиков будет искажаться, а в усилителях рабочая точка будет сдвигаться, вызывая нестабильность смещения.
Все вышеперечисленные проблемы решаются с помощью регулятора напряжения , который используется вместе с нерегулируемым источником питания. Таким образом, пульсации напряжения значительно снижаются.Таким образом, источник питания становится регулируемым источником питания.
Внутренняя схема регулируемого источника питания также содержит определенные цепи ограничения тока, которые помогают цепи питания не перегореть из-за непреднамеренных цепей. В настоящее время во всех источниках питания используется микросхема IC для уменьшения пульсаций, улучшения регулирования напряжения и расширения возможностей управления. Также доступны программируемые источники питания для удаленного управления, что полезно во многих случаях.
РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ
Регулируемый источник питания - это электронная схема, которая предназначена для обеспечения постоянного постоянного напряжения заданного значения на клеммах нагрузки независимо от колебаний сети переменного тока или колебаний нагрузки.
Регулируемый источник питания - блок-схемаРегулируемый источник питания по существу состоит из обычного источника питания и устройства регулирования напряжения, как показано на рисунке. Выход из обычного источника питания подается на устройство регулирования напряжения, которое обеспечивает конечный выход. Выходное напряжение остается постоянным независимо от изменений входного переменного напряжения или выходного тока (или тока нагрузки).
На приведенном ниже рисунке показана полная схема стабилизированного источника питания с последовательным транзисторным стабилизатором в качестве регулирующего устройства.Подробно объясняется каждая часть схемы.
Трансформатор
Понижающий трансформатор используется для понижения напряжения от входного переменного тока до требуемого напряжения электронного устройства. Это выходное напряжение трансформатора настраивается путем изменения коэффициента трансформации трансформатора в соответствии со спецификациями электронного устройства. Вход трансформатора составляет 230 В переменного тока, выход подается на полную мостовую схему выпрямителя.
Узнать больше: Трансформаторы
Схема двухполупериодного выпрямителя
FWR состоит из 4 диодов, которые выпрямляют выходное переменное напряжение или ток транзистора до эквивалентной величины постоянного тока.Как следует из названия, FWR выпрямляет обе половины входного переменного тока. Выпрямленный выход постоянного тока подается на вход схемы фильтра.
Подробнее: полноволновой выпрямитель и полуволновой выпрямитель
Цепь фильтра
Схема фильтра используется для преобразования выходного сигнала постоянного тока с высокой пульсацией FWR в содержимое постоянного тока без пульсаций. Фильтр ∏ используется для устранения пульсаций на сигналах.
Подробнее: схемы фильтров
Вкратце
Напряжение переменного тока, обычно 230 В, действующее значение , подключено к трансформатору, который преобразует это напряжение переменного тока в уровень для желаемого выхода постоянного тока.Затем мостовой выпрямитель выдает двухполупериодное выпрямленное напряжение, которое сначала фильтруется ∏ (или C-L-C) фильтром для создания постоянного напряжения. Результирующее постоянное напряжение обычно имеет пульсации или колебания переменного напряжения. Схема регулирования использует этот вход постоянного тока для обеспечения постоянного напряжения, которое не только имеет гораздо меньшее напряжение пульсаций, но также остается постоянным, даже если входное напряжение постоянного тока несколько изменяется или нагрузка, подключенная к выходному напряжению постоянного тока, изменяется. Стабилизированный источник постоянного тока доступен через делитель напряжения.
Регулируемый источник питания - схема Часто для работы электронных схем требуется более одного напряжения постоянного тока. Один источник питания может обеспечивать любое необходимое напряжение с помощью делителя напряжения (или потенциала), как показано на рисунке. Как показано на рисунке, делитель потенциала представляет собой резистор с одним ответвлением, подключенный к выходным клеммам источника питания. Резистор с ответвлениями может состоять из двух или трех резисторов, подключенных последовательно через источник питания.Фактически, резистор утечки также может использоваться в качестве делителя потенциала.
Характеристики источника питания
Существуют различные факторы, которые определяют качество источника питания, такие как напряжение нагрузки, ток нагрузки, регулировка напряжения, регулировка источника, выходное сопротивление, подавление пульсаций и т. Д. Некоторые характеристики кратко описаны ниже:
1. Регулировка нагрузки - Регулирование нагрузки или влияние нагрузки - это изменение регулируемого выходного напряжения, когда ток нагрузки изменяется с минимального на максимальное значение.
Регулировка нагрузки = V без нагрузки - V полная нагрузка
В без нагрузки относится к напряжению нагрузки без нагрузки
Vfull-load относится к напряжению нагрузки при полной нагрузке.
Из приведенного выше уравнения мы можем понять, что, когда возникает Vno-нагрузка, сопротивление нагрузки бесконечно, то есть выходные клеммы разомкнуты. Полная нагрузка возникает, когда сопротивление нагрузки имеет минимальное значение, при котором регулирование напряжения теряется.
Регулировка нагрузки % = [(Vno-load - Vfull-load) / Vfull-load] * 100
2. Минимальное сопротивление нагрузки - Сопротивление нагрузки, при котором источник питания выдает номинальный ток полной нагрузки при номинальном напряжении, называется минимальным сопротивлением нагрузки.
Минимальное сопротивление нагрузки = Полная нагрузка / Полная нагрузка
Значение тока полной нагрузки при полной нагрузке никогда не должно увеличиваться, чем указано в паспорте источника питания.
3. Регулирование источника / линии - На блок-схеме входное линейное напряжение имеет номинальное значение 230 В, но на практике здесь наблюдаются значительные колебания сетевого напряжения переменного тока.Поскольку это сетевое напряжение переменного тока является входом для обычного источника питания, отфильтрованный выход мостового выпрямителя почти прямо пропорционален сетевому напряжению переменного тока.
Регулировка источника определяется как изменение регулируемого выходного напряжения для заданного диапазона ложного напряжения.
4. Выходное сопротивление - Стабилизированный источник питания представляет собой очень жесткий источник постоянного напряжения. Это означает, что выходное сопротивление очень маленькое. Несмотря на то, что внешнее сопротивление нагрузки меняется, напряжение нагрузки практически не изменяется.Идеальный источник напряжения имеет нулевое выходное сопротивление.
5. Подавление пульсаций - Регуляторы напряжения стабилизируют выходное напряжение от изменений входного напряжения. Пульсация эквивалентна периодическому изменению входного напряжения. Таким образом, регулятор напряжения ослабляет пульсации, возникающие при нерегулируемом входном напряжении. Поскольку в стабилизаторе напряжения используется отрицательная обратная связь, искажение уменьшается в тот же раз, что и коэффициент усиления.
Какие они? (Плюс принципиальная схема)
Что такое регулируемый источник питания?
Регулируемый источник питания преобразует нерегулируемый переменный ток (переменный ток) в постоянный постоянный ток (постоянный ток).Регулируемый источник питания используется для обеспечения того, чтобы выходная мощность оставалась постоянной даже при изменении входа.
Стабилизированный источник питания постоянного тока также известен как линейный источник питания, он представляет собой встроенную схему и состоит из различных блоков.
Регулируемый источник питания принимает входной переменный ток и обеспечивает постоянный выход постоянного тока. На рисунке ниже показана блок-схема типичного стабилизированного источника постоянного тока.
Основные строительные блоки регулируемого источника питания постоянного тока следующие:
- Понижающий трансформатор
- Выпрямитель
- Фильтр постоянного тока
- Регулятор
(Обратите внимание, что у наших MCQ цифровой электроники много электрические вопросы, относящиеся к этим темам)
Работа регулируемого источника питания
Понижающий трансформатор
Понижающий трансформатор понижает напряжение в сети переменного тока до необходимого уровня.Коэффициент трансформации трансформатора регулируется таким образом, чтобы получить требуемое значение напряжения. Выход трансформатора используется как вход в схему выпрямителя.
Выпрямитель
Выпрямитель - это электронная схема, состоящая из диодов, которая выполняет процесс выпрямления. Выпрямление - это процесс преобразования переменного напряжения или тока в соответствующую постоянную (постоянную) величину. На вход выпрямителя подается переменный ток, а на выходе - однонаправленный пульсирующий постоянный ток.
Хотя технически можно использовать однополупериодный выпрямитель, его потери мощности значительны по сравнению с двухполупериодным выпрямителем. Таким образом, двухполупериодный выпрямитель или мостовой выпрямитель используется для выпрямления обоих полупериодов переменного тока (двухполупериодное выпрямление). На рисунке ниже показан двухполупериодный мостовой выпрямитель.
Мостовой выпрямитель состоит из четырех диодов с p-n переходом, подключенных, как показано выше. В положительном полупериоде питания напряжение, наведенное на вторичной обмотке электрического трансформатора i.е. ВМН положительный. Следовательно, точка E положительна по отношению к F. Следовательно, диоды D 3 и D 2 смещены в обратном направлении, а диоды D 1 и D 4 смещены в прямом направлении. Диод D 3 и D 2 будет действовать как разомкнутые переключатели (практически есть некоторое падение напряжения), а диоды D 1 и D 4 будут действовать как замкнутые переключатели и начнут проводить ток. Следовательно, выпрямленный сигнал появляется на выходе выпрямителя, как показано на первом рисунке.Когда напряжение, индуцированное во вторичной обмотке, то есть VMN, отрицательно, D 3 и D 2 смещены в прямом направлении, а два других смещены в обратном направлении, и на входе фильтра появляется положительное напряжение.
Фильтрация постоянного тока
Выпрямленное напряжение от выпрямителя представляет собой пульсирующее напряжение постоянного тока с очень высоким содержанием пульсаций. Но это не то, что мы хотим, мы хотим, чтобы сигнал постоянного тока был чистым без пульсаций. Следовательно, используется фильтр. Используются различные типы фильтров, такие как конденсаторный фильтр, LC-фильтр, входной фильтр дросселя, фильтр π-типа.На рисунке ниже показан конденсаторный фильтр, подключенный вдоль выхода выпрямителя, и результирующая форма выходного сигнала.
Когда мгновенное напряжение начинает увеличивать заряд конденсатора, он заряжается, пока форма волны не достигнет своего пикового значения. Когда мгновенное значение начинает уменьшаться, конденсатор начинает экспоненциально и медленно разряжаться через нагрузку (в данном случае вход регулятора). Следовательно, получается почти постоянное значение постоянного тока с очень меньшим содержанием пульсаций.
Регламент
Это последний блок в регулируемом источнике питания постоянного тока.Выходное напряжение или ток будут изменяться или колебаться при изменении входа от сети переменного тока или из-за изменения тока нагрузки на выходе регулируемого источника питания или из-за других факторов, таких как изменения температуры. Эту проблему можно устранить с помощью регулятора. Регулятор будет поддерживать постоянный выход даже при изменениях на входе или любых других изменениях. В зависимости от их применения могут использоваться последовательный транзисторный стабилизатор, фиксированные и регулируемые IC-стабилизаторы или стабилитрон, работающий в стабилитроне.Такие микросхемы, как 78XX и 79XX (например, IC 7805), используются для получения фиксированных значений напряжений на выходе.
С помощью таких микросхем, как LM 317 и 723, мы можем регулировать выходное напряжение до необходимого постоянного значения. На рисунке ниже показан регулятор напряжения LM317. Выходное напряжение можно регулировать, регулируя значения сопротивлений R 1 и R 2 . Обычно конденсаторы связи емкостью от 0,01 мкФ до 10 мкФ необходимо подключать на выходе и входе для устранения входного шума и переходных процессов на выходе.В идеале выходное напряжение задается как
На рисунке выше показана полная схема стабилизированного источника питания + 5В постоянного тока.
Цепей питания постоянного тока
От простых светодиодных ламп до встроенных плат - всем необходим чистый регулируемый источник постоянного тока. Здесь мы приводим несколько принципиальных схем для построения цепей питания от простых до сложных типов. Если потребляемая мощность является критическим фактором, переходите только на переключение.
Вот одна из самых популярных, старых, надежных и простых схем для фиксированного источника питания постоянного тока. Они идеально подходят для цепей со средним потребляемым током менее 1,00 А.
Фиксированный источник питания 5В / 9В / 12В (положительный) при номинальном токе 1 ампер
Принципиальная схема (принципиальная схема) -1
L1 = понижающий трансформатор с i / p 230 AC 50 Гц и выходом (XX) - 0- (XX)) вольт (действующее значение).
XX = Требуемое выходное напряжение постоянного тока.
Вот таблица для разных напряжений
Выходное напряжение (постоянное напряжение) | Номинал трансформатора (действующее значение, Вольт) |
5 | 230: 5-0-5 |
9 | 230: 9-0-9 |
12 | 230: 12-0-12 |
15 | 230: 15-0-15 |
Текущий рейтинг должен быть более 1 А.
D1, D2 = диоды 1N4003
D3 = Диод 1N4003 / 1N4001 (опционально)
C1 = алюминиевый электролитический конденсатор 1000 мкФ (для нагрузок менее 100 мА вы можете заменить конденсатор на 220 мкФ), номинальное напряжение = 2,5-кратное выходное напряжение.
C2 = 10 мкФ алюминиевый электролитический конденсатор
IC1 = 7805 для выхода +5 В постоянного тока
= 7809 для выхода +9 В постоянного тока
= 7812 для выхода +12 В постоянного тока
= 7815 для выхода +15 В постоянного тока
Фиксированный источник питания 5В / 9В / 12В (отрицательный) при номинальном токе 1 ампер
Схема
(электрическая схема) -2
L1 = понижающий трансформатор с I / P 230 AC 50 Гц и выходом (XX) - 0- (XX)) вольт (среднеквадратичное значение).
XX = Требуемое выходное напряжение постоянного тока.
Выходное напряжение (постоянное напряжение) | Номинал трансформатора (действующее значение, Вольт) |
5 | 230: 5-0-5 |
9 | 230: 9-0-9 |
12 | 230: 12-0-12 |
15 | 230: 15-0-15 |
Текущий рейтинг должен быть больше 1 А.
D1, D2 = диоды 1N4003
D3 = Диод 1N4003 / 1N4001 (опционально)
C1 = алюминиевый электролитический конденсатор емкостью 1000 мкФ (для нагрузок менее 100 мА можно использовать конденсатор емкостью 220 мкФ). Номинальное напряжение = 2,5 выходного напряжения.
C2 = 10 мкФ алюминиевый электролитический конденсатор
IC1 = 7905 для выхода -5 В постоянного тока
= 7909 для выхода -9 В постоянного тока
= 7912 для выхода -12 В постоянного тока
= 7915 для выхода -15 В постоянного тока
Ссылка на даташит: 1N4003 - www.fairchildsemi.com/ds/1N/1N4007.pdf
78XX - www.fairchildsemi.com/ds/LM%2FLM7805.pdf (дополнительные схемы можно найти в этом техническом описании)
79XX- www.fairchildsemi.com/ds/LM%2FLM7905.pdf
Дополнительное примечание: безопаснее установить один радиатор на 78XXX и 79XX IC для защиты IC от перегрева
Если вы используете оба источника питания, заземляющее соединение как положительного, так и отрицательного источника питания может быть закорочено.
КИТАЙ JSK4338-007A СХЕМА БЛОКА ПИТАНИЯ ЖК-телевизора Загрузка руководства по обслуживанию, схемы, eeprom, информация по ремонту для специалистов по электронике
Sziasztok!
Mivel "annyira raérek" ram bíztak egy ilyen masinát, hatha lelket lehelek bele .. ez meg is történt (а hálózati kapcsolót egyedül megjavítottam) де итт kezdődnek a gondok. (Мерве Минден Алкатрес Йонак Тонник)
Bekapcsoláskor a feszültség kb. 1V-ról indul és akár 13V-ig felmegy úgy fél perc alatt. (Maximumra Tekerve)
E tartományon belül szabályoz - это szépen és terhelhető.Trafón váltó rendben .. Próbáltam a rajz szerinti értékeket megmérni, viszont egy semtimmelt. Itt akadtam el, mert ugyebár valahol el kellene kezdeni a hiba keresését.
Tehát ha valakinek lenne "távgyógyító" ötlete és megosztaná, lehet nem: szetver:
Köszönettel: Kiss Z.
Köszönöm mindenkinek a segítséget, sikerült megjavítani!
Problémát kezdetben egy szakadozó mérőzsinor és vacakoló (ezt a kis "gagyi" műszert szoktam egyszerűbb mérésekhez használni, ezt nem sajnálom ha beníténkremekoy. )Utána nagyon leragadtam a tirisztorok hibájánál ... mint arra sokan utaltak, tévesen.
Innentől viszonylag egyszerű dolgom volt. (közben ic és tranyók cseréje megtörtént)
Tehát nézve a rajzot lekövettem a vezérlést immár jó műszerrel és szkóppal. Lényegében egy a T2 pozícióban levő tranzisztor szi..tott. Ez rossz volt és cseréltem, de közben nem néztem a rajzot. Ezért szintén pnp ment bele, holott ez a rajz szerint npn. Jó néhány kontakthiba fűszerezte még a hibát, viszont ezek elhárítása után imár tökéletesen működik a tápegység.
Sziasztok Tanyalakók! Egypt 8 lábú alkatrész, oldalanként 4-4 láb, szélsőkön látszik, hogy valami huzal vezet be, középsők pedig a panelba vannak forrasztva. Üzem alatt enyhén melegszik (36-40 fok), és egy kis ohmos értékű (3-5 Ом) индуктивитасра ван kötve (csatlakozón keresztül). Ha valaki találkozott már ilyen alkatrésszel, kérem írja meg mi lehet ez? Csatolom a felülnézetét, és az oldalnézetét есть. Mindenkinek kellemes szilveszteri mulatozást kívánok!
Sziasztok!
Elég egyedi a kérdés, de hatha belefutott már valaki a fenti vagy hasonló eszköz javításába. Azzal került hozzám, hogy az egyik DVI bemenet nem megy.
Próbálgatva nem is lehetett forrásként kiválasztani a rossz bemenetet.
DVI bemeneti IC-re gyanakodtam, adatlap persze nincs az IC-hez.
Méregetve, összehasonlítva a mellette lévő másik ugyanilyen IC-vel, tápok szerintem rendben viszont a "rossz" lábain nincs értelmezhető jelalak.
Gondoltam kapott valamit az IC mert egyik ilyenben sincsen befele az IC felé semmilyen védelem.
Cserére lett ítélve, persze nem rendelhető itthon sehol, így maradt az e-bay.Мэг érkezett, kicseréltem.
Most már ki tudom választani az eddigi rossz bemenetet, де "Нет сигнала" -t ír rá, és nem ad képet ezen a bemenetet.
Mérve kb. угянолян желалакок ваннак а лабакон.
Rajzot égen-földön nem találok az eszközhöz.
Lehet tovább jutott a hiba csak hát rajz nélkül ez nehéz lesz ...
Viszont egy érdekes jelenségre lettem figyelmes.
A jó bejáratra dugva a jelet egy Apple gép azonnal átvált 2 képernyős üzemmódba függetlenül attól, hogy az eszköz áram alatt van-e vagy sem.
A rossznak ítélt bejáratra dugva viszont nem akar beváltani ugyanilyen módba.
Keresgéltem a neten, de nem találtam rá utalást hogy kell ezt a módot elérni.
Египет долгий тудтам erre elképzelni hogy и DVI csatlakozó 14-es lábán található + 5V-ot visszavezetik и 16-osra с детектором Hot Plug, панель, которая показывает, что DVI csatlakozón ugyanolyan értemhoke nertemhoke.
Valakinél nem lapul a fiókban egy service manual ehhez a készülékhez?
Кёси,
Krisztián
Sziasztok mesterek! Gyermekem keresett meg azzal, hogy itt a Tanyán kérdezzelek meg benneteket, kinek van és milyen tapasztalata и fenti szerkezetekkel.Ablak csere előtt állnak, akkor már nem szeretnék kifúrni az új ablak keretet, de redőny - это келлен. Техат: 1., Ajánlott típus? Olasz, Amerikai, stb. 2., Szerviz igény? Havonta, évente, esetleg több évente? 3. Az Alumínium és a műanyag közötti előny hátrány? Főszempont a hangszigetelés !! 4., Külső belső tokozás előny, hatrány? 5., Egyenkénti / ablakonként / vagy több csatornás távirányító? Szívesen vennék minden tapasztalatot, ha megosztanátok velünk! Köszönet mindenkinek az esetleges tapasztalatok átadásáért előre есть!
Схема блока питания ЖК-телевизора (IP BOARD) &… / lcd-tv-power-supply-ip-board-schematic-diagram-amp.

Расшифровка принципиальной схемы блока питания ЖК-телевизора (IP BOARD) и…
1 ЖК-телевизор Питание Источник питания (IP плата ) Схема Схема и советы по ремонту ЖК-телевизоров Sharp- Проблема с прерывистым звуком. Это ЖК-телевизор Samsung BN44-00152B, инвертор Power Supply (плата IP ) Схема Схема . Где эти источники питания Power используются на ЖК-телевизоре Samsung LN-T1953H или другом аналогичном ЖК-телевизоре серии LN-T19.Ниже представлено изображение этого БП: СПЕЦИФИКАЦИЯ КОД ПРОЕКТА BN44-00152B. IP-51140T ДАТА ИЗГОТОВЛЕНИЯ 08. PSIV510501A ДАТА РЕФОРМЫ --- (A) Power . о м. c i r p a R e n - i o i s ev e l - T. CD .. L. w w / w: /. t p ht S-00-001 () Стр. Ред. 0 Стр. 12. СПЕЦИФИКАЦИЯ КОД ПРОЕКТА BN44-00152B. IP-51140T ДАТА ИЗГОТОВЛЕНИЯ 08. PSIV510501A ДАТА РЕФОРМЫ --- (B) ИНВЕРТОР. о м. c i r p a R e n - i o i s ev e l - T.
2 CD .. L. w / w: /. t p ht S-00-001 () Стр. Ред. 0 Стр. 13. ЖК-ТЕЛЕВИДЕНИЕ.Номер технического бюллетеня: LCDTV-194 A Дата: МАРТ 2009 г. Модели: LC26D4U / LC32D4U / LC37D4U / LC26D6U / LC32D6U / LC37D6U. LC26DA5U / LC32DA5U / LC37DB5U / LC32HT1U. Тема: Нет звука или прерывистый звук Причина: Изоляционная прокладка, расположенная на аудиовыходе IC2502, сломалась. Меры противодействия: если на указанных выше моделях отсутствует звук или прерывистый звук, поместите изоляционную прокладку на сторону фольги IC2502 между платой и радиатором. IC находится на AV-блоке.Пожалуйста, обратитесь к следующим страницам для правильной процедуры установки. Описание Номер детали Код цены Изоляционная прокладка PSPAZA663 WJKZ AK.
3 LV-246 Бюллетень № LCDTV-194A Стр. 1 из 2. 1. Снимите радиатор IC 2502 (ИС аудиоусилителя) с AV-блока. 2. Нет необходимости удалять остатки старого охлаждающего листа. 3. Поместите изоляционную прокладку на радиатор. Используйте номер детали: PSPAZA663 WJKZ Insulation Pad 4. Снова прикрепите радиатор с новой изоляционной прокладкой к AV-блоку. 5. Не затягивайте слишком сильно винт, крепящий радиатор к корпусу.ПРИМЕЧАНИЕ. Если после замены охлаждающей пленки симптом не исчезнет, проверьте, не поврежден ли аудиоусилитель IC2502 (VHITA2024 ++ - 1Y). LV-246 Бюллетень № LCDTV-194A Стр. 2 из 2. Спасибо за подписку. Для получения дополнительной информации о новых обновлениях в личном кабинете вы можете обратиться к сайту рассылки новостей.
4 После того, как вы подписались на нашу рассылку новостей, мы будем отправлять вам электронное письмо один или два раза в месяц и сообщать вам, какая последняя информация о ремонте была загружена, а также информация о бесплатном ремонте в этом месяце.Кстати, если вы хотите стать профессионалом в ремонте ЖК-телевизоров, тогда у вас должна быть правильная информация по ремонту, советы по ремонту и т. Д., Чтобы улучшить себя. И в то же время вам также необходимо знать, где найти запасные части / компоненты для замены.