Схема подключения синхронного электродвигателя: Схема подключения синхронного двигателя переменного тока

Схема подключения синхронного двигателя переменного тока

Прежде чем рассматривать принцип действия синхронного двигателя, необходимо помнить, что это электрическая машина, работающая на переменном токе, у которой ротор вращается с частотой, которая равна частоте вращения магнитного поля в воздушной прослойке.

Синхронный двигатель состоит из основных частей – якоря и индуктора. Обычно, его исполнение сделано таким образом, что якорь расположен на статоре, а индуктор – на роторе, отделенном воздушной прослойкой. Данные агрегаты обладают высоким коэффициентом мощности. Существенным плюсом является возможность их использования в сетях с любым напряжением.

Содержание

Устройство синхронного двигателя

Конструкция синхронного двигателя состоит из двух основных частей – статора и ротора. Статор является неподвижной частью агрегата, а ротор – подвижной. В состав якоря входят одна или несколько обмоток переменного тока. При работе двигателя токи, поступающие в якорь, приводят к вращению магнитного поля, пересекающегося с полем индуктора и преобразующего энергию. Поле якоря носит другое название – поле реакции якоря. В генераторе такое поле создается с помощью индуктора.

Схема подключения синхронного двигателя переменного тока

В состав индуктора входят электромагниты постоянного тока, называемые полюсами. Во всех синхронных электродвигателях индукторы бывают двух конструкций – явнополюсная и не явнополюсная, отличающиеся расположением полюсов. Конструкция статора включает в себя корпус и сердечник, в состав которого входят двух- и трехфазные обмотки. Сами обмотки могут быть распределенными и сосредоточенными.

Чтобы уменьшить магнитное сопротивление и улучшить прохождение магнитного потока, используются ферромагнитные сердечники, расположенные в роторе и статоре, для изготовления которых используется электротехническая сталь. Она обладает интересными свойствами, например, повышенным содержанием кремния, с целью повышения ее электрического сопротивления и уменьшения вихревых токов.

Схема подключения синхронного двигателя переменного тока

Каждый синхронный электродвигатель обладает важным параметром – электромагнитным моментом. Он возникает в том случае, когда магнитный поток ротора начинает взаимодействовать с вращающимся магнитным полем. Данное поле образуется под влиянием трехфазного тока, протекающего по обмотке якоря.

В режиме холостого хода происходит совпадение осей магнитных полей ротора и статора. Поэтому электромагнитные силы, возникающие между их полюсами, принимают радиальное направление и значение электромагнитного момента агрегата становится равным нулю. При переходе устройства в двигательный режим, на ротор начинает воздействовать внешние нагрузочный момент, приложенный к валу. В результате, происходит смещение ротора на величину определенного угла против направления вращения.

Схема подключения синхронного двигателя переменного тока

Подобное электромагнитное взаимодействие между ротором и статором приводит к созданию электромагнитных сил, направленных в сторону вращения. Таким образом, действие вращающегося электромагнитного момента стремится к преодолению действия внешнего момента. Максимальное значение электромагнитного момента образует угол 90 градусов, при расположении полюсов ротора между осями полюсов статора.

Если значение нагрузочного момента, приложенного к валу двигателя, превысит максимальный электромагнитный момент, в этом случае двигатель остановится под влиянием внешнего момента. Из-за этого в неподвижном двигателе по обмотке якоря будет проходить очень высокий ток. Данный режим является аварийным, он представляет собой выпадение из синхронизма и на практике не должен допускаться.

Как работает синхронный двигатель

Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой – на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.

Схема подключения синхронного двигателя переменного тока

При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается магнитное поле. Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.

При разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.

Таким образом, синхронный двигатель это не только двигатель, но и своеобразный генератор, поскольку у них одинаковое конструктивное исполнение. Схема работы двигателя будет следующей. Обмотка якоря подключается к трехфазному переменному току, а к обмотке возбуждения от постороннего источника подается постоянный ток. Вращающееся магнитное поле, созданное трехфазной обмоткой и поле, созданное обмоткой возбуждения, взаимодействуют между собой. Это вызывает появление электромагнитного момента, приводящего ротор во вращающееся состояние.

Схема подключения синхронного двигателя переменного тока

Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели. В отличие от асинхронных устройств, разгон ротора в синхронном двигателе должен достигнуть частоты вращения магнитного поля. Это связано с подачей в обмотку ротора тока из постороннего источника, а не индуцируется в нем под действием магнитного поля статора, следовательно, на него не влияет частота вращения вала. В результате, синхронный двигатель переменного тока приобретает постоянную частоту вращения ротора вне зависимости от нагрузки. Специфический принцип работы этих устройств оказал влияние на их пуск и регулировку частоты вращения.

Схема запуска двигателя и его регулировка

У синхронных двигателей отсутствует начальный пусковой момент. При подключении якорной обмотки к источнику переменного тока, электромагнитный момент дважды изменить свое направление за один период изменения тока. Это происходит, когда ротор находится в неподвижном состоянии, а в обмотке возбуждения протекает постоянный ток.

Схема подключения синхронного двигателя переменного тока

Таким образом, величина среднего момента в течение одного периода будет иметь нулевое значение. Чтобы увидеть, как работает синхронный двигатель при пуске, нужно выполнить разгон его ротора под действием внешнего момента до вращения с частотой, приближенной к синхронной.

Сам запуск агрегата может производиться разными способами:

  • В первом случае используется схема асинхронного включения, основой которой служит глухо подключенный возбудитель. Данный способ применяется при статическом моменте нагрузки ниже 0,4, когда отсутствует падение напряжения. Сопротивление разряда замыкается в обмотке возбуждения, за счет чего исключаются перебои с возбуждением обмотки во время впуска, поскольку незначительная скорость вращения ротора приводит к перенапряжению. Когда скорость становится близкой к синхронной, контактор реагирует на это изменение, в результате происходит переключение обмотки возбуждения из разрядного сопротивления непосредственно на якорь возбудителя.
  • Во втором варианте пуска используется тиристорный возбудитель. Этот способ считается более надежным из-за высокого КПД. Управление возбуждением значительно облегчается. Подача возбуждение осуществляется автоматически с помощью электромагнитного реле.

Различия синхронных и асинхронных двигателей

Все электродвигатели переменного тока по принципу действия могут быть асинхронными и синхронными. В первом случае вращение ротора будет медленнее, по сравнению с магнитным полем, а во втором – вращение ротора и магнитного поля происходит с одинаковой скоростью.

Схема подключения синхронного двигателя переменного тока

В асинхронном двигателе вращающееся переменное магнитное поле создается обмотками, закрепленными на статоре. Концы этих обмоток выведены в общую клеммную коробку. Во избежание перегрева на валу двигателя устанавливается вентилятор. Ротор выполнен из металлических стержней, замкнутых с двух сторон между собой. Он представляет единое целое с валом и получил название короткозамкнутого ротора.

Вращение магнитного поля происходит под действием постоянной смены полюсов. Соответственно, в обмотках изменяется направление тока. На скорость вращения вала оказывает влияние количество полюсов магнитного поля.

Схема подключения синхронного двигателя переменного тока

Синхронный электродвигатель конструктивно отличается от асинхронных агрегатов. Здесь вращение ротора и магнитного поля происходит с одинаковой скоростью. Напряжение на ротор для зарядки обмоток подается с помощью щеток, а не индуцируется действием переменного магнитного поля. Направление тока в обмотках изменяется одновременно с направлением магнитного поля, поэтому вал синхронного двигателя всегда вращается в одну сторону.

Схемы управления синхронными двигателями можно условно разделить на релейно-контакторные, применяемые для пуска, синхронизации с сетью и останова нерегулируемых по скорости электроприводов, и схемы с силовыми преобразователями, предназначенные для регулирования переменных ЭП с синхронными двигателями.

Релейно-контакторные схемы управления двигателей кроме операций по включению и отключению двигателя, ограничению пусковых токов и его синхронизации с сетью должны обеспечивать и соответствующее регулирование тока возбуждения. Электротехническая промышленность выпускает широкую номенклатуру типовых панелей и шкафов управления для синхронных двигателей различных мощностей и уровней номинального напряжения.

Типовая схема управления возбуждением двигателя в функции скорости. Подключение обмотки возбуждения к источнику питания UB осуществляется контактором КМ2 (рис. 6.10, а), который управляется реле скорости KR. Катушка этого реле связана с частью разрядного резистора Rp через диод VD.

При включении контактора КМ1 (его цепи управления на рисунке не показаны) обмотка статора двигателя подключается к сети переменного тока и образует вращающееся магнитное поле, под действием которого он начнет разбег и которое наведет ЭДС в обмотке возбуждения двигателя. Под действием ЭДС по катушке реле KR начнет протекать выпрямленный ток, оно включится и разомкнет цепь питания контактора КМ2. Разбег двигателя будет происходить без тока возбуждения с закороченной на разрядный резистор Rp обмоткой возбуждения.

По мере роста скорости ротора его ЭДС и ток в катушке реле KR, снижаются. При подсинхронной скорости ток в катушке реле KR станет меньше тока отпускания, реле отключится и вызовет тем самым включение контактора

КМ2. Контактор КМ2 подключит обмотку возбуждения к источнику питания. Далее происходит процесс синхронизации СД с сетью.

Схема управления возбуждением двигателя в функции тока (рис. 6.10, б) содержит реле тока КА, обмотка которого питается от трансформатора тока ТА, и реле времени КТ. При подключении двигателя к сети контактором КМ1 в цепи обмотки статора возникает бросок пускового тока, что приводит к срабатыванию реле КА. Контакт этого реле замыкает цепь питания реле времени КТ, что вызывает отключение контактора возбуждения КМ2. Разбег двигателя, как и в предыдущем случае, осуществляется с закороченной на разрядный резистор Rp обмоткой возбуждения.

Рис. 6.10. Схемы управления пуском двигателя с использованием принципа

скорости (а) и тока (б)

В конце пуска при подсинхронной скорости двигателя и уменьшении тока в статоре реле КА отключается и катушка реле времени КТ теряет питание. Через заданную выдержку времени включается контактор КМ2, и через его контакты обмотка возбуждения подключается к источнику питания

U , после чего двигатель втягивается в синхронизм.

Отметим, что в рассмотренных схемах после срабат

Схема подключения синхронного электродвигателя

5.1. Схема включения, статические характеристики и режимы работы синхронного двигателя

Синхронные трехфазные двигатели (СД) широко применяются в электроприводах самых разнообразных рабочих машин и механизмов, что объясняется их высокими технико-экономическими показателями.

1.Синхронные двигатели имеют высокий коэффициент мощностиcos, равный единице для электроприводов небольшой мощности и опережающийcosв установках большой мощности. Способность СД работать с опережающимcosи отдавать в сеть реактивную мощность позволяет улучшать режим работы и экономичность сети электроснабжения.

2.Высокий КПД современных СД, составляющий 96–98 %, что на 1–1,5 % выше КПД АД тех же габаритов и скорости.

3.Возможность регулирования перегрузочной способности СД за счет регулирования тока возбуждения и меньшая зависимость этого показателя от напряжения сети по сравнению с АД.

4.Синхронный двигатель обладает абсолютно жесткой механической характеристикой.

5.Важным преимуществом конструкции СД является большой воздушный зазор, вследствие чего его характеристики и свойства мало зависят от износа подшипников и неточности монтажа ротора.

6.Возможность их изготовления на очень большие мощности (до нескольких десятков мегаватт и более).

На рис. 5.1 приведена схема включения СД. На статоре СД, выполненном аналогично статору АД, располагается трехфазная обмотка, подключенная к сети переменного тока.

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Статьи по электроремонту и электромонтажу

Синхронные движки получили обширное распространение в индустрии для электроприводов, работающих с неизменной скоростью (компрессоров, насосов и т.д.). В ближайшее время, вследствие возникновения преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы.

Плюсы синхронных электродвигателей

Синхронный движок несколько труднее, чем асинхронный, но обладает рядом
преимуществ, что позволяет использовать его в ряде всевозможных случаев заместо асинхронного.

1. Главным достоинством синхронного электродвигателя является возможность
получения рационального режима по реактивной энергии , который осуществляется
методом автоматического регулирования тока возбуждения мотора. Синхронный
движок может работать, не потребляя и не отдавая реактивной энергии в сеть,
при коэффициенте мощности ( cos фи)
равным единице.Если для предприятия нужна выработка реактивной энергии, то
с и нхронный электродвигатель, работая с перевозбуждением,
может отдавать ее в сеть.

2. Синхронные электродвигатели наименее чувствительны к
колебаниям напряжения сети, чем асинхронные электродвигатели. Их
наибольший момент пропорционален напряжению сети, в то время как критичный
момент асинхронного электродвигателя пропорционален квадрату напряжения.

3. Синхронные электродвигатели имеют высшую перегрузочную
способность. Не считая того, перегрузочная способность синхронного мотора
может быть автоматом увеличена за счет увеличения тока возбуждения, к примеру,
при резком краткосрочном повышении нагрузки на валу мотора.

4. Скорость вращения синхронного мотора остается
постоянной при хоть какой нагрузке на валу в границах его перегрузочной возможности.

Методы запуска синхронного электродвигателя

Вероятны последующие методы запуска синхронного мотора: асинхронный запуск на полное напряжение сети и запуск на пониженное напряжение через реактор либо автотрансформатор.

Асинхронный запуск синхронного электродвигателя

Схема возбуждения синхронного мотора с глухоподключенным возбудителем достаточно ординарна и может применяться в этом случае, если пусковые токи не вызывают падения напряжения в сети больше допустимого и статистический момент нагрузки Мс

Асинхронный запуск синхронного мотора делается присоединением статора к сети. Движок разгоняется как асинхронный до скорости вращения, близкой к синхронной.

В процессе асинхронного запуска обмотка возбуждения замыкается на разрядное сопротивление, чтоб избежать пробоя обмотки возбуждения при пуске, потому что при малой скорости ротора в ней могут появиться значимые перенапряжения. При скорости вращения, близкой к синхронной, срабатывает контактор КМ (цепь питания контактора на схеме не показана), обмотка возбуждения отключается от разрядного сопротивления и подключается к якорю возбудителя. Запуск завершается.

Типовые узлы схем возбуждения синхронного мотора

Слабеньким местом большинства электроприводов с синхронными движкам, существенно
усложняющим эксплуатацию и повышающим издержки, многие годы являлся
электромашинный возбудитель. В текущее время обширное распространение для
возбуждения синхронных движков находят тиристорные возбудители . Они
поставляются в комплектном виде.

Тиристорные возбудители синхронных электродвигателей более надежны и имеют
более высочайший к.п.д. по сопоставлению с электромашинными возбудителями. С помощью их
просто решаются вопросы рационального регулирования тока возбуждения для
поддержания всепостоянства cos фи, напряжения на шинах,
от которых питается синхронный движок, также ограничение токов ротора и
статора синхронного мотора в аварийных режимах.

Тиристорными возбудителями оснащается большая часть выпускаемых больших
синхронных электродвигателей. Они делают обычно последующие функции:

  • запуск синхронного мотора с включенным в цепь обмотки возбуждения
    пусковым резистором,
  • бесконтакное отключение пускового резистора после окончания запуска
    синхронного мотора и защиту его от перегрева,
  • автоматическую подачу возбуждения в подходящий момент запуска синхронного
    электродвигателя,
  • автоматическое и ручное регулирование тока возбуждения
  • нужную форсировку возбуждения при глубочайших посадках напряжения на
    статоре и резких набросах нагрузки на валу синхронного мотора,
  • резвое гашение поля синхронного мотора по мере надобности понижения
    тока возбуждения и отключениях электродвигателя,
  • защиту ротора синхронного мотора от долговременной перегрузки по току и
    маленьких замыканий.

Если запуск синхронного электродвигателя делается на пониженное напряжение, то при «легком» пуске возбуждение подается до включения обмотки статора на полное напряжение, а при «тяжелом» пуске подача возбуждения происходит при полном напряжении в цепи статора.
Может быть подключение обмотки возбуждения мотора к якорю возбудителя поочередно с разрядным сопротивлением.

Процесс подачи возбуждения синхронному движку автоматизируется 2-мя методами: в функции скорости и в функции тока.

На схеме, приведенной на рисунке, подача возбуждения синхронному движку осуществляется при помощи электрического реле неизменного тока КТ (реле времени с гильзой). Катушка реле врубается на разрядное сопротивление Rразр через диодик VD. При подключении обмотки статора к сети в обмотке возбуждения мотора наводится ЭДС. По катушке реле КТ проходит выпрямленный ток, амплитуда и частота импульсов которого зависят от скольжения.

Подача возбуждения синхронному движку в функции скорости

При пуске скольжение S = 1. По мере разгона мотора оно миниатюризируется и интервалы меж выпрямленными полуволнами тока растут; магнитный поток равномерно понижается по кривой Ф(t).

При скорости, близкой к синхронной, магнитный поток реле успевает добиться значения потока отпадания реле Фот в момент, когда через реле КТ ток не проходит. Реле теряет питание и своим контактом делает цепь питания контактора КМ (на схеме цепь питания контактора КМ не показана).

Разглядим контроль подачи возбуждения в функции тока при помощи реле тока. При пусковом токе срабатывает реле тока КА и размыкает собственный контакт в цепи контактора КМ2.

График конфигурации тока и магнитного потока в реле времени КТ

Контроль подачи возбуждения синхронному движку в функции тока

При скорости, близкой к синхронной, реле КА отпадает и замыкает собственный контакт в цепи контактора КМ2. Контактор КМ2 срабатывает, замыкает собственный контакт в цепи возбуждения машины и шунтирует резистор Rразр

Синхронные электродвигатели: устройство, схема

Особенностью синхронных электродвигателей является то, что у магнитного потока и ротора скорости вращения одинаковы. По этой причине ротор электрического двигателя не изменяет свою скорость при увеличение нагрузки. На роторе находится обмотка, которая создает магнитное поле.

Иногда используются мощные постоянные магниты. Обычно в синхронных машинах на роторе столько же обмоток, сколько и на статоре. Так получается выровнять скорости вращения магнитного потока и ротора. Нагрузка, которая подключена к электродвигателю, на скорость не влияет вообще.

Конструкция электродвигателя

синхронные электродвигатели

Устройство синхронного электродвигателя состоит из следующих элементов:

  1. Неподвижная часть — статор, на котором располагаются обмотки.
  2. Подвижный ротор, его иногда называют индуктором или якорем.
  3. Передние и задние крышки.
  4. Подшипники, устанавливаемые на роторе.

Между якорем и статором имеется свободное пространство. В пазах закладываются обмотки, они соединяются в звезду. Как только на двигатель подается напряжение, по обмотке якоря начинает протекать ток. Образуется магнитное поле вокруг индуктора. Но на статор тоже подаётся напряжение. И здесь возникает магнитный поток. Эти поля смещены относительно друг друга.

Как работает синхронный мотор

В синхронных машинах электромагниты на статоре являются полюсами, так как они работают на постоянном токе. Всего существует две схемы, по которым соединяются обмотки статоров:

  1. Явнополюсная.
  2. Неявнополюсная.

Для того чтобы снизить магнитное сопротивление и оптимизировать условия прохода поля, применяются сердечники, изготовленные из ферромагнетиков. Они имеются как в статоре, так и в роторе.

схема синхронного электродвигателя

Изготавливаются они из специальных сортов электротехнической стали, в которой содержится огромное количество такого элемента, как кремний. С помощью этого удается значительно понизить вихревой ток, а также увеличить электрическое сопротивление металла.

В основе работы синхронных электродвигателей лежит взаимодействие полюсов статора и ротора. При запуске происходит ускорение до скорости движения потока. Именно в таких условиях электрический двигатель действует в синхронном режиме.

Метод запуска с помощью дополнительного электромотора

Ранее использовались специальные двигатели для запуска, которые соединялись с мотором при помощи механических устройств (ременной передачей, цепной, и пр.). Во время запуска ротор начинал вращаться и, постепенно ускоряясь, достигал значения синхронной скорости. После этого электродвигатель сам начинал работать. Именно такой принцип действия у синхронного электродвигателя, независимо от конструкции и производителя.

устройство синхронного электродвигателя

Обязательным условием является то, что пусковой электродвигатель должен иметь мощность около 15% от аналогичной характеристики разгоняемого мотора. Такой мощности оказывается вполне достаточно, чтобы запустить любой синхронный электродвигатель, даже если к нему подключена небольшая нагрузка. Этот метод довольно сложный, а себестоимость всего оборудования значительно повышается.

Современный метод запуска

Современные конструкции синхронных электродвигателей не оснащаются подобными схемами для разгона. Используется другая система запуска. Примерно таким образом происходит включение синхронной машины:

  1. При помощи реостата замыкаются обмотки ротора. В результате якорь становится короткозамкнутым, как на простых асинхронных электродвигателях.
  2. На роторе имеется еще и короткозамкнутая обмотка, которая является успокоительной, с ее помощью предотвращается качание якоря во время синхронизации.
  3. Как только якорь достигает минимальной скорости вращения, к его обмоткам подключается постоянный ток.
  4. Если используются постоянные магниты, то применять внешние пусковые двигатели придется обязательно.

Существуют криогенные синхронные электромоторы, в которых используется конструкция обращенного типа. Обмотки возбуждения изготавливаются из сверхпроводниковых материалов.

Преимущества синхронных машин

асинхронные и синхронные электродвигатели

Асинхронные и синхронные электродвигатели имеют очень схожие конструкции, но различия всё равно имеются. В последних имеется явное преимущество в том, что происходит возбуждение от источника постоянного тока. В этом случае может мотор работать при очень большом коэффициенте мощности. Существуют также другие преимущества синхронных двигателей:

  1. Они работают с завышенным коэффициентом. Это позволяет уменьшить расход электроэнергии, а также существенно снижает потери тока. Коэффициент полезного действия синхронной машины будет намного выше, нежели у асинхронного двигателя с такой же мощностью.
  2. Крутящий момент напрямую зависит от того, какое напряжение в питающей сети. Даже при условии, что напряжение в сети уменьшится, мощность сохранится.

Но всё равно асинхронные машины используется намного чаще, нежели синхронная. Дело в том, что они имеют большую надежность, простую конструкцию, не требуют дополнительного ухода.

Недостатки синхронных двигателей

принцип действия синхронного электродвигателя

Оказывается, что недостатков у синхронных машин намного больше. Вот только основные:

  1. Схема синхронного электродвигателя довольно сложная, она состоит из большого количества элементов. Именно по этой причине себестоимость устройства оказывается очень высокой.
  2. Обязательно нужно использовать для питания индуктора источник постоянного тока. Это значительно усложняет всю конструкцию.
  3. Процедура запуска электрического двигателя довольно сложная, нежели у асинхронных машин.
  4. Произвести регулировку частоты вращения ротора можно только при помощи использования частотных преобразователей.

В целом же, преимущества существенно перекрывают недостатки синхронных электродвигателей. По этой причине они очень часто используются там, где необходимо вести непрерывный постоянный производственный процесс, где не нужно часто останавливать и запускать оборудование. Синхронные машины можно встретить в мельницах, дробилках, насосах, компрессорах. Они редко выключаются, работают почти постоянно. За счет применения таких моторов можно достичь существенной экономии электроэнергии.

Как подключить однофазный двигатель

Сегодня мы рассмотрим подключение однофазного двигателя переменного тока. К таким относят асинхронные и синхронные моторы, питающиеся от одной фазы, которая обычно имеет напряжение 220 Вольт. Они очень распространены в бытовой сфере и мелком производстве, частном предпринимательстве.

Подключение однофазного асинхронного двигателя

Для разгона асинхронного двигателя требуется создать вращающееся магнитное поле. С этим легко справляется трехфазный источник питания, где фазы сдвинуты друг относительно друга на 120 градусов. Но если речь идет о том, как подключить однофазный электродвигатель, то встает проблема: без сдвига фаз вал не начнет вращаться.

Внутри однофазного асинхронного мотора располагаются две обмотки: пусковая и рабочая. Если обеспечить сдвиг фаз в них, то магнитное поле станет вращающимся. А это главное условие для запуска электродвигателя. Сдвигать фазы можно путем добавочного сопротивления (резистора) или индуктивной катушки. Но чаще всего используют емкости – пусковой и/или рабочий конденсаторы.

С пусковой емкостью

В большинстве случаев схема включает в себя только пусковой конденсатор. Он активен только во время запуска мотора. Поэтому способ хорош, когда пуск обещает быть тяжелым, в противном случае вал не сможет разгоняться из-за небольшого начального момента. После разгона пусковой конденсатор отключается, и работа продолжается без него.

Схема подключения двигателя со вспомогательной емкостью представлена на рисунке выше. Для ее реализации вам потребуется реле или, как минимум, одна кнопка, которую вы будете зажимать на 3 секунды во время запуска мотора в ход. Вспомогательный конденсатор вместе со вспомогательной обмоткой включаются в цепь лишь на некоторое время.

Такая схема обеспечивает оптимальный начальный крутящий момент, если имеют место незначительные броски переменного тока во время пуска. Но есть и недостаток – при работе в номинальном режиме технические характеристики падают. Это обусловлено формой магнитного поля рабочей обмотки: оно у нее овальное, а не круговое.

С рабочей емкостью

Если пуск легкий, а работа тяжелая, то вместо пускового конденсатора понадобится рабочий. Схема подключения показана ниже. Особенность заключается в том, что рабочая емкость вместе с рабочей обмоткой включена в цепь постоянно.

Схема обеспечивает хорошие характеристики при работе в номинальном режиме.

С обоими конденсаторами

Компромиссное решение – использование вспомогательной и рабочей емкости одновременно. Этот способ идеален, если двигатель переменного тока пускается в ход уже с нагрузкой, и сама работа тяжела для него. Посмотрите, схема ниже – это словно две схемы (с рабочей и вспомогательной емкостью), наложенные друг на друга. При запуске на несколько секунд будет включаться пусковой механизм, а второй накопитель будет активен все время: от пуска до завершения работы.

Расчет емкостей

Наибольшую сложность для начинающих представляет расчет емкости конденсаторов. Профессионалы подбирают их опытным путем, прислушиваясь к мотору во время запуска и работы. Так они определяют, подходит накопитель, или нужно поискать другой. Но с небольшой погрешностью в большинстве случаев емкость можно рассчитать так:

  • Для рабочего накопителя: 0,7-0,8 мкФ на 1000 Ватт мощности электрического двигателя;
  • Для пускового конденсатора: больше в 2,5 раза.

Пример: у вас асинхронный однофазный электродвигатель на 2 кВт. Это 2000 Ватт. Значит, при подключении с рабочей емкостью нужно запастись накопителем 1,4-1,6 мкФ. Для пусковой потребуется 3,5-4 мкФ.

Подключение однофазного синхронного электродвигателя

Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.

Метод разгона

Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.

Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:

  1. Вручную;
  2. С использованием второго двигателя.

Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.

При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.

Асинхронный пуск синхронного мотора

Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.

Важно! Вспомогательные металлические стержни должны обладать высоким активным сопротивлением. В противном случае пусковой момент будет недостаточным для разгона ротора. А закорачивать намотку возбуждения необходимо по одной простой причине: если этого не сделать, то у нее в момент пуска случится пробой, потому что она задает вращение в том же направление, что и пусковая обмотка.

Схема и способ подключения вашего двигателя будет зависеть от того, какой он у вас: синхронный или асинхронный. В учет идет также мощность мотора, а также способ пуска: с нагрузкой или без. Разобраться в рисунках вам поможет элементарное понимание механики и электромагнитных явлений.

 

Схемы подключения электродвигателей к сети переменного тока 220 вольт

Как подключить электродвигательДля того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Схема подключения трехфазного электродвигателяДля начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Подключаем электродвигатель к сети 220Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Трехфазный асинхронный электродвигательТок в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Схема запуска и подключения электродвигателяВозможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Пуск синхронных двигателей: особенности и способы пуска

Для обеспечения работы мощных электроприводов применяются синхронные электродвигатели. Они нашли применение в компрессорных установках, насосах, в системах, прокатных станах, вентиляторах. Применяются в металлургической, цементной, нефтегазовой и других отраслях промышленности, где необходимо использовать оборудование большой мощности. В этой статье мы решили рассказать читателям сайта Сам Электрик, как может выполняться пуск синхронных двигателей.

Преимущества и недостатки

Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:

  • Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
  • По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
  • Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
  • Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
  • При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.

При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.

Способы пуска

Пуск синхронных электродвигателей можно осуществить тремя способами – с помощью дополнительного двигателя, асинхронный и частотный запуск. При выборе способа учитывается конструкция ротора.

Конструкция ротора синхронного двигателя

Он выполняется с постоянными магнитами, с электромагнитным возбуждением или комбинированным. Наряду с обмоткой возбуждения на роторе смонтирована короткозамкнутая обмотка – беличья клетка. Её также называют демпфирующей обмоткой.

Внешнив вид ротора синхронного электродвигателя с безщеточным возбуждением обмоткой возбуждения (не постоянными магнитами!)

Запуск с помощью разгонного двигателя

Этот метод пуска редко применяется на практике, потому что его сложно реализовать технически. Требуется дополнительный электродвигатель, который механически соединен с ротором синхронного двигателя.

С помощью разгонного двигателя раскручивается ротор до значений близких к скорости вращения поля статора (к синхронной скорости). После чего на обмотку возбуждения ротора подают постоянное напряжение.

Контроль осуществляется по лампочкам, которые включены параллельно рубильнику, подающему напряжение на обмотки статора. Рубильник должен быть отключен.

В первоначальный момент лампы мигают, но при достижении номинальных оборотов они перестают гореть. В этот момент подают напряжение на обмотки статора. После чего синхронный электродвигатель может работать самостоятельно.

Затем дополнительный мотор отключается от сети, а в некоторых случаях его отсоединяют механически. В этом состоят особенности пуска с разгонным электродвигателем.

Асинхронный запуск

Метод асинхронного пуска на сегодня самый распространенный. Такой запуск стал возможен после изменения конструкции ротора. Его преимущество в том, что не нужен дополнительный разгонный двигатель, так как дополнительно к обмотке возбуждения в ротор вмонтировали короткозамкнутые стержни беличьей клетки, что дало возможность запускать его в асинхронном режиме. При таком условии этот способ пуска и получили широкое распространение.

Сразу же рекомендуем просмотреть видео по теме:

При подаче напряжения на обмотку статора происходит разгон двигателя в асинхронном режиме. После достижения оборотов близких к номинальным, включается обмотка возбуждения.

Электрическая машина входит в режим синхронизма. Но не все так просто. Во время пуска в обмотке возбуждения возникает напряжение, которое возрастает с ростом оборотов. Оно создает магнитный поток, который воздействует на токи статора.

При этом возникает тормозящий момент, который может приостановить разгон ротора. Для уменьшения вредного воздействия обмотки возбуждения подключают к разрядному или компенсационному резистору. На практике эти резисторы представляют собой большие тяжелые ящики, где в качестве резистивного элемента используются стальные спирали. Если этого не сделать, то из-за возрастающего напряжения может произойти пробой изоляции. Что повлечет выход оборудования из строя.

После достижения подсинхронной частоты вращения, от обмотки возбуждения отключаются резисторы, и на нее подается постоянное напряжение от генератора (в системе генератор-двигатель) или от тиристорного возбудителя (такие устройства называются ВТЕ, ТВУ и так далее, в зависимости от серии). В результате чего двигатель переходит в синхронный режим.

Недостатками этого метода являются большие пусковые токи, что вызывает значительную просадку напряжения питающей сети. Это может повлечь за собой остановку других синхронных машин, работающих на этой линии, в результате срабатывания защит по низкому напряжению. Для уменьшения этого воздействия цепи обмоток статора подключают к компенсационным устройствам, которые ограничивают пусковые токи.

Это могут быть:

  1. Добавочные резисторы или реакторы, которые ограничивают пусковые токи. После разгона они шунтируются, и на обмотки статора подается сетевое напряжение.
  2. Применение автотрансформаторов. С их помощью происходит понижение входного напряжения. При достижении скорости вращения 95-97% от рабочей, происходит переключение. Автотрансформаторы отключаются, а на обмотки подается напряжение сети переменного тока. В результате электродвигатель входит в режим синхронизации. Этот метод технически более сложный и дорогостоящий. А автотрансформаторы часто выходят из строя. Поэтому на практике этот метод редко применяют.

Частотный пуск

Частотный пуск синхронных двигателей применяется для запуска устройств большой мощности (от 1 до 10 МВт) с рабочим напряжением 6, 10 Кв, как в режиме легкого запуска (с вентиляторным характером нагрузки), так и с тяжелым пуском (приводов шаровых мельниц). Для этих целей выпускаются устройства мягкого частотного пуска.

Принцип работы аналогичен высоковольтным и низковольтным устройствам, работающим по схеме преобразователя частоты. Они обеспечивают пусковой момент до 100% от номинала, а также обеспечивают запуск нескольких двигателей от одного устройства. Пример схемы с устройством плавного пуска вы видите ниже, оно включается на время запуска двигателя, а затем выводится из схемы, после чего двигатель включается в сеть напрямую.

Однолинейная схема включения устройства мягкого частотного пуска синхронного двигателя

Системы возбуждения

До недавнего времени, для возбуждения применялся генератор независимого возбуждения. Он располагался на одном валу с синхронным электродвигателем. Такая схема еще применяется на некоторых предприятиях, но она устарела и теперь не применяется. Сейчас для регулировки возбуждения используются тиристорные возбудители ВТЕ.

Они обеспечивают:

  • оптимальный режим пуска синхронного двигателя;
  • поддержание заданного тока возбуждения в заданных пределах;
  • автоматическое регулирование напряжения возбуждения в зависимости от нагрузки;
  • ограничение максимального и минимального тока возбуждения;
  • мгновенное увеличение тока возбуждения при понижении питающего напряжения;
  • гашение поля ротора при отключении от питающей сети;
  • контроль состояния изоляции, с оповещением о неисправности;
  • обеспечивают проверку состояния обмотки возбуждения при неработающем электродвигателе;
  • работают с высоковольтным преобразователем частоты, обеспечивая асинхронный и синхронный запуск.

Эти устройства отличаются высокой надежностью. Основным недостатком является высокая цена.

В заключение отметим, что самый распространенный способ пуска синхронных двигателей — это асинхронный запуск. Практически не нашел применения пуск с помощью дополнительного электродвигателя. В то же время частотный запуск, который позволяет в автоматическом режиме решить проблемы пуска, довольно дорогостоящий.

Материалы по теме:

Как подключить синхронный двигатель на 220в

Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.

Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

Что при этом получается?

  • Скорость вращения не изменяется.
  • Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

Схемы подключения

Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме оч

Реализация саморегулируемого привода синхронного двигателя

Внедрение саморегулируемого привода синхронного двигателя

Библиотека

Simscape / Электрооборудование / Специализированные системы питания / Электроприводы / Приводы переменного тока

×

Описание

Блок самоуправляемого синхронного двигателя (AC5) представляет Классический векторный привод для обмотки синхронных двигателей. Этот диск имеет единство управление коэффициентом мощности и управление скоростью в замкнутом контуре на основе метода векторного управления. единичный коэффициент мощности достигается за счет трехфазного активного напряжения, управляемого напряжением выпрямитель. Контур управления скоростью выдает эталонный электромагнитный момент и поток статора машины. Опорная постоянная и квадратурная (dq) составляющие тока статора соответствующие заданному потоку статора и крутящий момент выводятся на основе векторного управления стратегия. Эти опорные dq составляющие тока статора затем используются для получения необходимые затворные сигналы для инвертора через регулятор тока в гистерезисном диапазоне.Поле напряжение, требуемое машиной, получено из контура управления потоком статора.

Основным преимуществом этого привода по сравнению со скалярными приводами является его быстрая динамика ответ. Эффект сцепления (между крутящим моментом и магнитным потоком) в машине управляется через управление развязкой (ориентация потока статора), которое позволяет крутящему моменту и потоку быть контролируется независимо. Однако из-за сложности вычислений, реализация этого диск требует быстрых вычислительных процессоров или DSP.

Note

In Simscape ™ Electrical ™ Специализированное программное обеспечение Power Systems, Саморегулируемый синхронный двигатель Приводной блок обычно называют AC5 моторным приводом.

Блок самоуправляемого синхронного двигателя использует эти блоки из Библиотека электроприводов / блоков основного привода:

  • Регулятор скорости (AC)

  • Vector Controller (WFSM)

  • Активный выпрямитель

  • Инвертор (трехфазный)

Замечания

Примечания модель дискретная.Хорошие результаты моделирования были получены с 2 µ с шагом по времени. Для имитации устройства цифрового контроллера, системы управления имеет два разных времени выборки:

Время выборки регулятора скорости должно быть кратным выборке векторного контроллера время. Последнее время выборки должно быть кратным шагу моделирования. инвертор и выпрямитель среднего значения позволяют использовать большие временные шаги моделирования, так как они не генерировать небольшие постоянные времени (из-за демпфера RC), свойственные детальным конвертерам.Для векторного контроллера и активного контроллера выпрямителя время выборки 50 мкс, хорошая имитация результаты были получены для временного шага моделирования 50 мкс. Этот временной шаг может, конечно, не должно быть выше, чем наименьшее время выборки контроллера.

Согласование знака крутящего момента синхронной машины отличается от асинхронные и PM синхронные машины. То есть синхронная машина в моторе режим работы, когда электрический крутящий момент отрицателен, и в режиме работы генератора, когда электрический крутящий момент положительный.

Параметры

Общее

Режим шины вывода

Выберите способ организации выходных переменных. Если вы выберете Несколько выходные шины (по умолчанию), блок имеет три отдельные выходные шины для двигателя, преобразователь и переменные контроллера. Если вы выберите Один выход шина , все переменные выводятся на одну шину.

Уровень детализации модели

Выбор между преобразователем с подробной и средней величиной.По умолчанию Подробно .

Механический ввод

Выберите между моментом нагрузки, скоростью двигателя и механическим портом вращения, как механический ввод. По умолчанию крутящий момент Тм .

Если вы выбираете и применяете крутящий момент нагрузки, то выходной сигнал является скоростью двигателя в соответствии с следующее дифференциальное уравнение, описывающее динамику механической системы:

Эта механическая система включена в модель двигателя.

Если вы выберете скорость двигателя в качестве механического входа, то вы получите электромагнитный крутящий момент как выходной, что позволяет вам внешне представлять динамику механической системы. внутренняя механическая система не используется с этим выбором механического входа и инерцией и параметры вязкого трения не отображаются.

Для механического поворотного порта соединительный порт S считается для механического ввод и вывод. Это позволяет прямое подключение к среде Simscape.Механическая система двигателя также включена в привод и основан на том же дифференциальном уравнении.

См. Механическая муфта двух моторных приводов.

Использовать имена сигналов в качестве меток

При установке этого флажка двигатель , Conv , и Ctrl измерительных выходов используют имена сигналов для идентификации шины этикетки. Выберите эту опцию для приложений, которые требуют, чтобы на метках сигналов шины были только буквенно-цифровые символы.

Когда этот флажок снят (по умолчанию), выходные данные измерения используют сигнал определение для идентификации шин. Метки содержат не буквенно-цифровые символы, которые несовместимы с некоторыми приложениями Simulink ® .

Вкладка "Синхронный станок"

Вкладка " Синхронный станок " отображает параметры Синхронный машинный блок библиотеки фундаментальных блоков (powerlib).

Преобразователи и плата постоянного тока Tab

Секция выпрямителя

Секция выпрямителя Преобразователей и DC Вкладка Bus отображает параметры блока Universal Bridge библиотека фундаментальных блоков (powerlib).Для получения дополнительной информации о Universal Bridge параметры, см. ссылку на универсальный мост стр.

Выпрямитель среднего значения использует три следующих параметра.

Частота источника

Частота трехфазного источника напряжения (Гц). По умолчанию 60 .

Напряжение источника

Среднеквадратичное линейное напряжение трехфазного источника напряжения (В). По умолчанию 460 .

Сопротивление в открытом состоянии

Сопротивление в состоянии выпрямительных устройств (Ом). По умолчанию 1е-3 .

Секция шины постоянного тока
Емкость

Значение емкости шины постоянного тока (F). По умолчанию 7500e-6 .

Секция входного дросселя

Входные дроссели уменьшают гармоники тока в линии.

Сопротивление

Входное значение сопротивления дросселя (Ом).По умолчанию 0,05 .

Индуктивность

Значение индуктивности входного дросселя (H). По умолчанию 1e-3 .

Секция инвертора

Секция Инвертора Преобразователей и постоянного тока Вкладка Bus отображает параметры блока Universal Bridge библиотека фундаментальных блоков (powerlib). Для получения дополнительной информации о Universal Bridge параметры, см. ссылку на универсальный мост стр.

Инвертор среднего значения использует два следующих параметра:

Сопротивление в рабочем состоянии

Сопротивление в состоянии инвертора (в омах). По умолчанию 1е-3 .

Прямые напряжения [Device Vf, Diode Vdf]

Прямые напряжения, в вольтах (V), устройств с принудительной коммутацией и антипараллельные диоды. Эти значения необходимы для запуска и для режима прямоугольной волны.

Вкладка «Контроллер»

Тип регулирования

В этом раскрывающемся меню можно выбирать между регулировкой скорости и крутящего момента. По умолчанию Скорость регулирования .

Схема

При нажатии этой кнопки появляется диаграмма, иллюстрирующая скорость, выпрямитель и вектор появляется схема контроллера.

Регулятор скорости Subtab
Рампы скорости - ускорение

Максимальное изменение скорости, допустимое при ускорении двигателя.Чрезмерно большой положительное значение может вызвать пониженное напряжение шины постоянного тока (об / мин / с). По умолчанию 100 .

Скоростные рампы - замедление

Максимальное изменение скорости, допустимое при замедлении двигателя. Чрезмерно большой отрицательное значение может вызвать перенапряжение шины постоянного тока (об / мин / с). По умолчанию -100 .

Частота среза скорости

Частота среза фильтра низких частот первого порядка для измерения скорости (Гц).По умолчанию 5 .

Время выборки регулятора скорости

Время выборки регулятора скорости. Время выборки должно быть кратным шаг моделирования времени. По умолчанию 7 * 20e-6 .

ПИ-регулятор - Пропорциональное усиление

Пропорциональное усиление регулятора скорости. По умолчанию 75 .

Регулятор PI - интегральное усиление

Интегральное усиление регулятора скорости.По умолчанию 100 .

Пределы выходного крутящего момента - отрицательный

Максимальный отрицательный требуемый крутящий момент, приложенный к двигателю векторным контроллером (N.m). По умолчанию -12002525.

Пределы выходного крутящего момента - положительный

Максимальный положительный требуемый крутящий момент, приложенный к двигателю векторным контроллером (N.m). По умолчанию 1200 .

Контроллер шины постоянного тока Subtab
ПИ-регулятор - Пропорциональное усиление

Пропорциональное усиление контроллера напряжения шины постоянного тока.По умолчанию 10 .

PI-регулятор - интегральное усиление

Интегральное усиление контроллера напряжения шины постоянного тока. По умолчанию 100 .

Пределы линейного тока d компонентные ограничения - минимальный (отрицательный)

Максимальный ток, протекающий от конденсатора шины постоянного тока к линии переменного тока (A). По умолчанию составляет -8002525.

Пределы линейного тока d компонентные ограничения - Максимум (положительный)

Максимальный ток, протекающий от линии переменного тока к конденсатору шины постоянного тока (A).По умолчанию это 800 .

Частота среза измерения напряжения

Частота среза фильтра низких частот измерения напряжения (Гц). По умолчанию 100 .

Время выборки активного выпрямителя

Время выборки контроллера напряжения шины постоянного тока. Время выборки должно быть кратным шага моделирования времени. По умолчанию 20e-6 .

Текущая ширина полосы гистерезиса

Текущая ширина полосы гистерезиса.По умолчанию 10 . Это значение является общая полоса пропускания распределена симметрично относительно текущего заданного значения (A). Последующий На рисунке показан случай, когда текущее заданное значение равно * и текущая ширина полосы гистерезиса установлена ​​на dx.

Этот параметр не используется при использовании преобразователя среднего значения.

Примечание

Эта полоса пропускания может быть превышена, поскольку используется моделирование с фиксированным шагом. Скорость Переходный блок необходим для передачи данных между различными частотами дискретизации.Этот блок вызывает задержку в сигналах затвора, поэтому ток может превышать полосу гистерезиса.

Подконтрольный векторный контроллер
Время выборки контроллера

Время выборки векторного контроллера. Время выборки должно быть кратным шаг моделирования времени. По умолчанию 20e-6 .

Номинальный магнитный поток машины

Номинальный магнитный поток статора двигателя (Wb). По умолчанию 0.98

Текущая ширина полосы гистерезиса

Текущая ширина полосы гистерезиса (подробнее см. Шину постоянного тока Контроллер subtab). По умолчанию 10 .

Подставка Vector Controller - Секция регулятора потока
PI-регулятор - Пропорциональное усиление

Пропорциональное усиление регулятора потока. По умолчанию 1000 .

PI-регулятор - интегральное усиление

Интегральное усиление регулятора потока.По умолчанию 1000 .

Пределы напряжения - минимум

Минимальное напряжение, приложенное к полю возбуждения двигателя (В). По умолчанию -300 .

Пределы напряжения - максимум

Максимальное напряжение, приложенное к полю возбуждения двигателя (В). По умолчанию 300 .

Частота среза нижних частот оценки потока

Частота среза фильтра первого порядка для оценки потока (Гц).По умолчанию 2 .

Подставка Vector Controller - Секция контроллера намагничивания

При запуске саморегулируемого синхронного двигателя магнитный поток двигателя должен быть установленным до того, как двигателю будет предоставлен электрический крутящий момент. Поскольку постоянная времени поля двигателя высокая, напряжение поля намного выше номинального Чтобы ускорить наращивание магнитного потока в синхронном двигателе.После период, в течение которого подается высокое напряжение, напряжение поля снижается до Номинальная стоимость в течение второго короткого периода, который добавляет к последнему периоду, давая общее период намагниченности. Эта процедура обеспечивает плавный запуск самоконтроля синхронного двигатель.

Напряжение намагничивания поля

Напряжение намагничивания поля применяется для установления потока статора (В). По умолчанию 600 .

Время намагничивания поля высокого напряжения

Время наложения высокого напряжения намагничивания поля. По умолчанию 0,2 .

Номинальное напряжение поля

Номинальное напряжение поля (В). По умолчанию 30 .

Общее время намагничивания поля

Общее время до того, как привод будет готов создать крутящий момент (ы). По умолчанию 1 .

Блок входов и выходов

SP

Уставка скорости или крутящего момента. Заданное значение скорости может быть функцией шага, но скорость изменение скорости будет следовать за ускорением / замедлением. Если момент нагрузки и Скорость имеет противоположные знаки, ускоряющий момент будет суммой электромагнитного и моменты нагрузки.

Tm или Wm

Механический вход: нагрузочный момент (Tm) или скорость двигателя (Wm).Для механического ротационный порт (S), этот вход удален.

A, B, C

Трехфазные клеммы привода двигателя.

Вт , Те или S

Механическая мощность: скорость двигателя (Вт), электромагнитный момент (Те) или механическая поворотный порт (S).

Когда для параметра Режим шины вывода задано значение Несколько Выходные шины , блок имеет следующие три выходные шины:

Двигатель

Вектор измерения двигателя.Этот вектор позволяет наблюдать переменные двигателя используя блок выбора шины.

Conv

Вектор измерения трехфазных преобразователей. Этот вектор содержит:

Обратите внимание, что все значения тока и напряжения мостов можно визуализировать с помощью блока мультиметра.

Ctrl

Вектор измерения контроллера. Этот вектор содержит значения для активного выпрямитель и для инвертора.

Для активного выпрямителя:

  • Активный компонент текущей ссылки.

  • Ошибка напряжения (разница между опорным напряжением шины постоянного тока и фактической шиной постоянного тока напряжение)

  • постоянного тока опорного напряжения шины

Для инвертора:

Когда для параметра Выходная шина установлен параметр , равный Single на выходной шине блок группирует выходы Motor, Conv и Ctrl в одну шину вывод.

Характеристики модели

Библиотека содержит набор параметров привода мощностью 200 л.с. Технические характеристики 200 л.с. привод показан в следующей таблице.

14 HP и 200 HP Характеристики дисков

Амплитудно Частота
14 HP Drive 200 HP Drive

Входные данные накопителя Напряжение 90 066

460 В

460 В

60 Гц

60 Гц

Двигатель Номинальная Значения

Мощность

14 л.с.

460 В

460 В

Примеры

Пример ac5_example иллюстрирует моделирование привода двигателя AC5 со стандартным условием нагрузки для детальных и средних моделей.

Список литературы

[1] Бозе, Б. К. Современная силовая электроника и сети переменного тока Диски . Аппер-Седл-Ривер, Нью-Джерси: Прентис-Холл, 2002.

[2] Краузе, П. С. Анализ электрического Машинное оборудование . Нью-Йорк: МакГроу-Хилл, 1986.

Представлено в R2006a

,

Ошибка

Перейти к основному содержанию

IdeБоковая панель

MyCourses Мои курсы
  • Школы Школа Искусств, Дизайна и Архитектуры (АРТС) Школа Бизнеса (BIZ) Школа Химического машиностроения (CHEM) –Гидиты для студентов (CHEM) - Инструкция по написанию отчета (CHEM) Школа электротехники (ELEC) Инженерная школа (ENG) Школа Науки (SCI) Языковой центр Открытый университет Библиотека Педагогическая программа университета Аалто UNI (экзамены) песочница
  • КОРОНАВИРУСНАЯ ИНФОРМАЦИЯ Opetus ja opiskelu kampuksella syksyllä 2020 Преподавание и обучение в кампусе осенью 2020 года Undervisning och studier på campus hösten 2020 Коронавирус - tietoa opiskelijalle Коронавирус - информация для студентов Коронавирус - информация для студентов Корона помощь для учителей
  • Сервисные ссылки Мои курсы - Инструкции для учителей - Цифровые инструменты для обучения - Инструкции по защите персональных данных для учителей - Инструкции для студентов - Рабочая область для авторского надзора WebOodi На портал для студентов Курсы.aalto.fi Библиотечные Услуги - Ресурсы - Имагоа / Открытая наука и образы ИТ Услуги Карты кампуса - Поиск пробелов и увидеть часы работы Рестораны в Отаниеми Студенческий союз АСУ Аалто Торговая площадка Аалто
  • ВСЕ ХОРОШО? Учебные навыки Поддержка для изучения Начальная точка благополучия О AllWell? анкета изучения благополучия
  • (О) (О) (Ц) (SV)
.
Запуск синхронного двигателя - первичная обмотка двигателя и демпфера

Синхронный двигатель - это устройство, которое преобразует переменный ток в механическую работу с синхронной скоростью . Запуск синхронного двигателя не происходит сам по себе. Это означает, что синхронный двигатель не самопроизвольно запускается . Это можно запустить следующими способами, приведенными ниже.

starting-of-synchronous-motor-figure-1

  • Начиная с помощью внешнего первичного двигателя
  • Начиная с помощью демпферных обмоток

Подробное описание методов поясняется ниже.

Пуск двигателя с помощью внешнего первичного двигателя

В этом методе внешний первичный двигатель приводит в движение синхронный двигатель и приводит его к синхронной скорости. Синхронная машина затем синхронизируется с шиной в качестве синхронного генератора. Первичный двигатель тогда отключен. При работе в параллельном режиме синхронная машина будет работать как двигатель. Таким образом, нагрузка может быть подключена к синхронному двигателю.

Поскольку нагрузка не подключена к синхронному двигателю перед синхронизацией, пусковой двигатель должен преодолеть инерцию синхронного двигателя без нагрузки.Следовательно, номинальная мощность двигателя, который должен быть запущен, намного меньше, чем номинальная мощность синхронного двигателя. Теперь день Бесщеточная система возбуждения предоставляется на валах большого синхронного двигателя. Эти возбудителей используются в качестве пусковых двигателей.

Двигатель от демпферной обмотки

Демпферные обмотки является наиболее широко используемым методом запуска синхронного двигателя. Демпфирующая обмотка состоит из тяжелых медных стержней, вставленных в пазы на полюсных поверхностях ротора, как показано на рисунке ниже.

Starting of synchronous machine fig 2

Эти медные шины короткозамкнуты торцевыми кольцами на обоих концах ротора. Таким образом, эти короткозамкнутые стержни образуют обмотку короткозамкнутого каркаса. Когда к статору подключено трехфазное питание, запустится синхронный двигатель с демпферной обмоткой. Он работает как трехфазный асинхронный двигатель. Как только двигатель приближается к синхронной скорости, возбуждение постоянного тока подается на обмотки возбуждения. В результате ротор двигателя будет тянуться в такт магнитному полю статора.

,
Разница между асинхронным двигателем и синхронным двигателем

Различие между асинхронным двигателем и Синхронный двигатель объясняется с помощью различных факторов, например, типа возбуждения, используемого для машины. Скорость двигателя, запуск и работа, эффективность обоих двигателей, их стоимость, использование и применение. частота.

ОСНОВЫ РАЗЛИЧНЫХ СИНХРОННЫЙ МОТОР ИНДУКЦИОННЫЙ МОТОР
Тип возбуждения Синхронный двигатель - это машина с двойным возбуждением. Асинхронный двигатель - это машина с одним возбуждением.
Система питания Его обмотка якоря запитывается от источника переменного тока, а обмотка возбуждения - от источника постоянного тока. Его обмотка статора запитывается от источника переменного тока.
Скорость Он всегда работает с синхронной скоростью. Скорость не зависит от нагрузки. Если нагрузка увеличивается, скорость асинхронного двигателя уменьшается. Это всегда меньше, чем синхронная скорость.
Начиная с Это не самостоятельное начало. Он должен быть настроен на синхронную скорость любым способом, прежде чем его можно будет синхронизировать с источником переменного тока. Асинхронный двигатель имеет собственный пусковой момент.
Эксплуатация Синхронный двигатель может работать с запаздывающей и опережающей мощностью путем изменения его возбуждения. Асинхронный двигатель работает только с запаздывающим коэффициентом мощности. При высоких нагрузках коэффициент мощности становится очень плохим.
Использование Может использоваться для коррекции коэффициента мощности в дополнение к подаче крутящего момента для привода механических нагрузок. Асинхронный двигатель используется только для привода механических нагрузок.
Эффективность Это более эффективно, чем асинхронный двигатель с той же мощностью и выходным напряжением. Его эффективность ниже, чем у синхронного двигателя с той же мощностью и номинальным напряжением.
Стоимость Синхронный двигатель стоит дороже, чем асинхронный двигатель с тем же самым выходом и напряжением Асинхронный двигатель дешевле, чем синхронный двигатель с тем же самым выходом и напряжением.

Асинхронный двигатель также известен как Асинхронный двигатель . Это так называется, потому что он никогда не работает на синхронной скорости. то есть N с = 120f / P. Асинхронный двигатель является наиболее широко используемым двигателем во всех бытовых и коммерческих двигателях. Синхронный двигатель всегда следует за синхронной скоростью. Скорость вращения ротора поддерживается или синхронизируется с током питания

Разница между трехфазным асинхронным двигателем и синхронным двигателем

  • Трехфазный синхронный двигатель - это машина с двойным возбуждением, тогда как асинхронный двигатель - это машина с одним возбуждением.
  • Обмотка якоря синхронного двигателя запитывается от источника переменного тока, а его обмотка возбуждения - от источника постоянного тока. На обмотку статора асинхронного двигателя подается питание от источника переменного тока.
  • Синхронный двигатель всегда работает с синхронной скоростью, и скорость двигателя не зависит от нагрузки, но асинхронный двигатель всегда работает меньше, чем синхронная скорость. Если нагрузка увеличивается, скорость асинхронного двигателя уменьшается.
  • Асинхронный двигатель имеет самозапускающий момент, тогда как синхронный двигатель не самозапускающийся.Он должен быть настроен на синхронную скорость любым способом, прежде чем его можно будет синхронизировать с источником переменного тока.
  • Синхронный двигатель может работать с отставанием и опережающей мощностью, изменяя его возбуждение. Асинхронный двигатель работает только с запаздывающим коэффициентом мощности. При высоких нагрузках коэффициент мощности асинхронного двигателя становится очень плохим.
  • Синхронный двигатель может использоваться для коррекции коэффициента мощности в дополнение к крутящему моменту, необходимому для привода механических нагрузок, тогда как асинхронный двигатель используется только для привода механических нагрузок.
  • Синхронный двигатель более эффективен, чем асинхронный двигатель с той же мощностью и выходным напряжением.
  • Синхронный двигатель стоит дороже, чем асинхронный двигатель с той же мощностью и выходным напряжением.
,

Отправить ответ

avatar
  Подписаться  
Уведомление о