Схема подключения люминесцентной лампы с электронным балластом: Электронный балласт — устройство, ремонт и схема подключения для люминисцентных ламп

Содержание

как работает + схемы подключения

Вас интересует, зачем нужен электронный модуль ЭПРА для люминесцентных ламп и как его следует подключить? Правильный монтаж энергосберегающих светильников позволит многократно продлить их срок эксплуатации, ведь верно? Но вы не знаете, как подключить ЭПРА и нужно ли это делать?

Мы расскажем вам о назначении электронного модуля и его подключении – в статье рассмотрены конструкционные особенности этого аппарата, благодаря которому формируется так называемое стартерное напряжение, а также поддерживается оптимальный рабочий режим светильников.

Приведены принципиальные схемы подключения люминесцентных лампочек с применением электронного пускорегулятора, а также видеорекомендации по применению подобных аппаратов. Которые являются неотъемлемой частью схемы газоразрядных ламп, несмотря на то что конструктивное исполнение таких источников света может значительно отличаться.

Содержание статьи:

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых , как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Электромагнитный пускорегуляторЭлектромагнитный пускорегулятор

Набор функциональных элементов электромагнитного пускорегулирующего устройства. Его составными частями, как видно, являются всего два компонента – дроссель (так называемый балласт) и стартер (схема формирования разряда)

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Стартер люминесцентной лампыСтартер люминесцентной лампы

Так выглядит один из конструктивных вариантов стартера пускорегулирующего электромагнитного модуля люминесцентных ламп. Существует масса других конструкций, где отмечается разница в размерах, материалах корпуса

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Электронный пускорегуляторЭлектронный пускорегулятор

Результат модификации электромагнитных регуляторов – электронные полупроводниковые устройства запуска и регулировки свечения люминесцентных ламп. С технической точки зрения, отличаются более высокими эксплуатационными показателями

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Из чего состоит приспособление?

Главными составляющими элементами схемы электронного модуля являются:

  • выпрямительное устройство;
  • фильтр электромагнитного излучения;
  • корректор коэффициента мощности;
  • фильтр сглаживания напряжения;
  • инверторная схема;
  • дроссельный элемент.

Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности.

Относительно мощная люминесцентная лампаОтносительно мощная люминесцентная лампа

Примерно на такие приборы света (мощностью от 100 ватт) рассчитаны пускорегулирующие модули, выполненные по мостовой схеме. Которая, кроме поддержки мощности, оказывает положительное влияние на характеристики питающего напряжения

Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы.

Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт.

Особенности работы аппарата

Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света.

Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды.

Внутреннее содержимое ЭПРАВнутреннее содержимое ЭПРА

Вид рабочей электронной платы одной из моделей пускорегулирующего модуля на полупроводниковых элементах. Эта небольшая легкая плата полностью заменяет функционал массивного дросселя и добавляет ряд улучшенных свойств

Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ.

Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы.

Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона.

Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии.

Принципиальная схема пускорегулятора

Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме.

Принципиальная схема ЭПРАПринципиальная схема ЭПРА

Принципиальная схема полумостового устройства запуска и регулировки параметров люминесцентных светильников. Однако это далеко не единственное схемное решение, какие применяются для изготовления ЭПРА

Работает такая схема в следующей последовательности:

  1. Сетевое напряжение в 220В поступает на диодный мост и фильтр.
  2. На выходе фильтра образуется постоянное напряжение в 300-310В.
  3. Инверторным модулем наращивается частота напряжения.
  4. От инвертора напряжение проходит на симметричный трансформатор.
  5. На трансформаторе за счет управляющих ключей формируется необходимый рабочий потенциал для люминесцентной лампы.

Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность.

Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой.

Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов.

Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник.

Схемы приборов на мощность до 20 ваттСхемы приборов на мощность до 20 ватт

На качество работы схемы оказывает влияние правильный подбор электронных элементов. Нормальная работа характеризуется параметром тока на плюсовом выводе конденсатора С1. Длительность импульса розжига светильника определяется конденсатором С4

Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц.

Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима.

Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы.

Мостовая схема инвертораМостовая схема инвертора

Узел схемы инвертора, собранный по мостовой схеме. Здесь в работе узла участвуют не два, а четыре ключевых транзистора. Причем зачастую предпочтение отдается полупроводниковым элементам полевой структуры. На схеме: VT1…VT4 – транзисторы; Tp – трансформатор тока; Uп, Uн – преобразователи

Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном . Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше.

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Включение электромагнитного пускорегулятораВключение электромагнитного пускорегулятора

Простейший вариант питания светильника через электромагнитный пускорегулирующий элемент: 1 – нить накала; 2 – стартер; 3 – стеклянная колба; 4 – дроссель; L – фазная линия питания; N – нулевая линия

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

Подключение двух лампПодключение двух ламп

Вариант подключения двух люминесцентных светильников через один дроссель: 1 – фильтрующий конденсатор; 2 – дроссель, по мощности равный мощности двух приборов света; 3, 4 – лампы; 5,6 – стартеры запуска; L – фазная линия питания; N – нулевая линия

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

Подключение двух ламп на ЭПРАПодключение двух ламп на ЭПРА

Порядок подключения люминесцентных светильников к устройству пуска и регулирования, действующего на полупроводниковых элементах: 1 – интерфейс для сети и заземления; 2 – интерфейс для светильников; 3,4 – светильники; L – фазная линия питания; N – нулевая линия; 1…6 – контакты интерфейса

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Подключение четырех ламп на ЭПРАПодключение четырех ламп на ЭПРА

Разводка подключения по четырехламповому варианту. В качестве устройства запуска и регулирования также используется электронный полупроводниковый ЭПРА. На схеме 1…10 – контакты интерфейса устройства пуска и регулирования

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп с помощью.

Это так называемые управляемые модели регуляторов. Рекомендуем подробнее ознакомиться с принципом работы осветительных приборов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Подключение управляемого светильникаПодключение управляемого светильника

Четырехламповая конфигурация с возможностью плавной регулировки яркости свечения: 1 – переключатель режима; 2 – контакты подвода управляющего напряжения; 3 – заземляющий контакт; 4, 5, 6, 7 – люминесцентные лампы; L – фазная линия питания; N – нулевая линия; 1…20 – контакты интерфейса устройства пуска и регулирования

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Выводы и полезное видео по теме

Видеоматериал, сделанный на основе практики электромонтера, рассказывает и показывает — какой прибор из двух должен быть признан конечным пользователем более качественным и практичным.

Этот сюжет лишний раз подтверждает, что простые решения выглядят надёжными и долговечными:

Между тем ЭПРА продолжают совершенствоваться. На рынке периодически появляются новые модели таких приборов. Электронные конструкции тоже не лишены недостатков, но по сравнению с электромагнитными вариантами, явно показывают лучшие технические и эксплуатационные качества.

Вы разбираетесь в вопросах принципа работы и схем подключения ЭПРА и хотите дополнить изложенный выше материал личными наблюдениями? Или хотите поделиться полезными рекомендациями по нюансам ремонта, замены или выбора пускорегулирующего аппарата? Пишите, пожалуйста, свои комментарии к этой записи в блоке ниже.

Схемы подключения люминесцентных ламп дневного света


Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер)

Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.




Принцип работы:  при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него - достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного "дросселя" как правило схема на подобие етой...

Простая Схема Подключения Люминесцентных Ламп

Схемы подключения люминесцентных лампСхемы подключения люминесцентных ламп

Обычные лампы накаливания малоэффективны – они выделяют больше тепла, чем света. Да и срок службы их невелик. Подключение люминесцентных ламп позволяет почти в 3 раза сэкономить на оплате электроэнергии. Плюс подобные источники освещения имеют больший диапазон цветов и менее вредны для глаз. Однако для их монтажа требуется приобретение специальных устройств: дросселей или электронных плат ЭПРА.

Беседки с мангалом и барбекю — (80+ ФОТО) Чертежи проектов которые можно реализовать своими рукамиБеседки с мангалом и барбекю — (80+ ФОТО) Чертежи проектов которые можно реализовать своими руками Читайте также: Беседки с мангалом и барбекю — (80+ ФОТО) Чертежи проектов которые можно реализовать своими руками

Особенности люминесцентных светильников

Читайте также:  Какая должна быть электропроводка в частном доме, укладка своими руками, инструкция для новичков

Устройство люминесцентной лампыУстройство люминесцентной лампы

Устройство люминесцентной лампы

Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.

С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).

Читайте также:  [Инструкция] Соединение проводов в распределительной коробке: типы соединений и их применение

Электромагнитный ПРАЭлектромагнитный ПРА

Электромагнитный ПРА

Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.

После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.

Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).

Читайте также:  Двухтрубная система отопления частного дома: устройство, типы систем, схемы, компоновка, разводка, монтаж и запуск системы (Фото & Видео) +Отзывы

Электронный пускорегулирующий аппаратЭлектронный пускорегулирующий аппарат

Электронный пускорегулирующий аппарат

Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.

Электромагнитный дроссель или ЭПРА следует подбирать в зависимости от количества ламп и их мощности. Подсоединять предназначенное для двух ламп устройство к одной запрещено. Во избежание выхода прибора из строя подключать ЭПРА без нагрузки, то есть лампы, также не следует.

Как установить заборный столб который простоит более 100 лет? Инструкции по установке своими руками Как установить заборный столб который простоит более 100 лет? Инструкции по установке своими руками Читайте также: Как установить заборный столб который простоит более 100 лет? Инструкции по установке своими руками | (Фото и Видео)

Принцип действия

Читайте также:  Установка газового котла в частном доме: все необходимые требования для быстрого и законного запуска системы отопления (Фото & Видео) +Отзывы

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

Беседки с мангалом и барбекю — (80+ ФОТО) Чертежи проектов которые можно реализовать своими рукамиБеседки с мангалом и барбекю — (80+ ФОТО) Чертежи проектов которые можно реализовать своими руками Читайте также: Беседки с мангалом и барбекю — (80+ ФОТО) Чертежи проектов которые можно реализовать своими руками

Основные этапы подключения

Читайте также:  Газовый баллон на даче: для плиты, обогревателя и других нужд: правила пользования (Фото & Видео) +Отзывы

Схема подключения одного источника освещения к одному дросселюСхема подключения одного источника освещения к одному дросселю

Схема подключения одного источника освещения к одному дросселю

Схема подключения люминесцентной лампы с дросселем довольно проста:

К сожалению, стартер – не слишком надежное устройство. Плюс при работе лампа может мерцать, негативно влияя на зрение. В принципе, возможно и подключение без него. Заменить эту деталь можно подпружинной кнопкой-выключателем.

Отличие нуля от земли в чем принципиальная разница? Схемы соединений и их применение Отличие нуля от земли в чем принципиальная разница? Схемы соединений и их применение Читайте также: Отличие нуля от земли в чем принципиальная разница? Схемы соединений и их применение | (Фото и Видео)

Монтаж двух ламп

Читайте также:  Секреты шумоизоляции стен в квартире: используем современные материалы и технологии (25+ Фото & Видео) +Отзывы

Варианты подключенийВарианты подключений

Варианты подключений

Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.

Итак, опишем процесс подключения сразу 2 люминесцентных ламп:

Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.

Абажур: уникальный предмет интерьера который можно изготовить своими руками из доступных материалов Абажур: уникальный предмет интерьера который можно изготовить своими руками из доступных материалов Читайте также: Абажур: уникальный предмет интерьера который можно изготовить своими руками из доступных материалов | 150+ Фото Идей & Видео

Пара ламп и один дроссель

Читайте также:  Обогрев теплицы: виды отопления, пошаговые рекомендации обустройства своими руками (20 Фото & Видео) +Отзывы

Схема с одним дросселемСхема с одним дросселем

Схема с одним дросселем

Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:

Новогодние игрушки на елку своими руками: красиво, оригинально, с душой! Мастер-классы и пошаговые инструкции Новогодние игрушки на елку своими руками: красиво, оригинально, с душой! Мастер-классы и пошаговые инструкции Читайте также: Новогодние игрушки на елку своими руками: красиво, оригинально, с душой! Мастер-классы и пошаговые инструкции | (75+ Фото Идей & Видео)

Подключение без дросселя

Читайте также:  Инфракрасный потолочный обогреватель с терморегулятором — современные технологии в вашем доме (Цены) +Отзывы

В данном подключении дроссель не используетсяВ данном подключении дроссель не используется

В данном подключении дроссель не используется

Этот способ используется в основном в старых лампах при выходе из строя балласта. Сделать это можно посредством использования постоянного тока, номинал которого выше обычного. То есть напряжение в момент пуска следует повысить. Сила этого напряжения подбирается исходя из характеристик как сети, так и самого источника света.

Для подключения люминесцентной лампы без дросселя требуется подсоединение диодного моста (или пары диодов). Контакты замыкаются с обеих сторон попарно. На одну сторону источника освещения должен приходиться плюс, на другую минус.

Подобную схему можно использовать даже при сгоревшей нити накаливания. Ведь цилиндр с газом при этом способе будет подпитываться за счет постоянного напряжения. Учтите лишь, что данный способ можно использовать на короткий период – со временем труба быстро потемнеет, а затем из-за выгорания люминофора вовсе перестанет излучать свет.

Абажур: уникальный предмет интерьера который можно изготовить своими руками из доступных материалов Абажур: уникальный предмет интерьера который можно изготовить своими руками из доступных материалов Читайте также: Абажур: уникальный предмет интерьера который можно изготовить своими руками из доступных материалов | 150+ Фото Идей & Видео

Подключение ЭПРА

Читайте также:  Как сделать монтаж водяного теплого пола своими руками: пошагавшая инструкция монтажа на все виды покрытий (20+ Фото & Видео) +Отзывы

Подсоединение ЭПРА (электронного пускового механизма)Подсоединение ЭПРА (электронного пускового механизма)

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

Достоинства и недостатки люминесцентных источников света

Читайте также:  Печь на отработке: виды, устройство, чертежи, инструкция по изготовлению своими руками (Фото & Видео) +Отзывы

Использование ламп для тепличного выращивания растенийИспользование ламп для тепличного выращивания растений

Использование ламп для тепличного выращивания растений

ПЛЮСЫ:

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.

МИНУСЫ:

  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещенияСравнение параметров разных источников освещения

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

7 Total Score

Для нас очень важна обратная связь с нашими читателями. Если Вы не согласны с данными оценками, оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Благодарим за ваше участие. Ваше мнение будет полезно другим пользователям.

БЕЗОПАСНОСТЬ

6

Добавить свой отзыв  |  Отзывы и комментарии

Схемы подключения люминесцентных ламп | ehto.ru

Вступление

Существует два способа подключения люминесцентных ламп: при помощи стартера и дросселя (ЭМПРА) и при помощи электронного пускового аппарата (ЭПРА). Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства.

Схемы подключения люминесцентных ламп при помощи ЭМПРА

ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.

Читать, ЭПРА и ЭмПРА. В чем отличия пускорегулирующих аппаратов

Схема подключения люминесцентной лампы ЭМПРА

схема подключения люминесцентной лампысхема подключения люминесцентной лампы

Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.

две реализации подключения люминесцентной лампыдве реализации подключения люминесцентной лампы

Схема индуктивная реализация

  • Напряжение питания 220 Вольт;
  • Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
  • Стартер подключается параллельно к выводам 2 и 3 лампы;
  • Вывод  4 лампы подключается ко второму проводу питания;
  • В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.

Схема индуктивно-ёмкостная реализация

Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.

Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)

Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).

схема подключения двух ламп 18 ваттсхема подключения двух ламп 18 ватт

В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.

Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт.

схеме используются стартеры на 220-240 Вольтсхеме используются стартеры на 220-240 Вольт

Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.

Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт.

Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.

ЭмПРА в едином корпусеЭмПРА в едином корпусе

Схемы подключения люминесцентных ламп при помощи ЭПРА

ЭПРА это электронное пускорегулирующие устройство. По сути это сложная электронная схема которая обеспечивает и запуск и стабильную работу люминесцентных ламп (светильников).

Отмечу, что каждый производитель ЭПРА по-своему выводит контакты для подключения к ним ламп. Схема подключения люминесцентных ламп указана на корпусе или в паспорте ЭПРА Пример на фото.

пример ЭПРАпример ЭПРА

Для информации публикую подбор схем подключения различных ламп к ЭПРА различной маркировки.

Схемы подключения компактных люминесцентных ламп к нерегулируемым ЭПРА (OSRAM), марки QT-ECO

Схемы подключения компактных люминесцентных лампСхемы подключения компактных люминесцентных ламп Схема подключения компактных люминесцентных лампСхема подключения компактных люминесцентных ламп

Схемы подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE, лампы 2х55, 1х10-13, 2х16-42.

подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVEподключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE

Схемы подключения нерегулируемым ЭПРА QTP5 лампы 2х14-35Вт, 2х24-39Вт, 2х54Вт, 1х14-35Вт, 1х24-39Вт, 1х54Вт, 1х80.

подключения нерегулируемым ЭПРА QTP5подключения нерегулируемым ЭПРА QTP5

Схемы подключения ЭПРА QT-FQ, QT-FC ламп Т5 (трубчатые)

Схемаподключения ЭПРА QT-FQ,ламп Т5Схемаподключения ЭПРА QT-FQ,ламп Т5 Схемы подключения ЭПРА ламп Т5Схемы подключения ЭПРА ламп Т5

©Ehto.ru

Еще статьи

Похожие посты:

Как подключить люминесцентную лампу с традиционным электромагнитным дросселем, с электронным дросселем, с перегоревшими нитями разогрева, а также полезные советы для увеличения срока эксплуатации ламп

Схема подключения люминесцентных ламп - это графическое изображение соединения различных деталей, совместная работа которых обеспечивает излучение света осветительным прибором.

Правильно выполненное подключение обеспечит максимально возможное время эксплуатации ламп, снизит создающее некомфортность гудение электромагнитного балласта, но и обеспечит существенную экономию электроэнергии по сравнению с лампами накаливания – более пятнадцати процентов. Люминесцентные  лампы при работе излучают намного меньшее количество тепла, чем традиционные лампы накаливания. Это дает возможным применять для дизайнерского оформления светильников даже те материалы, которые представляют опасность с позиций легкой возгораемости.

Подключить люминесцентную лампу намного сложнее, чем обычную лампу накаливания. Это вызвано характером получения видимого света, используемого для освещения.

Устройство люминесцентной лампы

 

Как происходит процесс включения лампы дневного света

Люминесцентная лампа - это своеобразный трансформатор, преобразующий частоты света – недоступного зрению ультрафиолетового излучения в видимый свет, излучаемый атомами вещества, из которого изготавливается слой внутреннего покрытия лампы.

Принцип работы люминесцентной лампы

Как происходит включение люминесцентной лампы

Конструкционно люминесцентная лампа выполнена как герметичнаф стеклянная колба, внутрь которой закачена специальная смесь газов. Состав смеси подбирается так, чтобы потребность в электроэнергии для процесса ионизации атомов газовой смеси требовалось значительно меньше, чем для обеспечения работы лампы накаливания такой же мощности.

Для того, чтобы люминесцентная лампа служила постоянным источником света необходимо постоянная ионизация. Для этого в системе постоянно поддерживается тлеющий разряд с помощью непрерывной подачи необходимого напряжения на ламповые электроды.

Отличается от ламп накаливания и процесс, в результате которого начинают светиться люминесцентные лампы. Чтобы начался процесс ионизации требуется высоковольтный разряд, который происходит после прогрева смеси газов вокруг электродов. Чтобы обеспечить протекание этого процесса в лампе имеются две тонкие спирали подогрева. При подаче на спирали электрического тока они разогреваются и этот разогрев делает более легким выход анионов – отрицательно заряженных частиц. Напряжение в сети, то есть 220 вольт, поданное непосредственно на спирали, вызовет их перегорание, поэтому используют схемы запуска через индуктивный дроссель. В этом элементе при подаче переменного напряжения начинают возникать электромагнитные процессы, ограничивающие силу тока, который протекает по цепи, в результате чего достигается ограничение сетевого напряжения. Для протекания этого процесса на электроды подается высоковольтный импульс.

Индуктивный дроссель также служит генератором импульса высоковольтного напряжения благодаря которому  осуществляется пробой газовой смеси в внутреннем пространстве люминесцентной лампы. Высокая электродвижущая сила возникает в результате внутренней самоиндукции дросселя. Для получения импульса требуется включение в схему элемента, который обеспечит в цепи кратковременное прерывание. Такую функцию выполняет электрический стартер.

Таким образом в целом схематически протекание электрического тока в включаемой люминесцентной лампе можно представить следующим образом:

  • сетевое напряжение подается на индуктивный дроссель;
  • пройдя через индуктивный дроссель ток подается на первую разогревающую спираль лампы;
  • пройдя первую разогревающую спираль ток идет на стартер – его контакты разогреваясь замыкаются и ток разогревает спирали нагрева до 900˚С, a затем размыкаются вызывая высоковольтный импульс дросселя;
  • импульс подается на ламповые электроды и вызывает пробой и инициирование работы лампы.

Изображение последовательности включения в схему её элементов

Чтобы обеспечить такое прохождения тока создаются различные схемы для подключения люминесцентных ламп.

Классическая схема c использованием электромагнитного балласта

Совокупность дросселя и стартера также называют электромагнитным балластом. Схематически такой вид подключения можно представить в виде нижерасположенного рисунка.

Элементы, необходимые для включения лампы

Неисправность дросселя легко можно проверить при помощи обычной лампы накаливания. Один провод подсоединяют непосредственно к патрону лампы, а второй провод – через проверяемый дроссель. Если дроссель исправен, то при включении цепи в сеть лампочка должна гореть.

Для увеличения коэффициента полезного действия,a также уменьшения реактивных нагрузок в схему вводятся два конденсатора – они обозначены С1 и С2.

  • Обозначение LL1- дроссель, иногда его называют балластником.
  • Обозначение Е1 – стартер, как правило он представляет собой небольшую лампочку тлеющего разряда c одним подвижным биметаллическим электродом.

Изначально, до подачи тока эти контакты разомкнуты, поэтому ток в схеме напрямую на лампочку не подается, а нагревает биметаллическую пластину, которая нагреваясь выгибается и замыкает контакт. В результате возрастает ток, нагревающий нити нагрева в люминесцентной лампе, а самом стартере ток уменьшается и электроды размыкаются. В балласте начинается процесс самоиндукции, приводящий к созданию высокого импульса напряжения, обеспечивающего образование заряженных частиц, которые взаимодействуя с люминофором покрытия, обеспечивают возникновение светового излучения.

Такие схемы с использованием балласта имеют ряд достоинств:

  • небольшая стоимость требуемого оборудования;
  • простота в использовании.

К недостаткам таких схем можно отнести:

  • «мерцающий» характер светового излучения;
  • значительный вес и крупные габариты дросселя;
  • долгое зажигание люминесцентной лампы;
  • гудение работающего дросселя;
  • почти 15% потерь энергии.
  • невозможно использовать совместно с устройствами, которые плавно регулируют яркость освещения;
  • на холоде включение значительно замедляется.

Для того, чтобы снизить потери энергии, в цепь схемы можно включить конденсатор ёмкостью до 5 мкФ. Включение выполняют параллельно сети.

Дроссель выбирают строго в соответствии c инструкцией к конкретному виду люминесцентных ламп. Это обеспечит полноценное выполнение им своих функций:

  • ограничивать в требуемых значениях величину тока при замыкании электродов;
  • генерировать достаточное для пробоя газовой среды в колбе лампы напряжение;
  • обеспечивать поддержку горения разряда на стабильном постоянном уровне.

Несоответствие выбора приведет к преждевременному износу ламп. Как правило, дроссели имеют ту же мощность, что и лампа.

Среди наиболее распространенных неисправностей светильников, в которых используют люминесцентные лампы, можно выделить такие:

  • отказ дроселля, внешне это появляется в почернении обмотки, в оплавлении контактов: проверить его работоспособность можно самостоятельно, для этого понадобится омметр – сопротивление исправного балласта составляет порядка сорока Ом, если омметр показывает менее тридцати Ом – дроссель подлежит замене;
  • отказ стартера – в этом случае лампа начинает светиться только по краям, начинается мигание, иногда лампочка стартера светится, нол сам светильник не зажигается, устранить неисправность можно только заменой стартера;
  • иногда все детали схемы исправны, но светильник не включается, как правило, причиной является потеря контактов в ламподержателях: в некачественных светильниках они изготавливаются из некачественных материалов и поэтому плавятся – устранить такую неисправность можно только заменой гнезд ламподержателей;
  • лампа мигает по типу стробоскопа, по краям колбы наблюдается почернение, свечение очень слабое – устранение неисправности замена лампы.

При использовании электромагнитного балласта вместо стартера можно применить обычную кнопку для входного звонка. Он включается в схему так, чтобы после его нажатия происходила подача электроэнергии, а после того как люминесцентная лампа засветится, можно прекратить удержание кнопки.

Схема для подключения нескольких ламп

Преимущественно во всех светильниках используют не одну люминесцентную лампу, а несколько, минимум две. B этом случае элементы соединяют в схеме последовательно: А между проводами фазы и ноля устанавливается конденсатор. Их включают в схемы для предотвращения помех в общей электросети, а также для компенсирования возникающей реактивной мощности.

Недостаток такой схемы – параллельность подключения. Если испортится один элемент схемы – все остальные также не будут работать.

Подключение двух ламп на один дроссель

Использование электронного балласта для подключении люминесцентных ламп

На сегодняшний день подобные схемы подключения светильников c лампами дневного света наиболее распространены. Они лишены тех недостатков, которые присущи работе светильников c применением электромагнитного балласта. Среди преимуществ – такие схемы не требует наличия стартера.

Выбирая светильник с люминесцентными лампами нужно уделять внимание качеству выключателей – повышенные стартовые токи могут стать причиной «залипания» контактов.

Современные электронные балласты дают возможность экономить электроэнергию, увеличить срок работы светильников. При этом свет при таких схемах подключения в отличие от схем с использованием дросселей, не мигающий эффект стробоскопа отсутствует. Это достигается благодаря тому, что рабочее напряжение для ламп имеет частоту, отличную от частоты в сетях – до 133 kGz.

Применение микросхем позволило значительно снизить вес пусковых устройств, уменьшить их габариты. Это дало возможность непосредственно встраивать балласт непосредственно в цоколь лампы, предложить потребителям люминесцентные лампы, которые можно прямо вкручивать в обычный патрон подобно лампочке накаливания.

Цокольная люминесцентная лампа

Использование микросхем дало возможность обеспечить плавный нагрев электродов в лампах, а это не только повышает эффективность их работы, но и значительно удлиняет время эксплуатации.

Электронный балласт дает возможность применять люминесцентные лампы совместно c устройствами, которые предназначены для плавной регулировки освещенности – диммерам.

К достоинствам светильников, в которых применяется такая схема можно отнести нанесение изображения порядка подключения контактов на устройство, что делает такие приборы очень удобными для пользователей, которые не являются электриками-профессионалами.

Устройство электронного балласта

Как видно из принципиальной схемы, пускатель в виде электронного баласта является своеобразным преобразователем напряжения. Миниатюрный инвертор преобразует постоянный ток в переменный высокой частоты. Этот ток подается на электроды-нагреватели. Интенсивность нагревания этих электродов повышается. Включение преобразователя сделано так, что на первых этапах частота тока имеет высокую частоту. Сама люминесцентная лампа включена в контур, у которого резонансная частота меньше, чем начальная частота преобразователя. B дальнейшем частота уменьшается, a напряжение, a напряжение на колебательном контуре и на лампе растет,  в результате чего контур начинает приближаться к резонированию. Одновременно увеличивается степень нагрева электродов. Это приводит к созданию условий возникновения разряда в газовой смеси и люминофорное покрытие колбы начинает светиться.

Схема электронного балласта

Электронный балласт составляется таким образом, чтобы регулирующее устройство могло подстраиваться под те характеристики, которые имеет люминесцентная лампа. Это дает возможность сохранять изначальные световые характеристики осветительного прибора в течение продолжительного времени. По мере износа люминесцентные лампы требуют все большего напряжения для достижения момента начального разряда. Электронный балласт самостоятельно подстраивается под произошедшие изменения и качество освещения остается прежним.

По сравнению с дроссельным, электронный балласт имет несколько достоинств:

  • он обеспечивает большую экономичность при эксплуатации;
  • дает возможность создать условия для бережного нагревания электродов;
  • обеспечивает плавное включение лампы;
  • использование электронного баланса дает возможность преодолеть такой недостаток люминесцентного освещения, как мерцание;
  • дает возможность применять люминесцентные лампы в условиях холода;
  • увеличивает временные эксплуатационные характеристики;
  • имеет намного меньший вес и размеры.

К недостаткам электронного балласта можно отнести высокие требования, предъявляемые к качеству комплектующих,a также точности выполнения монтажа, усложненность схемы подключения.

Как подключают люминесцентную лампу, у которой сгорели нити накала

Существуют схемы включения, которые позволяют пользоваться светильником даже в тех случаях, когда лампа не горит при использовании умножительного устройства.

Чтобы вернуть такую лампу к жизни достаточно включить в цепь перед стартером включают конденсатор мощностью в 4 Мкф.

Опытные электрики советуют раз в год переворачивать лампу дневного света, меняя местами контакты подключения – такая маленькая хитрость значительно увеличивает эксплуатационный срок люминесцентных ламп.

Такое изменение возобновит свечение, но устранить мерцание по краям оно не сможет.

Существуют схемы для включения люминесцентных ламп, у которых вышли из строя нити накала, которые не только восстанавливают осветительный прибор, но и устраняют такой недостаток, как гудение электромагнитного дросселя.

Как включают люминесцентные лампы без стартера и с перегоревшей нитью накала можно узнать из видеоролика

полное описание как подключить c дросселем и стартером, соединить последовательно или параллельно, с ЭПРА

Время на чтение: 5 минут

АА


Люминесцентные лампы давно и надежно служат нам повсюду. Они светят, когда мы работаем, отдыхаем, учимся, совершаем покупки и занимаемся спортом. Мало кто задумывается, что зажечь свет этой лампы непросто. Для этого требуется специально собранная схема из пусковых и поддерживающих горение устройств.

Конструкция люминесцентной лампы, со времени своего изобретения в 19 веке, практически не претерпела изменений. Изменялись и совершенствовались приборы и схемы для их подключения в сеть. В настоящее время актуальны и надежно работают электромагнитные и электронные устройства для люминесцентных светильников. У каждого из них есть свои достоинства и недостатки.

Варианты соединения светильника дневного света

Люминесцентная лампа (дневного света) представляет собой герметичный сосуд наполненный газом. С двух сторон в него впаяны электроды с вольфрамовыми нитями. Свечение газа под воздействием электричества и позволяет получить освещение.

фото2фото2Чтобы газ в колбе начал светиться, на электроды подается и кратковременно поддерживается высокое напряжение.

Вольфрамовые нити разогревают газ, и он начинает светиться. Когда газ разгорится и начнет источать свет, напряжение спадает и поддерживается в так называемом, тлеющем режиме.

Для запуска и поддержания свечения в люминесцентных лампах были разработаны несколько схем подключения к электрической сети:

  1. С использованием классического электромагнитного балласта (ЭмПРА) – одна лампа и один дроссель.
  2. Две трубки и два дросселя.
  3. Подключения двух ламп от одного дросселя.
  4. Электронный балласт.
  5. Используя умножитель напряжения.

Использование электромагнитного балласта (ЭмПРА)

Стандартная схема с использованием электромагнитного балласта была придумана в 1934 году американцами, и в 1938 уже повсеместно использовалась в США. Она проста и включает в себя помимо лампы дроссель, стартер и конденсатор.

Одна лампа и один дроссель

Дроссель представляет собой индуктивное сопротивление и может накапливать ЭДС самоиндукции. Стартер — это небольшая неоновая лампочка, имеющая биметаллический контакт и конденсатор. Конденсатор стартера служит для подавления радиопомех, а параллельный дросселю для коррекции мощности.

После включения в сеть ток течет через дроссель на спираль лампы, потом через стартер на вторую спираль. Дроссель начинает накапливать электрический заряд. По схеме вначале течет слабый ток, ограниченный сопротивлением стартера. Контакты стартера нагреваются и замыкаются. Ток в схеме резко возрастает, но его безопасную величину обеспечивает дроссель.

Поэтому дроссель и называют – пускорегулирующий аппарат. Большой ток позволяет спиралям разогреть газ в колбе. В это время, контакты стартера остывают и размыкаются, через стартер ток уже не течет. Но дроссель успел накопить энергию и уже отдает ее на спирали лампы. Она начинает светиться. Дроссель, отдав накопленный заряд, в дальнейшем выступает как сопротивление. Поддерживает только тлеющий разряд, позволяя лампе гореть. Стартер уже выключен из схемы и не работает до следующего пуска.

Процесс пуска занимает доли секунды, но может незаметно для глаз, повторится несколько раз.

Достоинства и недостатки

Схема обладает рядом достоинств:

  • Дешевые и доступные комплектующие.
  • Достаточно проста.
  • Надежна.

По сравнению с современным электронным, дроссельное устройство имеет весомые недостатки:

  • Избыточный вес.
  • довольно продолжительное время запуска.
  • Небольшую надежность при низкой температуре.
  • Большее потребление энергии.
  • Шумный дроссель.
  • Нестабильный световой поток.

Две трубки и два дросселя

Применение в одном светильнике двух пар дросселей и ламп ведет к утяжелению и увеличению конструкции. Каждая из пар, имеет свой стартер. Мощность дросселя и лампы в этом случае совпадает, стартер применяется на 220 вольт.

Две схемы с использованием электромагнитного балласта работают в таком случае параллельно.

Достоинством этого варианта является его надежность. Выход из строя одной из веток не влияет на работу другой. Светильник будет работать, хотя бы и наполовину мощности.

Главный недостаток – очень громоздкая конструкция.

В остальном, имеет такие же плюсы и минусы, как и все ЭмПРА.

Включение двух ламп от одного дросселя

Дроссель является самой дорогостоящей деталью люминесцентного светильника. В целях экономии, иногда используется схема подключения двух ламп от одного дросселя.

Две лампы от одного дросселя можно запитать двумя способами:

  1. Последовательно.
  2. Параллельно.

Последовательное соединение двух ламп

фото3фото3Копируется схема стандартного подключения с использованием электромагнитного балласта.

Вторая лампа со своим стартером подключается последовательно первой. Светильник получается дешевле. Но, возникает несколько конструктивных и эксплуатационных проблем.

Конструктивные:

  • Мощность дросселя должна соответствовать суммарной мощности ламп.
  • Стартеры должны быть однотипными, рассчитанными на пониженное напряжение.

Эксплуатационные:

  • При выходе из строя одной из ламп или стартеров не будет работать весь светильник.
  • Усложняется поиск неисправности.

Конструктивные проблемы решаются просто. Необходимо только подобрать из имеющихся в наличии или приобрести подходящие по характеристикам комплектующие.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Для схемы с параллельным соединением, следует выбирать стартеры, рассчитанные на рабочее напряжение от 110 вольт.

Кроме удешевления конструкции, последовательное соединение имеет те же достоинства и недостатки, что и классическое ЭмПРА подключение.

Параллельное соединение

Такую схему собрать несложно. Вторая лампа подключается параллельно и имеет отдельный стартер. К одной из ламп, при таком соединении, целесообразно подсоединить фазосдвигающий конденсатор. Это позволит нивелировать один из недостатков схем ЭмПРА – мерцание. Конденсатор сдвинет фазу одной лампы, сгладит общий световой поток и сделает его приятнее для зрения.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Стартеры при такой сборке следует устанавливать на 220 вольт.

К плюсам электромагнитных схем, параллельное соединение добавляет еще два:

  1. Экономия средств на одном дросселе.
  2. Сглаженный световой поток.

Электронный балласт

Электронный запуск и поддержание горения люминесцентных ламп разработали еще в восьмидесятые и начали применять в начале девяностых годов ХХ века. Использование электронного балласта позволило сделать люминесцентное освещение на 20% экономичнее.

фото 4фото 4При этом сохранились и улучшились все характеристики светового потока. Равномерное, без характерного мерцания освещение стабильно даже при колебаниях напряжения в сети.

Этого удалось достичь благодаря повышенной частоте тока, подаваемого на лампы и большим коэффициентом полезного действия электронных устройств.

Плавный запуск и мягкий рабочий режим позволили почти вдвое увеличить срок эксплуатации ламп. Дополнительно появилась возможность плавного управления яркостью светильника. Необходимость использования стартеров исчезла. С ними пропали и радиопомехи.

Принцип работы электронного балласта отличается от электромагнитного. При этом, выполняет те же функции: разогрев газа, розжиг и поддержание горения. Но, делает это точнее и мягче. В различных схемах используются полупроводники, конденсаторы, сопротивления и трансформатор.

Электронные балласты могут иметь разные схематические исполнения в зависимости от применяемых компонентов. Упрощенно, прохождение тока по схеме можно описать следующим алгоритмом:

  1. Напряжение поступает на выпрямитель.
  2. Выпрямленный ток обрабатывается электронным преобразователем, посредством микросхемы или автогенератора.
  3. Далее напряжение регулируется тиристорными ключами.
  4. Впоследствии один канал фильтруется дросселем, другой конденсатором.
  5. И по двум проводам напряжение поступает на пару контактов лампы.
  6. Другая пара контактов лампы замкнута через конденсатор.

Выгодным отличием электронных систем является то, что напряжение, поступающее на контакты ламп имеет большую, чем у электромагнитных, частоту. Она варьируется от 25 до 140 кГц. Именно поэтому в системах ЭПРА мерцание светильников сведено к минимуму и их свет менее утомителен для человеческих глаз.

Схемы подключения ламп к ЭПРА и их мощность, большинство производителей указывают на верхней стороне устройства. Поэтому потребители имеют наглядный пример, как правильно собрать и подключить прибор в сеть.

В электронных балластах предусмотрено различное количество подключаемых ламп разной мощности, например:

  • К дросселям Philips серии HF-P можно подключить от 1 до 4 трубок, мощностью от 14 до 40 Вт.
  • Дроссели Helvar серии EL предусмотрены для одной – четырех ламп, мощностью от 14 до 58 Вт.
  • QUICKTRONIC торговой марки Osram типа QTР5 также имеют возможность управлять одной – четырьмя лампами, мощностью 14 – 58 Вт.

Электронные приборы имеют массу достоинств, из которых можно выделить следующие:

  • небольшой вес и малую величину устройства;
  • быстрое и сберегающее люминесцентную лампу, плавное включение;
  • отсутствует видимое глазу мерцание света;
  • большой коэффициент мощности, примерно 0,95;
  • прибор не греется;
  • экономия электроэнергии в размере 20%;
  • высокий уровень пожарной безопасности и отсутствие рисков в процессе работы;
  • большой срок службы люминесцентов;
  • отсутствие высоких требований к температуре окружающей среды;
  • способность автоматической подстройки к параметрам колбы;
  • отсутствие шумов во время работы;
  • возможность плавной регулировки светового потока.

Отмечаемый многими, единственный минус электронных систем это их цена. Но она оправдывается достоинствами.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

При покупке электронного балансового устройства не следует слишком экономить. Зачастую дешевые приборы оказываются всего лишь умножителями напряжения. Они не берегут лампы и опасны для жизни.

Использование умножителей напряжения

Умножители напряжения для запуска люминесцентных ламп не получили широкого распространения. Такие схемы применяют любители, собирая их кустарным способом.

Они просты, дешевы и достаточно стабильны. Состоят из четырех конденсаторов и четырех диодов. Иногда дополняются конденсаторами.

Принцип работы заключается в ступенчатом увеличении величины напряжения на контактах лампы. Высокое напряжение вызывает пробой газовой среды без ее разогрева, и позволяет запустить даже вышедшие из строя лампы.

Но, умножитель напряжения имеет один большой минус.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Напряжение на контактах ламп может быть очень высоким, доходить до 1 тыс. вольт и выше. Такие схемы опасны для окружающих.

Учитывая опасность поражения электрическим током, умножители напряжения не используются в промышленных разработках.

Люминесцентные светильники постепенно уступают свои позиции более современным LED приборам освещения. Но пока еще достаточно популярны благодаря своей экономичности, простоте эксплуатации, надежности и приемлемой стоимости. Простота схем подключения, позволяет самостоятельно устанавливать люминесцентные приборы либо выполнять их замену в случае выхода из строя.

Предыдущая

ЛюминесцентныеДроссели и их назначение при использовании люминесцентных ламп

Следующая

ЛюминесцентныеКуда сдавать: пункты приема энергосберегающих ламп

Схема подключения люминесцентной лампы с дросселем и стартером, с двумя лампами

Содержание статьи:

Качественное равномерное освещение можно создать с помощью разных источников света. В домах, офисах, производствах активно устанавливаются энергосберегающие люминесцентные лампы. Их установка и схема сложнее, чем у лампочек накаливания. Для корректного монтажа мастер должен знать, как функционирует устройство, какие виды бывают и какую схему использовать для подсоединения.

Устройство лампы

Люминесцентные лампы цилиндрической формы

Люминесцентный источник счета – это осветительный прибор, в котором ультрафиолетовое излучение преобразуется в видимый свет определенного спектра. Свечение достигается благодаря электрическому разряду, который появляется при подаче электричества в газовой среде. Образуется ультрафиолет, который воздействует на люминофор. В результате лампочка загорается и начинает светить.

Большая часть люминесцентных ламп изготавливается в форме цилиндрических трубок. Могут встречаться более сложные геометрические формы колбы. По краям трубки располагаются вольфрамовые электроды, которые припаяны к наружным штырькам. Именно к ним подается напряжение.


Колба наполняется смесью инертных газов с отрицательным сопротивлением и парами ртути.

Строение люминесцентной лампы

Стандартная схема лампочки состоит из стартера и дросселя. Дополнительно могут использоваться различные управляющие механизмы. Основной задачей дросселя является образование импульса необходимой величины, которое сможет включить лампу. Стартер представляет собой тлеющий разряд, у которого электроды находятся в инертной среде из газов. Обязательное условие – один электрод должен быть биметаллической пластиной. Если лампа выключена, электроды разомкнуты. При подаче напряжения они замыкаются.

Классификация проводится по разным критериям. Основной из них – свет. Он может быть дневным или белым с разной цветовой температурой. Разделение производится и по ширине трубки. Чем она больше, тем выше мощность лампы и площадь освещаемого участка. Люминесцентные лампы делятся по числу контактов, рабочему напряжению, наличию стартера, форме.

Принцип работы

Принцип работы люминесцентной лампы

Подается питающее напряжение. В начальный момент электрический ток не протекает, так как среда обладает высоким сопротивлением. Ток движется по спиралям, нагревает их и подается на стартер. Появляется тлеющий разряд. После нагрева контактов биметаллические пластины замыкаются. Температура на биметаллической части падает и контакт в сети размыкается. Это приводит к тому, что дроссель создает необходимый импульс в результате самоиндукции, и лампа начинает светить. Дуговой разряд поддерживается за счет термоэлектронной эмиссии, происходящей на на поверхности катода. Электроны разогреваются под действием тока, величину которого ограничивает балласт.

Свет появляется за счет того, что на лампу нанесено специальное вещество – люминофор. Он поглощает ультрафиолетовое излучение и дает свечение определенной гаммы. Цвет можно менять, нанося на колбу различные по составу люминофоры. Они могут быть из галофосфата кальция, ортофосфата кальция-цинка.

Основные преимущества лампы – экономия электроэнергии, долгий срок службы, яркое свечение. Из недостатков можно выделить невозможность прямого подключения к сети и наличие ртути внутри колбы. Лампы стоят дороже лампочек накаливания, но дешевле светодиодных источников света.

Способы подключения

Существуют различные варианты подключения люминесцентной лампы к сети. Самая популярная схема люминесцентного светильника — подсоединение с использованием электромагнитного балласта.

Схема с электромагнитным балластом (ЭмПРА)

Схема с электромагнитным балластом (ЭмПРА)

Принцип работы данной схемы основывается на том, что при подаче напряжения в стартере возникает разряд, приводящий к замыканию биметаллических электродов. Электрический ток в цепи ограничен внутренним дроссельным сопротивлением. Это приводит к тому, что рабочий ток возрастает почти в 3 раза, электроды резко нагреваются, а после уменьшения температуры возникает самоиндукция, приводящая к зажиганию стартерной люминесцентной лампы.

Минусы схемы люминесцентной лампы с ЭмПРА:

  • Высокие затраты на электроэнергию по сравнению с другими способами.
  • Долгое время запуска – примерно 1-3 секунды. Чем выше износ лампочки, тем дольше она будет зажигаться.
  • Не работает при низких температурах. Это приводит к невозможности использования в подвале или гараже, которые не отапливаются.
  • Стробоскопический эффект. Мерцание негативно сказывается на человеческом зрении и психике, поэтому подобное освещение не рекомендуется использовать на производстве.
  • Гудение при работе.

В схеме предусмотрен один дроссель для двух лампочек. Его индуктивности хватает на оба источника света. Напряжение стартера – 127 В, для светильника с одной лампой потребуется напряжение 220 В.

Есть схема люминесцентной лампы на 220 в с бездроссельным подключением. В ней отсутствует стартер. Такое бесстартерное подключение применяется при перегорании нити накала у лампочки. В конструкции также есть трансформатор и конденсатор для ограничения тока. Для ламп с перегоревшей нитью накала существуют переделки схемы и без трансформатора. Это облегчает конструкцию.

Два дросселя и две трубки

Дроссель

Этот метод применяется для двух ламп. Подключать элементы нужно последовательно:

  • Фаза – на вход дросселя.
  • От выхода дросселя один контакт подсоединить к первой лампе, второй – к первому стартеру.
  • С первого стартера провода идут на вторую пару контактов первой лампы, свободный провод нужно подсоединять к нулю.

Аналогичным образом подключается вторая лампа.

Подключение двух ламп от одного дросселя

Схема на две люминесцентные лампы

Этот вариант используется нечасто, но реализовать его несложно. Двухламповое последовательное подсоединение отличается своей экономностью. Для реализации потребуется индукционный дроссель и пара стартеров.

Схема подключения ламп дневного света от одного дросселя:

  • На штыревой выход ламп параллельным соединением подключается стартер.
  • Свободные контакты подсоединяются к электрической сети через дроссель.
  • Параллельно источникам света подключаются конденсаторы.

Бюджетные выключатели периодически могут залипать из-за повышения стартовых токов. В таком случае рекомендуется использовать высококачественные коммутационные устройства. Это обеспечит долгую и стабильную работу люминесцентной лампы.

Схема с электронным балластом

Схема подключения электронного балласта

Все минусы ЭмПРА привели к тому, что пришлось искать другой способ подключения. В результате электромагнитный балласт был заменен на электронный, работающий не на сетевой частоте 59 Гц, а на высокой 20-60 кГц. Благодаря этому решению исключается моргание света. Такие схемы применяются на производствах.

Визуально балласт представляет собой блок с клеммами. Внутри располагается печатная плата, на которой собирается электронная схема. Важное преимущество электронного балласта – миниатюрные размеры. Поместить блок можно даже в небольшой источник света. Также время запуска меньше, а работает устройство беззвучно. Метод с электронным балластом еще называется бесстартерным.


Собрать схему такого устройства несложно. Обычно она размещена на обратной стороне прибора. На схеме обозначается число лампочек для подсоединения, все поясняющие надписи, информация о технических характеристиках.

Как подключить светильник люминесцентный:

  • Контакты 1 и 2 – к паре контактов с лампы.
  • Контакты 3 и 4 – на оставшуюся пару.

На вход необходимо подать питающее напряжение.

Схема с умножителями напряжения

Для увеличения срока действия  может применяться способ без электромагнитного балласта. Время эксплуатации продляется при условии, что мощность лампы не превышает 40 Вт. Нити накала могут быть перегоревшими – их при любой ситуации следует закоротить.

Такая схема позволяет выпрямить напряжение и повысить его в два раза. Лампа загорается сразу же. Для реализации схемы нужно правильно подобрать конденсаторы. 1 и 2 выбираются на 600 В, 3 и 4 – на 1000 В. Недостаток – большие размеры конденсаторов.

Подсоединение без стартера

Стартер вызывает дополнительный нагрев у люминесцентной лампы. Также он часто выходит из строя, из-за чего эту деталь приходится заменять. Существуют схемы, в которых люминесцентный источник света работает без стартера. Электроды подогреваются до нужного уровня при помощи трансформаторных обмоток, выступающих в роли балласта.

При покупке лампочки нужно обратить внимание на надпись RS – быстрый старт. Именно такие изделия работают без стартера.

Схема с последовательным подключением двух ламп

Схема для последовательного подключения двух ламп

Есть две лампы, которые необходимо соединить при помощи одного балласта последовательным образом. Для выполнения подобных работ потребуются следующие компоненты:

  • Индукционный дроссель.
  • Два стартера.
  • Два люминесцентных светильника.

Схема подключения люминесцентной лампы следующая:

  • К каждой лампе подключается стартер параллельно на штыревой вход на торце колбы.
  • Оставшиеся контакты следует подключить в электрическую сеть через дроссель.
  • На контакты лампочек подключаются конденсаторы. Они необходимы для того, чтобы уменьшить интенсивность помех и реактивную мощность.

Конденсаторы выбираются с учетом нагрузки.

Замена люминесцентных ламп

Чтобы снять люминесцентную лампу, необходимо повернуть в том направлении, которое указано на держателе

Люминесцентный источник света отличается от классических галогеновых ламп и изделий с нитью накала длительным сроком службы. Но даже такие надежные лампочки могут выйти из строя, из-за чего их приходится заменять.

Выполнить замену можно следующим образом:

  • Разобрать светильник. Важно аккуратно снимать все детали, чтобы прибор не повредился. Люминесцентные трубки нужно поворачивать вокруг оси в отмеченном направлении. Оно указывается на держателе стрелками.
  • После поворота на 90 градусов трубку следует опустить. Тогда контакты легко выйдут из соответствующего отверстия.
  • Визуально осмотреть целостность лампочки, нитей накала. Если зрительных проблем нет, поломка может быть вызвана внутренними компонентами.
  • Следует взять новый источник света. Его контакты должны находиться в вертикальном положении и помещаться в отверстие. После установки лампочки ее нужно прокрутить в обратном положении.

Снимать прибор нужно аккуратно, чтобы не разбить стеклянную колбу. Внутри находится ртуть, которая опасна для здоровья.

После того как система собрана, можно подавать питающее напряжение, выполнять включение и приступать к тестированию. Финальным шагом будет установка защитного плафона на светильник.

Проверка работоспособности

Прозвонка электродов мультиметром

Выполнить проверку собранной системы можно с помощью тестера, который проверяет нити накала. Его допустимое сопротивление должно составлять 10 Ом.

Если тестирующее устройство показало бесконечное сопротивление, лампочка подходит только для использования в режиме холодного запуска. Также бесконечность может показываться при неисправности источника света. Нормальное сопротивление, которое должен показывать тестер, достигает несколько сотен Ом. Это связано с тем, что в обычном состоянии контакты стартера находятся в разомкнутом виде. При этом конденсатор не пропускает постоянный ток.

Если коснуться щупами мультиметра дроссельных выводов, сопротивление будет постепенно падать до постоянного значения в несколько десятков Ом.

Точное значение определить нельзя при помощи обычного тестера. Но на некоторых приборах есть функция измерения индуктивности. Тогда по данным ЭмПРА можно проверить значения. В случае их несовпадения можно судить о проблемах с прибором.

Электропроводка балласта - Электрооборудование 101

Люминесцентные лампы требуют балласта для работы. Цепь флуоресцентной трубки включает балласт, провода, патроны и трубки.

Лампа

против лампы

Электрики обычно называют лампочку лампой. Производители ламп используют термин «лампа» применительно к лампам дневного света.На этой странице мы будем называть лампу дневного света лампой или трубкой.

Индивидуальные и обычные балластные провода

Каждый отдельный балластный провод соединяется с патроном с одной стороны каждой трубки. Общий провод (ы) соединяются со всеми патронами с другой стороны трубок.

Цвета проволоки балласта

Цвета проволоки для индивидуальных и общих соединений люминесцентных балластов будут различаться в зависимости от типа балласта, марки и количества поддерживаемых ламп.Балласты имеют определенные цвета для отдельных проводов к патронам и другие цвета для обычных проводов к патронам.

Магнитные и электронные балласты

Старые магнитные флуоресцентные балласты обычно подключаются последовательно. Новые электронные балласты обычно подключаются параллельно, за исключением быстрого запуска, запрограммированного запуска и диммируемых балластов.

Серия

против параллельных балластов и проводка

Когда последовательный балласт (быстрый запуск) работает с несколькими лампами и одна лампа выходит из строя, цепь размыкается, а другие лампы не горят.

Когда параллельный балласт (мгновенный запуск) включает несколько ламп в цепи, лампы работают независимо друг от друга. Если одна лампа выходит из строя, другие могут продолжать работать, так как цепь между ними и балластом остается неповрежденной.

При использовании некоторых ламп серий 3 и 4 , параллельных балластов , , в случае выхода из строя одной лампы в одной ветви лампы (лампы) в параллельной ветви будут продолжать работать.

    Балласты серии
  • могут быть подключены последовательно только согласно схеме на балласте.
  • Параллельные балласты могут быть подключены параллельно только согласно схеме на балласте.
  • Изменение проводки на люминесцентном светильнике от последовательного к параллельному включает в себя замену балласта из серии на совместимый параллельный балласт.

1-ламповая балластная схема быстрого запуска

1-ламповая балластная схема быстрого запуска

Заземление балласта

Заземление балласта очень важно.Заземление обычно происходит автоматически, если светильник заземлен должным образом.

Провод заземления от источника питания должен быть подключен к светильнику. Металлический балласт, установленный на металлическом светильнике, автоматически заземлит балласт.

Если у балласта есть клемма заземления, к нему должен быть подключен провод заземления.

,

Как работают люминесцентные лампы

Как работают люминесцентные лампы
ESP Logo
Elliott Sound Products Как работают люминесцентные лампы

© 2007 Rod Elliott (ESP)


Articles Index Лампы и Индекс Энергии
Main Index Главный указатель

Содержание
1 Введение

Статья «Традиционные люминесцентные лампы и их альтернативы» рассматривает работу люминесцентных ламп довольно просто, но здесь мы рассмотрим лампы, их балласты (как «традиционные» магнитные и электронные типы), так и углубимся в их внутреннюю часть. разработки.Используются альтернативные схемы балласта (такие как схема «опережающий / отстающий»), и это показано в предыдущей статье. Здесь это не рассматривается, потому что речь идет о том, как они работают, а не о том, как устроены фитинги.

Принцип работы люминесцентной лампы сильно отличается от простой лампы накаливания, и современные флуоресцентные лампы (особенно компактные люминесцентные лампы или КЛЛ) используют электронные балласты для регулирования напряжения на лампе и тока через нее.При первом запуске необходимо обеспечить значительно более высокое напряжение, чем обычно, чтобы вызвать заревание внутренней дуги, а после запуска ток должен быть ограничен безопасным значением для трубки.

В этой статье показаны некоторые способы достижения этих целей, начиная с основного индуктивного балласта, который был основой производства люминесцентных ламп в течение многих лет.

Обратите внимание, что показанные здесь осциллограммы представляют собой комбинацию моделирования и реальных измерений.Там, где это необходимо, моделируемые сигналы корректируются в соответствии с измеренными. Причина такого подхода проста ... симулятор не может представлять нагрузку с отрицательным импедансом с соответствующими импульсами напряжения и другими характеристиками, которые дает люминесцентная лампа. Аналогично, очень трудно (и потенциально смертельно) пытаться захватить все напряжения и токи, которые существуют в реальных цепях люминесцентных ламп.

Несмотря на то, что принятый подход вносит некоторые незначительные ошибки в показанные формы сигналов, они относительно незначительны, и конечный результат находится в пределах любого традиционного допуска на производство балластов, ламп и других компонентов.


2 Индуктивный балласт

Для объяснения индуктивного балласта я использовал старую «компактную» люминесцентную лампу, которая идеально подходит для испытаний. Хотя он все еще работает, светоотдача немного ниже, чем должна быть, но это лишь немного меняет некоторые измеренные значения. Принципы не меняются вообще.

Сама лампа имеет следующие характеристики ...

Диаметр трубы 11,3 мм (нестандартный)
Длина 533 мм (21 ")
Сопротивление нити накала (холод) 12.8 Ом
Сопротивление накаливания (горячее) 23 Ом
Сопротивление балласту 105 Ом
Индуктивность балласта 2.11 H
Стартер Обычный неон
Конденсатор стартера 1,2 нФ

Диаметр люминесцентных ламп обычно называют T8 (например). Это означает, что диаметр составляет 8 х 1/8 ", что составляет 1" (25.4 мм). Ранние трубки были T12 (диаметром 1½ дюйма или 38 мм), но они были уменьшены в размерах до T8, когда (тогда) были введены «новые» высокоэффективные типы. Стандартная 4-дюймовая трубка (1200 мм) использовалась для номинальной мощности 40 Вт, но их замены были 36 Вт, и светоотдача была улучшена. Последним воплощением является T5 (диаметр 16 мм), который использует меньшее расстояние между штифтами и другой фитинг надгробной плиты. Они также короче (1163 мм) и не подходят для стандартного светильника. предназначен для более ранних труб.

В моем тестовом устройстве диаметр трубки намного меньше обычного, потому что лампа обозначена как компактная, поэтому ее можно сложить, чтобы уменьшить общую длину.Нить сопротивление упоминается потому, что она будет называться далее в этой статье. Схема показана ниже и является общепринятой во всех отношениях.


Рисунок 1 - Схема люминесцентной лампы

Индуктор - это балласт, и на самом деле это гораздо более важный компонент, чем он может показаться. Он не только ограничивает максимальный ток трубки, но и используется для генерации импульсов высокого напряжения, необходимых для запуска плазменной дуги внутри трубки. Сама трубка флуоресцентной трубки имеет нагреватель на каждом конце, небольшое количество ртути и инертный газ (обычно аргон).Стенка трубки покрыта люминофорами, которые испускают видимый свет при возбуждении интенсивным коротковолновым ультрафиолетовым светом, излучаемым ртутным дуговым разрядом. Дополнительный конденсатор (C2) предназначен для коррекции коэффициента мощности - об этом позже.

Маленькая лампочка - стартер. Биметаллическая полоса запечатана в стеклянную оболочку, внутри которой находится (обычно) неоновый газ. При подаче питания напряжение более чем достаточно, чтобы вызвать дугу в неоновом пускателе, но далеко не достаточно, чтобы вызвать дугу в самой лампе.Тепло от неоновой дуги вызывает изгиб биметаллической полосы, пока она не закроет контакты. Затем дуга в неоновом пускателе прекращается, и сеть подключается через балласт и нити на каждом конце трубки через пусковой выключатель.

Как только у стартера нет дуги (или свечения), биметаллическая полоса охлаждается, и выключатель размыкается примерно через секунду или около того. Прерывание тока через катушку индуктивности вызывает «возврат» напряжения - импульс высокого напряжения, который (мы надеемся) запустит дугу в трубке.Если дуга не запускается в первый раз, процесс повторяется до тех пор, пока не произойдет. Вот почему стандартные люминесцентные лампы мерцают несколько раз при включении. Нити - это нагреватели, которые действуют как катоды (эмиттеры электронов) и необходимы для того, чтобы обеспечить достаточное количество тепла для испарения ртути и получить хороший поток электронов для возбуждения плазмы. Когда лампа работает нормально, потока электронов достаточно для поддержания нити накала на приемлемой рабочей температуре. Обе нити действуют попеременно как катоды и аноды, потому что полярность меняется в 50 (или 60) раз в секунду.

У плазмы есть интересная характеристика ... отрицательное сопротивление! Как только дуга начинается, более высокий рабочий ток вызывает падение сопротивления, и на трубе появляется меньшее напряжение. Если это будет продолжаться, труба разрушится очень быстро. Балласт предотвращает это, потому что он вводит последовательный импеданс для ограничения тока. Сопротивление не будет работать, потому что оно слишком расточительно и не обеспечивает накопления энергии для генерации всплеска напряжения обратной связи для повторного зажигания дуги при каждом изменении полярности.


Рисунок 2 - Рабочие сигналы

На рисунке 2 видно, что когда ток трубки (зеленая линия) максимален, напряжение (красная линия) на трубе минимально. Вы можете увидеть эффект сразу после каждого скачка напряжения. При увеличении тока напряжение падает (для этой трубки минимум составлял ± 126 В). Пик в точке пересечения нуля текущего сигнала генерируется балластом, и именно он повторно зажигает дугу для каждого полупериода применяемой сети.На рисунке 3 показано напряжение на балласте - быстрые переходы соответствуют пикам, приложенным к лампе, и происходят вблизи пика напряжения, где ток прерывается при прохождении через ноль.


Рисунок 3 - Напряжение и ток через балласт

Форма волны напряжения на балласте, по сути, является разницей между приложенным напряжением сети и напряжением на трубе. Для работы на 120 В напряжение, очевидно, меньше, но трубке все еще нужно где-то между 300-400 В, чтобы завести (или повторно завести) дугу, поэтому балласт должен быть в состоянии компенсировать разницу с импульсом обратного хода при каждом нуле. скрещивание тока.У меня нет люминесцентной лампы на 120 В или балласта, поэтому я не могу предоставить полную информацию. То, что люминесцентные лампы вообще работают при 120 В, несколько примечательно, но легко понять, почему электронные балласты так популярны в США. Многие балласты для стран с напряжением 120 В используют «балласт» с автотрансформатором, который увеличивает доступное напряжение и действует как ограничитель тока.


3 Потери системы

В системе есть несколько потерь, причем одним из основных факторов является балласт.Балласт, используемый для моих испытаний, имеет сопротивление постоянному току 105 Ом, поэтому тратит почти 7 Вт. Потери на самом деле выше, потому что стальные ламинаты очень быстро нагреваются, поэтому «потеря железа» значительна. Это может быть уменьшено только при использовании стали более высокого качества и более тонких слоев. Оба значительно увеличат стоимость.

Каждая нить накала имеет сопротивление нагреву 23 Ом, и при работе лампы на каждой нити присутствует напряжение почти 6 В. Помните, что при работе конец нити накала, идущей к пускателю, отсоединяется (за исключением очень малой емкости через пускатель).Измеренное напряжение представляет собой градиент, вызванный током плазмы, и каждая нить рассеивает около 1,5 Вт (всего 3 Вт). Именно в этих компонентах люминесцентная лампа теряет 10 Вт подводимой мощности в виде тепла (7 Вт для балласта, 3 Вт для филаментов).

Несмотря на то, что отходы балласта можно снизить с помощью более качественного устройства, для работы лампы необходима потеря нити накала. Это применимо ко всем люминесцентным лампам, кроме специализированных типов с холодным катодом, но они требуют одинаково специализированного электронного балласта.CCFL (люминесцентные лампы с холодным катодом) чаще всего встречаются (встречаются) в ЖК-мониторах и телевизорах, но теперь в новых моделях их заменяют светодиоды.

Существует еще одна потеря, которую пользователь не видит и даже не оплачивает. Эта потеря является результатом плохого коэффициента мощности люминесцентных ламп, и это вызвано преимущественно индуктивной нагрузкой. Индуктивная нагрузка вызывает запаздывающий коэффициент мощности, где максимальный ток возникает после максимального напряжения. Вы также можете рассматривать это как точку, в которой нагрузка (лампа и катушка индуктивности) фактически возвращает некоторую мощность в источник.Для поставщика электроэнергии это означает, что трансформаторы, кабели и генераторы переменного тока должны быть способны выдерживать больший ток, чем должно быть. Это становится очень дорогостоящим, когда очень много нагрузок имеют плохой коэффициент мощности.


Рисунок 4 - Напряжение против. Текущий, неисправленный и исправленный

На рисунке 4 вы можете видеть, что неисправленный сигнал тока имеет видимое искажение вблизи точки пересечения нуля. Как вы также можете видеть, среднеквадратичный ток также значительно выше, чем указывалось бы для номинальной мощности.Реактивные нагрузки имеют разные значения мощности и ВА, но для резистивной (или нереактивной) нагрузки они одинаковы.

В этом случае ток без C2 равен 256 мА, а при добавлении C2 он падает до 162 мА. При приложенном напряжении 240 В это означает, что ...

без компенсации Общая мощность = 38 Вт
ВА = 61,4 Коэффициент мощности = 0,62
с компенсацией Общая мощность = 38 Вт
ВА = 38.9 Коэффициент мощности = 0,97

Коэффициент мощности может быть рассчитан с использованием фазовой задержки или путем деления фактической мощности на ВА (Вольт * Ампер). Для фазового угла ток отстает от напряжения на 57,4 °, а коэффициент мощности рассчитывается путем взятия косинуса фазового угла - 0,53 в этом случае. Цифры разные, потому что текущая форма волны не является чисто синусоидальной - она ​​имеет искажения. Добавление конденсатора сдвигает фазу искажения, так что скомпенсированная форма тока получает плоскую вершину (что-то вроде ограничения усилителя).Хотя это вносит гармоники в систему электропитания, эффекты отнюдь не так плохи, как у некомпенсированной схемы, о чем свидетельствует скорректированный коэффициент мощности. Добавление конденсатора правильного значения в чисто индуктивную цепь (без искажения формы сигнала) даст коэффициент мощности, равный единице - идеал.

Figure 4 Обратите внимание, что использование косинуса фазового угла (CosΦ) является ярлыком, и можно использовать только , когда оба напряжение и ток синусоиды.Он не работает вообще для сильно искаженных сигналов, таких как те, которые генерируются электронными нагрузками, и будет давать неправильные Ответьте за индуктивные нагрузки, которые включают искажения (например, люминесцентные лампы). Вы будете всегда получите правильный ответ, если вы разделите реальную власть на VA.

Доступны также «быстрый старт» и балластеры без стартера. Они выходят за рамки данной статьи, которая предназначена для описания основных принципов, а не углубленного освещения каждого доступного балласта люминесцентного освещения.


4 электронных балласта

Электронные балласты становятся все более распространенными, потому что они могут быть сделаны более эффективными, чем типичные магнитные балласты, и для них требуется гораздо меньше материала. Это делает их дешевле (чтобы сделать, хотя не обязательно для вас купить), чем люминесцентные лампы с использованием обычного балласта. Компактные люминесцентные лампы (КЛЛ), в частности, теперь все используют электронный балласт, и он обычно поставляется вместе с самой лампой. Хотя это удобно, это ужасная трата ресурсов, поскольку все электронные компоненты просто выбрасываются при выходе из строя лампы.Трубки T5 в настоящее время становятся стандартом для флуоресцентного освещения, и для максимального срока службы электронный балласт является обязательным.

В некоторой степени повышение эффективности по сравнению с магнитным балластом может быть иллюзией - по крайней мере, частично. Поскольку они намного легче, существует реальная и определенная экономия на транспортных расходах, но магнитные балласты могут быть сделаны такими же эффективными, как и электронная версия - возможно, даже более того. Как бы то ни было, переход к электронным балластам сейчас не может быть остановлен, и по мере снижения цены использование будет продолжать расти.Электронные балласты также имеют ряд других преимуществ, о которых мы поговорим позже.

(более или менее) типичная принципиальная схема электронного балласта, используемого в КЛЛ, показана ниже. Те, которые используются для обычных люминесцентных ламп, будут очень похожи, но, как правило, будут использовать обновленные компоненты. В то время как электроника в КЛЛ может длиться всего 15 000 часов, ожидается, что фиксированный электронный балласт будет работать, вероятно, 100 000 часов или более (более 10 лет непрерывной работы).В действительности, электронный балласт должен быть в состоянии работать столько же, сколько его магнитный аналог, поэтому 40-летняя продолжительность жизни не так глупа, как может показаться.


Рисунок 5 - Схема электронного балласта [2]

Схема на рисунке 5 является несколько упрощенной версией, показанной в техническом описании Infineon. Он полностью скорректирован с учетом коэффициента мощности и имеет защиту для обнаружения неисправных (или отсутствующих) ламп. Характерным режимом разрушения люминесцентных ламп является «выпрямление», когда одна нить (катод) становится значительно слабее другой.Если оно не обнаружено, смещение постоянного тока приведет к выходу из строя переключающих устройств, что сделает балласт бесполезным (крайне маловероятно, что кто-либо отремонтирует его, когда он выйдет из строя).

Электронный балласт имеет некоторые реальные преимущества перед магнитной версией. Поскольку дуга полностью погаснет примерно через 1 мс, при использовании более высокой частоты, чем сеть 50 или 60 Гц, дуга останется. Он не нуждается в повторном ударе, он просто меняет направление [1]. Кроме того, световой выход увеличивается примерно на 10% выше 20 кГц, поэтому световая эффективность улучшается.

До тех пор, пока все эти электронные балласты не скорректированы с учетом коэффициента мощности, они будут вызывать проблемы с распределением. К сожалению, во многих странах не требуется, чтобы приборы малой мощности (обычно менее 75 Вт) имели коррекцию коэффициента мощности, но с учетом распространения КЛЛ и электронных балластов в обычных люминесцентных лампах это придется изменить. Так как освещение используется в каждом доме, проблемы неисправленного коэффициента мощности выйдут из-под контроля, если что-то не будет сделано.

В отличие от магнитного (индукторного) балласта, электронный балласт не может быть скорректирован на коэффициент мощности простым добавлением конденсатора. Как видно на диаграмме выше (хотя это может быть неочевидно сразу), на выходе входного мостового выпрямителя имеется только очень маленький конденсатор на 220 нФ. Первый полевой МОП-транзистор работает как повышающий преобразователь и переключается прямо в каждом полупериоде. При этом среднеквадратичный ток, потребляемый от сети, поддерживается в фазе с напряжением, а форма волны тока является приблизительно синусоидальной.Это дает очень хороший коэффициент мощности - лучше 0,9. Чтобы предотвратить попадание импульсов высокоскоростного переключения в сеть, требуется обширная фильтрация, о чем свидетельствует фильтр электромагнитных помех (EMI) на входе.

Несколько более простая схема используется для компактных люминесцентных ламп (КЛЛ), поскольку схема предназначена для выбрасывания. Лично я считаю, что это бесполезная трата, и надеюсь, что она не будет продолжаться (или, по крайней мере, введена рециркуляция для максимально возможного восстановления).Довольно типичный инвертор CFL показан ниже ...


Рисунок 6 - Типовая схема электронного балласта CFL

Я говорю «достаточно типично», потому что существуют реальные вариации в схемах. Имеются специальные микросхемы драйверов MOSFET, но большинство дешевых (потребительских) КЛЛ будут использовать разновидность вышеуказанного. Обратите внимание, что резистор 0,47 Ом, показанный на входе, обычно является плавким резистором, и в первую очередь используется плавкий предохранитель. Почему бы не использовать настоящий предохранитель? Резисторы дешевле.Большинство частей будет выбрано, чтобы выжить в течение указанного срока службы лампы, поэтому, как правило, наилучшие методы проектирования игнорируются, если можно ожидать, что более низкая (и более дешевая) деталь будет работать в течение 10 000 часов или около того.

Трансформатор (T1) предназначен для обеспечения обратной связи с транзисторами и генерирует базовый ток, необходимый для обеспечения надежного переключения. Цикл инициируется DIAC - двунаправленным устройством, которое имеет резкий переход из непроводящего в проводящее состояние.Поскольку он демонстрирует характеристику, очень похожую на устройство с отрицательным импедансом, он является обычной составляющей в диммерах, флуоресцентных балластах и ​​даже в стробоскопах. Для получения дополнительной информации, нажмите здесь для обучения DIAC.

Обратите внимание, что схемы, показанные выше, предназначены только для информации и не должны быть построены, как показано. Для некоторых компонентов требуются очень специфические характеристики, трансформаторы и индукторы имеют решающее значение. В схемах нет ничего плохого, им просто не хватает всей информации, необходимой для их построения.Речь идет о том, как эти вещи работают, а не о том, как их построить.


5 Коэффициент мощности

Коэффициент мощности не совсем понятен большинству энтузиастов электроники, и это вполне понятно, потому что в общих схемах электроники его мало что требуется. Есть аспекты коэффициента мощности, которые даже не понимают многие инженеры, которые должны знать лучше. Когда создаются несинусоидальные формы волны тока, даже многие инженеры будут делать двойной дубль, потому что они могут не использоваться для работы с электронными нагрузками.Я рассмотрю оба случая здесь, а также собираюсь показать как пассивную, так и активную методы коррекции коэффициента мощности. Хотя пассивный PFC (коррекция коэффициента мощности) обладает привлекательностью простоты, он на самом деле обходится дороже из-за необходимости большого индуктора. Активный PFC кажется сложным (и это действительно так, если вам нужно его спроектировать), но когда-то он разработан с использованием относительно дешевых компонентов.

Самый простой случай, когда нагрузка является индуктивной. Это относится ко многим электрическим машинам, включая двигатели, трансформаторы и (конечно) балласты люминесцентного освещения (магнитные типы).Когда двигатель или трансформатор полностью загружены, они проявляются как резистивная нагрузка и имеют отличную PF. При легких нагрузках та же самая часть кажется индуктивной, что приводит к отставанию тока от напряжения. В тех случаях, когда нагрузка работает в этом режиме в течение большей части срока ее службы, необходимо применить коррекцию, чтобы вернуть PF как можно ближе к единице.

Коэффициент мощности резистивной нагрузки всегда единицы - это идеально. Каждый вольт и каждый усилитель используется для выработки тепла.Типичными примерами являются электрические нагреватели, тостеры, чайники и лампы накаливания. Не все нагрузки являются резистивными, поэтому давайте рассмотрим типичный пример (но упрощенный для простоты описания и понимания).

Электрическая машина обычно работает с половинной нагрузкой, но может потребоваться полная мощность при запуске или для работы с переходными нагрузками. Это может быть двигатель или трансформатор, являющийся двумя наиболее распространенными используемыми электрическими машинами (люминесцентная лампа с магнитным балластом немного сложнее).В каждом случае индуктивная и резистивная составляющие нагрузки будут равны (для половины мощности), а сигналы напряжения, тока и мощности будут выглядеть следующим образом ...


Рисунок 7 - Электрическая машина на половинной мощности

Как и ожидалось, когда резистивный и индуктивный компоненты равны, происходит фазовый сдвиг на 45 °, при этом ток отстает от напряжения (коэффициент мощности отстает). Приложенное напряжение составляет 240 В, резистивная часть нагрузки - 120 Ом, индуктивное сопротивление - также 120 Ом, а мощность - 240 Вт.Мы должны взять 1А от сети (240 В x 1 А = 240 Вт), но вместо этого взять 1,414 А. Дополнительный ток должен быть подан, но полностью теряется. Ну, это не совсем верно - оно возвращается в сеть поставок. Если многие нагрузки делают одно и то же, то они просто рассеиваются в виде тепла в трансформаторах, линиях электропередач и генераторах электростанций. Очень немногие реальные нагрузки являются емкостными, поэтому в цепь добавлен конденсатор.

С фазовым сдвигом 45 ° коэффициент мощности равен 0.707, и мы получаем 1.42A от сети вместо 1A. Чтобы восстановить ток так, чтобы он был в фазе с напряжением, нам нужно добавить конденсатор в цепь. Конденсатор фактически противоположен индуктору, и (сам по себе) создаст опережающую PF - ток будет возникать до напряжения. Добавив в цепь конденсатор правильного значения, коэффициент мощности можно восстановить до единицы, что приведет к значительному снижению тока, потребляемого от сети. Для этого примера 13 мкФ почти идеален, но даже 10 мкФ уменьшит отставание сдвига фазы до 14.2 °, и это повышает коэффициент мощности до 0,96 - обычно считается настолько близким к идеальному, насколько это необходимо.

Весь процесс несколько нелогичен. То, что нагрузка может потреблять больше тока, чем это должно быть достаточно легко понять, но то, что подача большего тока через конденсатор приведет к уменьшению тока сети, кажется, не имеет никакого смысла. Это все связано с относительной фазой двух токов, и это действительно работает. Наша энергосистема была бы в ужасном положении, если бы этого не произошло.


Рисунок 8 - Флуоресцентный свет при нормальной работе

На несколько упрощенной диаграмме выше показаны формы напряжения и тока флуоресцентной лампы. Упрощение объясняется тем, что тренажеры не включают нелинейные отрицательные нагрузки сопротивления, но основной принцип (и получающиеся в результате формы волны) не подвержен существенному влиянию. Как вы можете видеть, текущая форма волны слегка искажена, и это влияет на форму волны после применения компенсации. Фактически, гармоники, генерируемые искажением, сдвинуты по фазе, поэтому окончательная форма сигнала тока выглядит как ограниченная синусоида.Коэффициент мощности очень хороший после компенсации, но при 0,98 - отличный результат.

Без компенсации, потребляемый ток составляет 276,5 мА (при коэффициенте мощности 0,57), а после компенсации он падает до 159,5 мА. Мощность в нагрузке (сама лампа) составляет 29,8 Вт, а резистивный компонент балласта (R1) рассеивает 7,8 Вт - это теряется в виде тепла. Все потраченное тепло снижает общую эффективность, но это неизбежно, потому что реальные компоненты имеют реальные потери.

Ситуация становится намного хуже, когда используется нелинейная (электронная) нагрузка.На рисунке 9 показана эквивалентная схема и формы сигналов - ток подается только на пике приложенного напряжения. Хотя этот ток находится в фазе с напряжением, коэффициент мощности ужасен, потому что форма волны тока не похожа на синусоидальную. Резкие пики тока имеют сравнительно высокое среднеквадратичное значение, но мощность, подаваемая и подаваемая на нагрузку, значительно меньше.


Рисунок 9 - Электронные сигналы мощности нагрузки

Скорректированный ток не показан по той простой причине, что для исправления формы волны необходимы значительные дополнительные компоненты.В отличие от случая, когда ток нагрузки равен (или близок к) синусоиде, простое добавление конденсатора не даст ничего полезного. Пики тока таковы, что их можно удалить только с помощью фильтра, предназначенного для пропускания только частоты сети. Как показано, ток составляет 296 мА, но, как видно, пиковое значение составляет почти 2А. Нагрузка рассеивается 28 Вт, но «кажущаяся мощность» (ВА) составляет 71,4 ВА. Это дает коэффициент мощности 0,39 - очень плохой. В случае, если вам интересно, куда исчезла разница в 1 Вт между источником и нагрузкой, это потеряно в диодах.

Путем добавления фильтра (пассивного ПФУ), состоящего из индуктора и пары конденсаторов, это можно улучшить, но требование относительно большой индуктивности добавляет значительный вес и стоимость. Один Генри настолько мал, что вы можете использовать его для номинальной мощности нагрузки, и, хотя большее значение будет работать лучше, оно также будет снова больше, а также с более высокими потерями. По этим причинам пассивный PFC обычно не используется с импульсными источниками питания.


Рисунок 10 - Пассивная коррекция коэффициента мощности

При добавлении индуктора и конденсатора, как показано, коэффициент мощности значительно улучшается.Текущая форма волны все еще не очень хорошая, но намного лучше, чем схема без какой-либо коррекции. Среднеквадратичное значение тока уменьшено с 296 мА до 136 мА, что составляет 32,6 ВА. Мощность нагрузки составляет 29 Вт, поэтому коэффициент мощности теперь составляет 0,88, что гораздо более прилично. Как и на рисунке 9, электроника считается практически без потерь. Излишне говорить, что это не так, но речь идет о PFC, а не о потерях в цепи.

Индуктор (L1) является относительно большим компонентом, и из-за этого будет сравнительно дорогим.Чтобы снизить стоимость и вес, лучше использовать электронную схему PFC, и она также будет более эффективной. Меньшие потери мощности означают меньшую потерю тепла и более холодную электронику


Рисунок 11 - Схема коррекции активного коэффициента мощности

Схема, показанная здесь, почти идентична схеме на рисунке 5, но упрощена, чтобы ее было легче понять. Поступающая сеть проходит через фильтр EMI, состоящий из C1 и L1. Затем он идет к мостовому выпрямителю, но вместо большой электролитической крышки конденсатор 220 нФ (C2) - это все, что нужно.Выходное напряжение является пульсирующим постоянным током и изменяется от почти нуля до полного пикового напряжения (340 В для среднеквадратичного напряжения 240 В). Затем он переходит к очень умному повышающему преобразователю режима переключения - L2, Q1 и D5. Это повышает любое мгновенное напряжение, присутствующее на его входе, до пикового напряжения - в этом случае имитируемый преобразователь стабилизируется на уровне 446 В (несколько выше, чем обычно используется).

Время включения и выключения тщательно контролируется для поддержания тока, который пропорционален форме входящего сигнала переменного тока, поэтому рабочий цикл (коэффициент включения / выключения) постоянно изменяется для поддержания правильного повышенного напряжения и пропорционального тока.D6 включен, чтобы позволить колпачку основного фильтра (C3) быстро заряжаться от сети, а также обеспечивает «дозаправку» в колпачке. Это позволяет немного упростить схему управления.

Выходное напряжение повышающего преобразователя (обычно) регулируется, но регулирование не должно быть замечательным, что снова упрощает схему до некоторой степени. В схеме, показанной на рисунке 5, вы видите, что индуктор повышающего преобразователя (1,58 мГн) имеет вторичную обмотку. Это используется, чтобы сообщить IC контроллера, когда был достигнут правильный ток.Упрощенная схема, показанная на рисунке 11, не использует это - период переключения является фиксированным (схема была смоделирована, чтобы я мог создать текущую форму волны, показанную ниже). Хотя эта упрощенная версия не так хороша, как «настоящая вещь», она работает довольно хорошо - по крайней мере, в симуляторе.


Рисунок 12 - Активные кривые коррекции коэффициента мощности

Как видите, текущая форма сигнала довольно искажена, но измеренная производительность симулятора впечатляет, несмотря на ее относительную простоту.При нагрузке 60 Вт (балласт и люминесцентная лампа) фактическая мощность сети составляет 61 Вт (потери на диоде, как и раньше), а при питании от сети 266 мА он потребляет 64 ВА. Следовательно, коэффициент мощности составляет 0,94 - действительно очень удовлетворительный результат. Это значительно лучше, чем пассивная схема PFC, и этого следовало ожидать. Весь анализ, который я видел, показывает, что активная схема PFC превзойдет пассивную схему, как с точки зрения общей эффективности, так и коэффициента мощности. Индукторы малы (электрически и физически), и потери будут намного ниже, чем в любой пассивной цепи PFC.

Если вам интересно, мощность лампы в два раза выше, чем в двух предыдущих примерах, поскольку выходное напряжение повышающего преобразователя превышает желаемое. Я очень неохотно проводил много времени, пытаясь подобрать уровни мощности, и моя упрощенная версия не регулируется. Получение симуляции для успешного переключения преобразователя режимов было сложной задачей, и симуляции выполнялись долго из-за высокочастотного переключения.

В настоящее время довольно стандартным считается искажение формы сигнала как THD (общее гармоническое искажение), которое в случае активной цепи PFC равно 11.7%. Делай из этого что хочешь.


6 Температура

Одна вещь, которая довольно важна для правильной работы всех люминесцентных ламп ртути, это температура. Существует относительно узкая полоса выше и ниже, дуга которой уменьшается, что приводит к снижению светоотдачи ниже ожидаемого. Когда трубка холодная, доступно меньше паров ртути, поэтому дуга не может достичь полной прочности, потому что не хватает молекул ртути, чтобы поддерживать разряд на желаемом уровне.

Когда температура слишком высокая, давление пара увеличивается, увеличивая эффективное сопротивление дуги и снова уменьшая ток разряда. Для большинства компактных ламп (и, вероятно, для большинства стандартных люминесцентных ламп) трубка должна иметь температуру около 40 ° C для максимальной светоотдачи. При 0 ° C светоотдача составляет всего 40% - действительно очень тусклая лампа. Более высокие температуры не такие сильные, но лампа, которая слишком сильно нагревается, все равно будет в значительной степени выключена.


Рисунок 13 - Светоотдача противТемпература

Когда температура приближается к -38,83 ° C, световой поток полностью прекращается. Это температура, при которой ртуть замерзает, поэтому паров ртути не может поддерживать дугу и излучать ультрафиолетовое излучение. Кроме того, когда температура снижается, напряжение, необходимое для зажигания дуги, увеличивается, и при 0 ° C лампе понадобится примерно на 40% больше напряжения для зажигания по сравнению с напряжением зажигания при нормальной температуре окружающей среды.

Во многих частях мира 001 ° C (или меньше) является нормальной температурой окружающей среды в течение многих месяцев года, поэтому лампу будет труднее запускать и она будет иметь низкую мощность, пока трубка не немного нагревается. ,В таких климатических условиях трубка должна быть закрыта для защиты от ветра, который может значительно снизить температуру и светоотдачу.

Относительный световой поток (RLO) [3]
Ambient Temp Открытый светильник Закрытый светильник *
-10 ° C 25% 50%
0 ° C 50% 80%
10 ° C 80% 100%
25 ° C 100% 98%
Световой выход противТемпература окружающей среды
* Примечание - закрытое приспособление обеспечивает повышение температуры на + 10 ° C по сравнению с температурой окружающей среды

Как и весь материал по теме, существуют различия в способе представления материала, и разные типы труб могут иметь существенные отличия друг от друга. Цифры в основном согласуются с приведенным выше графиком, но небольшая заметка предполагает, что указанные температуры находятся в тепловом равновесии. Для стабилизации может потребоваться некоторое время, поэтому исходный световой поток при первом включении лампы будет одинаковым для открытых и закрытых приборов.Поскольку объем светильника по отношению к лампе не указан, будут большие различия, если корпус будет больше или меньше (неустановленных) значений, используемых для таблицы.


Рекомендации
    Электронный балласт
  1. для люминесцентных ламп, учебный модуль для студентов - Цзинхай Чжоу, Вирджинский политехнический институт и государственный университет
  2. ICB1FL02G ИС для управления интеллектуальным балластом для балластов люминесцентных ламп, Техническое описание, версия 1.2, февраль 2006 г., Infineon Technologies AG
  3. Эксплуатация флуоресцентных систем при низких температурах (Сильвания)


Articles Лампы и Индекс Энергии
Index Главный указатель
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь всеми текстами и диаграммами, является интеллектуальной собственностью Рода Эллиота и защищена авторским правом © 2007. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает делать одну (1) копию для справки. Коммерческое использование запрещено без письменного разрешения Rod Elliott.
Страница создана и защищена авторским правом © июнь 2007.
,

Как заменить люминесцентный балласт

Замена балласта во флуоресцентном свете

Замена люминесцентного балласта не очень сложная работа. Как профессиональный электрик, я заменил сотни балластов, и обычно требуется около 10 или 15 минут, если сам светильник не является чем-то особенным и его трудно разобрать. Работа может выглядеть немного (или много) пугающе, когда все эти провода обнажены, но на самом деле это не так сложно, как кажется, и зачастую это гораздо лучший выбор, чем замена всего светильника.

Существует три основных шага для замены балласта: удаление старого балласта, выбор нового балласта и подключение нового балласта к устройству.

Шаги, вероятно, лучше всего выполнять в таком порядке, поскольку при покупке нового будет удобно иметь старый балласт, поэтому давайте начнем с первой задачи в списке.

Снятие старого балласта

Люминесцентные светильники

спроектированы и изготовлены с учетом того, что балласт можно заменить за один день без снятия всего светильника с потолка, но это не означает, что для некоторых приборов это очевидно или даже просто. ,

В общем, светильники, в которых используются четырехфутовые люминесцентные лампы, будут иметь канал, проходящий по длине светильника, а балласт находится за этой приподнятой частью светильника. Хотя иногда можно снять балласт с установленными лампами, это редко стоит усилий, поэтому начните с удаления всех ламп.

У дешевых, «гаражных» или «магазинных» фонарей будет крышка за лампами, которая обычно имеет один крепеж на одном конце; поверните крепеж на девяносто градусов и слегка потяните, чтобы снять крышку.Сняв крепеж с крепежа, сдвиньте крышку к этому концу; другой конец имеет небольшие зажимы, которые просто вставляются на место, чтобы удерживать крышку.

Будьте осторожны с краями этого покрытия, так как оно тонкое, из листового металла и может сделать неприятный порез, если вы сдвинете руку или пальцы по краю! Я был разрезан до костей, просто слегка смахнув рукой острый край крышки - не позволяйте этому случиться с вами.

В светильниках более высокого качества обычно требуется снять пластиковую линзу, а затем лампы и крышку из листового металла над балластом.

Эту крышку можно снять, сжав стороны вместе, потянув края крышки из-под небольших зажимов на приспособлении. Иногда крышка может быть привинчена, но это довольно редко.

Затем нужно будет снять крышку с патронов на каждом конце, но это всего лишь вопрос удерживания и поворота вправо, чтобы очистить их. Патроны для ламп обычно не нужно снимать.

После извлечения ламп на некоторых светильниках может потребоваться удаление всего отражающего экрана, и для этого есть множество возможных способов.Экран может быть привинчен на место, на нем могут быть небольшие скручивающиеся зажимы или даже может потребоваться сначала удалить другие детали. Не существует стандартного метода «сокрытия» балласта, и для его обнаружения может потребоваться царапина на голове, но это всегда возможно.

Приспособление, показанное ниже, является дорогим (часто используемым в больших магазинах), которое было подвешено в магазине, чтобы обеспечить много света, но оно все еще очень похоже на более дешевые домашние приспособления в том, что необходимо сделать, чтобы заменить балласт.

В некоторых домах будет двухфутовое квадратное приспособление, и для этого может потребоваться немного больше усилий, поскольку балласт может быть спрятан в одном конце, но все еще остается вопрос, где он находится, и снятие защитных панелей, чтобы найти его. Они и предназначены для замены и могут быть достигнуты без чрезмерных усилий.

С снятой крышкой и открытым балластом пора удалить старый балласт. Убедитесь, что питание отключено! Я не могу рекомендовать здесь использование тестера напряжения.Я всегда ношу с собой бесконтактный тестер напряжения и проверяю все, что даже может включить . Получать неприятный шок, стоя возле вершины лестницы, не очень весело - не позволяйте этому случиться с вами.

Выключатель можно отключить, выключив свет, но если вы решите сделать это, а не выключать выключатель на панели, рекомендуется отключить выключатель (-и) изолентой. Это слишком часто, когда кто-то входит в комнату и автоматически включает переключатель, как и он, так же, как вы держите руки вокруг проводов, которые они включают.Сделайте очевидным, что переключатель не должен быть включен.

Однако, если вы решите выключить питание, убедитесь, что отключено и не будет включено снова во время работы. Прикройте выключатель, чтобы он не мог быть включен случайно, или выключите выключатель и закройте дверцу панели. Вы не хотите выключать выключатель, а затем попросить кого-то осознать, что свет в другой комнате выключен, найти выключатель и включить его.

Отверните гайки на черно-белых проводах, поместив гайки обратно на провод, не подключенный к балласту, в качестве меры безопасности.Отрежьте остальные провода в нескольких дюймах от балласта, используя кусачки.

При удалении крышек и ламп балласт, как правило, удаляется путем удаления небольшой гайки или винта на одном конце и перемещения балласта к винту и из-под зажимов, удерживающих другой конец.

Безопасность прежде всего, всегда!

Невозможно подчеркнуть личную безопасность при работе с электричеством. Бесконтактный детектор напряжения, показанный выше, является прекрасным примером того, как защитить себя.Убедитесь, что вы работаете безопасно, пожалуйста.

Если вам нужен один из этих изящных инструментов, это один из моих любимых бесконтактных тестеров напряжения переменного тока. Ссылка выше приведет вас к статье, в которой перечислены различные модели и даны инструкции по их использованию.

Выбор нового балласта

Старые балласты (скорее всего, тот, который вы заменяете) - это, как правило, магнитный тип , в то время как более новые балласты относятся к электронному варианту и более эффективны. Балласты могут быть с быстрым или с мгновенным запуском, и зависят от количества и типа ламп, которые они работают.Магнитные балласты типичны для типа быстрого старта, но могут работать с 1,2,3 или 4 лампами и должны иметь необходимое количество ламп. Электронные балласты могут эксплуатировать меньшее количество ламп, чем они предназначены, но все равно стоит приобрести правильный балласт.

Балласт, предназначенный для T12 (с большим диаметром 4 '), не будет работать с лампой T8 (меньшего диаметра, но более эффективной), даже если лампа T8 все еще имеет длину 4'. Мощность отличается, и балласт должен быть согласован с нужной мощностью.Обратите внимание на мощность, указанную на лампе, и приобретите соответствующий балласт в соответствии с тем, что уже имеется в приборе, мощностью лампы и количеством ламп, на которых работает балласт. В некоторых приборах имеется два балласта, поэтому убедитесь, что вы знаете, сколько ламп должно работать с заменяющим балластом.

Более старый магнитный балласт может быть заменен более новым, более эффективным электронным балластом, но для этого, вероятно, потребуется перемонтировать надгробий (патроны для ламп).Если вы решите сделать это (рекомендуется), надгробия также должны быть удалены, провода удалены от них, и новые провода вставлены в соответствии со схемой подключения на новом балласте. Способы подключения могут быть различными для магнитных и электронных балластов, и это необходимо исправить, если необходимо изменить тип балласта.

Установка нового балласта

Вам понадобится несколько небольших гаек для проволоки (по одной на каждый провод) и пара для зачистки проводов.

Прикрепите балласт таким же образом, как старый.В очень редких случаях физический размер будет другим; в этом случае его можно просто прикрутить к верхней части устройства с помощью самонарезающих винтов из листового металла. Просто убедитесь, что он находится внутри зоны покрытия при необходимости.

Соедините черные и белые провода с соответствующими цветами, используя гайки, которые были на них изначально.

Если балласт такого же типа, как и снятый, подберите цвет по цвету на проводах и соедините их вместе. Например, красный провод от балласта пойдет на красный провод от патрона лампы, и хотя может быть два провода от каждого, не имеет значения, куда и куда идет.Только не сращивайте два красных провода от балласта, думая, что один от лампы - я видел, как это было сделано с завода, и он не работает хорошо!

Если используется балласт другого типа, следуйте электрической схеме на балласте и при необходимости замените проводку на надгробную плиту.

Когда все провода подсоединены, замените крышку балласта, лампы и все снятые линзы. Включите свет, чтобы проверить это.

,

Как работают лампы дневного света

Основное средство преобразования электрической энергии в энергию излучения в люминесцентной лампе основано на неупругом рассеянии электронов, когда падающий электрон сталкивается с атомом в газе.

Если (падающий) свободный электрон обладает достаточной кинетической энергией, он передает энергию внешнему электрону атома, заставляя этот электрон временно подпрыгивать до более высокого энергетического уровня. Столкновение является «неупругим», потому что происходит потеря кинетической энергии.

Это состояние с более высокой энергией является нестабильным, и атом излучает ультрафиолетовый фотон, когда электрон атома возвращается к более низкому, более стабильному, энергетическому уровню.

Большинство фотонов, которые выделяются из атомов ртути, имеют длины волн в ультрафиолетовой (УФ) области спектра, преимущественно на длинах волн 253,7 и 185 нм (нм). Они не видны человеческому глазу, поэтому они должны быть преобразованы в видимый свет. Это делается путем использования флуоресценции.

Ультрафиолетовые фотоны поглощаются электронами в атомах внутреннего флуоресцентного покрытия лампы, вызывая аналогичный скачок энергии, а затем падение при излучении еще одного фотона.Фотон, который испускается из этого второго взаимодействия, имеет более низкую энергию, чем тот, который его вызвал.

Химикаты, которые составляют люминофор, выбраны так, чтобы эти испускаемые фотоны были на длинах волн, видимых человеческому глазу. Разница в энергии между поглощенным ультрафиолетовым фотоном и излучаемым фотоном видимого света направлена ​​на нагрев люминофорного покрытия .

Когда свет включен, электрическая энергия нагревает катод настолько, чтобы он излучал электроны (термоэлектронная эмиссия).Эти электроны сталкиваются и ионизируют атомы благородного газа внутри колбы, окружающей нить накала, образуя плазму в процессе ударной ионизации. В результате лавинной ионизации проводимость ионизованного газа быстро возрастает, позволяя более высоким токам протекать через люминесцентную лампу.

Заполняющий газ помогает определить рабочие электрические характеристики лампы, но не выделяет сам свет. Заполняющий газ эффективно увеличивает расстояние, которое электроны проходят через трубку, что дает электрону большую вероятность взаимодействия с атомом ртути.

Атомы аргона, возбужденные до метастабильного состояния при воздействии электрона, могут передавать эту энергию нейтральному атому ртути и ионизировать ее, что называется эффектом Пеннинга .

Преимущество этого заключается в снижении пробивного и рабочего напряжения люминесцентной лампы по сравнению с другими возможными газами наполнения, такими как криптон.

Отправить ответ

avatar
  Подписаться  
Уведомление о