Схема подключения электродвигателя коллекторного: Коллекторный двигатель переменного тока: схема подключения

Содержание

Коллекторный двигатель переменного тока: схема подключения

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

Особенности конструкции и принцип действия

По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали.

Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными, благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора,
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя,
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления,
  • в результате ротор вращается равномерно при любых нагрузках,
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты,
  • увеличенный пусковой момент, «универсальность» работа на переменном и постоянном напряжении,
  • быстрота и независимость от частоты сети,
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

  • снижение долговечности механизма,
  • искрение между и коллектором и щетками,
  • повышенный уровень шумов,
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ

   Возникла необходимость подключить универсальный коллекторный электродвигатель. На первый взгляд никаких проблем нет. Двигатель рабочий, ранее стоял в соответствующем устройстве и выполнял предназначенную ему функцию, то есть уже был подключён.  Но дело в том, что использовать его решил в совершенно ином по своим функциям устройстве. Изменились условия, возможности эксплуатации и требования, как к его работе, так и к сроку службы. Ведь механизм, в котором предполагалось вновь задействовать электродвигатель, должен будет быть собран именно под него. Что делать с существующей обвязкой? Можно и главное нужно ли в ней, что-то менять? В данном конкретном случае это электродвигатель от электробритвы.

   Имеющаяся обвязка состоит из конденсаторов и дросселей предназначенных  выполнять исключительно функции помехоподавляющего фильтра.

   Непосредственно на работу двигателя они ни как не влияют.

Известно, что универсальный коллекторный электродвигатель одинаково хорошо работает и на постоянном, и на переменном токе. Соответственно, не мудрствуя лукаво, при имеющимся сопротивлении секций обмоток статора (более 800 Ом) плюс  сопротивление якоря (360 Ом), подключение можно сделать по такой схеме:

   Что и было успешно опробовано.

   Однако на постоянном токе чуточку лучше. Во первых  КПД двигателя при переменном токе меньше, во вторых меньше срок службы щёток, коллектора и всей машины. Схема подключения будет такой.

   Был опробован и этот вариант схемы.

   Искрение щёток коллектора стало заметно меньше. Совсем уж решил на этом и остановиться, но тут посоветовали, что при питании  данного электродвигателя постоянным током следует добавить, после диодного моста, конденсатор.

   Ёмкость конденсатора первоначально посчитал по, показавшейся подходящей для данного случая, формуле. При подключении конденсатора с расчетной ёмкостью в 200 mkf движок взревел как небольшая электродрель, что заставило уменьшать ёмкость.

Формулой для расчета, не оправдавшей себя, «делиться» смысла не вижу.

   Остановился на конденсаторе 33mkf х 250V и диодном мосте из диодов 1N4007 (как более компактном). Работой электродвигателя доволен.

Видео работы электромотора

   Ничего необычного, но действительно лучше увидеть, чем услышать (в данном случае прочитать) как он там «гудит», как он там «искрит». Желаю удачных экспериментов, Babay.

Originally posted 2019-05-04 00:35:47. Republished by Blog Post Promoter

Как подключить коллекторный электродвигатель

15.01.2017

Предлагаем посмотреть видео о подключении электродвигателя к сети 220В

Многие задаются вопросом как проверить двигатель от стиральной машины перед покупкой, как правильно подключить его и использовать с платой регулировки оборотов без потери мощности. Все очень просто...

Для проверки двигателя нам понадобиться:

  • сетевой провод (желательно с клеммами для удобства),
  • перемычка,
  • мультиметр.

На что следует обратить внимание при проверке двигателя?

1. Состояние коллекторно-щеточного узла,
2. Работу таходатчика.

Для начала мы разберемся с подключением двигателя и его проводами. Нам необходимо найти его обмотку, щетки и таходатчик. Для этого мы ставим мультиметр в режим "прозвонки" и поочередно начинаем перебирать провода.

Бывают двигатели с 6, 8 и 9-ю контактами. Для начала нам нужно определить какие контакты нам необходимы.

Двигатель с 6 контактами (3 пары)

Если двигатель открытого типа, то его провода найти легко. Осталось найти еще 2 пары контактов. Это не имеет принципиального значения что из них обмотка, а что щетки. Но для ясности можно один щуп мультиметра прикоснуть к одной из клеммы любой пары контактов, а второй щуп прикоснуть к коллектору двигателя. Если при этом мы видим замыкание цепи, значит эта пара клемм относится к щеткам, а оставшаяся пара будет являться обмоткой двигателя. 

Теперь подключим провода. Для начала подключаем нашу перемычку. Для этого мы берем один конец щеток и один контакт от обмотки и соединяем их перемычкой. На оставшиеся контакты щеток и обмотки мы прикрепляем сетевой провод. Все, двигатель подключен и его можно подключать в сеть.

Двигатель с 8 и 9-ю контактами

Откуда же так много проводов?
Одна пара - это "термопара". Как правило ее провода имеют контрастную расцветку - черного или белого цвета. Для нашего подключения эти провода не понадобятся.
Остается еще один неизвестный провод - это так называемая "средняя точка обмотки". На каких то двигателях она есть, а на каких то нет. Проще говоря обмотка этих двигателей разделена на две части. Но какую же часть этой обмотки выбрать нам?
Для этого мы берем мультиметр и ставим его в режим "измерения сопротивления" и находим обмотку с меньшим сопротивлением. За счет этого в цепи будет проходить больше тока, а следовательно двигатель будет вращаться быстрее и мощнее.
Выбираем обмотку с меньшим сопротивлением и подключаем все точно так же, как в случае с тремя парами контактов.

Если двигатель закрытого типа и мы не можем найти провода таходатчика, то его клеммы можно найти с помощью мультиметра в режиме "прозвонки". 
Прозвонка его клемм отличается от прозвонки всех остальных клемм. Клеммы таходатчика либо не пищат совсем, а показывают только сопротивление. Либо их звук отличается от стандартного.

Поменять направления двигателя

Чтобы поменять направление двигателя, нам нужно поменять положение перемычки подсоединив ее конец к другому концу обмотки либо щетки.

На что стоит обратить внимание при покупке двигателя

Первое, что мы проверяем - это состояние коллекторно щеточного узла. Для этого нам необходимо включить двигатель в сеть и посмотреть как сильно искрят щетки. Если щетки искрят сильно (как показано на видео), то коллектор данного двигателя не исправен и приобретать его мы не советуем.

Второе, - нам нужно проверить таходатчик. Для этого мы вновь берем мультиметр и ставим его в режим "переменного напряжения" и замеряем выходное напряжения на клеммах таходатчика при включенном двигателе. Оно должно быть от 20 до 70 вольт. Это значит, что таходатчик исправен.

После проверки двигателя, его можно подключить к плате регулировки оборотов с поддержанием мощности и регулировать обороты в широком диапазоне - от 200 до 15000 об/мин. При подаче нагрузки на вал двигателя он не будет просаживать обороты за счет обратной связи - таходатчика. А если Вам нужно менять направление вращения двигателя, можно поставить кнопку реверса как мы можем видеть на видео.

Теперь это устройство можно использовать везде где необходима вращающаяся механическая энергия с регулировкой оборотов без потери мощности. Это могут быть различные медогонки, пилы, гриндеры, сверлильные станки, гончарные круги, токарные станки, дровоколы, точила, зернодробилки и многое другое.

 

Please enable JavaScript to view the comments powered by Disqus.

Правильное подключение электродвигателя на 220 Вольт: инструкция

Для чего это нужно

В большинстве моделей различного электроинструмента используются электрические движки. Но со временем они изнашиваются, и приходится покупать новый электроинструмент. Отработавшие своё движки, тем не менее, не стоит выбрасывать. Если есть электроинструмент, значит, хозяин умеет им работать. И у него, скорее всего, бывает необходимость сделать какие-либо работы по хозяйству дома или на даче. А в этом старые движки могут очень даже помочь. Их можно применить в домашних самоделках для заточки, полировки и даже для стрижки травы.

Как подключить движок с коллектором

Коллекторные двигатели могут работать и на постоянном и на переменном напряжении. Это один из наиболее распространённых типов движков среди используемых для ручного электроинструмента и некоторых других электроприборов. Во многих из них электродвигатель работает от электронной схемы управления. Но если она сгорела, и электроприбор перестал работать, наверняка движок исправен, и его можно включить в сеть напрямую. Но если двигатель работал с электронной схемой как коллекторный двигатель постоянного тока, скорее всего он не будет развивать такие же обороты, что и в устройстве с электронной схемой управления.

Чтобы такой движок запустить от сети 220 В, надо соединить щётки коллектора и статор последовательно. При этом токи в роторе и статоре получатся меньше чем при работе в составе электронной схемы, и движок будет вращаться медленнее. Но зато не требуется никаких дополнительных элементов кроме самого движка, сетевого кабеля и вилки. Если такой двигатель используется в газонокосилке или иной самоделке с длинным сетевым кабелем, конечно же, потребуется ещё и выключатель расположенный вблизи этого движка. Разбираться с таким движком надо с осторожностью. Особенно если в нём более 4-х точек для соединения, то есть проводов обмотки статора не 2 а 3 или больше.

Это говорит о том, что двигатель переключался на разные скорости с использованием частей обмотки статора. Чтобы выполнить подключение электродвигателя на 220 Вольт к электросети его надо надёжно зажать либо в тисках, либо прижать струбциной. Подключив не полную обмотку статора, обороты могут быть слишком велики, и незакреплённый движок может сорваться с места и натворить бед. Если потребуется изменить вращение ротора на противоположное, надо поменять местами либо клеммы статора, либо клеммы щёток.

Как подключить асинхронный движок

Другим довольно-таки распространённым типом электродвижка является асинхронный двигатель. Наиболее часто его устанавливают в вентиляторах. Если известно, что движок именно оттуда, скорее всего он сконструирован на несколько скоростей. Об этом будут свидетельствовать несколько дополнительных выводов, которые являются ответвлениями основной обмотки статора. В движке, который рассчитан на работу с одной скоростью обмоток две. Поэтому в нём возможны ответвления от обмоток либо как 3, либо как 4 вывода. При трёх выводах обмотки уже соединены последовательно. При четырёх выводах надо разобраться с ними используя тестер.

Обмотки обеспечивают перемещение магнитного поля в пределах 90 градусов. Дополнительная обмотка используется для создания перемещающегося максимума магнитного поля и называется пусковой обмоткой. Поэтому если выводов 3 или больше всегда можно определить, используя тестер, где какая из них. Обмотка как пусковая, так и переключающая обороты имеют более высокое сопротивление. Для подключения асинхронного электродвигателя на 220 Вольт применяются схемы, показанные далее.

В некоторых моделях движков резистор встраивается в корпус и поэтому в них только два вывода. Такой двигатель должен вращаться сразу при подаче напряжения 220 В на эти обмоточные выводы. Но если этого не происходит, а тестер показывает некоторое значение сопротивления, значит, одна из обмоток оборвана. Такой движок уже никак не используешь без ремонта в виде перемотки повреждённой обмотки. Использование конденсатора для получения перемещающего магнитного поля является самым популярным техническим решением. Если необходимо таким способом подключить движок потребуется величина его мощности.

  • Конденсатор для асинхронного двигателя выбирается по мощности. Для каждых ста Ватт мощности движка надо примерно семь микрофарад ёмкости конденсатора.

БУ движки стиральных машин

Если используется движок от стиральной машинки, он может принадлежать к одному из трёх типов. В старых моделях машин использовалась отдельные ёмкости для стирки и для отжима. Для стирки применялся асинхронный движок, поскольку его оборотов было вполне достаточно для создания движения воды. Для отжима применялась центрифуга с приводом от коллекторного двигателя. Эти типы двигателей можно применять для каких-либо целей, а как сделать подключение для этого, рассмотрено выше.

Но среди более современных машин встречаются такие модели, у которых выполнен прямой привод на вращающийся барабан для стирки. В них применяются специальные двигатели, управляемые от электронного коммутатора. Он создаёт вращение магнитного поля с необходимой скоростью. Без такого коммутатора двигатель работать не будет. Тем более нельзя подключать его к сети 220 В напрямую.

В некоторых моделях двигателей стиральных машин могут использоваться тахометры, встроенные в корпус движка. Поэтому необходимо обязательно выяснить назначение дополнительных выводов в двигателе перед подключением его к сети 220 В. Бывает так, что это возможно сделать, только узнав, как выглядит движок изнутри, разобрав его. Если сложно идентифицировать конструкцию двигателя самостоятельно, лучше обратиться к специалисту. Это поможет сохранить двигатель в исправном состоянии.

Коллекторный двигатель: виды, принцип работы, схемы

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

Что такое коллекторный двигатель?

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т. д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.

Схема КД со смешанными катушками возбуждения

Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

  • не устаревают магниты, за отсутствием таковых;
  • малая вероятность выхода из строя при нештатных режимах работы;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Схемы подключения двигателя стиральной машины


Стиральные машины, со временем, выходят из строя или морально устаревают. Как правило,
основой любой стиралки есть ее электродвигатель, который может найти свое применение и
после разборки стиралки на запчасти.

Мощность таких двигателей, как правило не меньше 200 Вт, а порой и куда больше, скорость
оборотов вала может доходить и до 11 000 оборотов в минуту что вполне может подойти для использование такого двигателя в хозяйственных или мелких промышленных нуждах.

Вот лишь несколько идей удачного применения электродвигателя от стиралки:

  • Точильный ("наждачный") станок для заточки ножей и мелкого домашнего и садового инструмента.Двигатель устанавливают на прочном основание, а на вал закрепляют точильный камень или наждачный круг.
  • Вибростол для производства декоративной плитки, тротуарной плитки или других бетонных изделий где необходимо уплотнение раствора и удаление от туда воздушных пузырей. А возможно вы занимаетесь производством силиконовых форм, для этого также нужен вибростол.
  • Вибратор для усадки бетона. Самодельные конструкции которых полно в интернете, вполне могут быть реализованы с применением небольшого двигателя от стиральной машинки.
  • Бетономешалка. Вполне подойдет такой двигатель и для небольшой бетономешалки. После небольшой переделки, можно использовать и штатный бак от стиральной машинки.
  • Ручной строительный миксер. С помощью такого миксера можно замешивать штукатурные смеси, плиточный клей, бетон.
  • Газонокосилка. Отличный вариант по мощности и габаритам для газонокосилки на колесах. Подойдет любая готовая платформа на 4-х колесах с закрепленным в центре двигателем с прямым приводом на "ножы" которые будут находится снизу. Высоту газона можно регулировать посадкой, например, поднимая или опуская колеса на шарнирах по отношению к основной платформе.
  • Мельница для измельчения травы и сена или зерна. Особенно актуально для фермеров и людей занимающихся разведением домашней птицы и другой живности. Также можно делать заготовки корма на зиму.

Вариантов применения электромотора может быть очень много, суть процесса заключается в возможности вращать на высоких оборотах разные механизмы и приспособления. Но какой бы механизм сконструировать вы б не собирались, все равно вам нужно будит правильно
подключить двигатель от стиральной машинки.

Виды двигателей


В стиральных машинках разных поколений и стран производства, могут быть и разные типы
электродвигателей. Как правило это один из трех вариантов:

Асинхронный.
В основном это все трехфазные двигатели, могут быть и двухфазными но это большая редкость.
Такие двигатели просты в своей конструкции и обслуживанию, в основном все сводится к смазке подшипников. Недостатком есть большой вес и габариты при небольшом КПД.
Такие двигатели стоят в старинных, маломощных и недорогих моделях стиральных машин.

Коллекторный.
Двигатели которые пришли на смену большим и тяжелым асинхронным устройствам.
Такой двигатель может работать как от переменного так и от постоянного тока, на практике  он будет вращаться даже от автомобильного аккумулятора на 12 вольт.
Двигатель может вращаться в нужную нам сторону, для этого нужно всего лишь сменить полярность подключения щеток к обмоткам статора.
Высокая скорость вращения, плавное изменение оборотов изменением прилагаемого напряжения, небольшие размеры и большой пусковой момент - вот лишь небольшая часть преимуществ такого типа двигателей.
К недостаткам можно отнести износ коллекторного барабана и щеток и повышенный нагрев при не столь продолжительной работе. Также необходима более частая профилактика, например чистка коллектора и замена щеток.

Инверторный (бесколлекторный)
Инновационный тип двигателей с прямым приводом и небольшими габаритами при довольно не малой мощности и высоком КПД.
В конструкции двигателя все так же присутствует статор и ротор, однако количество соединительных элементов сведено к минимуму. Отсутствие элементов подверженных быстрому износу, а так же низкий уровень шума.
Такие двигателя стоят в последних моделях стиральных машин и их производство требует сравнительно больше затрат и усилий что конечно же влияет на цену.

Схемы подключения

Тип двигателя с пусковой обмоткой (старые/дешевые стиралки)


Для начала нужен тестер или мультиметр. Нужно найти две соответствующие друг другу пары выводов.
Щупами тестера, в режиме прозвонки или сопротивления, нужно отыскать два провода которые между собой прозваниваются, остальные два провода автоматически будут парой второй обмотки.

Дальше следует выяснить, где у нас пусковая, а где – рабочая обмотки. Нужно замерить их сопротивление: более высокое сопротивление укажет на пусковую обмотку (ПО), которая создает начальный крутящий момент. Более низкое сопротивление укажет нам на обмотку возбуждения (ОВ) или другими словами - рабочую обмотку, создающую магнитное поле вращения.

Вместо контактора "SB" может стоять неполярный конденсатор малой емкости (около 2-4 мкФ)
Как это обустроено в самой стиралке для удобства.

 Если же двигатель будет запускаться без нагрузки, то есть, не будит на его валу шкива с нагрузкой в момент запуска, то такой двигатель может запускаться и сам, без конденсатора и кратковременной "запитки" пусковой обмотки.

Если двигатель сильно перегревается или греется даже без нагрузки непродолжительное время, то причин может быть несколько. Возможно изношены подшипники или уменьшился зазор между статором и ротором в следствие чего они задевают друг друга. Но чаще всего причиной может быть высокая емкость конденсатора, проверить несложно - дайте поработать двигателю с отключенным пусковым конденсатором и сразу все станет ясно. При необходимости емкость конденсатора лучше уменьшить до минимума при котором он справляется с запуском электродвигателя.

В кнопке контакт "SB" строго должен быть не фиксируемым, можно попросту воспользоваться кнопкой от дверного звонка, в противном случае пусковая обмотка может сгореть.

В момент запуска кнопку "SB" зажимают до момента раскрутки вала на полную (1-2 сек.), дальше кнопка отпускается и напряжение на пусковую обмотку не подается. Если необходим реверс - нужно сменить контакты обмотки.

Иногда в такого двигателя может быть не четыре, а три провода на выходе, в таком случае  две обмотки уже соединены в средней точке между собой, как показано в схеме.
В любом случае разбирая старую стиралку, можно присмотреться как там был подключен в ней ее двигатель.

Когда возникает необходимость реализовать реверс или сменить направления вращения двигателя с пусковой обмоткой, можно подключить по следующей схеме:

Интересный момент. Если в двигателе не использовать (не задействовать) пусковую обмотку, то направление вращения может быть всевозможным (в любую из сторон) и зависить, например, от того в какую сторону провернуть вал в тот момент когда подключается напряжение.

Коллекторный тип двигателя (современные, стиралки автомат с вертикальной загрузкой)


Как правило это коллекторные двигатели без пусковой обмотки, которые не нуждаются и в пусковом конденсаторе, такие двигатели работают и от постоянного тока и от переменного.

Такой двигатель может иметь около 5 - 8 выводов на клемном устройстве, но для работы двигателя вне стиральной машинки, они нам не понадобятся. В первую очередь нужно исключить ненужные контакты тахометра. Сопротивления обмоток тахометра составляет примерно 60 - 70 Ом.

Также могут быть выведены и выводы термозащиты, которые встречаются редко, но они нам так же не понадобятся, это как правило нормально замкнутый или разомкнутый контакт с "нулевым" сопротивлением.

Дальше подключаем напряжение к одному из выводов обмотки. Второй ее вывод соединяют с
первой щеткой. Вторая щетка подключается к оставшемуся 220-вольтовому проводу. Двигатель должен заработать и вращаться в одну сторону.


Чтобы изменить направление движения двигателя, подключение щеток следует поменять местами: теперь первая будет включена в сеть, а вторая соединена с выходом обмотки.

Такой двигатель можно проверить автомобильным аккумулятором на 12 вольт, не боясь при этом "спалить" его из за того что неправильно подключили, спокойно можно и
"поэкспериментировать" и с реверсом и посмотреть как двигатель работает на малых оборотах от низкого напряжения.

Подключая к напряжению 220 вольт, имейте в виду что двигатель резко запустится с рывком,
поэтому лучше его закрепить неподвижно чтоб он не повредил и не замкнул провода.

О том как подключить трехфазные асинхронные двигатели к обычной бытовой сети 220 вольт, довольно подробно можно узнать в статье - "Подключение трехфазного двигателя"

Регулятор оборотов


Если возникает необходимость регулирования количества оборотов, можно воспользоваться
бытовым регулятором освещения (диммером).Но для этой цели нужно подбирать такой диммер который по мощности будет с запасом больше мощности двигателя, или же потребуется доработка, можно из той же стиральной машинки извлечь симистор с радиатором и впаять его на место маломощной детали в конструкции регулятора освещения. Но здесь уже нужно иметь навыки работы с электроникой.

Если же вам удастся найти специальны диммер для подобных электродвигателей то это будет
самым простым решением. Как правило их можно подыскать в точках продажа систем вентиляции и используются они для регулировки оборотов двигателей приточных и вытяжных систем вентиляции.

Коллекторный электродвигатель переменного тока - устройство

В бытовой технике, ручном электроинструменте, автомобильном электрооборудовании и системах автоматики очень часто применяется коллекторный электродвигатель переменного тока, схема подключения которого, как и устройство схожи с двигателями постоянного возбуждения постоянного тока.

Столь распространенное применение их объясняется компактностью, небольшим весом, невысокой стоимостью и простотой управления. В этом сегменте наиболее востребованы двигатели с высокой частотой и малой мощностью.

Принцип работ и конструктивные особенности

Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.

Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.

Чтобы двигатель мог работать от обычной сети, т.е. 220 в, обмотки возбуждения соединяются последовательно.

Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.

Видео: Универсальный коллекторный двигатель

Из чего состоит конструкция?

Устройство электродвигателя переменного тока включает помимо ротора и статора:

  • тахогенератор;
  • щеточно-коллекторный механизм.

Ток якоря взаимодействует с магнитным потоком обмотки возбуждения, вызывая в коллекторном механизме вращение ротора. Ток подается через щетки на коллектор, являющийся узлом ротора и соединенным с обмоткой статора последовательно. Он собран из пластин, имеющих в сечении форму трапеции.

Продемонстрировать принцип работы такого двигателя можно с помощью хорошо известного со школьной программы опыта с вращающейся рамкой, которую поместили между разноименными полюсами магнитного поля. Она вращается под воздействием динамических сил, когда по ней протекает ток. При изменении направления тока, рамка не меняет направления вращения.

Примести к выходу из строя механизма могут высокие обороты холостого хода, вызванные максимальным моментом при последовательном подсоединении обмоток возбуждения.

Схема подключения (упрощенная)

Типовая схема подключения предусматривает вывод на контактную планку до десяти контактов. Протекающий по одной из щеток ток L поступает на коллектор и якорь, затем переходит на обмотки статора через вторую щетку и перемычку, выходя на нейтраль N.

Реверса мотора подобный способ подключения не предусматривает, поскольку подсоединение обмоток параллельное приводит к одновременной смене полюсов магнитных полей. В итоге, направление момента всегда одинаково.

Изменить направление вращения возможно, если поменять на контактной планке местами выхода обмоток. Напрямую двигатель включают, когда вывода ротора и статора подсоединены щеточно-коллекторный механизм. Для включения второй скорости используются выводы половины обмотки. Нельзя забывать, что с момента такого подключения мотор работает на максимальную мощность, поэтому время его эксплуатации не может превышать 15 секунд.

Видео: Подключение и регулировка оборотов двигателя от стиральной машины

Управление двигателем

На практике применяют различные способы регулирования работы двигателя. Это может быть электронная схема, где регулирующим элементом выступает симистор, который на мотор «пропускает» заданное напряжение. Работает он как мгновенно срабатывающий ключ, открываясь, когда на его затвор поступает управляющий импульс.

В основе принципа действия, реализованного в схемах с симистором, лежит двухполупериодное фазовое регулирование, где к импульсам, которые поступают на электрод, привязано напряжение, подаваемое на двигатель. При этом, частота, с которой вращается якорь, прямо пропорциональна напряжению, подаваемому на обмотки.

Упрощенно этот принцип можно описать такими пунктами:

  • на затвор симистора подается сигнал от электронной схемы;
  • затвор открывается, ток течет по обмоткам статора, вызывая вращение якоря мотора М;
  • мгновенные величины частоты вращения преобразуются тахогенератором в электрические сигналы, формируя с импульсами управления обратную связь;
  • как следствие, вращение ротора при любых нагрузках, остается равномерным;
  • с помощью реле R и R1 осуществляется реверс мотора.

Другая схема – тиристорана фазоимпульсная.

Преимущества машин и недостатки

К достоинствам относят:

  • небольшие размеры;
  • универсальность, т.е. работу на напряжении постоянном и переменном;
  • большой пусковой момент;
  • независимость от сетевой частоты;
  • быстроту;
  • мягкую регулировку оборотом в широком диапазоне при варьировании напряжением питания.

Недостатки связаны и использованием щеточно-коллекторного перехода, влекущего:

  • уменьшение срока службы механизма;
  • возникновение между щетками и коллектором искры;
  • высокий уровень шума;
  • большое число коллекторных элементов.

Основные неисправности

Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.

Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.

Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т.е. строгое соблюдение режима работы.

Видео: Коллекторный электрический двигатель

 

Схема подключения двигателя

Маркировка проводов электродвигателя и соединения

Для конкретных подключений двигателей Leeson перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные подключения, размеры, данные паспортной таблички и т. Д. Www.leeson.com

Однофазные соединения: (трехфазные - см. Ниже)
Однофазные соединения:

Вращение L1 L2
против часовой стрелки 1,8 4,5
CW 1,5 4,8

Двойное напряжение: (только основная обмотка)

Напряжение Вращение L1 L2 Присоединиться
Высокая против часовой стрелки 1 4,5 2, 3 и 8
CW 1 4,8 2 и 3 и 5
Низкая против часовой стрелки 1,3,8 2,4,5 -------
CW 1,3,5 2,4,8 -------

Двойное напряжение: (основная и вспомогательная обмотки)

Напряжение Вращение L1 L2 Присоединиться
Высокая против часовой стрелки 1,8 4,5 2 и 3,6 и 7
CW 1,5 4,8 2 и 3,6 и 7
Низкая против часовой стрелки 1,3,6,8 2,4,5,7 ---------
CW 1,3,5,7 2,4,6,8 ---------

Маркировка однофазных клемм по цвету: (Стандарты NEMA)
1-Синий 5-Черный P1-Цвет не назначен
2-Белый 6-Цвет не назначен P2-Коричневый
3-Оранжевый 7-Цвет не назначен
4- Желтый 8-Красный

Трехфазные соединения:

Деталь Начало намотки:
6 отведений Номенклатура NEMA:
WYE или Delta Connected

Т1 Т2 Т3 Т7 T8 T9
Выводы двигателя 1 2 3 7 8 9

9 выводов Номенклатура NEMA
WYE Connected (только для низкого напряжения)

Т1 Т2 Т3 Т7 T8 T9 Вместе
Выводы двигателя 1 2 3 7 8 9 4 и 5 и 6

12 выводов Номенклатура NEMA и IEC
Одно- или низковольтные двигатели с двойным напряжением

Т1 Т2 Т3 Т7 T8 T9
NEMA 1,6 2,4 3,5 7,12 8,10 9,11
МЭК 1 2 3 7 8 9

Трехфазные односкоростные двигатели

Номенклатура Nema - 6 выводов:

Одно напряжение - внешнее соединение WYE

L1 L2 L3 Присоединиться
1 2 3 4 и 5 и 6

Одно напряжение - внешнее соединение треугольником

Соединения одиночного напряжения WYE-треугольник

Режим работы Соединение L1 L2 L3 Присоединиться
Старт WYE 1 2 3 4 и 5 и 6
Бег Дельта 1,6 2,4 3,5 -------

Соединения двойного напряжения WYE-треугольник

Напряжение Соединение L1 L2 L3 Присоединиться
Высокая WYE 1 2 3 4 и 5 и 6
Низкая Дельта 1,6 2,4 3,5 -------

Номенклатура NEMA - 9 выводов:
Двойное напряжение, соединение WYE

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9
Низкая 1,7 2,8 3,9 4 и 5 и 6

Двойное напряжение, соединение по треугольнику

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8,6 и 9
Низкая 1,6,7 2,4,8 3,5,9 ------------

Номенклатура NEMA - 12 выводов:
Двойное напряжение - Внешнее соединение WYE

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Низкая 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12

Двойное напряжение
Запуск по схеме WYE
Работа по схеме треугольника

Напряжение Conn. L1 L2 L3 Присоединиться
Высокая WYE 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Дельта 1,12 2,10 3,11 4 и 7, 5 и 8, 6 и 9
Низкая WYE 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12
Дельта 1,6,7,12 2,4,8,10 3,5,9,11 ------------

Номенклатура IEC - 6 и 12 выводов:
Соединения WYE-треугольник с одним напряжением Соединения WYE-треугольник с одним напряжением

рабочий-
режим
Conn. L1 L2 L3 Присоединиться
Старт WYE U1 В1 W1 U2 и V2 и W2
Бег Дельта U1, W2 В1, У2 W1, V2 --------------

Соединения двойного напряжения WYE-треугольник

Вольт Conn. L1 L2 L3 Присоединиться
Высокая WYE U 1 В1 W1 U2 и V2 и W2
Низкая Дельта U1, W2 В1, У2 W1, V2 --------------

Пуск с двойным напряжением, соединением по схеме «звезда»
Работа по схеме «треугольник»

Вольт Conn. L1 L2 L3 Присоединиться
Высокая WYE U 1 В1 W1 U2 и U5, V2 и V5, W2 и W5, U6 и V6 и W6
Дельта U1, W6 В1, У6 W1, V6 U2 и U5, V2 и V5,
W2 и W5
НИЗКИЙ WYE У1, У5 V1, V5 W1, W5 U2 и V2 и W2,
U6 и V6 и W6
Дельта U1, U5,
W2, W6
V1, V5
U2, U6
W1, W5
V2, V6
-----------------------------

Номенклатура NEMA - 6 выводов:
Соединение с постоянным крутящим моментом
(низкоскоростное HP составляет половину высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Подключение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 Дельта

Соединение с регулируемым крутящим моментом (низкоскоростное HP составляет 1/4 высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Подключение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 WYE

Подключение постоянной мощности (л.с. одинаковы на обеих скоростях)

Скорость L1 L2 L3 Типовое
Подключение
Высокая 6 4 5 1-2-3 Открыть 1 Дельта
Низкая 1 2 3 4, 5 и 6 стыков 2 WYE

Номенклатура IEC - 6 выводов:
Соединение с постоянным крутящим моментом

Скорость L1 L2 L3 Типовое
Подключение
Высокая 2 Вт 2U 2 В 1U, 1V и 1W - ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 Дельта

Соединение с регулируемым крутящим моментом

Скорость L1 L2 L3 Типовое
Подключение
Высокая 2 Вт 2U 2 В 1U, 1V и 1W - ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 WYE

Вопрос по подключению частотно-регулируемого привода - Модернизация

@AngusMcleod, не могу поверить в идею, но она умная.Раньше Oneida предлагала это как дополнение к своим циклонным системам. Я только что проверил их сайт, и теперь они предлагают вместо него жесткий пластиковый вкладыш, который вы кладете внутрь пакета и прижимаете его к барабану. Намного проще. Но система, которая у меня есть, отлично работает и для упаковки фишек.

Постараюсь выложить несколько фотографий в эти выходные (сейчас меня нет в магазине). Но я могу описать систему.

  • Это крошечный насос. Вчера вечером я посмотрел на значок: «220–240 В, 7.5 Вт ». Это 7,5 Вт, а не ампер. Если мои расчеты верны, он потребляет очень небольшую силу тока.

  • Из насоса выходит прозрачная пластиковая трубка 1/4 дюйма (два выхода на насосе соединяются в одну трубку). Трубка проходит через соединитель на стороне мусорного бака (картонный барабан емкостью 35 галлонов), рядом с дном. , который позволяет трубке проходить через барабан, обеспечивая при этом воздухонепроницаемое уплотнение.Трубка заканчивается внутри барабана на дне прямоугольным куском поролонового материала.Он находится между барабаном и мешком для мусора и обеспечивает «всасывание».

  • Когда я опорожняю барабан и кладу в него новый мешок, перед тем, как прикрепить крышку барабана к нижней части циклона, я включаю этот насос (только этот насос, а не циклон!). Примерно через 5 минут мешок полностью растягивается внутри барабана. Затем я снова собираю барабан в циклон и готов к сбору стружки. (Мелкая опасная пыль попадает в небольшой контейнер на дне фильтра.)

Когда я обычно работаю с пылесборником, я использую пульт дистанционного управления, показанный здесь: http://www.oneida-air.com/inventoryD.asp?item_no=AMR220000&CatId={54003435-4EF5-48A6-B7CB-CF572BD394EB}. Два красных провода, выходящие из «приемника» (реле), соединяются с двумя силовыми выводами этого крошечного насоса. [Я упоминал, что насос не может потреблять большой ток; эти провода не могут быть толще 20га.]. Из «приемника» выходят еще две пары проводов; два помечены как «NO», а два - как «NC».Я подключил их к VFD, который подает питание на трехфазный двигатель на пылесборнике. Итак, пока VFD включен, нажатие кнопки «Вкл» на пульте дистанционного управления включает крошечный насос (220 В, 7,5 Вт, однофазный) и запускает пылесборник (220 В, 3 л.с., 3 фазы).

Изначально я купил однофазную систему постоянного тока у Oneida (шесть или семь лет назад), но у меня возникли проблемы с двигателем, и я заменил ее на трехфазный двигатель, управляемый частотно-регулируемым приводом. Мне очень нравится использовать трехфазные двигатели на деревообрабатывающих станках.Я не инженер-электрик, но я читал, что трехфазные двигатели более надежны, поскольку для запуска двигателя не нужен конденсатор, а со временем износ намного меньше. А с ЧРП у вас есть полный контроль над двигателем: вы можете запускать и останавливать, вращать в обратном направлении, контролировать скорость, время запуска / останова и т. Д., А также получать постоянный крутящий момент на более низких скоростях. (Вы также получаете защиту от перегрузки.) Эта установка особенно полезна для токарного станка, где вы хотите реверсировать вращение и контролировать скорость.Часто можно купить излишки трехфазных двигателей за небольшие деньги и купить новый частотно-регулируемый привод по той же общей стоимости, что и при покупке нового однофазного двигателя. Даже если ваш мотор пережил лучшие времена, самое большее, вам может понадобиться установить пару новых подшипников, и он будет как новый…

Конструкция с дистанционным переключением пылесборника

Конструкция с дистанционным переключением пылесборника

Как дистанционно переключать большой пылеуловитель

Дистанционное переключение пылесборника, кажется, является темой, на которую есть расплывчатые ответы и очень мало недорогих решений.В моем новом магазине деревянных изделий возникают серьезные проблемы с дизайном, включая возможность удаленного управления пылесборником, который находится этажом ниже моего магазина в гараже. После тщательного поиска доступного и эффективного решения я обратился к своему электрику за помощью и чрезвычайно элегантным решением.

Задача

Задача кажется довольно простой, но на самом деле она действительно ставит больше вопросов, чем решений. Как удаленно включать и выключать двигатель 220 В в комнате, которая находится далеко от магазинов?

Как я сказал ранее, пылеуловитель Delta 50-763 3HP для моего магазина находится в гараже, а магазин деревянных изделий расположен наверху, на чердаке гаража.

Возможные решения

На рынке есть несколько продуктов, которые можно приобрести для дистанционного управления пылесборником. Некоторые из возможных решений включают:

Существуют также более совершенные системы, которые можно установить в главный автоматический выключатель, которые будут определять потребление тока от вашего торгового оборудования и включать пылеулавливающую систему. К сожалению для меня, ни один из первых вариантов не работал в моем магазине из-за двигателя мощностью 3 л.с., а последняя система может быть довольно дорогой.

Простое, гибкое решение

Я очень расстроился, пытаясь найти решение, которое подойдет моему магазину. Поэтому я решил забрать свой мозг электрика и попросить у него совета. Я работал с ним достаточно долго, чтобы теперь у него, вероятно, было решение, и он не разочаровал!

После нескольких минут обсуждения электрик представил приведенную выше схему. Возможно, это выглядит довольно сложно, но на самом деле это довольно просто. Вот как это работает.

  • Питание от автоматического выключателя подается на выключатель на 30 А, 220 В, расположенный рядом с пылесборником (см. Фото ниже).
  • Затем питание подается на небольшую распределительную коробку, в которой находится контактор 220 В, рассчитанный на 30 ампер. Я расскажу об этом подробнее ниже.
  • Провода низкого напряжения (24 В) от выключателей магазина также входят в распределительную коробку и присоединяются к проводам низкого напряжения на контакторе. Схема на 24 В тоже очень проста. Он состоит из 3-проводной цепи, питаемой от трансформатора на 24 В, который проходит через 10 переключателей, включая два 3-х позиционных переключателя на каждом конце цепи и 4-х позиционные переключатели между ними.Выключатели устанавливаются вокруг магазина рядом с каждым рабочим местом.
  • Электропитание от распределительной коробки затем подается в розетку с поворотным замком 220 В, которая подключается непосредственно к пылеуловителю.

Части, которые я использовал

  • Контактор - Контактор является ключом к тому, как это настраивается. Они обычно используются для включения и выключения большого оборудования, такого как блоки кондиционирования воздуха, поэтому бытовые электроприборы являются отличным ресурсом. Есть множество интернет-магазинов запчастей, которые также продают эти вещи.У Amazon больше нет того, что я купил, но на их сайте есть аналогичный, который будет работать так же хорошо. Для этого приложения мне понадобился двухполюсный контактор на 24 В на 30 А. Очевидно, ваше применение может отличаться в зависимости от размера двигателя вашего пылесборника.
  • Disconnect - Я также использовал выдвижной выключатель кондиционера на 30 А для отключения основного питания. Вы можете получить его по этой ссылке: Eaton Electical / Cutler-Hamm # DPF221RP 30A Вытяжной разъединитель
  • Трансформатор на 24 В - Я использовал трансформатор на 24 В с немного более высоким номинальным током, чем простые, которые вы можете купить для двери. колокол.Это необходимо для предотвращения падения напряжения на всех коммутационных устройствах. Honeywell AT140A1042 Универсальный трансформатор 24 В, 40 ВА

Важные примечания

Я не могу не подчеркнуть, что это проект, к которому вы действительно хотите привлечь электрика. Если вы не обратитесь к электрику, чтобы хотя бы проконсультироваться с вами, вы рискуете повредить пылесборник и даже получить серьезную травму. Также очень важно, чтобы вы следовали спецификациям производителя в отношении размера провода, размера автоматического выключателя и, наконец, электрических соединений.

Производительность и функциональность

Я полагаю, что одна из более причудливых систем, которая включает сбор пыли при включении инструмента, может быть довольно крутой. Но, если не считать этого подхода, я считаю, что это здорово. Я намеренно не хотел, чтобы система включалась и выключалась при открытии / закрытии взрывных ворот. Мне это казалось непрактичным, так как во многих случаях я мог не переходить с моей нынешней машины на другую, поэтому нет необходимости закрывать защитные ворота.Эта система работает безупречно, и я доволен ею на все 100%.

Общая стоимость материалов по этому проекту составила менее 300 долларов. Это включает контактор, трансформатор, разъединитель, переключатели и проводку. Этот подход также можно использовать для включения воздушного компрессора. Это довольно недорогая, простая технология, и уверенный в себе мастер-самоделка может выполнить несколько советов своего электрика.

Видео демонстрация

Посмотрите короткое видео, которое я создал, где я покажу вам, как это работает, и некоторые мысли по настройке этой системы удаленной коммутации.

транзисторы - Помогите с моей схемой контроллера двигателя

Подключение двигателя от эмиттера транзистора к земле не подходит, потому что вы теряете много напряжения. Во-первых, Pi выдает только 3,3 В. Во-вторых, TIP102 - это транзистор Дарлингтона, который имеет внутри два последовательных перехода база-эмиттер , которые падают не менее 1,2 В. Следовательно, двигатель будет получать только 3,3 В - 1,2 В = 2,1 В. Остальные 2,9 В появляются на переходе коллектор-эмиттер и тратятся впустую.

Для минимальных потерь вы должны подключить двигатель от V + к коллектору транзистора, а эмиттер - к земле. Вы также должны подключить резистор последовательно с базой, чтобы ограничить ток ввода / вывода (резистор 1 кОм пропускает около 2 мА, что достаточно для переключения 1 А). Эта конфигурация отделяет напряжения ввода-вывода и базового эмиттера от выхода, а также позволяет использовать аккумуляторную батарею двигателя с более высоким напряжением. Падение напряжения коллектор-эмиттер снижено примерно до 0.8В при 1А.

Для еще меньших потерь вы можете заменить TIP102 на полевой МОП-транзистор, который может иметь чрезвычайно низкое сопротивление сток-исток, а его затвор не потребляет ток, поэтому выход не ограничивается током привода ввода-вывода (однако вы делаете нужен полевой транзистор, который полностью включается при напряжении 3,3 В). IRLML2502 - это популярный полевой транзистор, который понижает напряжение ~ 0,1 В при 2 А с приводом на затвор 2,5 В.

Для управления скоростью двигателя используется ШИМ, который быстро включает и выключает двигатель для создания более низкого среднего напряжения.Одна из проблем заключается в том, что индуктивность двигателя будет пытаться поддерживать ток при выключении, создавая всплеск напряжения, который тратит энергию и может повредить транзистор. Для рециркуляции тока и предотвращения скачков напряжения через двигатель необходимо подключить диод с быстрым переключением.

Если вывод ввода / вывода не работает при включении питания, то полевой транзистор может частично включиться и запустить двигатель до того, как ваша программа получит управление. чтобы предотвратить это, вы можете подключить «понижающий» резистор от затвора к земле.

Окончательная схема выглядит так: -

смоделировать эту схему - Схема создана с помощью CircuitLab

Однако сам по себе Pi может не подойти для вашего приложения. Для хорошей стабилизации вам понадобится быстрый контур обратной связи с точной высокочастотной ШИМ, но Pi имеет только 2 аппаратных канала ШИМ. Возможно, вы могли бы просто запустить два двигателя, чтобы протестировать исходный код, а затем перенести его на более функциональную платформу для работающего дрона.

Важные вопросы по электромонтажу в мастерской

Электроинструменты имеют большой аппетит к электричеству, и, если вы не построили свой магазин с нуля, вы, вероятно, сработали автоматические выключатели, пытаясь их накормить.

Правильно подключенный магазин - единственный способ обеспечить себе достаточное количество продуктов питания. Итак, как вы определяете свои потребности в электромонтаже? Найдите время, чтобы ответить на следующие вопросы, и вы будете на правильном пути.

Примечание. Если вы не обладаете навыками работы с электричеством и не знакомы с местными правилами, оставьте электромонтажные работы профессионалу.Используйте собранную здесь информацию для ведения беседы с электриком.

В: Какая мощность требуется для моих инструментов?

A: Инструменты питаются от усилителя. Паспортная табличка, расположенная на корпусе инструмента или корпусе двигателя, ниже , указывает, сколько инструмента потребуется (потянуть) при полной нагрузке. На графике ниже показаны средние диапазоны для некоторых распространенных инструментов.

Запишите основные требования к электроинструментам и сохраните их для дальнейшего планирования.Обратите внимание на любые инструменты, которые могут быть подключены для работы от 240 вольт вместо 120 (это также указано на паспортной табличке).

В: Соответствует ли мое электрическое обслуживание требованиям?

A: Посмотрите на номер, напечатанный на главном выключателе на вашей сервисной панели, и определите общую силу тока, доступную для вашего дома от линии электропитания. Это говорит вам о максимальной силе тока, которую все электрические цепи могут потреблять одновременно. Большинство домов, построенных за последние 40 лет, оснащены сетью на 100 или 200 ампер, которая должна обеспечивать достаточную мощность для работы вашего дома и, во многих случаях, магазина.Кроме того, на сервисной панели могут быть неиспользуемые цепи для электромонтажа вашего магазина.

Даже если у вас есть место для дополнительных контуров, подумайте о том, чтобы установить отдельное устройство подачи для вспомогательной панели в вашем магазине. Преимущества включают в себя отсутствие необходимости делить электрические цепи с домом, изгибать только один большой кабель вместо нескольких меньших и возможность отключать электричество в магазине, когда он не используется.

Добавление дополнительной панели также позволяет сократить длину проводки в магазине, что снижает потери мощности и тепловыделение.Но подпанель не увеличит вашу общую емкость. Другими словами, если у вас есть служба на 200 ампер, и вы отделили 80 ампер на субпанель, у вас не будет 280 доступных ампер.

Если ваш дом был построен до 1950-х годов и электрически не обновлялся, у вас может быть только 60-амперный сервис. Если это так, если у вас все еще есть блок предохранителей или если вы часто отключаете выключатели, вам потребуется повышенное обслуживание и новая панель.

Также имейте в виду, что если ваш магазин расположен в гараже или недостроенном подвале, электрические коды, скорее всего, потребуют защиты прерывателя цепи от замыкания на землю (GFCI) на всех розетках общего пользования.Эти устройства обнаруживают утечки тока и мгновенно отключают питание в случае короткого замыкания. Розетки GFCI защищают определенные области в цепи, в то время как выключатель GFCI обслуживает всю цепь.

Найдите свои рекомендации по потребностям усилителя

Чтобы определить, какая мощность нужна вашему магазину, сначала найдите свой самый мощный инструмент для вытягивания усилителя (часто столовую пилу или пылесборник) и умножьте силу тока на 125 процентов.

Максимальный ток x 1,25 = (А) _______

Теперь просуммируйте силу тока самых мощных инструментов, работающих одновременно, таких как столовая пила и пылесборник, маршрутизатор, пылесос и т. Д.

Одновременные усилители инструмента = (B) _______

Суммируйте потребляемую мощность всех других нагрузок, которые работают постоянно, например, освещения, отопления / кондиционирования воздуха, воздушного фильтра, радио и т. Д. (Если токи неизвестны, например, с освещением, разделите ватты на напряжение, чтобы получить токи).

Усилители непрерывного действия = (C) _______

МИНИМАЛЬНЫЕ УСИЛЕНИЯ, НЕОБХОДИМЫЕ ДЛЯ МАГАЗИНА (A + B + C) = _______

Наивысший тираж (A):
(столовая пила на 18 ампер) × 1,25 = 22,5

Максимальный одновременный (B):
(пила 18 ампер + коллектор пыли 11 ампер.) = 29

Непрерывный (C):
(свет, обогрев, телевизор, воздушный фильтр) = 24

Минимальный требуемый ток (A + B + C) = 75,5

Для надлежащего питания этого магазина требуется 80-амперная дополнительная мощность существующей сервисной панели или дополнительная 80-амперная вспомогательная панель.

В: Как определить размер моих схем и субпанели?

A: Начните с изучения списка необходимых вам инструментов в силе тока, который вы записали ранее. Большинство небольших портативных электроинструментов могут работать с током 15 А, но для больших фрезерных станков и дисковых пил часто требуется больше.Кроме того, электрические нормы предписывают, что общая нагрузка цепи не может превышать 80 процентов ее емкости - это 16 ампер на 20-амперную цепь. Выделите две 20-амперные цепи для настольных розеток и розеток для портативных инструментов.

Для более крупных станков с напряжением 120 В (пилы, строгального станка, пылеуловителя и т. Д.) Требуется цепь на 20 или 30 А. Если вы используете одновременно две машины, например, пилу и пылесборник, то для каждой из них потребуется отдельный контур.

Здесь возможность переподключить к 240 вольт является бонусом.Помните, что мощность равна напряжению, умноженному на ток. Поскольку мощность, выдаваемая двигателем, не меняется, потребляемый им ток при 240 вольт вдвое меньше того, что потребовалось бы при 120 вольт. Преобразуйте пилу на 18 ампер и пылесборник на 14 ампер, и они будут потреблять 16 ампер вместо 32. Это означает, что оба могут работать от одной цепи на 20 ампер и 240 вольт.

Всегда оставляйте освещение на отдельной цепи. Таким образом, если инструмент зацепится за выключатель, вы не останетесь в темноте. Вы можете обойтись схемой на 15 ампер для освещения, но использование схемы на 20 ампер добавляет дополнительную мощность.

Зная эту информацию, вы сможете определить общие потребности вашего магазина в обслуживании, следуя инструкциям на следующей странице. Как видите, вам не нужно складывать требования к усилителям для каждого инструмента. Но не забывайте и такие предметы, не связанные с инструментами, как фонари, обогреватели и зарядные устройства.

Если вы сложите все свои схемы, вы, скорее всего, получите общий рейтинг выше, чем рейтинг субпанели. Не волнуйся. Распространено использование одной 30-амперной и пяти 20-амперных цепей (всего 130 ампер) в субпанели на 80 ампер.

В: Какой тип и размер проводки мне понадобится?

A: Самая распространенная проводка для бытового использования - это кабель с неметаллической оболочкой, называемый типом NM-B, показанный на фотографиях. Если вы прокладываете проводку внутри стен, это ваш вероятный выбор. В кабелепроводах, устанавливаемых на поверхность, допустимы отдельные изолированные провода. Подземный питающий кабель (тип UF-B) выглядит аналогично и применяется во влажных помещениях или для подземных захоронений.

В дополнение к правильному типу вам нужен правильный размер или американский калибр проводов (AWG), который зависит от силы тока, которую должен выдерживать провод.Чем больше номер провода, тем меньше калибр. Вы всегда можете использовать провод большего сечения, чем указано, но никогда не используйте провода меньшего сечения. Он может стать достаточно горячим, чтобы расплавить изоляцию и вызвать короткое замыкание. Цветовая кодировка, используемая сегодня большинством производителей, упрощает идентификацию.

NM-B 14 калибра, мощность 15 А, 120 В или 240 В (слева). NM-B 12 калибра, емкость 20 А, 120 В или 240 В (средний). NM-B 10 калибра, мощность 30 А, 120 В или 240 В (справа).

В: Будут ли мои инструменты работать лучше при напряжении 240 вольт?

A: Вопреки распространенному заблуждению, работа двигателей инструмента на 240 вольт вместо 120 не делает двигатель более мощным.Конструкция двигателя ограничивает мощность, которую он может потреблять, что соответствует номинальному току, указанному на паспортной табличке.

Чтобы лучше понять это, представьте себе самый точный показатель мощности двигателя: мощность, которая равна амперам, умноженным на напряжение. Двигатель, рассчитанный на 14 ампер при 110 вольт, потребляет 1680 ватт (14x120 = 1680). Удвойте напряжение, и потребность в усилителе уменьшится вдвое, но выходная мощность останется прежней (7x240 = 1,680).

Однако вы можете заметить разницу в «мощности», если вы использовали свою 18-амперную пилу по 20-амперной схеме.Поскольку этот двигатель при максимальной нагрузке потребляет почти каждый ампер, который может сэкономить схема, он может замедляться. Подключите тот же двигатель к 240 вольт, и при полной нагрузке он потребляет только 9 ампер из 20 доступных.

Кроме того, по крайней мере, некоторые инструменты являются исключениями из правил. Мы обнаружили пилу подрядчика, у которой есть двигатель с дополнительным набором обмоток, которые вступают в действие только при подключении к сети на 240 вольт. Номинальная мощность в лошадиных силах на паспортной табличке, ниже , была нашей первой подсказкой.

В: Как выбрать правильный удлинитель?

A: Независимо от количества торговых точек в вашем магазине время от времени вам может понадобиться удлинитель.Помните о следующих правилах:

  1. Чем длиннее шнур, тем меньше ампер он может выдержать и тем больше будет падение напряжения на его длине.
  2. Чем легче калибр (большее число AWG), тем меньше ампер может выдержать шнур.

Например, шнур 12 калибра длиной 50 футов может выдерживать ток 15 ампер. Однако при длине волны 150 футов шнур 12-го калибра не может выдерживать ток более 10 ампер.

Урок: для использования в магазине покупайте только удлинители калибра 10 или 12, длина которых не превышает необходимой для работы.

xkcd: Принципиальная схема

Схема


Постоянная ссылка на этот комикс: https://xkcd.com/730/
URL изображения (для хотлинкинга / встраивания): https://imgs.xkcd.com/comics/circuit_diagram.png

{{Текст заголовка: Я просто поймал себя на том, что лениво пытаюсь выяснить, какой на самом деле будет масса резистора, и понял, что у меня был самоуверенный снайпер.}} ((Большая и сложная принципиальная схема.)) [[В левом верхнем углу есть масштаб карты с отметкой 1 миля (1 км).Под шкалой находится символ антенны, ведущий к блендеру, Arduino; с надписью «Arduino, просто для доверия к блогу»; и чип; «Самый дорогой чип из доступных». Справа от антенны есть символ катушки индуктивности, нижняя клемма которой переходит в левую клемму рисунка, похожего на клеверный лист с шоссе. Верхний вывод ведет к линии, которая идет к верхнему выводу этого клеверного листа, и к символу батареи (с символами + и - на неправильных концах) со значением √2V.Правый вывод клеверного листа переходит в этикетку с символом резистора «120Î © или по вкусу». К другим клеммам резистора и батареи подключен переключатель с надписью «клей открыт». В нижней части двух строк находится транзистор с двумя эмиттерами, один P и один N, и без коллектора. Излучатель П-типа соединен с верхней линией и банкой со скарабеями. Над жуками установлен резистор с надписью «коричнево-голубой апельсин». Справа находится резистор без маркировки с центральным отводом, входящим в конденсатор, с заземлением на другом конце.Над конденсатором расположен диод, а под катушкой индуктивности. Справа еще один индуктор. Две катушки индуктивности и земля покрыты «каплей припоя». Крайний правый компонент - это «таймер 666», на котором вывод 5 находится в виде вопросительного знака. Слева, внизу и слева от клеверного листа, находится роза ветров. Нижняя клемма клеверного листа подключена к батарее, обозначенной 50 В, с заземлением с обеих сторон. Справа от батареи длинный горизонтальный провод с надписью «потяните этот провод очень сильно.«Этот провод подсоединен к вертикальному проводу, который соединяется с эмиттером N-типа транзистора над ним. Справа находится источник переменного тока с маркировкой 240 В, закороченный, с ярлыком на коротком замыкании», опустите это, если вы «Слабак». Справа от него находится индуктор с надписью «11 кг», символом Бэтмена и белкой. Вернемся к левому концу диаграммы, где находится блендер, есть провод, обозначенный как расстояние 3. 8 дюймов от провода с батареей на 50 В. Справа хмурое лицо, затем вертикальный провод с изгибом на 90 градусов с надписью «Осторожно…».Это ведет к воздушному шару. Под баллоном находится символ индуктора с линией на нижнем крае, обозначенной как «теплый фронт». Под блендером и справа от Arduino находится резистор с надписью «ë». Справа - электрический угорь, конденсатор, немаркированный резистор и капля горячего клея, прикрепленная к микросхеме с инвертором, подключенным к вентилю XOR, оба с обратной связью друг с другом. Под электрическим угрем находится шейный ремешок. Справа от ворот XOR и инвертора находится мостовой выпрямитель с надписью «Moral rectifier», справа снова бутылка волшебного дыма, под ней поплавок, а затем сломанный провод, помеченный знаком вопроса.Под самым дорогим доступным чипом находится вертикальный провод с надписью «один файл электронов». Справа находится переключатель с надписью «наймите кого-нибудь, чтобы он быстро открывал и закрывал переключатель». Справа от него находится контакт с надписью «потрогай язык здесь». Ниже находится резистор с надписью «5Î © (приманка)» с подключенной только одной клеммой. Справа от контакта находится метильная группа, прикрепленная к проводу. Справа от метильной группы находится сложная сетка из резисторов 1Î © с надписью «о, так вы думаете, что вы такой гений в EE201?» К проводу, обозначенному как «один файл электронов», подключен провод, изогнутый в U-образной форме с перевернутым заземлением на конце.Справа - конденсатор потока с нижним проводом, обозначенным I-95. Справа от него находится провод с маркировкой пряжа, затем арена с двумя входящими и одним выходящим диодами. Правый диод имеет заземление на аноде с надписью «закопать глубоко, но не слишком глубоко». Справа от него находится двигатель с маркировкой «вибратор», резистор номиналом € и источник переменного тока на 500 В. Под магнитным конденсатором находится провод, который выходит за пределы рамки с меткой «â † к центру солнца». Справа находится знак ограничения скорости 55 миль в час, затем фиксатор SR (триггер) с надписью «вместо этого можно использовать настоящие сандалии».К выводу Q защелки SR подключена удерживающая ручка, а к выводу инвертирующего Q - узел в узле, резистор с надписью «8 мм», символ резистора с надписью «не резистор; провод просто делает это» и двигатель. символ с надписью «в масштабе». Под проводом, ведущим к центру Солнца, находится запутанная путаница проводов, соединенных и перепрыгивающих друг друга, а затем фотодиод с надписью «сборщик слез». Под коллектором слезы проходит провод в форме ЭКГ. Справа - лампочка, символ конденсатора с надписью 3 литра, резистор с надписью «Да», катушка индуктивности без надписи, резистор с вопросительным знаком на этикетке.Справа от всего этого находится катушка индуктивности с надписью «Снимите рубашку при подключении этой части. О, да, мне это нравится». Наконец, в правом нижнем углу изображен символ земли, погруженный в стакан со святой водой.]]

Схема подключения однофазного двигателя 220 В через конденсатор

Бывают случаи, когда нужно подключить мотор на 220 вольт - это случается при попытке подключить оборудование под свои нужды, но схема не соответствует техническим характеристикам, указанным в паспорте такого оборудования.Мы постараемся в этой статье разобрать основные методы решения проблемы и представить несколько альтернативных схем подключения однофазного двигателя с конденсатом на 220 вольт.

Почему это происходит? Например, в гараже необходимо подключить асинхронный двигатель на 220 вольт, который рассчитан на три фазы. Таким образом, необходимо поддерживать КПД (КПД), если альтернативы (в виде двигателя) просто не существует, потому что в цепи из трех фаз легко образуется вращающееся магнитное поле. , что обеспечивает создание условий для вращения ротора в статоре.Без этого КПД будет меньше по сравнению с трехфазной схемой подключения.

Когда в однофазных двигателях всего одна катушка, мы видим картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для запуска не происходит до тех пор, пока сам не раскрутит вал. Чтобы вращение могло происходить самостоятельно, добавили вспомогательную пусковую обмотку. Это вторая фаза, она смещена на 90 градусов и толкает ротор при повороте. Этот двигатель по-прежнему включен в сеть с одной фазой, поэтому название остается однофазным.Такие однофазные синхронные двигатели имеют пусковую обмотку и рабочую. Разница в том, что лаунчер работает только при включении заводского ротора, работает всего три секунды. Вторая обмотка подключена постоянно. Чтобы определить, что есть что, вы можете использовать тестер. На картинке вы можете увидеть соотношение их схемы в целом.

Подключаем мотор на 220 вольт: мотор запускается от подачи 220 вольт на рабочую и пусковую обмотку, а потом выставляем нужную скорость вручную, нужно отключать пусковые установки.Для фазового сдвига необходимо омическое сопротивление, которое конденсаторы обеспечивают индуктивностью. Встречается сопротивление в виде отдельного резистора и пусковой обмотки, которое выполнено по бифилярной технике. Работает это так: индуктивность катушки сохраняется, а сопротивление становится больше из-за удлиненного медного провода. Такую схему можно увидеть на рисунке 1: подключение электродвигателя 220 вольт.

Рисунок 1. Схема подключения двигателя 220 В с конденсатором

Есть также двигатели, у которых обе обмотки постоянно подключены к сети, они называются двухфазными, потому что поле внутри вращается, а конденсатор предназначен для сдвига фазы.Для такой схемы обе обмотки имеют провод равного сечения.

Где можно встретиться в повседневной жизни?

Электродрели, некоторые стиральные машины, дрели и болгарки являются синхронным коллектором двигателя. Он умеет работать в сетях с одной фазой даже без триггеров. Схема следующая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй - в статоре. Два наконечника, которые необходимо было подключить к источнику питания 220 вольт.

Подключение электродвигателя 220 вольт с пусковой обмоткой

Внимание!

  • В этой схеме отсутствует электроника, и, следовательно, двигатель сразу после запуска будет работать на полную мощность на максимальной скорости, когда вы начинаете буквально подпрыгивать с силой тока стартера, которая вызывает искру в коллекторе;
  • есть электродвигатели с двумя скоростями. Их можно определить по трем концам статора, выходящим из обмоток.В этом случае частота вращения вала при подключении уменьшается, а риск деформации изоляции при запуске увеличивается;
  • направление вращения можно изменить, для этого следует поменять местами концевые соединения статора или якоря.

Есть еще одно соединение для питания двигателя на 380 В, которое приводится в движение без нагрузки. Также требуется конденсатор в рабочем состоянии.

Один конец подключен к нулю, а второй - к выходу треугольника с цифрой три.Чтобы изменить направление вращения электродвигателя, нужно подключить его к фазе, а не к нулю.

Схема подключения двигателя 220 В переменного тока через конденсаторы

В том случае, когда мощность двигателя более 1,5 кВт или это при запуске работы напрямую с нагрузкой, при параллельном включении конденсатора необходимо установить и запустить. Он служит для увеличения пускового момента и включается только на несколько секунд во время пуска. Для удобства он соединен с кнопкой, а все устройство от блока питания через тумблер или кнопку с двумя положениями, имеющую два фиксированных положения.Чтобы запустить такой мотор, необходимо подключить кнопку (тумблер) и удерживать кнопку пуска до его запуска. При запуске - достаточно отпустить кнопку и пружина размыкает контакты, отключая стартер

Специфика заключается в том, что асинхронные двигатели изначально предназначались для подключения к сети с тремя фазами 380 В или 220 В.

Важно! Для подключения однофазного электродвигателя к однофазной сети необходимо иметь данные двигателя на бирке и знать следующее:

P = 1,73 * 220 * 2,0 * 0,67 = 510 (Вт) расчет для 220V

R = 1,73 * 380 * 1,16 * 0,67 = 510,9 (Вт) расчет на 380 В

По формуле становится понятно, что электрическая мощность превышает механическую.Это необходимый резерв для компенсации потерь мощности при запуске - создания вращающего момента магнитного поля.

Есть два типа обмоток - звезда и треугольник. По информации на бирке мотора можно определить, какую систему он использует.

Красные стрелки - распределение напряжения в обмотках двигателя, говорит о том, что на одной обмотке распределяется однофазное напряжение 220 В, а на двух - линейное напряжение 380 В. Этот двигатель может быть адаптирован для однофазной сети по схеме Рекомендации по метке: узнайте, какие напряжения создаются при намотке, вы можете соединить их в звезду или треугольник.

Схема намотки треугольника проще. Лучше использовать его, так как двигатель будет терять мощность в меньшем количестве, а напряжение на обмотках везде равно 220 В.

Данная схема подключения конденсаторного асинхронного двигателя в однофазной сети. Включает в себя рабочий и пусковой конденсаторы.

Пример:

  • используемые конденсаторы на напряжение не менее 300 или 400;
  • рабочая емкость конденсаторов набрана при параллельном включении;
  • рассчитал так: каждые 100 ватт все равно 7мкФ, при том, что 1 кВтч равен 70 мкФ;
  • это пример параллельного включения конденсаторов
  • Емкость
  • для запуска должна в три раза превышать емкость рабочего конденсатора.

Важно! Если на старте вовремя не выключить пусковые конденсаторы при достижении двигателем нормативного для него количества движения, они приведут к большому току смещения во всех обмотках, который просто закончится перегревом электродвигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *