Схема подключения электродвигателя через конденсатор: Подключение электродвигателя 380В на 220В

Содержание

Подключение электродвигателя через конденсатор | Полезные статьи

Понравилось видео? Подписывайтесь на наш канал!

Бытовая техника часто комплектуется таким мотором, как электродвигатель серии АИРЕ. Он представляет собой однофазный силовой агрегат с короткозамкнутым ротором, заниженным пусковым моментом, небольшим КПД и маленькой перегрузочной способностью. Его характеристики существенно ниже, чем у трехфазных двигателей, поэтому любители самодельных станков и оборудования предпочитают использовать подключение электродвигателя через конденсатор к сети 220В. Оно позволяет применить трехфазный двигатель, включив его в обычную бытовую электросеть. Для этого используются пусковые конденсаторы для электродвигателей, включающиеся на период пуска для компенсации обратной составляющей электромагнитного поля. Они имеют небольшие габариты, поэтому следует внимательно отнестись к выбору конденсатора. Определенный состав рабочего электролита, материала прокладки позволит добиться минимального значения тангенса угла потерь и последовательного сопротивления.

Схемы подключения электродвигателя с помощью конденсатора

Трехфазные двигатели отличаются разнообразием вариантов соединения обмоток, поэтому схемы подключения отличаются друг от друга. Самая простоя из них содержит один конденсатор, через который подключаются все обмотки, за исключением фазы двигателя, которая запитывается непосредственно от однофазной сети. В результате фаза сдвигается на +90 градусов, в том случае, если используется катушка индуктивности, то сдвиг происходит на -90 градусов. При этом существует риск, что магнитное поле станет эллиптическим. Чтобы этого не произошло, в схему включается проволочный переменный резистор, подключающийся последовательно к конденсатору. Наиболее популярная схема подключения конденсатора к двигателю – «треугольник», но при ее использовании мощность мотора будет всего 70-755 от номинальной. Поэтому при необходимости приблизить параметры мощности к номинальной применяется схема «звезда», при которой две фазные обмотки подключаются в сеть, а третья через конденсатор к одному из проводов электросети. Выбор конденсатора для электродвигателяОсуществляя подключение электродвигателя через конденсатор, стоит помнить, что на нем напряжение может быть существенно выше напряжения электросети. Действующие нормативы говорят о том, что конденсатор должен выдерживать не менее 20-30 пусков в минуту. Каждый из них должен длиться не менее 2-3 секунд, при этом не допускается никаких перегревов. Как подобрать конденсатор для электродвигателя определенной мощности? Главное, что необходимо учесть, это емкость. Она рассчитывается по довольно простой формуле и равна произведению номинальной мощности электродвигателя на коэффициент, равный 66. зависит емкость от следующих параметров:

  • толщина слоя используемого диэлектрика;
  • площадь обкладки;
  • диэлектрической проницаемости применяемого диэлектрика.

Элементарный расчет демонстрирует, что на каждые 100 Вт мощности потребуется 7 мкФ емкости. Если трехфазный двигатель имеет мощность в 2 кВт, то емкость конденсатора должна равняться 140 мкФ. Можно использовать несколько, параллельно соединенных конденсаторов, способных в итоге обеспечить необходимую суммарную емкость. Размер этого параметра есть на корпусе каждого конденсатора, он закодирован: М1 обозначает, что емкость конденсатора равна 0,1 мкФ. Рабочее напряжение конденсатора не должно превышать напряжение сети более чем в полтора раза. В том случае, когда двигатель запускается под нагрузкой, следует учитывать пусковой момент.

Схема подключения двигателя компрессора с двумя конденсаторами

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Подключение асинхронного двигателя к однофазной сети (видео, схема)

После своего изобретения трехфазные двигатели успешно используются до сих пор без каких-либо существенных изменений. Подключение асинхронного двигателя к однофазной сети было лишь делом времени, так как они намного проще в эксплуатации и обслуживании, чем их коллекторные собратья. А ведь в домашних условиях используется именно однофазная сеть, а хороший двигатель нужен не только на производстве. Какие электрические машины можно использовать дома или на даче, и как правильно их запустить в работу от обычных 220 В?

Одна фаза вместо трех

Самый распространенный вариант – трехфазный асинхронный двигатель. В пазах неподвижного статора уложены три обмотки со сдвигом 120 электрических градусов. Для пуска необходимо через них пропустить трехфазный ток, который, проходя по каждой обмотке в разное время, создает вращающий момент, раскручивающий ротор. При подключении однофазной сети такого не происходит. Поэтому здесь необходимы дополнительные элементы, такие как фазосдвигающий конденсатор. Это самый простой способ.

На скорость вращения ротора это не повлияет, а вот мощность такой электрической машины упадет. В зависимости от нагрузки на валу, емкости конденсатора, схемы подключения, потери составляют 30–50 %.

Стоит сразу отметить, что аппараты не всех марок работают по однофазной схеме. Но все-таки большинство позволяет проводить с собой подобные манипуляции. Всегда стоит обращать внимание на прикрепленные таблички. Там есть все характеристики, глядя на которые можно увидеть, какая это модель и где она будет работать.

Из первой картинки (А) можно сделать вывод, что данный двигатель рассчитан на два напряжения – 220 и 380 В. Включение обмоток – треугольник и звезда. От обычной домашней сети его запустить можно (есть соответствующее напряжение), и желательно треугольником.

Вторая (Б) показывает: электрическая машина рассчитана на 380 В, включение звездой. Теоретически, на меньшее напряжение переключиться возможно, но для этого нужно разбирать корпус, искать соединение обмоток и переключать их на треугольник. Можно, конечно, ничего не переключать просто поставив конденсатор. Однако потери мощности будут колоссальными.

Если на табличке написано: Δ/Ỵ 127/220, то к сети 220 В такой аппарат можно включать только звездой, иначе он сгорит!

Подключение фазосдвигающего конденсатора

Оптимальный вариант подключения трехфазной машины в работу от 220 вольт, это треугольником. Так потери составят около 30%. Два конца в борне идут непосредственно к сети, а между третьим концом и любым из этих двух включают конденсатор.

Такой пуск возможен если нет никакой серьезной нагрузки: например, при подключении вентилятора. Если будет нагрузка, то ротор либо не будет крутиться вообще, либо запуск будет происходить очень долго. В этом случае стоит добавить пусковой конденсатор.

При этом будет хорошо использовать выключатель, у которого один контакт замыкался бы и фиксировался, пока его не отключишь, а другой отключался, когда его отпускают. Так можно на непродолжительное время подсоединять в работу пусковой конденсатор. Направление вращения изменяется переключением конденсатора в схеме на другую фазу.

На практике это может выглядеть так:

Схема для пуска в работу трехфазного двигателя к однофазной цепи звездой тоже несложная. Потери будут больше, но иногда другого выхода просто нет.

Расчет конденсатора

Вполне естественный вопрос о том, конденсатор с какими параметрами нужно использовать для запуска и работы такого аппарата. Все зависит от того, звездой или треугольником соединены обмотки на трехфазной машине.

  • Для звезды существует такой расчет: Cр = 2800•I/U.
  • Треугольник:Cр = 4800•I/U.

Cр– емкость рабочего конденсатора в микрофарадах, I – ток в амперах, U – напряжение сети в вольтах.

  • Ток можно посчитать таким образом: I = P/(1.73•U•n•cos ф).

Р – это мощность асинхронного аппарата, написанная на его бирке,n – его КПД. Он указан там же, рядом написан и cos ф.

Есть и упрощенный вариант расчета. Он выглядит таким образом: C = 70•Pн, где Pн – это номинальная мощность, кВт (на бирке). Из этой формулы можно сделать вывод, что на каждые 100 Вт должно быть около 7 мкФ емкости.

При завышенной емкости конденсатора обмотки будут сильно греться, при заниженной ротор будет тяжело раскручиваться. Поэтому идеальным вариантом является, когда после всех расчетов делается своеобразная «подгонка»: замеряется ток при помощи клещей и добавляются или убираются дополнительные конденсаторы.

Если нужен пусковой конденсатор, то необходимо подобрать его так, чтобы общая емкость (Ср+Сп) в 2–3 раза превышала рабочую(Ср).

Постепенный разгон

Как можно осуществить плавный пуск асинхронного двигателя в однофазной сети? Стоит сразу оговориться, что для домашнего использования это обойдется дорого. Сама схема очень сложна и пробовать собрать ее самостоятельно не имеет смысла. Существуют специальные устройства плавного пуска, которые успешно используются для этой цели. Суть их заключается в том, что первые секунды включения напряжение питания подается заниженным, вследствие чего занижен пусковой момент.

Но так как частота вращения роторатаких аппаратов зависит от частоты питающего напряжения, а не от его величины, то такой вариант подходит только тогда, когда нет значительной нагрузки на валу: насосы, вентиляторы. Если есть нагрузка, тогда лучше всего использовать частотный преобразователь. Он также обеспечит плавный запуск, а также много других замечательных возможностей. Правда, стоит он дороже. Из этого следует вывод: такие устройства больше подходят для использования на производстве, пусть даже небольшом. Для дома это дорого.

Как видно, этот частотник можно питать как трехфазным напряжением, так и одной фазой.

Одна фаза

Для того чтобы выполнить подключение однофазного асинхронного двигателя, достаточно двух кнопок: одна с фиксатором, другая без него. Стандартная схема: две обмотки, включенные последовательно (хотя, в зависимости от модели, могут быть варианты). Та, у которой большее сопротивление – пусковая, другая – рабочая.

Каждая модель электрической машины имеет свои характеристики, а значит, и варианты подключения могут различаться. У некоторых для запуска используется два конденсатора, у других – один.

Следовательно, начинать необходимо с выяснения модели и ее технических характеристик.

Как видно, запуск короткозамкнутых электрических машин возможен по-разному. Подключение возможно как в домашних условиях, так и на производстве, что сделало их такими популярными. И, по большому счету, более чем за сто лет не было придумано ничего лучше.

Как подключить электродвигатель к бытовой сети

Человек окружен электродвигателями. Их устанавливают в стиральные машины, настенные часы, автомобили, электроинструменты, и даже в игрушечные машинки. Они популярны в силу своей неприхотливости и прочности.

Как же подключить электродвигатель? Для работы обычного асинхронного двигателя достаточно двух проводов – фазы и нуля. Однако подключение усложняется, если речь идет о трехфазном варианте. Чтобы разобраться в тонкостях подключений, необходимо понимать базовые принципы электрики.

Почему применяют запуск однофазного двигателя через конденсатор?

Однофазный асинхронный двигатель – это электромотор, запитанный от сети переменного тока. Он состоит из нескольких компонентов:

  • корпуса двигателя;
  • ротора;
  • статор.
  • проводов электропитания.

В корпусе устройства располагается статор. Он состоит из рабочей и пусковой обмотки. На них подается электрический ток, который вызывает электромагнитное поле. Действие токов раскручивает ротор, установленный посередине статора. При этом необходимо учитывать, что запуск двигателя происходит принудительно. На рабочую обмотку подают ток, при этом пусковую обмотку запускают в ручном режиме, через кнопку.

Такая схема позволяет включить двигатель без дополнительных компонентов, но данная компоновка может привести к поломке двигателя. Дело в том, что сама по себе рабочая обмотка не раскручивает мотор. Она создает пульсирующее магнитное поле, силы которой не хватает на первоначальную раскрутку ротора. Рабочий контур будет ждать подключения пусковой обмотки. Она дает толчок ротору, позволяет подключиться к работе основной обмотке.

В противном случае рабочая обмотка будет находиться под постоянным напряжением. Из-за высокого сопротивления она начинает греться и постепенно приходит в негодность. Для исправления данной ситуации используют конденсаторы. Они делают старт двигателя безопасным, сохраняет ресурс обмоток.

ВНИМАНИЕ: Для определения типа обмотки используют мультиметр. С его помощью определяют сопротивление на выходах проводов из асинхронного двигателя. Прибор показывает меньшее сопротивление на рабочем контуре, большее на пусковой обмотке.

Подключение конденсаторов для запуска однофазных электродвигателей

Конденсатор – это компонент электрической цепи, накапливающий в себе заряд электрического тока. Данный элемент может снижать или повышать нагрузку на компоненты электроприборов. В системе переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения. Емкость элемента измеряют в фарадах (Ф) или микрофарадах (мкФ).

Конструктивно данный элемент представляет собой две пластины или обкладки, посредине которых находится диэлектрик, толщина которого намного меньше размеров обкладок. Конденсатор позволяет накапливать больший или меньший ток, необходимый для корректной работы элементов электрической цепи.

Различают три вида конденсаторов:

  1. Полярные. Не используются в сетях переменного тока из-за быстрого разрушения прослойки диэлектрика. Это приводит к короткому замыканию цепи.
  2. Неполярные. Работают в сетях переменного и постоянного тока. Их обкладки одинаково взаимодействуют с источником и диэлектриком.
  3. Электролитические или оксидные. В этом конденсаторе используют тонкую оксидную пленку в качестве электродов. Это позволяет работать с максимально возможной емкостью конденсатора. Используют на моторах с низкой частотой вращения.

Из этого следует, что для подключения к асинхронному однофазному двигателю более всего подходит неполярный конденсатор.

Для асинхронного двигателя используют конденсаторы:

  • рабочие;
  • пусковые (стартовые).

Первая группа элементов направлена на снижения тока на основной контур обмотки мотора. Она бережет статор от перенапряжения. Стартовые конденсаторы работают кратковременно – до 3 секунд. Они включаются в самом начале работы двигателя.

Подключение конденсатора и разных контуров обмотки может проходить в различной последовательности. Это влияет на производительность мотора и его эксплуатационные характеристики.

ВАЖНО. Для корректной работы конденсатора нужно правильно рассчитать объем данного компонента. В электрике существует правило: на 100 Ватт мощности берут примерно 7 мкФ емкости рабочего конденсатора. Для пускового элемента данный параметр увеличивается в 2.5 раза. На практике данные показатели могут незначительно отличаться. Это происходит из-за конструктивных особенностей разных двигателей, а также общей выработки устройства.

Какой вариант подключения двигателя лучше всего?

Рассмотрим схему подключения данного элемента в цепи асинхронного двигателя. Конденсаторы устанавливают в разрыв питания на выходах основной и пусковой обмотки.

Их можно комбинировать следующим образом:

  1. Установка пускового конденсатора, включающегося на короткий промежуток времени для снятия нагрузки на основную обмотку. При этом емкость элемента рассчитывают исходя из пропорции: на 1 кВт мощности мотора – конденсатор 70 мкФ.
  2. Установка рабочего конденсатора в контур основной обмотки. В этом случае пусковая обмотка подключена напрямую и работает постоянно. Для такой схемы работы выбирают конденсатор, мощностью в пределах 23-35 мкФ.
  3. Пусковой и рабочий конденсатор устанавливаются параллельно.

Эти схемы рассчитаны на подключение асинхронного двигателя на 220в. Данные пропорции носят рекомендательный характер и подбираются индивидуально для каждого типа мотора. Для подбора оптимальной комбинации стоит внимательно следить за работой агрегата.

Например, если мотор начинает сильно перегреваться после установки рабочего конденсатора, стоит понизить его мощность в два раза. Рекомендуется устанавливать конденсаторы с рабочим напряжением не менее 450В.

Зная, как подключается однофазный асинхронный двигатель в сеть 220В, можно подключить любой подобный агрегат без особых опасений. Главное четко представлять схему подключения и иметь под рукой хотя бы один пусковой конденсатор.

Однако для серьезных рабочих станков такой вариант неуместен. Дело в том, что на мощном электроинструменте ставят трехфазные двигатели, которые не получится подключить напрямую в стандартную сеть 220В. Чтобы запитать трехфазный асинхронный двигатель в бытовую сеть, потребуется изучить внутреннюю схему подключения его обмоток.

Способы подключения трехфазных электродвигателей

В электротехнике есть два типа коммутации питания трехфазного асинхронного двигателя:

  • методом звезды;
  • методом треугольника.

Перечисленные типы подключений используют на всех типах трехфазных электромоторов. От того, какой метод применен, зависит характер работы двигателя, его максимальные нагрузки. Так двигатели с подключением типа «звезда» обладают плавным запуском, но не могут работать на максимальной нагрузке, заявленной в техническом паспорте. Моторы с «треугольником» наоборот быстро стартуют и могут выдавать максимальную мощь.

Как определить схему подключения обмоток?

Распознать метод обмотки довольно просто. Это можно сделать двумя способами:

Посмотреть номерную табличку на двигателе. Обычно на ней отображены все технические данные, касающиеся работы двигателя. Среди прочего можно встретить два символа:

  • геометрическую фигуру треугольника;
  • звезду из трех лучей.

Необходимо сопоставить, какой из символов в таблице находится под значением 380В. Это может выглядеть следующим образом: 220/380В и рядом с ними символы «треугольник»/«звезда». Данное обозначение говорит, что на моторе, подсоединенном в сеть 380В, работает обмотка звезда.

Однако не всегда на моторе есть подобная табличка. Она может отсутствовать или быть затертой. Данный способ определения больше подходит для новых двигателей, которые никто не ремонтировал и не обслуживал. Старый агрегат лучше проверить самостоятельно. Для этого потребуется второй способ распознания типа обмотки.

Раскрутить блок управления и посмотреть на клеммник. На нем можно увидеть 6 выводов проводов. Соответственно – 3 начала и три конца обмотки. В зависимость от типа коммутации, этих выходов можно говорить о методе обмотки:

  • Метод «звезда». В этом случае три выхода соединены одной перемычкой. Три оставшихся входа подключены к отдельной фазе друг за другом.
  • Метод «треугольник». Каждые два вывода проводов последовательно соединены перемычками. Таким образом обмотки переходят друг в друга. При этом провода питания подведены к каждому входу индивидуально.

Данный способ дает полную картину того, как работает двигатель и по какой схеме он подключен. Зная это, можно подключить мотор к сети 220В.

ИНФОРМАЦИЯ: в редких случаях, раскрутив блок управления, можно обнаружить в нем не 6 контактов, а только 3. Это говорит о том, что схема коммутации находится в самом двигателе – под защитным кожухом со стороны торца.

Подключаем трехфазный двигатель к 220В

Данный способ подразумевает подключение трехфазного асинхронного двигателя к электросети 220В посредством конденсатора. Чтобы подключение было правильным, необходимо соблюсти несколько условий:

  1. Схема подключения для двигателя – треугольник. Если на двигателе выводы соединены по методу звезды, необходимо их перекоммутировать.
  2. Конденсатор подбирают по принципу: на каждые 100Вт – 10 мкФ.
  3. Способ подходит для простых двигателей, без внутренних блоков управления и предустановленных конденсаторов.

Для наглядности объяснения обозначим выводы от 1 до 6. Алгоритм подключения:

  1. Работаем только с группой выводов, располагающейся с одной стороны (например, с 1-го по 3-ий).
  2. Берем выводы 1 и 2 и подсоединяем на них провода конденсатора.
  3. Берем провод питания, который будет подключаться к сети 220В. Подключаем один конец провода питания к 1-му выводу, второй на 3-ий вывод. Второй вывод не трогаем, на нем запитан конденсатор и больше ничего!
  4. Запускаем двигатель.

Этот способ прост и безопасен. Также перед самим подключением рекомендуется прозвонить все обмотки на предмет «пробития» на корпус, а также целостности самих контуров.

Заключение

Подключить любой асинхронный двигатель к бытовой сети намного проще, чем это может показаться. Главное – знать схемы подключения, а также уметь обращаться с мультиметром.

Схема подключения электродвигателя на 220в через конденсатор

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Такая проблема зачастую встает перед теми, кто любит что-либо конструировать и собирать своими руками. Если речь идет о самодельном станке, агрегате или ином механизме для бытового применения, возникает вопрос – как приспособить электродвигатель, рассчитанный на 380/3ф, к работе от обычной розетки 220 В.

Что необходимо сделать (доработать), какие практикуются схемы его включения в однофазную сеть – эти и подобные вопросы станут темой нашего разговора.

Способы включения двигателя в сеть 220 В

Они определяются той схемой, по которой соединены обмотки.

«Звезда»

Такой электродвигатель менее эффективен при подключении к 220 В, так как данное соединение обмоток снижает мощность примерно на 60 – 65%. Но иногда выбора просто нет.

«Треугольник»

Для подключения к сети 220 лучше выбрать этот вариант. Мощность также будет утеряна, но не более чем наполовину.

Но соединение обмоток – это еще не все. Сколько конденсаторов придется включить в схему?

Один – если мощность электродвигателя не превышает 1 500 Вт.

Два – при Pдв ˃ 1,5 кВт.

Расчет номинала конденсаторов

Условные обозначения: Сп – пусковой, Ср – рабочий.

Существует несколько несложных формул, но они будут малополезны читателю. Уж поверьте на слово.

Во-первых, для производства вычислений нужно будет замерить силу тока в какой-либо обмотке электродвигателя, а для этого его придется сначала включить в сеть 3 ф, да к тому же использовать специальные клещи. А они есть не у всех, даже у электриков. Это касается тех движков, у которых надписи на шильдике стерты или отсутствует паспорт на изделие. Кстати, для самоделок в основном такие образцы и используются – категории б/у.

Во-вторых, и самое главное – автор на практике убедился, что даже предельно точный расчет не является гарантией корректной работы движка.

В-третьих, не все принимают во внимание, что расчеты делаются «под нагрузку». На холостом ходу двигатель начнет перегреваться. Это еще раз доказывает, что целесообразнее конденсаторы подбирать практически.

Что учесть?

  • Для тех, кто подзабыл школу – номиналы емкостей складываются при их параллельном включении. Последовательное дает сумму обратных величин, то есть 1/С. Это поможет подобрать оптимальное значение. «Фишка» в том, что промышленность выпускает конденсаторы, рассчитанные на определенную емкость, и найти именно тот, который требуется по результатам расчетов, вряд ли получится (проверено!). Вот и нужно быть готовым к тому, что придется экспериментировать.
  • Момент включения для электродвигателя – самый «трудный». Поэтому значение номинала конденсатора пускового (Сп) должно быть равно примерно трем рабочего (Ср). Иначе с запуском движка будут проблемы.

Особенности схем и их сборки

  • Как произвести подключение? Любой трехфазный электродвигатель имеет 3 провода, которые соединяются с его обмотками. Проводники могут просто торчать из корпуса или заводиться в клеммную коробку, которая на нем расположена. Это не важно. На схемах ясно показано, что с чем соединяется. Нюанс в том, что направление вращения ротора заранее угадать не получится. Если вал крутится не в ту сторону, достаточно поменять местами провода, присоединенные к емкости.
  • Кнопка «разгон». Она удерживается до тех пор, пока ротор не наберет номинальное число оборотов, то есть пока электродвигатель не выйдет на режим. Можно сделать и так, что она будет самоблокироваться, а потом автоматически размыкать контакты. Но это намного усложняет схему, поэтому приводить какие-либо чертежи автор не считает целесообразным. Кто с электротехникой на «ты», сам или сообразит, или найдет соответствующую информацию. Это же касается и организации реверсирования двигателя. Иногда нужно, чтобы его вал вращался или в одну, или в другую сторону. Решение – установка 3-х полюсного переключателя.
  • Изоляция выводов емкостей. Напряжение на них может достигать больших значений. Перед присоединением провода к конденсатору на проводник следует одеть кусочек трубки ПВХ соответствующего сечения (так называемый кембрик), а после фиксации и снижения температуры в рабочей зоне «насадить» его на место пайки.

Рекомендации

Не стоит забывать, что в моменты включения/выключения двигателя (особенно при его пуске) могут быть значительные скачки напряжения. Следовательно, раз он подключается к сети 220, все конденсаторы, задействованные в схеме, должны быть не менее чем на 400 В. Это – нижний предел по вольтажу. А вот больше (630, 750 и так далее) – пожалуйста; только их стоимость будет выше (если придется покупать).

Все емкости, которые включаются в схему, должны быть однотипными. В основном устанавливаются конденсаторы бумажные, и автор советует выбирать именно их. Использование образцов электролитических возможно, но для этого придется делать специальные расчеты и усложнять схему. Например, за счет введения в нее диодов, помещения емкостей под защитным кожухом.

Для подобных схем обычно берутся конденсаторы МБГ, МБГО, КБП, МБГП (это и есть бумажные). Их единственный недостаток – большие габариты. А если это сборка, то ее размеры более чем внушительные. Такие типы емкостей подходят для электродвигателя стационарной установки. Соорудить «короб», поместить в нем все конденсаторы и протянуть провода к движку – не проблема. А если монтируется мобильный аппарат? Как поступить?

Об электролитических конденсаторах уже сказано, хотя и не все. Пробой даже одного п/п прибора (диода) может инициировать взрыв емкости. Автор не рекомендует ни при каких условиях связываться с электролитами. Самое верное решение – использовать для схем мобильных устройств конденсаторы СВВ (металлизированные, полипропиленовые). Размеры – минимальные, номиналы емкостей – значительные. Плюс к этому – взрывобезопасные. Что еще нужно для подключения?

Если мощность превышает 3000 Вт, то подключать его к 220 В не рекомендуется. Одна из причин – большой пусковой ток. Это может привести к выходу других элементов эл/цепей, завязанных на данную линию. «Повыбивает» автоматы, подгорят контакты – это далеко не полный перечень возможных «сюрпризов».

Принципиально это или нет для нормальной работы «самоделки» или агрегата промышленного изготовления, будут ли способны устройства выполнять свои функции и насколько эффективно? Только ответив на все эти вопросы, можно приступать к поиску конденсаторов для схемы двигателя. Это самое правильное решение.

Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.

Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

Что при этом получается?

  • Скорость вращения не изменяется.
  • Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

Схемы подключения

Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:

  • Два контакта подсоединяются к сети.
  • Один через конденсатор к обмотке.

Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.

В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.

Как рассчитать емкость

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

  • Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
  • Низкая мощность двигателя, значит, емкость занижена.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

Схема подключения трехфазного двигателя через конденсатор

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты – напротив С1 не С4, а С6, напротив С2 – С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой – подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно – если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети – 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В – для «звезды», 220 – для «треугольника). Большее напряжение для «звезды», меньшее – для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Начала и концы обмоток (различные варианты)

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) – стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А – с батарейкой, подсоединенной к обмотке C или B.

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого – как концы (А2, В2, С2) и соединить их по необходимой схеме – «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов. Пожалуй, самый сложный случай – когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода – начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными – пока не будет нажата кнопка «стоп».

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Для соединения «треугольником»:

Где Ср – емкость рабочего конденсатора в мкФ, I – ток в А, U – напряжение сети в В. Ток рассчитывается по формуле:

Где Р – мощность электродвигателя кВт; n – КПД двигателя; cosф – коэффициент мощности, 1.73 – коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн – номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + . + Сn.

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов.

Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

Коротенько про трехфазные асинхронные электродвигатели

Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор – вращающаяся часть, статор неподвижная (на рисунке его не видно).

Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже – С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный – С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов – аналогично и для электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

почему для пуска от однофазной сети используют именно конденсаторы

Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

На схеме мы видим, что обмотка разделилась на две ветви – пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.

как подключить электродвигатель через конденсатор

Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая – напротяжении всей работы двигателя.

конденсаторы для запуска электродвигателя

Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше выбор конденсаторов осуществляется по двум формулам:

Рабочая емкость = 2800*Iном.эд/Uсети

Рабочая емкость = 4800*Iном/Uсети

Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.

В формулах выше Iном – это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети – напряжение питающей сети(

220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

Например, напряжение сети

220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются – пусковыми.

Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

Подключение трехфазного двигателя в сеть 220 Вольт через конденсаторы

Разделы статьи:

Подключение трехфазного двигателя в сеть 220 Вольт через конденсаторы

Трехфазный асинхронный двигатель можно подключить в сеть 220 Вольт практически без потери мощности, если использовать для подключения конденсатор. Именно конденсаторная емкость позволяет нивелировать падения мощности трехфазного двигателя в однофазной сети.

Асинхронные двигатели широко применяются в быту для самых различных целей. Кто-то делает из такого двигателя сверлильный станок, а кто-то самодельный рейсмус. Как бы там ни было, но для того, чтобы сделать станок, сначала нужно разобраться с подсоединением двигателя на 380 Вольт для работы в однофазной сети.

Подключение трехфазного двигателя через конденсаторы

Как было сказано выше, нивелировать падение мощности трехфазного двигателя в однофазной сети получится с помощью конденсаторов. Их для подключения асинхронного двигателя понадобится всего два — пусковой и рабочий конденсатор.

Пусковой конденсатор отвечает за пуск двигателя, а рабочий за его бесперебойную работу в момент вращения. Для расчета рабочего конденсатора достаточно знать лишь мощность двигателя в кВт. Затем можно воспользоваться следующим правилом: на 100 Вт мощности двигателя необходимо порядка 7 мкФ конденсаторной емкости.

Теперь что касается пускового конденсатора для подключения асинхронного двигателя. Пусковой конденсатор нужен только в том случае, если мощность трехфазного двигателя превышает 1 кВт. Если мощность меньше одного киловатта, то трехфазный двигатель можно подключать без пускового конденсатора.

Емкость пускового конденсатора должна быть в 2-3 раза больше емкости рабочего конденсатора.

Схема подключения двигателя и тип конденсаторов

Подключить трехфазный двигатель можно по схеме «звезда» или «треугольник». Для каждой из этих схем существуют свои формулы расчета конденсаторной емкости, но можно использовать и общую формулу, которая была приведена выше.

Теперь настало время поговорить про тип конденсаторов, которые можно использовать для подключения трехфазного двигателя в однофазной сети. Для пускового и рабочего конденсаторов рекомендуется использовать один и тот же тип.

Для этого подойдут бумажные конденсаторы типа: МБГО, МПГО, КБП или МБГП. Допускается использовать для подключения асинхронного двигателя и электролитические конденсаторы, но несколько по другой схеме. Здесь важно предусмотреть установку диодного моста и резисторов. В противном случае, электролитические конденсаторы могут взорваться.

Наилучшим типом конденсаторов для подключения асинхронного двигателя считаются полипропиленовые конденсаторы переменного тока. Это современные конденсаторы, предназначенные для рабочего напряжения 400-450 Вольт.

Каким должно быть рабочее напряжение конденсаторов для подключения двигателя на 380 Вольт

При этом чтобы конденсаторы не перегревались и не взорвались, в первую очередь, нужно учитывать именно их рабочее напряжение. Для подключения электродвигателя нужны такие конденсаторы, которые имеют рабочее напряжение выше на 1,15 чем напряжение в сети. Рекомендуется применять конденсаторы для подключения трехфазного двигателя, рабочее напряжение которых составляет не менее чем 300 Вольт.

Также, всегда нужно прибегать к характеристикам конденсаторов, поскольку все они разные. Например, при использовании бумажных конденсаторов нельзя забывать о том, что их рабочее напряжение делится примерно на два.

То есть, если на бумажном конденсаторе написано рабочее напряжение 200 Вольт, то при использовании в сети переменного тока, рабочее напряжение бумажного конденсатора будет соответствовать меньшему значению, примерно вполовину, а именно 100 Вольт.

Поделиться статьей в социальных сетях

Зачем нужен конденсатор для однофазного двигателя

Зачем нужен конденсатор для однофазного двигателя:

Однофазные двигатели не являются самозапускающимися двигателями, однофазный источник питания не может создавать вращающееся магнитное поле по своей природе (только одна фаза). Таким образом, чтобы вращать однофазный двигатель, мы должны придать вращающий момент или вращать вручную, чтобы получить непрерывное вращение. Но в то же время мы можем запустить двигатель, но добавив дополнительную пусковую обмотку, и обмотка будет подключена последовательно с конденсатором.Технически это называется методом конденсатора с разделенной фазой. Воспользуемся свойством конденсатора (в конденсаторе напряжение отстает от тока на 90 градусов). Здесь напряжение питания будет сдвинуто по фазе на 90 градусов. следовательно, добавляя конденсатор, мы получаем одновременно две фазы от нашего однофазного источника питания. Следовательно, мотор начинает вращаться.
[wp_ad_camp_1]

Принципиальная схема однофазного двигателя:

Конденсатор однофазного двигателя Форма волны
конденсатора однофазного двигателя [wp_ad_camp_1]
Здесь вы можете увидеть две обмотки, показанные на принципиальной схеме: одна — пусковая, а другая — бегущая.При этом пусковая обмотка включена последовательно с конденсатором. Вы можете увидеть диаграмму формы волны, как конденсатор создает фазовый сдвиг входного напряжения.

Как рассчитать емкость конденсатора для однофазного двигателя:

Вы можете использовать любой тип конденсатора, кроме конденсатора постоянного тока. При выборе конденсатора для однофазного двигателя следует учитывать два важных критерия.

№: 1 — это рейтинг: значение емкости.

Здесь мы увидим значение емкости конденсаторных двигателей некоторых бытовых приборов.Емкость конденсатора прямо пропорциональна мощности двигателя. т.е.

  • в нашем однофазном двигателе потолочного вентилятора мощностью 45 Вт, а конденсатор емкостью 2,5 мкФ используется для запуска двигателя.
  • Наш вытяжной вентилятор для дома использует 4 мкФ и мощность 200 Вт.
  • В то же время однофазный двигатель мощностью 0,75 л.с. использует конденсатор емкостью 10 мкФ. Как это….
  • В однофазном двигателе
  • мощностью 3 л.с. используется конденсатор емкостью 42 мкФ.

Емкость конденсатора зависит от реактивной мощности, подаваемой на вспомогательную обмотку.Вспомогательная обмотка получает реактивный ток и не способствует развитию крутящего момента в двигателе.

No2: есть Номинальное напряжение:

Следует выбрать номинальное напряжение конденсатора 440 В. На нем не должно быть 220 вольт. Если это 220 вольт, то ваш двигатель не работает или не дает желаемой мощности.

См. Также: Условия параллельной работы трансформатора

Предыдущая статьяРеле замыкания на землю ротора 64R Рабочая функцияСледующая статьяPLC DCS Start Stop Схема подключения ДИЛЕММА РАЗМЕРА КОНДЕНСАТОРА

ДИЛЕММА РАЗМЕРА КОНДЕНСАТОРА


ЦЕЛЬ:
Признать важность правильного выбора емкости конденсатора.
ЗАДАЧИ:
Студент сможет:
1) Разберитесь, что такое конденсаторы и как они работают
2) Продемонстрируйте влияние неправильного выбора размера конденсатора на потребление энергии
3) Продемонстрировать умение проверять конденсаторы
УРОК / ИНФОРМАЦИЯ:
Самый простой способ объяснить механику конденсатора — сравнить его с батареей.И накапливают, и выделяют электричество. Конденсаторы заряжаются электричеством, а затем высвобождают накопленную энергию со скоростью шестьдесят раз в секунду в системе переменного тока с 60 циклами. Выбор размера имеет решающее значение для эффективности двигателя, так же как определение размера батарей имеет решающее значение для радио. Радиоприемник, для которого требуется батарея 9 В, не будет работать с батареей размером 1,5 В. Таким образом, по мере того, как батарея становится слабее, радио не будет работать должным образом. Двигатель, для которого требуется конденсатор 7,5 мфд, не будет работать с конденсатором 4,0 мфд.Точно так же двигатель не будет работать должным образом со слабым конденсатором. Это не означает, что чем больше, тем лучше, потому что слишком большой конденсатор может вызвать рост потребления энергии. В обоих случаях, будь он слишком большим или слишком маленьким, срок службы двигателя сократится из-за перегрева обмоток двигателя. Производители двигателей тратят много часов на тестирование комбинаций двигателя и конденсатора, чтобы найти наиболее эффективную комбинацию. При замене пусковых конденсаторов допускается максимальное отклонение + 10% от номинального значения микрофарад, но точные рабочие конденсаторы необходимо заменить.Номинальное напряжение всегда должно быть таким же или выше, чем у оригинального конденсатора, будь то пусковой или рабочий конденсатор. Всегда консультируйтесь с производителями, чтобы проверить правильный размер конденсатора для конкретного применения.
Конденсаторы
содержат две металлические пластины, изолированные друг от друга (см. Рисунок 1). В открытом состоянии внутренняя часть выглядит как два листа фольги с вощеной бумагой между ними, плотно свернутые, как рулон бумажного полотенца. Много лет назад в маслонаполненном типе печатные платы использовались в качестве охлаждающей жидкости.Сегодня большинство конденсаторов — сухого типа.
Рисунок 1
В электродвигателе используются два основных типа:
1) Рабочие конденсаторы рассчитаны на работу в диапазоне 3-70 мкФ (мкф). Рабочие конденсаторы также классифицируются по напряжению. Классификация напряжения: 370 В и 440 В. Конденсаторы с номиналом выше 70 мкФ (мфд) являются пусковыми. Рабочие конденсаторы рассчитаны на непрерывный режим работы и находятся под напряжением в течение всего времени работы двигателя.Однофазным электродвигателям требуется конденсатор для питания второй фазной обмотки. Вот почему так важен размер. Если установлен неправильный рабочий конденсатор, в двигателе не будет равномерного магнитного поля. Это вызовет колебания ротора на неровных участках. Это колебание вызовет шум двигателя, увеличит потребление энергии, снизит производительность и приведет к перегреву двигателя.
2) Пусковые конденсаторы размещены в черном пластиковом корпусе и имеют диапазон значений mfd в отличие от определенного номинала mfd на рабочих конденсаторах.Пусковые конденсаторы (номиналом 70 мкФ или выше) имеют три класса напряжения: 125 В, 250 В и 330 В. Примерами могут служить рабочий конденсатор 35 мфд при 370 В и пусковой конденсатор 88-108 мфд при 250 В. Пусковые конденсаторы увеличивают пусковой момент двигателя и позволяют быстро включать и выключать двигатель. Пусковые конденсаторы предназначены для кратковременного использования. Пусковые конденсаторы остаются под напряжением достаточно долго, чтобы быстро довести двигатель до 3/4 полной скорости, а затем отключаются от цепи.
Реле потенциала также важны.Реле потенциала используются для электронного подключения и отключения пусковых конденсаторов от цепи двигателя (см. Рисунок 2). Каждое реле имеет определенное номинальное напряжение для включения пускового конденсатора последовательно с пусковой обмоткой и определенное напряжение для его отключения из цепи. Каждый рейтинг основан на электромагнитном поле, создаваемом вращением двигателя. Производитель двигателя изучает эффект установки и извлечения конденсатора для увеличения пускового момента с минимальным изгибом обмотки.Возможные реле имеют четыре класса; (1) постоянное напряжение катушки, (2) минимальное напряжение срабатывания, (3) максимальное напряжение срабатывания и (4) падение напряжения. Реле потенциала сложно проверить, и его всегда следует заменять при замене пускового конденсатора. Необходимо переустановить точный размер, предназначенный для этого конкретного двигателя. Потенциальное реле также необходимо заменить, если обнаруживаются разомкнутые контакты.
Рисунок 2
ДЕЯТЕЛЬНОСТЬ:
Продемонстрируйте использование стандартного нагнетателя мощностью 1/2 л.с. от обогревателя в жилых помещениях с помощью следующих упражнений.Во время каждого упражнения ученик должен записывать уровень шума, скорость, температуру и силу тока двигателя.
ПРИ ВЫПОЛНЕНИИ ДАННЫХ ДЕЙСТВИЙ СЛЕДУЕТ ПРИНИМАТЬ КРАЙНУЮ ВНИМАНИЕ. СМОТРЕТЬ ЗАПИСИ УЧИТЕЛЯ!
(1) Снимите конденсатор и попробуйте запустить двигатель. Обязательно заизолируйте концы проводов. Это будет имитировать открытый конденсатор.
(2) Запустите двигатель с правильным конденсатором. Заблокируйте переднюю часть воздуходувки, чтобы получить правильную скорость двигателя и потребляемую мощность.
(3) Замкните два провода, которые обычно идут к конденсатору, и изолируйте соединение. Это будет имитировать закороченный конденсатор.
(4) Замените стандартный конденсатор на тот, который имеет половину номинала МДС.
(5) Замените стандартный конденсатор на конденсатор с удвоенной номинальной мощностью.
ПРИМЕЧАНИЕ:
Перед началом упражнения убедитесь, что создано надлежащее статическое давление, чтобы получить номинальную силу тока пластины двигателя с правильным рабочим конденсатором.
Упражнение 1 Уровень шума Скорость Температура Сила тока




Упражнение 2 Уровень шума Скорость Температура Сила тока




Упражнение № 3 Уровень шума Скорость Температура Сила тока




Упражнение № 4 Уровень шума Скорость Температура Сила тока




Упражнение 5 Уровень шума Скорость Температура Сила тока




ЗАПИСИ УЧИТЕЛЯ
Деятельность на предыдущей странице связана с высоким напряжением.Необходимо использовать средства защиты глаз и соблюдать особую осторожность, чтобы не допустить поражения электрическим током. При неправильном подключении конденсаторы могут взорваться и нанести серьезную травму. Рекомендуется, чтобы инструктор продемонстрировал упражнение, прежде чем разрешить ученику его выполнить. Инструктор также должен проверить работу ученика перед тестовым запуском ученика.
ССЫЛКИ:
Современное охлаждение и кондиционирование воздуха .Goodheart-Willcox Co., Inc. С. Холланд, Иллинойс. 1988.

Комментарии или вопросы по адресу: [email protected]

Вернуться в меню HVAC

Как конденсатор работает в цепи двигателя переменного тока 120 В?

Пытаться запустить однофазный двигатель только с одной обмоткой — все равно что пытаться запустить велосипед только с одной педалью. Все в порядке, если у вас все получится, но пытаться получить правильное направление старта и начинать с верхней или нижней мертвой точки неудобно.

смоделировать эту схему — Схема создана с помощью CircuitLab

Асинхронный двигатель с квадратным ротором, поскольку в редакторе схем нет инструмента круга.

Однофазный асинхронный двигатель аналогичен. Чтобы решить эту проблему, к двигателю добавляется вспомогательная, обычно более слабая, обмотка, которая смещена от основной обмотки, скажем, на 30 °. Конденсатор включен последовательно с этой катушкой, и он вызывает сдвиг фазы тока во вспомогательной обмотке относительно фазы основной обмотки.В результате магнитное поле в одной обмотке ведет к другой, и это сообщает ротору вращающую силу, достаточную для:

  • получить его для запуска.
  • старт в правильном направлении.

Некоторые двигатели оснащены центробежным переключателем, который отключает вспомогательную обмотку, когда двигатель превышает определенную скорость, поскольку она больше не требуется. Это экономит немного энергии и снижает нагрев двигателя.

Что такое ток конденсатора

Но не могли бы вы прояснить мне эту часть? Когда крышка полностью заряжается, когда 120v пересекает ноль, что происходит с накопленным отрицательным зарядка на насыщенной крышке крышки? Пульсирует ли он вверх по потоку от предыдущий поток напряжения или он просто там сидит? — Скотт

Обычно мы узнаем о конденсаторах в цепях постоянного тока, где легко визуализировать заряд конденсатора, а затем его разрядку, а напряжение конденсатора следует кривой заряда / разряда RC.Обычно в этих сценариях подаваемое напряжение не меняется выше и ниже нуля вольт. Такой образ мышления не очень помогает нам при анализе цепей переменного тока.

Снова рассмотрим пусковую обмотку. Для простоты мы проигнорируем индуктивность обеих обмоток и будем рассматривать их как резисторы. Используя нашу простую модель:

  • Ток в главной обмотке будет соответствовать напряжению L-N и будет синфазным с ним.
  • Нам нужен фазовый сдвиг тока в ветви L2-C1 для генерации вращения.

Ток конденсатора определяется правилом \ $ I = \ frac {dQ} {dt} \ $, где Q — заряд. Это просто говорит нам о том, что ток будет наибольшим, когда скорость движения заряда наибольшая. Заряд конденсатора определяется как \ $ Q = C \ cdot V \ $, и объединяя их, мы получаем \ $ I = C \ frac {dV} {dt} \ $. Все, что мы здесь говорим, это то, что : ток конденсатора пропорционален скорости изменения напряжения .

смоделировать эту схему

Упрощение : Мы снова игнорируем индуктивность и рассматриваем обмотки как резисторы с низким сопротивлением (относительно импеданса конденсатора).

При 270 ° напряжение (красный) максимально отрицательное. Конденсатор заряжен полностью отрицательно, и, поскольку напряжение перестало падать (становиться отрицательным), ток упал до нуля (синяя кривая находится на нуле).

С 270 ° до 0 ° напряжение будет увеличиваться. Скорость изменения будет становиться все быстрее и быстрее по мере приближения к нулю. По этой причине ток будет увеличиваться от нуля до максимального значения при 0 °.

При 0 ° конденсатор полностью разряжен, но скорость изменения напряжения самая высокая (самая крутая на кривой).Это зарядит конденсатор, и, поскольку скорость заряда — ток — пропорциональна скорости изменения напряжения, ток здесь достигает максимума.

Для следующего 0 ° — 90 ° скорость изменения напряжения уменьшается, и ток уменьшается до нуля.

Тот же рисунок повторяется, но в противоположных направлениях на следующие 180 °.


Примечания:

  • При таком расположении формы сигналов напряжения и тока всегда синусоидальны.Нет внезапных зарядов / разрядов или скачков напряжения или тока.
  • Единственная «бесконечная пауза» — это когда напряжение или ток меняют направление. Это не более чем пауза, чем когда поршень двигателя достигает максимума хода. Скорость = 0 на мгновение, но в этот момент ускорение самое высокое (если я правильно думаю).
  • То, что приходит на провод под напряжением / под напряжением на этой ноге, должно выходить на нейтраль на этой ноге.
  • C1, и коммутатор может работать с любой стороны от L2.

% PDF-1.4 % 32 0 объект > эндобдж xref 32 117 0000000016 00000 н. 0000003022 00000 н. 0000003121 00000 п. 0000003904 00000 н. 0000004017 00000 н. 0000004128 00000 н. 0000004217 00000 н. 0000004739 00000 н. 0000004996 00000 н. 0000005560 00000 н. 0000005585 00000 н. 0000005698 00000 п. 0000005734 00000 н. 0000006086 00000 н. 0000006377 00000 н. 0000006834 00000 н. 0000006973 00000 н. 0000014745 00000 п. 0000023578 00000 п. 0000033096 00000 п. 0000040662 00000 п. 0000040803 00000 п. 0000047523 00000 п. 0000052848 00000 п. 0000058285 00000 п. 0000063851 00000 п. 0000068049 00000 п. 0000068307 00000 п. 0000068376 00000 п. 0000068827 00000 п. 0000072868 00000 п. 0000072896 00000 п. 0000073002 00000 п. 0000073097 00000 п. 0000073240 00000 п. 0000073347 00000 п. 0000073453 00000 п. 0000073571 00000 п. 0000073720 00000 п. 0000073822 00000 п. 0000073920 00000 п. 0000074038 00000 п. 0000074181 00000 п. 0000074484 00000 п. 0000074841 00000 п. 0000075180 00000 п. 0000075324 00000 п. 0000075467 00000 п. 0000075579 00000 п. 0000075690 00000 п. 0000075808 00000 п. 0000075951 00000 п. 0000076254 00000 п. 0000076586 00000 п. 0000076903 00000 п. 0000077258 00000 п. 0000077426 00000 п. 0000077569 00000 п. 0000077681 00000 п. 0000077776 00000 п. 0000077919 00000 п. 0000078254 00000 п. 0000078589 00000 п. 0000078707 00000 п. 0000078850 00000 п. 0000078961 00000 п. 0000079069 00000 п. 0000079187 00000 п. 0000079330 00000 п. 0000079705 00000 п. 0000080059 00000 п. 0000080180 00000 п. 0000080325 00000 п. 0000080436 00000 п. 0000080548 00000 п. 0000080669 00000 п. 0000080814 00000 п. 0000081150 00000 п. 0000081504 00000 п. 0000081625 00000 п. 0000081770 00000 п. 0000081880 00000 п. 0000081993 00000 п. 0000082101 00000 п. 0000082247 00000 п. 0000082398 00000 п. 0000082507 00000 п. 0000082616 00000 п. 0000082736 00000 н. 0000082881 00000 п. 0000082992 00000 п. 0000083104 00000 п. 0000083224 00000 п. 0000083375 00000 п. 0000083474 00000 п. 0000083573 00000 п. 0000083694 00000 п. 0000083839 00000 п. 0000083948 00000 н. 0000084052 00000 п. 0000084173 00000 п. 0000084323 00000 п. 0000084432 00000 п. 0000084545 00000 п. 0000084665 00000 п. 0000084810 00000 п. 0000085647 00000 п. 0000085673 00000 п. 0000086015 00000 п. 0000087016 00000 п. 0000087275 00000 п. 0000089588 00000 п. 0000089849 00000 п. 0000091268 00000 п. 0000105028 00000 н. 0000152736 00000 н. 0000002636 00000 н. трейлер ] >> startxref 0 %% EOF 148 0 объект > поток xd1 КБк Вт) & Т ** P (^ ګ% $ mB1

Подключение двойного конденсатора однофазного двигателя_ Схема подключения однофазного асинхронного двигателя с двойным конденсатором

Однофазный двигатель с двойным конденсатором называется однофазным асинхронным двигателем с двойным конденсатором, в котором используется принцип разделения фаз конденсатора.Это однофазный двигатель с высоким крутящим моментом. Цепь этого двигателя соединена с пусковым конденсатором и рабочим конденсатором соответственно. Он широко используется в сельскохозяйственных и бытовых электроприборах. Положительное и отрицательное вращение однофазного двигателя может быть реализовано путем переключения основной и вспомогательной обмоток двигателя, то есть направление вращения может быть изменено путем изменения двух выводов основной обмотки (или вывода вспомогательной обмотки). обмотка).

1 、 Простая оценка схемы и способ подключения

На корпусе шесть выводов, которые являются двумя выводами основной обмотки, двумя выводами вспомогательной обмотки и двумя выводами центробежного выключателя.Основная обмотка подключена к 220 В; вспомогательная обмотка включается последовательно с рабочим конденсатором, а затем включается параллельно основной обмотке; пусковой конденсатор подключается последовательно с центробежным переключателем, а затем подключается параллельно рабочему конденсатору. Например, для двигателя мощностью 1,5 кВт сопротивление основной обмотки составляет 1 Ом; сопротивление вторичной обмотки 2 Ом; сопротивление центробежного переключателя составляет 0 Ом, которое можно измерить и распознать с помощью мультиметра.

Как показано на рисунке выше, сопротивление вторичной обмотки однофазного двигателя немного больше, чем сопротивление основной обмотки. То есть измерить сопротивление мультиметром R. вторичная обмотка с большим сопротивлением и основная обмотка с малым сопротивлением. Конденсатор 30 мкФ работает, 200 мкФ запускается.

2 、 Принцип конструкции

Обмотка ротора конденсаторного электродвигателя с расщепленной фазой представляет собой короткозамкнутую обмотку, и есть две группы: пусковая обмотка B и рабочая обмотка a с разницей в пространстве на 90 ° на статоре, чтобы получить два переменных тока с электрическим углом 90 ° и обеспечить условия формирования вращающегося магнитного поля.(как показано на рисунке 1)

3 、 Как это работает

Конденсаторный двигатель с разделенной фазой отделяет однофазный переменный ток от другой фазы переменного тока с разностью фаз 90 градусов посредством конденсаторного фазосдвигающего действия, получает два переменных тока и отправляет их на две обмотки соответственно. Принцип работы и процесс следующие:

Обмотка статора питается двухфазным током с разницей в электрических углах 90 ° → на статоре создается вращающееся магнитное поле → ротор перерезает магнитную силовую линию для генерации индуцированного тока → индуцированный ток генерирует вращающийся магнитный поле → магнитное поле ротора взаимодействует с магнитным полем статора → ротор вращается.

Принцип формирования вращающегося магнитного поля показан на рисунке 2

4 、 Схема подключения:

Рисунок 3 — это электрическая схема двигателя без основной и вспомогательной обмоток, а Рисунок 4 — это электрическая схема двигателя с основной и вспомогательной обмотками.

5 、 Использование

1. Пусковой конденсатор работает только в процессе пуска двигателя, когда скорость достигает определенного значения, он вовремя срабатывает. Емкость пускового конденсатора относительно велика, чтобы двигатель имел более высокий пусковой момент.

2. Рабочая емкость работает только при работающем двигателе, а емкость рабочей емкости относительно мала для обеспечения лучших рабочих характеристик. Большинство вторичных обмоток этого типа двигателя соединены последовательно с центробежным пусковым выключателем. При правильной разводке пусковой конденсатор следует подключить последовательно с центробежным переключателем, а затем параллельно с рабочим конденсатором. Правильный метод подключения однофазного двигателя с двумя конденсаторами показан на рисунке.

Когда двигатель запускается, когда скорость двигателя достигает примерно 80% от номинальной, контакт центробежного выключателя размыкается, тем самым прерывая соединение между пусковым конденсатором и цепью. В это время ток двигателя уменьшается, и двигатель переходит в нормальное рабочее состояние. При использовании, если положение двух конденсаторов меняется на обратное и пусковой конденсатор большей емкости напрямую подключается последовательно со вторичной обмоткой, вторичная обмотка сгорает из-за перегрузки по току.

Контрольные значения для выбора емкости двигателей с двумя конденсаторами различной мощности приведены в Таблице 1 для справки.

Ответственный редактор: LQ


просмотров публикаций:
168

Как правильно подключить двигатели вентилятора конденсатора в 3-проводной и 4-проводной конфигурациях

«Мой оригинальный двигатель вентилятора конденсатора имеет три провода, а новый двигатель вентилятора конденсатора, который я купил, имеет четыре провода. Я купил не тот двигатель?»

Это, безусловно, самый распространенный вопрос после транзакции, который мы получаем от клиентов, которые недавно приобрели сменные электродвигатели вентиляторов конденсатора.Проще говоря, нет — вы купили не тот двигатель вентилятора конденсатора. В то время как большинство оригинальных двигателей вентиляторов конденсатора имеют только три провода, очень часто заменяющие двигатели вентиляторов конденсатора имеют четыре провода. В этом руководстве объясняется, как подключить новый двигатель вентилятора конденсатора с использованием четырехпроводной схемы или трехпроводной схемы при использовании одинарного рабочего конденсатора или двойного рабочего конденсатора.

Обзор комплектующих:

Если вы помните из нашего руководства по сезонам охлаждения жилых помещений, в наружных конденсаторных блоках используется переключатель, называемый контактором.Этот переключатель управляется термостатом и замыкается, замыкая электрическую цепь, когда электричество необходимо подать на двигатель вентилятора конденсатора и компрессор. Думайте о контакторе почти как о привратнике — через него должны проходить две ножки с питанием 115 вольт, чтобы ваша система работала должным образом.

В конденсаторных установках

также используется компонент, называемый рабочим конденсатором. Рабочие конденсаторы позволяют двигателям вентиляторов конденсатора и компрессорам работать более эффективно, и их номинал определяется единицей измерения, называемой микрофарадами.Конденсаторы двойного хода используются как для двигателя вентилятора конденсатора, так и для компрессора. Конденсаторы одиночного хода используются исключительно для электродвигателя вентилятора конденсатора или только для компрессора. Как и ваш контактор, ваш конденсатор должен быть правильно подключен, чтобы он функционировал должным образом.

Использование двойного рабочего конденсатора:

Если вы используете двойной рабочий конденсатор, вы будете использовать только три из четырех выводов, идущих от нового двигателя вентилятора конденсатора.

Вы собираетесь подключить черный провод к тому месту, где был подключен черный провод на предыдущем двигателе вентилятора конденсатора.Скорее всего, это вернется к вашему контактору. Вы собираетесь подключить белый провод к тому месту, к которому был подключен белый провод на предыдущем двигателе вентилятора конденсатора. Скорее всего, это будет клемма «C» или «Common» на двойном рабочем конденсаторе. Наконец, вы собираетесь подключить коричневый провод к тому месту, к которому был подключен ваш предыдущий коричневый провод. Скорее всего, это будет вывод «F» или «Вентилятор» на двойном рабочем конденсаторе. Коричневый провод с белым индикатором не будет использоваться для этой настройки. Вы можете использовать проволочную гайку и изоленту, чтобы связать его.

ПРИМЕЧАНИЕ. Вам понадобится перемычка между клеммой «C» или «Common» на конденсаторе и одной ножкой контактора.

Использование одинарного рабочего конденсатора с четырехпроводной схемой:

Если вы приобрели новый двигатель вентилятора конденсатора с новым одноразовым конденсатором, вы будете использовать именно эту схему подключения. Вы собираетесь подключить черный провод к тому месту, где был подключен черный провод на предыдущем двигателе вентилятора конденсатора. Скорее всего, это вернется к вашему контактору.Вы собираетесь подсоединить белый провод обратно к другому выводу контактора. Вы собираетесь подключить коричневый провод к одному набору клемм на вашем новом конденсаторе, а коричневый провод с белым индикатором — к другому набору клемм.

Использование одинарного рабочего конденсатора с трехпроводной схемой:

Если вы приобрели новый одноразовый конденсатор и у двигателя вентилятора конденсатора, который вы используете, от него отходят только три вывода, вы будете использовать именно эту схему подключения.Вы собираетесь подключить черный провод к тому месту, где он был ранее подключен. Скорее всего, это вернется к вашему контактору. Вы собираетесь подключить белый провод к одному набору клемм на вашем новом конденсаторе. Вам нужно будет подключить перемычку от этого набора клемм к другой ноге контактора. Наконец, вы собираетесь подключить коричневый провод к противоположному набору клемм на вашем новом рабочем конденсаторе, чем к общему проводу.

Суммируем:

Когда вы завершаете проект самостоятельно, всегда есть чувство удовлетворения, но подключение нового двигателя вентилятора конденсатора и рабочего конденсатора может быть немного сложным, если вы не сделали этого раньше.Безопасность всегда является наивысшим приоритетом. Перед началом любых работ убедитесь, что электропитание конденсатора отключено. Используйте мультиметр, чтобы подтвердить отключение. Если вам неудобно работать с электричеством, обратитесь к местному подрядчику HVAC, и он будет более чем счастлив выполнить эту задачу за вас.

Очень полезно задокументировать расположение существующих проводных соединений перед снятием двигателя вентилятора конденсатора или рабочего конденсатора. При установке нового двигателя вентилятора конденсатора и рабочего конденсатора используйте камеру, чтобы сфотографировать соединения и сослаться на изображения.

Для визуального представления типичных конфигураций проводки обратитесь к следующему руководству: Схема электрических соединений двигателя вентилятора конденсатора HVAC.

Наконец, это руководство предназначено для использования в качестве общего обзора схем электрических соединений обычных конденсаторных агрегатов. Некоторые двигатели вентиляторов конденсатора подключаются к печатной плате, в то время как другие используют собственные разъемы для своих разъемов. Мы настоятельно рекомендуем вернуться к руководству по эксплуатации вашего устройства для получения инструкций по правильному подключению.

Однофазные асинхронные двигатели | Двигатели переменного тока

Трехфазный двигатель может работать от однофазного источника питания.Однако он не запускается самостоятельно. Его можно запустить вручную в любом направлении, набрав скорость за несколько секунд. Он будет развивать только 2/3 номинальной мощности 3-φ, потому что одна обмотка не используется.

Двигатель с 3 фазами вращения работает от мощности 1 фаза, но не запускается

Одна катушка однофазного двигателя

Одинарная катушка однофазного асинхронного двигателя создает не вращающееся магнитное поле, а пульсирующее поле, достигающее максимальной напряженности при электрическом напряжении 0 ° и 180 °.

Однофазный статор создает невращающееся пульсирующее магнитное поле

Другая точка зрения состоит в том, что одиночная катушка, возбуждаемая однофазным током, создает два вектора магнитного поля, вращающихся в противоположных направлениях, совпадающих дважды за оборот при 0 ° (рисунок выше-a) и 180 ° (рисунок e). Когда векторы поворачиваются на 90 ° и -90 °, они отменяются на рисунке c.

При 45 ° и -45 ° (рисунок b) они частично складываются по оси + x и сокращаются по оси y.Аналогичная ситуация существует на рисунке d. Сумма этих двух векторов — это вектор, неподвижный в пространстве, но чередующийся во времени. Таким образом, пусковой крутящий момент не создается.

Однако, если ротор вращается вперед со скоростью немного меньшей, чем синхронная скорость, он будет развивать максимальный крутящий момент при 10% скольжении относительно вектора прямого вращения. Меньший крутящий момент будет развиваться выше или ниже 10% скольжения.

Ротор будет испытывать скольжение на 200–10% относительно вектора магнитного поля, вращающегося в противоположных направлениях.Небольшой крутящий момент (см. Кривую зависимости крутящего момента от скольжения), за исключением двукратной пульсации частоты, создается вектором, вращающимся в противоположных направлениях. Таким образом, однофазная катушка будет развивать крутящий момент после запуска ротора.

Если ротор запускается в обратном направлении, он будет развивать такой же большой крутящий момент, поскольку он приближается к скорости вращающегося в обратном направлении вектора.

Однофазные асинхронные двигатели имеют медную или алюминиевую короткозамкнутую клетку, встроенную в цилиндр из стальных пластин, типичных для многофазных асинхронных двигателей.

Двигатель с постоянным разделением конденсаторов

Одним из способов решения проблемы с однофазным двигателем является создание двухфазного двигателя, получающего двухфазное питание от однофазного. Для этого требуется двигатель с двумя обмотками, разнесенными друг от друга на 90 ° , электрический, питаемый двумя фазами тока, смещенными во времени на 90 ° . Это называется конденсаторным двигателем с постоянным разделением.

Асинхронный двигатель с постоянным разделением конденсаторов

Этот тип двигателя подвержен увеличению величины тока и сдвигу во времени назад, когда двигатель набирает скорость, с пульсациями крутящего момента на полной скорости.Решение состоит в том, чтобы конденсатор (импеданс) оставался небольшим, чтобы минимизировать потери.

Потери меньше, чем у двигателя с экранированными полюсами. Эта конфигурация двигателя хорошо работает до 1/4 лошадиных сил (200 Вт), хотя обычно применяется к двигателям меньшего размера. Направление двигателя легко изменить, включив конденсатор последовательно с другой обмоткой. Этот тип двигателя может быть адаптирован для использования в качестве серводвигателя, описанного в другом месте в этой главе.

Однофазный асинхронный двигатель со встроенными катушками статора

Однофазные асинхронные двигатели могут иметь катушки, встроенные в статор двигателей большего размера.Тем не менее, меньшие размеры требуют меньшего количества сложностей для создания концентрированных обмоток с выступающими полюсами.

Асинхронный двигатель с конденсаторным пуском

На рисунке ниже конденсатор большего размера может использоваться для пуска однофазного асинхронного двигателя через вспомогательную обмотку, если он отключается центробежным переключателем, когда двигатель набирает обороты. Кроме того, во вспомогательной обмотке может быть намного больше витков из более тяжелого провода, чем в двигателе с разделенной фазой сопротивления, чтобы уменьшить чрезмерное повышение температуры.

В результате для тяжелых нагрузок, таких как компрессоры кондиционеров, доступен больший пусковой крутящий момент. Эта конфигурация двигателя работает настолько хорошо, что доступна в многомощных (несколько киловаттных) размерах.

Асинхронный двигатель с конденсаторным пуском

Асинхронный двигатель с конденсаторным двигателем

Вариант двигателя с конденсаторным запуском (рисунок ниже) заключается в запуске двигателя с относительно большим конденсатором для высокого пускового момента, но с оставлением конденсатора меньшей емкости на месте после запуска для улучшения рабочих характеристик, не потребляя чрезмерного тока.Дополнительная сложность конденсаторного двигателя оправдана для двигателей большего размера.

Асинхронный двигатель с конденсаторным двигателем

Пусковой конденсатор двигателя может быть неполярным электролитическим конденсатором с двойным анодом, который может представлять собой два последовательно соединенных поляризованных электролитических конденсатора + к + (или — к -). Такие электролитические конденсаторы переменного тока имеют такие высокие потери, что их можно использовать только в прерывистом режиме (1 секунда во включенном состоянии, 60 секунд в выключенном состоянии), например, при запуске двигателя.

Конденсатор для работы двигателя должен быть не электролитического типа, а из полимера с меньшими потерями.

Асинхронный двигатель с двухфазным электродвигателем с сопротивлением

Если во вспомогательной обмотке гораздо меньше витков, меньший провод размещен под углом 90 ° к главной обмотке, он может запустить однофазный асинхронный двигатель. При более низкой индуктивности и более высоком сопротивлении ток будет испытывать меньший фазовый сдвиг, чем основная обмотка.

Может быть получено около 30 ° разности фаз.Эта катушка создает средний пусковой крутящий момент, который отключается центробежным переключателем на 3/4 синхронной скорости. Эта простая (без конденсатора) конструкция хорошо подходит для двигателей мощностью до 1/3 лошадиных сил (250 Вт), управляющих легко запускаемыми нагрузками.

Асинхронный электродвигатель с разделенным фазным сопротивлением

Этот двигатель имеет больший пусковой крутящий момент, чем двигатель с экранированными полюсами (следующий раздел), но не такой большой, как двухфазный двигатель, построенный из тех же частей.Плотность тока во вспомогательной обмотке настолько высока во время пуска, что последующий быстрый рост температуры исключает частый перезапуск или медленные пусковые нагрузки.

Корректор коэффициента мощности Nola

Фрэнк Нола из НАСА предложил корректор коэффициента мощности для повышения эффективности асинхронных двигателей переменного тока в середине 1970-х годов. Он основан на предположении, что асинхронные двигатели неэффективны при нагрузке ниже полной. Эта неэффективность коррелирует с низким коэффициентом мощности.

Коэффициент мощности меньше единицы из-за тока намагничивания, необходимого для статора.Этот фиксированный ток составляет большую долю от общего тока двигателя по мере уменьшения нагрузки двигателя. При небольшой нагрузке полный ток намагничивания не требуется. Его можно уменьшить, уменьшив подаваемое напряжение, улучшив коэффициент мощности и эффективность.

Корректор коэффициента мощности определяет коэффициент мощности и снижает напряжение двигателя, тем самым восстанавливая более высокий коэффициент мощности и уменьшая потери.

Поскольку однофазные двигатели примерно в 2–4 раза менее эффективны, чем трехфазные двигатели, существует потенциальная экономия энергии для двигателей 1-φ.Для полностью загруженного двигателя экономии нет, так как требуется весь ток намагничивания статора.

Напряжение не может быть уменьшено. Но есть потенциальная экономия от менее чем полностью загруженного двигателя. Двигатель с номинальным напряжением 117 В переменного тока рассчитан на работу при напряжении от 127 В переменного тока до 104 В переменного тока. Это означает, что он не полностью загружен при работе при напряжении более 104 В переменного тока, например, при работе холодильника на 117 В переменного тока.

Контроллер коэффициента мощности может безопасно снизить сетевое напряжение до 104–110 В переменного тока.Чем выше начальное линейное напряжение, тем больше потенциальная экономия. Конечно, если энергокомпания подаст напряжение ближе к 110 В переменного тока, двигатель будет работать более эффективно без каких-либо дополнительных устройств.

Любой практически неработающий однофазный асинхронный двигатель с 25% FLC или менее является кандидатом на использование PFC. Однако он должен работать большое количество часов в год. И чем больше времени он простаивает, как на пилораме, штамповочном прессе или конвейере, тем выше вероятность оплаты контроллера через несколько лет эксплуатации.

За него должно быть втрое проще платить по сравнению с более эффективным 3-φ-двигателем. Стоимость PFC не может быть возмещена для двигателя, работающего всего несколько часов в день.

Резюме: Однофазные асинхронные двигатели

  • Однофазные асинхронные двигатели не могут запускаться самостоятельно без вспомогательной обмотки статора, приводимой в действие противофазным током около 90 ° . После запуска вспомогательная обмотка необязательна.
  • Вспомогательная обмотка электродвигателя с постоянным разделением конденсаторов имеет конденсатор, включенный последовательно с ней во время пуска и работы.
  • Асинхронный двигатель с конденсаторным запуском имеет только конденсатор, включенный последовательно со вспомогательной обмоткой во время запуска.
  • Конденсаторный двигатель обычно имеет большой неполяризованный электролитический конденсатор, включенный последовательно со вспомогательной обмоткой для запуска, а затем меньший неэлектролитический конденсатор во время работы.
  • Вспомогательная обмотка двигателя с разделенным фазным сопротивлением с сопротивлением во время пуска развивает разность фаз по сравнению с основной обмоткой из-за разницы в сопротивлении.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *