Схема нереверсивного магнитного пускателя: Схема нереверсивного магнитного пускателя — советы электрика

Содержание

Схема нереверсивного пуска двигателя магнитного пускателя

На чтение 14 мин. Обновлено

Схема нереверсивного магнитного пускателя

Как и обещал в предыдущей статье , привожу схему прямого пуска асинхронного двигателя посредством магнитного пускателя.

На схемах приведены 2 схемы управления. Схема выбирается в зависимости от номинально напряжения катушки, установленной в магнитном пускателе.

Порядок работы схемы

Для начала работы необходимо замкнуть контакты выключателя SA1 , в качестве которого обычно применяют автоматический выключатель.

Пуск. Для запуска необходимо нажать на кнопку SB2:1 «Пуск» , и ток начнёт протекать через катушку магнитного пускателя КМ1 , которая, притягивая якорь, замыкает силовые контакты КМ1:1..3 , а также вспомогательный контакт КМ1:4 . Ток от фаз А,В,С начинает протекать через замкнутые контакты SA1 , контакты КМ1:1. .3, нагревательные элементы теплового реле

КК1 к двигателю ММ1. Двигатель запущен.

Останов. Для этого необходимо нажать нормально замкнутую кнопку SB1:1 «Стоп» . Цепь питания обмотки пускателя КМ1 размыкается. Якорь под действием пружины возвращается в исходное состояние, размыкая силовые контакты КМ1:1..3 , тем самым разрывая цепь питания двигателя ММ1 .

Защиты от ненормальных режимов работы:

  1. От перегрузки. Выполнена с использованием теплого реле КК1 . При длительном протекании тока срабатывания(тока превышающего рабочий ток электродвигателя) происходит изгибание биметаллической пластины, которое приводит к размыканию контактов КК1 теплового реле, включенных последовательно с катушкой КМ1 в цепи управления. ( Подробное устройство и принцип работы теплового реле будет рассмотрен в следующей статье).
  2. Нулевая защита. При исчезновении напряжения питания или его значительном снижении, катушка магнитного пускателя КМ1 не в состоянии удерживать якорь. Якорь под действием пружины возвращается в исходной положение. Цепь питания двигателя
    ММ1
    размыкается, а также размыкаются вспомогательные контакты КМ1:4 , что предотвращает самопроизвольное включение электродвигателя после восстановления напряжения.
  3. Цепи управления. Выполнена с использование предохранителя(плавкой вставки) FU1 . Он является дополнительно защитой, в случае, если закоротит катушка КМ1 (произойдет межвитковое замыкание). Также, возможно использование вместо предохранителя однополюсного автоматического выключателя.

Ниже приведен пример исполнения данной схемы в серийном ящике управления асинхронным двигателем (Я5110-2877).

Источник

Подлючение магнитного пускателя с трехфазным двигателем : нереверсивная, реверсивная

Очень часто нужно подключить трехфазный двигатель , но как это сделать если сам не электрик?

В этой статье я и расскажу вам об этом.

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим.

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже).

Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать.

Источник

Нереверсивная схема подключения магнитного пускателя

Приветствую вас, уважаемые читатели сайта elektrik-sam.info!

В этой статье мы подробно рассмотрим нереверсивную схему подключения магнитного пускателя для управления трехфазным асинхронным электродвигателем.

Также я для Вас записал видео с подробным описанием работы схемы, которое Вы можете просмотреть в конце этой статьи.

Вначале давайте рассмотрим схему подключения магнитного пускателя с катушкой на 220В.

Три фазы питающего напряжения подаются на клеммы асинхронного двигателя через:

— силовые контакты магнитного пускателя КМ;

— тепловое реле Р.

Обмотка катушки магнитного пускателя подключена с одной стороны к нулевому рабочему проводу N, с другой, через кнопочный пост к одной из фаз, в нашей схеме — к фазе С.

Кнопочный пост содержит 2 кнопки:

1) нормально-разомкнутую кнопку ПУСК ;

2) нормально-замкнутую — СТОП .

Нормально-разомкнутый вспомогательный контакт пускателя КМ подключен параллельно кнопке ПУСК .

Для защиты электродвигателя от перегрузок используется тепловое реле Р, которое устанавливается в разрыв питающих фаз. Вспомогательный нормально-замкнутый контакт теплового реле Р включен в цепь обмотки магнитного пускателя.

Рассмотрим работу схемы.

Включаем трехполюсный автоматический выключатель , его контакты замыкаются, питающее напряжение подается к силовым контактам пускателя и в цепь управления. Схема готова к работе.

Запуск.

Для запуска двигателя нажимаем кнопку ПУСК . Цепь питания обмотки магнитного пускателя замыкается, якорь катушки притягивается, замыкая силовые контакты КМ и подавая три питающих фазы на обмотки двигателя. Происходит запуск и двигатель начинает вращаться.

Одновременно с этим замыкается вспомогательный контакт пускателя КМ, шунтируя кнопку ПУСК .

Теперь, отпуская кнопку ПУСК , питание на обмотку пускателя продолжает поступать через его замкнутый вспомогательный контакт КМ. Двигатель запущен и продолжает работать.

Останов.

Чтобы остановить двигатель, нажимаем кнопку СТОП . Цепь питания обмотки пускателя разрывается. Якорь под действием пружины возвращается в исходное состояние, размыкая силовые контакты, обесточивая тем самым обмотки электродвигателя. Он начинает останавливаться.

Одновременно с этим размыкается вспомогательный контакт

КМ в цепи питания обмотки пускателя.

После отпускания кнопки СТОП питание на обмотку не подается, поскольку вспомогательный контакт КМ разомкнут. Двигатель выключен и цепь готова к следующему запуску.

Защита от перегрузок.

Предположим, что двигатель запущен. Если по каким-то причинам ток нагрузки двигателя увеличится, биметаллические пластины теплового реле Р под действием повышенного тока начнут изгибаться, и приведут в действие механизм расцепителя. Он разомкнет вспомогательный контакт Р в цепи обмотки магнитного пускателя. Цепь обмотки пускателя разомкнется, силовые и вспомогательный контакты пускателя вернуться в исходное разомкнутое состояние, двигатель остановится.

Если катушка магнитного пускателя рассчитана на 380В, то схема подключения будет, как на рисунке ниже.

В этом случае, обмотка пускателя подключается к любым двум фазам, на схеме к фазам В и С.

Для дополнительной защиты цепи управления магнитным пускателем устанавливают предохранитель FU. В случае, например, межвиткового замыкания в катушке пускателя, плавкая вставка предохранителя перегорит, обесточив цепь управления.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео оказалось для Вас полезным, нажмите НРАВИТСЯ при просмотре на YouTube. Подписывайтесь на мой канал, и Вы первым узнаете о выходе новых интересных видео по электрике!

Рекомендую также прочитать:

Источник

Реверсивная и нереверсивная схема подключения пускателя

Магнитный пускатель – это коммутационный прибор, с помощью которого на расстоянии многократно можно включать и отключать потребителя (электродвигатели, электрические ТЭНы, электрокотлы и так далее). Перед тем как разбираться в теме статьи – схема подключения пускателя, необходимо понять принцип его работы.

В основном магнитные пускатели используются сегодня для управления двигателей асинхронного типа. С его помощью производится «пуск», «стоп» и реверс мотора. Но есть еще один момент, который не надо упускать из вида. Это возможность разгружать маломощные электрические сети, где установлены обычные автоматические выключатели (автоматы). Для того чтобы это понять, необходимо привести пример.

Если в распределительном щите установлен автомат номиналом 10 ампер, то его пропускная мощность рассчитывается по закону Ома: P=UI=220х10=2200 Вт или 2,2 кВт. По сути, такой автомат может выдержать освещение, в котором присутствует двадцать две лампочки по 100 ватт каждая. Чтобы увеличить мощность потребления электрической цепочки, к примеру, в два раза, не стоит разделять ее на участки, куда придется устанавливать несколько автоматических выключателей и делать монтаж отдельной электропроводки. Достаточно установить магнитный пускатель, к примеру, третьей величины.

У такого прибора контакты рассчитаны на 40 ампер. Отсюда и возможность выдерживать потребляемую мощность: 40х220=8800 Вт или 8,8 кВт. То есть, соединив последовательно 88 лампочек мощностью по 100 Вт, можно одним щелчком включать и отключать их одновременно.

В основе конструкции магнитного пускателя лежит электромагнитная катушка. Так вот в момент пуска (включения) прибор потребляет 200 ватт. В рабочем состоянии мощность не превышает 25 Вт. Даже если рассчитать силу тока в момент пуска, то на будет незначительных параметров: 200 Вт/220 В = 0,9 ампер. То есть, этой величины достаточно, чтобы прибор включил основную электрическую цепь. Получается так, что даже самый небольшой магнитный пускатель может легко управлять автоматом. При этом на контактах последнего всегда будет сниженный ток, что не приведет к их подгоранию. А, значит, автоматический выключатель будет отключать своими контактами достаточно большие мощности.

Внимание! Существует несколько видов магнитных пускателей, у которых катушка рассчитана на разное напряжение. Это 220 вольт, 380 и 36.

Тепловое реле в пускателе

Это обязательная составляющая часть пускателя, которая будет отключать сеть от перегрузов и от неполнофазного режима (когда отсутствует одна из трех фаз). Причины последнего – большое разнообразие.

  • От вибрации открутился соединительный винтик.
  • Подгорел контакт.
  • Перегорела вставка (плавкая) на фазе.
  • Некачественный неплотный контакт.

Обе причины создают увеличение силы тока, который проходит через тепловое реле. При этом в самом приборе начинают нагреваться биметаллические пластины, которые под действием тепла начинают выгибаться, размыкая контакт в самом реле. Последний отключает пускатель, а тот в свою очередь, к примеру, электродвигатель.

Схемы подключения

Итак, теперь переходим к основной теме статьи – схемы подключения пускателя. Их две:

Как подключить нереверсивную схему. Она является стандартной, когда подключаемый к сети электродвигатель будет вращаться в одну сторону.

На схеме четко видно, что запуск мотора производится кнопкой «Пуск», расположенной на магнитном пускателе КМ 1. Чтобы не удерживать данную кнопку, ее шунтируют с контактами аппарата. То есть, при нажатии кнопки «Пуск» она замыкает контакты пускателя, через которые ток будет подаваться на электромагнитную катушку прибора.

Отключение производится кнопкой «Стоп». На схеме пускателя она обозначена буквой «С». Эта кнопка просто размыкает контакты. При этом сердечник под действием пружин возвращается в нормальное состояние, электродвигатель отключается.

В принципе, точно также работает и тепловое реле, обозначенное на схеме подключения пускателя буквой «Р».

Реверсивная схема

По сути, данная схема в независимости от величины пускателя работает аналогично предыдущей. Конечно, она более сложная, потому что в нее добавляется еще одна кнопка – реверс, и еще один магнитный пускатель.

Сам по себе реверс – это переподключение двух фаз местами. Но тут необходимо соблюсти один момент – нужно, чтобы второй пускатель в это время не включался. То есть, необходима его блокировка. По схеме понятно, что если включатся два пускателя одновременно, то произойдет короткое замыкание.

Вот динамика работы схемы:

  • включается автомат QF;
  • нажимается кнопка «Пуск 1»;
  • напряжение подается на электродвигатель, который начинает работать.

При реверсе происходит следующее:

  • нажимается кнопка «Стоп 1», с помощью которой производится отключение электродвигателя от питания;
  • затем необходимо нажать на кнопку «Пуск 2», которая подает напряжение на КМ 2;
  • начинает работать двигатель только его вращение меняется на противоположное.

Обе рассмотренные схемы подключения относятся к трехфазным потребителям. Двухфазные системы по принципу работы ничем от них не отличаются. Правда, схема подключения здесь проще. Вот эта нереверсивная схема:

Технические характеристики

Не будем здесь рассматривать все параметры прибора, потому что выбор всегда делается по величине пускателя, которая характеризуется номинальным током нагрузки, действующей на контакты прибора. Существует семь величин пускателя, каждой из которых соответствует допустимая токовая нагрузка. На фотографии ниже обозначены эти самые величины, и в каких областях такие магнитные пускатели применяются.

Необходимо отметить, что небольшие погрешности в параметрах допустимы. Но в некоторых случаях надо учитывать, в каком диапазоне срабатывает тепловое реле. Если величины пускателей имеют завышенную нагрузку, а реле заниженный минимальный показатель теплового отключения, то может быть несоответствие заданной мощности электрической цепочки или потребителя.

Источник

Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

 

Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а - монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 - С1, Л2 - С2, Л3 - С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 - 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Схема нереверсивного магнитного пускателя | Электричество и Я

Как и обещал в предыдущей статье, привожу схему прямого пуска асинхронного двигателя посредством магнитного пускателя.

Схема нереверсивного магнитного пускателя (катушка на 380В)Схема нереверсивного магнитного пускателя (катушка на 380В)

На схемах приведены 2 схемы управления. Схема выбирается в зависимости от номинально напряжения катушки, установленной в магнитном пускателе.

Порядок работы схемы

Для начала работы необходимо замкнуть контакты выключателя SA1, в качестве которого обычно применяют автоматический выключатель.

Пуск. Для запуска необходимо нажать на кнопку SB2:1 "Пуск", и ток начнёт протекать через катушку магнитного пускателя КМ1, которая, притягивая якорь, замыкает силовые контакты КМ1:1. .3, а также вспомогательный контакт КМ1:4. Ток от фаз А,В,С начинает протекать через замкнутые контакты SA1, контакты КМ1:1..3, нагревательные элементы теплового реле КК1 к двигателю ММ1. Двигатель запущен.

Останов. Для этого необходимо нажать нормально замкнутую кнопку  SB1:1 "Стоп" . Цепь питания обмотки пускателя КМ1 размыкается. Якорь под действием пружины возвращается в исходное состояние, размыкая силовые контакты КМ1:1..3, тем самым разрывая цепь питания двигателя ММ1.

Защиты от ненормальных режимов работы:

  1. От перегрузки. Выполнена с использованием теплого реле КК1. При длительном протекании тока срабатывания(тока превышающего рабочий ток электродвигателя) происходит изгибание биметаллической пластины, которое приводит к размыканию контактов КК1 теплового реле, включенных последовательно с катушкой КМ1 в цепи управления. (Подробное устройство и принцип работы теплового реле будет рассмотрен в следующей статье).
  2. Нулевая защита. При исчезновении напряжения питания или его значительном снижении, катушка магнитного пускателя КМ1 не в состоянии удерживать якорь. Якорь под действием пружины возвращается в исходной положение. Цепь питания двигателя ММ1 размыкается, а также размыкаются вспомогательные контакты КМ1:4, что предотвращает самопроизвольное включение электродвигателя после восстановления напряжения.
  3. Цепи управления. Выполнена с использование предохранителя(плавкой вставки) FU1. Он является дополнительно защитой, в случае, если закоротит катушка КМ1 (произойдет межвитковое замыкание). Также, возможно использование вместо предохранителя однополюсного автоматического выключателя.

Ниже приведен пример исполнения данной схемы в серийном ящике управления асинхронным двигателем (Я5110-2877).

Ящик управления асинхронным трехфазным электродвигателемЯщик управления асинхронным трехфазным электродвигателем

В следующей статье будет рассказано о реверсивной схеме запуска трехфазного асинхронного электродвигателя.

Пускатель электромагнитный (магнитный пускатель)

Пускатель электромагнитный (магнитный пускатель) — это низковольтное электромагнитное (электромеханическое) комбинированное устройство распределения и управления, предназначенное для пуска и разгона электродвигателя до номинальной скорости, обеспечения его непрерывной работы, отключения питания и защиты электродвигателя и подключенных цепей от рабочих перегрузок. Пускатель представляет собой контактор, комплектованный дополнительным оборудованием: тепловым реле, дополнительной контактной группой или автоматом для пуска электродвигателя, плавкими предохранителями.

Категории применения пускателей

a) Контакторы переменного тока

  • АС-1 – активная или малоиндуктивная нагрузка;
  • АС-2 – пуск электродвигателей с фазным ротором, торможение противовключением;
  • АС-3 – пуск электродвигателей с короткозамкнутым ротором. Отключение вращающихся двигателей при номинальной нагрузке;
  • АС-4 – пуск электродвигателей с короткозамкнутым ротором. Отключение неподвижных или медленно вращающихся электродвигателей. Торможение противовключением.

б) Контакторы постоянного тока

  • ДС-1 – активная или малоиндуктивная нагрузка;
  • ДС-2 – пуск электродвигателей постоянного тока с параллельным возбуждением и их отключение при номинальной частоте вращения;
  • ДС-3 – пуск электродвигателей с параллельным возбуждением и их отключение при неподвижном состоянии или медленном вращении ротора;
  • ДС-4 – пуск электродвигателей с последовательным возбуждением и их отключение при номинальной частоте вращения;
  • ДС-5 - пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.

Схема подключения нереверсивного магнитного пускателя

На рис. 1 показана электрическая принципиальная схема включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором.

Рис 1. Схема включения нереверсивного магнитного пускателя
электрическая принципиальная

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт, что создаст параллельную цепь питания катушки магнитного пускателя. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис.2.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Полезные ссылки

Нереверсивный магнитный пускатель - Большая Энциклопедия Нефти и Газа, статья, страница 1

Нереверсивный магнитный пускатель

Cтраница 1

Нереверсивный магнитный пускатель состоит из трехполюсного контактора и теплового реле.  [1]

Нереверсивный магнитный пускатель состоит из трех полюсного контактора и теплового реле.  [2]

Нереверсивный магнитный пускатель ( рис. 50, а) представляет собой трехполюсный контактор переменного тока, снабженный в двух фазах тепловыми реле максимального тока. Все эти элементы встроены в общий металлический ящик пускателя.  [3]

Нереверсивный магнитный пускатель состоит из трехполюсного контактора и теплового реле.  [4]

Нереверсивный магнитный пускатель ( рис. 54, а) представляет собой трехполюсный контактор переменного тока, снабженный в двух фазах тепловыми реле максимального тока. Все эти элементы встроены в общий металлический ящик пускателя.  [6]

Нереверсивный магнитный пускатель показан на рис. 82, а. Включают и отключают магнитный пускатель дистанционно с помощью кнопок Стоп и Пуск. Одновременно с главными контактами в цепи управления включается блок-контакт Л, что позволяет отпустить кнопку П, оставляя пускатель во включенном положении. Два тепловых элемента реле РТ имеют в цепи управления нормально замкнутые контакты. РТ, цепь тока в катушке прерывается и происходит отключение главных контактов. Отключение также может быть выполнено от руки нажатием кнопки С, разрывающей цепь питания катушки.  [8]

Нереверсивный магнитный пускатель серии ПА состоит из трехполюсного контактора, тепловых реле и блок-контактов. В реверсивном магнитном пускателе в отличие от не-ревертивного имеются два трехполюсных контактора. В каждый пускатель ( нереверсивный и реверсивный) IV, V и VI величин встраивается по два тепловых реле типа ТРП левого и правого исполнений. В пускатели III величины встраивается по одному двухфазному реле типа ТРН. Реле типа ТРП выполнены с самовозвратом и ручным возвратом. Реле типа ТРН имеет только ручной возврат. Пускатели могут быть изготовлены без тепловых реле.  [10]

Нереверсивным магнитным пускателем ( рис. 6.10) управляют дистанционно с помощью двухкнопочного поста, а реверсивным - трехкнопочного.  [12]

Как устроен нереверсивный магнитный пускатель.  [13]

Типовая схема управления нереверсивным магнитным пускателем показана на рис. 3.3, а. В цепь удерживающей катушки контактора включены кнопки управления Вкл.  [14]

Страницы:      1    2    3    4

Нереверсивный магнитный пускатель — Студопедия

Основные сведения

Магнитный пускатель – это комплектный аппарат, предназначенный для дистанци-

онного управления электродвигателями и их защиты.

Магнитные пускатели классифицируют по таким признакам:

1. роду тока - переменного и постоянного тока;

2. возможности реверса - нереверсивные и реверсивные;

3. числу питающих сетей – одно- и двухсетевые.

Последние предусматривают автоматическое переключение на резервную сеть питания при обесточивании основной.

Нереверсивный магнитный пускатель

Конструктивно нереверсивный магнитный пускатель представляет собой металли-

ческую коробку, внутри которой располагаются следующие аппараты и устройства:

1. контактор;

2. два тепловых реле;

3. кнопочный пост управления с двумя кнопками «Пуск» и «Стоп».

Исполнение корпуса пускателя брызго- или водозащищённое ( соответственно IP23

или IP44 ).

Схема пускателя ( рис.129 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. защиту электродвигателя.

Поясним действие схемы управления электродвигателем в такой последовательно-

сти:

1. подготовка схемы к работе;


2. работа схемы.

3. действие защит.

Рис. 129. Принципиальная электрическая схема нереверсивного магнитного пускателя

Элементы схемы

На рис. 129 приняты такие обозначения:

в силовой части:

1. Л1, Л2, Л3 – линейные провода питающей сети;

2. КМ1…КМ3 – главные контакты линейного контактора КМ;

3. КК1, КК2 – нагревательные элементы тепловых реле;

4. М – обмотка статора асинхронного двигателя;

в схеме управления:

1. FU – предохранители, для защиты цепи катушки КМ от токов к.з.;

2. КК1, КК2 – размыкающие контакты тепловых реле;

3. КМ – катушка линейного контактора;

4. SB1 – кнопка «Пуск»;

5. SB2 – кнопка «Стоп»

Схема нереверсивного магнитного пускателя

Схема пускателя ( рис.128 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. защиту электродвигателя.

Поясним действие схемы управления электродвигателем в такой последовательно-

сти:

1. подготовка схемы к работе;

2. работа схемы.

3. действие защит.

Рис. 128. Принципиальная электрическая схема нереверсивного магнитного пускателя

Элементы схемы

На рис. 129 приняты такие обозначения:

в силовой части:

1. Л1, Л2, Л3 – линейные провода питающей сети;

2. КМ1…КМ3 – главные контакты линейного контактора КМ;

3. КК1, КК2 – нагревательные элементы тепловых реле;

4. М – обмотка статора асинхронного двигателя;

5. FU – предохранители, для защиты цепи катушки КМ от токов к.з.;

6. КК1, КК2 – размыкающие контакты тепловых реле;

7. КМ – катушка линейного контактора;

8. SB1 – кнопка «Пуск»;

9. SB2 – кнопка «Стоп»

Подготовка схемы к работе

Для подготовки схемы к работе подают питание на линейные провода Л1, Л2 и Л3.

После этого никакие электрические цепи не образуются. Схема готова к работе.

 

Работа схемы

Пуск

Для пуска нажимают кнопку SB1 «Пуск». При этом возникает цепь тока через ка-

тушку линейного контактора КМ:

линейный провод Л2 – верхний предохранитель FU – размыкающий контакт тепло-

вого реле КК2 – катушка КМ – размыкающие контакты кнопки SB2 – замыкающие контак

ты кнопки SB1 “Пуск” – размыкающий контакт теплового реле КК1 – нижний предохра-

нитель FU – линейный провол Л3.

Контактор включается, при этом:

1. замыкаются главные контакты КМ1...КМ3 в силовой части схемы, вследствие че

го двигатель включается в сеть;

3. замыкается вспомогательный контакт КМ4, после чего кнопку “Пуск” можно от

пустить.

После отпускания кнопки ток катушки контактора КМ будет протекать через вспо-

могательный контакт КМ4.

Таким образом, этот контакт предназначен для удержания контактора КМ во вклю-

ченном состоянии после отпускания кнопки “Пуск”.

Если по каким-либо причинам этот контакт не пропускает ток, то при нажатии кнопки “Пуск” двигатель включится, а после отпускания – отключится.

Остановка

Для остановки электродвигателя нажимают кнопку SB2 “Стоп”. Контакты этой

кнопки размыкаются, поэтому цепь тока через катушку КМ пропадает.

Контактор КМ отключается, при этом:

1. размыкаются главные контакты КМ1...КМ3 – двигатель отключается от сети;

2. размыкается вспомогательный контакт КМ4.

Если отпустить кнопку SB2 “Стоп”, ее контакт замкнется. Однако после этого кон-

тактор КМ не включится, т.к. разомкнуты контакт КМ4 и контакт кнопки SB1 Пуск».

Для повторного пусканадо нажатькнопку SB1 «Пуск».

 

Защиты

Схема предусматривает 2 вида защит:

1. от токов перегрузки при помощи тепловых реле КК1, КК2;

2. по снижению напряжения при помощи контактора КМ.

 

Под перегрузкой понимают увеличение тока обмотки статора двигателя выше номи

нального. Основная причина перегрузки двигателя состоит в перегрузке механизма.

Например, перегрузка грузовой лебёдки возникает при подъёме груза большего, чем предусмотрено грузоподъёмностью лебёдки.

Защита от токов перегрузки работает так.

При перегрузке тепловое реле КК1 ( или КК2 ) размыкает свой контакт в цепи ка-

тушки линейного контактора КМ.

Контактор КМ отключается, при этом:

1. размыкаются главные контакты КМ1...КМ3 – двигатель отключается от сети;

2. размыкается вспомогательный контакт КМ4.

Снижение напряженияприводит к уменьшению вращающего момента и скорости двигателя, вследствие чого увеличивается ток обмотки статора. При глубоких провалах напряжения ( до 60% и менее ) возможны более тяжелые последствия: остановка и стоян-

ка под током электроприводов насосов, вентиляторов и компрессоров, или, что ещё опас-

нее, реверс электродвигателей грузовых лебёдок или брашпилей.

Потому при снижении напряжения до недопустимих значений схемы управления

отключают двигатель от питающей сети.

Защита по снижению напряжения работает так.

При снижении напряжения до 60% и менее якорь контактора КМ отпадает под дей-

ствием пружины или собственного веса, поэтому его главные и вспомогательный контак-

ты размыкаются. Двигатель отключается от сети.

При восстановлении напряжения до 80% и более самопроизвольное включение кон

тактора КМ невозможно, потому что разомкнуты вспомогательный контакт КМ4 и контак

ты кнопки SB1“Пуск”.

Для повторного пусканадо нажать кнопку SB1 ( «Пуск» ).

Таким образом, рассмотренная защита по снижению напряжения исключает автома

тическое повторное включение двигателя после восстановления напряжения. Такая защи-

та называется нулевой.

 

Реверсивный магнитный пускатель

Основные сведения

Схема пускателя ( рис. 129 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. реверс;

2. защиту электродвигателя.

Поэтому он имеет два реверсивных контактора: КМ1 «Вперёд», КМ2 «Назад» и три

кнопки : SB1 «Вперёд», SB2 «Назад» и SB3 «Стоп».

Рис. 129. Принципиальная электрическая схема реверсивного магнитного пускателя

 

Работа схемы

Для пуска двигателя в направлении «Вперед» нажимают кнопку SB1, при этом включается контактор КМ1 «Вперёд». Далее схема работает так, как в предыдущей схеме.

Для реверса двигателя надо сначала нажать кнопку SB3 «Стоп», и дождавшись остановки электродвигателя, нажать кнопку SB2 «Назад». При этом меняются местами линейные провода А и С, поэтому двигатель реверсирует.

Защиты о токов перегрузки и по снижению напряжения работают так же, как в пре-

дыдущей схеме.

 

Блокировка одновременного включения реверсивных контакторов

Кроме защит, в схеме предусмотрен узел, исключающий одновременное включе-

ние реверсивных контакторов КМ1 и КМ2.

Такое включение приводит к двойному металлическому короткому замыканию в линии электропередачи.

Действительно, если предположить, что одновременно замкнуты контакты КМ1.1…КМ1.3 контактора КМ1 и КМ2.1…КМ2.3 контактора КМ2, то образуются две па-

раллельные цепи короткого замыкания:

а ) линейный провод А – контакт КМ1.1 – контакт КМ2.3 – линейный провод С;

б ) линейный провод А – контакт КМ2.1 – контакт КМ1.3 - линейный провод С.

При этом образуется цепь тока короткого замыкания, протекающего через линей

ные провода А и С и далее – через фазные обмотки А и С статора синхронного генератора.

При этом возможно повреждение линии электропередачи и обмотки статора генера

тора, а также сваривание контактов, попавших в цепь короткого замыкания, т. е. КМ1.1, КМ2.3 и КМ2.1 и КМ1.3.

Обмотка статора двигателя не повреждается, т.к. ток короткого замыкания протека

ет минуя ее.

Чтобы избежать одновременного включения реверсивных контакторов , в цепь ка-

тушки контактора КМ1 «Вперёд» включают размыкающие контакты КМ2:5 контактора КМ2 «Назад», и наоборот, в цепь катушки контактора КМ2 включают размыкающие контакты КМ1:5 контактора КМ1 «Вперед».

Теперь при включенном, например, контакторе «Вперед» случайное нажатие кноп

ки SB2 «Назад» не приведёт к включения контактора КМ2 «Назад», поскольку в цепи его катушки разомкнут вспомогательный контакт КМ1:5 контактора «Вперед».

Аналогично работает схема при включенном контакторе «Назад».

Описанная электрическая блокировка дополняется механической, при помощи ко-

ромысла, поворачивающегося на оси. Если один из контакторов включён, его якорь пере

мещается и поворачивает коромысло в положение, в котором якорь другого контактора заклинен.

 

Промышленные типы магнитных пускателей

Промышленность выпускает магнитные пускатели переменного тока серий ПМГ1000, ПМТ1000, ПММ и постоянного тока серий ПП1000…ПП5000.

На судах применяются магнитные пускатели серии ПММ, рассчитанные на переменный ток частотой 50 Гц, напряжением 380 В.

Втягивающие катушки пускателей рассчитаны на номинальные напряжения 127, 220 и 380 В переменного тока.

Режимы работы пускателей – продолжительный ( S1 ), кратковременный ( S2 ) и

повторно-кратковременный ( S3 ) с частотой включений до 600 в час при ПВ = 40%.

Условные обозначения типоисполнений пускателей ПММ */**/***/****/ расшифровываются так:

ПММ – пускатель магнитный морской;

*/ : 1 - первая величина, номинальный ток 25 А; 2 - вторая величина, номинальный ток 50 А; 3 – третья величина, номинальный ток 100 А; 4 - четвертая величина, номиналь

ный ток 150 А;

**/ : исполнение по роду защиты от воздействия окружающей среды: 0 – открытое;

1 – брызгозащищенное; 2 – водозащищенное;

***/: исполнение по направлению вращения электродвигателя: 1 – нереверсивный; 2 – реверсивный;

****/: исполнение по наличию в пускателе дополнительных элементов: 0 – без дополнительных элементов; 1 – с предохранителями; 2 – с кнопками управления; 3 – с кнопками управления и пакетным переключателем; 4 - с предохранителями и пакетным переключателем.

Пример.

Условное обозначение типоисполнения пускателя ПММ 2213 расшифровывается так:

ПММ 2213 – магнитный пускатель морской второй величины ( номинальный ток 50 А ), водозащищенный, нереверсивный, с кнопками управления и пакетным переключа-

телем.

 


Узнать еще:

Как подключить реверсивный магнитный пускатель: схема, описание

В каждой настройке, которая требует работы двигателя в прямом и обратном направлении, всегда присутствует магнитный пускатель реверсивной цепи. Подключение такого компонента не такая сложная задача, как кажется на первый взгляд. К тому же актуальность подобных проблем возникает довольно часто. Например, в сверлильных станках, фрезерных станках или элеваторах, если они не используются в быту.

Принципиальным отличием данной схемы от одиночной является наличие дополнительной схемы управления и немного измененной силовой части. Для осуществления такой коммутации установка снабжена кнопкой (SB3 на рисунке). Такая система обычно защищена от короткого замыкания. Для этого перед катушками в цепи питания предусмотрены два нормально замкнутых контакта (КМ1.2 и КМ2.2), выведенных из контакта консолей, размещенных в положении магнитных контакторов (КМ1 и КМ2).

Для того, чтобы схема была удобочитаемой, изображения цепи на ней и силовых контактов имеют разную цветовую схему.Для упрощения здесь не указывается пара силовых контактов, которые обычно представляют собой буквенно-цифровые сокращения. Впрочем, эти вопросы можно найти в статьях, посвященных подключению стандартных магнитных пусковых систем.

В случае автоматического выключателя QF1 одновременно все три фазы, примыкающие к силовым контактам контактора (KM1 и KM2), находятся в одинаковой ситуации. В этой первой фазе, которая представляет собой промывку цепи управления посредством автоматической защиты всех цепей управления SF1, и выключатель питания SB1 подает питание на контактную группу под третьим номером, который относится к кнопкам SB2, SB3. В этом случае
существующих контакторов (КМ1 и КМ2) к контакту под аббревиатурой 13БУ приобретает значение дежурного. Таким образом, система полностью готова к работе.

Отличная схема, на которой наглядно показан механизм крепления элементов, представленный на фото ниже.

С помощью кнопки SB2 подадим напряжение на катушку первой фазы, которая принадлежит магнитному пускателю КМ1. После этого происходит активация нормально разомкнутых контактов и отключение нормально замкнутых.Таким образом, замыкание контакта KM1 - это эффект приседания стартера. В этом случае все три фазы поступают на соответствующую обмотку двигателя, которая, в свою очередь, начинает создавать вращательное движение.

Созданная схема предполагает наличие только одного работающего стартера. Например, может работать только КМ1 или КМ2. На приведенной выше иллюстрации вы можете увидеть диаграмму, на которой двигатель работает в обычном направлении. В указанной цепочке есть реальные элементы.

Теперь, чтобы дать обратное направление, нужно изменить положение фаз питания, это удобно делать с помощью переключателя КМ2.

Важно !!! В процессе изменения вектора вращения должна выполняться функция остановки двигателя перед запуском нового цикла.

Все связано с открытием первой очереди. В этом случае все контакты возвращаются в исходное положение, обесточивая обмотки двигателя. Эта фаза - режим ожидания.

При нажатии кнопки SB3 включается магнитный контактор с аббревиатурой KM2, который, в свою очередь, изменяет положение второй и третьей фазы.Это действие заставляет двигатель вращаться в противоположном направлении. Сейчас является ведущим КМ2 и пока его открытый КМ1 задействован не будет.

На рисунке ниже четко показаны силовые цепи. В этом положении двигатель имеет нормальное вращение.

Теперь мы видим, что произошло переключения фаз по напряжению, и, поскольку вторая и третья разность фаз, двигатель приобрел обратное вращение.

На рисунках, где изображены реальные элементы, вы можете увидеть схему подключения, где первая фаза выделена белым цветом, вторая - красным, а третья - синим.

Как упоминалось ранее, перед выполнением процесса изменения движения ступени остановите вращение двигателя. Для этого в системе предусмотрены нормально замкнутые контакты. Потому что в их отсутствие невнимательность оператора рано или поздно привела бы к замыканию сопряжения, что произошло бы во второй и третьей фазе обмотки двигателя. Предлагаемая схема оптимальна, так как позволяет использовать только один магнитный пускатель.

Представленная информация на первый взгляд может показаться устрашающей.Однако представленные схемы и фотографии - хороший пример решения таких проблем. Их изучение гарантированно гарантирует успех созданной системы. Часто вначале примером является видеокурс.

Так как информация, представленная в движении, имеет гораздо большее содержание и структурное значение.

Также без вреда будет ознакомление с информацией, касающейся защиты всей цепи электродвигателя, которая позволит создавать надежные системы.

Связанные с контентом

Магнитные пускатели двигателей - базовое управление двигателем

Для управления трехфазными двигателями используются магнитные контакторы для размыкания и замыкания силовых контактов в соответствии с двигателем. Это позволяет отделить цепь управления от цепи питания , обеспечивая большую безопасность оператора, а также простоту и удобство монтажа проводки для установщика. Магнитные контакторы также обеспечивают защиту от низкого напряжения (LVP) в случае отключения электроэнергии.

Магнитные контакторы также должны иметь встроенную защиту от перегрузки, если они будут использоваться для управления двигателями. Наиболее распространенные контроллеры для трехфазных двигателей - это поперечный магнитный пускатель, что означает, что двигатель запускается с полным линейным напряжением.

Разница между контакторами NEMA и IEC заключается в их сертификации и номинальных характеристиках. NEMA (Национальная ассоциация производителей электрооборудования) признана в Северной Америке.

Пускатель двигателя NEMA

IEC (Международная электротехническая комиссия) признан как в Северной Америке, так и в Европе.

Пускатель двигателя IEC с реле перегрузки

Как правило, оборудование NEMA дороже и надежнее, чем оборудование IEC, но оборудование IEC более универсально. И поскольку оборудование IEC зачастую дешевле, оно чаще встречается в современных установках.

Магнитный пускатель двигателя состоит из двух основных частей: магнитного контактора и реле перегрузки .

Магнитный контактор представляет собой соленоидное реле, состоящее из неподвижных контактов, которые подключены в серии с линиями к двигателю, индукционной катушки, обернутой вокруг магнитопровода, и подвижного якоря , прикрепленного к подвижным контактам. Когда через катушку с проволокой проходит электрический ток, создается магнитное поле. Это поле, в свою очередь, притягивает к себе якорь, заставляя подвижные контакты перекрывать зазор между неподвижными контактами и таким образом запитывая двигатель. Пружина постоянно пытается размыкать контакты, но пока на катушке присутствует напряжение , магнитные силы будут преодолевать силу этой пружины.

Катушка контактора обесточена Катушка контактора под напряжением

Однако, когда происходит отключение электроэнергии, и ток через катушку падает ниже порогового значения, пружина размыкает контакты.Если питание будет восстановлено, нагрузка двигателя не будет повторно включаться, а вместо этого потребует дополнительных действий от оператора. Этот тип управления называется трехпроводным управлением и обеспечивает защиту от низкого напряжения (LVP).

Для управления трехфазными двигателями контакторы построены с тремя наборами контактов с номинальной мощностью л. с. . Также могут быть включены дополнительные вспомогательные контакты . Контакты реле обычно покрываются серебром для улучшения их проводимости, и хотя используются одинарные размыкающие контакты, в большинстве реле промышленного качества используются двойные размыкающие контакты для улучшения их отключающей способности.

Катушки

обычно предназначены для активации примерно при 85% от номинального напряжения и не деактивируются, пока напряжение не упадет ниже примерно 85% от номинального значения. Обычно катушка выдерживает перенапряжение до 10% без повреждения катушки.

Вопрос: Если магнитные катушки питаются от сети переменного тока, почему их контакты не размыкаются и не замыкаются 120 раз в секунду?

Ответ: Иногда бывает! Если магнитный контактор издает неестественный «дребезжащий» звук, это может быть вызвано ослабленной или неисправной затеняющей катушкой.Затеняющие катушки представляют собой простые замкнутые контуры из проводящего материала, которые при воздействии изменяющегося магнитного поля цепи переменного тока создают собственное магнитное поле с небольшой задержкой периода. Это обеспечивает постоянное магнитное притяжение между подвижным якорем и катушкой контактора. Если контактор «дребезжит», возможно, потребуется отремонтировать или заменить затеняющие катушки.

Реле перегрузки (OLR) по конструкции аналогично тому, что используется в ручных пускателях двигателей. Ключевое отличие состоит в том, что нормально замкнутые контакты и OLR соединены последовательно с током, протекающим через якорь катушки контактора.Это гарантирует, что если перегрузка произойдет в любой из трех линий питания, питающих двигатель, нормально замкнутые контакты OLR разомкнутся, и контактор, подающий питание на двигатель, отключится от цепи.

Основная утилита заключается в отделении цепи управления от цепи питания. Магнитные пускатели, например, могут позволить управлять трехфазным двигателем на 50 лошадиных сил и 600 В (силовая цепь), просто запитав нагрузку 120 В, 1 А.

Эта концепция пускателей двигателей как нагрузки, которая управляет другими более крупными нагрузками, является ключом к нашему дальнейшему пониманию основ управления двигателем.

Комбинированный стартер

Комбинированный пускатель относится к упрощенному модульному устройству, которое содержит трехфазные разъединители, максимальную токовую защиту , , магнитный контактор и реле перегрузки.

Как работает пускатель магнитного двигателя

Большинство людей не имеют технических знаний об электрических компонентах наших машин, особенно тех, которые не видны или работают внутри машины, как пускатели магнитных двигателей. Вы когда-нибудь задавали вопрос « как работает магнитный пускатель

Магнитный пускатель двигателя - это выключатель с электромагнитным управлением, который защищает ваш электродвигатель во время запуска.Он может выдерживать тяжелые нагрузки, такие как трехфазные большие двигатели и другое промышленное оборудование. Магнитные пускатели двигателей обеспечивают защиту от пониженного напряжения и перегрузки, а также автоматическое отключение в случае сбоя питания. Другой целью магнитного пускателя двигателя является защита двигателя, который не имеет защиты от тепловой перегрузки в самом двигателе. Магнитный пускатель двигателя представляет собой комбинацию контактора и реле перегрузки, которое откроет управляющее напряжение на катушку стартера, если обнаружит перегрузку от ваших двигателей во время использования.Тепловой тип использует устройство, установленное на реле перегрузки, называемое «нагревателем». Это биметаллический элемент, через который проходит каждая ножка мотора. Магнитный пускатель двигателя бывает разных номиналов в зависимости от силы тока полной нагрузки двигателя. Пока ваша машина работает, через нагреватель протекает ток. Если ток, потребляемый двигателем, превышает номинальный ток нагревателя, нагревательный элемент нагревается и вызывает «срабатывание» реле, которое прерывает цепь катушки контактора и обесточивает контактор.Вот два типа магнитных пускателей, которые поставляет Meiji:

  1. Полное напряжение (через линию) Магнитный пускатель

Магнитные пускатели двигателя обычно доступны как с полным напряжением (через линию) -line), пониженного напряжения и реверсивного . Полновольтный или линейный магнитный пускатель двигателя подает на двигатель полное напряжение, что означает, что он предназначен для правильного управления уровнями бросков тока, которые будут возникать при запуске двигателя.Пускатели пониженного напряжения предназначены для ограничения воздействия пускового тока при запуске двигателя. Они доступны в электромеханическом и электронном форматах.

  1. Реверсивный пускатель полного напряжения

Реверсивный пускатель предназначен для реверсирования вала трехфазного двигателя. Это достигается путем замены любых двухлинейных проводов, питающих нагрузку двигателя. Реверсивный магнитный пускатель двигателя включает в себя пускатель прямого и обратного хода как часть узла.Предусмотрены электрические и механические блокировки, чтобы гарантировать, что только прямой или обратный пускатель может быть включен в любой момент времени, но не одновременно. Магнитные пускатели двигателей обычно используются в деревообрабатывающем оборудовании, таком как столярные пилы или формовщики. Машины с меньшими нагрузками, такие как сверлильный станок или большинство ручных инструментов, обычно используют только переключатель. Магнитные пускатели являются стандартными компонентами для многих машин, и стартеры послепродажного обслуживания также доступны для использования в качестве замены или для модернизации старых машин.

«Национальная ассоциация противопожарной защиты (NFPA), торговая ассоциация США, заявляет, что для всего оборудования требуется магнитный пускатель для защиты от непреднамеренного перезапуска машины в случаях: восстановление напряжения ». - Стандарт 7.5.3 NFPA 79, Википедия.

Meiji Electric производит высококачественные пускатели магнитных двигателей LS. У вас есть возможность вложить пускатель двигателя в комплект или оставить его как есть.Meiji поставляет магнитные пускатели двигателей мощностью от 1/8 до 300 л.с. Полновольтные нереверсивные и реверсивные пускатели, магнитные пускатели с пониженным напряжением, в частности пускатели электродвигателей звезда-треугольник, мощностью от 7 1/2 л. с. до 215 л.с. для сетевого напряжения 220 и 440 также доступны с управляющими напряжениями в соответствии с потребностями клиентов.

Сделайте хороший старт для своих машин с Meiji Electric!

Разница между контакторами и пускателями двигателей (и пускателями пониженного напряжения)

Электродвигатели абсолютно необходимы для автоматизации бесчисленных приложений по всему миру.В большинстве случаев, , приводящий в движение электродвигатели - снабжение их электроэнергией - требует некоторой инженерной системы, которая также должна быть совместима с устройством обмотки электродвигателя. Поскольку эти системы питания двигателей часто используются или вместе с другими электрическими устройствами управления и связи, уже описанными в этом Руководстве по проектированию, мы рассмотрим их наиболее распространенные варианты. Дополнительную информацию о моторных приводах, выполняющих функции помимо пускателя двигателей, можно найти на этой странице motioncontroltips. ком статья.

Только самые простые и самые маленькие конструкции - обычно с однофазными двигателями мощностью 5 л.с. или меньше или трехфазными двигателями мощностью 15 л.с. или меньше - допускают прямое подключение к сети (также называемое через линию ). источник без риска перенапряжения двигателя и пониженного напряжения в сети. Трехфазные двигатели, приводимые в движение таким образом, могут иметь обмотки, соединенные простой звездой (также называемой звездой) или , треугольник ... а двигатели с двойным напряжением (удобно, поскольку они могут принимать входное напряжение 230 В или 460 В) имеют комплекты сдвоенных катушек, которые могут работать параллельно или (для более высокого напряжения) последовательно.

Этот автоматический выключатель Siemens SIRIUS 3RV2011-1HA10 типоразмера S00 является токоограничивающим выключателем для фидеров нагрузки до 3 кВт при трехфазном напряжении 400 В переменного тока. Защита от короткого замыкания 104 А и регулируемая защита от перегрузки от 5,5 до 8 А надежно защищают электродвигатели. Изображение любезно предоставлено Automation24 Inc.

Повсюду в других местах пуск двигателя через линию представляет слишком много проблем для самого двигателя, а также для систем, подключенных к двигателю, включая вредные электрические эффекты, а также чрезмерный износ компонентов механической передачи энергии.Цели проектирования, связанные с безопасностью, производительностью и точностью, обычно требуют использования более совершенных подходов к управлению автомобилем.

Пусковой ток является важным параметром при выборе правильного размера и сопряжения двигателей и пускателей двигателей. Пусковой ток от пускателя двигателя должен быть достаточным для обеспечения соответствия двигателя требованиям по крутящему моменту и ускорению, но не должен вызывать чрезмерного падения напряжения в линии электропитания.

Терминологическая основа: Разница между контакторами и пускателями двигателей

В предыдущем разделе этого Руководства по проектированию мы подробно описали, как контакторы и реле являются отдельными компонентами, несмотря на то, что время от времени в промышленности используются термины, предполагающие иное. Контакторы и пускатели двигателей также являются отдельными компонентами. Здесь термины используются взаимозаменяемо, потому что их ядро ​​является той же самой точной технологией - переключателем, способным работать с высокими напряжениями.

Этот пускатель двигателя с прямым включением представляет собой SIRIUS 3RM1001-1AA04 от Siemens с управляющим напряжением 24 В постоянного тока и регулируемым расцепителем перегрузки по току срабатывания от 0,1 до 0,5 А. Он обеспечивает твердотельную защиту двигателя и подходит для систем с малым током. двигатели мощностью до 0,12 кВт Стандартная ширина 22,5 мм занимает минимум места внутри шкафов управления.Изображение любезно предоставлено Automation24 Inc.

Разница в том, что пускатели двигателей имеют одну дополнительную систему или системы, которых нет в контакторах - реле перегрузки определенного типа для отключения входа напряжения , если это реле обнаруживает перегрузку двигателя или термически опасные условия из-за продолжительной работы перегрузка по току. Пускатели электродвигателей с самозащитой также включают защиту от короткого замыкания. Здесь снова ключевое значение имеет точное использование терминологии: вместо того, чтобы использовать короткое замыкание для обозначения какой-либо электрической неисправности, целесообразно использовать этот термин только при обсуждении внезапного сверхтока, возникающего из-за потока электроэнергии, который обнаружил какой-то непреднамеренный путь путешествовать.Защита от короткого замыкания действует мгновенно, отключая систему от источника питания.

Это пример силового контактора. Это Siemens SIRIUS 3RT2015-1BB41 для питания трехфазных двигателей и электрических систем отопления мощностью до 3 л.с. при 480 В переменного тока. В силовом контакторе используется управляющее напряжение 24 В постоянного тока, имеется замыкающий контакт и винтовые кабельные розетки.
Фактически, существует множество размеров и версий этого силового контактора для фидеров нагрузки с автоматическими выключателями, а также различных коммутационных устройств SIRIUS для безопасного и функционального переключения электрических нагрузок.
• Контакторы 3RT2 бывают типоразмеров от S00 до S3. Контакторы 3RT1 бывают типоразмеров от S6 до S12
• Силовые контакторы 3RT.0 и вакуумные контакторы 3RT12 предназначены для переключения моторизованных нагрузок.
• Четырехполюсные контакторы 3RT23 (и трехполюсные контакторы 3RT24 / 3RT14) переключают резистивные нагрузки
• Четырехполюсные 3RT25 контакторы предназначены для изменения полярности двигателей подъемных редукторов
• Реле контактора 3Rh3 переключаются в цепь управления
• Контакторы конденсаторные 3RT26 переключают емкостные нагрузки (AC-6b)
• Контакторы 3RT1 / 3RT2 / 3Rh3 имеют расширенный рабочий диапазон… 3RT10 / 3RT20 / Контакторы 3Rh31 предназначены для использования на рельсах… а реле сопряжения 3RT20 / 3Rh31 предназначены для системного взаимодействия с электронными контроллерами.
• 3RT1… -.Контакторы S.36 имеют входы отказоустойчивого управления для приложений, связанных с безопасностью.
Также доступны реверсивные контакторы в сборе, а также контакторы для пуска трехфазных двигателей с уменьшенными пиковыми значениями пускового тока (в виде комплектов контакторов для схем звезда-треугольник.

Еще одно различие между контакторами и пускателями двигателей связано с тем, как эти два компонента рассчитаны и указаны. Контакторы обычно классифицируются по их допустимому напряжению. Напротив, пускатели двигателей обычно оцениваются по их текущей допустимой нагрузке и мощности двигателей, для которых они предназначены. re совместимы ... даже при учете пускового тока при запуске без ложного отключения.Обычно это достигается за счет небольшой задержки срабатывания реле - многие двигатели (особенно двигатели меньшего размера) могут достичь полной рабочей скорости всего за несколько секунд.

На принципиальных схемах типовых вариантов контакторов, пускателей двигателя полного напряжения и устройств плавного пуска показаны их различия и сходства. Нажмите, чтобы увеличить.

Пуск двигателя на самом базовом уровне подразделяется на ручной или автоматический.

Ручной запуск включает переключатели включения-выключения, которые просто замыкают или размыкают входную цепь двигателя при активации персоналом завода. Некоторые версии, которые квалифицируются как настоящие пускатели двигателя (как указано выше), включают реле тепловой перегрузки для обесточивания двигателя в случае его перегрева.

Напротив, автоматический запуск двигателя иногда называют магнитным запуском для электромеханических контакторов, которые являются стержнем этой конструкции.

Как и в любой технологии электромеханических реле, они имеют неподвижные электромагнитные катушки, которые (по команде от кнопки, концевого выключателя, таймера, поплавкового выключателя или другого реле) объединяют две цепи.Эти схемы включают в себя входные силовые контакты и ответный носитель, который (будучи замкнутым вместе) пропускает ток в обмотки двигателя. Одним из вариантов этой конструкции является комбинированный пускатель, который включает в себя магнитное действие, а также некоторый способ отключения электроэнергии, когда это необходимо… либо с помощью предохранителя, прерывателя или переключателя цепи двигателя.

Пуск двигателя звезда-треугольник (один из типов системы пониженного броска) передает полное линейное напряжение на обмотки двигателя в звезду во время запуска, хотя напряжение на каждой обмотке двигателя уменьшается на величину, обратную величине квадратного корня из трех (57.7%), поэтому такое расположение иногда (довольно неточно) называют пуском при пониженном напряжении. Затем схема (обычно с контактором для каждой фазы, реле перегрузки, таймером и механической блокировкой) переключает вход двигателя для подачи полного линейного напряжения на его обмотки треугольником.

Пуск двигателя с частичной обмоткой - используется вместе со специальными двигателями с двойным напряжением, упомянутыми выше - подает линейное напряжение только на одну часть (половину или две трети) обмоток двигателя (обычно девять или двенадцать) после Начните.Затем, когда установленное время истекло или было обнаружено установленное напряжение, срабатывает реле или таймер и подает команду на добавление остальных обмоток и подачу питания. Ускорение может быть нерегулярным, но пусковое сопротивление двигателя с частичной обмоткой не влияет на пусковой момент… и позволяет запускать с низким крутящим моментом, что полезно для насосов, вентиляторов и нагнетателей. Как и пуск по схеме звезда-треугольник, пуск с частичной обмоткой представляет собой тип системы с уменьшенным пусковым током и обеспечивает пониженное полное линейное напряжение при запуске двигателя, но технически не квалифицируется как пуск с пониженным напряжением.

Реверсивный пуск при полном напряжении определяет, как асинхронные двигатели изменяют направление вращения при изменении направления вращения любых двух силовых проводов. Системы реверсивного пуска просто включают в себя пару зеркальных контакторов, дополненных блокирующими подкомпонентами, которые позволяют работать в условиях прямого и обратного хода. Более быстрое изменение направления вращения может быть выполнено с помощью вставки , которая является временным источником питания обеих цепей.

Больше управляемости: Пускатели электродвигателей пониженного напряжения

Помимо линейки опций пуска двигателя при полном напряжении, есть пускатели пониженного напряжения.Там, где оси станка требуют плавного разгона без сотрясений до полной скорости (для защиты присоединенного оборудования станка или некоторой присоединенной нагрузки), необходимы пускатели двигателей с пониженным напряжением. Фактически, они также полезны в настройках, регулируемых местными энергосистемами, которые ограничивают колебания напряжения и скачки тока на источниках питания во время запуска двигателя.

Пускатели двигателей с пониженным напряжением включают четыре общих подтипа.

Первичный резистор пускателя двигателя

Пускатели двигателя с первичным резистором - это экономичный вариант, в котором используются резисторы и некоторое количество контакторов, причем последнее определяет количество ступеней пускового напряжения. Эти шаги могут быть несколько резкими из-за низкой индуктивности схемы. Хотя резисторы могут быть громоздкими и снижать эффективность, этот тип стартера обеспечивает надежный пусковой момент двигателя.

Пускатели электродвигателей первичного реактора

Пускатели электродвигателей с первичным реактором чаще всего используются в больших высоковольтных электродвигателях. В них используется реактор (индуктор) в цепи, как в пускателе двигателя с первичным резистором. Возможны относительно длительные плавные ускорения (даже до дюжины секунд или более), хотя дополнительная индуктивность системы может снизить общую эффективность, а низкий коэффициент мощности ухудшает составляющие тока, генерирующие крутящий момент, и магнитный поток двигателя.

Пускатели автотрансформаторные

Пускатели электродвигателей с первичным реактором относительно дороги, но полезны там, где требуется регулируемый пусковой момент. В пускателях двигателей с автотрансформатором используется однообмоточный электрический трансформатор, который является пассивным электрическим устройством для передачи электроэнергии от одной цепи к другой. Более конкретно, пускатели автотрансформатора используют три электрических контактора на автотрансформаторе, имеющем выбираемые ответвления.Это обеспечивает ступенчатый запуск напряжения для длительного плавного ускорения при запуске - даже до нескольких десятков секунд. Пусковое напряжение может составлять от 50% до 80% линейного напряжения для высоких пусковых моментов в приложениях, где это (а не эффективность) является основной целью проектирования.

Устройства плавного пуска

Устройства плавного пуска , использующие твердотельную полупроводниковую технологию, обладают наибольшей управляемостью из всех вариантов пускателя двигателя. Они также наиболее бережно относятся к внутренним компонентам двигателей и присоединенным механизмам передачи энергии. По своей сути устройства плавного пуска состоят из различных тиристоров или тиристоров… так, например, в некоторых конструкциях есть по паре тиристоров на каждой из трех линий двигателя. Ознакомьтесь с разделом настоящего Руководства по проектированию, посвященным твердотельным реле, чтобы узнать основы этой технологии. Эти переключающие устройства работают для управления подачей электроэнергии на обмотки двигателя (как показано на схеме устройства плавного пуска, показывающей углы зажигания), при этом задействуя низкое напряжение двигателя, а также ток и крутящий момент при первоначальном запуске.Затем они постепенно повышают напряжение и крутящий момент в соответствии с установленной программой.

Программирование устройства плавного пуска двигателя определяет точные параметры увеличения заданного напряжения. Рассмотрим работу типичного устройства плавного пуска на основе SCR: здесь проводящий (закрытый) SCR имеет подвижную точку затвора… и обратная регулировка этого значения скорости (называемого временем линейного изменения) вызывает увеличение накопления напряжения перед включением SCR. Затем, когда обмотки двигателя достигают полного напряжения, SCR отключается.

Одно предостережение: Из-за чрезмерного времени разгона ток может превысить пределы безопасности двигателя или вызвать защитное отключение по ограничению тока.

Помимо уже упомянутых преимуществ, устройства плавного пуска обеспечивают защиту двигателя (даже во время дисбаланса фаз во время отключения электроэнергии), а также возможность плавного останова. Последнее полезно, когда двигатели приводят в движение такие конструкции, как конвейеры, которые имеют инерцию, способную смещаться или ломаться во время транспортировки.

Конечно, частотно-регулируемые приводы (VFD) - еще один вариант для функции плавного пуска. Они обеспечивают те же функции управляемого пуска и останова, что и устройство плавного пуска, хотя и другим способом - путем изменения частоты входного напряжения двигателя, а не величины напряжения. Другие преимущества частотно-регулируемого привода перед устройствами плавного пуска включают возможность управления скоростью двигателя во всем рабочем диапазоне. Частотно-регулируемые приводы также могут обеспечивать мощность для удерживающего момента (полный крутящий момент при нулевой скорости), который является ключевым в приложениях с моторным приводом, таких как краны и лифты.

Однако для некоторых конструкций ЧРП слишком дороги и сложны. Пускатели двигателей с пониженным напряжением, как правило, более подходят, чем частотно-регулируемые приводы, для которых нет выигрыша в эффективности от работы подключенного двигателя ниже его максимальной скорости.

Магнитные пускатели и контакторы: Электромагнитные пускатели с реле тепловой перегрузки 2E: 200C

Перейти к основному содержанию

Характеристики и характеристики

Рама 200C 250C 300C 400C 600C
ТИП Пускатель электромагнитный Без корпуса нереверсивный х300С-
ТК
H350C-
ТК
H400C-
TK
h500C-
ТК
H600C-
TK
Реверсивный h300C-
RTK
h350C-
RTK
h400C-
RTK
h500C-
RTK
H600C-
RTK
С корпусом нереверсивный Ш300С-ТК Ш350С-ТК Ш400С-ТК Ш500С-ТК SH600C-TK
Реверсивный Ш300С-РТК Ш350С-РТК Ш400С-РТК Ш500С-РТК SH600C-RTK
Реле тепловой перегрузки TR250B-2E TR400B-2E TR600B-2E
Номинальное напряжение изоляции AC660V
Макс. номинальная мощность двигателя JIS и JEM Расчетный рабочий ток (A)
AC3
200-220 В 180 240 300 400 600
380–440 В 180 240 300 400 600
500-550 В 145 145 250 350 500
Трехфазный двигатель (кВт)
AC3 и AC2
200-220 В 45 60 75 110 150
380-440 В 90 120 150 200 300
500-550 В 90 90 160 200 300
МЭК Расчетный рабочий ток (A)
AC3
220-240 В 182 240 300 400 600
380–440 В 180 240 300 400 600
500-550 В 145 145 250 350 500
Трехфазный двигатель (кВт)
AC3
220-240 В 55 75 90 115 160
380-440 В 90 120 150 200 300
500-550 В 90 90 160 200 300
Характеристики
рабочего змеевика
Нагрузка на катушку (макс. ) (V.A) Пикап 480/480 1600/1600 1800/1800
100 В: около 1/4
Фиксатор 9/9 10/10 14/14
Расход катушки (средний) (Вт) 8 8 13
Напряжение срабатывания (% от номинального напряжения) 70 70 70
Падение напряжения (% от номинального напряжения) 45 35 35
Время срабатывания (мс) 200 В, 50 Гц
(справочное значение)
Пикап 30-50 35-60 40-70
Выпадение 20-45 20-45 20-50
Вспомогательный контакт Тип контактов Двойной контакт
Номера Стандартный 2НО2НЗ 3НО 3НЗ 4НО 4НЗ
Максимум 4НО4НК (3НО3НК. .. двусторонний)
Блок механической блокировки
Срок службы (миллион раз) Механический 5
Электрооборудование 1 0,5
Доступный диапазон напряжения рабочей катушки (В) 100-440

Примечания

* 1
Мощность вспомогательного контакта
Номинальный рабочий ток Номинальный тепловой ток Минимальный номинальный
переменного тока (AC15) DC левый / правый <40 мин
200 - 220 В 380–440 В 500 -550 В 48 В 110 В
2A 1A 0. 75A 0,7А 0,3A 10A 24 В
10 мА
* 2
Номинальные значения максимальной номинальной мощности двигателя указаны в скобках в комплекте с корпусом.
* 3
Напряжение срабатывания и отпускания применимо к источнику питания 200 В, 60 Гц. В случае 50 Гц значения для кадра 8C-125C примерно на 10% меньше, а для кадра 150C-600C значения примерно такие же.

Примечание

* 1
Применение категорий AC3 и AC2 к реверсивным электромагнитным пускателям должно быть ограничено обычным реверсивным режимом работы, при котором двигатель начинает обратное вращение после того, как он однажды остановился.Категория AC4 применима, когда двигатель начинает обратное вращение до полной остановки. И контакторы, используемые для реверсивной работы, должны быть электрически заблокированы с помощью взаимных вспомогательных контактов NC.
* 2
Поскольку время работы зависит от напряжения катушки, частоты или фазы и т. Д., Пускатели не должны использоваться для измерения времени.
* 3
*: Тепловое реле перегрузки 220 - 240 В, 7,5 кВт - TR50B-2E.

Control Engineering | Запуск и защита двигателя приближаются к процессу

Фрэнк Дж.Бартос, КОНТРОЛЬНАЯ ИНЖИНИРИНГ 1 мая 1998 г.

Ваши промышленные электродвигатели в надежных руках. Устройства и системы пускателя двигателя обеспечивают все функции, необходимые для безопасного пуска и останова. Они защищают от перегрузки по току, пониженного напряжения, перенапряжения, короткого замыкания, потери фазы, замыкания на землю и т. Д. Новые продукты, особенно на базе микропроцессоров, добавляют дополнительную защиту двигателя, диагностику и возможность связи с контролируемым процессом. Теперь защита принимает более широкое значение, включая как защитные устройства, так и двигатели.Что самое интересное, двигатель начинает рассматриваться как основной «датчик» связанных процессов.

Последние тенденции

Помимо коммуникационных возможностей, к новым тенденциям относятся твердотельные реле перегрузки и высокомодульные системы из множества устройств.

Реле перегрузки является основным элементом системы (см. Схему). В электромеханическом типе ток протекает через нагревательный элемент и во время перегрузки плавит эвтектический сплав, размыкая нормально замкнутый контакт.Это отключает цепь катушки стартера, снимая ток с двигателя. В аналогичных устройствах используются биметаллические полоски, которые изгибаются под действием тепла для размыкания контакта. Более новые твердотельные реле также размыкают контакт при перегрузке, но делают это путем непосредственного контроля тока двигателя. ASIC активирует поездку. Твердотельные перегрузки повышают точность и увеличивают количество защитных функций.

Последние представленные продукты включают две основные модульные системы. Линия Siemens Sirius 3R берет за основу идею «стыковки» конструкций космических станций, чтобы усовершенствовать искусство соединения модульных элементов.Модульная система управления Rockwell Automation / Allen Bradley продвигает идею децентрализованного управления двигателями (подробности см. На боковой панели).

Среди тенденций, отмеченных в Cutler-Hammer / Eaton (Милуоки, Висконсин), - пускатели двигателей на основе микропроцессорного блока (MPU). Эти новые устройства обеспечивают возможность программирования и дополнительные функции для защиты и диагностики двигателя. Технология на основе MPU позволяет принимать реальные решения по защите двигателя. «Без MPU для простого пускателя двигателя потребовались бы отдельные системы удаленного ввода / вывода, а также датчики тока и реле отключения.Теперь, с появлением «микро» в устройстве, все эти отдельные устройства становятся ненужными », - говорит Ли Смит, менеджер по продукции NEMA Contactors and Starters.

Чарльз Кейн, менеджер по продукции IEC Contactors and Starters, указывает на важное различие между двумя основными состояниями отказа двигателя: перегрузка и короткое замыкание . Последнее более серьезно. Например, небезопасно перезапускать двигатель до полной проверки и устранения короткого замыкания. Напротив, перегрузка часто бывает временной; двигатель можно перезапустить после того, как нагрузка вернется в норму.«В усовершенствованном пускателе двигателя MPU может определить, какое событие произошло и в каком порядке», - объясняет г-н Кейн.

Возможность общения с «умными» устройствами - горячая тема. Все производители пускателей двигателей преследуют эту причину. В Cutler-Hammer DeviceNet и Profibus DP подключены к сети, и другие сети не за горами. Цель состоит в том, чтобы получить жизненно важную информацию о состоянии двигателя (или процесса) и сделать это быстро. Токи двигателя, причина отключения, время работы двигателя,% термической стойкости и т. Д., могут быть отправлены непосредственно на ПЛК и / или промышленный ПК. «Ключевым моментом является использование пускателей двигателей и приводов, которые включают MPU и коммуникационные возможности», - говорит г-н Смит.

Некоторые общие тенденции, отмеченные в C-H, включают:

  • Размытие стандартов проектирования IEC / NEMA для устройств запуска и защиты двигателей;

  • Устройства меньшего размера и упрощенная проводка за счет интеграции функций автоматического выключателя, контактора и реле перегрузки; и

  • Предпочтение отдается управляющему питанию 24 В постоянного тока из-за более низкой стоимости точек ввода / вывода, упрощенной проводки и соображений безопасности.

Размер контрольного оборудования неуклонно сокращается благодаря развитию электроники. Хотя чаще всего это связано с миниатюрными устройствами, такими как «микроприводы», экономия затрат и места также дает преимущества для корпусных шкафов управления, которые занимают значительную площадь.

Новинка от Cutler-Hammer - это DeviceNet MCC, который считается первым в отрасли центром управления двигателями, совместимым с DeviceNet (фото). В DeviceNet один магистральный кабель и один ответвительный кабель для каждой вертикальной секции центра управления двигателями помогают уменьшить размер шкафа.Промышленный ПК или ПЛК в MCC действует как логическая машина. Единое соединение снижает затраты на проводку, установку и устранение неисправностей. Это также упрощает добавление дополнительных устройств. Дэвид Адамс, генеральный директор, называет DeviceNet MCC «следующим естественным шагом» для Cutler-Hammer.

Твердотельные двигатели в авангарде

Square D Co. (Роли, Северная Каролина), часть Groupe Schneider, видит широкую роль в твердотельных реле перегрузки. Это часть сегодняшней беспрецедентной потребности в информации как в конкурентном инструменте - для гибкого производства за счет упрощения задач обслуживания.Твердотельные устройства предоставляют данные о конкретном состоянии двигателя и уменьшают размер электрического оборудования. Тони Лещински, менеджер по продукции NEMA Contactors and Starters, заявляет: «Твердотельные датчики перегрузки могут сократить затраты и место, необходимые для многих трансформаторов тока и специальных реле, которые обычно необходимы для получения информации, критически важной для обслуживания и эксплуатации удаленных двигателей. ”

Трансформаторы тока и простая схема защиты от полупроводниковой защиты также устраняют необходимость в дополнительных реле потери фазы / фазового дисбаланса.

Производители оригинального оборудования (OEM) отдают предпочтение полупроводниковым перегрузкам для контроля состояния двигателей, установленных на их оборудовании. «Большинство OEM-производителей делают это через модемную связь, в то время как другие начали исследовать использование Интернета», - комментирует г-н Лещински.

По его опыту, пользователи предпочитают твердотельные реле перегрузки, поскольку они устраняют необходимость в тепловых нагревателях и предлагают регулировку тока в широком диапазоне. Меньшее количество размеров ограничивает инвентарь и упрощает выбор.

Г-н Лещинский приводит примеры продуктов для иллюстрации типичных применений. Линия Motor Logic компании Square D Co. включает недорогой полупроводниковый аналоговый модуль перегрузки с измерительным выходом 4–20 мА. Уровень отклика и точности этого вспомогательного модуля подходит для простого определения тенденций и сигналов тревоги; Например, обрыв ремня вентилятора, блокировка рабочего колеса насоса, заклинивание ротора или потеря срезного штифта конвейера.

Битовый сетевой модуль Seriplex является новейшим аксессуаром. Два его сигнала - индикация причины отключения и предупреждение о пороговом значении трехфазного среднего тока - при совместном использовании помогают операторам быстро находить условия, которые привели к отключению по перегрузке. Операторы также могут получить заблаговременное предупреждение о мешающей перегрузке, чтобы подготовиться к корректирующим действиям.

Коммуникационный модуль, входящий в состав Motor Logic, помогает устранять неисправности. Технического специалиста можно указать, где искать: перед реле перегрузки на предмет неисправностей в линии; ниже по потоку для проверки на перегрузку; или оценить, произошло ли существенное изменение в исправности подшипников или обмоток двигателя.

Модули, которые связываются

Относительный новичок в области пускателей двигателей, Phoenix Contact (Бломберг, Германия; Гаррисбург, Пенсильвания.) стремится использовать в этой области свой опыт взаимодействия на уровне устройств. Пускатели двигателей Interbus обеспечивают эффективное децентрализованное управление трехфазными асинхронными двигателями переменного тока мощностью до 2,2 кВт. В серии Interbus IBS IP 500 ELR все функции управления и защиты двигателя - контроль тока, расширенные функции диагностики и т. Д. - объединены в один модуль. Некоторые модели служат определенным начальным целям.

Каждый модуль IBS IP 500 ELR имеет полупроводниковые контакторы, тепловую защиту от перегрузки, управление тормозом двигателя и обменивается данными через Interbus Remote или удаленную шину установки.Эта серия также обеспечивает высокую степень защиты от проникновения (IP54 и IP65). «Это уменьшает или устраняет необходимость в шкафах и корпусах управления двигателями», - говорит Джеймс Гибсон, специалист по продукции Interbus Hardware в Phoenix Contact. «Пускатели двигателей позволяют подключать шины питания до 20 ампер для общего распределения». К розетке на удаленном интерфейсе модулей Interbus подключается портативный блок управления, который служит для управления двигателями без шины.

Мониторинг тока двигателя обнаруживает отложенный сбой в приложении.Например, изменение тока двигателя из-за увеличения трения можно быстро оценить, что позволяет проводить целенаправленное обслуживание до возникновения неисправности. «Эти компактные пускатели двигателей - уникальные и экономичные устройства для использования непосредственно на технологической линии», - добавляет г-н Гибсон.

Защита типа 2

Klöckner-Moeller Corp. (Бонн, Германия; Франклин, Массачусетс) упоминает о развитии координации «Тип 2» для пускателей двигателей. Это более строгий из двух уровней защиты, определенных для пускателей стандартом IEC 947-4-1.Координация типа 2 указывает, что пускатель должен срабатывать после короткого замыкания. Допускается только минимальное повреждение контактора (небольшая сварка, легко разбирается) и реле перегрузки. (При согласовании типа 1 стартер не может использоваться без ремонта или замены деталей.)

«Многие инженеры-консультанты начинают определять координацию типа 2 для центров управления двигателями и пускателей», - говорит Джон Ф. Дода, национальный менеджер по маркетингу компании Klöckner-Moeller. «До сих пор обеспечение истинной координации типа 2 означало, что нужно было использовать предохранители в качестве устройства защиты от короткого замыкания.

Предохранители

обеспечивают безопасность, но добавляют сложности за счет выбора большого количества типов и размеров. Например, для защиты типа 2 может потребоваться предохранитель с номиналом, близким к номинальному току двигателя (ток полной нагрузки). Это может привести к частым ошибочным отключениям двигателей с высоким КПД.

Обширная программа испытаний, только что завершенная Klöckner-Moeller, теперь удостоверяет согласование типа 2 с использованием автоматических выключателей, что, по словам г-на Дода, устраняет необходимость в предохранителях. Отличие состоит в том, что отдельные неинтегрированные пусковые элементы (автоматический выключатель, контактор и защита от перегрузки) могут быть объединены для обеспечения безопасности и возможного снижения затрат.«Это позволяет многим нашим клиентам, которые используют автоматические выключатели для защиты от короткого замыкания, оставаться с этими устройствами и иметь сертифицированную координацию типа 2», - добавляет он.

Новинка от Klöckner-Moeller - система MPS (Motor Protective Switch) - небольшое ручное устройство низкого уровня для простых применений (до 11 кВт при 460 В или 25 А). MPS предлагает тепловую защиту и защиту от короткого замыкания; это групповой двигатель, безопасный для пальцев и предназначен для замены предохранителей.

Cutler-Hammer также отмечает неудобства при замене предохранителей.Он видит отраслевую тенденцию к сбрасываемой защите от короткого замыкания.

Быстрая замена реальности

Компания

GE Electrical Distribution & Control (GE ED&C, Плейнвилл, Коннектикут) считает, что необходимо что-то дополнительное, чтобы удовлетворить последний спрос отрасли на очень быструю поставку устройств для замены пусковых и защитных устройств. Предыдущие попытки решить эту проблему заключались в сокращении производственных циклов или создании сети дистрибьюторов с возможностью сборки. «Слабость использования таких методов заключается в том, что производство, планирование и отгрузка продукта по-прежнему занимают в лучшем случае от 24 до 48 часов», - говорит Марсело Вальдес, менеджер по продукту Control Components. Эти подходы дополнительно требуют квалифицированного персонала и значительных инвестиций в инвентарь, расположенный рядом с пользователем.

GE ED&C ответила на этот вызов - семейство модулей, разработанных для сборки персоналом дистрибьютора в закрытые пускатели двигателей различных размеров и типов (фото на следующей странице). Сборка занимает «считанные минуты», - говорит GE ED&C. Это семейство, названное Fastrac Now, не требует двухточечной проводки или знания схем управления. «То, что раньше занимало несколько дней, теперь можно сделать на месте с помощью пускателей двигателей Fastrac Now.Сборка осуществляется без специальных инструментов и специальных знаний », - говорит г-н Вальдес.

Твердотельные пускатели также хорошо известны в GE ED&C. Они часто используются вместе с контакторами, которые замыкаются, когда двигатель набирает обороты, и шунтируют ток вокруг твердотельных элементов. Зачем использовать такую ​​комбинацию? Поскольку стартеру не нужно работать постоянно, он остается холоднее, а его твердотельные элементы питания служат дольше.

ASTAT IBP - новинка от GE ED&C - предлагает лучшее из обоих миров: пускатель, оптимизированный для запуска двигателя, и контактор, оптимизированный для его запуска.Согласно GE ED&C, новое устройство обеспечивает большую часть возможностей оригинальной комбинации пускатель / байпасный контактор, но в меньшем, более холодном и недорогом корпусе. А поскольку выпрямители с кремниевым управлением работают только временно, вентилятор радиатора SCR не требуется.

Угроза от микроприводов?

Ни одна часть технологии не остается статичной. Микроприводы переменного тока с их снижающейся стоимостью и привлекательными характеристиками начинают быть конкурентоспособными в качестве замены пускателей двигателей в определенных областях применения.Реверсивные и двухскоростные стартеры наиболее чувствительны к цене. А более новые микроприводы предлагают корпуса, типичные для стартеров ( CE , февраль '98, стр. 95-103). Представят ли «микро» серьезную угрозу? Не для всех применений пускателей двигателей. В целом, пока рано говорить.

Основные производители выбирают более модульные блоки управления двигателями

Выбор пользователей для пуска и защиты двигателей расширился благодаря недавнему представлению продукции IEC компанией Rockwell Automation / Allen-Bradley (Милуоки, Висконсин.) и Siemens (Эрланген, Германия; Альфаретта, Джорджия).

Компания Siemens называет свои «низковольтные коммутационные устройства нового поколения» семейством Sirius 3R. С большой помпой представленный на Ганноверской ярмарке '97 по мотивам космической эры, Сириус вызывает образы «самой яркой звезды на небесах» (также известной как Собачья звезда). Его официальный дебют в Северной Америке состоялся на Национальной выставке промышленной автоматизации (Чикаго) в марте 1998 года.

Sirius - это полная модульная система устройств защиты пускателя двигателя (MSP), контакторов, реле перегрузки, реле цепи управления, таймеров и вспомогательных компонентов.Все модули совпадают по форме, размеру и функциям. Эстетика продукта была критерием дизайна. «Шесть лет разработки, Sirius 3R представляет собой крупнейший запуск отдельного продукта для Siemens на этой арене», - говорит Джо Роджерс, менеджер по маркетингу продуктов в Siemens-Furnas Controls (Батавия, Иллинойс).

Система упрощает сборку и обслуживание практически без инструментов. Экономия места достигается за счет устройств малой ширины (45, 55 и 70 мм), которые можно плотно уложить в шкаф. Всего четыре размера рамы упрощают компоновку панелей.

Контакторы

(3RT) имеют катушки переменного или постоянного тока и могут переключать двигатели мощностью до 55 кВт при 600 В. Вспомогательные контакты устанавливаются спереди или сбоку. Агрегаты мощностью 3,7 кВт и выше позволяют подключать теплообменник сверху, снизу или по диагонали. («3R» - это просто общий каталожный ярлык для текущих и будущих устройств.) MSP (обозначенные как 3RV) работают как термомагнитные выключатели, предлагая номинальный ток до 100 А и стойкость к короткому замыканию 50 кВ при 480 В.

Контактор и MSP легко комбинируются с помощью соединительного блока, образуя полностью защищенный ручной комбинированный пускатель или для защиты групповой установки двигателя.Контактор обеспечивает возможность дистанционного пуска / останова комбинированного пускателя.

Реле перегрузки

(3RU) предлагает встроенные биметаллические нагреватели, срабатывание по классу 10, регулировку тока полной нагрузки (FLA) и проверку срабатывания. Реле управления (3RH) также поставляются с катушками переменного или постоянного тока; они имеют 4 полюса, с возможностью расширения до 8. Многочисленные вспомогательные компоненты и реле времени (3RP) - с задержкой включения / выключения (по выбору от 0,05 с до 100 часов) или с многофункциональной временной задержкой - дополняют семейство.

Другими особенностями являются более высокие температурные характеристики и опциональная заделка проводов с зажимом в клетке.Это альтернатива винтовым клеммам. Важно отметить, что связь по Profibus DP и AS-интерфейсу также является частью системы.

Sirius - это постоянно развивающаяся линейка продуктов. Твердотельные устройства защиты от перегрузки и плавного пуска будут внедрены в октябре 1998 года.

Больше модульности, меньше деталей

Представленная ранее в Европе линейка продуктов MCS (Modular Control System) Allen-Bradley также имеет «небесный» оттенок. Он проходит под лозунгом «управление двигателями во вселенной автоматизации».«Полностью доступная сейчас, MCS была неофициально запущена в Северной Америке в конце 1997 года.

Система предлагает защиту от короткого замыкания и координацию (Тип 1 и 2), при этом подчеркивая простой и быстрый монтаж с настраиваемыми компонентами. Его основными элементами являются ручные MSP, контакторы, твердотельные и биметаллические реле перегрузки, а также устройства плавного пуска трех размеров (45, 54, 72 мм). Диапазон номинальных значений до 45 кВт.

Контакторы

(MCS-C) поставляются с реверсивными клеммами катушек для лучшего доступа к соединениям: со стороны нагрузки для пускателей с ручными MSP или со стороны линии при использовании реле перегрузки. Два зажима для проводов на полюс обеспечивают гибкость для подключения проводов разных размеров и типов. Номинальные значения для катушек переменного и постоянного тока составляют до 85 А. Реле управления (MCS-F) имеют маломощные контакты и различное расположение полюсов.

Твердотельное реле перегрузки с автономным питанием (MCS-E) предлагает различные классы (время) отключения, защиту от потери фазы, ручной или ручной / автоматический сброс, диапазон регулировки тока 3,2: 1 и видимый индикатор отключения. Некоторые модели имеют возможность выбора класса отключения, защиты от заклинивания / опрокидывания и защиты от замыкания на землю.

Контакторы

и реле перегрузки соединяются, образуя компактное устройство пускателя / защиты двигателя (MCS-M), которое соответствует требованиям к автоматическим выключателям IEC 947-2. Для применений в Северной Америке он отвечает требованиям ручного управления двигателем и рассчитан на установку «группового двигателя».

Реверсивные двигатели постоянного тока? - Прецизионные микроприводы

Проще говоря, двигатели постоянного тока могут вращаться в любом направлении (по или против часовой стрелки), и ими можно легко управлять, инвертируя полярность приложенного напряжения.

Строго говоря, двигатели могут создавать силу в любом направлении. Мы делаем это важное различие, потому что некоторые приложения, такие как тактильная обратная связь, используют «торможение» для управления двигателем без его фактического вращения в противоположном направлении. Если двигатель уже находится в движении, подаваемое напряжение можно инвертировать, и двигатель будет быстро замедляться, в конечном итоге остановившись. Если напряжение продолжает подаваться, двигатель снова начнет вращаться в соответствии с полярностью напряжения.

Правило левой руки Флеминга и двигатели постоянного тока

Правило левой руки Флеминга показывает направление силы на токопроводящем проводе в магнитном поле

Направление силы и, следовательно, вращения объясняется с помощью правила левой руки Флеминга для двигателей.

Во-первых, мы будем использовать (очень) упрощенную модель двигателя - представьте два магнита с противоположными полюсами (N и S), разделенными небольшим воздушным зазором, с проводом между ними, по которому проходит электрический ток. По сути, именно так устроен двигатель, хотя в этом упрощенном примере мы представляем однополюсные магниты бесконечной длины, чтобы избежать таких сложностей, как коммутатор.Эта концепция отлично подходит для объяснения важной части теории.

Трехмерный вид двух противоположных полюсов магнита и токопроводящего провода в коротком воздушном зазоре

Когда проволоке позволяют свободно двигаться и пропускать ток через магнитное поле, сила действует на провод, заставляя его двигаться. В двигателе катушки могут быть прикреплены к ротору, поэтому, когда сила воздействует на проволоку, она вызывает вращение вала. На нашей упрощенной схеме мы можем сказать, что провод, движущийся влево, эквивалентен вращению двигателя против часовой стрелки, а движение вправо - по часовой стрелке.

Правило левой руки Флеминга показывает направление силы на токопроводящем проводе в магнитном поле

Теперь применим правило левой руки Флеминга, чтобы определить направление силы. Результирующая сила перпендикулярна как магнитному полю, так и направлению тока . Используя положение руки на изображении вверху статьи, вы можете расположить левую руку , чтобы воспроизвести изображение ниже. Вы можете подождать, пока не останетесь одни в офисе, потому что вы будете выглядеть довольно странно!

  • Ваш первый палец представляет собой магнитное поле, направленное прямо в пол.
  • Ваш средний палец представляет собой ток, направленный в сторону экрана компьютера.
  • Ваш большой палец представляет результирующую силу, направленную влево.

Если мы знаем направление магнитного поля и тока в проводе, мы можем увидеть направление результирующей силы

Это показывает нам, что ток, протекающий по проводу «в» экран компьютера, вызовет силу, толкающую влево, в нашей модели это эквивалентно вращению двигателя против часовой стрелки.

Теперь нас больше всего беспокоит то, как мы изменяем силу, чтобы проволока двигалась в противоположном направлении, заставляя наш двигатель вращаться «в обратном направлении». Мы можем снова использовать правило левой руки Флеминга с тем же магнитным полем, но на этот раз большими пальцами указываем вправо, а не влево. В результате ваш средний палец теперь должен указывать на себя, показывая, что ток течет за пределы экрана.

Изменяя направление тока, мы создаем силу в противоположном направлении

Это показывает, что для того, чтобы двигатель вращался по часовой стрелке, мы должны изменить направление тока (т.е.е. изменение потока тока изменяет направление силы на 180 градусов).

Конечно, направление тока контролируется полярностью напряжения. Итак, чтобы изменить направление вращения, мы можем просто изменить напряжение на противоположное, заставив ток течь в противоположном направлении, изменив силу на 180 градусов и двигатель будет вращаться «назад».

Практическое применение - Как изменить напряжение

Если вы не знакомы с электроникой, изменение полярности напряжения может показаться более сложным, чем есть на самом деле. Фактически, вы, скорее всего, столкнетесь с логикой управления - которая решает и указывает, когда менять полярность. Вы можете легко управлять двигателем в любом направлении с помощью одного чипа, однако это зависит от вашего приложения.

Давайте возьмем два примера приложений, которые приводят в движение двигатель в любом направлении: механизм блокировки и устройство тактильной обратной связи.

В запирающем механизме используется мотор-редуктор, который приводится в движение в любом направлении, чтобы запереть или отпереть дверь.Когда двигателю необходимо вращаться как по часовой, так и против часовой стрелки, один из самых популярных приводных чипов называется H-мостом. Это дискретные компоненты, которые содержат 4 транзистора, действующих как переключатели, одна пара переключателей используется для управления двигателем в одном направлении, а два других используются в обратном направлении. Управление направлением двигателя (часто простые сигналы GPIO) отделено от напряжения привода, которое контролирует скорость, поэтому вы можете изменять их независимо друг от друга.

И наоборот, устройства тактильной обратной связи реализуют «активное торможение», которое используется для более быстрой остановки двигателя и повышения четкости эффектов.Здесь двигатель фактически не вращается в противоположном направлении в любой точке, вместо этого мы используем эффекты обратного напряжения для управления двигателем с большей точностью. Многие тактильные микросхемы по умолчанию реализуют активное торможение либо как настройку в микросхеме, либо как часть предварительно запрограммированной формы волны, что очень упрощает реализацию.

Если вас интересуют некоторые из доступных H-мостов и тактильных драйверов, то найдите список рекомендуемых в нашем бюллетене по ресурсам для драйверов здесь.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *