Способы регулирования частоты вращения асинхронного двигателя: Способы регулирования скорости асинхронного двигателя — Студопедия

Содержание

Способы регулирования скорости асинхронного двигателя — Студопедия

Почти все станки в качестве электропривода оснащаются асинхронными двигателями. У них простая конструкция и не высокая стоимость. В связи с этим важным оказывается регулирование скорости асинхронного двигателя. Однако в стандартной схеме включения управлять его оборотами можно только с помощью механических передаточных систем (редукторы, шкивы), что не всегда удобно. Электрическое управление оборотами ротора имеет больше преимуществ, хотя оно и усложняет схему подключения асинхронного двигателя.

Для некоторых узлов автоматического оборудования подходит именно электрическое регулирование скорости вращения вала асинхронного электродвигателя. Только так можно добиться плавной и точной настройки рабочих режимов. Существует несколько способов управления частотой вращения путём манипуляций с частотой, напряжением и формой тока. Все они показаны на схеме.

Из представленных на рисунке способов, самыми распространёнными для регулирования скорости вращения ротора являются изменение следующих параметров:

· напряжения подаваемого на статор,

· вспомогательного сопротивления цепи ротора,


· числа пар полюсов,

· частоты рабочего тока.

Последние два способа позволяют изменять скорость вращения без значительного снижения КПД и потери мощности, остальные способы регулировки способствуют снижению КПД пропорционально величине скольжения. Но и у тех и других есть свои преимущества и недостатки. Поскольку чаще всего на производстве применяются асинхронные двигатели с короткозамкнутым ротором, то все дальнейшие обсуждения будут касаться именно этого типа электродвигателей.

Для частотного регулирования применяют в основном полупроводниковые преобразователи. Их принцип действия основан на особенности работы асинхронного двигателя, где частота вращения магнитного поля статора зависит от частоты напряжения питающей сети. Скорость вращения поля статора определяется по следующей формуле:

n1 = 60f/p, где n1 — частота вращения поля (об/мин), f-частота питающей сети (Гц), p-число пар полюсов статора, 60 — коэффициент пересчета мерности.

Для эффективной работы асинхронного электродвигателя без потерь нужно вместе с частотой изменять и подаваемое напряжение.

Напряжение должно меняться в зависимости от момента нагрузки. Если нагрузка постоянная, то напряжение изменяется пропорционально частоте.


Современные частотные регуляторы позволяют уменьшать и увеличивать обороты в широком диапазоне. Это обеспечило их широкое применение в оборудовании с управляемой протяжкой, например, в многоконтактных станках сварной сетки. В них скорость вращения асинхронного двигателя, приводящего в движение намоточный вал, регулируется полупроводниковым преобразователем. Такая регулировка позволяет оператору, следящему за правильностью выполнения технологических операций, ступенчато ускоряться или замедляться по мере настройки станка.

Остановимся на принципе работы преобразователя частоты более подробно. В его основе лежит принцип двойного преобразования. Состоит регулятор из выпрямителя, импульсного инвертора и системы управления. В выпрямителе синусоидальное напряжение преобразуется в постоянное и подаётся на инвертор. В составе силового трёхфазного импульсного инвертора есть шесть транзисторных переключателей.

Через эти автоматические ключи постоянное напряжение подаётся на обмотки статора так, что в нужный момент на соответствующие обмотки поступает то прямой, то обратный ток со сдвигом фаз 120°. Таким образом, постоянное напряжение трансформируется в переменное трёхфазное напряжение нужной амплитуды и частоты.

Необходимые параметры задаются через модуль управления. Автоматическая регулировка работы ключей осуществляется по принципу широтно-импульсной модуляции. В качестве силовых переключателей используются мощные IGBT-транзисторы. Они, по сравнению с тиристорами, имеют высокую частоту переключения и выдают почти синусоидальный ток с минимальными искажениями. Не смотря на практичность таких устройств, их стоимость для двигателей средней и высокой мощности остаётся очень высокой.

Регулировка скорости вращения асинхронного двигателя методом изменения числа пар полюсов также относится к наиболее распространённым методам управления электродвигателей с короткозамкнутым ротором.

Такие моторы называются многоскоростными. Есть два способа осуществления этого метода:

· укладывание сразу нескольких обмоток с разными числами пар полюсов в общие пазы статора,

· применение специальной намотки с возможностью переключения существующих обмоток под нужное число пар полюсов.

В первом случае чтобы уложить в пазы дополнительные обмотки нужно уменьшить сечение провода, а это приводит к уменьшению номинальной мощности электродвигателя. Во втором случае имеет место усложнение коммутационной аппаратуры, особенно для трёх и более скоростей, а также ухудшаются энергетические характеристики. Более подробно этот и другие способы регулирования скорости асинхронного двигателя описаны в архивном файле, который можно скачать внизу страницы.

Обычно многоскоростные двигатели выпускаются на 2, 3 или 4 скорости вращения, причем 2-х скоростные двигатели выпускаются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении 2 : 1 = р2 : pt , 3-х скоростные двигатели — с двумя обмотками на статоре, из которых одна выполняется с переключением 2 : 1 = Рг : Pi , 4-х скоростные двигатели — с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1.

Многоскоростными электродвигателями оснащаются различные станки, грузовые и пассажирских лифты, они используются для приводов вентиляторов, насосов и т.д.

3. Схема нереверсивного управления пуском трехфазного асинхронного двигателя с фазным ротором.

http://www.ngpedia.ru/pngs/016/0166rYE3L7C0J713C9B4.png\

3) три реле времени /РВ, 2PS и ЗРВ маятникового типа, механически сочлененные соответственно с контакторами К, /У и 2У;
4) кнопки «стоп» и «пуск».

В исходном положении, когда двигатель отключен, все контакторы выключены и в цепь каждой фазы ротора включено суммарное сопротивление гр\ + rp2 + грз всех трех ступеней пускового реостата. При нажатии кнопки «пуск» замыкается цепь катушки контактора К, контактор срабатывает и начинается первый этап пуска двигателя при полном сопротивлении в цепи ротора. Контактор К, срабатывая, приводит в действие механически сочлененное с ним реле времени IP В. Спустя /) секунд это реле замкнет свой контакт в цепи включающей катушки контактора /У.

Контактор 1У срабатывает, и в цепи ротора двигателя останутся включенными сопротивления гр2 + г„3 двух ступеней реостата. Этим начинается второй этап пуска двигателя. Контактор /У приведет в действие сочлененное с ним реле 2РВ, которое через 12 секунд замкнет свой контакт в цепи катушки контактора 2У. Контактор 2У сработает и выключит вторую ступень реостата. В цепи ротора останется включенным только сопротивление грз- Контактор 2У приведет в действие реле ЗРВ и спустя ta секунд замкнется цепь катушки контактора ЗУ. Последний сработает и замкнет обмотки ротора двигателя накоротко, чем и будет завершен процесс пуска двигателя.

При отключении двигателя надо нажать кнопку «стоп». При этом потеряют питание катушки контакторов К, /У, 2У и ЗУ. Контакторы отключатся и вся схема возвратится в исходное положение.
Выше были рассмотрены относительно простые схемы управления асинхронными двигателями. На практике применяются также более сложные схемы, позволяющие управлять процессом пуска, торможения, регулирования и стабилизации скорости электроприводов с двигателями постоянного и переменного тока.


Рис. 18 8. Схема управления пуском нереверсивного асинхронного двигателя с фазным ротором

4. Внутренние РУ

Распределительное устройство (РУ) — электроустановка, служащая для приёма и распределения электрической энергии одного класса напряжения.

Распределительное устройство содержит набор коммутационных аппаратов, вспомогательные устройства РЗиА и средства учёта и измерения

5.6. Регулирование частоты вращения электроприводов с асинхронных двигателей

Регулирование частоты вращения электроприводов является одной из важнейших задач современной электротехники. Разработка и применение рациональных способов регулирования позволяют повысить производительность механизмов, улучшить качество выпускаемой продукции, упростить механическую часть привода, уменьшить расход электроэнергии и т. д.

С регулированием частоты вращения не следует смешивать естественное изменение частоты вращения электродвигателя в соответствии с его механической характеристикой, когда изменяется нагрузка на валу привода. Регулирование — это принудительное изменение частоты вращения электропривода в зависимости от требований приводного механизма.

Любой способ регулирования характеризуют следующие основные показатели:

диапазон регулирования — отношение максимальной частоты вращения к минимальной, которое можно получить в приводе т.е. ;

плавность регулирования - число устойчивых скоростей, получаемых в данном диапазоне регулирования;

экономичность — учет затрат, связанных с созданием самого способа регулирования, и дополнительных потерь энергии, возникающих в приводе;

стабильность работы привода — изменение частоты враще­ния при изменении момента на валу двигателя. Стабильность работы целиком определяется жесткостью механических характеристик;

направление регулирования показывает, что частота вращения изменяется только вниз или только вверх от основной частоты вращения привода или же возможно регулирование и вверх и вниз.

Частоту вращения ротора асинхронного двигателя определяют по формуле:

где f— частота переменного тока; р — число пар полюсов об­мотки статора; s — скольжение.

Из представленной выше формулы можно заключить, что частоту вращения асинхронного двигателя можно регулировать изменением одной из трёх величин:

- скольжения s;

- числа пар полюсов магнитного потока статора p;

- частоты тока в статоре f.

Рассмотрим возможности регулирования частоты вращения ротора путем изменения скольжения. Скольжение является функцией многих параметров двигателя:

s = f(R1, X1;R2; X2; U),

где R1X1— активное и индуктивное сопротивление цепи статора,; R

2, Х2— то же, ротора;

U — напряжение питания двигателя.

Из формулы видно, что для изменения скольжения s можно вводить дополнительные резисторы или индуктивности в цепи обмоток статора или ротора либо уменьшать напряжение питания двигателя.

Изменение напряжения.

Известно, что максимальный момент асинхронного двигателя пропорционален квадрату напряжения сети и механические характеристики при различных напряжениях имеют вид, показанный на рис.5.8, a. Анализ этих характеристик совместно с характеристикой момента сопротивления Мс.г грузоподъемного устройства показывает, что регулирование частоты вращения возможно в очень узком диапазоне. При напряжении 0,6 Uндвигатель не запустится, так как Мп<Мс.г, а при снижении напряжения ниже 0,6 UB работающий двигатель остановится.

Несколько предпочтительнее регулирование двигателя, вращающего механизм с вентиляторным моментом сопротивления Мс.в, — диапазон регулирования расширяется.

Изменение параметров R1, X1, X2.

Увеличение указанных параметров оказывает почти такое же влияние на механические характеристики двигателя, как снижение напряжения, а повышение сопротивления R1к тому же еще увеличивает потери энергии в цепи статора.

Рис.5.8 Механические характеристики асинхронного двигателя при изменении

напряжения и активного сопротивления цепи ротора

В конце 50-х годов получил некоторое распространение так называемый дроссельный электропривод, в котором увеличение сопротивления X1достигалось включением в цепь статора маг­нитного усилителя (дросселя насыщения). Главный недостаток таких электроприводов (в том числе при изменении напряжения U) состоит в том, что мощность скольжения полностью превращается в тепло в роторе, увеличивая перегрев двигателя. В дроссельных электроприводах к тому же уменьшается коэффициент мощности cosf.

Из сказанного следует, что увеличение параметров R1X1Х2или уменьшение U не только ради регулирования частоты вращения, но и в силу каких-то иных причин (например, влияния параметров сети) для асинхронного двигателя крайне нежелательно.

Изменение активного сопротивления цепи ротора.

Единственный параметр асинхронного двигателя, от которого не зависит максимальный момент двигателя, — это сопротивление R2.. Следовательно, при введении в цепь ротора дополнительных резисторов сохраняется механическая перегрузочная способность двигателя и, что очень важно, потери энергии выделяются в основном на резисторах, т. е. за пределами двигателя.

Такой способ применим только для двигателей с фазным ротором и с кольцами. Сопротивление короткозамкнутого ротора изменять практически невозможно. Механические характеристики при различных сопротивлениях ротора показаны на рис.5.8, б.

Кратко процесс регулирования выглядит следующим образом: М=Мс, n=const;———————.Запись поясняется формулами (2-6).

С точки зрения диапазона регулирования, плавности, экономичности этот способ аналогичен регулированию частоты вращения двигателя постоянного тока изменением сопротивления цепи якоря. Он применяется в электроприводах брашпиля и шпиля судов типов «Андижан», «Повенец».

Изменение числа пар полюсов.

Асинхронные двигатели, у которых трехфазная обмотка статора может создавать вращающееся магнитное поле с различным числом пар полюсов,

Рис.5.9. Схема, поясняющая принцип получения полюсопереключаемой

обмотки

называются полюсопереключаемыми. Разработаны трехфазные обмотки, которые можно переключать на различное число пар полюсов в отношении: 2:1, 5:2, 7:3, 3:1 и т. д.

Принцип создания полюсопереключаемой обмотки поясним на примере однофазной обмотки, уложенной в восьми пазах. Обмотка состоит из двух полуобмоток. Если полуобмотки соединить последовательно, т. е. перемычка будет между выводами К1и Н2(рис.5.9, а), то такая обмотка будет создавать четыре пары полюсов (р=4). Число полюсов, создаваемых обмоткой, можно найти, задавшись направлением тока в ней и применив правило «буравчика» для определения направления силовых линий вокруг пазов.

Если полуобмотки соединить встречно-последовательно, т.е. перемычка между выводами К1и К2(рис.9, б), то такая обмотка будет создавать две пары полюсов (р = 2). При выбранном направлении тока поле между пазами 2 и 3, 4 и 5, 6 и 7, 8 и 1 взаимно уничтожается.

Полуобмотки можно соединить встречно-параллельно, т.е. перемычки между выводами H1и К2, Н2и К1(рис.9, в), тогда обмотка будет также создавать две пары полюсов (р=2).

Таким образом, существуют два способа переключения обмотки на меньшее число пар полюсов в отношении 2:1. Первый способ — переключение с последовательного соединения полуобмоток на встречно-последовательное, второй — переключение с последовательного соединения на встречно-параллельное. Рассмотрим каждый способ применительно к трехфазной обмотке двигателя..

При первом способе переключения обмотка, соединенная звездой, должна иметь 9 выводов на щитке (рис. 5.10, а), а при соединении треугольником — 12 выводов (рис.5.10, б). После переключения характер соединения обмоток не меняется, т. е. звезда переключается в звезду, а треугольник — в треугольник.

Мощность двигателя при первом способе переключения остается постоянной, следовательно, изменяются номинальный и максимальный моменты двигателя. Совместное рассмотрение механических характеристик двигателя и различных механизмов (рис.5.10, в) показывает, что такой способ переключения наиболее целесообразен для регулирования частоты вращения металлорежущих станков.

При втором способе переключения обмотка, соединенная звездой, имеет только 6 выводов (рис.5.11, а). После переключения получается соединение обмотки двойная звезда. Мощность двигателя в этом случае удваивается, а номинальный момент остается постоянным.

Совместное рассмотрение механических характеристик двигателя и различных механизмов (рис.5.11, б) показывает, что второй способ переключения целесообразно применять для регулирования частоты вращения грузоподъемных устройств.

Если обмотка соединена треугольником, то после переключения по второму способу получается соединение двойная звезда. Мощность двигателя при этом возрастает на 15%.

Рассмотрены наиболее простые способы переключения обмоток, дающие две ступени скорости. При более сложном переключении трехфазной обмотки можно получить три и даже четыре ступени скорости с самым. различным соотношением полюсов. Например, отечественные двигатели серии МАП с одной трехфазной обмоткой имеют три скорости (МАП-42/8-4-2, мощность 0,8/1, 8/2 кВт, частота вращения 700/1400/2800 об/мин) и четыре (МАП-52/8-6-4-2, мощность 1,2/2,5/3/4 кВт, частота вращения 460/700/920/1440 об/мин). Более четырех скоростей на практике не встречается, так как сильно усложняются обмотка и ее переключение. У двигателя МАП-52/8-6-4-2 на выводной щиток сделано 22 вывода.

В судовых электроприводах грузоподъемных устройств, брашпилей, шпилей широкое распространение получили трехскоростные асинхронные двигатели с тремя отдельными обмотками на статоре на различное число пар полюсов.

При втором способе переключения обмотка, соединенная звездой, имеет только 6 выводов (рис.5.11, а). После переключения получается соединение обмотки двойная звезда. Мощность двигателя в этом случае удваивается, а номинальный момент остается постоянным.

Совместное рассмотрение механических характеристик двигателя и различных механизмов (рис.5.11, б) показывает, что второй способ переключения целесообразно применять для регулирования частоты вращения грузоподъемных устройств.

Если обмотка соединена треугольником, то после переключения по второму способу получается соединение двойная звезда. Мощность двигателя при этом возрастает на 15%.

Рассмотрены наиболее простые способы переключения обмоток, дающие две ступени скорости. При более сложном переключении трехфазной обмотки можно получить три и даже четыре ступени скорости с самым. различным соотношением полюсов. Например, отечественные двигатели серии МАП с одной трехфазной обмоткой имеют три скорости (МАП-42/8-4-2, мощность 0,8/1, 8/2 кВт, частота вращения 700/1400/2800 об/мин) и четыре (МАП-52/8-6-4-2, мощность 1,2/2,5/3/4 кВт, частота вращения 460/700/920/1440 об/мин). Более четырех скоростей на практике не встречается, так как сильно усложняются обмотка и ее переключение. У двигателя МАП-52/8-6-4-2 на выводной щиток сделано 22 вывода.

В судовых электроприводах грузоподъемных устройств, брашпилей, шпилей широкое распространение получили трехскоростные асинхронные двигатели с тремя отдельными обмотками на статоре на различное число пар полюсов. Частота вращения

а)

Рис.5.10. Первый способ переключения трёхфазной обмотки, соединенной звездой,

и треугольником, и соответствующие механические характеристики АД.

регулируется включением той или иной обмотки, но сами обмотки не переключаются.

Отечественная промышленность выпускает для судовых электроприводов многоскоростные асинхронные двигатели серии МАП, диапазон регулирования частоты вращения которых 6:1 либо 7:1 Обмотка первой скорости обычно имеет 26 или 28 полюсов.

Регулирование переключением пар полюсов отличается высокой экономичностью, поскольку ротор вращается при установив­шейся частоте со скольжением в пределах номинального и ни­каких дополнительных резисторов в цепь двигателя не включа­ется. Серьезный недостаток этого способа — ступенчатость и ограниченное число скоростей.

Рис.5.11. Второй способ переключения трехфазной обмотки, соединенной звез­дой, и

соответствующие механические характеристики асинхронного двигателя

Регулирование частоты вращения изменением частоты тока питающей сети (частотное регулирование).

Этот способ регулирования основан на изменении синхронной частоты вращения n0которая пропорцио­нальна частоте тока в обмотке статора. Для осуществления такого регулирования необходим источник питания с регулируемой частотой токаf. В качестве источника применяются электромагнитные и полупроводниковые преобразователи частоты. Однако необходимо иметь в виду, что одновременно с изменением частоты питающего напряженияfбудет меняться максимальный электромагнитный момент двигателя. Поэтому для сохранения перегрузочной способности, коэффициента мощности и КПД двигателя на требуемом уровне необходимо одновременно с изменением частоты f изменять и напряжение сети U. Если регулирование частоты вращения двигателя производится при условии постоянства нагрузочного момента, то подводимое напряжение необходимо изменять пропорционально изменению частоты тока, так, чтобы их отношение оставалось величиной постоянной:

;

Частотное регулирование позволяет плавно изменять частоту вращения двигателей в широком диапазоне (до 12:1).

Регулирование частоты вращения изменением частоты тока — это самый рациональный и экономичный способ. Основные его достоинства:

- используется м обычный короткозамкнутый двигатель;

- регулирование с точки зрения потерь в двигателе является экономичным;

- достигаются большой диапазон и плавность регулирования;

- сохраняется жесткость механических характеристик, а следовательно и стабильность работы привода;

- рекуперативное торможение может осуществляться почти до полной остановки.

Вместе с тем известно, что частота тока судовой электростанции поддерживается постоянной и для регулирования частоты вращения двигателя требуется отдельный преобразователь частоты тока.

Современный частотно регулируемый электропривод состоит из асинхронного или синхронного электрического двигателя и преобразователя частоты ( рис.5.12.).

Рис.5.12 Частотно регулируемый электропривод

Преобразователь частоты управляет электрическим двигателем и представляет собой электронное статическое устройство. На выходе преобразователя формируется электрическое напряжение с переменными амплитудой и частотой. Название «частотно регулируемый электропривод» обусловлено тем, что регулирование скорости вращения двигателя осуществляется изменением частоты напряжения питания, подаваемого на двигатель от преобразователя частоты.

На протяжении последних лет наблюдается широкое и успешное внедрение частотно регулируемого электропривода на судах, как для решения различных технологических задач, так и в системах электродвижения. Это объясняется в первую очередь разработкой и созданием преобразователей частоты на принципиально новой элементной базе, главным образом на биполярных транзисторах с изолированным затвором IGBT.

В синхронном электрическом двигателе частота вращения ротора в установившемся режиме равна частоте вращения магнитного поля статора .

В асинхронном электрическом двигателе частота вращения ротора в установившемся режиме отличается от частоты вращения на величину скольжения .

Частота вращения магнитного поля зависит от частоты напряжения питания. При питании обмотки статора электрического двигателя трехфазным напряжением с частотой создается вращающееся магнитное поле. Скорость вращения этого поля определяется по известной формуле

= ,

где – число пар полюсов статора.

Переход от скорости вращения поля , измеряемой в радианах, к частоте вращения , выраженной в оборотах в минуту, осуществляется по следующей формуле

= ,

где 60 – коэффициент пересчета размерности.

Подставив в это уравнение скорость вращения поля, получим, что  

= .

Таким образом, частота вращения ротора синхронного и асинхронного двигателей зависит от частоты напряжения питания.

На этой зависимости и основан метод частотного регулирования.

Изменяя с помощью преобразователя частоту на входе двигателя, мы регулируем частоту вращения ротора.

В наиболее распространенном частотно регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное частотное управление.

При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к.п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.

В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя к моменту сопротивления на валу. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.

При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.

Максимальный момент, развиваемый двигателем, определяется следующей зависимостью

= ,

где - постоянный коэффициент.

Поэтому зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя.

Для постоянного момента нагрузки поддерживается отношение U/f = const, и, по сути, обеспечивается постоянство максимального момента двигателя. Характер зависимости напряжения питания от частоты для случая с постоянным моментом нагрузки изображен на рис. 5.13 (а). Угол наклона прямой на графике зависит от величин момента сопротивления и максимального крутящего момента двигателя.

Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня напряжения питания.

В случае вентиляторной нагрузки реализуется зависимость U/f2 = const. Характер зависимости напряжения питания от частоты для этого случая показан на рис.5.13 (б).

Рис. 5.13 Характер зависимости напряжения питания от частоты для случая:

а) с постоянным моментом нагрузки

б) с вентиляторноым моментом нагрузки

При регулировании в области малых частот максимальный момент также уменьшается, но для данного типа нагрузки это некритично.

Используя зависимость максимального крутящего момента от напряжения и частоты, можно построить график U от f для любого типа нагрузки.

Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.

Скалярное управление достаточно для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.

Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять кроме амплитуды и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.

Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.

Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента, точность по моменту – единицы процентов.

Преобразователь частоты – это устройство, предназначенное для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть преобразователей обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

Преобразователи частоты, применяемые в регулируемом электроприводе, в зависимости от структуры и принципа работы силовой части разделяются на два класса:

1.      Преобразователи частоты с явно выраженным промежуточным звеном постоянного тока.

2.      Преобразователи частоты с непосредственной связью (без промежуточного звена постоянного тока).

Каждый из существующих классов преобразователей имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

У преобразователей с непосредственной связью (рис. 5.14) силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристотров и подключает статорные обмотки двигателя к питающей сети.

Рис. 5.14 Преобразователь частоты с непосредственной связью

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. На рис.5.15 показан пример формирования выходного напряжения для одной из фаз нагрузки.

Рис.5.15 Формирования выходного напряжения для одной из фаз нагрузки

На входе преобразователя действует трехфазное синусоидальное напряжение uа, uв, uс. Выходное напряжение uвых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.

Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

-         практически самый высокий КПД относительно других преобразователей (98,5% и выше),

-        способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах,

-         относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

Наиболее широкое применение в современных частотно регулируемых приводах находят преобразователи с явно выраженным звеном постоянного тока (рис. 5.16.).

В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

Рис 5.16 Преобразователь частоты с звеном постоянного тока

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.

Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 – 98%).

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 - 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая неэнергоемкая система управления, самая высокая рабочая частота

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в преобразователях частоты снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя, уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

Преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

На настоящий момент низковольтные преобразователи на IGBT имеют более высокую цену на единицу выходной мощности, вследствие относительной сложности производства транзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных преобразователей, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 – 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а также требует более эффективного отвода тепла от кремниевого кристалла.

Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность применения IGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких единичных модулей. 

Типовая схема низковольтного преобразователя частоты на IGBT представлена на рис. 5.17 В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента преобразователя.

Переменное напряжение питающей сети (uвх.) с постоянной амплитудой и частотой (Uвх = const, fвх = const) поступает на управляемый или неуправляемый выпрямитель (1).

Для сглаживания пульсаций выпрямленного напряжения (uвыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

С выхода фильтра постоянное напряжение ud поступает на вход автономного импульсного инвертора (3).

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

Рис. 5.17 Типовая схема преобразователя частоты на IGBT транзисторах

В инверторе осуществляется преобразование постоянного напряжения udв трехфазное (или однофазное) импульсное напряжение uи изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока. Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя. Амплитуда и частота напряжения определяются параметрами модулирующей синусоидальной функции.

При высокой несущей частоте ШИМ (2 … 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения uи может достигаться регулированием величины постоянного напряжения ud, а изменение частоты – режимом работы инвертора.

При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (Uвых = var, fвых = var).

Регулирование частоты вращения асинхронного двигателя — МегаЛекции

Изменением числа полюсов

Синхронная угловая частота вращения асинхронного двигателя зависит от частоты питающего напряжения и от числа пар полюсов статора р (5.31) или синхронная частота вращения

(5.45)

Вследствие этого изменением числа пар полюсов можно регулировать частоту вращения двигателя. У двигателей с переключением числа полюсов обмотка каждой фазы состоит обычно из двух одинаковых частей, в одной из которых изменяется направление тока путем переключения этих частей с последовательного на параллельное соединение [12].

Такое переключение (рис.5.16) приводит к уменьшению числа

полюсов вдвое и, следовательно, к увеличению вдвое синхронной частоты вращения машины.
Присоединение обмоток производят переключением обмотки статора по схеме, приведенной на рис.5.17, а, где осуществлен

Рис.5.16. Схема переключения обмоток статора асинхронного

двигателя с последовательного на параллельное соединение.

S, N – полюса обмоток.

переход от одиночной «звезды», или по схеме рис. 5.17, б , где произведено переключение с «треугольника» на двойную «звезду».

Рис. 5.17. Схемы переключения обмоток статора асинхронного

двигателя: а - со «звезды» на двойную «звезду»; б – с «треугольника»

на двойную «звезду».

Переключение обмотки статора со «звезды» на двойную «звезду» (рис.5.17, а) приводит увеличению частоты вращения вдвое, которое целесообразно производить при постоянном моменте. Последнее легко может быть доказано следующим путем.

При соединении обмоток в одинарную «звезду» мощность,

потребляемая двигателем, равна

(5.46)

где U - линейное напряжение, В; - номинальный ток, А.

а для двойной «звезды»

Если предположить, что cos cos и не учитывать потери в двигателе, то развиваемая им мощность при вдвое большей частоте вращения будет в 2 раза больше мощности двигателя при низкой частоте вращения. Если с увеличением частоты вращения двигателя пропорционально растет мощность, то момент двигателя остается неизменным. (5.47)



Механические характеристики двухскоростного двигателя, частота вращения которого регулируется при постоянном моменте, приведены на рис.5.18.

Рис. 5.18. Механические характеристики двухскоростного

асинхронного двигателя, регулируемого с постоянным моментом.

Следует отметить, что при регулировании частоты вращения вниз от к двигатель, как это показано пунктиром, переходит в

генераторный режим с отдачей энергии в сеть.

Для соединения обмотки в «треугольник» (рис. 5.17, б) потребляемая двигателем мощность

(5.48 )

а при соединении в двойную «звезду»

(5.49 )

Сравнение двух последних выражений показывает, что при переключении на высшую частоту вращения мощность, развиваемая двигателем, изменяется незначительно (примерно на 15%, если принять, что cos cos ). В этом случае целесообразно использовать такой двигатель для механизмов, частота вращения которых

регулируется при постоянной мощности.
Механические характеристики, иллюстрирующие возможность регулирования скорости вращения двухскоростного двигателя при постоянной мощности, показаны на рис.5.19.

Рис. 5.19.Механические характеристики двухскоростного

асинхронного двигателя, регулируемого с постоянной мощностью.

Кроме двухскоростных двигателей, применяются трехскоростные двигатели, имеющие, дополнительно еще одну непереключаемую обмотку,а также четырехскоростные двигатели, в статоре которых обычно закладываются две независимые обмотки на разные числа полюсов, каждая из которых переключается по одной из указанных

выше схем. Чтобы не производить переключений в обмотке ротора, двигатели с переключением полюсов выполняют с короткозамкнутым ротором, так как в нем распределение намагничивающей силы всегда

соответствует числу полюсов статорной обмотки.

Регулирование частоты вращения, достигаемое переключением полюсов, дает определенный ряд частот вращения, обусловленный частотой тока в сети и числом полюсов. Например, для практически применяемых четырехскоростных двигателей можно получить такие синхронные частоты вращения ( 3000/1500/1000/500; 3000/1500/750/375; 1 500/1000/750/500; 1 000/750/500/375.
Из изложенного следует, что диапазон регулирования достигает

(6 : 1)…(8 : 1). Увеличивать этот диапазон практически нецелесообразно, так как уменьшение синхронной частоты вращения ниже

n = 375 приводит к значительному увеличению габаритов

двигателя.
Регулирование частоты вращения переключением полюсов происходит ступенчато. Вместе с тем рассматриваемый способ регулирования является весьма экономичным, так как в процессе изменения скорости отсутствукт выделение дополнительных потерь в роторной цепи, вызывающее издишний нагрев двигателя и ухудшение его КПД. Механические характеристики многоскоростных АД имеют хорошую жесткость и достаточную перегрузочную способность.
Благодаря своим преимуществам двигатели с переключением полюсов находят широкое применение там, где не требуется плавного регулирования частоты, например в некоторых металлорежущих станках в целях уменьшения количества механических передач. Их применяют также для вентиляторов, насосов и для привода других механизмов и машин в различных областях хозяйственной

деятельности.


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

Регулирование скорости синхронных двигателей

ЭЛЕКТРИЧЕСКИЙ ПРИВОД

После вхождения синхронного двигателя в синхронизм его ско­рость при изменениях момента нагрузки на валу до некоторого макси­мального значения Мтах остается постоянной и равной синхронной скорости

Так как изменение числа пар полюсов zp у серийно выпускаемых

двигателей не применяется, то частотное регулирование является прак­тически единственным способом регулирования угловой скорости син­хронных двигателей. Оно характеризуется в основном такими же пока­зателями, что и частотное регулирование скорости асинхронных двига­телей с короткозамкнутым ротором. Это регулирование плавное, двух­зонное. Диапазон регулирования вверх от номинальной синхронной скорости ограничивается механической прочностью ротора, его балан­сировкой и качеством подшипников. Диапазон регулирования вниз от номинальной синхронной скорости может достигать значений D = 1: (50 - т-100) и более с учетом абсолютной жесткости механических характеристик двигателя и обеспечения синусоидальности напряжения питания. Стабильность скорости высокая. Допустимая нагрузка при по­стоянном возбуждении и независимой вентиляции соответствует номи­нальному моменту.

Использование полупроводниковых преобразователей частоты от­крывает большие возможности в отношении формирования требуемых статических и переходных процессов частотно-регулируемых синхрон­ных электроприводов.

В отличие от асинхронного короткозамкнутого двигателя при час­тотном регулировании скорости синхронный двигатель обладает тремя каналами управления моментом: изменением тока возбуждения /в, из­менением напряжения обмоток статора Uj и изменением частоты f j

напряжения обмоток статора. = 0) он соз­дает тормозной момент при неподвижном роторе, обеспечивая механи­ческую фиксацию ротора в заданном положении.

Области применения червячного редуктора

Снижение оборотов вращения с усилением крутящего момента используется в механизмах с перекрещивающимися валами, которые востребованы в машиностроении, сельском хозяйстве, на транспорте. Киевский НТЦ «Редуктор» производит промышленные червячные редуктора, модернизирует старые …

Система векторного управления асинхронным электроприводом без датчика скорости

В частотно-регулируемых асинхронных электроприводах вектор­ное управление связано как с изменением частоты и текущих значений переменных (напряжения, тока статора, потокосцепления), так и со вза­имной ориентацией их векторов в декартовой системе координат. …

Частотное управление асинхронным электроприводом с компенсацией момента и скольжения

Сигналом тока можно воздействовать как на канал напряжения, так и на канал частоты. Функциональная схема электропривода с положи­тельными обратными связями по току в канале регулирования напряже­ния и частоты приведена на …

Понимание скалярного (V / f) управления для асинхронных двигателей

В этой статье мы попытаемся понять, как реализуется алгоритм скалярного управления для управления скоростью асинхронного двигателя с относительно простыми вычислениями, и при этом достичь достаточно хорошего линейно регулируемого управления скоростью мотор.

Отчеты о многих ведущих исследованиях рынка показывают, что асинхронные двигатели являются самыми популярными, когда речь идет о приложениях и работах, связанных с тяжелыми промышленными двигателями.Основные причины популярности асинхронных двигателей в основном связаны с их высокой степенью надежности, большей надежностью с точки зрения износа и сравнительно высокой функциональной эффективностью.

Тем не менее, асинхронные двигатели имеют один типичный недостаток, поскольку ими нелегко управлять обычными традиционными методами. Управление асинхронными двигателями относительно сложно из-за его довольно сложной математической конфигурации, которая в первую очередь включает:

  • Нелинейный отклик при насыщении сердечника
  • Нестабильность формы колебаний из-за изменяющейся температуры обмотки.

Из-за этих критических аспектов реализация управления асинхронным двигателем оптимально требует тщательно рассчитанного алгоритма с высокой надежностью, например, с использованием метода «векторного управления» и, кроме того, с использованием системы обработки на основе микроконтроллера.

Общие сведения о реализации скалярного управления

Однако существует еще один метод, который можно применить для реализации управления асинхронным двигателем с использованием гораздо более простой конфигурации, это скалярное управление, включающее методы без векторного управления.

Фактически возможно перевести асинхронный двигатель переменного тока в установившееся состояние, управляя им с помощью систем прямой обратной связи по напряжению и тока.

В этом скалярном методе скалярная переменная может быть изменена после достижения ее правильного значения либо путем практических экспериментов, либо с помощью подходящих формул и расчетов.

Далее, это измерение может быть использовано для реализации управления двигателем через схему разомкнутого контура или через топологию замкнутого контура обратной связи.

Несмотря на то, что скалярный метод управления обещает достаточно хорошие установившиеся результаты для двигателя, его переходная характеристика может быть не на должном уровне.

Как работают асинхронные двигатели

Слово «индукция» в асинхронных двигателях относится к уникальному способу их работы, при котором намагничивание ротора обмоткой статора становится решающим аспектом работы.

Когда переменный ток подается через обмотку статора, колеблющееся магнитное поле от обмотки статора взаимодействует с якорем ротора, создавая новое магнитное поле на роторе, которое, в свою очередь, реагирует с магнитным полем статора, вызывая большой крутящий момент на роторе. ротор.Этот крутящий момент обеспечивает необходимую эффективную механическую мощность для машины.

Что такое 3-фазный асинхронный двигатель с короткозамкнутым ротором

Это самый популярный вариант асинхронных двигателей, широко используемый в промышленности. В асинхронном двигателе с короткозамкнутым ротором ротор несет серию проводников в виде стержней, окружающих ось ротора, представляя уникальную структуру, подобную клетке, отсюда и название «беличья клетка».

Эти стержни, имеющие перекос по форме и вращающиеся вокруг оси ротора, прикреплены толстыми и прочными металлическими кольцами на концах стержней.Эти металлические кольца не только помогают надежно закрепить шины на месте, но и обеспечивают необходимое электрическое короткое замыкание между стержнями.

Когда на обмотку статора подается последовательный трехфазный синусоидальный переменный ток, результирующее магнитное поле также начинает двигаться с той же скоростью, что и трехфазная синусоидальная частота статора (ωs).

Поскольку узел ротора с короткозамкнутым ротором удерживается внутри обмотки статора, указанное выше переменное трехфазное магнитное поле от обмотки статора вступает в реакцию с узлом ротора, создавая эквивалентное магнитное поле на стержневых проводниках узла клетки.

Это заставляет вторичное магнитное поле накапливаться вокруг стержней ротора, и, следовательно, это новое магнитное поле вынуждено взаимодействовать с полем статора, создавая вращающий момент на роторе, который пытается следовать направлению магнитного поля статора.

В процессе скорость ротора пытается достичь частотной скорости статора, и по мере приближения к скорости синхронного магнитного поля статора относительная разность скоростей e между частотной скоростью статора и скоростью вращения ротора начинает уменьшаться, что вызывает уменьшение магнитное взаимодействие магнитного поля ротора с магнитным полем статора, что в конечном итоге приводит к уменьшению крутящего момента на роторе и эквивалентной выходной мощности ротора.

Это приводит к минимальной мощности на роторе, и говорят, что при этой скорости ротор находится в установившемся состоянии, когда нагрузка на ротор эквивалентна и соответствует крутящему моменту на роторе.

Работа асинхронного двигателя в ответ на нагрузку может быть резюмирована следующим образом:

Поскольку становится обязательным поддерживать точную разницу между ротором (валом) spe

Асинхронные двигатели переменного тока | Как работают двигатели переменного тока

Реклама

Криса Вудфорда.Последнее изменение: 21 апреля 2020 г.

Вы знаете, как работают электродвигатели? Ответ, наверное, да и нет! Хотя многие из нас узнали, как базовые моторные работы, из простых научных книг и веб-страниц, таких как эта, многие из двигатели, которые мы используем каждый день - от заводских машин до электропоезда - вообще-то так не работают. Какие книги рассказывают нам о простых двигателях постоянного тока (DC), которые имеют петля из проволоки, вращающаяся между полюсами постоянного магнита; в реальной жизни, в большинстве двигателей большой мощности используется переменный ток (AC) и работают совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле.Рассмотрим подробнее!

Фотография: Обычный асинхронный двигатель переменного тока со снятыми корпусом и ротором, показывая медные обмотки катушек, составляющих статор (статическая, неподвижная часть двигателя). Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (подвижную часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено Министерством энергетики США / NREL.

Как работает обычный двигатель постоянного тока?

Изображение: Электродвигатель постоянного тока основан на проволочной петле, вращающейся внутри фиксированного магнитного поля, создаваемого постоянным магнитом.Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют электрический ток каждый раз, когда провод перекручивается, что позволяет ему вращаться в одном направлении.

Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки, согнутый в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током сидит в магнитном поле.) вы подключаете такой провод к батарее, через него течет постоянный ток (DC), создавая вокруг него временное магнитное поле.Это временное поле отталкивает исходное поле от постоянного магнита, в результате чего провод перевернуть. Обычно провод останавливался в этой точке, а затем снова переворачивался, но если мы используем оригинальное вращающееся соединение называется коммутатором, мы можем сделать обратный ток каждый раз, когда проволока переворачивается, и это означает, что проволока будет продолжать вращаться в в том же направлении до тех пор, пока течет ток. Это сущность простого электродвигателя постоянного тока, задуманного в 1820-е годы Майкла Фарадея и превратился в практическое изобретение о десять лет спустя Уильям Стерджен.(Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

Прежде чем перейти к двигателям переменного тока, давайте быстро резюмируйте, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю, статическую часть двигатель (статор), а катушка с проводом, несущая электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который постоянного магнита, пока вы подаете электроэнергию на катушку, которая составляет ротор.Взаимодействие между постоянными магнитами поле статора и временное магнитное поле, создаваемое ротором, равно что заставляет мотор крутиться.

Как работает двигатель переменного тока?

В отличие от игрушек и фонариков, большинство домов, офисов, фабрики и другие здания не питаются от маленьких батареек: на них подается не постоянный ток, а переменный ток (AC), который меняет направление примерно 50 раз в секунду. (с частотой 50 Гц). Если вы хотите запустить двигатель от домашней электросети переменного тока, вместо батареи постоянного тока вам нужна другая конструкция двигателя.

В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляя статор), которые предназначены для создания вращающегося магнитного поля. Внутри статора находится цельная металлическая ось, проволочная петля, катушка, беличья клетка из металлических стержней и межсоединений (например, вращающиеся клетки, которым иногда удается развлечь мышей), или другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию во внутренний ротор, в двигателе переменного тока вы посылаете мощность на внешние катушки, которые составляют статор.Катушки запитываются попарно, последовательно, создает магнитное поле, вращающееся вокруг двигателя.

Фото: Статор создает магнитное поле с помощью туго намотанных катушек из медной проволоки, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим электродвигателем. Иногда проще заменить обмотки двигателя новым проводом - это умелая работа, называемая перемоткой, что и происходит здесь. Фото Сета Скарлетта любезно предоставлено ВМС США.

Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри магнитное поле, является электрическим проводником. Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (точнее, закону Фарадея), магнитное поле производит (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него по петле. Если проводник представляет собой просто цельный кусок металла, вместо этого вокруг него циркулируют вихревые токи.В любом случае индуцированный ток производит свое собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что вызывает это - вращающееся магнитное поле - также вращаясь. (Вы можете думать о роторе лихорадочно пытаясь «догнать» вращающееся магнитное поле в попытке устранить разница в движении между ними.) Электромагнитная индукция - это ключ к тому, почему такой двигатель вращается, и поэтому он называется асинхронным.

Как работает асинхронный двигатель переменного тока?

Вот небольшая анимация, чтобы подвести итог и, надеюсь, прояснить все:

  1. Две пары катушек электромагнита, показанные здесь красным и синим цветом, поочередно запитываются источником переменного тока (не показан, но подключаются к выводам справа).Две красные катушки соединены последовательно и запитаны вместе, а две синие катушки катушки подключаются таким же образом. Поскольку это переменный ток, ток в каждой катушке не включается и не выключается внезапно (как предполагает эта анимация), а плавно повышается и падает в форме синусоидальной волны: когда красные катушки наиболее активны, синие катушки полностью неактивны, и наоборот. Другими словами, их токи не совпадают (не совпадают по фазе на 90 °).
  2. Когда катушки находятся под напряжением, магнитное поле, которое они создают между ними, индуцирует электрический ток в роторе.Этот ток создает собственное магнитное поле, которое пытается противодействовать тому, что его вызвало (магнитному полю от внешних катушек). Взаимодействие между двумя полями заставляет ротор вращаться.
  3. Когда магнитное поле чередуется между красной и синей катушками, оно эффективно вращается вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (теоретически) почти с одинаковой скоростью.

Асинхронные двигатели на практике

Что контролирует скорость двигателя переменного тока?

В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером так называемого асинхронного двигателя переменного тока.Теоретическая скорость ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и, без нагрузки на двигатель, приближается к скорости вращающегося магнитного поля. На практике нагрузка на двигатель (независимо от того, что он ведет) также играет роль, замедляя ротор. Чем больше нагрузка, тем больше «пробуксовка» между скоростью вращающегося магнитного поля и фактической скоростью ротора. Чтобы контролировать скорость двигателя переменного тока (чтобы он работал быстрее или медленнее), вам необходимо увеличить или уменьшить частоту источника переменного тока, используя так называемый частотно-регулируемый привод.Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, питаемой от асинхронного двигателя переменного тока, вы на самом деле управляете цепью, которая изменяет частоту тока, приводящего в движение двигатель, вверх или вниз.

Что такое «фаза» двигателя переменного тока?

Нам не обязательно приводить в движение ротор с четырьмя катушками (двумя противоположными парами), как показано здесь. Можно построить асинхронные двигатели с любым другим расположением катушек. Чем больше у вас катушек, тем плавнее будет работать мотор.Количество отдельных электрических токов, возбуждающих питание катушек независимо, вне шага, известно как фаза двигателя, поэтому конструкция, показанная выше, представляет собой двухфазный двигатель (с двумя токами, питающими четыре катушки, которые работают не в шаге в двух парах. ). В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно расположенных катушек (три пары) или даже 12 катушек (три набора по четыре катушки) с одной, двумя или четырьмя катушками. включается и выключается одновременно тремя отдельными противофазными токами.

Анимация: трехфазный двигатель, питаемый тремя токами (обозначенными красным, зеленым и синие пары катушек), сдвиг по фазе на 120 °.

Преимущества и недостатки асинхронных двигателей

Преимущества

Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ двигатели, напротив, имеют коллектор и угольные щетки, которые изнашиваются. выходят и требуют замены время от времени.Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Иллюстрации: Электродвигатели чрезвычайно эффективны, обычно преобразуют около 85 процентов поступающей электроэнергии в полезную исходящую механическую работу. Тем не менее, довольно много энергии теряется в виде тепла внутри обмоток, поэтому двигатели могут сильно нагреваться. Большинство двигателей переменного тока промышленной мощности имеют встроенные системы охлаждения.Внутри корпуса находится вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который приводит в движение любую машину, к которой прикреплен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса, минуя ребра вентиляции. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), причина в том, что они охлаждают двигатель.

Недостатки

Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, приводящего в действие, он вращается со скоростью постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного проще контролировать, просто повышая или понижая напряжение питания.Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за их катушечной обмотки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника постоянного тока (например, солнечных батарей) без использования инвертора (устройства, которое преобразует постоянный ток в переменный). Это потому, что им нужно изменяющееся магнитное поле, чтобы вращать ротор.

Кто изобрел асинхронный двигатель?

Изображение: оригинальный дизайн Николы Теслы для асинхронного двигателя переменного тока. Он работает точно так же, как и на приведенной выше анимации, с двумя синими и двумя красными катушками, которые поочередно возбуждаются генератором справа.Это произведение взято из оригинального патента Tesla, депонированного в Бюро патентов и товарных знаков США, с которым вы можете ознакомиться в приведенных ниже ссылках.

Никола Тесла (1856–1943) был физиком. и плодовитый изобретатель, чей огромный вклад в науку и технику никогда не были полностью признаны. Приехав в Соединенные Штаты в возрасте 28 лет, он начал работал на известного пионера электротехники Томаса Эдисона. Но двое мужчин выпали катастрофически и вскоре стали непримиримыми соперниками.Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал обратное. Со своим партнером Джорджем Westinghouse, Tesla отстаивал AC, а Эдисон был полон решимости управлять миром на DC и придумал всевозможные рекламные трюки, чтобы доказать, что кондиционер слишком опасен для широкого использования (изобретая электрический стул, чтобы доказать, что переменный ток может быть смертельным, и даже зарезал слона Топси током переменного тока, чтобы показать, насколько это было смертельно опасно и жестоко). Битва между этими двумя очень разные взгляды на электроэнергию иногда называют Войной течений.

Несмотря на лучшие (или худшие) усилия Эдисона, Tesla победила, и теперь электричество переменного тока питает большую часть мира. Во многом именно поэтому многие электродвигатели, которые приводить в действие бытовую технику в наших домах, фабриках и офисах переменного тока асинхронные двигатели, работающие от вращающихся магнитных полей, которые Никола Тесла сконструировал в 1880-х годах (его патент, проиллюстрированный здесь, был выдан в мае 1888 года). Итальянский физик по имени Галилео Феррарис независимо друг от друга придумал ту же идею примерно в то же время, но история обошлась с ним еще более жестоко, чем Тесла и его имя теперь почти забыты.

Узнать больше

На сайте

На других сайтах

Книги

Для читателей постарше
Для младших читателей
  • Электричество для молодых людей: забавные и легкие проекты «Сделай сам» Марка де Винка. Maker Media / O'Reilly, 2017. Отличное практическое введение в электричество, включая несколько занятий, связанных с созданием электродвигателей с нуля.Возраст 9–12 лет.
  • Эксперименты с электродвигателем Эда Соби. Enslow, 2011. Это отличное общее введение в электродвигатели с большим научным и техническим контекстом. Однако по очевидным практическим соображениям и соображениям безопасности он ориентирован только на проекты двигателей постоянного тока и лучше всего подходит для детей в возрасте от 11 до 14 лет.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004. Одна из моих книг, рассказывающих об усилиях человека по использованию энергии с древних времен до наших дней.Возраст 10+.
  • Никола Тесла: Разработчик электроэнергии Крис Вудфорд, в «Изобретатели и изобретения», том 5. Нью-Йорк: Маршалл Кавендиш, 2008. Краткую биографию Теслы я написал несколько лет назад. На момент написания все это было доступно в Интернете по этой ссылке Google Книги. Возраст 9–12 лет.

Патенты

Patents предлагает более глубокие технические детали и собственные идеи изобретателя о своей работе. Вот очень небольшая подборка многих патентов США, касающихся асинхронных двигателей.

  • Патент США 381 968: Электромагнитный двигатель Николы Тесла, 1 мая 1888 г. Оригинальный патент на асинхронный двигатель переменного тока.
  • Патент США 2,959,721: Многофазные асинхронные двигатели Томаса Х. Бартона и др., Lancashire Dynamo & Crypto Ltd, 8 ноября 1960 г. Асинхронный двигатель с улучшенным контролем скорости.
  • Патент США 4311932: Жидкостное охлаждение для асинхронных двигателей, Раймонд Н. Олсон, Sundstrand Corporation, 19 января 1982 г. Эффективный метод жидкостного охлаждения двигателя без чрезмерного сопротивления жидкости вращающимся компонентам.
  • Патент США 5,751,082: Асинхронный двигатель с высоким пусковым моментом, разработанный Умешом К. Гупта, Vickers, Inc. 12 мая 1998 г. Современный двигатель с высоким начальным крутящим моментом.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2012/2020) Асинхронные двигатели. Получено с https://www.explainthatstuff.com/induction-motors.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте...

Методы управления скоростью различных типов двигателей с регулировкой скорости

Казуя ШИРАХАТА

Oriental Motor Co., Ltd. предлагает широкий выбор двигателей с регулировкой скорости. Наши комплекты двигателей с регулировкой скорости включают двигатель, драйвер (контроллер) и потенциометр, который позволяет легко регулировать скорость. Существует три группы продукции для двигателей с регулировкой скорости. «Блок управления скоростью переменного тока», в котором используется самый популярный однофазный асинхронный двигатель с конденсаторным приводом, небольшой и высокоэффективный «Бесщеточный двигатель постоянного тока» и «Блок инвертора», который объединяет трехфазный асинхронный двигатель с небольшой инвертор.В этой статье объясняется структура, принцип управления скоростью и особенности каждой группы продуктов, а также представлены наши стандартные продукты.

1. Введение

Большое количество двигателей используется для общих целей в нашем окружении, от домашнего оборудования до станков на промышленных предприятиях. Электродвигатель в настоящее время является необходимым и незаменимым источником энергии во многих отраслях промышленности. Эти двигатели обладают широким диапазоном функций и характеристик.Если сосредоточить внимание на сегменте регулирования скорости на рынке двигателей, серводвигатели и шаговые двигатели управляют своей скоростью с помощью последовательности импульсов, в то время как асинхронный двигатель и бесщеточный двигатель постоянного тока регулируют скорость с помощью внешнего резистора и / или напряжения постоянного тока.
В этой статье объясняется структура, принцип управления скоростью и особенности следующих трех групп продуктов, которые могут относительно легко управлять скоростью с помощью аналогового входа.

  • Электродвигатель и мотор-редукторы переменного тока с регулировкой скорости
  • Бесщеточные двигатели постоянного тока и мотор-редукторы
  • Инверторный блок

2.Способы регулирования скорости различных двигателей с регулировкой скорости

Метод управления выходом схемы управления скоростью можно условно разделить на две группы: управление фазой и управление инвертором, которые составляют группы продуктов, показанные на рис. 1.

Рис.1 Классификация двигателей с регулировкой скорости

2.1. Двигатели с регулировкой скорости переменного тока

2.1.1. Конструкция Motor

Как показано на рис. 2, конструкция однофазного и трехфазного асинхронных двигателей включает статор, на котором намотана первичная обмотка, и цельный алюминиевый ротор в форме корзины, отлитый под давлением.Ротор недорогой, потому что конструкция проста и не использует магнит.

Рис.2 Конструкция асинхронного двигателя

Когда необходимо контролировать скорость этого двигателя, для определения скорости используется тахогенератор, который присоединяется к двигателю, как показано на рис. 3. Тахогенератор состоит из магнита, подключенного непосредственно к валу двигателя. и катушка статора, которая обнаруживает магнитные полюса и генерирует переменное напряжение с частотой 12 циклов на оборот.Поскольку это напряжение и частота увеличиваются с увеличением скорости вращения, скорость вращения двигателя регулируется на основе этого сигнала.

Рис.3 Система электродвигателя с регулировкой скорости переменного тока

2.1.2. Принцип управления скоростью
Скорость вращения N асинхронного двигателя может быть выражена выражением (1). Когда напряжение, прикладываемое к двигателю, увеличивается и уменьшается, изменяется скольжение и , затем изменяется частота вращения N.
N = 120 · f · (1- s ) / P · · · · · · · · · · · (1)

N : Скорость вращения [об / мин]
F : Частота 〔Гц〕
P : Число полюсов двигателя
S : Скольжение

В случае асинхронного двигателя, показанного на рис. 4, на кривой «Скорость вращения - крутящий момент» существует стабильный диапазон и нестабильный диапазон. Поскольку невозможно надежно работать в нестабильном диапазоне, простое управление напряжением (управление разомкнутым контуром) ограничивается регулированием скорости в узком диапазоне, например, N1 ~ N3 на рис.5. Чтобы обеспечить надежную работу даже в вышеупомянутом нестабильном диапазоне, необходимо определять скорость вращения двигателя и использовать механизм регулирования напряжения (управление с обратной связью), который уменьшает ошибку скорости по сравнению с установить значение.

Рис.4 Частота вращения - крутящий момент асинхронных двигателей

Рис.5 Простое управление напряжением

Доступные методы управления напряжением включают управление трансформатором или управление фазой.На рис. 6 показано, когда напряжение регулируется с помощью трансформатора. Этот метод не так-то просто сделать с двигателем, регулирующим скорость переменного тока. В качестве альтернативы, напряжение переменного тока можно регулировать, устанавливая время включения / выключения каждого полупериода переменного напряжения (50 или 60 Гц), подаваемого на двигатель, с помощью переключающего элемента (тиристора или симистора), который может напрямую включать и выключать переменный ток. напряжение, как показано на Рис. 7 и Рис. 8. Регулировка скорости достигается методом фазового регулирования путем регулирования среднеквадратичного значения значение переменного напряжения.

Рис.6 Изменение напряжения трансформатором

Рис.7 Изменение напряжения с помощью фазового управления

Рис.8 Цепь управления симистором

Этот метод управления скоростью переменного тока может обеспечить устойчивое управление скоростью за счет регулирования фазы с обратной связью даже в нестабильном диапазоне.
На рис. 9 показана конфигурация системы управления скоростью для электродвигателя переменного тока в виде блок-схемы.

Рис.9 Блок-схема системы электродвигателя с регулировкой скорости переменного тока

Рис.10 Форма сигнала для каждого блока

На рис. 10 показаны формы сигналов каждого блока. Установленное значение d скорости и обнаруженное напряжение e скорости, генерируемое тахогенератором, сравниваются в блоке усилителя сравнения. Затем определяется уровень сигнала напряжения a .
Сигнал напряжения a низкий, когда обнаруженное значение скорости до заданного значения скорости увеличивается, и выше, когда заданное значение скорости уменьшается.Поскольку сигнал запуска выводится в точке, где треугольная волна b пересекается с сигналом напряжения a , определяется синхронизация (фазовый угол) при включении симистора с уровнем сигнала напряжения a . Когда это время является медленным, напряжение, подаваемое на двигатель, становится низким, и скорость вращения двигателя уменьшается. Пониженная скорость вращения возвращается снова, и управление повторяется, так что разница между определенным значением скорости и установленным значением скорости всегда может быть постоянной.
На рис. 11 показан внешний вид упомянутого выше регулятора скорости. На рис. 11 рабочая точка двигателя образует петлю Q-R-S-T-Q с центром на O, и скорость вращения поддерживается между N1 и N2. Этот цикл максимально сокращен за счет увеличения точности определения скорости.

Рис.11 Работа регулятора скорости

Двигатель с регулировкой скорости переменного тока имеет следующие особенности при использовании этого регулирования фазы с обратной связью.
1) Поскольку напряжение переменного тока регулируется напрямую, схему управления скоростью можно настроить просто потому, что схема сглаживания не нужна, что позволяет получить компактную конструкцию по низкой цене.
2) Таким же образом возможна долговечная конструкция, поскольку нет необходимости в большом алюминиевом электролитическом конденсаторе.
3) Переключение выполняется только один раз в течение каждого полупериода промышленного источника переменного тока, что снижает уровень генерируемого шума.

2.1.3. Характеристики
Электродвигатели переменного тока с регулировкой скорости обычно имеют характеристики «Скорость вращения - крутящий момент», показанные на рис.12.

Рис.12 Характеристики крутящего момента и скорости вращения

«Строка безопасной эксплуатации» включена на рис. 12. «Строка безопасной эксплуатации» представляет собой ограничение, при котором двигатель может работать в непрерывном режиме без превышения максимально допустимой температуры.

2.2. Бесщеточный блок управления скоростью постоянного тока
2.2.1. Конструкция двигателя
Что касается конструкции бесщеточного двигателя, катушка соединена звездой (Y-разводкой) с тремя фазами: U, V и W и расположена в статоре, а ротор состоит из магнитов. намагниченный в многополюсной конфигурации, как показано на рис.14.
Внутри статора три ИС Холла расположены как магнитные элементы, так что разность фаз выходного сигнала от каждой ИС Холла будет составлять 120 градусов при каждом повороте ротора.

Рис.14 Конструкция бесщеточного двигателя постоянного тока

2.2.2. Принцип управления скоростью
Как показано на рис. 15, характеристики скорости вращения бесщеточного двигателя постоянного тока показывают отрицательную наклонную характеристику, когда его скорость не контролируется, что аналогично характеристикам щеточного двигателя постоянного тока.

Рис.15 Характеристики скорости вращения бесщеточного двигателя постоянного тока

Когда нагрузка не приложена и входное напряжение установлено на V2 на рисунке 15, рабочая точка двигателя становится P, а скорость вращения равна N1. Когда прикладывается крутящий момент T1 нагрузки, рабочая точка смещается к Q, а скорость вращения снижается до N2, однако скорость вращения возвращается к N1, если напряжение повышается до V3. Следовательно, поскольку скорость вращения изменяется всякий раз, когда изменяется крутящий момент нагрузки, механизму управления скоростью нужно будет только изменять входное напряжение всякий раз, когда наблюдается изменение скорости, чтобы поддерживать постоянную скорость на линии PR.
Этот контроль напряжения реализуется инвертором в выходной части схемы управления (драйвер). Этот инвертор генерирует трехфазное переменное напряжение из постоянного тока путем включения и выключения, как в последовательности, показанной на рис. 16 (b), с использованием шести переключающих элементов (полевых транзисторов или IGBT), показанных на рис. 16 (а).

Рис.16 (a) Выходная часть цепи управления (драйвер)

Рис.16 (b) Последовательность переключения

Переключающие элементы подключены к обмотке двигателя, как показано на рис.16 (a), а состояние ВКЛ / ВЫКЛ переключающего элемента определяет, какая катушка статора находится под напряжением и в каком направлении будет течь ток, то есть какая катушка станет полюсом N или полюсом S.
Фактически, положение магнитного полюса ротора определяется ИС Холла, и соответствующий переключающий элемент включается или выключается, как показано на рис. 16 (b). Например, в случае шага 1 транзисторы Tr1 и Tr6 включаются, и ток течет из U-фазы в W-фазу. В это время U-фаза возбуждается как полюс N, а фаза W становится S-полюсом, а ротор поворачивается на 30 градусов, переходя к шагу 2.Один оборот ротора выполняется повторением этой операции 12 раз (шаги 1 ~ 12).
На рис. 17 показана блок-схема конфигурации для управления скоростью бесщеточного двигателя постоянного тока.

Рис.17 Блок-схема системы бесщеточного двигателя постоянного тока

Последовательность переключения инвертора определяется сигналом от ИС Холла в части определения положения блок-схемы, и двигатель вращается.
Затем сигнал от ИС холла отправляется на детектор скорости, чтобы стать сигналом скорости, и он сравнивается с сигналом установки скорости в блоке усилителя сравнения, который затем генерирует сигнал отклонения.Значение входного тока двигателя определяется блоком настройки ШИМ на основе сигнала отклонения.
Бесщеточные двигатели постоянного тока имеют следующие особенности.
1) Он имеет высокий КПД, поскольку используется ротор с постоянными магнитами и вторичные потери небольшие.
2) Инерция ротора может быть уменьшена, и достигается высокая скорость реакции.
3) Можно уменьшить размер двигателя, поскольку он очень эффективен.
4) Колебания скорости при изменении нагрузки незначительны.

Рис.16 показана типичная последовательность переключения (метод подачи напряжения на 120 градусов). Еще более эффективная система бесщеточного двигателя постоянного тока использует метод возбуждения синусоидальной волны, получая информацию о положении ротора с высоким разрешением из программного обеспечения из сигнала IC Холла. Результатом этого метода является метод управления с низким уровнем шума, поскольку ток, протекающий к двигателю, не изменяется быстро. (2)

Рис. 18 Сравнение напряжений, прикладываемых с помощью метода возбуждения синусоидальной волны и метода возбуждения 120 градусов

2.2.3. Характеристики
Характеристики скорости вращения и крутящего момента бесщеточного двигателя постоянного тока имеют ограниченную область нагрузки в дополнение к области непрерывной работы.
Ограниченная рабочая зона очень эффективна при запуске инерционной нагрузки. Однако, когда работа в ограниченном режиме работы продолжается в течение пяти секунд или более, активируется функция защиты водителя от перегрузки, и двигатель замедляется до полной остановки.

2.3. Блок управления скоростью инвертора

2.3.1. Принцип регулирования скорости

Инверторный блок управляет скоростью трехфазного асинхронного двигателя, изменяя частоту f напряжения, подаваемого на двигатель. Инверторный блок изменяет частоту f, изменяя цикл включения / выключения шести переключающих элементов, и скорость вращения (N) двигателя изменяется пропорционально выражению в формуле (1).

N = 120 · f · (1- s ) / P ·· · · · · · · · · (1)

N : Скорость вращения [об / мин]
F : Частота 〔Гц〕
P : Число полюсов двигателя
S : Скольжение

Кроме того, чтобы напряжение, подаваемое на обмотку, имело синусоидальную форму, инвертор регулирует рабочий цикл включения / выключения, как показано на рис.21. Время включения / выключения регулируется таким образом, чтобы среднее напряжение, приложенное к двигателю, приобретало форму синусоиды, путем сравнения треугольной волны, называемой несущим сигналом, с формой волны синусоидального сигнала. Этот метод называется ШИМ-управлением.

Рис.19 Дежурный контроль ВКЛ / ВЫКЛ

Метод управления скоростью наших инверторных блоков делится на два типа: управление без обратной связи, которое просто изменяет скорость, и управление с обратной связью, которое уменьшает изменение скорости при изменении нагрузки двигателя.
1) Управление без обратной связи
На рис. 22 показана конфигурация управления без обратной связи в виде блок-схемы.

Рис.20 Блок-схема управления разомкнутым контуром

Этот метод используется для изменения входного напряжения и частоты двигателя в соответствии с заданной частотой. Этот метод подходит для изменения скорости и позволяет получить высокие скорости (частоту можно установить до 80 Гц) просто тогда, когда регулирование скорости с изменяющейся нагрузкой не представляет особой важности.
Создаваемый крутящий момент T двигателя отображается формулой (2).Из этого соотношения можно сказать, что крутящий момент также будет постоянным, если сделать постоянным V / f, отношение напряжения V к частоте f.

I ・ V ・ ・ ・ (2)

: Крутящий момент [Н · м]
: Напряжение источника питания [В]
current Ток двигателя [A]
: Частота [Гц]
: Постоянная

Однако чем ниже скорость, тем труднее поддерживать постоянным входное сопротивление асинхронного двигателя при изменении f.Следовательно, чтобы получить постоянный крутящий момент от низкой скорости к высокой скорости, необходимо отрегулировать отношение V / f на низкой скорости в соответствии с характеристиками двигателя, как показано сплошной линией на рисунке 23.

Рис.21 V / f Control

2) Управление с обратной связью
На Рис. 24 показана конфигурация блок-схемы системы управления с обратной связью, используемой в нашей серии BHF.

Рис.22 Блок-схема управления с обратной связью

Этот метод определяет разность фаз между напряжением выходного блока инвертора и первичным током, который вычисляет частоту возбуждения, соответствующую нагрузке, используя таблицу характеристик данных (рис.25), подготовленный заранее, и регулирует частоту инвертора без необходимости в датчике скорости на двигателе.

Рис.23 Таблица характеристик и данных

Используя эту таблицу характеристик и время t обнаруженной разности фаз, инвертор вычисляет выходную частоту инвертора, которая соответствует команде Nset скорости вращения, установленной потенциометром скорости, и выводит ее как выходную частоту инвертора. После получения выходной частоты блок управления U / f вычисляет напряжение, приложенное к двигателю, соответствующее выходной частоте f, и выполняет управление скоростью, управляя инвертором PWM.В результате, когда применяется нагрузка, выходная частота инвертора увеличивается, так что уменьшение скорости вращения может быть компенсировано. (3)

2.3.2. Характеристика с

Характеристики скорости вращения-момента инверторного блока показаны на рис. 26 и 27. Как поясняется в разделе «Двигатель, регулирующий скорость переменного тока», на характеристике крутящего момента нарисована «линия безопасной работы». Эта линия представляет предел для непрерывной работы, а область под этой линией называется областью непрерывной работы.

Рис.24 Характеристики скорости вращения и момента для управления без обратной связи

Рис.25 Характеристики скорости вращения и крутящего момента для замкнутого контура управления

3. Резюме

Oriental Motor предлагает три группы продуктов (двигатели с регулировкой скорости переменного тока, бесщеточные двигатели с регулировкой скорости постоянного тока и инверторные блоки) для использования в широком диапазоне приложений регулирования скорости. Подходящий продукт для регулирования скорости может быть выбран в соответствии с функцией, производительностью, стоимостью и целью, требуемой для вашего приложения.
Oriental Motor продолжит работу над разработкой продукции, чтобы в будущем мы могли предлагать продукцию, наилучшим образом отвечающую различным потребностям наших клиентов.

Список литературы

(1) Исследовательская группа по технологиям двигателей переменного тока: «Книга для понимания малых двигателей переменного тока», Kogyo Chosakai Publishing (1998)
(2) Казуо Абэ: «Технология бесшумного привода бесщеточного двигателя», RENGA № 163, стр. 19-25 (2003)
(3) Кодзи Намихана, Масаёши Сато: «Новый метод управления трехфазным асинхронным двигателем», RENGA No.159, стр. 23-28 (1999)

Кадзуя Сирахата
Завод Цуруока, Операции ACIX
Подразделение схемотехники
Отдел разработки схем

Проскальзывание в электрических асинхронных двигателях

Асинхронный двигатель переменного тока состоит из статора и ротора, и взаимодействие токов, протекающих в стержнях ротора, и вращающегося магнитного поля в статоре создает вращающий момент. мотор.При нормальной работе с нагрузкой скорость ротора всегда отстает от скорости магнитного поля, позволяя стержням ротора разрезать магнитные силовые линии и создавать полезный крутящий момент.

Разница между синхронной скоростью магнитного поля электродвигателя и скоростью вращения вала составляет скольжение - измеряется в оборотах в минуту или частоте.

Скольжение увеличивается с увеличением нагрузки, обеспечивая больший крутящий момент.

Обычно скольжение выражается как отношение между скоростью вращения вала и скоростью синхронного магнитного поля.

s = (n s - n a ) 100% / n s (1)

где

s = скольжение

03

26

03

= синхронная скорость магнитного поля (об / мин, об / мин)

n a = скорость вращения вала (об / мин, об / мин)

Когда ротор не вращается, скольжение 100% .

Пробуксовка при полной нагрузке варьируется от менее 1% в двигателях с высокой мощностью до более 5–6% в двигателях с малой мощностью.

Размер двигателя
(л.с.)
0,5 5 15 50 250
905 905 905 905 905 905 905 905 905 2,5 1,7 0,8

Число полюсов, частоты и скорость синхронного асинхронного двигателя

905 905 905 905 905 905 905 905 905 905 1000 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905
No.магнитных полюсов Частота (Гц)
50 60
2 3000 3600
4 1200
8 750 900
10 600 720
12 500 600
20 300 360

Пробуксовка и напряжение

Когда двигатель начинает вращаться, скольжение составляет 100% , а ток двигателя максимальный.Когда ротор начинает вращаться, скольжение и ток двигателя снижаются.

Частота скольжения

Частота уменьшается при уменьшении скольжения.

Скольжение и индуктивное сопротивление

Индуктивное реактивное сопротивление зависит от частоты и скольжения. Когда ротор не вращается, частота скольжения максимальна, как и индуктивное сопротивление.

Двигатель имеет сопротивление и индуктивность, и когда ротор вращается, индуктивное реактивное сопротивление низкое, а коэффициент мощности приближается к один .

Скольжение и импеданс ротора

Индуктивное реактивное сопротивление будет изменяться с проскальзыванием, поскольку полное сопротивление ротора представляет собой фазовую сумму постоянного сопротивления и переменного индуктивного реактивного сопротивления.

Когда двигатель начинает вращаться, индуктивное реактивное сопротивление высокое, а полное сопротивление в основном индуктивное. Ротор имеет низкий коэффициент мощности. Когда скорость увеличивается, индуктивное реактивное сопротивление уменьшается до уровня сопротивления.

Классификация асинхронных двигателей

Электрические асинхронные двигатели предназначены для различных применений в отношении таких характеристик, как момент срабатывания, тяговый момент, скольжение и другие - проверьте классификацию электрических асинхронных двигателей NEMA A, B, C и D.

Привод асинхронного двигателя с полевым управлением (FOC), модель

Модель привода асинхронного двигателя с полевым управлением (FOC)

Библиотека

Simscape / Электрические / Специализированные силовые системы / Электроприводы / Приводы переменного тока

Описание

Блок привода асинхронного двигателя с полевым управлением представляет стандарт векторный или роторный управляемый привод для асинхронных двигателей.Этот привод имеет регулирование скорости с обратной связью на основе косвенного или прямого векторного управления. Скорость контур управления выдает эталонный электромагнитный крутящий момент и поток ротора машины. В опорные прямые и квадратурные (dq) составляющие тока статора, соответствующие управляемые поток и крутящий момент ротора выводятся на основе стратегии косвенного векторного управления. В затем используются опорные компоненты dq тока статора для получения требуемых стробирующих сигналов. для инвертора через гистерезисный или ШИМ-регулятор тока.

Основным преимуществом этого привода по сравнению с приводами со скалярным управлением является его быстрая динамика. ответ. Внутренний эффект связи между крутящим моментом и магнитным потоком в машине регулируется. за счет развязки (ориентации потока ротора) управления, что позволяет моменту и потоку быть контролируется независимо. Однако из-за сложности вычислений реализация этого Привод требует быстрых вычислительных процессоров или DSP.

Примечание

В Simscape ™ Программное обеспечение Electrical ™ Specialized Power Systems, индукционное управление с ориентацией на поле Блок моторного привода обычно называют моторным приводом AC3 .

Блок привода индукционного электродвигателя с полевым управлением использует эти блоки из библиотеки Electric Drives / Fundamental Drive Blocks:

Замечания

Модель дискретная. Хорошие результаты моделирования были получены с 2 µ с временным шагом. Для моделирования устройства цифрового контроллера система управления имеет два разных времени выборки:

Время выборки регулятора скорости должно быть кратно времени выборки FOC. В последнее время выборки должно быть кратным временному шагу моделирования.Среднее значение инвертор позволяет использовать большие временные шаги моделирования, поскольку он не генерирует малое время постоянные (из-за демпферов RC), присущие детализированному преобразователю. Для времени выборки ВОК 60 мкс, хорошие результаты моделирования были получены для временного шага моделирования 60 мкс. Этот временной шаг не может быть больше, чем временной шаг FOC.

Параметры

Общие

Режим выходной шины

Выберите способ организации выходных переменных.Если вы выберете Multiple выходные шины (по умолчанию), блок имеет три отдельные выходные шины для двигателя, преобразователь и переменные контроллера. Если вы выберете Single output шина , все переменные выводятся на одну шину.

Уровень детализации модели

Выберите между инвертором подробного и среднего значения. По умолчанию Подробный .

Механический вход

Выберите между крутящим моментом нагрузки, скоростью двигателя и механическим портом вращения, как механический ввод.По умолчанию Torque Tm .

Если вы выбираете и применяете крутящий момент нагрузки, выходом будет скорость двигателя в соответствии с следующее дифференциальное уравнение, описывающее динамику механической системы:

Эта механическая система включена в модель двигателя.

Если вы выберете скорость двигателя в качестве механического входа, вы получите электромагнитный крутящий момент как выходной, что позволяет вам представить динамику механической системы извне. В внутренняя механическая система не используется с этим выбором механического входа и инерцией и параметры вязкого трения не отображаются.

Для механического вращающегося порта порт подключения S считается механическим. ввод и вывод. Это позволяет напрямую подключаться к среде Simscape. Механическая система двигателя также включена в привод. и основан на том же дифференциальном уравнении.

См. Раздел «Механическое соединение двух моторных приводов».

Использовать шину в качестве меток

Когда вы установите этот флажок, Motor , Conv , и Ctrl измерительные выходы используют имена сигналов для идентификации шины этикетки.Выберите этот вариант для приложений, в которых на этикетках сигналов шины должны быть только буквенно-цифровые символы.

Когда этот флажок снят (по умолчанию), выход измерения использует сигнал определение для идентификации меток шины. Этикетки содержат не буквенно-цифровые символы, которые несовместимы с некоторыми приложениями Simulink ® .

Установить без датчика

При установке этого флажка скорость двигателя оценивается по напряжениям на клеммах и токи, основанные на методе адаптивной системы привязки к модели (MRAS).В Sensorless Вкладка содержит параметры контроллера оценки.

Когда этот флажок снят, скорость двигателя измеряется внутренней скоростью. датчик, а вкладка Sensorless не отображается на маске блока.

Вкладка Asynchronous Machine

Вкладка Asynchronous Machine отображает параметры Блок Asynchronous Machine библиотеки Fundamental Blocks (powerlib).

Преобразователи и вкладка шины постоянного тока

Секция выпрямителя

Секция выпрямителя преобразователей и постоянного тока На вкладке Bus отображаются параметры блока Universal Bridge библиотека Fundamental Blocks (powerlib).Подробнее об универсальном мосту параметры, см. справку по универсальному мосту страница.

Секция шины постоянного тока
Емкость

Емкость шины постоянного тока (F). По умолчанию 2000e-6 .

Секция тормозного прерывателя
Сопротивление

Сопротивление тормозного прерывателя, используемое для предотвращения перенапряжения шины во время двигателя замедление или когда крутящий момент нагрузки стремится ускорить двигатель (Ом).По умолчанию 8 .

Частота прерывателя

Частота тормозного прерывателя (Гц). По умолчанию 4000 .

Напряжение активации

Динамическое торможение активируется, когда напряжение на шине достигает верхнего предела полоса гистерезиса (V). На следующем рисунке показана логика гистерезиса тормозного прерывателя. По умолчанию: 320 .

Напряжение отключения

Динамическое торможение отключается, когда напряжение на шине достигает нижнего предела полоса гистерезиса (V).Логика гистерезиса чоппера показана на следующем рисунке. По умолчанию 310 .

Секция инвертора

Секция инвертора преобразователей и постоянного тока На вкладке Bus отображаются параметры блока Universal Bridge библиотека Fundamental Blocks (powerlib). Подробнее об универсальном мосту параметры, см. справку по универсальному мосту страница.

Преобразователь среднего значения использует следующие параметры.

Частота источника

Частота трехфазного источника напряжения (Гц). По умолчанию 60 .

Сопротивление в открытом состоянии

Сопротивление переключателей инвертора в открытом состоянии (Ом). По умолчанию 1д-3 .

Вкладка «Контроллер»

Тип регулирования

Это всплывающее меню позволяет выбирать между регулировкой скорости и крутящего момента.По умолчанию Регулировка скорости .

Тип модуляции

Выберите гистерезисную или пространственно-векторную модуляцию. Тип модуляции по умолчанию - Гистерезис .

Схема

Когда вы нажимаете эту кнопку, появляется диаграмма, показывающая регуляторы скорости и тока схемы появляется.

Секция регулятора скорости
Рампы скорости - ускорение

Максимальное изменение скорости, допустимое во время разгона двигателя (об / мин / с).Чрезмерно Большое положительное значение может вызвать пониженное напряжение в шине постоянного тока. Этот параметр используется в скорости только режим регулирования. По умолчанию 900 .

Рампы скорости - замедление

Максимальное изменение скорости, допустимое во время замедления двигателя (об / мин / с). Чрезмерно большое отрицательное значение может вызвать перенапряжение шины постоянного тока. Этот параметр используется в скорости только режим регулирования. По умолчанию -900 .

Частота отсечки скорости

Частота отсечки фильтра нижних частот первого порядка измерения скорости (Гц).Этот параметр используется только в режиме регулирования скорости. По умолчанию 1000 .

Время выборки регулятора скорости

Время выборки регулятора скорости (с). Время выборки должно быть кратным шаг по времени моделирования. По умолчанию 100e-6 .

ПИ-регулятор - Пропорциональное усиление

Пропорциональное усиление регулятора скорости. Этот параметр используется при регулировании скорости. только режим.По умолчанию 300 .

ПИ-регулятор - интегральное усиление

Интегральное усиление регулятора скорости. Этот параметр используется в режиме регулирования скорости. только. По умолчанию 2000 .

Пределы выходного крутящего момента - отрицательные

Максимальный отрицательный требуемый крутящий момент, прикладываемый к двигателю регулятором тока (Нм). По умолчанию -1200 .

Пределы выходного момента - положительный

Максимальный положительный требуемый крутящий момент, прикладываемый к двигателю регулятором тока (Н.м). По умолчанию 1200 .

Секция ориентированного на поле управления
Регулятор потока - пропорциональное усиление

Пропорциональное усиление регулятора потока. По умолчанию 100 .

Регулятор потока - интегральное усиление

Интегральное усиление регулятора потока. По умолчанию 30 .

Пределы выхода потока - отрицательный

Максимальный отрицательный выход регулятора потока (Wb).По умолчанию -2 .

Пределы выхода потока - положительный

Максимальный положительный выход регулятора потока (Wb). По умолчанию 2 .

Частота среза фильтра нижних частот

Частота среза фильтра первого порядка оценки потока (Гц). По умолчанию 16 .

Время выборки

Время выборки контроллера FOC (с).Время выборки должно быть кратным шаг по времени моделирования. По умолчанию - 20e-6 .

Диапазон гистерезиса регулятора тока

Текущая полоса гистерезиса. Это значение представляет собой общую распределенную полосу пропускания. симметрично относительно текущей уставки (A) . По умолчанию 10 . На следующем рисунке показан случай, когда текущая уставка равно Is * , а текущая полоса гистерезиса установлена ​​на dx.

Этот параметр не используется при использовании инвертора среднего значения.

Максимальная частота коммутации

Максимальная частота коммутации инвертора (Гц). Этот параметр не используется при использовании инвертор среднего значения. По умолчанию 20000 .

Показать / скрыть автонастройку Control

Выберите, чтобы показать или скрыть параметры инструмента Autotuning Control.

Автоподстройка контуров ПИ Раздел
Требуемое демпфирование [zeta]

Укажите коэффициент демпфирования, используемый для расчета коэффициентов усиления Kp и Ki Блок регулятора скорости (AC). По умолчанию 0,9 .

Желаемое время отклика при 5% [Trd (sec)]

Укажите желаемое время установления блока регулятора скорости (AC). Это время, необходимое для того, чтобы реакция контроллера достигла и оставалась в пределах 5% диапазон целевого значения.По умолчанию 0,1 .

Отношение полосы пропускания (InnerLoop / SpeedLoop)

Укажите соотношение между полосой пропускания и собственной частотой регулятора. По умолчанию 30 .

Расчет коэффициентов усиления ПИ-регулятора

Расчет пропорционального усиления и Интеграл получить параметров регулятора скорости (AC) и Блоки полевого контроллера.Расчет основан на Желаемое демпфирование [zeta] , Желаемое время отклика @ 5% и Соотношение пропускной способности (InnerLoop / SpeedLoop) параметров. Вычисленные значения отображаются в маске блока Drive. Нажмите Примените или OK , чтобы подтвердить их.

Бездатчиковая вкладка

Пропорциональное усиление

Укажите значение пропорционального усиления ПИ-регулятора, которое используется для настройки скорость двигателя.

По умолчанию 5000 .

Интегральное усиление

Укажите значение интегрального усиления ПИ-регулятора, которое используется для настройки скорость двигателя.

По умолчанию 50 .

Верхний - Верхний предел выхода

Укажите верхний предел выхода ПИ-регулятора.

По умолчанию 500 .

Нижний - нижний предел выхода

Укажите нижний предел выхода ПИ-регулятора.

По умолчанию -500 .

Время выборки контроллера

Время выборки контроллера, в с. Время выборки должно быть кратно времени моделирования. шаг. По умолчанию: 2e-06 .

Блок входов и выходов

SP

Уставка скорости или крутящего момента. Заданное значение скорости может быть ступенчатой ​​функцией, но скорость скорость изменения будет соответствовать рампе ускорения / замедления.Если момент нагрузки и скорости имеют противоположные знаки, ускоряющий момент будет суммой электромагнитного и моменты нагрузки.

Tm или Wm

Механический вход: момент нагрузки (Tm) или скорость двигателя (Wm). Для механического ротационный порт (S), этот ввод удаляется.

A, B, C

Трехфазные клеммы моторного привода.

Wm , Te или S

Механическая мощность: скорость двигателя (Wm), электромагнитный момент (Te) или механический ротационный порт (S).

Когда для параметра Режим выходной шины установлено значение Несколько выходные шины , блок имеет следующие три выходные шины:

Motor

Вектор измерения двигателя. Этот вектор позволяет вам наблюдать переменные двигателя. с помощью блока Bus Selector.

Conv

Вектор измерения трехфазных преобразователей. Этот вектор содержит:

Обратите внимание, что все значения тока и напряжения мостов можно визуализировать с помощью блока Multimeter.

Ctrl

Вектор измерения контроллера. Этот вектор содержит:

Когда для параметра Режим выходной шины установлено значение Один выходная шина , блок группирует выходы Motor, Conv и Ctrl в одну шину вывод.

Технические характеристики модели

Библиотека содержит набор параметров привода мощностью 3 и 200 л.с. Характеристики эти два диска показаны в следующей таблице.

Технические характеристики привода 3 л.с. и 200 л.с.

605 905

60 Гц

605 905 Значения

Привод 3 л.с.

200 л.с.

Амплитуда

220 В

460 В

Частота

60 Гц

Мощность

3 л.с.

200 л.с.

Скорость

об / мин

Напряжение

220 В

460 В

Примеры

Пример ac3_example иллюстрирует моделирование привода двигателя AC3 со стандартными условиями нагружения для детальных и средних моделей.

Ссылки

[1] Bose, B. K. Modern Power Electronics and AC Диски . Река Аппер Сэдл, Нью-Джерси: Прентис-Холл, 2002.

[2] Грелет, Г., и Г. Клерк. Actionneurs électriques . Paris: Éditions Eyrolles, 1997.

[3] Krause, P.C. Анализ электрического Машины . Нью-Йорк: McGraw-Hill, 1986.

Представлен в R2006a

Эквивалентная схема асинхронного двигателя

Асинхронные двигатели часто используются как в промышленности, так и в быту.В асинхронном двигателе электрический ток в роторе индуцируется изменяющимся магнитным полем в обмотке статора. Ток ротора создает собственное магнитное поле, которое затем взаимодействует с полем статора, создавая крутящий момент и вращение.

Основные понятия об асинхронных двигателях

Один из способов анализа и понимания работы асинхронного двигателя - использование эквивалентной схемы. Прежде чем перейти к эквивалентной схеме, полезно несколько понятий.

Скольжение

Асинхронные двигатели. Магнитное поле статора вращается с синхронной скоростью двигателя ( n, s, , ). Ротор никогда не может вращаться с синхронной скоростью, иначе не будет индуцированного тока. Обычно полная скорость ротора составляет от 2 до 6% от синхронной скорости. Разница между синхронной скоростью двигателей и фактической асинхронной скоростью известна как скольжение

Разница между синхронной скоростью двигателя ( n s ) и фактической скоростью ротора ( n r ) известна как скольжение ( с ).Скольжение может быть выражено в долях или процентах:

Частота

Согласно теории магнитной обмотки, соотношение между частотой в статоре ( f ), числом пар полюсов ( p ) и синхронная скорость определяется по формуле:


Внутри ротора частота (f r ) определяется разницей скоростей ротора и статора:

, что в сочетании с приведенным выше уравнением для скольжения , дает:

синхронная скорость в оборотах в секунду:

и в оборотах в минуту (об / мин)

Величина n с - это скорость, с которой поток вращается относительно статора, а sn s скорость потока ротора относительно ротора.Однако сам ротор вращается со скоростью n r , что дает общую скорость потока ротора:

Скорость вращения потока статора и потока ротора идентичны. Это то же самое, что и в трансформаторе, и позволяет нам моделировать поведение индукции как трансформатора с воздушным зазором.

Эквивалентная схема асинхронного двигателя

Исходя из предыдущего, мы можем использовать эквивалентную схему трансформатора для моделирования асинхронного двигателя.

В эквивалентной схеме R 1 представляет сопротивление обмотки статора и X 1 реактивное сопротивление утечки статора (поток, который не связан с воздушным зазором и ротором). Намагничивающее реактивное сопротивление, необходимое для пересечения воздушного зазора, представлено величиной X м , а потери в сердечнике (гистерезис и вихревой ток) - величиной R c .

Идеальный трансформатор на N1 и N2 витков соответственно представляет собой воздушный зазор.Со стороны ротора на индуцированную ЭДС влияет скольжение (по мере того, как ротор набирает скорость, скольжение уменьшается и индуцируется меньшая ЭДС). Сопротивление ротора и реактивное сопротивление представлены как R 2 и X 2 ; при этом X 2 зависит от частоты ЭДС индуктора ротора.

Цепь ротора, ток I 2 определяется как:


, которое можно переписать как:

Приведенное выше равенство позволяет изобразить эквивалентную схему как:

Упрощенное Эквивалентная схема

Эквивалентная схема, показанная выше, удалила зависимость от скольжения для определения вторичного напряжения и частоты.Следовательно, схему можно упростить, отказавшись от идеального трансформатора и отнеся сопротивление и реактивное сопротивление ротора к первичной обмотке (обозначенной как ').

Указанные значения рассчитываются путем их умножения на k 2 , где k - эффективное соотношение оборотов статора / ротора.

Примечание: относительно просто получить параметры эквивалентной схемы путем тестирования. Обычно это подразумевает d.c. испытание, испытание без нагрузки и испытание заблокированного ротора.

Расчет рабочих характеристик двигателя

Упрощенная эквивалентная схема позволяет рассчитать рабочие параметры асинхронного двигателя.

Примечание: вычисления являются векторными величинами. Если используется комплексное представление, то фазовый сдвиг, коэффициенты мощности и т. Д. Автоматически выпадают из расчетов.

Ток двигателя

Если известны параметры эквивалентной схемы, можно легко рассчитать ток двигателя, уменьшив схему до эквивалентного импеданса Z eq , что даст:

By осматривая эквивалентную схему, мы видим, что Z eq имеет вид:

Из этого уравнения можно увидеть, что по мере увеличения скорости ротора (уменьшения скольжения) сопротивление цепи увеличивается и ток статора уменьшается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *