Сопротивление провода удельное: Удельное электрическое сопротивление проводника

Содержание

Удельное сопротивление железного провода. Удельное сопротивление железа, алюминия, меди и других металлов

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р».

Формула для расчета:

p=(R*S)/l .

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l )/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Выбор сечения кабеля

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Электросопротивление других металлов

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте. В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода. Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

На опыте установлено, что сопротивление R металлического проводника прямо пропорционально его длине L и обратно пропорционально площади его поперечного сечения А :

R = ρL/А (26.4)

где коэффициент ρ называется удельным сопротивлением и служит характеристикой вещества, из которого изготовлен проводник.

Это соответствует здравому смыслу: сопротивление толстого провода должно быть меньше, чем тонкого, поскольку в толстом проводе электроны могут перемещаться по большей площади. И можно ожидать роста сопротивления с увеличением длины проводника, так как увеличивается количество препятствий на пути потока электронов.

Типичные значения ρ для разных материалов приведены в первом столбце табл. 26.2. (Реальные значения зависят от чистоты вещества, термической обработки, температуры и других факторов.)

Таблица 26.2.
Удельное сопротивление и температурный коэффициент сопротивления (ТКС) (при 20 °С)
Вещество ρ ,Ом·м ТКС α ,°C -1
Проводники
Серебро 1,59·10 -8 0,0061
Медь
1,68·10 -8
0,0068
Алюминий 2,65·10 -8 0,00429
Вольфрам 5,6·10 -8 0,0045
Железо 9,71·10 -8 0,00651
Платина 10,6·10 -8 0,003927
Ртуть 98·10 -8 0,0009
Нихром (сплав Ni, Fe, Сг) 100·10 -8 0,0004
Полупроводники 1)
Углерод (графит) (3-60)·10 -5 -0,0005
Германий (1-500)·10 -5 -0,05
Кремний 0,1 — 60 -0,07
Диэлектрики
Стекло 10 9 — 10 12
Резина твердая 10 13 — 10 15
1) Реальные значения сильно зависят от наличия даже малого количества примесей.

Самым низким удельным сопротивлением обладает серебро, которое оказывается, таким образом, наилучшим проводником; однако оно дорого. Немногим уступает серебру медь; ясно, почему провода чаще всего изготовляют из меди.

Удельное сопротивление алюминия выше, чем у меди, однако он имеет гораздо меньшую плотность, и в некоторых случаях ему отдают предпочтение (например, в линиях электропередач), поскольку сопротивление проводов из алюминия той же массы оказывается меньше, чем у медных. Часто пользуются величиной, обратной удельному сопротивлению:

σ = 1/ρ (26.5)

σ называемой удельной проводимостью. Удельная проводимость измеряется в единицах (Ом·м) -1 .

Удельное сопротивление вещества зависит от температуры. Как правило, сопротивление металлов возрастает с температурой. Этому не следует удивляться: с повышением температуры атомы движутся быстрее, их расположение становится менее упорядоченным, и можно ожидать, что они будут сильнее мешать движению потока электронов.

В узких диапазонах изменения температуры удельное сопротивление металла увеличивается с температурой практически линейно:

где ρ T — удельное сопротивление при температуре Т , ρ 0 — удельное сопротивление при стандартной температуре Т 0 , а α — температурный коэффициент сопротивления (ТКС). Значения а приведены в табл. 26.2. Заметим, что у полупроводников ТКС может быть отрицательным. Это очевидно, поскольку с ростом температуры увеличивается число свободных электронов и они улучшают проводящие свойства вещества. Таким образом, сопротивление полупроводника с повышением температуры может уменьшаться (хотя и не всегда).

Значения а зависят от температуры, поэтому следует обращать внимание на диапазон температур, в пределах которого справедливо данное значение (например, по справочнику физических величин). Если диапазон изменения температуры окажется широким, то линейность будет нарушаться, и вместо (26.6) надо использовать выражение, содержащее члены, которые зависят от второй и третьей степеней температуры:

ρ T = ρ 0 (1+αТ + + βТ 2 + γТ 3),

где коэффициенты β и γ обычно очень малы (мы положили Т 0 = 0°С), но при больших Т вклад этих членов становится существенным.

При очень низких температурах удельное сопротивление некоторых металлов, а также сплавов и соединений падает в пределах точности современных измерений до нуля. Это свойство называют сверхпроводимостью; впервые его наблюдал нидерландский физик Гейке Камер-линг-Оннес (1853-1926) в 1911 г. при охлаждении ртути ниже 4,2 К. При этой температуре электрическое сопротивление ртути внезапно падало до нуля.

Сверхпроводники переходят в сверхпроводящее состояние ниже температуры перехода, составляющей обычно несколько градусов Кельвина (чуть выше абсолютного нуля). Наблюдался электрический ток в сверхпроводящем кольце, который практически не ослабевал в отсутствие напряжения в течение нескольких лет.

В последние годы сверхпроводимость интенсивно исследуется с целью выяснить ее механизм и найти материалы, обладающие сверхпроводимостью при более высоких температурах, чтобы уменьшить стоимость и неудобства, обусловленные необходимостью охлаждения до очень низких температур. Первую успешную теорию сверхпроводимости создали Бардин, Купер и Шриффер в 1957 г. Сверхпроводники уже используются в больших магнитах, где магнитное поле создается электрическим током (см. гл. 28), что значительно снижает расход электроэнергии. Разумеется, для поддержания сверхпроводника при низкой температуре тоже затрачивается энергия.

Замечания и предложения принимаются и приветствуются!

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Электрический ток возникает в результате замыкания цепи с разностью потенциалов на зажимах. Силы поля воздействуют на свободные электроны и они перемещаются по проводнику. В процессе этого путешествия, электроны встречаются с атомами и передают им часть своей накопившейся энергии. В результате этого их скорость уменьшается. Но, из-за воздействия электрического поля, она снова набирает обороты. Таким образом, электроны постоянно испытывают на себе сопротивление, именно поэтому электрический ток нагревается.

Свойство вещества, превращать электроэнергию в тепло во время воздействия тока, и является электрическим сопротивлением и обозначается, как R, его измерительной единицей является Ом. Величина сопротивления зависит, главным образом от способности различных материалов проводить ток.
Впервые, о сопротивляемости заявил немецкий исследователь Г. Ом.

Для того, чтобы узнать зависимость силы тока от сопротивления, известный физик провел множество экспериментов. Для опытов он использовал различные проводники и получал различные показатели.
Первое, что определил Г. Ом — это то, что удельное сопротивление зависит от длинны проводника. То есть, если увеличивалась длинна проводника, сопротивление тоже увеличивалось. В результате, эта связь была определена, как прямо пропорциональная.

Вторая зависимость — это площадь поперечного сечения. Её можно было определить путем поперечного среза проводника. Площадь той фигуры, что образовалась на срезе и есть площадь поперечного сечения. Здесь связь получилась обратно пропорциональная. То есть чем больше была площадь поперечного сечения, тем меньше становилось сопротивление проводника.

И третья, важная величина, от которой зависит сопротивление, это материал. В результате того, что Ом использовал в опытах различные материалы, он обнаружил различные свойства сопротивляемости. Все эти опыты и показатели были сведены в таблицу из которой видно, различное значение удельной сопротивляемости у различных веществ.

Известно, что самые лучшие проводники — металлы. А какие из металлов лучшие проводники? В таблице показано, что наименьшей сопротивляемостью обладают медь и серебро. Медь используется чаще из-за меньшей стоимости, а серебро применяют в наиболее важных и ответственных приборах.

Вещества с высоким удельным сопротивлением в таблице, плохо проводят электрический ток, а значит могут быть прекрасными изоляционными материалами. Вещества обладающие этим свойством в наибольшей степени, это фарфор и эбонит.

Вообще, удельное электрическое сопротивление является очень важным фактором, ведь, определив его показатель, мы можем узнать из какого вещества сделан проводник. Для этого необходимо измерить площадь сечения, узнать силу тока с помощью вольтметра и амперметра, а также измерить напряжение. Таким образом мы узнаем значение удельного сопротивления и, с помощью таблицы легко выйдем на вещество. Получается, что удельное сопротивление — это в роде отпечатков пальцев вещества. Кроме этого, удельное сопротивление важно при планировании длинных электрических цепей: нам необходимо знать этот показатель, чтобы соблюдать баланс между длинной и площадью.

Есть формула, определяющая, что сопротивление равно 1 ОМ, если при напряжении 1В, его сила тока равняется 1А. То есть, сопротивление единичной площади и единичной длинны, сделанного из определенного вещества и есть удельное сопротивление.

Надо отметить также, что показатель удельного сопротивления напрямую зависит от частоты вещества. То есть от того имеет ли он примеси. Та, добавление всего одного процента марганца увеличивает сопротивляемость самого проводящего вещества — меди, в три раза.

Эта таблица демонстрирует величину удельного электрического сопротивления некоторых веществ.



Материалы с высокой проводимостью

Медь
Как мы уже говорили медь чаще всего применяется в качестве проводника. Это объясняется не только её низкой сопротивляемостью. Медь имеет такие преимущества, как высокая прочность, стойкость к коррозии, легкость в использовании и хорошая обрабатываемость. Хорошими марками меди считается М0 и М1. В них количество примесей не превышает 0,1%.

Высокая стоимость металла и его преобладающая в последнее время дефицитность побуждает производителей применять в качестве проводника алюминий. Также, используются сплавы меди с различными металлами.
Алюминий
Этот металл значительно легче меди, но алюминий обладает большими значениями теплоемкости и температуры плавления. В связи с этим для того, что довести его до расплавленного состояния требуется больше энергии, чем меди. Тем не менее нужно учитывать факт дефицитности меди.
В производстве электротехнических изделий применяется, как правило, алюминий марки А1. Он содержит не более 0,5% примесей. А металл наивысшей частоты — это алюминий марки АВ0000.
Железо
Дешевизна и доступность железа омрачается его высокой удельной сопротивляемостью. Кроме того, она быстро подвергается коррозии. По этой причине стальные проводники часто покрывают цинком. Широко используется так называемый биметалл — это сталь покрытая для защиты медью.
Натрий
Натрий, тоже доступный и перспективный материал, но его сопротивляемость почти в три раза больше меди. Кроме того, металлический натрий обладает высокой химической активностью, что обязывает покрывать такой проводник герметичной защитой. Она же должна защищать проводник от механических повреждений, так как натрий очень мягкий и достаточно непрочный материал.

Сверхпроводимость
В таблице ниже, указано удельное сопротивление веществ при температуре 20 градусов. Указание температуры неслучайно, ведь удельное сопротивление напрямую зависит от этого показателя. Это объясняется тем, что при нагревании, повышается и скорость атомов, а значит вероятность встречи их с электронами тоже увеличится.


Интересно, что происходит с сопротивляемостью в условиях охлаждения. Впервые поведение атомов при очень низких температурах заметил Г. Камерлинг-Оннес в 1911 году. Он охладил ртутную проволоку до 4К и обнаружил падение её сопротивляемости до нуля. Изменение показателя удельной сопротивляемости у некоторых сплавов и металлов в условиях низкой температуры, физик назвал сверхпроводимостью.

Сверхпроводники переходят в состояние сверхпроводимости при охлаждении, и, при этом их оптические и структурные характеристики не меняются. Главное открытие состоит в том, что электрические и магнитные свойства металлов в сверхпроводящем состоянии сильно отличаются от их же свойств в обычном состоянии, а также от свойств других металлов, которые при понижении температуры не могут переходить в это состояние.
Применение сверхпроводников осуществляется, главным образом, в получении сверхсильного магнитного поля, сила которого достигает 107 А/м. Также разрабатываются системы сверхпроводящих линий электропередач.

Похожие материалы.

Понятие об электрическом сопротивлении и проводимости

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.

Электрической проводимостью называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/R ,обозначается проводимость латинской буквой g.

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа — 0,12, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.



Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника :

R = р l / S ,

Где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

S = π d 2 / 4

Где π — постоянная величина, равная 3,14; d — диаметр проводника.

А так определяется длина проводника:

l = S R / p ,

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

S = р l / R

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

р = R S / l

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1°C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре — 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

Удельное сопротивление свинца. Сопротивление проводов

Уде?льное электри?ческое сопротивле?ние, или просто удельное сопротивление вещества — физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока .

Удельное сопротивление обозначается греческой буквой ρ. Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.

Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S может быть рассчитано по формуле (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется

Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м .

Из соотношения следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом . Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи , выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².

В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10 −6 от 1 Ом·м . Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом . Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянногоили переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура .

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил , под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуре ЭДС будет равна:

где — элемент контура.

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого? источника равна нулю.

Каждое вещество способно проводить ток в разной степени, на эту величину влияет сопротивление материала. Обозначается удельное сопротивление меди, алюминия, стали и любого другого элемента буквой греческого алфавита ρ. Эта величина не зависит от таких характеристик проводника, как размеры, форма и физическое состояние, обычное же электросопротивление учитывает эти параметры. Измеряется удельное сопротивление в Омах, умноженных на мм² и разделенных на метр.

Категории и их описание

Любой материал способен проявлять два типа сопротивления в зависимости от подаваемого на него электричества. Ток бывает переменным или постоянным, что значительно влияет на технические показатели вещества. Так, существуют такие сопротивления:

  1. Омическое. Проявляется под воздействием постоянного тока. Характеризует трение, которое создается движением электрически заряженных частиц в проводнике.
  2. Активное. Определяется по такому же принципу, но создается уже под действием переменного тока.

В связи с этим определений удельной величины тоже два. Для постоянного тока она равна сопротивлению, которое оказывает единица длины проводящего материала единичной фиксированной площади сечения. Потенциальное электрополе воздействует на все проводники, а также полупроводники и растворы, способные проводить ионы. Эта величина определяет проводящие свойства самого материала. Форма проводника и его размеры не учитываются, поэтому ее можно назвать базовой в электротехнике и материаловедении.

При условии прохождения переменного тока удельная величина рассчитывается с учетом толщины проводящего материала. Здесь уже происходит воздействие не только потенциального, но и вихревого тока, кроме того, принимается во внимание частота электрических полей. Удельное сопротивление этого типа больше, чем при постоянном токе, поскольку здесь идет учет положительной величины сопротивления вихревому полю. Также эта величина зависит от формы и размеров самого проводника. Именно эти параметры и определяют характер вихревого движения заряженных частиц.

Переменный ток вызывает в проводниках определенные электромагнитные явления. Они очень важны для электротехнических характеристик проводящего материала:

  1. Скин-эффект характеризуется ослаблением электромагнитного поля тем больше, чем дальше оно проникает в среду проводника. Это явление также носит название поверхностного эффекта.
  2. Эффект близости снижает плотность тока благодаря близости соседних проводов и их влиянию.

Эти эффекты являются очень важными при расчете оптимальной толщины проводника, так как при использовании провода, у которого радиус больше глубины проникновения тока в материал, остальная его масса останется незадействованной, а следовательно, такой подход будет неэффективным. В соответствии с проведенными расчетами эффективный диаметр проводящего материала в некоторых ситуациях будет следующим:

  • для тока в 50 Гц — 2,8 мм;
  • 400 Гц — 1 мм;
  • 40 кГц — 0,1 мм.

Ввиду этого для высокочастотных токов активно применяется использование плоских многожильных кабелей, состоящих из множества тонких проводов.

Характеристики металлов

Удельные показатели металлических проводников содержатся в специальных таблицах. По этим данным можно производить необходимые дальнейшие расчеты. Пример такой таблицы удельных сопротивлений можно увидеть на изображении.

На таблице видно, что наибольшей проводимостью обладает серебро — это идеальный проводник среди всех существующих металлов и сплавов. Если рассчитать, сколько потребуется провода из этого материала для получения сопротивления в 1 Ом, то выйдет 62,5 м. Проволоки из железа для такой же величины понадобится целых 7,7 м.

Какими бы замечательными свойствами ни обладало серебро, оно является слишком дорогим материалом для массового использования в электросетях, поэтому широкое применение в быту и промышленности нашла медь. По величине удельного показателя она стоит на втором месте после серебра, а по распространенности и простоте добычи намного лучше его. Медь обладает и другими преимуществами, позволившими ей стать самым распространенным проводником. К ним относятся:

Для применения в электротехнике используют рафинированную медь, которая после плавки из сульфидной руды проходит процессы обжигания и дутья, а далее обязательно подвергается электролитической очистке. После такой обработки можно получить материал очень высокого качества (марки М1 и М0), который будет содержать от 0,1 до 0,05% примесей. Важным нюансом является присутствие кислорода в крайне малых количествах, так как он негативно влияет на механические характеристики меди.

Часто этот металл заменяют более дешевыми материалами — алюминием и железом, а также различными бронзами (сплавами с кремнием, бериллием, магнием, оловом, кадмием, хромом и фосфором). Такие составы обладают более высокой прочностью по сравнению с чистой медью, хотя и меньшей проводимостью.

Преимущества алюминия

Хоть алюминий обладает большим сопротивлением и более хрупок, его широкое использование объясняется тем, что он не настолько дефицитен, как медь, а следовательно, стоит дешевле. Удельное сопротивление алюминия составляет 0,028, а его низкая плотность обеспечивает ему вес в 3,5 раза меньше, чем медь.

Для электрических работ применяют очищенный алюминий марки А1, содержащий не более 0,5% примесей. Более высокую марку АВ00 используют для изготовления электролитических конденсаторов, электродов и алюминиевой фольги. Содержание примесей в этом алюминии составляет не более 0,03%. Существует и чистый металл АВ0000 , включающий не более 0,004% добавок. Имеют значение и сами примеси: никель, кремний и цинк незначительно влияют на проводимость алюминия, а содержание в этом металле меди, серебра и магния дает ощутимый эффект. Наиболее сильно уменьшают проводимость таллий и марганец.

Алюминий отличается хорошими антикоррозийными свойствами. При контакте с воздухом он покрывается тонкой пленкой окиси, которая и защищает его от дальнейшего разрушения. Для улучшения механических характеристик металл сплавляют с другими элементами.

Показатели стали и железа

Удельное сопротивление железа по сравнению с медью и алюминием имеет очень высокие показатели, однако благодаря доступности, прочности и устойчивости к деформациям материал широко используют в электротехническом производстве.

Хоть железо и сталь, удельное сопротивление которой еще выше, имеют существенные недостатки, изготовители проводникового материала нашли методы их компенсирования. В частности, низкую стойкость к коррозии преодолевают путем покрытия стальной проволоки цинком или медью.

Свойства натрия

Металлический натрий также очень перспективен в проводниковом производстве. По показателям сопротивления он значительно превышает медь, однако имеет плотность в 9 раз меньше, чем у неё. Это позволяет использовать материал в изготовлении сверхлёгких проводов.

Металлический натрий очень мягкий и совершенно неустойчив к любого рода деформационным воздействиям, что делает его использование проблемным — провод из этого металла должен быть покрыт очень прочной оболочкой с крайне малой гибкостью. Оболочка должна быть герметичной, так как натрий проявляет сильную химическую активность в самых нейтральных условиях. Он моментально окисляется на воздухе и демонстрирует бурную реакцию с водой, в том числе и с содержащейся в воздухе.

Еще одним плюсом использования натрия является его доступность. Его можно получить в процессе электролиза расплавленного хлористого натрия, которого в мире существует неограниченное количество. Другие металлы в этом плане явно проигрывают.

Чтобы рассчитать показатели конкретного проводника, необходимо произведение удельного числа и длины проволоки разделить на площадь ее сечения. В результате получится значение сопротивления в Омах. Например, чтобы определить, чему равно сопротивление 200 м проволоки из железа с номинальным сечением 5 мм², нужно 0,13 умножить на 200 и разделить полученный результат на 5. Ответ — 5,2 Ом.

Правила и особенности вычисления

Для измерения сопротивления металлических сред пользуются микроомметрами. Сегодня их выпускают в цифровом варианте, поэтому проведенные с их помощью измерения отличаются точностью. Объяснить ее можно тем, что металлы обладают высоким уровнем проводимости и имеют крайне маленькое сопротивление. Для примера, нижний порог измерительных приборов имеет значение 10 -7 Ом.

С помощью микроомметров можно быстро определить, насколько качественен контакт и какое сопротивление проявляют обмотки генераторов, электродвигателей и трансформаторов, а также электрические шины. Можно вычислить присутствие включений другого металла в слитке. Например, вольфрамовый кусок, покрытый позолотой, показывает вдвое меньшую проводимость, чем полностью золотой. Тем же способом можно определить внутренние дефекты и полости в проводнике.

Формула удельного сопротивления выглядит следующим образом: ρ = Ом · мм 2 /м . Словами ее можно описать как сопротивление 1 метра проводника , имеющего площадь сечения 1 мм². Температура подразумевается стандартная — 20 °C.

Влияние температуры на измерение

Нагревание или охлаждение некоторых проводников оказывает значительное влияние на показатели измерительных приборов. В качестве примера можно привести следующий опыт: необходимо подключить к аккумулятору спирально намотанную проволоку и подключить в цепь амперметр.

Чем сильнее нагревается проводник, тем меньше становятся показания прибора. Сила тока имеет обратно пропорциональную зависимость от сопротивления. Следовательно, можно сделать вывод, что в результате нагрева проводимость металла уменьшается. В большей или меньшей степени так ведут себя все металлы, однако изменения проводимости у некоторых сплавов практически не наблюдается.

Примечательно, что жидкие проводники и некоторые твердые неметаллы имеют тенденцию уменьшать свое сопротивление с повышением температуры. Но и эту способность металлов ученые обратили себе на пользу. Зная температурный коэффициент сопротивления (α) при нагреве некоторых материалов, можно определять внешнюю температуру. Например, проволоку из платины, размещенную на каркасе из слюды, помещают в печь, после чего проводят измерение сопротивления. В зависимости от того, насколько оно изменилось, делают вывод о температуре в печи. Такая конструкция называется термометром сопротивления.

Если при температуре t 0 сопротивление проводника равно r 0, а при температуре t равно rt , то температурный коэффициент сопротивления равен

Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200 °C).

Электрическое сопротивление физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику . Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

Удельное сопротивление

Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)

Вещество

p , Ом*мм 2 /2

α,10 -3 1/K

Алюминий

0.0271

Вольфрам

0.055

Железо

0.098

Золото

0.023

Латунь

0.025-0.06

Манганин

0.42-0.48

0,002-0,05

Медь

0.0175

Никель

Константан

0.44-0.52

0.02

Нихром

0.15

Серебро

0.016

Цинк

0.059

Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

Зависимость удельного сопротивления от деформаций


При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

Влияние температуры на удельное сопротивление

Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 — температура после нагрева.

Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.

Сопротивление меди действительно меняется с температурой, но сначала нужно определиться, имеется ли в виду удельное электрическое сопротивление проводников (омическое сопротивление), что важно для питания по Ethernet, использующего постоянный ток, или же речь идет о сигналах в сетях передачи данных, и тогда мы говорим о вносимых потерях при распространении электромагнитной волны в среде витой пары и о зависимости затухания от температуры (и частоты, что не менее важно).

Удельное сопротивление меди

В международной системе СИ удельное сопротивление проводников измеряется в Ом∙м. В сфере ИТ чаще используется внесистемная размерность Ом∙мм 2 /м, более удобная для расчетов, поскольку сечения проводников обычно указаны в мм 2 . Величина 1 Ом∙мм 2 /м в миллион раз меньше 1 Ом∙м и характеризует удельное сопротивление вещества, однородный проводник из которого длиной 1 м и с площадью поперечного сечения 1 мм 2 дает сопротивление в 1 Ом.

Удельное сопротивление чистой электротехнической меди при 20°С составляет 0,0172 Ом∙мм 2 /м . В различных источниках можно встретить значения до 0,018 Ом∙мм 2 /м, что тоже может относиться к электротехнической меди. Значения варьируются в зависимости от обработки, которой подвергнут материал. Например, отжиг после вытягивания («волочения») проволоки уменьшает удельное сопротивление меди на несколько процентов, хотя проводится он в первую очередь ради изменения механических, а не электрических свойств.

Удельное сопротивление меди имеет непосредственное значение для реализации приложений питания по Ethernet. Лишь часть исходного постоянного тока, поданного в проводник, достигнет дальнего конца проводника – определенные потери по пути неизбежны. Так, например, PoE Type 1 требует, чтобы из 15,4 Вт, поданных источником, до запитываемого устройства на дальнем конце дошло не менее 12,95 Вт.

Удельное сопротивление меди изменяется с температурой, но для температур, характерных для сферы ИТ, эти изменения невелики. Изменение удельного сопротивления рассчитывается по формулам:

ΔR = α · R · ΔT

R 2 = R 1 · (1 + α · (T 2 — T 1))

где ΔR – изменение удельного сопротивления, R – удельное сопротивление при температуре, принятой в качестве базового уровня (обычно 20°С), ΔT – градиент температур, α – температурный коэффициент удельного сопротивления для данного материала (размерность °С -1). В диапазоне от 0°С до 100°С для меди принят температурный коэффициент 0,004 °С -1 . Рассчитаем удельное сопротивление меди при 60°С.

R 60°С = R 20°С · (1 + α · (60°С — 20°С)) = 0,0172 · (1 + 0,004 · 40) ≈ 0,02 Ом∙мм 2 /м

Удельное сопротивление при увеличении температуры на 40°С возросло на 16%. При эксплуатации кабельных систем, разумеется, витая пара не должна находиться при высоких температурах, этого не следует допускать. При правильно спроектированной и установленной системе температура кабелей мало отличается от обычных 20°С, и тогда изменение удельного сопротивления будет невелико. По требованиям телекоммуникационных стандартов сопротивление медного проводника длиной 100 м в витой паре категорий 5e или 6 не должно превышать 9,38 Ом при 20°С. На практике производители с запасом вписываются в это значение, поэтому даже при температурах 25°С ÷ 30°С сопротивление медного проводника не превышает этого значения.

Затухание сигнала в витой паре / Вносимые потери

При распространении электромагнитной волны в среде медной витой пары часть ее энергии рассеивается по пути от ближнего конца к дальнему. Чем выше температура кабеля, тем сильнее затухает сигнал. На высоких частотах затухание сильнее, чем на низких, и для более высоких категорий допустимые пределы при тестировании вносимых потерь строже. При этом все предельные значения заданы для температуры 20°С. Если при 20°С исходный сигнал приходил на дальний конец сегмента длиной 100 м с уровнем мощности P, то при повышенных температурах такая мощность сигнала будет наблюдаться на более коротких расстояниях. Если необходимо обеспечить на выходе из сегмента ту же мощность сигнала, то либо придется устанавливать более короткий кабель (что не всегда возможно), либо выбирать марки кабелей с более низким затуханием.

  • Для экранированных кабелей при температурах выше 20°С изменение температуры на 1 градус приводит к изменению затухания на 0.2%
  • Для всех типов кабелей и любых частот при температурах до 40°С изменение температуры на 1 градус приводит к изменению затухания на 0.4%
  • Для всех типов кабелей и любых частот при температурах от 40°С до 60°С изменение температуры на 1 градус приводит к изменению затухания на 0.6%
  • Для кабелей категории 3 может наблюдаться изменение затухания на уровне 1,5% на каждый градус Цельсия

Уже в начале 2000 гг. стандарт TIA/EIA-568-B.2 рекомендовал уменьшать максимально допустимую длину постоянной линии/канала категории 6, если кабель устанавливался в условиях повышенных температур, и чем выше температура, тем короче должен быть сегмент.

Если учесть, что потолок частот в категории 6А вдвое выше, чем в категории 6, температурные ограничения для таких систем будут еще жестче.

На сегодняшний день при реализации приложений PoE речь идет о максимум 1-гигабитных скоростях. Когда же используются 10-гигабитные приложения, питание по Ethernet не применяется, по крайней мере, пока. Так что в зависимости от ваших потребностей при изменении температуры вам нужно учитывать либо изменение удельного сопротивления меди, либо изменение затухания. Разумнее всего и в том, и в другом случае обеспечить кабелям нахождение при температурах, близких к 20°С.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Удельное сопротивление металлов. Таблица | joyta.ru

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Удельное сопротивление

Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:

где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)

Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.

Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:

 

где:

σ — проводимость материала, выраженная в сименс на метр (См/м).

Электрическое сопротивление

Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:


где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м.  Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10-6*(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:


Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:

где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.

Удельное сопротивление проводников — основные электрические таблицы

Удельное сопротивление проводников

Базовая электроэнергия

Вопрос 1

Учитывая две длины металлической проволоки, которая будет иметь наименьшее электрическое сопротивление: короткое или длинное «# 1»> Показать ответ Скрыть ответ

Короткая проводка будет иметь меньшее электрическое сопротивление, чем длинный провод.

Заметки:

Существует много аналогий, выражающих это понятие: вода через трубу, сжатый воздух через шланг и т. Д. Какая труба или шланг менее ограничительная: короткая или длинная?

вопрос 2

Учитывая две длины сплошной металлической проволоки с круглыми поперечными сечениями, которая будет иметь наименьшее электрическое сопротивление: одно из которых имеет малый диаметр или большой диаметр? Предположим, что все остальные факторы равны (один и тот же тип металла, одна и та же длина провода и т. Д.).

Показать ответ

Провод большого диаметра будет иметь меньшее электрическое сопротивление, чем проволока малого диаметра.

Заметки:

Существует много аналогий, выражающих это понятие: вода через трубу, сжатый воздух через шланг и т. Д. Какая труба или шланг менее ограничительны: тощий или толстый?

Вопрос 3

Какое конкретное сопротивление, обозначенное греческой буквой «rho» (ρ)?

Показать ответ

Удельное сопротивление — это показатель того, насколько резистивным является какое-либо конкретное вещество по отношению к его длине и площади поперечного сечения.

Заметки:

Спросите своих учеников: «Почему важно иметь количество, называемое конкретным сопротивлением? Почему бы нам просто не сравнить «удельное сопротивление» различных веществ в обычных единицах ома?

Вопрос 4

Напишите одно уравнение, связывающее сопротивление, удельное сопротивление, длину и площадь поперечного сечения электрического проводника вместе.

Показать ответ

Где,

R = сопротивление, измеренное вдоль длины проводника

ρ = удельное сопротивление вещества

l = длина проводника

A = площадь поперечного сечения проводника

Последующий вопрос: алгебраически манипулировать этим уравнением для решения длины (1) вместо решения для сопротивления (R), как показано.

Заметки:

Благоприятное упражнение, связанное с вашими учениками, состоит в том, чтобы анализировать это уравнение (и фактически любое уравнение) качественно, а не просто количественно . Спросите учащихся, что произойдет с R, если ρ увеличится, или если l уменьшится, или если A уменьшится. Многие студенты считают эту проблему более сложной задачей, чем работу с реальными числами, потому что они не могут использовать свои калькуляторы, чтобы дать им качественные ответы (если они не вводят случайные числа в уравнение, а затем меняют одно из этих чисел и пересчитывают), но это дважды работа решения уравнения с одним набором чисел, один раз!).

Вопрос 5

Изучите следующую таблицу удельного сопротивления для различных металлов:

Металлический типρ в Ω · cmil / ft @ 32 o Fρ в Ω · cmil / ft при 75 o F
Цинк (очень чистый)34, 59537, 957
Олово (чистый)78, 48986, 748
Медь (чистый отжиг)9, 39010, 351
Медь (жестко нарисованная)9, 81010, 745
Медь (отожженная)9, 59010, 505
Платиновый (чистый)65, 67071, 418
Серебро (чистый отжиг)8, 8319, 674
никель74, 12885, 138
Стальная проволока)81, 17990, 150
Железо (приблизительно чистый)54, 52962, 643
Золото (чистота 99, 9%)13, 21614, 404
Алюминий (чистота 99, 5%)15, 21916, 758

Из показанных металлов, который является лучшим проводником электричества? Что хуже всего? Что вы замечаете в отношении удельного сопротивления этих металлов при увеличении температуры от 32 o F до 75 o F?

Показать ответ

Вот та же таблица, порядок переориентирован, чтобы показать удельное сопротивление от наименьшего к наибольшему:

Металлический типρ в Ω · cmil / ft @ 32 o Fρ в Ω · cmil / ft при 75 o F
Серебро (чистый отжиг)8, 8319, 674
Медь (чистый отжиг)9, 39010, 351
Медь (отожженная)9, 59010, 505
Медь (жестко нарисованная)9, 81010, 745
Золото (чистота 99, 9%)13, 21614, 404
Алюминий (чистота 99, 5%)15, 21916, 758
Цинк (очень чистый)34, 59537, 957
Железо (приблизительно чистый)54, 52962, 643
Платиновый (чистый)65, 67071, 418
никель74, 12885, 138
Олово (чистый)78, 48986, 748
Стальная проволока)81, 17990, 150

Заметки:

Данные для этой таблицы были взяты из таблицы 1-97 «Справочника американского электрика» (одиннадцатое издание) Террелла Крофта и Уилфорда Саммерса.

Некоторые ученики могут удивить, что золото действительно хуже проводника электричества, чем меди, но данные не лежат! Серебро на самом деле самое лучшее, но золото выбрано для многих микроэлектронных приложений из-за его стойкости к окислению.

Вопрос 6

Каково электрическое сопротивление медной проволоки диаметром 12 мм, длиной 500 футов, при комнатной температуре?

Показать ответ

Сопротивление провода = 0.7726 Ом

Заметки:

Попросите своих учеников поделиться своими источниками данных: значения ρ, площадь поперечного сечения и т. Д.

Вопрос 7

Катушка имеет неизвестную длину алюминиевой проволоки. Размер провода составляет 4 AWG. К счастью, оба конца провода доступны для контакта с омметром, чтобы измерить сопротивление всей катушки. При измерении общее сопротивление провода составляет 0, 135 Ом. Сколько проволоки на катушке (при условии, что катушка находится при комнатной температуре)?

Показать ответ

353, 51 футов

Заметки:

Этот вопрос иллюстрирует другое практическое применение конкретных расчетов сопротивления: как определить длину провода на катушке. Количество сопротивления в этом примере довольно низкое, составляя лишь небольшую долю ома. Спросите своих учеников, какие проблемы они могут столкнуться, пытаясь точно измерить такое низкое сопротивление. Будут ли типичные ошибки, возникающие при таком измерении с низким сопротивлением, сделать их расчет длины чрезмерными или слишком низкими? Зачем?

Вопрос 8

Размеры поперечного сечения медной «сборной шины» составляют 8 см на 2, 5 см. Сколько сопротивления будет иметь эта шина, измеренная от конца до конца, если ее длина составляет 10 метров? Предположим, что температура составляет 20 o Цельсия.

Показать ответ

83, 9 мкОм

Заметки:

Этот вопрос является хорошим обзором метрической системы, касающейся сантиметров до метров и т. Д. Это также может быть хорошим обзором конверсий единиц, если ученики предпочтут выполнить расчеты сопротивления, используя английские единицы (cmils или квадратные дюймы), а не метрические.

Студенты могут быть удивлены фигурой с низким сопротивлением, но напоминают им, что они имеют дело с сплошным стержнем из меди, размером более 3 квадратных дюймов в поперечном сечении. Это один большой дирижер!

Вопрос 9

Рассчитайте сквозное сопротивление 20-метровой длины медной проволоки диаметром 0, 05 см. Для удельного сопротивления меди используйте 1, 678 × 10 -6 Ом · см.

Показать ответ

1, 709 Ом

Заметки:

Здесь нечего комментировать — просто прямолинейный расчет сопротивления. Тем не менее, студенты должны быть осторожны с сантиметровым измерением!

Вопрос 10

Рассчитайте количество мощности, подаваемой на нагрузочный резистор в этой схеме:

Также вычислите величину мощности, которая будет передаваться нагрузочному резистору, если провода были сверхпроводящими (R- провод = 0, 0 Ом).

Показать ответ

P- нагрузка ≈ 170 Вт (с резистивным проводом)

P load = 180 Вт (со сверхпроводящим проводом)

Последующий вопрос: Сравните направление тока через все компоненты этой схемы с полярностями их соответствующих падений напряжения. Что вы замечаете относительно взаимосвязи между текущим направлением и полярностью напряжения для батареи, а также для всех «замеченных» резисторов »Примечания:

Этот вопрос не только является хорошей практикой для серийных вычислений (законы Ома и Джоуля), но также вводит сверхпроводники в практическом контексте.

Вопрос 11

Предположим, что энергосистема подавала мощность переменного тока на резистивную нагрузку, составляющую 150 ампер:

Рассчитайте напряжение нагрузки, рассеивание мощности нагрузки, мощность, рассеиваемую сопротивлением провода ( провод R), и общую эффективность мощности, обозначенную греческой буквой «eta» (η = ((P load ) / ( источник P))),

E load =
P load =
P строк =
η =

Теперь предположим, что мы должны перепроектировать как генератор, так и нагрузку для работы на 2400 вольт вместо 240 вольт. Это десятикратное увеличение напряжения позволяет всего лишь на одну десятую ток передавать такое же количество энергии. Вместо того, чтобы заменить весь провод на другой провод, мы решили использовать тот же самый провод, что и раньше, с таким же сопротивлением (0, 1 Ом на длину), как и раньше. Перераспределите напряжение нагрузки, мощность нагрузки, потраченную мощность и общий КПД этой системы (более высокого напряжения):

E load =
P load =
P строк =
η =
Показать ответ

Система 240 вольт:

E load = 210 вольт
П нагрузки = 31, 5 кВт
P- линии = 4, 5 кВт
η = 87, 5%

Система 2400 вольт:

E load = 2397 вольт
П нагрузки = 35, 96 кВт
P строк = 45 Вт
η = 99, 88%

Заметки:

Пример, подобный этому, обычно делает хорошую работу, разъясняя преимущества использования высокого напряжения при низком напряжении для передачи больших объемов электроэнергии на значительные расстояния.

Вопрос 12

Эффективность (η) простой силовой системы с потерями, возникающими по проводам, зависит от тока цепи, сопротивления провода и общей мощности источника:

Здесь дается простая формула для расчета эффективности:

η = P источник — I 2 R

P источник

Где,

P = выходная мощность источника напряжения, Вт (Вт)

I = ток цепи, в амперах (A)

R = общее сопротивление провода (R- провод 1 + R- провод2 ), в омах (Ω)

Алгебраически манипулировать этим уравнением для решения проблемы сопротивления провода (R) по всем другим переменным, а затем рассчитать максимальный допустимый уровень сопротивления провода для энергосистемы, где источник, подающий 200 кВт, работает при токе цепи 48 ампер, при минимальный КПД — 90%.

Показать ответ

R = Источник P — источник ηP

I 2

Максимально допустимое (общее) сопротивление провода составляет 8, 681 Ом.

Заметки:

Обычная ошибка для студентов, чтобы сделать здесь, составляет 90%, как «90», а не «0, 9» в своих калькуляторах.

Вопрос 13

Какой размер (калибр) медного провода необходим в этой цепи, чтобы обеспечить загрузку нагрузки не менее 110 вольт »// www.beautycrew.com.au//sub.allaboutcircuits.com/images/quiz/00166×01.png»>

Показать ответ

Медная проволока № 6 приближается, но недостаточно велика. № 5 калибра или больше будет достаточно.

Заметки:

Для решения этой проблемы необходимы несколько шагов: Закон Ома, алгебраическое манипулирование конкретным уравнением сопротивления и исследование размеров проводов. Обязательно проводите достаточное время, обсуждая эту проблему со своими учениками!

Концепция общей «нагрузки» представляет собой любой компонент или устройство, которое рассеивает электроэнергию в цепи. Часто общие нагрузки символизируются символом резистора (зигзагообразная линия), даже если они не могут быть резистором.

Вопрос 14

Тензодатчик — это тип чувствительного устройства, широко используемого в аэрокосмической промышленности, для испытания транспортных средств и механических компонентов. Объясните, что делает тензодатчик, и как он функционирует.

Показать ответ

Тензодатчик преобразует микромеханические движения («деформация») в электрические изменения сопротивления. Как правило, тензодатчики используются для измерения растяжения, сжатия и скручивания металлических компонентов под напряжением.

Заметки:

Попросите ваших учеников рассказать о своих ответах на иллюстрации, показанные в вопросе. Как это странно выглядящее устройство на самом деле измеряет деформацию «панели панелей панелей панелей по умолчанию» itemscope>

Вопрос 15

Как проводимость (G) проводника связана с его длиной? Другими словами, чем дольше проводник, тем (

) его проводимость равна, при прочих равных условиях.

Показать ответ

Проводимость уменьшается по мере увеличения длины, при прочих равных условиях.

Последующий вопрос: как «проводимость» (G) математически относится к сопротивлению (R), и какова единица измерения проводимости?

Заметки:

Есть две единицы измерения для проводимости: старая единица (которая имеет прекрасный смысл, даже если ваши ученики могут сначала рассмеяться над ней) и новый блок (названный в честь известного электрического исследователя).-3 (0,036) для алюминия).

И что теперь делать? Есть разные нормы, где удельные сопротивления разные, причем разница существенна (для КЗ около 50-100 А (может и больше), для потери напряжения значения будут различаться в 1,26 раз), это влияет на выбор проводников, выбор аппаратов защиты и выбор аккумуляторной батареи, где батарее достанется больше всех, поскольку ее характеристики крайне чувствительны к падению напряжения. Помогите разобраться

Сопротивление

:: Удельное сопротивление материала

Удельное сопротивление материала — это мера его удельного сопротивления потоку электричества, числовая величина, уникальная для каждого материала, которая изменяется только в зависимости от температуры. Мы обозначаем удельное сопротивление строчной греческой буквой rho, ρ, которая представляет собой числовую константу пропорциональности, которая позволяет нам определить сопротивление материала по его длине и площади поперечного сечения .

Предполагая, что проводник имеет одинаковую ширину и толщину по всей длине или одинаковый диаметр по всей длине (например, провод определенного калибра), существуют фундаментальные отношения между сопротивлением и пространственными размерами объекта. Если проводник однородный, то сопротивление проводника прямо пропорционально его длине ( l ) и обратно пропорционально площади поперечного сечения ( A ).

Это означает, что если мы удвоим длину , например, провода, то сопротивление провода также удвоится.Если мы утроим длину провода, сопротивление утроится, а если мы будем вдвое меньше длины провода, то сопротивление также уменьшится вдвое. И наоборот, если мы удвоим диаметр провода , сопротивление фактически составит , разрезанное пополам , потому что площадь поперечного сечения имеет обратно пропорциональную зависимость от . Более толстые провода позволяют протекать большему количеству электричества, потому что у них больше места для движения электронов внутри провода, точно так же, как труба большего диаметра позволяет протекать на больше воды при более низком давлении, потому что у нее больше места внутри трубы для вода течь.Если диаметр проволоки разделен на четыре части, сопротивление увеличивается в четыре раза. По мере увеличения площади поперечного сечения проводника сопротивление уменьшается обратно пропорционально, а с увеличением длины провода сопротивление увеличивается прямо пропорционально.

Мы можем подытожить это, сказав, что чем длиннее проводник, тем больше будет его сопротивление. Что касается площади поперечного сечения, то чем тоньше провод (чем меньше его площадь поперечного сечения), тем больше его сопротивление, а чем толще провод, тем меньше будет его сопротивление.

Уравнение удельного сопротивления

Поскольку сопротивление материала зависит от температуры, в предположении стабильной температуры, сопротивление материала определяется уравнением

При вычислении сопротивления три важные переменные: длина , (), измеренная в метрах, площадь поперечного сечения , () в квадратных метрах, и удельное сопротивление (), измеренное в ом-метрах, . Как вы знаете, это символ сопротивления, которое измеряется в омах (Ом).

Удельное сопротивление измеряется в единицах СИ, называемых ом-метрами, с обозначением единицы измерения Ом ∙ м. Вы можете увидеть, как единицы СИ для ρ выводятся, анализируя приведенное выше уравнение. Перепишите выражение для ρ, и вы придете к уравнению. Из этой формы уравнения введите символ единицы вместо соответствующего символа количества, упростите, и вы увидите, как определяются единицы для удельного сопротивления

Таким образом, мы приходим к единице Ом-метр (Ом ∙ м) для удельного сопротивления . (Помните, что нельзя говорить «Ом на метр», потому что «пер» — это то, что мы говорим, когда одна величина делит другую, что не относится к единицам удельного сопротивления!)

Классификация удельного сопротивления проводников и изоляторов

Удельное сопротивление (ρ) зависит от типа материала. Как мы обсуждали в предыдущих статьях о сопротивлении, сопротивление материалов электричеству в конечном итоге определяется его атомной и молекулярной структурой. В свете этого факта, каждый материал будет иметь различное значение для ρ, константу пропорциональности, которая даст нам сопротивление конкретного объекта в сочетании с длиной и диаметром проводника, а также температурой.Вы увидите, что если длина материала составляет 1 м, а площадь поперечного сечения составляет 1 м 2 , то сопротивление численно эквивалентно удельному сопротивлению материала.

Самый простой способ классифицировать проводники и изоляторы — по значению их удельного сопротивления. У хорошего проводника сопротивление близко к 10 -8 Ом ∙ м. Сильвер — лучший дирижер на планете. Однако в большинстве распространенных ситуаций ее слишком дорого использовать, поэтому предпочтение отдается меди, поскольку медь более распространена в природе, что из-за спроса и предложения делает ее менее дорогой.По этой причине медь является наиболее распространенным проводником. Другой распространенный проводник — алюминий.

Материалы с удельным сопротивлением более 10 10 Ом ∙ м классифицируются как изоляторы. Чтобы представить эти числа в перспективе, давайте посмотрим на эти числа в форме, отличной от научной. Изоляторы имеют удельное сопротивление порядка 10 миллиардов Ом-метров (10 10 Ом ∙ м), которое мы могли бы обозначить как 10 гигаом-метров (10 ГОм ∙ м), в то время как у хороших проводников удельное сопротивление порядка 100. миллионные доли омметра, которые мы могли бы также назвать 100 мкОм-метрами (100 мкОм ∙ м).Разница между удельным сопротивлением хороших проводников и изоляторов составляет целых 18 порядков, что должно дать вам хоть какое-то представление о разнице между степенью, в которой электронам позволено течь внутри различных материалов.

Изоляторы

используются для защиты людей и других компонентов электрического устройства от электричества, поскольку они препятствуют прохождению электрического тока, не позволяя электронам перемещаться из-за их атомной и молекулярной структуры.Электрики носят изоляторы на руках, когда работают с электричеством. Проводящие провода обычно покрываются изоляционным материалом (например, поливинилхлоридом (ПВХ) или неопреном) для предотвращения утечки тока.

Материалы с удельным сопротивлением в диапазоне от 10 -4 Ом ∙ м до 10 -7 Ом ∙ м называются полупроводниками. Полупроводники часто разрабатываются учеными так, чтобы они обладали правильным удельным сопротивлением для определенных целей. Проводящий материал смешивается с небольшой частью изоляционного материала, что увеличивает очень низкое удельное сопротивление хороших проводящих материалов пропорционально количеству добавленного изолятора.Это означает, что мы можем производить материалы с точным удельным сопротивлением, чтобы в дальнейшем создавать прецизионные электрические компоненты, устройства и оборудование. Транзисторы изготовлены из полупроводниковых материалов.

Ниже приведена таблица, показывающая удельное сопротивление некоторых распространенных материалов при 20 ° C.

Материал Удельное сопротивление (ρ)
(Ом ∙ м при 20 ° C)
Серебро 1,64 x 10 -8
Медь 1.68 × 10 −8
Медь отожженная 1,72 x 10 -8
Золото 2,44 × 10 −8
Алюминий 2,83 x 10 -8
Кальций 3,36 × 10 −8
Цинк 5,90 × 10 −8
Кобальт 6,24 × 10 −8
Никель 6.99 × 10 −8
Железо 9,70 x 10 -8 / (1,23 x 10 -7 ?)
Платина 1,06 × 10 −7
Константан 4,9 x 10 -7
Нержавеющая сталь 6,90 × 10 -7
Нихром 1,00 x 10 -6
Питьевая вода от 20 до 2000
Кремний 2500 (2. 2 \) в поперечном сечении.

Провода одинаковой длины и сечения из разных материалов имеют разное сопротивление.
Провода одинаковой длины и сечения из одного материала имеют одинаковое сопротивление при одинаковой температуре.
Удельное сопротивление обозначено символом \ (ρ \) (rho)

Электрическая проводимость

Обратное сопротивление — это электрическая проводимость или проводимость.2 \), дает сопротивление \ (1Ω \).

Символ проводимости — \ (σ \) (сигма)

\ (\ Displaystyle σ = \ гидроразрыва {1} {ρ} \)

Удельное сопротивление обратно пропорционально удельной проводимости.

\ (\ Displaystyle р = \ гидроразрыва {1} {σ} \)

Расчет сопротивления

Сопротивление провода пропорционально его длине.Тройная длина провода также дает тройное сопротивление.

\ (\ Displaystyle р ∝ л \)

Сопротивление провода обратно пропорционально его поперечному сечению. Двойное поперечное сечение дает половину сопротивления.

\ (\ Displaystyle Р ∝ \ гидроразрыва {1} {A} \)

Используя удельное сопротивление, вы получите формулу

\ (\ Displaystyle R = \ гидроразрыва {ρ · l} {A} \)

Используя удельную проводимость, вы получаете формулу

\ (\ Displaystyle R = \ гидроразрыва {l} {σ · A} \)

Обзор удельного сопротивления и удельной проводимости различных проводящих материалов

Материал Удельное сопротивление ρ Электропроводность σ

Серебро 0.016 62,5
Медь 0,018 56
Золото 0,023 44
Алюминий 0,029 35
Магний 0.045 22
Вольфрам 0,055 18
цинк 0,063 16
Никель 0,08 … 0,011 13 … 9
Утюг 0.10 … 0,15 10 … 7
Олово 0,11 9
Платина 0,11 … 0,14 9 .. 7
Свинец 0,21 4,8
Меркурий 0.96 1,04
Висмут 1,2 0,83
Углерод 100 0,01

Обзор удельного сопротивления различных изоляционных материалов

Материал Удельное сопротивление ρ

Янтарь 10 18
Стекло 10 14
Слюда 10 14 … 10 17
Резина 10 15
Твердая резина 10 12 … 10 18
Керамика 10 12
Смола 10 8 … 10 14
Мрамор 10 9 … 10 11
Парафин 10 16
Полистирол 10 18
Прессованный картон 10 10
Фарфор 10 14
Шеллак 10 16

Прочный и стильный удельное сопротивление проволоки для фитнеса

Вы ищете новый способ тренировок, кроме тяжелой атлетики? Алибаба.com предлагает удельное сопротивление проволоки , что позволяет тренировать каждую часть тела и достигать мышечного тонуса и выносливости. Удельное сопротивление проволоки позволяет пользователям эффективно тренироваться как в спортзале, так и дома. Их можно носить даже с собой, когда человек путешествует. поскольку они портативны. Проволока с удельным сопротивлением на сайте предлагается надежными производителями и поставщиками, которые имеют строгие стандарты контроля качества.

Проволока с удельным сопротивлением предлагаются в различных моделях, в зависимости от вашего уровня подготовки и типа телосложения.Они могут помочь увеличить мышечную силу посредством подтягиваний, а также помочь в растяжке до или после тренировки. Проволока с удельным сопротивлением довольно недороги и значительно компактнее, чем другие тренажеры и тренажеры. Некоторые из этих продуктов имеют ручки и могут быть легко закреплены в любом месте. Таким образом, они невероятно просты в использовании и очень эффективны. Удельное сопротивление провода бывает разных уровней сопротивления в соответствии с вашими потребностями. Они созданы для всех типов пользователей, от новичков до опытных энтузиастов фитнеса.

удельное сопротивление проволоки , предлагаемое на Alibaba.com, дает вам экономичный способ получить хорошую физическую форму и здоровье. Они недорогие в приобретении и почти не требуют затрат на обслуживание. Для посттравматических пациентов, у которых восстанавливается мышечная сила и гибкость суставов, могут быть предоставлены специальные реабилитационные упражнения. Удельное сопротивление проволоки позволяет выполнять тренировку всего тела за небольшую часть стоимости и времени, необходимых для других видов сопоставимых упражнений.Благодаря удельному сопротивлению проволоки можно легко тонизировать каждую часть тела и целевые области.

Alibaba.com предлагает потрясающе широкий выбор проволоки с удельным сопротивлением , чтобы помочь вам оставаться в форме. Это идеальный вариант для удельного сопротивления проволоки поставщиков для закупки в больших количествах. Выберите один из этих великолепных продуктов и приступайте к тренировкам в удобное для вас время.

Единица удельного сопротивления — определение и единица удельного сопротивления

Удельное сопротивление

Удельное сопротивление или удельное сопротивление материала — это мера сопротивления, которое он оказывает протеканию через него тока.Это внутреннее свойство материала. Удельное сопротивление зависит от состава, температуры, давления материала. Обратное сопротивление определяется как удельная проводимость, которая составляет способность проводить электричество. Значение удельного сопротивления очень низкое для проводников и очень высокое для изоляторов. Удельное сопротивление материала — это скалярная величина. Как и любая другая физическая величина, для описания удельного сопротивления требуется число (величина), связанное с единицей измерения.

Определение удельного сопротивления

Сопротивление R проводника зависит от его длины L, поперечного сечения A и его состава. Для фиксированного сечения сопротивление пропорционально длине проводника. Тогда как сопротивление обратно пропорционально поперечному сечению при фиксированной длине. Эти две зависимости могут быть записаны вместе как,

R \ [\ propto \] \ [\ frac {L} {A} \]

R = \ [\ frac {\ rho L} {A} \]

Здесь — константа пропорциональности, известная как удельное сопротивление.Константа имеет разные значения для разных материалов. Удельное сопротивление зависит от физических свойств материала, например. плотность и состав. Для единичной длины и единичной площади поперечного сечения, т. Е. L = 1 и A = 1,

\ [\ rho \] = R

Это условие можно использовать для определения удельного сопротивления.

(Изображение будет добавлено в ближайшее время)

Удельное сопротивление

Определение: сопротивление однородного куска материала единичной длины и единичного поперечного сечения определяется как удельное сопротивление или удельное сопротивление материала.Количественно

\ [\ rho \] = \ [\ frac {RA} {L} \]

Электропроводность материала определяется как величина, обратная удельному сопротивлению,

\ [\ sigma \] = \ [\ frac {1} {\ rho} \]

Единица удельного сопротивления

Из формулы удельного сопротивления

Единица \ [\ rho \] = \ [\ frac {Unit \; из\; Р\; \ раз \; Ед. изм \; из \; A} {Единица \; of \; L} \]

Одна полезная единица получается, когда сопротивление R выражается в Ом (Ом), а расстояния выражаются в сантиметрах (см).{16} \] Ω. м). Значения удельного сопротивления при 200 ° C для некоторых стандартных материалов перечислены ниже.

Удельное сопротивление различных материалов

10-8

02 10-7

Стекло

Проводники

Материал

Сопротивление в Омметре

Сопротивление в Омметре

Медь

1.68 x 10-8

Железо

9,70 x 10-8

Золото

2,44 x 10-8

Платина

Цинк

5.90 x 10-8

Олово

1.09 x 10-8

09

39 Стекло

1011-1015

Резина

1013

Алмазный

1012

109
109 Air

Удельное сопротивление меди

Удельное сопротивление меди равно 1.68 x 10-8 Ом. м (200 ° C), то есть сопротивление между двумя противоположными поверхностями медного куба стороной 1 м составляет 1,68 x 10-8 Ом при температуре 200 ° C. Электропроводность меди составляет 5,96 х 107 См-1. Из-за очень низкого удельного сопротивления и высокой проводимости сопротивление меди протеканию тока незначительно. В электрических цепях широко используются медные провода для проведения электричества.

Решенные примеры

л. Найдите длину и площадь поперечного сечения медного провода, сделанного из куска меди массой 10 г, если сопротивление медного провода равно 2 Ом.Плотность и удельное сопротивление медной проволоки составляют 9 г / см3 и 1,8 x 10-6 Ом. см соответственно.

Решение: Плотность меди равна d = 9 г / см3, а масса куска равна m = 10 г, так что объем медного провода равен

V = \ [\ frac {m} {d} \ ]

V = \ [\ frac {10} {9} \] см3

Если длина провода L, а его поперечное сечение A, объем определяется как V = LA. Следовательно,

LA = \ [\ frac {10} {9} \] cm3 (1)

Подставляем R = 2Ω и \ [\ rho \] = 1.8 x 10-6 Ом. см в формуле удельного сопротивления:

1,8 x 10-6 = 2 x \ [\ frac {A} {L} \]

\ [\ frac {L} {A} \] = \ [\ frac { 10} {9} \] x 106 см-1 (2)

Умножение уравнений (1) и (2),

LA x \ [\ frac {L} {A} \] = (\ [\ frac { 10} {9} \]) 2 x 106 см2

L = 11,1 м

Разделив уравнение (1) на (2),

LA x \ [\ frac {A} {L} \] = 10-6 см4

A = 0,1 мм2

Длина и поперечное сечение медного провода равны 11.1 м и 0,1 мм2 соответственно.

лл. Проволока диаметром 5 мм изготавливается из куска металла. Из такого же отрезка изготавливается еще одна проволока диаметром 1 см. Какое соотношение сопротивлений двух проводов?

Решение: Сопротивление провода длиной L и поперечным сечением A равно R = \ [\ frac {\ rho L} {A}, где \ [\ rho \] — удельное сопротивление материала. {4}} \]

Согласно задаче масса и плотность двух проволок диаметром \ [d_ {1} \] = 5 мм = 0.{4} \]

\ [\ frac {R_ {1}} {R_ {2}} \] = 16

Соотношение сопротивлений проводов составляет 16: 1.

Знаете ли вы?

  • Удельное сопротивление зависит от температуры окружающей среды. Для металлов он увеличивается с повышением температуры. Однако для стекла при очень высоких температурах удельное сопротивление значительно уменьшается.

  • Сверхпроводники имеют нулевое сопротивление в сверхпроводящем состоянии (при очень низкой температуре).

  • Удельное сопротивление полупроводников уменьшается с увеличением температуры.

Круглая лапа Mil-Foot

CIRCULAR-MIL-FOOT

Круглый мил-фут (рисунок 1-3) — это единица измерения объема. Это единичный проводник 1 фут в длина и площадь поперечного сечения 1 круговой мил. Потому что это единичный проводник, Круглый милфут полезен при сравнении проводов, состоящих из разные металлы.

Например, основа для сравнения УСТОЙЧИВОСТИ (будет обсуждено в ближайшее время) различные вещества могут быть получены путем определения сопротивления кругового милфута каждое из веществ.

Рисунок 1-3. — Круговой милфут.

При работе с квадратными или прямоугольными проводниками, такими как шунты амперметра и шины, иногда вам может быть удобнее использовать другую единицу громкости. Шина — это тяжелый медный браслет или шина, используемые для соединения нескольких цепей вместе. Шины используются когда требуется большая токовая нагрузка.

Единицу объема можно измерить как сантиметровый куб.Удельное сопротивление, следовательно, становится сопротивлением, создаваемым проводником в форме куба длиной 1 сантиметр и 1 квадратный сантиметр в поперечном сечении. Используемая единица объема указана в таблицы удельных сопротивлений.

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ИЛИ СОПРОТИВЛЕНИЕ

Удельное сопротивление или удельное сопротивление — это сопротивление в омах на единицу объема. (круговой милфут или сантиметровый куб) вещества к потоку электрического Текущий.Сопротивление обратно пропорционально проводимости.

Вещество с высоким сопротивлением будет иметь низкую проводимость, и наоборот. Таким образом, удельное сопротивление вещества — это сопротивление единицы объема этого вещества. субстанция.

Многие таблицы удельного сопротивления основаны на сопротивлении в омах объема вещество длиной 1 фут и площадью поперечного сечения 1 круговой мил. Температура на также указывается, где производится измерение сопротивления.Если вы знаете, какой металл проводник, удельное сопротивление металла можно узнать из таблицы. Удельные сопротивления некоторых распространенных веществ приведены в таблице 1-1.

Таблица 1 — 1. — Удельное сопротивление обычных веществ

Вещество
Удельное сопротивление при 20С.
Куб сантиметра (мкОм) Круглый мил-фут (Ом)
Серебро 1.629 9,8
Медь (тянутая) 1,724 10,37
Золото 2,44 14,7
Алюминий 2,828 17,02
Углерод (аморфный) 3.8 к 4,1
Вольфрам 5,51 33,2
Латунь 7,0 42,1
Сталь (мягкая) 15,9 95,8
Нихром 109.0 660,0

Сопротивление проводника с одинаковым поперечным сечением напрямую зависит от продукта. длины и удельного сопротивления проводника, и обратно пропорционально площадь поперечного сечения проводника. Таким образом, вы можете рассчитать сопротивление проводника, если вы знаете длину, площадь поперечного сечения и удельное сопротивление субстанция. Выражается в виде уравнения, R (сопротивление в Ом) проводника это

Проблема:

Какое сопротивление 1000 футов медного провода с площадью поперечного сечения 10400 круговых милов (No.10 провод) при температуре 20С?

Решение:

Удельное сопротивление меди (таблица 1-1) составляет 10,37 Ом. Подставляя известные значений в предыдущем уравнении, сопротивление R определяется как

Если R, & rho; и A известны, длина (L) может быть определена простым математическая транспозиция. У этого есть много ценных приложений.Например, когда Определив заземление в телефонной линии, вы воспользуетесь специальным тестовым оборудованием.

Это оборудование работает по принципу прямого изменения сопротивления линии. с его длиной. Таким образом, расстояние между контрольной точкой и повреждением может быть вычислено. точно.

Q.7 Определите удельное сопротивление.
Q.8 Перечислите три фактора, используемые для расчета сопротивления конкретного проводника в омах.

Объясните Единица удельного сопротивления

Удельное электрическое сопротивление (также известное как удельное сопротивление, удельное электрическое сопротивление или объемное удельное сопротивление) — это внутреннее свойство, которое количественно определяет, насколько сильно данный материал противодействует прохождению электрического тока.Сопротивление обратно пропорционально проводимости. Материал с высоким удельным сопротивлением будет иметь низкую проводимость. Таким образом, удельное сопротивление сущности — это сопротивление единицы объема этой материи.

В уравнении R = ρ (L / A) мы можем записать, ρ = R (A / L)

Подставив единицы величин в правую часть уравнения, единица ρ будет:

Ом · м 2 / м = Ом · м

Значение: Удельное сопротивление серебра при 20 ° C равно 1.6 x 10 -8 Ом · м. Следовательно, сопротивление серебряной проволоки длиной lm и площадью поперечного сечения 1м 2 составляет 1,6 x 10 -8 . Когда речь идет о проводе электрического провода заданного сечения, «удельное сопротивление» может относиться к «сопротивлению на единицу длины» провода, и в этом случае, очевидно, его единицы измерения — «ом / метр» (Ом / м ). Электрическое сопротивление току составляет Ом. Единица измерения удельного сопротивления в системе СИ — омметр (Ом · м)

В таблице приведены значения удельного сопротивления некоторых распространенных материалов.

Таблица: Удельное сопротивление различных материалов

Из приведенной выше таблицы мы видим, что материалы с более низким удельным сопротивлением являются хорошими проводниками электричества. Например, медь — лучший проводник электричества, чем нихром. Благодаря этому медь широко используется в качестве соединительных проводов в электрических цепях.

Таким образом, в соответствующем контексте удобно использовать:

  • Удельное электрическое сопротивление материала (в Ом · м)
  • Электрическое сопротивление на единицу длины провода (в Ом / м)
  • Поверхностное электрическое сопротивление контакта (в Ом · м 2 )

Удельное сопротивление определяется как сопротивление на единицу длины и единицу площади поперечного сечения при приложении известной величины напряжения.Когда используется для обозначения удельного электрического сопротивления материала, его единицами измерения являются «Ом x метр» (Ом · м). В этом случае всегда следует использовать «удельное электрическое сопротивление» вместо сбивающего с толку названия «удельное сопротивление». Таким образом, это сопротивление в Ом, оказываемое единицей объема (круговой милфут или сантиметровый куб) вещества потоку электрического тока. Сопротивление государственной власти в СИ меньше единицы, но однажды французское Сопротивление установило завидный стандарт.

Сопротивление проводника с одинаковым поперечным сечением изменяется прямо как произведение длины и удельного сопротивления проводника и обратно пропорционально площади поперечного сечения проводника.Следовательно, вы можете оценить сопротивление проводника, если знаете длину, площадь поперечного сечения и удельное сопротивление материала.

Кроме того, материалы с более высоким удельным сопротивлением также имеют множество применений. Один из примеров — нихромовая проволока. Удельное сопротивление и температура плавления нихрома намного выше, чем у меди. Из-за высокого удельного сопротивления нихрома, когда через него протекает ток, вырабатывается много тепловой энергии. Это свойство нихрома заставляет воду в электрочайнике очень быстро закипать.Нити накаливания электрических лампочек, которые используются в наших домах, сделаны из вольфрама. Вольфрам может преобразовывать электрическую энергию в световую и тепловую благодаря своему высокому удельному сопротивлению и температуре плавления.

Что такое сопротивление или удельное сопротивление? — Цвета-NewYork.com

Что такое сопротивление или удельное сопротивление?

Сопротивление между двумя концами провода — это отношение разности потенциалов двух точек к току, протекающему по проводнику. Удельное сопротивление или удельное сопротивление материала определяется как сопротивление единицы длины и поперечного сечения этого материала.

Какая связь между удельным сопротивлением и сопротивлением?

Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, деленную на площадь: R≡VI = ρLA. Единицей измерения сопротивления является ом, Ом. Для заданного напряжения чем выше сопротивление, тем ниже ток.

Какая связь между удельным сопротивлением?

Для материала проводника сопротивление материала обратно пропорционально площади поперечного сечения и прямо пропорционально длине проводника.Связь между удельным сопротивлением и сопротивлением: R = ρlA, где ρ — удельное сопротивление, l — длина проводника, а A — площадь поперечного сечения.

Зависит ли удельное сопротивление от длины?

Удельное сопротивление материала зависит от его природы и температуры проводника, но не от его формы и размера.

Зависит ли удельное сопротивление от температуры?

Удельное сопротивление зависит от температуры материала. В металлических проводниках при повышении температуры ионные ядра в металле колеблются с большей амплитудой.Это препятствует потоку электронов, и сопротивление увеличивается.

Что происходит с удельным сопротивлением при удвоении длины?

сопротивление проводника прямо пропорционально его длине. поэтому, если длина увеличивается, удельное сопротивление увеличивается, и наоборот. Таким образом, если длина удвоится, сопротивление также удвоится, т. е. сопротивление в 4 раза больше исходного сопротивления.

Сопротивление прямо пропорционально температуре?

Удельное сопротивление косвенно пропорционально температуре.Другими словами, чем выше температура материалов, тем меньше их удельное сопротивление.

Почему удельное сопротивление прямо пропорционально температуре?

Сопротивление проводника прямо пропорционально температуре. Причина: С повышением температуры колебательное движение атомов проводника увеличивается.

Почему сопротивление прямо пропорционально температуре?

Сопротивление проводника прямо пропорционально температуре. С повышением температуры колебательное движение атомов проводника увеличивается.Из-за увеличения вибрации увеличивается вероятность столкновения атомов и электронов. В результате сопротивление проводника увеличивается.

Почему удельное сопротивление уменьшается с температурой?

По мере повышения температуры большее количество электронов будет получать энергию для прыжка из зоны проводимости в валентную зону и, следовательно, увеличивает проводимость полупроводника. Таким образом, с повышением температуры удельное сопротивление полупроводников будет уменьшаться.

Какая связь между удельным сопротивлением и температурой?

Удельное сопротивление проводника увеличивается с температурой.В случае меди зависимость между удельным сопротивлением и температурой примерно линейна в широком диапазоне температур. Для других материалов лучше работает соотношение сил. Удельное сопротивление проводника увеличивается с температурой.

Удельное сопротивление GE увеличивается или уменьшается с температурой?

Удельное сопротивление уменьшается с повышением температуры в измеряемой области температур, что свидетельствует о полупроводниковых свойствах. При 300 К удельное сопротивление (4,2 см) примерно в 12 раз ниже, чем у чистого объемного Ge (50 см).

Насколько сопротивление изменяется в зависимости от температуры?

Для чистого металла сопротивление уменьшается примерно линейно по направлению к температуре, близкой к 0 К. (Температурный коэффициент сопротивления многих чистых металлов близок к 0,004 К-1, поэтому график сопротивления / температуры будет экстраполирован обратно до 1 / 0,004 = 250 К.)

Какие факторы влияют на сопротивление?

На сопротивление проводника влияет несколько факторов;

Материал
  • , например медь, имеет более низкое сопротивление, чем сталь.
  • Длина
  • — более длинные провода имеют большее сопротивление.
  • Толщина
  • — провода меньшего диаметра имеют большее сопротивление.
  • температура — нагревание провода увеличивает его сопротивление.

Как температура влияет на сопротивление?

Влияние температуры на сопротивление проводника прямо пропорционально друг другу. Повышение температуры проводника увеличивает его сопротивление и затрудняет протекание по нему тока.Как обсуждалось выше, движение свободных электронов создает ток в проводнике.

Как определить сопротивление при определенной температуре?

Сопротивление R объекта также зависит от температуры: R = R0 (1 + αΔT) R = R 0 (1 + α Δ T), где R0 — исходное сопротивление, а R — сопротивление после изменения температуры.

Что такое удельное сопротивление?

Удельное сопротивление. Удельное сопротивление или удельное сопротивление материала — это мера сопротивления, которое он оказывает протеканию через него тока.Это внутреннее свойство материала. Удельное сопротивление зависит от состава, температуры, давления материала.

Как найти сопротивление?

Если вы знаете общий ток и напряжение во всей цепи, вы можете найти полное сопротивление, используя закон Ома: R = V / I. Например, параллельная цепь имеет напряжение 9 вольт и общий ток 3 ампера. Общее сопротивление RT = 9 вольт / 3 ампера = 3 Ом.

Какое сопротивление при 0 градусах?

Положив R (0) вместо сопротивления на 0 °, получим R (0) = 4 Ом.

Какое сопротивление у идеального амперметра?

ноль

Какое эквивалентное сопротивление между A и B?

Следовательно, эквивалентное сопротивление между точками A и B составляет 22,5 Ом.

Какое изменение снижает сопротивление куска медного провода?

Это определяется по формуле: Итак, очевидно, что сопротивление провода прямо пропорционально температуре. Если мы хотим уменьшить сопротивление детали, следует снизить ее температуру.Итак, правильный вариант — (3) «понизить температуру проволоки».

Какие три основных фактора влияют на сопротивление объекта?

Сопротивление — это свойство материала, ограничивающее поток электронов. На сопротивление влияют четыре фактора: температура, длина провода, площадь поперечного сечения провода и природа материала.

Какие 3 фактора придают куску медного провода высокое сопротивление?

Сопротивление данного куска провода зависит от трех факторов: длины провода, площади поперечного сечения провода и удельного сопротивления материала, из которого он состоит.-8 омметр.

Какой медный провод будет иметь наибольшее сопротивление?

Чем тоньше сопротивление, тем выше будет его сопротивление, а также чем длиннее провод, тем выше будет сопротивление. То есть провод 36 SWG будет иметь более высокое сопротивление, чем провод 24 SWG ​​и так далее.

Что не влияет на стойкость материала?

Длина и площадь влияют на сопротивление, а также на тип материала, выраженного с помощью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *