Солнечные коллектора: Солнечные коллекторы Vaillant — выбор и сравнение моделей, характеристики, где купить

Содержание

Солнечные коллекторы. Часто задаваемые вопросы.

 

1. Могут ли солнечные водонагреватели являться конкурентоспособной альтернативой газа или электричества?

Солнечная энергия не должна рассматриваться в качестве альтернативы газа или электричества, скорее в качестве дополнения к ним. Она не может полностью заменить потребность в газе или электрическом отоплении, поскольку есть дни с недостаточным уровнем солнечного освещения. Правильный расчёт системы, солнечного нагрева воды, может обеспечить 60% -70% от потребности горячей воды.

Можно точно утверждать что, гелиосистема будет выгодна в том случае, если на объекте отсутствует газ или нагрев воды происходит за счет электричества.

 

2. В течение какого срока солнечный коллектор сможет окупить мои инвестиции?

Для семи из 3-5 человек, стоимость гелиосистемы будет схожа со стоимостью газовой или электрической системой нагрева воды. Сроки окупаемости напрямую зависят от того, в каком колличестве будет потребляться вода, нагретая солнечным коллектором и размера системы.

Эсли на объекте нагрев воды осуществляется за счет электричества, то срок окупаемости будет от 1 года до 2 лет, причем необходимо учитывать, что и работоспособность электрокотлов, электробойлеров и другого отопительного оборудование имеет не такой уж большой срок службы, в отличие от гелиосистемы, которая может проработать не менее 20-25 лет без замены главных и дорогостоящих частей системы. Работая совместно с действующей системой нагрева воды, солнечные коллектора могут экономить до 75% топлива или электроэнергии в осенне-весенний период.

 

3. Могут ли солнечные коллекторы быть использованы в холодных условиях?

Да. Наши вакуумные трубчатые коллекторы могут использоваться при очень низких температурах, в солнечных системах водонагрева, установленных в регионах России, температура в которых достигает -45°C. Удивительно, но даже при этих температурах система может производить горячую воду с хорошей эффективностью за счет вакуума в трубках коллекторов, который является идеальным теплоизолятором. В яркий солнечный день, эффективность коллектора будет примерно одинаковой как в зимний период времени, так и в летний.

 

 

4. Что произойдет, если целостность одной из вакуумных трубок нарушится?

Вакуумные трубки достаточно прочные, и их нелегко разбить, но если это всё-таки произошло, это с лёгкостью решается заменой вакуумной трубки на новую. Хотя наши солнечные коллекторы обладают способностью работать с некоторым количеством повреждённых трубок, рекомендуется повреждённые трубки немедленно заменить, чтобы удерживать эффективность солнечного коллектора на должном уровне. Запасные трубки Вы всегда можете приобрести в нашем магазине.

 

5. Будет ли вода нагреваться в пасмурный день?

Да. Несмотря на то, что тепловая мощность солнечного коллектора снижается в пасмурные дни, поглощаемой энергии хватает для нагрева воды. Если это, по большей степени, туманный день или дождь, то может потребоваться больше ресурсов газового или электрического нагрева, чтобы сохранить температуру воды оптимальной для использования. Солнечная система нагрева воды является автоматизированной, так что вам не придется беспокоиться о нехватке горячей воды в дождливый день.

За своевременным включением котлов, ТЭНов и др нагревательных приборов следит контроллер гелиосистемы.

 

6. Могу ли я использовать солнечный коллектор с системой горячего водоснабжения, которая у меня уже есть?

ДА. Клапаны попросту модернизированы, и они зачастую могут быть использованы, чтобы позволить солнечной энергии подключаться к существующей подаче холодной воды. Если ваш бак не может принять солнечную энергию напрямую, вы можете установить дополнительный накопительный бак для предварительного нагрева холодной воды перед входом в уже существующий. Любая действующая система отопления и водоснабжения может быть доработана гелиосистемой без глобальной реконструкции котельной. Действующая котельная прекрасно будет работать совместно с гелиосистемой, причем экономия топлива и электроэнергии традиционной котельной будет значительной.

 

 

7. Могут ли солнечные коллекторы быть установлены на плоской поверхности?

Да. Они могут быть установлены на плоской крыше или на земле с помощью алюминиевых опорных подставок. Для оптимальной работы солнечного коллектора, его следует установить под углом 45 градусов, чтобы гарантировать оптимальную работу тепловых трубок.

 

8. Как я могу защитить свою солнечную систему при минусовых температурах?

Если ваша солнечная система нагрева воды работает в регионах с минусовыми температурами, то Вам следует принять меры по защите от замерзания. Самым простым способом предотвращения замерзания является использование солнечного контроллера с настройками низких температур. Таким образом, когда температура падает ниже определенной заранее установленной температуры (5°C), насос будет циркулировать и нагревать коллектор водой снизу из резервуара. Насос будет работать сессионно, частота сессий которого зависит от температуры наружного воздуха. В особо холодных регионах целесообразно использовать замкнутый контур с помощью пропиленгликоля, температура замерзания которого ниже 30 градусов.

 

9. Может ли солнечный коллектор стать причиной возникновения пожара во время жаркой и засушливой погоды?

Нет. Все компоненты наших тепловых солнечных коллекторов рассчитаны на воздействие высоких температур и не воспламеняются, так что даже при сильном солнечном свете система нагрева воды не загорится и не подожжёт сухой материал. Даже самым жарким летом к вакуумным трубкам можно прикоснуться и не обжечься, т. к. вся температура находится в самой трубке, за вакуумом.

 

 

10. Может ли солнечный коллектор нагревать воду до достаточно высокой температуры?

Да, в хорошую погоду коллектор может довести воду до кипения. Как правило, это не является необходимым, поэтому система должна быть разработана грамотно. Нелогично доводить воду до кипения в домашних условиях солнечным коллектором, т. к. из за температуры близкой к кипению может произойти деформация пластиковых и резиновых уплотнителей в системе, тем самым увеличивается риск протечек. Если горячая вода не используется в течение одного дня, то на следующий день система будет сбрасывать воду через предохранительный клапан. Это пустая трата энергии и воды! Пожалуйста, используйте разумно энергию, получаемую солнечным водонагревателем, для обеспечения оптимальной производительности и минимального расхода воды.

 

11. Что требуется для обслуживания солнечного коллектора?

При нормальных обстоятельствах обслуживание не требуется. Хотя солнечные коллекторы могут работать с несколькими сломанными трубами, тепловая эффективность будет снижена незначительно. Но разбитые трубки всё же следует заменить как можно скорее.

 

12. Могут ли солнечные коллекторы быть использованы для крупномасштабного производства горячей воды?

Да. Наши солнечные тепловые коллекторы могут быть соединены последовательно или параллельно, чтобы обеспечить крупномасштабное производство горячей воды для нужд коммерческих и муниципальных организаций, таких как школы, гостиницы или офисные здания.

 

 

13. Могу ли я нагреть воду в своём бассейне или спа, используя солнечный коллектор?

Да. Вакуумные трубчатые коллекторы могут быть использованы для нагрева спа или жилого плавательного бассейна. Для любого бассейна, который необходимо нагреть, должен быть использован изолирующий защитный слой, чтобы свести к минимуму потери тепла и испарение.

 

 

14. Вакуумные трубчатые коллекторы более эффективные, чем плоские?

 

Существует небольшая разница между вакуумным трубчатым коллектором и плоским коллектором при сравнении максимальной эффективности. На самом деле, эффективность плоской пластины коллектора может быть выше трубки вакуумного коллектора, но при условиях с минимальными потерями тепла. При средних же показателях за год, вакуумный трубчатый коллектор имеет явные преимущества. Ключевыми являются следующие моменты:

 

1) Солнечные вакуумные трубки могут пассивно отслеживать положение солнца в течение дня из-за цилиндрической формы трубок. Пластина плоского солнечного коллектора обеспечивает выходной импульсной энергии в полдень, когда солнце находится в зените

2) Вакуум в трубках значительно снижает потери конвективного тепла из внутренней части трубки. Таким образом, ветра и низкие температуры оказывают намного меньшее влияние на эффективность вакуумного коллектора.

3) Вакуумные трубки прочны и долговечны, так как сделаны из сверхпрочного боросиликатного стекла. По отдельности трубки стоят недорого и сломанную легко заменить.

4) Из-за различных преимуществ вакуумной трубки коллектора над плоской пластиной коллектора, понадобится меньшее количество коллекторов, чтобы обеспечить такую же производительность нагрева. Например, в семье из 4-5 человек, как правило, потребуется резервуар с 250-300 литров воды. В зависимости от вашего местоположения, летом все 30 вакуумных трубок коллектора будут обязаны предоставлять все потребности в горячей воде и большой процент в другие сезоны.

5) Плоские солнечные коллекторы могут производить подобный выход тепла в вакуумных трубчатых коллекторах, но, как правило, исключительно в солнечных условиях. При среднем в течение всего года, тепловая мощность вакуумной трубки коллектора на квадратный метр на 25%-40% больше, чем плоской пластины коллектора.

 

Солнечные коллекторы для отопления дома, принцип работы гелиосистемы, особенности подключения коллекторов

Любой солнечный коллектор — это особый вид климатической техники. Она используется для производства горячей воды, чтобы в дальнейшем использовать её для различных нужд. Возможность внедрения возобновляемых бесплатных источников энергии в производственный цикл становится главным отличием коллекторов от другой подобной техники. Принцип изменения плотности воды во время её нагрева — вот на чём основана работа таких устройств. Это означает, что осуществляется движение воды наверх, для дальнейшего подогрева выталкиваются более холодные участки воды. Так что нет необходимости использовать какое-либо дополнительное насосное оборудование.

Как работает коллектор в системе отопления

Чаще всего гелиосистемы используют для своей работы обычную воду, а так же антифриз. Если по сравнению с коллектором температура воды в нижней части ниже, включается обогрев. Вода перемещается по системе благодаря встроенному насосу.
Нагрев воды в накопителе происходит через теплообменник
, обычно коллекторы нагреваются только до определённой температуры.

При необходимости направление воды в системе меняется благодаря смесителю. Таким образом, остывающая и тёплая вода время от времени сменяют друг друга. За счёт расширения тёплой воды происходит замена жидкости в системах с естественной циркуляцией. При нагреве тёплая вода поднимается вверх, холодная выталкивается в нагревательный бак.

Обязательно наличие теплоизоляционного слоя толщиной как минимум 25−30 сантиметров, иначе система не сможет работать стабильно. Что касается резервуара, то лучше всего использовать прямоугольную форму. При соблюдении этого условия вода будет равномерно распределяться по всем имеющимся участкам. Так что работа системы в целом станет более полноценной.

Отопление домов солнечными коллекторами

Затраты на обогрев частного дома могут снизиться до 50−90 процентов, если правильно смонтировать солнечные коллекторы. Весна-осень — период, когда обогрев происходит особенно активно, хотя в принципе система работает в любое время года.

Главные параметры, которые нужно рассчитывать при выборе коллектора:

  • площадь гелиосистемы
  • количество тепловой энергии

Если система будет использоваться в зимний период, то и расчёты проводятся соответственно. Ведь в зимние морозы требуется гораздо больше энергии и затрат для того, чтобы помещение было комфортным для проживания.

Достаточно часто солнечные коллекторы выступают лишь дополнительными источниками тепла. Автономное использование гелиосистемами тоже возможно, если теплоизоляция дома выполнена правильно.

Естественная циркуляция воды за счёт конвекционных потоков — лишь один из принципов, по которому может быть организована гелиосистема. Из-за пассивной циркуляции воды этот вариант менее эффективен, чем все остальные. Бак обязательно примыкает к коллектору, но в то же время находится выше него.

Дополнительные электрические циркуляционные насосы используются в системах с принудительной циркуляцией. В данном случае сами коллекторы становятся более эффективными, поскольку более эффективно используется вода. Но к обслуживанию такие устройства более требовательны, всё зависит от электрической энергии, за счёт которой всё работает.

Подключение коллекторов к системе отопления

От того, какой тип циркуляции используется в той или иной системе, зависит то, как будет производиться подключение к отопительной системе. Подключение к системе с естественной циркуляцией — один из самых простых способов. Здесь главным принципом становится только нагрев воды в системе отопления.

Выше уровня коллектора подключается накопительный бак. Верхний вывод, таким образом, должен подключаться ко входу горячей воды в систему отопления, а нижний к обратке. На входе в солнечный коллектор для отопления в таком случае могут возникнуть воздушные пробки. Потому такие системы стоят дешевле, чем вариант с использованием насосов.

С использованием автоматики можно подключить солнечный коллектор к системе с принудительной циркуляцией. Эти системы обладают своими особенностями:

  1. Контроллер управляет насосом на основе показаний специальных датчиков.
  2. Когда по этим датчикам температура достигает заданного значения, обогрев прекращается
  3. Бак-накопитель, обратка и выход коллектора — места, где обязательно устанавливаются такие датчики
  4. Вместе с такой системой лучше использовать дополнительные источники тепла. Например, твердотопливные или газовые котлы.

На степень нагрева воды в системе в таких случаях влияет местоположение коллектора по отношению к солнцу, а так же уровень его наклона. Лучше с самого начала устанавливать коллекторы так, чтобы под прямыми солнечными лучами они находились большую часть дня. Объём бака в морозный период лучше выбирать около 40 см³, если не планируется подключать дополнительные источники тепла. Иначе в пасмурные дни система будет работать не совсем эффективно.

Довольно сложно рассчитать количество квадратных метров, которые необходимы для той или иной системы коллекторов. Здесь важны не только наклон крыши и сторона, значение приобретают уровень солнечной радиации в данном регионе, объём накопителя. Потому все расчёты лучше доверить квалифицированным специалистам.

Сейчас производством солнечных коллекторов занимаются разные производители. Выбирая ту или иную марку, надо обязательно обратить внимание на её производительность. В перерасчёте на м2 у каждой торговой марки она может быть своя. И в некоторых случаях разница становится действительно заметной.

Коллекторы из поликарбоната

Листы ячеистого поликарбоната или полипропилена — главные элементы, из которых состоят такие коллекторы. К торцам листов крепится непосредственно сам коллектор. Только в специальном жестяном крытом коробе необходимо осуществлять монтаж подобной системы. В качестве крышки следует использовать дополнительный лист из поликарбоната. Можно сделать и стеклянную крышку, но, если светопроницаемость будет излишний, поликарбонат создаст парниковый эффект, так что всё будет похоже на двойное остекление. Так что лучше всё делать полностью из поликарбоната, так система будет работать стабильнее.

Дополнительная информация о структуре

Сам солнечный коллектор становится главным элементом в системе нагрева воды. Эта конструкция может быть отнесена к одной из трёх групп:

  • плоские коллекторы
  • вакуумные коллекторы
  • водяные коллекторы

Алюминиевая рама становится основой для плоских коллекторов. Внутри неё располагаются медные трубки, сверху их покрывает специальный поглощающий материал. Снизу находится теплоизоляция. Закалённое стекло практически полностью закрывает эту конструкцию, само стекло всегда отличается большой пропускной способностью относительно света. Такие системы можно включать только в определённое время года, а можно пользоваться ими круглый год.

Рама с вакуумными трубками из боросиликатного стекла — вот что используется для изготовления вакуумных коллекторов. Ещё одна колба со специальным поглощающим покрытием имеется при этом внутри каждой отдельной трубки. Медная трубка с теплоносителем под низким давлением располагается в самих колбах. В теплообменник с жидкостью помещается конец медной трубки, именно туда выделяется тепловая энергия, которая аккумулируется в системе.

Конструкция типа «морская трубка» тоже является отдельной разновидностью вакуумных коллекторов. Бак для воды и трубки в этом случае находятся на раме. Внутри каждой трубки находится ещё одна трубка, между ними обязательно устраивается специальное вакуумное пространство. Слоем абсорбента покрыты вакуумные трубки, более того, они заполнены водой. Когда происходит нагрев, вода поднимается в бак. Холодная опускается к трубкам для нагрева. Такие системы ещё называются водяными солнечными коллекторами.

Бак-аккумулятор выступает вторым элементом, который обязательно присутствует в любой системе. Именно он используется для хранения воды, в дальнейшем потребляющейся для различных нужд. Наружную часть бака лучше утеплить отдельным слоем толщиной минимум в 3 сантиметра, иначе в холодное время года он не сможет сохранить тепло. Бойлер для солнечного коллектора тоже подождёт.

На что следует обратить внимание

Любые гелиоустановки характеризуются номинальной мощностью, которая обозначается в киловаттах. Это количество энергии, которое вырабатывается при ярком солнце в зените. Это означает, что эффективность системы будет снижаться утром и вечером. Ночью, скорее всего, можно будет использовать горячую воду только из бойлера, где вода копилась на протяжении целого дня.

Выбирая модель коллектора, обратите внимание на то, можно ли его использовать в зимний период. И на то, какая мощность должна быть у системы, к которой коллектор подключается. Установка коллекторов обычно осуществляется на крышу или на каркас, который монтируется отдельно.

Гелиосистема для загородного дома (видео)

Оцените статью: Поделитесь с друзьями!

Плоский солнечного коллектора ЯSolar

  1. Главная страница
  2. Солнечный коллектор Яsolar
  3. Плоский солнечный коллектор ЯSolar

  Солнечные коллекторы ЯSolar разработаны по европейским стандартам EN 12975-1 и -2 и производятся компанией ООО ''НОВЫЙ ПОЛЮС'' в России по полному циклу (включая изготовление абсорбера) на уникальном оборудовании.

В конструкции солнечного коллектора ЯSolar используются:
  - самое современное поглощающее энергию покрытие TiNOX,
  - полностью медный абсорбер,
  - сверхпрозрачное антибликовое стекло,
  - максимально эффективные утеплитель (60мм) и средства герметизации.

  Специально для коллектора ЯSolar был разработаны и запатентованы технология пайки медных абсорберов с профилированным листом TiNOX для улучшенной теплопередачи, специальный корпус и прижим стекла. После улучшений оптический КПД ЯSolar составил 83%, что значительно больше всех российских и многих импортных аналогов (включая вакуумные). При низких температурах теплопотери предлагаемого солнечного коллектора почти такие же как у трубчатых солнечных коллекторов, при этом при положительных температурах КПД солнечного коллектора ЯSolar выше. Отношение эффективной поглощающей поверхности (абсорбера) к габаритам у него больше, а снег не мешает нормальной работе. Также нет проблемы заиневания как у трубчатых солнечных коллекторов и отсутствует увеличение теплопотерь со временем. Солнечные коллекторы ЯSolar имеют удобное подключение с низким гидравлическим сопротивлением и гибкие точки крепления.

КУПИТЬ СОЛНЕЧНЫЙ КОЛЛЕКТОР ЯSOLAR


  Гарантия качества. Все элементы коллектора ЯSolar изготовлены из надежных материалов (медь и алюминий) в соответствии с наивысшими нормативами качества, благодаря чему на солнечные коллекторы ЯSolar распространяется 5-ти летняя гарантия, срок службы составляет более 25 лет.

  Высокая эффективность. Солнечный коллектор ЯSolar, имеющий высокоселективное покрытие TiNOX, обеспечивает превосходную производительность. Специальное оптическое стекло и инновационное паяное соединение формованного абсорбера и медных трубок по половине их поверхности (включая коллекторные трубы Ø22мм) позволяют использовать солнечную энергию даже в пасмурную погоду. В отличие от ультразвуковой сварки покрытие не повреждается.

  Минимальные потери тепла. Целостная герметичная жесткая конструкция солнечного коллектора ЯSolar и новейшая термическая двойная теплоизоляция с низким влагопоглощением толщиной 60 мм уменьшают коэффициент теплопотерь до минимума и позволяют более эффективно использовать солнечную энергию в суровом климате при отрицательных температурах.


  Область применения и назначение солнечного водонагревателя ЯSolar

  Плоский солнечный коллектор ЯSolar представляет собой специальный теплообменник, преобразующий энергию солнечного излучения в тепловую энергию и передающий её теплоносителю - жидкости, движущейся внутри каналов поглощающей панели (абсорбера) коллектора.

  Солнечный коллектор ЯSolar можно использовать для нагрева не только воды, но и других жидких теплоносителей, совместимых с материалом его поглощающей панели и применяемых в системах отопления, кондиционирования, хладоснабжения и промышленных технологических процессах.

  Солнечный коллектор ЯSolar соответствует требованиям ГОСТ Р51595-2000 "Коллекторы солнечные. Общие технические условия" и требованиям стандартов большинства зарубежных стран.

  Солнечный коллектор ЯSolar разработан с применением современных материалов и технологий по европейским стандартам EN 12975-1 и -2. По своим характеристикам он соответствует уровню лучших зарубежных аналогов.

  Главной особенностью солнечного коллектора ЯSolar является оптическое селективное покрытие, эффективная конструкция паяного медного абсорбера с покрытием TiNOX и уникальная теплоизоляция. В отличие от "псевдо селективных" покрытий других производителей, обладает высокой степенью улавливания как видимых солнечных лучей, так и рассеянной солнечной радиации в облачную погоду. Из-за низкого коэффициента черноты обратное излучение тепла в инфракрасном спектре минимально (3-5%). Получается "солнечная ловушка" с высокими показателями эффективности в условиях низких температур и малой солнечной инсоляции. Площадь контакта медного листа с трубкой коллектора в десятки раз больше чем у лазерной сварки. Это позволяет эффективно использовать солнечную энергию в системах нагрева воды и отопления, снижает тепловые потери коллектора и увеличивает его теплопроизводительность на 25-30%.

  Мощность солнечного коллектора ЯSolar 1,5кВт при температуре 20°С и интенсивности излучения 900 Вт/м².

  При работе в составе систем солнечного теплоснабжения коллекторы ЯSolar не требуют постоянного наблюдения и регулярного обслуживания за исключением периодических внешних осмотров для контроля герметичности соединений один раз в год и периодической промывки остекления по мере его загрязнения для сохранения его светопропускания.

  Солнечные коллекторы ЯSolar размещаются на кровле зданий, располагаются на специальных опорах и площадках.

Наша продукция позволит Вам реализовать проекты по получению солнечной энергии любой сложности. Мы проектируем, комплектуем и монтируем системы для частных дом, нагрева бассейнов, гостиниц, фермерских хозяйств и промышленных объектов.

Частных домов

Нагрева бассейна

Гостиниц

Фермерских хозяйств

Промышленных объектов


Также существуют решения и проекты по получению холода и электроэнергии от тепловой солнечной энергии.

Приобретая солнечные коллекторы ЯSolar , Вы получаете:
  
- Бесплатную горячую воду и помощь системе отопления
- Надежное оборудование от российского производителя
- Заводскую гарантию 5 лет
- Расширенную клиентскую поддержка 
- Уменьшение первоначальные затраты
- Экономию на коммунальных расходах

Солнечные водонагревательные системы в зависимости от региона использования могут обеспечить до 90% Ваших потребностей в горячей воде и до 70% - в системе отопления. Благодаря экологически чистому источнику энергии Ваши расходы существенно уменьшаться, а жизнь станет более комфортной.

 

Почему выбирают нашу компанию:

Более 10 лет работы

Более 5000 изготовленных солнечных коллекторов

Более 1000  спроектированных и отправленных систем

Более 150 смонтированных установок

95% клиентов обращаются повторно при необходимости

Профессиональные инженеры и проектировщики

     

Для Вас наш инженеры разработали и просчитали надежные комплекты гелиосистем на базе плоских солнечных коллекторов ЯSolar.

С комплектацией готовых комплектов солнечных энергоустановок Вы можете ознакомиться в разделе нашего сайта "Готовые комплекты"

 

Описание принципов работы солнечных коллекторов, вакуумных и плоских коллекторов

Для превращения солнечной энергии в тепловую используют гелиосистемы.

Солнечный водонагреватель (солнечный коллектор) - это устройство, предназначенное для поглощения солнечной энергии, которая переносится видимым и ближним инфракрасным излучением для последующего её преобразования в тепловую энергию, пригодную для использования.

В гелиосистемах наиболее распространены два типа коллекторов: вакуумные и плоские.

Основной частью вакуумного коллектора является тепловая трубка. Такие коллекторы представляют собой ряд стеклянных трубок специальной конструкции. Трубка гелиоколлектора – это на самом деле две трубки (одна вложенная в другую), между которыми находится вакуум для наилучшей термоизоляции теплоносителя от внешней среды.

Способ передачи тепла от неё теплопроводу вакуумного солнечного коллектора: медная труба внутри пустая и содержит неорганическую и нетоксичную жидкость. При нагревании эта жидкость испаряется, а поскольку в трубке создан вакуум, то это происходит даже при температуре минус 30°С. Пар поднимается к наконечнику тепловой трубки, где отдаёт тепло теплоносителю (антифризу), который течёт по теплопроводу гелиоколлектора. Потом он конденсируется и стекает вниз, и процесс повторяется снова. Солнечный водонагреватель с вакуумными трубами показывает отличные результаты даже в пасмурные дни, потому что вакуумные трубы способны поглощать энергию инфракрасных лучей, которые проходят через тучи. Благодаря изоляционным свойствам вакуума, влияние ветра и низких температур на работу гелиосистемы также незначительно по сравнению с влиянием на плоский солнечный коллектор. Система с вакуумным солнечным коллектором успешно работает до -35°С.

Трубы установлены в солнечном водонагревателе параллельно, угол их наклона зависит от географической широты места установки системы отопления. Ориентированные с севера на юг, на протяжении дня, трубки вакуумного солнечного коллектора пассивно двигаются за солнцем. Они практически не нуждается в эксплуатационном обслуживании.

Для поддержания вакуума солнечный водонагреватель использует газопоглотитель, который в производственных условиях подвергался влиянию высоких температур, в результате чего нижний конец вакуумной трубы покрыт слоем чистого бария. Он поглощает СО, СО2, N2, O2, H2O и H2, которые выделяются из трубы в процессе хранения и эксплуатации, и является чётким визуальным индикатором состояния вакуума в трубке солнечного коллектора. Когда вакуум исчезает, бариевый слой из серебристого становится белым. Это дает возможность легко определить, целая ли труба вакуумного солнечного водонагревателя.

Вакуумные солнечные коллекторы полностью пригодны для ремонта: в случае необходимости трубку можно заменить без остановки солнечного водонагревателя. За необходимостью вакуумные трубки можно добавлять (при недостатке тепла) или частично снимать (если есть его избыток), уменьшая площадь гелиоколлектора. Обслуживание солнечного водонагревателя сводится практически к нулю. Вакуумные солнечные коллекторы отлично справляются с заданием обеспечения дома горячей водой, отоплением квартиры, подогревом бассейнов, теплиц, работают в системах вентиляции, кондиционирования и отопления зданий. Благодаря всему этому работа гелиосистемы проста, как с точки зрения эксплуатации, так и обслуживания.

Плоские гелиоколлекторы имеют иную конструкцию. Главным элементом в них является абсорбер, поглощающий солнечное излучение, сверху он имеет прозрачное покрытие. Для повышения эффективности коллектора, используют специальное оптическое покрытие из закалённого стекла с пониженным содержанием металлов. Абсорбер соединён с теплопроводящей системой.

Конструкция плоских солнечных коллекторов является довольно простой. Внешне они представляют собой простую панель, имеющую прямоугольную форму. Эта установка обладает алюминиевым корпусом, несколькими патрубками, использующимися с целью отвода и подвода жидкого теплоносителя. Кроме того, изнутри стенки коллектора покрыты теплоизоляционным слоем. На сегодняшний день производители его толщину делают равной трем-четырем сантиметрам – это предоставляет возможность добиться существенного уменьшения уровня теплопотерь.

Принцип работы плоского солнечного коллектора основывается на парниковом эффекте - солнечные лучи поступают на поверхность этого устройства и проникают сквозь стекло. Теплопоглощающее покрытие, используемое в нижней части коллектора, характеризуется коэффициентом поглощения, составляющим 91%. В конечном итоге чрезмерный нагрев приводит к тому, что покрытие начинает излучать тепловую энергию. Мощность её расположена в инфракрасном диапазоне, другими словами, имеется возможность достичь аккумулирования энергии солнца в коллекторе. Процесс отвода тепла происходит при непосредственном участии теплоносителя.

Преимущества и недостатки плоских и вакуумных коллекторов

Вакуумные трубчатые

Плоские высокоселективные

Низкие теплопотери

Способность очищаться от снега и инея

Работоспособность в холодное время года до -30С

Высокая производительность летом

Способность генерировать высокие температуры

Отличное соотношение цена/производительность для южных широт и тёплого климата

Длительный период работы в течение суток

Возможность установки под любым углом

Удобство монтажа

Меньшая начальная стоимость

Низкая парусность

 

Отличное соотношение цена/производительность для умеренных широт и холодного климата

 

минусы

минусы

Неспособность к самоочистке от снега

Высокие тепло потери

Относительно высокая начальная стоимость проекта

Низкая работоспособность в холодное время года

Рабочий угол наклона не менее 20°

Сложность монтажа, связанная с необходимостью доставки на крышу собранного коллектора

 

Высокая парусность

Если у Вас появились вопросы по выбору оборудования или необходимо подобрать солнечную или резервную станцию, вы можете обратиться за помощью к нашим специалистам.

Проконсультируйтесь у специалистов

виды, принцип работы системы, правила установки солнечных коллекторов, сфера и специфика применения устройств

Солнечными коллекторами называют установки, предназначенные для сбора тепловой энергии солнца, используемой для нагрева теплоносителя. Как правило, их используют для отопления и горячего водоснабжения помещений. Основные объекты использования гелиоколлекторов – здания коммерческого назначения и частные дома.

Солнечный коллектор – своего рода уникальное устройство. Его покупка в будущем позволит избавиться от ежемесячных расходов на горячую воду и отопление. Однако в связи с его немалой стоимостью главное – не допустить ошибок при выборе соответствующего оборудования.

Следовательно, перед тем, как приобрести гелиоколлектор, необходимо располагать общей информацией о его видах, особенностях и принципах работы.

Преимущества солнечных коллекторов и гелиосистем Oventrop

Экономичность. Солнечные коллекторы существенно снижают расходы на горячее водоснабжение и обогрев коттеджа в холодное время года. Использование гелиоустановок сокращает годовые затраты на нагрев воды до 60%, а на отопление здания – до 30%;

Экологическая чистота. Гелиоколлектор абсолютно безопасен, т.к. не допускает загрязнения окружающей среды и не оказывает негативного влияния на здоровье человека. Кроме того, в воде, находящейся под действием высоких температур и вакуума, появление и распространение бактерий становится невозможным;

Длительный срок эксплуатации. Надежность и долговечность солнечных коллекторов Oventrop обусловлена применением современных высококачественных материалов. Стеклянные и металлические элементы гелиоустановки отличаются ударопрочностью и устойчивостью к резкой смене погоды, в частности порывам ветра;

Автономность. Гелиоустановка может отапливать здания даже в случае длительных перебоев в работе системы теплоснабжения. Аналогичная ситуация и при отключении горячей воды.

Специфика применения

В отличие от теплогенераторов и тепловых насосов, преобразующих энергию из согретых солнцем грунтовых вод и воздушных масс, солнечные коллекторы работают от прямых солнечных лучей, воздействующих на их поверхность. Единственный нюанс гелиоколлекторов заключается лишь в том, что ночью они находятся в пассивном режиме.

На суточную производительность гелиоустановки влияют такие факторы, как:

  • Продолжительность светового дня, которая в свою очередь зависит от географической широты региона и времени года. Так, например, в Центральной части России летом солнечный коллектор будет функционировать по максимуму, а зимой – по минимуму. Это связано не только с длительностью дня, но и изменением угла падения солнечных лучей на гелиопанели;
  • Климатические особенности региона. Как правило, на территории нашей страны имеется множество участков, над которыми больше 200 дней в году солнце скрывается за слоями туч или за пеленой тумана. Несмотря на то, что гелиоколлектор может улавливать даже рассеянные солнечные лучи, в пасмурную погоду его продуктивность значительно уменьшается.

Принцип работы и особенности устройства

Главным элементом гелиоколлектора является адсорбер. Он представляет собой медную пластину с присоединенной к ней трубой. При поглощении энергии воздействующих на гелиосистему прямых солнечных лучей, адсорбирующий элемент моментально нагревается, передавая тепло циркулирующему по трубопроводу теплоносителю.

От типа поверхности коллектора зависит его способность отражать или поглощать солнечные лучи. Так, например, устройство с зеркальной поверхностью превосходно отражает свет и тепло, в то время как черная пластина полностью поглощает их. Следовательно, для наибольшей эффективности медную пластину адсорбера чаще всего покрывают черной краской.

Чтобы также повысить количество излучаемой от солнца тепловой энергии, необходимо грамотно выбрать прикрывающее адсорбер стекло. Для солнечных коллекторов применяют специальное стекло с антибликовым покрытием и минимальным процентом содержащегося в нем железа. Такое стекло отличается от обыкновенного не только сниженной долей отражаемого света, но и увеличивает прозрачность.

Кроме того, для предотвращения загрязнения стекла, что тоже снижает эффективность работы гелиоустановки, корпус коллектора полностью герметизируют, либо наполняют инертным газом.

При всем этом часть получаемой тепловой энергии пластина адсорбера отдает в окружающую среду, нагревая взаимодействующий с гелиосистемой воздух. Для снижения теплопотерь адсорбирующий элемент следует изолировать. Поиски максимально эффективных способов теплоизоляции и привели к появлению множества разновидностей солнечных коллекторов. Одними из распространенных видов являются плоские и трубчатые, или вакуумные.

Плоские солнечные коллекторы: устройство

Гелиоколлектор плоского типа состоит из алюминиевого короба, сверху которого установлено защитное стекло с абсорбционным слоем. Внутри корпуса расположены медные трубки, впускной и выпускной патрубки. Дно и стенки короба защищены самым надежным теплоизолирующим элементом – минеральной ватой.

Некоторые модели плоских коллекторов могут также иметь под стеклом слой пропиленгликоля, который выполняет функцию поглотителя солнечных лучей. Это увеличивает его КПД, обеспечивая оборудованию максимальную производительность вне зависимости от сезона.

Достоинства и недостатки плоских гелиоколлекторов

К главным преимуществам плоских солнечных коллекторов относят:

  • Способность к самоочищению в случае выпадения осадков в виде снега или инея;
  • Высокие показатели в соотношении «цена/качество», что характерно для южных регионов с теплым климатом;
  • Высокий КПД при эксплуатации в летний сезон;
  • Сравнительно невысокая стоимость в отличие от других гелиоконструкций.

Основными недостатками таких систем являются:

  • Высокие теплопотери, обусловленные конструктивными признаками установок;
  • Небольшой КПД при функционировании осенью и зимой;
  • Сложности в ходе перевозки и монтажа гелиосистем;
  • Максимальные затраты в случае выполнения ремонтных работ;
  • Повышенная парусность гелиоустановки.

Сфера применения плоских солнечных коллекторов

Несмотря на недостатки, данный тип гелиосистем используется для сезонного нагрева горячей воды. Плоские гелиоколлекторы используются:

  • Для горячего водоснабжения летнего душа;
  • Для подогрева воды в бассейне до нужной температуры;
  • Для обогрева теплиц.

Вакуумные гелиоколлекторы

Вакуумный солнечный коллектор – это высокотехнологичное комплексное устройство, предназначенное для сбора тепловой солнечной энергии и последующей ее переработки в тепловую энергию, которая используется в быту и промышленных сферах для обеспечения отопления, подогрева воды в системах водоснабжения. Солнечный вакуумный коллектор высокоэффективен и эргономичен, обладает высоким КПД даже в условиях слабой освещенности и низких температур, что дает возможность использовать систему в любое время года. Устройство позволяет перерабатывать в тепло инфракрасное излучение, проникающее сквозь облака и рассеянные лучи. Солнечные коллекторы Oventrop способны даже при отрицательных температурах окружающей среды нагреть воду до ста градусов Цельсия.

Сфера применения вакуумных  солнечных коллекторов

Использование конструкции значительно снижает затраты на отопление в зимний период года и гарантирует бесплатный подогрев воды в летний период года. Солнечный коллектор активно поглощает солнечную энергию и улавливает 98% энергии, когда степень вакуума - 10-. Системы устанавливают на фасадах, плоских или скатных крышах. При расположении в произвольных местах угол наклона должен находиться в пределах 15-750. Срок эксплуатации – не менее двадцати лет.

Системы широко используются для:

  • подогрева воды в бытовых и производственных водопроводах, бассейнах;
  • работы отопительных индивидуальных систем;
  • обогрев теплиц.

Коллекторы легко включаются в сети водо- и теплоснабжения. Для подключения системы используется станция Regusol X Duo с вмонтированным теплообменником и контроллером, которая благодаря послойному накоплению теплоносителя повышает эффективность всей энергосистемы.

Установка солнечного коллектора

От правильности установки коллектора напрямую зависит эффективность конструкции. Для избегания риска поднятия давления вследствие перегрева воды расчет солнечного коллектора выполняются исключительно в специальных программах. Расчеты производятся с учетом погодных условий в точке размещения коллектора и среднегодового расхода тепла. Мощность солнечного корректора вычисляется исходя из данных о площади, значения инсоляции системы и КПД коллектора.

Перед началом расчетов определяется, будет система круглогодичной или сезонной.

  1.  Солнечные корректоры сезонного типа предполагают использование в теплый период года (середина апреля – середина октября). Данная конструкция состоит из бака накопителя и коллектора. Теплоносителем служит вода, которая замерзает при отрицательных температурах, поэтому использование ее в холодную часть года невозможно.
  2. Круглогодичные системы могут эффективно использоваться вне зависимости от температурного режима окружающей среды. В конструкции используется незамерзающая эфирная жидкость, которая обеспечивает высокий КПД солнечного коллектора даже в самые холодные дни года.

Вакуумные солнечные коллекторы при грамотной установке и монтаже покрывают до 60% среднестатистической семьи в горячей воде и обеспечивают отопление в период от второй половины весны до середины осени. Например, при установке системы в средних широтах России коллектор площадью в два квадратных метра обеспечивает ежедневный нагрев ста литров воды до 40-600.

Эффективность установки в летний период года значительно выше. За один ясный световой день 1 м2 коллектора будет прогревать около восьмидесяти литров воды до температуры + 650. Среднегодовая производительность солнечного коллектора с поглощающей площадью в 3м2 будет состоять в диапазоне 500-700 кВт/ч на 1м2.

Устройство вакуумного солнечного коллектора

Компания Oventrop предлагает вакуумные солнечные коллекторы с тепловой трубкой. Системы с тепловой трубкой конструктивно напоминают термос: в стеклянную/металлическую трубку большего диаметра вставлена другая, меньшего диаметра. Пространство между ними вакуумированно, что обеспечивает максимально эффективную теплоизоляцию от воздействия внешних температур и минимальные потери на излучение. Вакуумная прослойка позволяет сохранить до 95% поглощенной тепловой энергии.

Все вакуумированные трубки оборудованы внутри медными пластинами поглотителя с эффективно собирающим солнечную энергию гелиотитановым покрытием. Заполненная специальной эфирной жидкостью тепловая труба установлена под поглотителем и присоединена к расположенному в теплообменнике конденсатору. Полученная поглотителем солнечная энергия превращает жидкость в пары, которые поднимаются в конденсатор и отдают тепло коллектору, конденсируется и возвращается в нижнюю часть колбы. Благодаря цикличности создается непрерывный процесс теплообмена.

Система способна вырабатывать значительные температуры и обеспечивает высокий КПД даже при слабой освещенности и t -30 - -450С (в зависимости от вида коллектора с трубками из стекла или металла). Вакуумные солнечные коллекторы просты и недороги в эксплуатации. Специальные соединения конструкции позволяют заменять либо поворачивать трубки в заполненной находящейся под давлением установке.

Солнечные коллектора VMtec (Германия), NIBE (Швеция)

Преимущества гелиосистем

Энергия Cолнца не только неистощима и бесплатна, но и экологичнее любого из доступных человеку видов энергии. Каждые 8 минут Солнце поставляет нам столько энергии, сколько человечество расходует за год. Вся потребность человечества в энергии на 180 лет вперёд может быть обеспечена солнечной энергией, которая достигает Земли только за один день. В численном выражении Солнце посылает Земле ежедневно 960 миллиардов киловатт энергии. Это означает, что в будущем ни один из способов получения энергии не пройдёт мимо использования энергии Солнца. VMtec предлагает Вам гелиосистемы с солнечными коллекторами vmTHERM, которые оптимально используют энергию Солнца для приготовления горячей воды и, при необходимости, могут поддерживать систему отопления.

Сделано в Германии

На заводе в г. Оффенбах-на-Майне (Германия) установлена современная роботизированная производственная линия, инвестиции в которую составили около 5 миллионнов евро. На ней производятся около 100.000 плоских коллекторов в год общей площадью 250.000 кв.м. В среднем, плоский коллектор аккумулирует 1.350 кВт часов энергии в год (нормированные климатичестие условия Германии) и сокращает тем самым вредные выбросы CO2 в атмосферу на 450 кг.

Солнечные коллекторы Nibe (Швеция)

Предназначен для нагрева воды, вспомогательного отопления и для использования в технологических энергетических системах. Подходит для использования в системах высокого и низ- кого давления.

Солнечные коллекторы VMtec (Германия)

Солнечные коллекторы Vmtec это высококлассный коллекторы с селективным абсорбером змеевикового типа, сваренным по лазерной технологии, и инновационным дизайном малой массы.

Плоскопанельные коллекторы VMtec

Плоскопанельные солнечные коллекторы представляют собой абсорбер, элемент, поглощающий солнечную радиацию и связанный с теплопроводной системой. С внешней стороны элемент закрыт слоем прозрачного материала, прозрачного покрытия. Чаще всего это покрытие выполняется из специального закаленного стекла, в котором максимально снижено содержание металлов. Обратная сторона, для уменьшения теплопотерь закрыта теплоизолятором. Если тепло не передается на внешние потребители, то такой плоский коллектор в состоянии нагревать промежуточный теплоноситель до ста сорока градусов. В настоящее время разрабатываются и применяются специальные оптические оболочки. Поскольку из всех используемых материалов наиболее высокая теплопроводность у меди, то она стала основным сырьем для производства абсорбера.

Вакуумные коллекторы VMtec

У вакуумных коллекторов главная часть – это специальная вакуумная трубка, покрытая чернением для нагревания, в которой находится вода или антифриз. Вся конструкция сделана по принципу устройства термоса. Вокруг полости заполненной жидкостью для уменьшения непродуктивных потерь тепла создается своеобразная вакуумная камера. Используя такой элемент можно нагреть воду даже в том случае, если температура окружающей среды минусовая. Применение систем, построенных на вакуумных солнечных коллекторах, в большинстве российских регионах могут обеспечить население третью часть энергии, необходимой для теплоснабжения осенью или весной. И процентов на 60 удовлетворить потребность в горячей воде. С целью повышения эффективности приборов, внутренние вакуумные трубки делаются граненой формы или в форме буквы «U». Внешняя оболочка трубок изготавливается из боросиликатного стекла, имеющего повышенную прочность и длительное время не теряющего своих оптических свойств.

Награда red dot

В 2009 году коллекторы VMtec стали обладателем сразу трёх престижных международных наград red dot. Награда red dot выдается престижным немецким институтом "Центр Дизайна" в Северной Вестфалии (а с 2005 года и центром дизайна Сингапура) и является одной из самых престижных наград в области дизайна в мире. В состав компетентного жюри входят эксперты в области дизайна со всего мира, что гарантирует самую высокую объективность выбора лучших продуктов. Оцениваемыми критериями являются: инновативность, функциональность, качество и эргономика продукта.

Солнечные коллекторы для отопления дома: виды и типы

Для начала разберемся с понятиями. Автономная установка солнечных коллекторов предполагает, что только они буду источником тепла для обогрева дома. Даже при подключении к электросети расход электроэнергии будет столь незначительным, что его не берут в расчет. Созависимая установка предполагает, что вместе с солнечными коллекторами в отоплении участвуют традиционные котлы: электрические, газовые, твердотопливные.

Известно, что в европейской части России зимой солнечные коллекторы способны обогреть 30-40% от общей площади помещения. Чтобы дойти до показателя в 100% придется задействовать «сторонние силы» — электроэнергию или тепло от сгорания дров. При высокой облачности и низкой температуре окружающего воздуха солнечный коллектор способен впитывать тепло только для нагрева теплоносителя внутри комплекта, а за дальнейшее прогревание отопительной системы отвечает установленный в доме котел. Чтобы повысить КПД солнечного коллектора в зимний период, рекомендуется выбирать гелиосистему с принудительной циркуляцией, куда входит насос и встроенные вентиляторы. Однако в этом случае часть энергии будет тратиться на их работу. Система же с естественной циркуляцией функционирует за счет разницы температур в коллекторе и накопительном баке.

Обычно зимой солнечный коллектор нагревает теплоноситель (воду) в накопительном баке до 30°C. Но температура может быть и ниже, это зависит от температуры окружающего воздуха и мощности самого коллектора. В практике российских пользователей отмечается прогрев теплоносителя всего лишь до 15°C при минус 17°C за окном и повышенной облачности. Понятно, что ни того, ни другого показателя для комфортного уровня тепла в доме недостаточно.

Тем не менее, использование солнечных коллекторов в зимний период имеет свои плюсы. Во-первых, гарантировано, что не произойдет замерзание теплоносителя, ведь в накопительном баке всегда поддерживается плюсовая температура. Во-вторых, для нагрева теплоносителя от 30 до 60-70°C требуется значительно меньше энергии, что все равно ведет к экономии и меньшим ежемесячным тратам.

В теплое время года, т.е. примерно 6 месяцев в году солнечные коллекторы обладают неоспоримыми преимуществами:

  • Преобразуют до 75% солнечной энергии, что делает домохозяйство полностью независимым от подачи электричества, доступности топлива и тарификации
  • Бесперебойное горячее водоснабжение
  • КПД установок 95%
  • Отсутствие техобслуживания и профилактических работ

Летом солнечные коллекторы, как отмечают многие пользователи, работают с избытком, что напрямую связано с уровнем инсоляции. Вырабатывается энергии столько, что встает вопрос, как ее расходовать. Один из вариантов — обеспечить горячей водой дополнительные постройки и системы, включая баню, бассейны, систему полива и т.д.

Среди общих преимуществ всегда актуальны:

  • Срок службы коллекторов не менее 30 лет
  • Срок окупаемости при правильном расчете системы — 3-4 года
  • Интеграция в любую установленную ранее отопительную систему
  • Индивидуальная разработка проекта гелиосистемы с учетом площади помещения, потребности в тепле, особенностей придомового участка, количества дополнительных строений

Типы солнечных коллекторов

Плоский коллектор — конструктивно самый простой и на сегодняшний день доступный по цене. Представляет собой панель, нижний слой которой покрыт теплоизоляционным материалом, сверху проложены медные или полиэтиленовые трубы (по ним движется теплоноситель), а сверху помещен светопоглощающий элемент, защищенный закаленным стеклом. Плоский коллектор прост в установке, не занимает много места и смотрится аккуратно. Прост в использовании, однако ремонту подлежит с трудом. При выходе из строя одного конструктивного элемента коллектор перестает выполнять свои функции и чаще всего подлежит замене.

Вакуумный коллектор. В его основе — сеть медных трубок, которые проложены одна в одной. Т.е. трубка меньшего диаметра помещена в колбу большего диаметра. Между стенками трубок создается вакуум, выступающий одновременно и теплоизолятором и проводником тепла.

Вакуумный коллекторы относятся к классу высокопроизводительного оборудования, перерабатывают до 95% солнечной энергии, подходят для работы при низких температурах окружающего воздуха и облачности. Отличаются высокой ценой, но подлежат несложному ремонту. Если какая-то деталь коллектора сломается, ее достаточно будет просто заменить.

Воздушные коллекторы. В качестве теплоносителя в них используется воздух, который при нагреве поступает внутрь дома через систему естественной вентиляции или кондиционирования. Этот тип коллекторов однозначно можно назвать дополнительным в системе отопления дома. Используют их, если мощности основной системы не хватает или нужно тщательнее прогреть помещение. В целом, воздушные установки гораздо долговечнее и надежнее всех остальных за счет того, что снижен риск коррозийного воздействия.

При выборе типа коллектора самостоятельных расчетов и знаний работы отопительной системы, увы, не хватает. Подбор, расчет и монтаж гелиосистемы разумнее доверить профессионалам. Специалисты учтут массу нюансов, о которых обыватель даже не догадывается. Так, при установке коллектора принципиальное значение имеет форма крыши дома, наличие рядом деревьев, других домов, рекламных баннеров и иных конструкций, которые могут помещать попаданию прямых солнечных лучей на поверхность коллектора.

Солнечный коллектор - Energy Education

Рисунок 1. Солнечный коллектор. [1]

Солнечный коллектор - это устройство, которое собирает и / или концентрирует солнечное излучение от Солнца. Эти устройства в основном используются для активного солнечного нагрева и позволяют нагревать воду для личного пользования. [2] Эти коллекторы обычно монтируются на крыше и должны быть очень прочными, поскольку они подвергаются воздействию различных погодных условий. [2]

Использование этих солнечных коллекторов представляет собой альтернативу традиционному нагреву воды для бытовых нужд с помощью водонагревателя, потенциально снижая затраты на электроэнергию с течением времени.Как и в домашних условиях, большое количество этих коллекторов можно объединить в массив и использовать для выработки электроэнергии на солнечных тепловых электростанциях.

Типы солнечных коллекторов

Существует много разных типов солнечных коллекторов, но все они сконструированы с учетом одной и той же основной предпосылки. В общем, есть материал, который используется для сбора и фокусировки энергии Солнца и использования ее для нагрева воды. В простейшем из этих устройств используется черный материал, окружающий трубы, по которым течет вода. Черный материал очень хорошо поглощает солнечное излучение и, поскольку материал нагревает воду, он окружает. Это очень простой дизайн, но коллекционеры могут стать очень сложными. Абсорбирующие пластины можно использовать, если нет необходимости в повышении температуры, но обычно устройства, в которых используются отражающие материалы для фокусировки солнечного света, приводят к большему повышению температуры.

Коллекторы плоские

Рисунок 2. Схема плоского солнечного коллектора. [3]

Эти коллекторы представляют собой простые металлические коробки с каким-то прозрачным стеклом в качестве крышки поверх темной поглощающей пластины.Боковые стороны и дно коллектора обычно покрываются изоляцией, чтобы минимизировать тепловые потери в другие части коллектора. Солнечное излучение проходит через прозрачное остекление и попадает на пластину-поглотитель. [4] Эта пластина нагревается, передавая тепло либо воде, либо воздуху, который находится между остеклением и пластиной поглотителя. Иногда эти абсорбирующие пластины окрашиваются специальными покрытиями, которые лучше поглощают и удерживают тепло, чем традиционная черная краска. Эти пластины обычно делают из металла, который является хорошим проводником - обычно из меди или алюминия. [4]

Коллекторы вакуумные

Рисунок 3. Схема вакуумного трубчатого солнечного коллектора. [5]

В этом типе солнечных коллекторов используется серия откачанных трубок для нагрева воды для использования. [2] В этих трубках используется вакуум, или откачанное пространство, для улавливания солнечной энергии и минимизации потерь тепла в окружающую среду. У них есть внутренняя металлическая трубка, которая действует как пластина-поглотитель, которая соединена с тепловой трубкой для передачи тепла, собираемого от Солнца, к воде.Эта тепловая труба, по сути, представляет собой трубу, в которой жидкое содержимое находится под очень определенным давлением. [6] При таком давлении на «горячем» конце трубы находится кипящая жидкость, а на «холодном» конце - конденсирующийся пар. Это позволяет тепловой энергии более эффективно перемещаться от одного конца трубы к другому. Как только тепло от Солнца переходит от горячего конца тепловой трубы к конденсирующему концу, тепловая энергия переносится в воду, которая нагревается для использования. [2]

Коллекторы Line Focus

Рисунок 4.Схема солнечного коллектора с линейным фокусом. [7]

В этих коллекторах, иногда называемых параболическими желобами, используются материалы с высокой отражающей способностью для сбора и концентрации тепловой энергии от солнечного излучения. [8] Эти коллекторы состоят из отражающих секций параболической формы, соединенных в длинный желоб. [2] Трубка, по которой течет вода, помещается в центре этого желоба, так что солнечный свет, собираемый отражающим материалом, фокусируется на трубе, нагревая ее содержимое.Это коллекторы очень высокой мощности, поэтому они обычно используются для выработки пара для солнечных тепловых электростанций и не используются в жилых помещениях. Эти желоба могут быть чрезвычайно эффективными для выработки тепла от Солнца, особенно те, которые могут поворачиваться, отслеживая Солнце в небе для обеспечения максимального сбора солнечного света. [2]

Коллекторы точечного фокуса

Рисунок 5. Точечный солнечный коллектор. [9]

Эти коллекторы представляют собой большие параболические тарелки, состоящие из некоторого отражающего материала, которые фокусируют энергию Солнца в одной точке.Тепло от этих коллекторов обычно используется для привода двигателей Стирлинга. [2] Хотя они очень эффективны для сбора солнечного света, они должны активно отслеживать Солнце по небу, чтобы иметь какую-либо ценность. Эти тарелки могут работать по отдельности или быть объединены в группу, чтобы собрать еще больше энергии от Солнца. [10]

Коллекторы точечной фокусировки и аналогичные устройства также могут использоваться для концентрирования солнечной энергии для использования с концентрированной фотоэлектрической системой. В этом случае вместо производства тепла энергия Солнца преобразуется непосредственно в электричество с помощью высокоэффективных фотоэлектрических элементов, специально разработанных для использования концентрированной солнечной энергии.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

  1. ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:Flatplate.png
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Г. Бойль. Возобновляемая энергия: энергия для устойчивого будущего , 2-е изд. Оксфорд, Великобритания: Издательство Оксфордского университета, 2004.
  3. ↑ Wikimedia Commons. (10 августа 2015 г.). Плоский стеклянный коллектор [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/4/40/Flat_plate_glazed_collector.gif
  4. 4. 0 4.1 Flasolar. (10 августа 2015 г.). Плоские солнечные коллекторы [Онлайн]. Доступно: http://www.flasolar.com/active_dhw_flat_plate.htm
  5. ↑ Wikimedia Commons. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: https: // upload.wikimedia.org/wikipedia/commons/4/47/Evacuated_tube_collector.gif
  6. ↑ RedSun. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: http://www.redsunin.com/products/evacuated-tube-collector-solar-water-heaters/
  7. ↑> Wikimedia Commons. (10 августа 2015 г.). Коллектор линейного фокуса [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Solarpipe-scheme.svg/2000px-Solarpipe-scheme.svg.png
  8. ↑ Министерство энергетики США.(10 августа 2015 г.). Солнечный коллектор Line Focus [Онлайн]. Доступно: https://www.eeremultimedia.energy.gov/solar/photographs/line_focus_solar_collector
  9. ↑ Wikimedia Commons. (10 августа 2015 г.). Солнечный двигатель Стирлинга [Интернет]. Доступно: https://upload.wikimedia.org/wikipedia/commons/5/59/SolarStirlingEngine.jpg
  10. ↑ JC Solar Homes. (10 августа 2015 г.). Концентраторы и плоские коллекторы [Онлайн]. Доступно: http: //www.jc-solarhomes.ru / КОЛЛЕКТОРЫ / концентраторы_vs_flat_plates.htm

Солнечный коллектор - Energy Education

Рисунок 1. Солнечный коллектор. [1]

Солнечный коллектор - это устройство, которое собирает и / или концентрирует солнечное излучение от Солнца. Эти устройства в основном используются для активного солнечного нагрева и позволяют нагревать воду для личного пользования. [2] Эти коллекторы обычно монтируются на крыше и должны быть очень прочными, поскольку они подвергаются воздействию различных погодных условий. [2]

Использование этих солнечных коллекторов представляет собой альтернативу традиционному нагреву воды для бытовых нужд с помощью водонагревателя, потенциально снижая затраты на электроэнергию с течением времени. Как и в домашних условиях, большое количество этих коллекторов можно объединить в массив и использовать для выработки электроэнергии на солнечных тепловых электростанциях.

Типы солнечных коллекторов

Существует много разных типов солнечных коллекторов, но все они сконструированы с учетом одной и той же основной предпосылки.В общем, есть материал, который используется для сбора и фокусировки энергии Солнца и использования ее для нагрева воды. В простейшем из этих устройств используется черный материал, окружающий трубы, по которым течет вода. Черный материал очень хорошо поглощает солнечное излучение и, поскольку материал нагревает воду, он окружает. Это очень простой дизайн, но коллекционеры могут стать очень сложными. Абсорбирующие пластины можно использовать, если нет необходимости в повышении температуры, но обычно устройства, в которых используются отражающие материалы для фокусировки солнечного света, приводят к большему повышению температуры.

Коллекторы плоские

Рисунок 2. Схема плоского солнечного коллектора. [3]

Эти коллекторы представляют собой простые металлические коробки с каким-то прозрачным стеклом в качестве крышки поверх темной поглощающей пластины. Боковые стороны и дно коллектора обычно покрываются изоляцией, чтобы минимизировать тепловые потери в другие части коллектора. Солнечное излучение проходит через прозрачное остекление и попадает на пластину-поглотитель. [4] Эта пластина нагревается, передавая тепло либо воде, либо воздуху, который находится между остеклением и пластиной поглотителя.Иногда эти абсорбирующие пластины окрашиваются специальными покрытиями, которые лучше поглощают и удерживают тепло, чем традиционная черная краска. Эти пластины обычно делают из металла, который является хорошим проводником - обычно из меди или алюминия. [4]

Коллекторы вакуумные

Рисунок 3. Схема вакуумного трубчатого солнечного коллектора. [5]

В этом типе солнечных коллекторов используется серия откачанных трубок для нагрева воды для использования. [2] В этих трубках используется вакуум, или откачанное пространство, для улавливания солнечной энергии и минимизации потерь тепла в окружающую среду.У них есть внутренняя металлическая трубка, которая действует как пластина-поглотитель, которая соединена с тепловой трубкой для передачи тепла, собираемого от Солнца, к воде. Эта тепловая труба, по сути, представляет собой трубу, в которой жидкое содержимое находится под очень определенным давлением. [6] При таком давлении на «горячем» конце трубы находится кипящая жидкость, а на «холодном» конце - конденсирующийся пар. Это позволяет тепловой энергии более эффективно перемещаться от одного конца трубы к другому. Как только тепло от Солнца переходит от горячего конца тепловой трубы к конденсирующему концу, тепловая энергия переносится в воду, которая нагревается для использования. [2]

Коллекторы Line Focus

Рисунок 4. Схема солнечного коллектора с линейным фокусом. [7]

В этих коллекторах, иногда называемых параболическими желобами, используются материалы с высокой отражающей способностью для сбора и концентрации тепловой энергии от солнечного излучения. [8] Эти коллекторы состоят из отражающих секций параболической формы, соединенных в длинный желоб. [2] Трубка, по которой течет вода, помещается в центре этого желоба, так что солнечный свет, собираемый отражающим материалом, фокусируется на трубе, нагревая ее содержимое.Это коллекторы очень высокой мощности, поэтому они обычно используются для выработки пара для солнечных тепловых электростанций и не используются в жилых помещениях. Эти желоба могут быть чрезвычайно эффективными для выработки тепла от Солнца, особенно те, которые могут поворачиваться, отслеживая Солнце в небе для обеспечения максимального сбора солнечного света. [2]

Коллекторы точечного фокуса

Рисунок 5. Точечный солнечный коллектор. [9]

Эти коллекторы представляют собой большие параболические тарелки, состоящие из некоторого отражающего материала, которые фокусируют энергию Солнца в одной точке.Тепло от этих коллекторов обычно используется для привода двигателей Стирлинга. [2] Хотя они очень эффективны для сбора солнечного света, они должны активно отслеживать Солнце по небу, чтобы иметь какую-либо ценность. Эти тарелки могут работать по отдельности или быть объединены в группу, чтобы собрать еще больше энергии от Солнца. [10]

Коллекторы точечной фокусировки и аналогичные устройства также могут использоваться для концентрирования солнечной энергии для использования с концентрированной фотоэлектрической системой. В этом случае вместо производства тепла энергия Солнца преобразуется непосредственно в электричество с помощью высокоэффективных фотоэлектрических элементов, специально разработанных для использования концентрированной солнечной энергии.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

  1. ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:Flatplate.png
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Г. Бойль. Возобновляемая энергия: энергия для устойчивого будущего , 2-е изд. Оксфорд, Великобритания: Издательство Оксфордского университета, 2004.
  3. ↑ Wikimedia Commons. (10 августа 2015 г.). Плоский стеклянный коллектор [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/4/40/Flat_plate_glazed_collector.gif
  4. 4.0 4.1 Flasolar. (10 августа 2015 г.). Плоские солнечные коллекторы [Онлайн]. Доступно: http://www.flasolar.com/active_dhw_flat_plate.htm
  5. ↑ Wikimedia Commons. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: https: // upload.wikimedia.org/wikipedia/commons/4/47/Evacuated_tube_collector.gif
  6. ↑ RedSun. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: http://www.redsunin.com/products/evacuated-tube-collector-solar-water-heaters/
  7. ↑> Wikimedia Commons. (10 августа 2015 г.). Коллектор линейного фокуса [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Solarpipe-scheme.svg/2000px-Solarpipe-scheme.svg.png
  8. ↑ Министерство энергетики США.(10 августа 2015 г.). Солнечный коллектор Line Focus [Онлайн]. Доступно: https://www.eeremultimedia.energy.gov/solar/photographs/line_focus_solar_collector
  9. ↑ Wikimedia Commons. (10 августа 2015 г.). Солнечный двигатель Стирлинга [Интернет]. Доступно: https://upload.wikimedia.org/wikipedia/commons/5/59/SolarStirlingEngine.jpg
  10. ↑ JC Solar Homes. (10 августа 2015 г.). Концентраторы и плоские коллекторы [Онлайн]. Доступно: http: //www.jc-solarhomes.ru / КОЛЛЕКТОРЫ / концентраторы_vs_flat_plates.htm

Солнечный коллектор - Energy Education

Рисунок 1. Солнечный коллектор. [1]

Солнечный коллектор - это устройство, которое собирает и / или концентрирует солнечное излучение от Солнца. Эти устройства в основном используются для активного солнечного нагрева и позволяют нагревать воду для личного пользования. [2] Эти коллекторы обычно монтируются на крыше и должны быть очень прочными, поскольку они подвергаются воздействию различных погодных условий. [2]

Использование этих солнечных коллекторов представляет собой альтернативу традиционному нагреву воды для бытовых нужд с помощью водонагревателя, потенциально снижая затраты на электроэнергию с течением времени. Как и в домашних условиях, большое количество этих коллекторов можно объединить в массив и использовать для выработки электроэнергии на солнечных тепловых электростанциях.

Типы солнечных коллекторов

Существует много разных типов солнечных коллекторов, но все они сконструированы с учетом одной и той же основной предпосылки.В общем, есть материал, который используется для сбора и фокусировки энергии Солнца и использования ее для нагрева воды. В простейшем из этих устройств используется черный материал, окружающий трубы, по которым течет вода. Черный материал очень хорошо поглощает солнечное излучение и, поскольку материал нагревает воду, он окружает. Это очень простой дизайн, но коллекционеры могут стать очень сложными. Абсорбирующие пластины можно использовать, если нет необходимости в повышении температуры, но обычно устройства, в которых используются отражающие материалы для фокусировки солнечного света, приводят к большему повышению температуры.

Коллекторы плоские

Рисунок 2. Схема плоского солнечного коллектора. [3]

Эти коллекторы представляют собой простые металлические коробки с каким-то прозрачным стеклом в качестве крышки поверх темной поглощающей пластины. Боковые стороны и дно коллектора обычно покрываются изоляцией, чтобы минимизировать тепловые потери в другие части коллектора. Солнечное излучение проходит через прозрачное остекление и попадает на пластину-поглотитель. [4] Эта пластина нагревается, передавая тепло либо воде, либо воздуху, который находится между остеклением и пластиной поглотителя.Иногда эти абсорбирующие пластины окрашиваются специальными покрытиями, которые лучше поглощают и удерживают тепло, чем традиционная черная краска. Эти пластины обычно делают из металла, который является хорошим проводником - обычно из меди или алюминия. [4]

Коллекторы вакуумные

Рисунок 3. Схема вакуумного трубчатого солнечного коллектора. [5]

В этом типе солнечных коллекторов используется серия откачанных трубок для нагрева воды для использования. [2] В этих трубках используется вакуум, или откачанное пространство, для улавливания солнечной энергии и минимизации потерь тепла в окружающую среду.У них есть внутренняя металлическая трубка, которая действует как пластина-поглотитель, которая соединена с тепловой трубкой для передачи тепла, собираемого от Солнца, к воде. Эта тепловая труба, по сути, представляет собой трубу, в которой жидкое содержимое находится под очень определенным давлением. [6] При таком давлении на «горячем» конце трубы находится кипящая жидкость, а на «холодном» конце - конденсирующийся пар. Это позволяет тепловой энергии более эффективно перемещаться от одного конца трубы к другому. Как только тепло от Солнца переходит от горячего конца тепловой трубы к конденсирующему концу, тепловая энергия переносится в воду, которая нагревается для использования. [2]

Коллекторы Line Focus

Рисунок 4. Схема солнечного коллектора с линейным фокусом. [7]

В этих коллекторах, иногда называемых параболическими желобами, используются материалы с высокой отражающей способностью для сбора и концентрации тепловой энергии от солнечного излучения. [8] Эти коллекторы состоят из отражающих секций параболической формы, соединенных в длинный желоб. [2] Трубка, по которой течет вода, помещается в центре этого желоба, так что солнечный свет, собираемый отражающим материалом, фокусируется на трубе, нагревая ее содержимое.Это коллекторы очень высокой мощности, поэтому они обычно используются для выработки пара для солнечных тепловых электростанций и не используются в жилых помещениях. Эти желоба могут быть чрезвычайно эффективными для выработки тепла от Солнца, особенно те, которые могут поворачиваться, отслеживая Солнце в небе для обеспечения максимального сбора солнечного света. [2]

Коллекторы точечного фокуса

Рисунок 5. Точечный солнечный коллектор. [9]

Эти коллекторы представляют собой большие параболические тарелки, состоящие из некоторого отражающего материала, которые фокусируют энергию Солнца в одной точке.Тепло от этих коллекторов обычно используется для привода двигателей Стирлинга. [2] Хотя они очень эффективны для сбора солнечного света, они должны активно отслеживать Солнце по небу, чтобы иметь какую-либо ценность. Эти тарелки могут работать по отдельности или быть объединены в группу, чтобы собрать еще больше энергии от Солнца. [10]

Коллекторы точечной фокусировки и аналогичные устройства также могут использоваться для концентрирования солнечной энергии для использования с концентрированной фотоэлектрической системой. В этом случае вместо производства тепла энергия Солнца преобразуется непосредственно в электричество с помощью высокоэффективных фотоэлектрических элементов, специально разработанных для использования концентрированной солнечной энергии.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

  1. ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:Flatplate.png
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Г. Бойль. Возобновляемая энергия: энергия для устойчивого будущего , 2-е изд. Оксфорд, Великобритания: Издательство Оксфордского университета, 2004.
  3. ↑ Wikimedia Commons. (10 августа 2015 г.). Плоский стеклянный коллектор [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/4/40/Flat_plate_glazed_collector.gif
  4. 4.0 4.1 Flasolar. (10 августа 2015 г.). Плоские солнечные коллекторы [Онлайн]. Доступно: http://www.flasolar.com/active_dhw_flat_plate.htm
  5. ↑ Wikimedia Commons. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: https: // upload.wikimedia.org/wikipedia/commons/4/47/Evacuated_tube_collector.gif
  6. ↑ RedSun. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: http://www.redsunin.com/products/evacuated-tube-collector-solar-water-heaters/
  7. ↑> Wikimedia Commons. (10 августа 2015 г.). Коллектор линейного фокуса [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Solarpipe-scheme.svg/2000px-Solarpipe-scheme.svg.png
  8. ↑ Министерство энергетики США.(10 августа 2015 г.). Солнечный коллектор Line Focus [Онлайн]. Доступно: https://www.eeremultimedia.energy.gov/solar/photographs/line_focus_solar_collector
  9. ↑ Wikimedia Commons. (10 августа 2015 г.). Солнечный двигатель Стирлинга [Интернет]. Доступно: https://upload.wikimedia.org/wikipedia/commons/5/59/SolarStirlingEngine.jpg
  10. ↑ JC Solar Homes. (10 августа 2015 г.). Концентраторы и плоские коллекторы [Онлайн]. Доступно: http: //www.jc-solarhomes.ru / КОЛЛЕКТОРЫ / концентраторы_vs_flat_plates.htm

солнечных коллекторов | Министерство энергетики

Что такое солнечные коллекторы?

В электростанциях, концентрирующих солнечно-тепловую энергию (CSP), коллекторы отражают и концентрируют солнечный свет и перенаправляют его в приемник, где он преобразуется в тепло, а затем используется для выработки электроэнергии. В башенных (или центральных приемных) установках зеркала, известные как гелиостаты, отслеживают солнце по двум осям, причем каждый гелиостат обычно находится на своем основании, фундаменте и двигателе, чтобы направлять солнечный свет на приемник на вершине башни.В установках с параболическим желобом зеркала выравнивают внутреннюю часть решетки в форме желоба, которая следует за солнцем только в одном направлении и концентрирует свет на линейной приемной трубе. Узнайте больше о том, как работает CSP.

Почему так важны солнечные коллекторы?

Коллекторы - это отправная точка для преобразования солнечного света в энергию. Они должны быть спроектированы так, чтобы эффективно концентрировать свет, сводя к минимуму затраты на изготовление, установку и эксплуатацию. Коллекторы, которые могут экономически эффективно достичь высокой концентрации солнечного света, могут напрямую повысить эффективность приемника.В настоящее время коллекторы могут составлять 25 или более процентов от общих капитальных затрат системы для заводов CSP. Управление технологий солнечной энергии Министерства энергетики США (SETO) работает над снижением затрат на коллекторы с целью в 50 долларов за квадратный метр для высокоавтономных гелиостатов, чтобы достичь своей цели 0,05 доллара за киловатт-час для базовых станций CSP с минимум 12 часов хранения тепловой энергии. Узнайте больше о целях SETO в области CSP.

SETO Исследования в области солнечных коллекторов

SETO финансирует исследования и разработки в этой области для повышения производительности и снижения стоимости солнечных коллекторов, а также для производства прототипов, демонстрирующих жизнеспособность передовых технологий для будущей интеграции в установки CSP.В частности, проекты, финансируемые SETO, работают над разработкой решений, которые позволяют солнечным коллекторам работать в полной мере без участия человека, снижая эксплуатационные расходы и максимизируя эффективность сбора тепловой энергии. Некоторые из программ финансирования SETO включают проекты, посвященные солнечным коллекторам:

Чтобы просмотреть конкретные проекты солнечных коллекторов, выполните поиск в базе данных исследований солнечной энергии.

Дополнительные ресурсы

Узнайте больше об исследованиях CSP, других исследованиях солнечной энергии в SETO, а также действующих и бывших программах финансирования SETO.

Солнечные технологии отопления и охлаждения

Солнечные тепловые технологии поглощают солнечное тепло и передают его полезным приложениям, таким как отопление зданий или водоснабжение. Используется несколько основных типов солнечных тепловых технологий:

В дополнение к солнечным тепловым технологиям, указанным выше, такие технологии, как солнечные фотоэлектрические модули , могут производить электричество, а здания могут быть спроектированы так, чтобы улавливать пассивное солнечное тепло .

Неглазурованный солнечный коллектор - одна из самых простых форм солнечной тепловой технологии. Теплопроводящий материал, обычно темный металл или пластик, поглощает солнечный свет и передает энергию жидкости, проходящей через теплопроводную поверхность или за ней. Этот процесс похож на то, как садовый шланг, лежащий на открытом воздухе, поглощает солнечную энергию и нагревает воду внутри шланга.

Эти коллекторы описаны как «неглазурованные», потому что они не имеют стеклянного покрытия или «остекления» на коллекторной коробке для улавливания тепла.Отсутствие остекления создает компромисс. Неглазурованные солнечные коллекторы просты и недороги, но, не имея возможности удерживать тепло, они теряют тепло обратно в окружающую среду и работают при относительно низких температурах. Таким образом, неглазурованные коллекторы обычно лучше всего работают с небольшими и умеренными системами отопления или в качестве дополнения к традиционным системам отопления, где они могут снизить топливную нагрузку за счет предварительного нагрева воды или воздуха.

Солнечные коллекторы для обогрева бассейнов - это наиболее часто используемая неглазурованная солнечная технология в Соединенных Штатах.В этих устройствах часто используются черные пластиковые трубчатые панели, установленные на крыше или другой опорной конструкции. Водяной насос обеспечивает циркуляцию воды в бассейне непосредственно через трубчатые панели, а затем возвращает воду в бассейн с более высокой температурой. Хотя эти коллекторы используются в основном для обогрева бассейнов, они также могут предварительно нагревать большие объемы воды для других коммерческих и промышленных применений.

Как это работает

  1. Солнечный свет: Солнечный свет попадает на темный материал в коллекторе, который нагревается.
  2. Циркуляция: Холодная жидкость (вода) или воздух циркулирует через коллектор, поглощая тепло.
  3. Использование: Более теплая жидкость используется для таких применений, как обогрев бассейна.

Узнайте больше о неглазурованных солнечных коллекторах

Солнечные коллекторы Transpired

На южной стене этого склада установлен солнечный коллектор.
Источник: Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США

Солнечные коллекторы с прозрачным воздухом обычно состоят из перфорированного металлического облицовочного материала темного цвета, установленного на существующей стене на южной стороне здания.Вентилятор втягивает наружный воздух через перфорацию в пространство за металлической обшивкой, где воздух нагревается до температуры на 30–100 ° F выше температуры окружающего воздуха. Затем вентилятор втягивает воздух в здание, где он распределяется через систему вентиляции здания.

Солнечный коллектор - это проверенная, но все еще развивающаяся технология солнечного отопления. Этот вид техники лучше всего подходит для обогрева воздуха и вентиляции помещений. Его также можно применять в различных производственных и сельскохозяйственных целях, например, для сушки сельскохозяйственных культур.

Как это работает

  1. Солнечный свет: Солнечный свет попадает на темную перфорированную металлическую облицовку, которая нагревается.
  2. Циркуляция: Циркуляционный вентилятор втягивает воздух через отверстия за металлической обшивкой, нагревая воздух, который затем втягивается в здание для распределения.

Узнайте больше о солнечных коллекторах воздуха Transpired

Плоские солнечные коллекторы

Множество плоских солнечных коллекторов на крыше школы.
Кредит: Джо Райан, NREL 19690

Большинство плоских коллекторов состоят из медных трубок и других теплопоглощающих материалов внутри изолированного каркаса или корпуса, покрытого прозрачным стеклом (стеклом). Теплопоглощающие материалы могут иметь специальное покрытие, которое поглощает тепло более эффективно, чем поверхность без покрытия.

Плоские остекленные коллекторы могут эффективно работать в более широком диапазоне температур, чем неглазурованные коллекторы. Плоские коллекторы часто используются в дополнение к традиционным водогрейным котлам, предварительно нагревая воду, чтобы снизить потребность в топливе.Они также могут быть эффективны для обогрева помещений. Используя систему теплообмена, они могут надежно производить горячий воздух для больших зданий в светлое время суток.

Как это работает

  1. Солнечный свет: Солнечный свет проходит сквозь стекло и попадает на темный материал внутри коллектора, который нагревается.
  2. Отражение тепла: Прозрачный стеклянный или пластиковый корпус задерживает тепло, которое в противном случае могло бы излучаться. Это похоже на то, как теплица улавливает тепло внутри.
  3. Циркуляция: Холодная вода или другая жидкость циркулирует через коллектор, поглощая тепло.

Узнайте больше о плоских солнечных коллекторах

Солнечные коллекторы с вакуумными трубками

Вакуумный трубчатый солнечный коллектор на крыше.
Кредит: NREL PIX 09501

Вакуумные трубчатые коллекторы представляют собой тонкие медные трубки, заполненные жидкостью, например водой, помещенные внутри более крупных герметичных прозрачных стеклянных или пластиковых трубок.

Вакуумные трубки более эффективно используют солнечную энергию и могут производить более высокие температуры, чем плоские коллекторы по нескольким причинам. Во-первых, конструкция трубки увеличивает доступную для солнца площадь поверхности, эффективно поглощая прямой солнечный свет под разными углами. Во-вторых, внутри прозрачного стеклянного корпуса трубок также создается частичный вакуум, что значительно снижает потери тепла во внешнюю среду.

Как это работает

  1. Солнечный свет: Солнечный свет попадает в темный цилиндр, эффективно нагревая его под любым углом.
  2. Отражение тепла: Прозрачный стеклянный или пластиковый корпус задерживает тепло, которое в противном случае могло бы излучаться. Это похоже на то, как теплица улавливает тепло внутри.
  3. Конвекция: Медная трубка, проходящая через каждый цилиндр, поглощает накопленное тепло цилиндра, в результате чего жидкость внутри трубки нагревается и поднимается к верхней части цилиндра.
  4. Циркуляция: Холодная вода циркулирует через верхнюю часть цилиндров, поглощая тепло.

Системы с вакуумированными трубками обычно дороже плоских коллекторов, но они более эффективны и могут обеспечивать более высокие температуры. Вакуумные трубы могут надежно производить очень горячую воду для периодического нагрева воды или нагрева воды по запросу, а также для многих промышленных процессов, и они могут производить достаточно тепла, чтобы справиться практически с любым отоплением или охлаждением помещения.

Подробнее о солнечных коллекторах с вакуумными трубками

Концентрирующие солнечные системы

Этот набор концентрирующих солнечных коллекторов с параболическим желобом на крыше обеспечивает технологическое тепло для винодельни.Эти коллекторы имеют уникальную конструкцию, которая позволяет им вырабатывать не только тепло, но и электричество.
Кредит: SunWater Solar

Концентрирующие солнечные системы работают, отражая и направляя солнечную энергию с большой площади на маленькую. Меньшие светоотражающие решетки в форме чаши могут производить воду с температурой в несколько сотен градусов для промышленных или сельскохозяйственных процессов или для нагрева больших объемов воды, таких как бассейны курортных комплексов. Некоторые массивы работают с длинными параболическими желобами, которые концентрируют солнечный свет на трубе, проходящей по всей длине желоба, по которой переносится теплоноситель.Даже в более крупных системах используются поля зеркал для отражения солнечного света на центральную башню. Эти типы массивов производят пар высокого давления или другие перегретые жидкости для различных видов деятельности, от теплоемкой химической обработки до выработки электроэнергии.

Как это работает

  1. Солнечный свет: Солнечный свет попадает на отражающий материал (т. Е. На зеркальную поверхность), обычно в форме желоба (показанного здесь) или тарелки.
  2. Отражение солнца: Отражающий материал перенаправляет солнечный свет в одну точку (для тарелки) или трубу (для желоба).
  3. Циркуляция: Холодная вода или специальный теплоноситель циркулирует по трубе, поглощая тепло.

Концентрационные системы способны производить чрезвычайно горячие жидкости для различных процессов, и они могут производить относительно большое количество энергии на каждый вложенный доллар. Однако эти системы, как правило, намного больше и сложнее, чем другие типы солнечных коллекторов, описанных выше, и имеют более высокую общую стоимость. Таким образом, концентрированная солнечная технология имеет тенденцию быть наиболее эффективной для крупномасштабных высокотемпературных применений, хотя более низкотемпературные применения могут по-прежнему быть рентабельными при определенных обстоятельствах.

Узнайте больше о концентрирующих солнечных системах

Технический справочник - EnergyPlus 8.5

Солнечные коллекторы - это устройства, которые преобразуют солнечную энергию в тепловую за счет повышения температуры циркулирующего теплоносителя. Затем жидкость можно использовать для нагрева воды для бытового горячего водоснабжения или отопления помещений. Плоские солнечные коллекторы, использующие воду в качестве теплоносителя, солнечные коллекторы Integral-Collector Storage, использующие воду, и неглазурованные солнечные коллекторы, использующие воздух, в настоящее время являются единственными типами коллекторов, доступных в EnergyPlus.

Плоские солнечные коллекторы

[ССЫЛКА]

Входной объект SolarCollector: FlatPlate: Water предоставляет модель плоских солнечных коллекторов, которые являются наиболее распространенным типом коллекторов. Стандарты были установлены ASHRAE для тестирования производительности этих коллекторов (ASHRAE 1989; 1991), а Solar Rating and Certification Corporation (SRCC) публикует каталог коммерчески доступных коллекторов в Северной Америке (SRCC 2003).

Модель EnergyPlus основана на уравнениях, содержащихся в стандартах ASHRAE и Duffie and Beckman (1991).Данная модель применяется к остекленным и неглазурованным плоским коллекторам, а также к рядам трубчатых, т.е. вакуумных трубчатых, коллекторов.

Расчеты солнечного света и затенения [ССЫЛКА]

В объекте солнечного коллектора используется стандартная поверхность EnergyPlus, чтобы воспользоваться преимуществами подробных расчетов солнечного света и затенения. Солнечное излучение, падающее на поверхность, включает пучковое и диффузное излучение, а также излучение, отраженное от земли и прилегающих поверхностей. Также учитывается затенение коллектора другими поверхностями, например, близлежащими зданиями или деревьями.Точно так же поверхность коллектора может затенять другие поверхности, например, уменьшая падающее излучение на крышу под ней.

Thermal Performance [ССЫЛКА]

Тепловой КПД коллектора определяется как отношение полезного притока тепла жидкостью коллектора к общему солнечному излучению, падающему на общую площадь поверхности коллектора.

η = (q / A) Изолярный

где

q = полезное тепловыделение

A = общая площадь коллектора

Isolar = общее падающее солнечное излучение

Обратите внимание, что эффективность h определяется только для Isolar> 0.

Энергетический баланс солнечного коллектора с двойным остеклением показывает взаимосвязь между свойствами остекления, свойствами поглощающей пластины и условиями окружающей среды.

qA = Isolarτg1τg2αabs-T4abs-T4g2Rrad-Tabs-Tg2Rconv-Tabs-TairRcond

где

tg1 = коэффициент пропускания первого слоя остекления

tg2 = коэффициент пропускания второго слоя остекления

aabs = поглощающая способность пластины абсорбера

Rrad = сопротивление излучению от поглотителя до внутреннего остекления

Rconv = конвективное сопротивление от абсорбера до внутреннего остекления

Rcond = сопротивление проводимости от поглотителя к наружному воздуху через изоляцию

Таблицы = температура пластины абсорбера

Tg2 = температура внутреннего остекления

Tair = температура наружного воздуха

Приведенное выше уравнение можно аппроксимировать более простой формулировкой как:

qA = FR [Изолар (τα) -UL (олово-Таир)]

где

FR = эмпирически определенный поправочный коэффициент

(ta) = произведение всех коэффициентов пропускания и поглощения

UL = общий коэффициент тепловых потерь, объединяющий термины излучения, конвекции и теплопроводности

Tin = температура рабочей жидкости на входе

Подставляя это в уравнение,

η = FR (τα) −FRUL (олово-Таир) Изолярный

Линейную корреляцию можно построить, рассматривая FR (ta) и -FRUL как характеристические константы солнечного коллектора:

η = c0 + c1 (олово-Таир) Изолярный

Аналогичным образом можно построить квадратичную корреляцию, используя форму:

η = c0 + c1 (Tin-Tair) Isolar + c2 (Tin-Tair) 2Isolar

Коэффициенты уравнения эффективности первого и второго порядка перечислены в Справочнике , сертифицированном SRCC для солнечных коллекторов .

Модификаторы угла падения

[ССЫЛКА]

Как и в случае с обычными окнами, коэффициент пропускания остекления коллектора зависит от угла падения излучения. Обычно коэффициент пропускания максимален, когда падающее излучение перпендикулярно поверхности остекления. Условия испытаний определяют коэффициенты эффективности при нормальном падении. Для углов, отклоняющихся от нормы, коэффициент пропускания остекления изменяется с помощью коэффициента модификатора угла падения .

Kτα = (τα) (τα) n

Дополнительное тестирование определяет модификатор угла падения как функцию угла падения q.Эта связь может соответствовать линейной корреляции первого порядка:

Kτα = 1 + b0 (1cosθ − 1)

или квадратичная корреляция второго порядка:

Kτα = 1 + b0 (1cosθ − 1) + b1 (1cosθ − 1) 2

Коэффициенты модификатора угла падения b0 и b1 обычно отрицательны, хотя некоторые коллекторы имеют положительное значение для b0 . Коэффициенты уравнения модификатора угла падения как первого, так и второго порядка перечислены в Справочнике сертификатов SRCC для солнечных коллекторов .

Коэффициенты уравнения модификатора угла падения SRCC действительны только для углов падения 60 градусов или меньше. Поскольку эти кривые могут быть действительными, но плохо вести себя для углов более 60 градусов, модель EnergyPlus отключает усиление коллектора для углов падения более 60 градусов.

Для плоских коллекторов модификатор угла падения обычно симметричен. Однако для трубчатых коллекторов модификатор угла падения различается в зависимости от того, параллелен ли угол падения трубкам или перпендикулярен им.Их называют биаксиальными модификаторами. Некоторые специальные плоские коллекторы также могут демонстрировать эту асимметрию. Текущая модель еще не может обрабатывать два набора модификаторов угла падения. Тем временем рекомендуется осторожно аппроксимировать трубчатые коллекторы, используя параллельную или перпендикулярную корреляцию.

Модификаторы угла падения рассчитываются отдельно для излучения солнца, неба и земли. Модификатор чистого угла падения для всего падающего излучения рассчитывается путем взвешивания каждого компонента с помощью соответствующего модификатора.

Kτα, net = IbeamKτα, луч + IskyKτα, небо + IgndKτα, gndIbeam + Isky + Ignd

Для излучения неба и земли угол падения приблизительно определяется с помощью уравнений Брандемюля и Бекмана:

θsky = 59,68−0,1388ϕ + 0,001497ϕ2

θземля = 90,0−0,5788ϕ + 0,002693ϕ2

где f - наклон поверхности в градусах.

Модификатор чистого угла падения затем вставляется в уравнение полезного тепловыделения:

qA = FR [IsolarKτα, net (τα) n-UL (Tin-Tair)]

Уравнение также изменено соответствующим образом.

η = FRKτα, нетто (τα) n − FRUL (Tin − Tair) Isolar

Температура на выходе [ССЫЛКА]

Температура на выходе рассчитывается с использованием полезного притока тепла q, определяемого уравнением, температуры жидкости на входе Tin и массового расхода, доступных при моделировании установки:

qA = mcp (Tout − Tin)

где

˙m = массовый расход жидкости через коллектор

cp = удельная теплоемкость рабочего тела

Solving для Tout,

Tout = олово + q˙mcpA

Если нет потока через коллектор, Tout - это температура застоя жидкости.Это вычисляется путем установки левой части уравнения на ноль и решения для Tin (которое также равно Tout для случая отсутствия потока).

Ссылки

[ССЫЛКА]

ASHRAE. 1989. Стандарт ASHRAE 96-1980 (RA 89): Методы испытаний для определения тепловых характеристик неглазурованных плоских солнечных коллекторов жидкостного типа. Атланта: Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

ASHRAE. 1991. Стандарт ASHRAE 93-1986 (RA 91): Методы испытаний для определения тепловых характеристик солнечных коллекторов.Атланта: Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

Даффи, Дж. А. и Бекман, В. А. 1991. Солнечная инженерия тепловых процессов, второе издание. Нью-Йорк: Wiley-Interscience.

Корпорация по оценке и сертификации солнечной энергии. 2004. Справочник сертифицированных SRCC рейтингов солнечных коллекторов, OG 100. Какао, Флорида: Корпорация по оценке и сертификации солнечной энергии.

Солнечный коллектор со встроенным накопителем (ICS) [ССЫЛКА]

Солнечные коллекторы со встроенными моделями накопителей используют объект SolarCollector: IntegralCollectorStorage, а входные параметры характеристик этого коллектора предоставляются объектом SolarCollectorPerformance: IntegralCollectorStorage.Эта модель основана на подробных уравнениях энергетического баланса солнечных коллекторов, которые объединяют в себе накопитель. В этой модели есть два варианта представления нижней части коллектора за пределами граничных условий: AmbientAir и OtherSideConditionsModel. AmbientAir просто применяет температуру наружного воздуха, используя комбинированную конвекцию и радиационную проводимость, а OtherSideConditionsModel применяет комбинированные модели излучения и конвекции, которые возникают в естественно вентилируемой полости, чтобы представить нижнюю часть коллектора за пределами граничных условий.Более позднее граничное условие учитывает затенение коллектора на подстилающей поверхности, поэтому коллектор ICS можно считать неотъемлемой частью ограждающей конструкции здания. Принципиальная схема прямоугольного солнечного коллектора ICS показана на рисунке ниже:

Принципиальная схема прямоугольного интегрированного коллекторного накопителя

Расчеты солнечного света и затенения [ССЫЛКА]

В объекте солнечного коллектора используется стандартная поверхность EnergyPlus, чтобы воспользоваться преимуществами подробных расчетов солнечного света и затенения.Солнечное излучение, падающее на поверхность, включает пучковое и диффузное излучение, а также излучение, отраженное от земли и прилегающих поверхностей. Также учитывается затенение коллектора другими поверхностями, например, близлежащими зданиями или деревьями. Точно так же поверхность коллектора затемняет поверхность крыши под ней, поэтому прямая солнечная радиация не падает на поверхность крыши. Коллектор и крыша за пределами граничных условий должны быть указаны как OtherSideConditionModel, чтобы учесть влияние затенения солнечного коллектора на поверхность крыши.

Математическая модель

[ССЫЛКА]

Солнечный коллектор со встроенным коллектором-накопителем (ICS) представлен с использованием двух уравнений баланса энергии переходных процессов, показанных ниже. Эти уравнения представляют собой уравнение баланса энергии для пластины поглотителя и воды в коллекторе.

mpCpdTpdt = A⋅ [(τα) e⋅It − hpw (Tp − Tw) −Ut (Tp − Ta)]

mwCwdTwdt = A⋅ [hpw (Tp − Tw) −Ub (Tw − TOSC) −Us (Tw − Ta)] - ˙mwCw (Tw − Twi)

Где,

mpCp = теплоемкость поверхности абсорбера, Дж / ° C

A = общая площадь коллектора, м2

(ta) e = произведение коэффициента пропускания-поглощения абсорбирующей пластины и системы покрытия

It = общее солнечное излучение, (Вт / м2)

hpw = коэффициент конвективной теплопередачи от пластины абсорбера к воде, (Вт / м2 ° K)

Ut = общий коэффициент теплопотери от поглотителя в окружающий воздух, (Вт / м2 ° K)

Tp = средняя температура пластины абсорбера, (° C)

Tw = средняя температура воды в коллекторе, (° C)

Ta = температура окружающего воздуха, (° C)

mwCpw = теплоемкость водной массы в коллекторе, (Дж / ° C)

Us = удельная проводимость изоляции со стороны коллектора, (Вт / м2 × ° K)

Ub = проводимость изоляции дна коллектора, (Вт / м2 × ° K)

Tosc = наружная температура изоляции днища, определенная из модели условий другой стороны, (° C)

Twi = Температура подпиточной или водопроводной воды, (° C)

˙mwCw = расход воды через коллектор, (Вт / ° C)

Граничное условие модели с другой стороной, представленное Tosc , позволяет нам применить реалистичное внешнее граничное условие для коллектора, установленного на крыше здания.Этим также учитывается затеняющее воздействие коллектора на подстилочную поверхность (крышу). С другой стороны, если заданы граничные условия для окружающего воздуха, коллектор не затеняет нижнюю поверхность, на которой он установлен.

Два уравнения баланса энергии можно записать как неоднородную ДУ первого порядка с постоянными коэффициентами. Начальными условиями для этих уравнений являются средняя температура пластины поглотителя и средняя температура воды в коллекторе на предыдущих временных шагах.

dTpdt = a1Tp + a2Tw + a3

dTwdt = b1Tp + b2Tw + b3

a1 = - (A⋅hpw + A⋅Ut) / (mp⋅Cp)

a2 = A⋅hpwTw / (mp⋅Cp)

a3 = A⋅ (τα) e⋅It + A⋅UtTa

b1 = A⋅hpwTp / (мВт⋅Cw)

b2 = - (A⋅hpw + A⋅Ub + A⋅Us + ˙mwCw)

b3 = (A⋅UbTosc + A⋅UsTa + ˙mwCwTwi)

Два связанных дифференциальных уравнения первого порядка решаются аналитически. Вспомогательное уравнение связанного однородного дифференциального уравнения имеет вид:

λ2− (a1 + b2) + (a1b2 − a2b1) = 0

Это вспомогательное квадратное уравнение всегда имеет два различных действительных корня (l1 и l2), следовательно, решение однородного уравнения является экспоненциальным, а общие решения дифференциальных уравнений имеют вид:

Тр = c1el1t + c2el2t + А

Tw = r1c1el1t + r2c2el2t + B

Постоянные члены A и B являются частным решением неоднородных дифференциальных уравнений, коэффициенты экспоненциальных членов ( c1 , c2 , r1 и r2 ) определяются из начальные условия температуры воды в поглотителе и коллекторе ( Tp0 , Tw0 ) и определяются по формуле:

r1 = (l1 − a1) / a2; r2 = (l2 − a1) / a2

A = (- a3b2 + b3a2) / (a1b2 − b1a2); B = (- a1b3 + b1a3) / (a1b2 − b1a2)

c1 = (r2Tp0 − Tw0 − r2A + B) / (r2 − r1); c2 = (Tw0 − r1Tp0 + r1A − B) / (r2 − r1)

Модель тепловой сети

: [ССЫЛКА]

Модель тепловой сети требует также баланса энергии для каждой крышки коллектора.Предполагается, что уравнение теплового баланса крышек коллектора подчиняется установившейся формулировке без учета их тепловой массы. Представление коллектора ICS в тепловой сети показано на рисунке. Кроме того, тепловой баланс на каждой поверхности покрытия требует знания количества поглощенной солнечной фракции, которое определяется на основе анализа трассировки лучей. Для модели тепловой сети, показанной выше, общий верхний коэффициент тепловых потерь определяется путем комбинации последовательно включенных сопротивлений следующим образом:

Ut = [R1 + R2 + R3] -1

или

Ut = [1hc, c1 − a + hr, c1 − a + 1hc, c2 − c1 + hr, c2 − c1 + 1hc, p − c2 + hr, p − c2] −1

Коэффициенты конвективной и радиационной теплопередачи в уравнении выше вычисляются на основе температур на предыдущем временном шаге и определяются, как описано в разделе Коэффициенты теплопередачи .

Схема тепловой сети для солнечного коллектора ICS

Тепловой баланс крышки коллектора

Игнорируя тепловую массу крышки коллектора, для каждой крышки формулируются уравнения стационарного теплового баланса, которые позволяют нам определять температуру крышки. Представление теплового баланса поверхности крышки показано на рисунке ниже.

Тепловой баланс поверхности крышки коллектора

Уравнение устойчивого теплового баланса покровного слоя:

qLWR, 1 + qCONV, 1 + qsolar, абс + qLWR, 2 + qCONV, 2 = 0

Линеаризуя обмен длинноволновым излучением и представляя условия конвекции с использованием классического уравнения для закона охлаждения Ньютона, уравнения для температур крышек 1 и 2 имеют следующий вид:

Tc1 = αc1It + hr, c1 − aTa + hc, c1 − aTa + hr, c2 − c1Tc2 + hc, c2 − c1Tc2hr, c1 − a + hc, c1 − a + hr, c2 − c1 + hc, c2 − c1

Tc2 = αc2It + hr, c2 − c1Tc1 + hc, c2 − c1Tc1 + hr, p − c2Tp + hc, p − c2Tphr, c2 − c1 + hc, c2 − c1 + hr, p − c2 + hc, p − c2

Где,

ac = средневзвешенное поглощение солнечной энергии покрытий 1 и 2 , (-)

ч, c1 − a = скорректированный коэффициент радиационной теплопередачи между крышкой 1 и окружающим воздухом, (Вт / м2 × K)

hc, c1 − a = коэффициент конвективной теплопередачи между крышкой 1 и окружающей средой, (Вт / м2 × K)

ч, c2 − c1 = коэффициент радиационной теплопередачи между крышками 1 и 2 , (Вт / м2 × K)

hc, c2 − c1 = коэффициент конвективной теплопередачи между крышками 1 и 2 , (Вт / м2 × K)

ч, p − c2 = коэффициент теплопередачи излучения между крышками 2 и пластиной поглотителя, (Вт / м2 × K)

hc, p − c2 = коэффициент конвективной теплопередачи между крышками 2 и пластиной поглотителя, (Вт / м2 × K)

qLWR, 1 = поток длинноволнового радиационного обмена на стороне 1 крышки коллектора, (Вт / м2)

qCONV, 1 = конвекционный тепловой поток на стороне 1 крышки коллектора, (Вт / м2)

qLWR, 2 = поток длинноволнового радиационного обмена на стороне 2 крышки коллектора, (Вт / м2)

qCONV, 2 = конвекционный тепловой поток на стороне 2 крышки коллектора, (Вт / м2)

qsolar, abs = чистое солнечное излучение, поглощаемое крышкой коллектора, (Вт / м2)

R = тепловое сопротивление для каждой секции вдоль пути теплового потока, (м2 · К / Вт)

Модель с другой стороны

[ССЫЛКА]

Солнечные коллекторы

ICS обычно устанавливаются на поверхности теплопередачи зданий, поэтому коллекторы затеняют нижележащую поверхность теплопередачи и требуют уникального граничного условия, которое отражает среду воздушной полости, созданную между нижней частью поверхности коллектора и подстилающей поверхностью.Модель условий другой стороны, которая позволяет нам оценить температуру другой стороны, Tosc , может быть определена на основе установившегося теплового баланса с использованием известной температуры воды коллектора на предыдущем временном шаге.

Иллюстрация для модели

с условиями работы на другой стороне

Игнорируя тепловую массу нижней изоляции коллектора, установившийся поверхностный тепловой баланс может быть сформулирован на внешней плоскости нижней поверхности коллектора, обращенной к полости, как показано на рисунке.Уравнение теплового баланса на внешней плоскости нижней поверхности коллектора имеет вид:

qсекунда + qconv, cav + qrad, cav = 0

Подставляя уравнения для каждого члена в уравнение выше, получаем:

UL (Tw − Tosc) + hc, cav (Ta, cav − Tosc) + hr, cav (Tso − Tosc) = 0

Упрощение дает нижнюю изоляцию температуры на другой стороне:

Tosc = ULTw + hc, cavTa, cav + hr, cavTsoUL + hc, cav + hr, cav

Температура воздуха в полости определяется из теплового баланса воздуха в полости следующим образом:

Ta, cav = hc, cavATosc + ˙mventCpTa + hc, cavATsohc, cavA + ˙mventCp + hc, cavA

Где

ч, cav = линеаризованный коэффициент излучения для подстилающей поверхности в полости, (Вт / м2 × K)

hc, cav = коэффициент конвекции для подстилающей поверхности в полости, (Вт / м2 × K)

Tso = температура внешней поверхности лежащей под ней теплопередающей поверхности, (ºC)

˙mvent = массовый расход воздуха за счет естественной вентиляции, (кг / с)

qcond = теплопроводность теплового потока через дно изоляции и, (Вт / м2)

qconv, cav = конвекционный тепловой поток между нижней внешней поверхностью коллектора и воздухом в полости, (Вт / м2)

qrad, cav = поток длинноволнового радиационного обмена между нижней внешней поверхностью коллектора и внешней поверхностью подстилающей поверхности, (Вт / м2)

Температура воздуха в полости определяется из баланса энергии воздуха в полости.Баланс тепла воздуха требует норм естественной вентиляции воздуха в вентилируемой полости. Расчет скорости вентиляции описан в другом месте этого документа. Объект SurfaceProperty: ExteriorNaturalVentedCavity требуется для описания свойств поверхности, характеристик полости и отверстия для естественной вентиляции.

Коэффициенты теплопередачи [ССЫЛКА]

Уравнения, используемые для определения различных коэффициентов теплопередачи в уравнениях абсорбера и теплового баланса воды, приведены ниже.Поглощенная солнечная энергия передается воде путем конвекции. Предполагая, что естественная конвекция преобладает в теплопередаче для горячей поверхности, обращенной вниз, и поверхности комка, обращенной вниз, следующая корреляция для числа Нуссельта, сделанная Фуджи и Имура (1972). Число Нуссельта для горячей поверхности, обращенной вниз, дается по формуле:

Nu = 0,56 (Gr⋅Pr⋅cosθ) 1/5 · 105

Число Нуссельта для горячей поверхности вверх и холодной поверхности вниз определяется по формуле:

Nu = 0.13 (Gr⋅Pr) 1 / 3Gr⋅Pr <5,0 × 108

Nu = 0,16 (Gr⋅Pr) 1 / 3Gr⋅Pr> 5,0 × 108

Gr = gβv (Tp − Tw) L3c / gβv (Tp − Tw) L3cν2ν2

Pr = ν / ναα

Tr = Tp − 0,25 (Tp − Tw)

hw = Nu⋅k / Nu⋅kLcLc

Где,

θ = угол наклона коллектора к вертикали, радианы

г = постоянная силы гравитации, 9,806 (м / с2)

Tr = эталонные свойства, в которых рассчитаны теплофизические свойства, (° C)

Lc = характерная длина пластины абсорбера, (м)

k = теплопроводность воды при нормальной температуре, (Вт / м × K)

n = кинематическая вязкость воды при нормальной температуре, (м2 / с)

a = коэффициент температуропроводности воды при нормальной температуре, (м2 / с)

βv = коэффициент объемного расширения, рассчитанный при Tv, Tv = Tw + 0.25 (Тп-Тв), (К-1)

Nu = число Нуссельта, рассчитанное для свойств воды при эталонной температуре, (-)

Gr = число Грасгофа, рассчитанное для свойств воды при эталонной температуре, (-)

Pr = Число Прандтля, рассчитанное для свойств воды при эталонной температуре, (-)

Различные коэффициенты радиационной и конвективной теплопередачи задаются следующими уравнениями.Коэффициенты конвективной теплопередачи между крышками и пластиной поглотителя оцениваются на основе эмпирической корреляции для числа Нуссельта для воздушного зазора между двумя параллельными пластинами, разработанной Hollands et al. (1976) это:

Nua = 1 + 1,44 {1−1708 (sin1.8β) 1.6Racosβ} {1−1708Racosβ} ++ ⎧⎪⎨⎪⎩ (Racosβ5830) 1 / 133−1⎫⎪⎬⎪⎭ +

hc = Nu⋅k / Nu⋅kLL

л.с.-c2 = σ (Tp + Tc2) (T2p + T2c2) 1 / εp + 1 / εc2−1

hrc1 − c2 = σ (Tc1 + Tc2) (T2c1 + T2c2) 1 / εc1 + 1 / εc2−1

Для математического упрощения приведены коэффициенты обмена длинноволновым излучением между внешней крышкой коллектора и небом и землей с привязкой к температуре окружающего воздуха.

hrc1 − s = Fsεc1σ (Tc1 + Ts) (T2c1 + T2s) (Tc1 − Ts) (Tc1 − Ta)

hrc1 − g = Fgεc1σ (Tc1 + Tg) (T2c1 + T2g) (Tc1 − Tg) (Tc1 − Ta)

hcc1-a = hcc1-s + hcc1-g

Коэффициент конвективной теплопередачи от внешнего покрытия к окружающему воздуху определяется по формуле:

hcc1-a = 2,8 + 3,0Vw

Когда граничным условием нижней поверхности является AmbientAir, комбинированная проводимость от внешнего покрытия до окружающей среды рассчитывается по приведенному ниже уравнению (Даффи и Бекман, 1991).

hcomb = 5,7 + 3,8Vw

Общий коэффициент потерь через дно и боковые стороны коллектора-накопителя оценивается следующим образом:

Уб = ULb (Ab / A)

Us = [1ULs (As / A) + 1hcomb] -1

Где,

ec1 = коэффициент теплового излучения крышки коллектора 1 , (-)

ec2 = коэффициент теплового излучения крышки коллектора 2 , (-)

Fs = коэффициент обзора от коллектора до неба, (-)

Fg = коэффициент обзора от коллектора до земли, (-)

Tc1 = температура крышки коллектора 1 , (K)

Tc2 = температура крышки коллектора 2 , (K)

Ts = температура неба, (К)

Tg = температура грунта, (К)

k = теплопроводность воздуха, (Вт / м · K)

L = воздушный зазор между крышками, (м)

β = наклон пластин или крышек к горизонтали, (радиан)

Vw = скорость ветра, (м / с)

ULb = определяемая пользователем теплопроводность снизу, Вт / м2 × K

ULs = боковая теплопроводность, определяемая пользователем, Вт / м2 × K

Ab = площадь теплообмена днища коллектора, м2

As = площадь со стороны коллектора, м2

hcomb = комбинированная проводимость от внешнего покрытия к окружающему воздуху, Вт / м2 × K

Произведение коэффициента пропускания-поглощения

Произведение коэффициента пропускания и поглощения солнечного коллектора определяется с использованием метода трассировки лучей для любого угла падения (Даффи и Бекман, 1991).Для этого требуются оптические свойства материалов покрытия и поглотителя, а произведение коэффициента пропускания-поглощения для любого угла падения определяется по формуле:

(τα) θ = τα1− (1 − α) ρd

Коэффициент пропускания системы крышек для одинарных и двух крышек определяется по формуле:

τ = 12 [(τ1⋅τ21 − ρ1ρ2) ⊥ + (τ1⋅τ21 − ρ1ρ2) ∥]

ρ = 12 [(ρ1 + τ⋅ρ2⋅τ1τ2) ⊥ + (ρ1 + τ⋅ρ2⋅τ1τ2) ∥]

Эффективный коэффициент пропускания, отражения и поглощения одиночного покрытия определяется по формуле:

τ = τa2⎧⎨⎩1 − r⊥1 + r⊥ [1 − r2⊥1− (r⊥τa) 2] + 1 − r∥1 + r∥⎡⎣1 − r2∥1− (r∥τa ) 2⎤⎦⎫⎬⎭

ρ = 12⎧⎨⎩ [r⊥ + (1 − r⊥) 2τ2ar⊥1− (r⊥τa) 2] + ⎡⎣r∥ + (1 − r∥) 2τ2ar∥1− (r∥τa) 2 ⎤⎦⎫⎬⎭

α = (1 − τa) 2 {(1 − r⊥1 − r⊥τa) + (1 − r∥1 − r∥τa)}

Коэффициент пропускания системы покрытия с учетом только поглощения т a, определяется как:

τa = ехр (−KLcosθ2)

θ2 = sin − 1 (sinθ1⋅n1n2)

Коэффициент отражения неполяризованного излучения при переходе от среды 1 с показателем отражения n 1 к среде 2 с показателем отражения n 2 определяется по формуле:

r⊥ = sin2 (θ2 − θ1) sin2 (θ2 + θ1)

r∥ = tan2 (θ2 − θ1) tan2 (θ2 + θ1)

Средние эквивалентные углы падения рассеянного излучения, отраженного от неба и земли, аппроксимируются корреляцией Брандемюля и Бекмана (Duffie and Beckman, 1991) следующим образом:

θsd = 59.68−0,1388β + 0,001497β2

θgd = 90−0,5788β + 0,002693β2

где,

t = коэффициент пропускания системы покрытия, (-)

t 1 = коэффициент пропускания крышки 1, (-)

t 2 = коэффициент пропускания крышки 2, (-)

a = поглощающая способность пластины абсорбера, (-)

r d = коэффициент диффузного отражения внутренней крышки, (-)

L = толщина материала покрытия, (м)

K = коэффициент экстинкции покровного материала, (м − 1)

q 1 = угол падения, градус

q 2 = угол преломления, градус

r⊥ = параллельная составляющая отраженного неполяризованного излучения, (-)

r∥ = перпендикулярная составляющая отраженного неполяризованного излучения, (-)

b = наклон коллектора, градус

q sd = эквивалентный угол падения рассеянного солнечного излучения в небо, градусы

q gd = эквивалентный угол падения рассеянного солнечного излучения на землю, градус

Тепловые параметры интегрального коллектора-накопителя рассчитываются следующим образом:

Qдоставлено = ˙mwCw (Tw − Twi)

QStored = mwCwdTwdt

QSkinLoss = A⋅ [Ut (Tp-Tw) + Ub (Tw-TOSC) + Us (Tw-Ta)]

ηthermal = mwCwdTwdt + ˙mwCw (Tw − Twi) A⋅It

Даффи, Дж.A. и W.A. Beckman. 1991. Солнечная инженерия тепловых процессов, 2-е изд. Нью-Йорк: Джон Вили и сыновья.

Кумар Р. и М.А. Розен. Тепловые характеристики встроенного коллектора-накопителя солнечного водонагревателя с гофрированной абсорбирующей поверхностью. Прикладная теплотехника: 30 (2010) 1764–1768.

Fujii, T. и H. Imura. Естественная конвекция теплопередачи от пластины с произвольным наклоном. Международный журнал тепломассообмена: 15 (4), (1972), 755-764.

Фотоэлектрические тепловые плоские солнечные коллекторы [LINK]

Фотоэлектрические-тепловые солнечные коллекторы (PVT) объединяют солнечные электрические элементы и тепловую рабочую жидкость для сбора как электричества, так и тепла. Хотя в настоящее время существует сравнительно немного коммерческих продуктов, PVT-исследования проводились в течение последних 30 лет, и было изучено множество различных типов коллекторов. Zondag (2008) и Charalambous et. al (2007) предоставляют обзоры литературы по PVT.Поскольку PVT является гораздо менее зрелым с коммерческой точки зрения, не существует стандартов или рейтинговых систем, таких как для тепловых коллекторов горячей воды. В настоящее время EnergyPlus имеет одну простую модель, основанную на эффективности, определяемой пользователем, но более подробная модель, основанная на первых принципах, и подробное поэтапное описание находятся в стадии разработки.

Модели PVT повторно используют модели PV для производства электроэнергии. Они описаны в другом месте этого документа в разделе «Фотоэлектрические массивы - простая модель

».

Простая тепловая модель PVT [ССЫЛКА]

Входной объект SolarCollector: FlatPlate: PhotovoltaicThermal предоставляет простую модель PVT, которая предоставляется для быстрого использования во время разработки или изучения политики.Пользователь просто задает значения теплового КПД, и падающая солнечная энергия нагревает рабочее топливо. Модель также включает режим охлаждения для систем на основе воздуха, где указанная пользователем поверхностная излучательная способность используется для моделирования охлаждения рабочей жидкости в ночное небо (охлаждение на водной основе будет доступно, когда станет доступен резервуар для хранения охлажденной воды) . Никаких других деталей конструкции PVT коллектора в качестве исходных данных не требуется.

Простая модель может нагревать воздух или жидкость.Если он нагревает воздух, то PVT является частью контура воздушной системы HVAC с воздушными узлами, подключенными к воздушной системе. Если он нагревает жидкость, то PVT является частью контура установки с узлами, подключенными к контуру установки, и схема работы установки определяет потоки.

PVT-моделирование на основе воздушной системы включает в себя регулирующую байпасную заслонку. Логика управления определяет, должен ли воздух обходить коллектор, чтобы лучше соответствовать заданному значению. Модель требует, чтобы уставка температуры сухого термостата была размещена на выходном узле.Модель предполагает, что коллектор предназначен и доступен для нагрева, когда падающая солнечная энергия превышает 0,3 Вт / м2, а в противном случае он предназначен для охлаждения. Температура на входе сравнивается с уставкой на выпускном узле, чтобы определить, является ли охлаждение или нагрев выгодным. Если да, то для кондиционирования воздушного потока применяются тепловые модели PVT. Если они не приносят пользы, то PVT полностью обходится, и входной узел передается непосредственно к выходному узлу, чтобы смоделировать полностью обходное устройство заслонки.Переменная отчета доступна для состояния заслонки байпаса.

Заводские PVT не включают байпас (хотя он может использоваться в заводском контуре). Коллектор запрашивает расчетный расход, но в остальном для управления он полагается на более крупный контур установки.

Когда PVT-тематический коллектор находится в состоянии «включен» в режиме нагрева, а рабочая жидкость течет, модель рассчитывает температуру на выходе на основе температуры на входе и собранной теплоты, используя следующие уравнения.

Qtherm = Asurf⋅factiv⋅GT⋅ηthermal

где,

Qtherm - собранная тепловая энергия [Вт]

Asurf - чистая площадь поверхности [м2]

factiv - доля поверхностного воздуха с активным PV / T-коллектором, а

ηthermal - это эффективность термического преобразования.

Tout = олово + Qtherm˙mcp

где,

Tout - температура рабочей жидкости на выходе из PV / T

Tin - это температура рабочей жидкости на входе в PV / T

мкм - полный массовый расход рабочего тела через PV / T

cp - удельная теплоемкость рабочего тела.

Для воздушных систем значение Tout затем сравнивается с уставкой температуры на выходном узле. Если Tout превышает желаемую температуру на выходе, Tset, out, тогда доля байпаса рассчитывается для моделирования регулирующей заслонки байпаса с использованием:

fbypass = (Tset, out-Tout) (Tin-Tout)

Когда PVT-тематический коллектор находится в состоянии «включен» в режиме охлаждения, а рабочая жидкость течет, модель рассчитывает температуру на выходе на основе температуры на входе и тепла, излучаемого и конвектируемого в окружающую среду, с использованием теплового баланса на теплоносителе. внешняя грань коллектора:

˙mcp (Tin − Tout) = ˙QLWR + ˙Qconv

Где,

˙QLWR - чистая скорость обмена длинноволновым (тепловым) излучением с воздухом, ночным небом и землей.См. Раздел «Внешнее длинноволновое излучение» в Тепловом балансе внешней поверхности, где подробно обсуждается, как это моделируется в EnergyPlus с использованием линеаризованных коэффициентов излучения.

˙Qconv - чистая скорость конвективного обмена потоком с наружным воздухом. См. Раздел «Наружная / внешняя конвекция» в «Тепловом балансе внешней поверхности», где подробно обсуждается, как это моделируется в EnergyPlus. Шероховатость поверхности считается «очень гладкой».

Простая модель предполагает, что эффективная температура коллектора, Tcol, является средним значением температуры рабочей жидкости на входе и выходе, поэтому мы можем сделать следующую замену:

Tout = 2Tcol − Tin

Подставляя и решая для Tcol, мы получаем следующую модель для температур коллектора во время (возможного) процесса охлаждения:

Tcol = 2˙mcpTin + Asurffactiv (hr, gndTgnd + hr, skyTsky + hr, airTair + hc, extTair) 2˙mcp + Asurffactiv (hr, gnd + hr, sky + hr, air + hc, ext)

Затем можно рассчитать температуру на выходе и определить тепловые потери.Однако модель допускает только ощутимое охлаждение воздушного потока и ограничивает температуру на выходе, чтобы она не опускалась ниже температуры точки росы на входе.

Коллекторы

PVT имеют расчетный объемный расход рабочей жидкости с возможностью автоматического изменения размера. Для воздушных систем, используемых в качестве предварительных кондиционеров, объемный расход рассчитывается таким образом, чтобы соответствовать максимальному расходу наружного воздуха. Для систем на водной основе на стороне подачи контура установки, каждый из коллекторов PVT рассчитан на общую скорость потока контура.Для систем на водной основе на стороне потребления в заводском контуре размеры коллекторов выбираются с использованием практического правила для типичных расходов на единицу площади коллектора. Это практическое правило основано на постоянном коэффициенте 1,905x10-5 м3 / с-м2, который был разработан путем анализа набора данных SRCC для обычных солнечных коллекторов (см. Набор данных SolarCollectors.idf) и усреднения отношения для всех 171 различных коллекционеры.

Ссылки

[ССЫЛКА]

Хараламбус, П.Г., Мэйдмент, Г.Г., Калагироу С.А., Якуметти К. Фотоэлектрические тепловые (PV / T) коллекторы: обзор. Прикладная теплотехника 27 (2007) 275-286.

Зондаг, Х.А. 2008. Плоские фотоэлектрические коллекторы и системы: обзор. Обзоры возобновляемой и устойчивой энергетики 12 (2008) 891-959.

Неглазурованные солнечные коллекторы [ССЫЛКА]

Входной объект SolarCollector: UnglazedTranspired предоставляет модель просвечиваемых коллекторов, которые, возможно, являются одним из наиболее эффективных способов сбора солнечной энергии с продемонстрированной мгновенной эффективностью более 90% и средней эффективностью более 70%.Они используются для предварительного нагрева наружного воздуха, необходимого для вентиляции и таких процессов, как сушка сельскохозяйственных культур.

В EnergyPlus неглазурованный прозрачный солнечный коллектор (UTSC) моделируется как специальный компонент, прикрепленный к внешней стороне поверхности теплопередачи, которая также соединена с каналом наружного воздуха. UTSC влияет как на тепловую оболочку, так и на воздушную систему HVAC. С точки зрения воздушной системы, UTSC - это теплообменник, и при моделировании необходимо определить, насколько устройство повышает температуру наружного воздуха.С точки зрения тепловой оболочки, наличие коллектора на внешней стороне поверхности изменяет условия, в которых находятся нижележащие поверхности теплопередачи. EnergyPlus моделирует характеристики здания в течение года, и UTSC часто будет отключаться с точки зрения принудительного воздушного потока, но коллектор все еще присутствует. Когда UTSC включен, всасываемый воздушный поток считается равномерным по всей поверхности. Когда UTSC выключен, коллектор действует как радиационно-конвекционная перегородка, расположенная между внешней средой и внешней стороной лежащей ниже поверхности теплопередачи.Мы различаем эти два режима работы как активный или пассивный и моделируем компонент UTSC по-разному в зависимости от того, в каком из этих режимов он находится.

Эффективность теплообменника [ССЫЛКА]

Перфорированная пластина абсорбера рассматривается как теплообменник и моделируется с использованием традиционной формулы эффективности. Эффективность теплообменника εHX определяется на основе корреляций, полученных в результате небольших экспериментов. В EnergyPlus реализованы две корреляции, доступные в литературе.Первый основан на исследовании Кучера из Национальной лаборатории возобновляемых источников энергии. Второй основан на исследовании Ван Декера, Холландса и Брюнгера из Университета Ватерлоо. Поскольку обе корреляции считаются действительными, выбор того, какую корреляцию использовать, остается за пользователем.

Корреляция Кутчера [ССЫЛКА]

Корреляция Кучера (1994) охватывает поверхностную конвекцию между коллектором и входящим потоком наружного воздуха, которая возникает на передней поверхности, в отверстиях и вдоль задней поверхности коллектора.Корреляция использует число Рейнольдса на основе диаметра отверстия в качестве шкалы длины и средней скорости воздуха, проходящего через отверстия, в качестве шкалы скорости:

ReD = VhDν

где,

Vh - скорость через отверстия [м / с]

D - диаметр отверстия [м]

ν - кинематическая вязкость воздуха [м2 / с]

Корреляция является функцией числа Рейнольдса, геометрии отверстия, скорости набегающего потока воздуха и скорости, проходящей через отверстия:

NuD = 2.75 [(PD) −1,2Re0,43D + 0,011σReD (U∞Vh) 0,48]

где,

P - шаг или расстояние между отверстиями, [м],

D - диаметр отверстия, [м],

σ - пористость или доля площади отверстий, [безразмерная],

Vh - средняя скорость воздуха, проходящего через отверстия, [м / с],

U∞ - скорость набегающего потока (скорость местного ветра) [м / с].

Число Нуссельта формулируется как:

NuD = UDk

где,

U - общий коэффициент теплопередачи, основанный на средней логарифмической разнице температур, [Вт / м2 · K], и

k - теплопроводность воздуха [Вт / м · К].

КПД теплообменника:

εHX = 1 − e [−UA˙mcp]

Соотношение Кучера было сформулировано для треугольного расположения отверстий, но основано на Van Decker et al. (2001) мы допускаем использование корреляции для расположения квадратных отверстий и масштаба P в 1,6 раза.

Корреляция Ван Декера, Холландса и Брюнгера [ССЫЛКА]

Van Decker et. al. расширил измерения Кучера, включив в него более широкий диапазон параметров коллектора, включая толщину пластины, шаг, скорость всасывания и структуру квадратных отверстий.Их формулировка модели отличается от формулировки Кучера тем, что модель была построена на основе отдельных моделей эффективности для передней, задней и отверстий коллектора. Их опубликованная корреляция:

εHX = [1− (1 + ResMax (1,733Re − 1 / 122w, 0,02136) −1)] × [1− (1 + 0,2273Re1 / 122b) −1] × e (−0,01895PD − 20,62ReDtD)

где,

Res = VsPv

Rew = U∞Pv

Реб = ВхПв

Vs - средняя скорость всасывания через переднюю поверхность коллектора [м / с]

т - толщина коллекторной плиты

Температура на выходе теплообменника [ССЫЛКА]

Использование любого из приведенных выше соотношений позволяет определить эффективность теплообменника по известным значениям.По определению эффективность теплообменника также составляет:

εHX = Ta, HX − TambTs, coll − Tamb

где,

Ta, HX - температура воздуха, выходящего из коллектора и поступающего в камеру статического давления [ºC]

Ts, coll - температура пластины поглотителя коллектора, [ºC], а

Tamb - это температура окружающего наружного воздуха [ºC].

Переписав уравнение для определения Ta, HX, мы видим, что температуру нагретого наружного воздуха, поступающего в камеру статического давления, можно определить, если известна температура поверхности коллектора,

Ta, HX = εHXTs, coll + (1 − εHX) Tamb

Тепловой баланс коллектора [ССЫЛКА]

Предполагается, что коллектор достаточно тонкий и обладает высокой проводимостью, чтобы его можно было смоделировать с использованием одной температуры (для обеих сторон и по его площади).Эта температура Ts, coll определяется путем определения теплового баланса в контрольном объеме, который просто покрывает поверхность коллектора. Тепловые балансы сформулированы отдельно для активного и пассивного режимов и показаны на следующем рисунке.

Обратите внимание, что для пассивного случая мы не используем соотношения теплообменника для прямого моделирования взаимодействия вентилируемого воздуха с коллектором. Это потому, что эти отношения считаются неприменимыми, когда UTSC находится в пассивном режиме.Они были разработаны для однонаправленного потока (а не для уравновешенного потока на входе и выходе, ожидаемого от естественных сил) и для определенных диапазонов скорости на всасывающей стороне. Таким образом, этот механизм теплопередачи обрабатывается с использованием классических моделей поверхностной конвекции (как если бы коллектор не был перфорирован). (Воздухообмен моделируется как вентиляция в тепловом балансе приточного воздуха, но не взаимодействует с краями отверстий на поверхности коллектора.)

Тепловой баланс коллектора Transpired

Когда UTSC активен, тепловой баланс на контрольном объеме поверхности коллектора составляет:

q′′αsol + q′′LWR, Env + q′′conv, wind − q′′HX + q′′LWR, plen + q′′source = 0

где: q′′αsol - поглощенный тепловой поток прямого и рассеянного солнечного (коротковолнового) излучения.

q′′LWR, Env - чистый обмен потоком длинноволнового (теплового) излучения с воздухом и окружающей средой.

q′′conv, ветер - это обмен поверхностного конвекционного потока с наружным воздухом в условиях сильного ветра и дождя. Обратите внимание, что этот член обычно принимается равным нулю при разработке модели UTSC, но мы добавляем термин, чтобы учесть ухудшение характеристик UTSC в плохих условиях. q′′HX - поток теплообменника от коллектора к приточному наружному воздуху. q′′LWR, plen - чистый обмен потоком длинноволнового (теплового) излучения с внешней поверхностью подстилающей поверхности (поверхностей).

q '' источник - это термин "источник / приемник", который учитывает энергию, экспортируемую из контрольного объема, когда пластина поглотителя коллектора представляет собой гибридное устройство, такое как фотоэлектрическая панель.

При этом тепловой баланс на контрольном объеме пассивной поверхности коллектора составляет:

q′′αsol + q′′LWR, Env + q′′conv, Env + q′′LWR, plen + q′′conv, plen + q′′source = 0

где: q′′conv, Env = теплообмен поверхностной конвекции с наружным воздухом. q′′conv, plen = теплообмен между поверхностной конвекцией и приточным воздухом.

Все члены положительны для чистого потока к коллектору, за исключением члена теплообменника, который считается положительным в направлении от коллектора к входящему воздушному потоку. Каждый из этих компонентов теплового баланса кратко представлен ниже.

Внешнее излучение ПО [ССЫЛКА]

q′′αsol рассчитывается с использованием процедур, представленных в другом месте данного руководства, и включает как прямое, так и диффузное падающее солнечное излучение, поглощаемое поверхностью поверхности.Это зависит от расположения, угла и наклона поверхности, затенения поверхностей, свойств материала поверхности, погодных условий и т. Д.

Внешнее ДВ-излучение [ССЫЛКА]

q′′LWR, Env - это стандартная формулировка радиационного обмена между поверхностью, небом, землей и атмосферой. Радиационный тепловой поток рассчитывается на основе коэффициента поглощения поверхности, температуры поверхности, температуры неба, воздуха и земли, а также факторов обзора неба и земли. Излучение моделируется с использованием линеаризованных коэффициентов.

Внешняя конвекция [ССЫЛКА]

q′′conv, Env моделируется с использованием классической формулировки: q′′conv = hco (Tair - To), где hco - коэффициент конвекции. Этот коэффициент будет отличаться в зависимости от того, является ли UTSC активным или пассивным. Когда UTSC пассивен, с hco обращаются так же, как с внешней стороной в условиях ExteriorEnvironment. Когда UTSC активен, особая ситуация с потоком всасываемого воздуха в извлеченном коллекторе во время работы означает, что hco часто равно нулю, поскольку ситуация всасывания может исключить массовый перенос от коллектора.Однако при сильном ветре сильная турбулентность и колебания давления могут привести к нарушению всасывающего потока. Поэтому мы включаем q′′conv, термин ветра в тепловой баланс, и используем специальный коэффициент hc, wind для моделирования этой потерянной теплопередачи. Кроме того, когда на улице идет дождь, мы предполагаем, что коллектор намокает, и моделируем улучшенную поверхностную теплопередачу, используя большое значение hc, wind.

Теплообменник [ССЫЛКА]

q′′HX моделируется с использованием классической формулировки q′′HX = ˙mcp (Ta, HX-Tamb) A, где Ta, HX определяется с использованием корреляций, описанных выше.Когда UTSC активен, массовый расход воздуха определяется по работе компонента смесителя наружного воздуха. Когда UTSC выключен, этот член равен нулю.

Plenum LW Radation [ССЫЛКА]

q′′LWR, plen - это стандартная формулировка радиационного обмена между поверхностью коллектора и лежащей под ним поверхностью теплопередачи, расположенной поперек нагнетательного пространства. Излучение моделируется с использованием линеаризованных коэффициентов.

Пленум-конвекция

[ССЫЛКА]

q′′conv, plen моделируется с использованием классической формулировки: q′′conv = hcp (Tair - To), где hcp - коэффициент конвекции.Этот коэффициент принимается равным нулю, когда UTSC работает из-за ситуации с потоком всасываемого воздуха. Когда UTSC выключен, значение hcp получается из корреляций, используемых для оконных промежутков из стандарта ISO (2003) 15099.

Подставляя модели и решая для Ts, coll дает следующее уравнение, когда UTSC активен («включен»):

Ts, coll = (Isα + hr, atmTamb + hr, skyTsky + hr, gndTamb + hr, plenTso + hc, windTamb + ˙mcpATamb − ˙mcpA (1 − εHX) Tamb + q′′source) (hr, atm + hr , sky + hr, gnd + hr, plen + hc, wind + ˙mcpAεHX)

и замена в дает следующее уравнение, когда UTSC пассивен («выключен»):

Ts, coll = (Isα + hcoTamb + hr, atmTamb + hr, skyTsky + hr, gndTamb + hr, plenTso + hc, plenTa, plen + q′′source) (hco + hr, air + hr, sky + hr, gnd + hr, пленка + hc, пленка)

где,

Is - падающее солнечное излучение всех типов [Вт / м2],

α - коэффициент поглощения солнечной энергии коллектора [безразмерный],

ч, атм - линеаризованный коэффициент излучения для окружающей атмосферы [Вт / м2 · К],

Tamb - это сухая луковица для наружного применения из погодных данных, также предполагаемая для поверхности земли [ºC],

ч, небо - линеаризованный коэффициент излучения неба [Вт / м2 · К],

Tsky - эффективная температура неба [ºC],

ч, gnd - линеаризованный коэффициент излучения для земли [Вт / м2 · К],

ч, plen - линеаризованный коэффициент излучения для подстилающей поверхности [Вт / м2 · К],

hc, ветер - коэффициент конвекции для внешней среды, когда UTSC активен, и дует сильный ветер или идет дождь [Вт / м2 · K],

Tso - температура наружной поверхности лежащей под ней теплопередающей поверхности [ºC],

m - массовый расход воздуха в активном режиме [кг / с],

cp - удельная теплоемкость воздуха при постоянном давлении [Дж / кг · K],

А - площадь коллектора [м2],

hco - коэффициент конвекции для внешней среды [Вт / м2 · К],

hc, plen - коэффициент конвекции для поверхностей, обращенных к камере, [Вт / м2 · K], а

Ta, plen - это сухая камера для воздуха, поступающего в камеру статического давления и поступающего в систему наружного воздуха [ºC].

Plenum Heat Balance [ССЫЛКА]

Камера статического давления - это объем воздуха, расположенный между коллектором и лежащей под ним поверхностью теплопередачи. Приточный воздух моделируется как хорошо перемешанный. Равномерная температура нагнетаемого воздуха Ta, plen определяется путем расчета теплового баланса в контрольном объеме воздуха, как показано на диаграмме ниже.

Обратите внимание, что мы сформулировали контрольные объемы с небольшими различиями для активного и пассивного случаев.Для активного корпуса формулировки условий всасываемого воздуха и эффективности теплообменника требуют, чтобы контрольный объем поверхности коллектора охватывал часть воздуха, прилегающую как к передней, так и к задней поверхностям коллектора. Однако для пассивного случая в контрольном объеме поверхности коллектора нет воздуха, а контрольный объем приточного воздуха простирается до поверхности коллектора.

Тепловой баланс воздуха в камере статического давления коллектора

Когда UTSC активен, тепловой баланс в регулирующем объеме приточного воздуха составляет:

˙Qair + ˙Qco = 0

где,

˙Qair - это чистая величина энергии, добавляемой за счет конвекции всасываемого воздуха через контрольный объем.˙Qco - это чистый коэффициент энергии, добавляемой за счет поверхностной конвективной теплопередачи с подстилающей поверхностью.

Когда UTSC пассивен, тепловой баланс в регулирующем объеме приточного воздуха составляет:

˙Qvent + ˙Qco + ˙Qc, coll = 0

где,

˙Qvent - это чистая величина энергии, добавляемой в результате инфильтрации, когда наружный окружающий воздух обменивается с приточным воздухом.

˙Qc, coll - чистая скорость, добавляемая за счет поверхностной конвективной теплопередачи с коллектором.

Подставляя и решая для Ta, plen дает следующее уравнение для того, когда UTSC активен:

Ta, plen = (˙mcpTa, HX + hc, plenATso) (˙mcp + hc, plenA)

И замена в дает следующее уравнение, когда UTSC пассивен:

Ta, plen = (hc, plenATso + ˙mventcpTamb + hc, plenATs, coll) (hc, plenA + ˙mventcp + hc, plenA)

где,

˙mvent - расход воздуха от естественных сил [кг / с]

В литературе по UTSC не рассматривается пассивный режим работы, а модели для ˙mvent не найдены.Тем не менее ожидается, что естественная плавучесть и силы ветра будут стимулировать воздухообмен между камерой статического давления и окружающей средой, и необходим некоторый метод моделирования вентиляции. Поскольку конфигурация аналогична односторонней естественной вентиляции, мы решили использовать корреляции для естественной вентиляции, представленные в главе 26 ASHRAE HOF (2001).

˙вент = ρ −− ˙Вобщ

где,

ρ - плотность воздуха [кг / м3], а

−−˙Vtot = −− ˙Vwind + −− ˙Vthermal - это общий объемный расход воздуха, поступающего в камеру статического давления и выходящего из нее.

−−˙Vwind = CvAinU∞

−−˙Vthermal = CDAin√2gΔHNPL (Ta, plen − Tamb) / Ta, plen (если Ta, plen> Tamb)

−−˙Vthermal = CDAin√2gΔHNPL (Tamb − Ta, plen) / Tamb (если Tamb> Ta, plen и UTSC вертикально)

Cv - это эффективность проемов, которая зависит от геометрии проема и ориентации по отношению к ветру. ASHRAE HoF (2001) указывает значения в диапазоне от 0,25 до 0,6. В модели UTSC это значение доступно для ввода пользователем и по умолчанию равно 0.25.

CD - коэффициент расхода для отверстия и зависит от его геометрии. В модели UTSC это значение доступно для ввода пользователем и по умолчанию равно 0,65.

Аргументы о непрерывности массы приводят к моделированию площади отверстий как половину общей площади отверстий, поэтому мы имеем:

Ain = Aσ2

г - гравитационная постоянная, принятая равной 9,81 [м / с2].

ΔHNPL - высота от середины нижнего отверстия до уровня нейтрального давления.Это составляет одну четвертую общей высоты UTSC, если он установлен вертикально. Для наклонных коллекторов номинальная высота изменяется на синус наклона. Если UTSC установлен горизонтально (например, на крыше), то ΔHNPL принимается как толщина зазора камеры статического давления.

Если UTSC горизонтальный и Tamb> Ta, plen, то −−˙Vthermal = 0, потому что это стабильная ситуация.

Нижняя поверхность теплопередачи [ССЫЛКА]

UTSC наносится снаружи на поверхность теплопередачи.Эта поверхность моделируется с использованием обычных методов EnergyPlus для обработки теплоемкости и переходных процессов - обычно метод CTF. Эти встроенные программы EnergyPlus Heat Balance используются для расчета Tso. Модель UTSC соединяется с нижней поверхностью с помощью механизма OtherSideConditionsModel. Модель UTSC предоставляет значения для hr, plen, Ts, coll, hc, plen и Ta, plen для использования с расчетами модели теплового баланса для внешней стороны подстилающей поверхности (описанной в другом месте в этом руководстве).

Расчеты солнечного света и затенения [ССЫЛКА]

Просвечиваемый объект-коллектор использует стандартную поверхность EnergyPlus, чтобы воспользоваться преимуществами подробных расчетов солнечного излучения и затенения. Солнечное излучение, падающее на поверхность, включает пучковое и диффузное излучение, а также излучение, отраженное от земли и прилегающих поверхностей. Также учитывается затенение коллектора другими поверхностями, например, близлежащими зданиями или деревьями.

Расчет локальной скорости ветра [LINK]

Скорость наружного ветра влияет на термины, используемые при моделировании компонентов UTSC.Предполагается, что скорость ветра в файле погоды измеряется на метеорологической станции, расположенной в открытом поле на высоте 10 м. Чтобы приспособиться к разному рельефу на строительной площадке и разнице в высоте поверхностей зданий, для каждой поверхности рассчитывается местная скорость ветра.

Скорость ветра модифицируется на основе измеренной метеорологической скорости ветра по формуле (ASHRAE 2001):

U∞ = Vmet (δmetzmet) amet (zδ) a

, где z - высота центроида UTSC, zmet - высота стандартного метереологического измерения скорости ветра, а a и d - коэффициенты, зависящие от местности.d - толщина пограничного слоя для данного типа местности. Значения a и d показаны в следующих таблицах:

Коэффициенты зависимости от местности (ASHRAE 2001).
1 Плоский, местность 0,14 270
2 Грубая, лесистая местность 0,22 370
3 Города и города 0.33 460
4 Океан 0,10 210
5 Городской, промышленный, лесной 0,22 370

UTSC может быть определен таким образом, чтобы он имел несколько нижележащих поверхностей теплопередачи. Высоты центроидов для каждой поверхности взвешиваются по площади, чтобы определить среднюю высоту для использования в расчетах местного ветра.

Коэффициенты конвекции [ССЫЛКА]

UTSC-моделирование требует вычисления до трех различных коэффициентов поверхностной конвективной теплопередачи. Эти коэффициенты определяются классическим способом:

hc = Таир − Цурфк′′конв

Во-первых, hco - это коэффициент конвекции для поверхности коллектора, обращенной наружу, когда UTSC пассивен. Он моделируется точно так же, как и где-либо еще в EnergyPlus, и будет зависеть от настроек пользователя для алгоритма внешней конвекции - тепловой баланс внешней поверхности в другом месте в этом документе.

Во-вторых, hc, plen - коэффициент конвекции для поверхностей, обращенных к камере статического давления. Этот коэффициент применяется только к конвекции подстилающей поверхности, когда UTSC активен, и как к коллектору, так и к подстилающей поверхности, когда UTSC пассивен. Когда UTSC активен, мы используем корреляцию конвекции для нагнетаемого воздуха, разработанную McAdams (1954), как опубликовано ASHRAE HoF (2001):

hc, пленка = 5,62 + 3,9Vp

где,

Vp - средняя скорость в камере статического давления, определяемая как Vp = ˙m2ρAp, где Ap - эффективная площадь поперечного сечения камеры, перпендикулярная направлению первичного потока.Когда UTSC пассивен, мы моделируем конвекцию так же, как в EnergyPlus для моделирования воздушных зазоров в окнах. Эти корреляции различаются числом Рэлея и наклоном поверхности и основаны на работе различных исследований, включая Hollands et. др., Эльшербины и др. др., Райт и Арнольд. Формулировки задокументированы в стандарте ISO (2003) 15099. Для реализации UTSC подпрограммы были адаптированы из подпрограммы NusseltNumber в WindowManager.f90 (Ф. Винкельманн), которая сама была получена из подпрограммы Window5 «nusselt».

В-третьих, hc, wind - это коэффициент конвекции, используемый для ухудшения характеристик UTSC в условиях окружающей среды с сильным ветром или дождем. Если в файле погоды указано, что идет дождь, то мы устанавливаем hc, wind = 1000.0, в результате чего температура коллектора становится такой же, как и температура окружающего воздуха. Описанные выше корреляции эффективности теплообменника учитывают умеренное количество ветра, но корреляции, по-видимому, ограничены диапазоном от 0 до 5,0 м / с. Поэтому мы полагаем hc, wind равным нулю, если U∞ <= 5.0 м / с. Если U∞> 5,0 м / с, мы используем корреляцию МакАдамса, но с уменьшенной величиной скорости:

hc, ветер = 5.62 + 3.9 (U∞ − 5.0)

Коэффициенты излучения [ССЫЛКА]

Моделирование

UTSC требует расчета до четырех различных линеаризованных коэффициентов радиационной теплопередачи. В то время как при расчетах излучения обычно используется температура, возведенная в четвертую степень, это значительно усложняет решение уравнений теплового баланса для одной температуры.Коэффициенты линеаризованного излучения имеют те же единицы измерения и используются таким же образом, что и коэффициенты поверхностной конвекции, и вносят очень небольшую ошибку для соответствующих уровней температуры.

Коэффициент излучения, hr, plen, используется для моделирования теплового излучения между поверхностью коллектора и внешней поверхностью подстилающей поверхности теплопередачи. Мы исходим из единства мнений. Рассчитывается с использованием:

ч, плен = σSBecolleso (T4s, coll-T4so) (Ts, coll-Tso)

где,

все температуры переведены в градусы Кельвина,

σSB - постоянная Стефана-Больцмана,

ecoll - длинноволновое тепловое излучение коллектора, а

eso - длинноволновое тепловое излучение подстилающей поверхности теплопередачи.

Три других коэффициента, hr, atm, hr, sky и hr, gnd, используются в другом месте EnergyPlus для теплового баланса внешней поверхности и рассчитываются таким же образом, как уравнение для коллекторов UTSC. [Это достигается путем вызова подпрограммы InitExteriorConvectionCoeffs в файле HeatBalanceConvectionCoeffs.f90. ]

Bypass Control [ССЫЛКА]

Предполагается, что UTSC устроен так, что байпасная заслонка контролирует, забирается ли воздух непосредственно снаружи или через UTSC.Решение о регулировании основывается на том, будет ли полезно нагревать наружный воздух. Существует несколько уровней управления, включая график доступности, независимо от того, холоднее ли наружный воздух, чем уставка смешанного воздуха, или ниже ли температура воздуха в зоне, чем так называемая уставка свободного нагрева.

Предупреждения об изменении размеров [ССЫЛКА]

Хотя конструкция извлеченного коллектора остается на усмотрение пользователя, программа выдает предупреждения, когда скорость всасываемого воздушного потока выходит за пределы диапазона 0.003 до 0,08 м / с.

Общая эффективность [ССЫЛКА]

Общий тепловой КПД UTSC представляет собой полезный выходной отчет и определяется как отношение полезного тепловыделения всей системы к общему солнечному излучению, падающему на общую площадь поверхности коллектора.

η = (˙Q / A) Isc = ˙mcp (Ta, плен-Tamb) IscA

где

˙Q - полезный приток тепла

Isc - полное падающее солнечное излучение

Обратите внимание, что эффективность η определяется только для Isolar> 0.Этот КПД включает тепло, рекуперированное от подстилающей стены, и может превышать 1,0.

Эффективность коллектора

[ССЫЛКА]

Тепловой КПД коллектора представляет собой полезный выходной отчет и определяется как отношение полезного притока тепла жидкостью коллектора к общему солнечному излучению, падающему на общую площадь поверхности коллектора.

η = ˙mcp (Ta, HX − Tamb) IscA

Обратите внимание, что эффективность η определена только для Isolar> 0

Ссылки

[ССЫЛКА]

Кучер, К.F. 1994. Эффективность теплообмена и падение давления для воздушного потока через перфорированные пластины с боковым ветром и без него. Журнал теплопередачи . Май 1994, т. 116, стр. 391. Американское общество инженеров-механиков.

Ван Декер, G.W.E., K.G.T. Холландс и А.П.Брюнгер. 2001. Теплообменные соотношения для неостекленных прозрачных солнечных коллекторов с круглыми отверстиями на квадрате с треугольным шагом. Солнечная энергия . Vol. 71, No. 1. С. 33-45, 2001.

ISO.2003. ISO 15099: 2003. Тепловые характеристики окон, дверей и затеняющих устройств - Детальные расчеты. Международная Организация Стандартизации.

Инвестиции в солнечные коллекторы с Savo Solar

Количество энергии, содержащейся в Солнце, невероятно велико. В любой момент времени Земля получает от Солнца 174 триллиона киловатт энергии, что в 6000 раз превышает мировое потребление энергии. Приведенная ниже диаграмма показывает это в перспективе:

Солнце выделяет больше энергии, чем любой другой источник энергии, и гораздо больше, чем нам когда-либо могло бы потребоваться.Традиционно мы думаем об извлечении солнечной энергии с помощью солнечных батарей, которые с каждым днем ​​становятся все более эффективными и экономически более рентабельными. Однако солнечные батареи - не единственный способ получить энергию от нашей звезды. Солнечный стартап Brightsource использует зеркала, чтобы отражать солнечный свет и улавливать энергию, нагревающую паровой котел. Кроме того, существует концепция солнечного теплового коллектора, который аналогичным образом использует панели для поглощения солнечного излучения для создания тепла.Затем тепло может передаваться различным средам, таким как вода или воздух. Одно недавнее IPO, Savo Solar, дает возможность инвестировать в самые эффективные в мире солнечные тепловые коллекторы.

О Savo Solar

Компания Savo Solar, основанная в 2010 году, была создана группой финских экспертов по покрытиям, которые с помощью нанотехнологий смогли создать самые эффективные в мире солнечные тепловые коллекторы и вывести их на рынок. Недавно компания провела IPO на шведском рынке OMX NASDAQ, торгующемся под символом SAVOS, что дало Компании текущую рыночную капитализацию чуть менее 80 миллионов долларов США.Выручка за 2014 год составила 1,09 миллиона долларов, что почти вдвое больше, чем в предыдущем году. Убытки были значительно больше - 2,2 миллиона долларов.

Savo Solar строит и продает солнечные тепловые системы для отопления зданий, промышленных процессов и горячего водоснабжения. Основное внимание компании уделяется крупномасштабным промышленным применениям, и они заявляют, что продали свою продукцию более чем в 17 стран на 4 континентах. Их самый большой тепловой коллектор имеет размер более 16 квадратных ярдов и является самым большим коллектором на рынке.Коллектор меньшего размера в 2 квадратных ярда является самым эффективным в мире (согласно тестам третьей стороны) и может использовать до 90% излучаемой солнечной энергии. Компания подала патенты как на производство, так и на состав своих солнечных тепловых коллекторов, срок службы которых составляет 25-30 лет. По заявлению Savo Solar, рынок солнечных тепловых коллекторов довольно велик:

Солнечные тепловые решения - мировой лидер в области нетрадиционных возобновляемых источников энергии с установленной мощностью 330 ГВт.Это более чем в два раза превышает общую установленную электрическую мощность солнечных батарей (фотоэлектрических). По выработке энергии он уступает только ветровой энергии и считается самым перспективным из возобновляемых источников энергии в будущем. Солнечная энергия уже во многих местах конкурентоспособна по сравнению с традиционным производством тепла.

Основные конкуренты Savo-Solar - это те, кто поставляет большие системы и имеет собственное производство коллекторов большой площади. Таких конкурентов в мире меньше пяти.Savo Solar планирует ориентироваться на рынок централизованного теплоснабжения, в частности, в Дании и Германии, а также во Франции, Италии, Австрии и Финляндии. Дополнительные сегменты, на которых они будут сосредоточены, включают промышленные системы для технологического отопления и энергетического ремонта старых многоэтажных домов.

Заключение

Кажется, что рынок большой, у него мало конкурентов, поэтому мы ожидаем продолжения значительного роста выручки Savo Solar как подтверждения того, что рынок готов принять их технологию.

Хотите инвестировать в возобновляемые источники энергии? Тогда почему бы не удержать крупнейшую в мире компанию по возобновляемым источникам энергии, которая также является чемпионом по дивидендам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *