Симисторы bta: Симисторы BTA 04 – BTA 41, основные характеристики, цоколевка

Симистор BTA41-800B или точечная сварка

На mysku.ru уже были обзоры, посвященные созданию аппаратов для точечной сварки. Предмет очень дорогой при покупке в готовом виде, но часто очень нужный в хозяйстве для тех, кто любит что то поделать руками. Напомню, что этот аппарат позволяет легко приваривать контактные пластины к аккумуляторам, сваривать тонкие листы металла, варить стальную проволоку и тд. Под катом моя версия реализации данного агрегата. Читателей ожидают размышления, схемы, платы, программирование, конструирование (все элементы колхозинга) с множеством фото и видео…

Так как в обзоре будут использоваться многие детальки, то я по ходу обзора приведу на них ссылки, возможно сейчас есть эти же детали дешевле у других продавцов.

Предмет обзора приехал в жесткой пластиковой упаковке, в которой лежало 10 экземпляров симистора BTA41-800B.

Данный элемент нам требуется для включения и выключения в нужные моменты сварочного аппарата.
Максимальное обратное напряжение 800 В
Максимальное значение тока в открытом состоянии 40 А
Рабочая температура от -40 до 125 °C
Корпус TOP-3

Симистop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. Следует отметить, что симистop изобретён и запатентован был в СССР (в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. ).

Блок схема этого элемента:

A1 и A2 — силовые электроды
G — управляющий электрод
В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях.

Подробно характеристики BTA41-800B можно посмотреть в datasheet.

Для управления симистором обычно используются специальные симисторные оптроны (triac driver). Оптосимисторы принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из инфракрасного светодиода, соединенного посредством оптического канала с двунаправленным кремниевым симистором. Последний может быть дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения.

.

В большинстве случаев предпочтительным является использование оптосимисторов с детекцией нуля, по целому ряду причин. Иногда (при резистивной нагрузке детекция нуля не важна. А иногда нужно включать нагрузку например на максимуме синусоиды сетевого напряжения, тогда приходится сооружать свою схему детеции и, конечно, использовать оптосимистор без детекции нуля.

Перейдем к нашему устройству. Так уж сложились звезды, что мне потребовалось заменить банки в паре аккумуляторов шуруповертов и в руки попала неисправная микроволновка… И в то же время, в голове давненько витала мысль о необходимости соорудить себе точечную сварку. И я решился на этот шаг.

Разобрал микроволновку (исходная мощность 1200 Вт), вынул все детали. Забегая вперед скажу, что нам потребуется часть проводов с клеммами, трансформатор и вентилятор. Остальное можно использовать в других устройствах (в комментариях можно поделиться своими соображениями на этот счет). Мои трансформатор с вентилятором и провода, выглядели так:


Необходимо сохранив первичную обмотку удалить вторичную, которая сделана более тонким проводом. Удалять можно разными способами, мне показалось более приемлемым спиливание дремелем выступающей части обмотки с последующим выбиванием остатков. Чтобы не повредить первичную обмотку, рекомендую вставить фанерку подходящей толщины между обмотками.

Далее необходимо намотать толстый провод вместо извлеченной вторичной обмотки. Я использовал вот такой многожильный провод сечением 70 мм2:

Старое его название ПВ3-70. Больших усилий намотка провода не требовала, получилось так:

Я купил 2 метра провода, думаю, можно было обойтись и одним метром.
Зачищаем концы:


Готовим паяльное оборудование (флюс лти-120, катушка 2мм припоя и газовая горелка надетая на баллон газа):

Наконечник лучше использовать из луженной меди под провод 70 мм (ТМЛ 70-12-13):

Обильно смачиваем флюсом внутренние поверхности наконечников и провода. Вставляем провод в наконечник подгибая непослушные проводки (не быстрая процедура), и греем горелкой подавая сбоку припой. Результат примерно такой:

Все ужасы закроем термоусадкой:

На мой провод отлично уселась вот такая:

На этой стадии уже можно подключить трансформатор к розетке проводом от микроволновки (он уже имеет клеммы для подключения) и даже попробовать сделать первую сварку, коммутируя нажатием на концы толстого провода, единственное, я рекомендую прикрутить какие-то медные детали, так как наконечники портить не желательно. Варить получится разве что какие-то толстые детали — так как возможности коммутации весьма ограничены.

Перейдем к электрической части. Я уже говорил что коммутацию первичной обмотки решил делать симистором, осталось решить вопрос каким оптосимистором им управлять. Я решил делать схему распознавания нуля, поэтому выбрал вариант без детекции нуля, взяв MOC3021. Datasheet на эту микросхему. Типовое включение следующее:

Вентилятор от микроволновки я решил использовать для охлаждения трансформатора и платы. Так как он тоже на 220 В, то для его включения я решил использовать релюшку OMRON G3MB-202P, она компактная и хорошо справляется с маломощной нагрузкой.

Для управления логикой я решил использовать контроллер atmega328p в корпусе QFP32.

Блок питания нужен на 5 Вольт, я применил такой. Он рассчитан на 600 мА, чего вполне достаточно.

Основной фокус в данном деле это синхронизация с сетью 220 В. Нужно научиться включать нагрузку в момент когда сетевое напряжение имеет определенное значение. В итоге я пришел к такой схеме:

Особенности: VD1 — нужно выбирать быстрый диод (я взял MUR) — он нужен для шунтирования оптрона и избегания появления на нем обратного напряжения более 5 В, VD2 — подойдет любой выпрямительный (подойдет 1N4007 — он существенно снизит тепловую нагрузку на R2, убрав лишнюю полуволну), R2- следует взять мощностью 1-2 Вт (у меня под рукой не было и я поставил 2 резистора параллельно по 90 КОм на 1/4 Вт, температура оказалась приемлемой). А6 — это аналоговый вход контроллера, который использовал я для этих целей. R1 подтягивает вход контроллера к земле. В остальном схема довольно простая.

Нарисовал плату в программе Sprint Layout:

Изготавливаем плату ЛУТ-ом. После травления в хлорном железе:


После смывки тонера:

После лужения:

Вопреки привычной тактике, я сначала спаял силовую часть, чтобы ее отладить независимо от контроллера, на симистор решил приклеить радиатор, выпиленный из алюминиевого профиля:

Получилось так:

Убедился что все хорошо:

Схема слежения за нулем выдает вот такое:

Припаял остальные элементы:


Прошиваем загрузчик (благо я специально вывел пины SPI), и начинаем писать тестировать, исправлять, перепаивать…

Для отладки интенсивно использовался осциллограф, я использую на даче такой, дома конечно удобнее стационарный:

Теперь можно припаять провода для подключения нагрузки (трансформатора и вентилятора), я использовал провода с клеммами от той же микроволновки, в этот момент промелькнула мысль не перепутать бы их при сборке…

Для проверки подключил лампу накаливания вместо трансформатора, на этом этапе сварка выглядит так:

Сдвиг в 3 мс — дает вот такие управляющие импульсы:


А вот так выглядит то, что идет в нагрузку (масштаб сетевого напряжения специально взят иной):

И вот так при другой длительности:

Для визуализации я использовал светодиод трехцветный (использовал только 2: синий и зеленый), с общим катодом. Когда сварочник включен в сеть, горит зеленый свет, когда идет сварка синий. Также используется звуковая сигнализация с помощью вот такой пищалки, при нажатии кнопки сварки проигрывается одна мелодия, после другая.
Для визуализации процесса настройки, я использовал OLED дисплейчик с диагональю 1.3". Он компактный и хорошо виден из-за своей яркости — по моему оптимальное решение.

Стартовый экран выглядит так:

Рабочий режим так:

Как видно, можно задать три параметра: длительность сварочного импульса, количество импульсов и сдвиг относительно распознанного начала положительной полуволны.

Все параметры настраиваются энкодером KY-040. Я решил сделать такую логику: переключение режимов настройки осуществляется кратковременным нажатием энкодера, изменение текущего параметра в заданном диапазоне вращением энкодера, а чтобы сохранить текущие параметры нужно использовать длительное нажатие энкодера, тогда при загрузке будут именно они использоваться (значения по умолчанию).

Видео тестовой сварки с экранчиком и применением энкодера, в качестве нагрузки вместо трансформатора все та же лампочка 75 Вт:

Первый опыт сварки на жести от консервной банки, еще без корпуса:

Результатом я остался доволен.

Но нужен корпус. Корпус решил изготовить из дерева. Один мебельный щит из Леруа у меня был, второй купил. Прикинул расположение и напилил, навырезал (получилось не особо аккуратно, но меня как корпус для аппарата точечной сварки вполне устраивает:


Все управление решил сделать в передней части корпуса для удобства настройки в процессе работы:

Сзади предусмотрел отверстия для забора воздуха:

В качестве кнопки включения и предохранителя установил автомат на 10А.

Корпус покрасил черной краской:

Для защиты установил решетки на заднюю панель:

Немного про кнопку включения. Ее решил делать отдельно, причем, мне хотелось иметь два варианта кнопки: стационарный — для длительной работы и мобильный — для быстрой сварки. Соответственно требовался разъем, в качестве которого выступил стандартный разъем для питания (припаял к нему проводки и изолировал термоусадкой):

Стационарный вариант кнопки решил соорудить в виде педали:

К ней шел коротенький проводок, видимо предполагается ее присоединение к длинному. Разбираем:

Припаиваем ПВС 2х0.5:

В исходном кабеле шло три провода:

Нам черный не нужен.
Собираем все обратно. И припаиваем на другой конец провода штекер:

Мобильную версию изготовил совсем просто:

Экранчик и разъем для кнопки крепим в корпус:

Туда же крепим нашу плату:

Внутри довольно плотно:

Помните я писал о мысли про неперепутывание нагрузок… так вот я перепутал. OMRON G3MB-202P — отправился к праотцам, начав находится включенным независимо от управляющего сигнала… Во он:

Пришлось снимать стенку, потом плату и перепаивать релюху. Процесс сопровождался небольшим количеством нецензурных выражений. Причем плату до этого я уже покрыл защитным лаком в 2 слоя… Но не будем о грустном. Все получилось, прибор заработал.

Как известно, вращение вентилятора, особенно такого не маленького как в нашем случае, сопровождается вибрацией и нагрузкой на крепление, резьбовое соединение постепенно ослабевает и процесс усугубляется. Чтобы этого не происходило, я в своих поделках стараюсь пользоваться отечественным фиксатором резьбы Автомастергель от «Регион Спецтехно». Обзор этого замечательного геля я даже делал тут:

Данный фиксатор является анаэробным, то есть полимеризуется именно там где нужно — в плотной скрутке резьбы.

На дно корпуса прикрутил гламурные ножки:

Тестовая сварка, принесла немало положительных эмоций:

В качестве электродов нужно использовать медные пластины, у меня их не было, сплющил трубку от кондиционера — вполне нормально.
Варилось вот это:

Итоговый вид агрегата:

Вид сзади:

Гвозди сваривает вполне нормально:

Немного измерений. Параметры дачной электросети:

Потребление холостого хода:

При включенном вентиляторе:

Из-за инерционности прибора и сварки короткими импульсами скорее всего прибор не может определить максимальную мощность, вот столько он показал:

Токовые клещи у меня не умеют показывать пик, то что удалось зафиксировать кнопкой:

В реальности я видел цифру в 400 А.
Напряжение на контактах:

Теперь полезное применение. У одного человека (привет ему 🙂 ) Шуруповерт перезимовал на даче и весной или даже осенью был затоплен паводком. Жалобы были на очень короткое время работы акумов 1-2 шурупа и все… Вот такая картина вскрытия:

Акумы чувствовали себя явно не в порядке, позже это подтвердилось тестами:

На замену были заказаны новые банки. И после окончания работ со сварочником, самое время было их заменить:


Оторвать руками полоски у меня не вышло. Платка была отмыта провода тоже заменены::

Аккумулятор начал новую жизнь:

Видео сварки аккумуляторов:


Результат всегда стабилен, оптимальное время 34 мс, количество импульсов 1, сдвиг 3 мс.

Спасибо всем, кто дочитал этот огромный обзор до конца, надеюсь кому-то данная информация окажется полезной. всем крепких соединений и добра!

П.С. Продолжение в этом обзоре

Готовое устройство тут.

Симисторы серии BTA40, BTA41, BTB41 — DataSheet

Свойства

  • Мощные симисторы
  • Низкое тепловое сопротивление
  • Высокая коммутирующая способность
  • Сертифицированы по стандарту UL1557
  • Корпусы соответствуют директиве RoHS (2002/95/EC)

 

Применение

 

Описание

Доступны в мощных корпусах. Симисторы серии BTA / BTB40-41 подходят для коммутации переменного тока общего назначения. Серия BTA снабжена изолированным язычком (номинальное среднеквадратичное напряжение пробоя 2500 В).

 

Типы корпусов (A1, A2 - аноды, G - управляющий электрод)Типы корпусов (A1, A2 — аноды, G — управляющий электрод)
Общие характеристики
Обозначение Параметр BTA40(1) BTA41(1) BTB41 Ед. изм
IT(RMS) Действующий ток в открытом состоянии 40 41 41 А
VDRM/VRRM Повторяющееся импульсное напряжение в закрытом состоянии 600 и 800 600 и 800 600 и 800 В
!gt Отпирающий постоянный ток управления 50 50 50 мА

 

Абсолютные максимальные значения 
Обозначение Параметр Значение Ед. изм.
IT(RMS) Действующий ток в открытом состоянии (для полной синусоиды) TOP3 Tc = 95 °C 40 А
RD91 / TOP ins. Tc = 80 °C
ITSM Ударный ток в открытом состоянии (для полного цикла, Tj initial = 25 °C) F = 50 Гц t = 20 мс 400 A
F = 60 Гц t = 16.7 мс 420
l2t l2t  Значение плавления симистора tp = 10 мс 1000 A2с
dl/dt Критическая скорость нарастания тока в открытом состоянии lG = 2 ·lGT , tr < 100 нс F = 120 Гц Tj = 125 °C 50 A/мкс
VDSM/VRSM Неповторяющееся импульсное напряжение в закрытом состоянии tp = 10 мс Tj = 25 °C VDSM/VRSM+ 100 В
IGM Импульсный ток управления tp = 20 мкс Tj = 125 °C 8 A
PG(AV) Средняя рассеиваемая мощность управления Tj = 125 °C 1 Вт
Tstg  Температура хранения -40…+ 150  °C
Tj Диапазон рабочих температур -40…+ 125 °C

 

Электрические характеристики (Tj = 25 °C)
Обозначение Параметр Значение Ед. изм.
IGT(1) Отпирающий постоянный ток управления VD = 12 В, RL = 33 Ом I- II — III MAX. 50 мА
IV 100
VGT Постоянное отпирающее напряжение управления все квадранты MAX. 1,3 В
VGD Неотпирающее постоянное напряжение управления VD = VDRM RL = 3.3 кОм Tj = 125 °C все квадранты MIN. 0,2 А
IH (2) Ток удержания lj = 500 mA MAX. 80 мА
IL Ток включения тиристора IG = 1.2 IGT I-III-IV MAX. 70 мА
II 160
dV/dt(2) Скорость нарастания напряжения VD = 67% VDRM  в открытом состоянии, Tj = 125 °C MIN. 500 В/мкс
(dV/dt)c(2) Критическая скорость нарастания напряжения (dl/dt)c = 20 А/мс, Tj = 125 °C MIN. 10 В/мкс
  1. Минимум IGT гарантируется на уровне 5% от IGT max.
  2. Для обеих полярностей от A2 к A1.
Статические характеристики 
Обозначение Условия Значение Ед. изм.
VT(1) Напряжение в открытом состоянии ITM = 60 A, tp = 380 мкс Tj = 25 °C MAX. 1,55 В
Vt0(2) Пороговое напряжение Tj = 125 °C MAX. 0,85 В
Rd(2) Динамическое сопротивление Tj = 125 °C MAX. 10 мОм
IDRM Повторяющийся импульсный ток в закрытом состоянии VDRM = VRRM T= 25 °C MAX. 5 мкА
IRRM Повторяющийся импульсный обратный ток VDRM = VRRM Tj = 125 °C 5 мА
  1. Минимум IGT гарантируется на уровне 5% от IGT max.
  2. Для обеих полярностей от A2 к A1.
Тепловое сопротивление 
Обозначение Условия Значение Ед. изм.
Rth(j-c) Тепловое сопротивление переход-корпус RD91 (изолированный корпус)/ТОРЗ изолированный 0,9 °С/Вт
TOP3 0,6
Rth(j-a) Тепловое сопротивление переход-среда ТОРЗ / TOP3 изолированный 50 °С/Вт

 

Зависимость максимальной рассеиваемой мощности от действующего тока (полный цикл)Зависимость максимальной рассеиваемой мощности от действующего тока (полный цикл) Зависимость действующего тока от температуры корпусаЗависимость действующего тока от температуры корпуса Зависимость теплового сопротивления от длительности импульсаЗависимость теплового сопротивления от длительности импульса Характеристики в отрытом состоянии (максимальные значения)Характеристики в отрытом состоянии (максимальные значения) Зависимость ударного тока в открытом состоянии от количества циклов Зависимость ударного тока в открытом состоянии от количества циклов Зависимость ударного тока в открытом состоянии от синусоидального импульса и значения плавления Зависимость ударного тока в открытом состоянии от синусоидального импульса и значения плавления Относительное изменение отпирающего тока, тока удержания и тока включения в зависимости от температуры переходаОтносительное изменение отпирающего тока, тока удержания и тока включения в зависимости от температуры перехода Относительное изменение критической скорости снижения основного тока в зависимости от критической скорости нарастания напряженияОтносительное изменение критической скорости снижения основного тока в зависимости от критической скорости нарастания напряжения Относительное изменение критической скорости снижения основного тока в зависимости от температуры переходаОтносительное изменение критической скорости снижения основного тока в зависимости от температуры перехода Расшифровка серииРасшифровка серии Размеры для корпуса TOP3Размеры для корпуса TOP3 Размеры для корпуса RD91Размеры для корпуса RD91

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначениеРис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Структурная схема симистораРис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистораВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиаторСимистор с креплением под радиатор
  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помехRC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторовСхема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторовСхема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльникаПростой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятораСхема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Регулятор мощности на симисторе BTA12-600

Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь,  называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью  1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.

Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора  определяется током симистора. Симистор BTA12-600 рассчитан  на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.

Работа схемы описана в статье «Диммер своими руками».

Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор   площадью 200см кв. греется от 85 до90 градусов  Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность  устройства.

Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.

Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.

Компоненты.

Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.

Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.

Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем  без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.

Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.

Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.

Печатная плата регулятора мощности на симисторе BTA12-600 СКАЧАТЬ

Даташит на BTA12-600 СКАЧАТЬ


Похожие статьи

Симистор (триак) - описание, принцип работы, свойства и характеристики

Справочные данные популярных отечественные симисторов и зарубежных
триаков. Простейшие схемы симисторных регуляторов мощности.

Ну что ж! На предыдущей странице мы достаточно плотно обсудили свойства и характеристики полупроводникового прибора под названием тиристор, неуважительно обозвали его "довольно архаичным", пришло время выдвигать внятную альтернативу.
Симистор пришёл на смену рабочей лошадке-тиристору и практически полностью заменил его в электроцепях переменного тока.
История создания симистора также не нова и приходится на 1960-е годы, причём изобретён и запатентован он был в СССР группой товарищей из Мордовского радиотехнического института.

Итак:
Симистор, он же триак, он же симметричный триодный тиристор - это полупроводниковый прибор, являющийся разновидностью тиристора, но, в отличие от него, способный пропускать ток в двух направлениях и используемый для коммутации нагрузки в цепях переменного тока.

Симистор

Рис.1

На Рис.1 слева направо приведены: топологическая структура симистора, далее расхожая, но весьма условная, эквивалентная схема, выполненная на двух тиристорах и, наконец, изображение симистора на принципиальных схемах.
МТ1 и МТ2 - это силовые выводы, которые могут обозначаться, как Т1&Т2; ТЕ1&ТЕ2; А1&А2; катод&анод. Управляющий электрод, как правило, обозначается латинской G либо русской У.

Глядя на эквивалентную схему, может возникнуть иллюзия, что симистор относительно горизонтальной оси является элементом абсолютно симметричным, что даёт возможность как угодно крутить его вокруг управляющего электрода. Это не верно!!!
Точно так же, как у тиристора, напряжение на управляющий электрод симистора должно подаваться относительно условного катода (МТ1, Т1, ТЕ1, А1).
Иногда производитель может обозначать цифрой 1 "анодный" вывод, цифрой 2 - "катодный", поэтому всегда важно придерживаться обозначений, приведённых в паспортных характеристиках на прибор.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью "анодного" напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой - в момент прохождения отрицательной).

Приведём вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления симисторами - подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис.2).

ВАХ симистора Симистор
Рис.2

Огромным плюсом симистора перед тиристором является возможность в штатном режиме работать с разнополярными полупериодами сетевого напряжения. Вольт-амперная характеристика является симметричной, надобности в выпрямительном мосте - никакой, схема получается проще, но главное - исключается элемент (выпрямитель), на котором вхолостую рассеивается около 50% мощности.

Давайте рассмотрим работу симистора при подаче на его управляющий вход постоянного тока отрицательной полярности (Рис.2 справа), ведь мы помним, что именно такая полярность открывающего напряжения является универсальной и для положительных, и для отрицательных полупериодов напряжения сети. На самом деле, всё происходит абсолютно аналогично описанной на предыдущей странице работе тиристора.
Повторим пройденный материал.

1. Для начала рассмотрим случай, когда управляющий электрод симистора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0). Тока через нагрузку нет (участки III на ВАХ), симистор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на "аноде" симистора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся - зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее - при достижении этого уровня напряжения (точки II на ВАХ) симистор отпирается, падение напряжения между силовыми выводами падает до единиц вольт, нагрузка подключается к сети - наступает рабочий режим открытого симистора (участки I на ВАХ).
Чтобы закрыть симистор, нужно снизить протекающий через нагрузку ток (или напряжение на "аноде") ниже тока удержания.

2. Для того чтобы снизить величину напряжения включения симистора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение симистора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике вообще не будет, и напряжение открывания симистора составит незначительную величину, исчисляемую единицами вольт.
Абсолютно так же, как и в прошлом пункте, чтобы закрыть симистор, необходимо снизить протекающий через нагрузку ток (или напряжение на "аноде") ниже значения тока удержания.

То бишь - всё полностью аналогично тиристору. Для открывания симистора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания - снизить протекающий через нагрузку ток (или напряжение на "аноде") ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 - симистор будет открываться при замыкании S1 в каждый момент превышения "анодным" напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом сетевого напряжения в момент приближения его уровня к нулевому значению.

Описанный выше способ управления симистором посредством подачи на управляющий электрод постоянного напряжения обладает существенным недостатком - требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту - до 250мА для КУ208). Поэтому в большинстве случаев для управления симисторами используется импульсный метод, либо метод, при котором открытый симистор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на её элементах.

В качестве примера рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности, позволяющего работать с нагрузками вплоть до 2000 Вт.

Симистор Симистор
Рис.3

Как можно увидеть, на схеме помимо симистора VS2 присутствует малопонятный элемент VS1 - динистор. Для интересующихся отмечу - на странице ссылка на страницу мы подробно обсудили принцип работы, свойства и характеристики приборов данного типа.

А теперь - как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора - тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.3 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.3 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

А под занавес приведём основные характеристики отечественных симисторов и зарубежных триаков.

  Тип    U макс, В     I max, А     Iу отп, мА  
  КУ208Г      400     5    
  BT 131-600      600     1    
  BT 134-500      500     4    
  BT 134-600      600     4    
  BT 134-600D      600     4    
  BT 136-500Е      500     4    
  BT 136-600Е      600     4    
  BT 137-600Е      600     8    
  BT 138-600      600     12    
  BT 138-800      800     12    
  BT 139-500      500     16    
  BT 139-600      600     16    
  BT 139-800      800     16    
  BTA 140-600      600     25    
  BTF 140-800      800     25    
  BT 151-650R      650     12    
  BT 151-800R      800     12    
  BT 169D      400     12    
  BTA/BTB 04-600S      600     4    
  BTA/BTB 06-600C      600     6    
  BTA/BTB 08-600B      600     8    
  BTA/BTB 08-600C      600     8    
  BTA/BTB 10-600B      600     10    
  BTA/BTB 12-600B      600     12    
  BTA/BTB 12-600C      600     12    
  BTA/BTB 12-800B      800     12    
  BTA/BTB 12-800C      800     12    
  BTA/BTB 16-600B      600     16    
  BTA/BTB 16-600C      600     16    
  BTA/BTB 16-600S      600     16    
  BTA/BTB 16-800B      800     16    
  BTA/BTB 16-800S      800     16    
  BTA/BTB 24-600B      600     25    
  BTA/BTB 24-600C      600     25    
  BTA/BTB 24-800B      800     25    
  BTA/BTB 25-600В      600     25    
  BTA/BTB 26-600A      600     25    
  BTA/BTB 26-600B      600     25    
  BTA/BTB 26-700B      700     25    
  BTA/BTB 26-800B      800     25    
  BTA/BTB 40-600B      600     40    
  BTA/BTB 40-800B      800     40    
  BTA/BTB 41-600B      600     41    
  BTA/BTB 41-800B      800     41    
  MAC8M      600     8    
  MAC8N      800     8    
  MAC9M      600     9    
  MAC9N      800     9    
  MAC12M      600     12    
  MAC12N      800     12    
  MAC15M      600     15    
  MAC12N      800     15    

Симисторы с обозначение BTA отличаются от других наличием изолированного корпуса.
Падение напряжения на открытом симисторе составляет примерно 1-2 В и мало зависит от протекающего тока.

Симистор

 

Симистор BTA41-800B или точечная сварка


На mySKU.me уже были обзоры, посвященные созданию аппаратов для точечной сварки. Предмет очень дорогой при покупке в готовом виде, но часто очень нужный в хозяйстве для тех, кто любит что то поделать руками. Напомню, что этот аппарат позволяет легко приваривать контактные пластины к аккумуляторам, сваривать тонкие листы металла, варить стальную проволоку и тд. Под катом моя версия реализации данного агрегата. Читателей ожидают размышления, схемы, платы, программирование, конструирование (все элементы колхозинга) с множеством фото и видео…

Так как в обзоре будут использоваться многие детальки, то я по ходу обзора приведу на них ссылки, возможно сейчас есть эти же детали дешевле у других продавцов.

Предмет обзора приехал в жесткой пластиковой упаковке, в которой лежало 10 экземпляров симистора BTA41-800B.

Данный элемент нам требуется для включения и выключения в нужные моменты сварочного аппарата.
Максимальное обратное напряжение 800 В
Максимальное значение тока в открытом состоянии 40 А
Рабочая температура от -40 до 125 °C
Корпус TOP-3

Симистop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. Следует отметить, что симистop изобретён и запатентован был в СССР (в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. ).
Блок схема этого элемента:

A1 и A2 — силовые электроды
G — управляющий электрод
В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях.

Подробно характеристики BTA41-800B можно посмотреть в datasheet.

Для управления симистором обычно используются специальные симисторные оптроны (triac driver). Оптосимист

Симисторы

Название

Описание

BTA16-600C Симистор   на 16 Ампер 600 Вольт, изолированный корпус
BTA16-600CW Симистор   на 16 Ампер 600 Вольт, бесснабберный, изолированный корпус
BTA16-600SW Симистор   на 16 Ампер 600 Вольт, логический уровень, изолированный корпус
BTA16-700B Симистор   на 16 Ампер 700 Вольт, изолированный корпус
BTA16-700BW Симистор   на 16 Ампер 700 Вольт, бесснабберный, изолированный корпус
BTA16-700C Симистор на   16 Ампер 700 Вольт, изолированный корпус
BTA16-700CW Симистор   на 16 Ампер 700 Вольт, бесснабберный, изолированный корпус
BTA16-700SW Симистор   на 16 Ампер 700 Вольт, логический уровень, изолированный корпус
BTA16-800B Симистор   на 16 Ампер 800 Вольт, изолированный корпус
BTA16-800BW Симистор   на 16 Ампер 800 Вольт, бесснабберный, изолированный корпус
BTA16-800C Симистор   на 16 Ампер 800 Вольт, изолированный корпус
BTA16-800CW Симистор   на 16 Ампер 700 Вольт, бесснабберный, изолированный корпус
BTA16-800SW Симистор   на 16 Ампер 800 Вольт, логический уровень, изолированный корпус
BTA20-600BW Симистор   на 20 Ампер 600 Вольт, изолированный корпус
BTA20-600CW Симистор   на 20 Ампер 600 Вольт, изолированный корпус
BTA20-700BW Симистор   на 20 Ампер 700 Вольт, изолированный корпус
BTA20-700CW Симистор   на 20 Ампер 700 Вольт, изолированный корпус
BTA24-600BW Симистор   на 25 Ампер 600 Вольт, бесснабберный, изолированный корпус
BTA24-600CW Симистор   на 25 Ампер 600 Вольт, бесснабберный, изолированный корпус
BTA24-800BW Симистор   на 25 Ампер 800 Вольт, бесснабберный ,изолированный корпус
BTA24-800CW Симистор   на 25 Ампер 800 Вольт, бесснабберный, изолированный корпус
BTA25-600B Симистор   на 25 Ампер 600 Вольт, неизолированный корпус
BTA25-600BW Симистор   на 25 Ампер 600 Вольт, бесснабберный, неизолированный корпус
BTA25-800B Симистор   на 25 Ампер 800 Вольт, неизолированный корпус
BTA25-800BW Симистор   на 25 Ампер 600 Вольт, бесснабберный, неизолированный корпус
BTA26-600B Симистор   на 25 Ампер 600 Вольт, изолированный корпус
BTA26-600BW Симистор   на 25 Ампер 600 Вольт, бесснабберный, изолированный корпус
BTA26-800B Симистор   на 25 Ампер 800 Вольт, изолированный корпус
BTA26-800BW Симистор   на 25 Ампер 800 Вольт, бесснабберный, изолированный корпус
BTA26-800CW Симистор   на 25 Ампер 800 Вольт, бесснабберный, изолированный корпус
BTA40-600B Симистор   на 40 Ампер 600 Вольт, неизолированный корпус
BTA40-800B Симистор   на 40 Ампер 800 Вольт, неизолированный корпус
BTA41-600B Симистор   на 40 Ампер 600 Вольт, изолированный корпус
BTA41-800B Симистор   на 40 Ампер 800 Вольт, изолированный корпус
BTB04-600SL Симистор   на 4 Ампера 600 Вольт
BTB08-600B Симистор   на 8 Ампер 600 Вольт
BTB08-600BW Симистор   на 8 Ампер 600 Вольт, бесснабберный
BTB08-600C Симистор   на 8 Ампер 600 Вольт
BTB08-600CW Симистор   на 8 Ампер 600 Вольт, бесснабберный
BTB08-600SW Симистор   на 8 Ампер 600 Вольт, логический уровень
BTB08-600TW Симистор   на 8 Ампер 600 Вольт, логический уровень
BTB08-800B Симистор   на 8 Ампер 800 Вольт
BTB08-800BW Симистор   на 8 Ампер 800 Вольт, бесснабберный
BTB08-800C Симистор   на 8 Ампер 800 Вольт
BTB08-800CW Симистор   на 8 Ампер 800 Вольт, бесснабберный
BTB08-800SW Симистор   на 8 Ампер 800 Вольт, логический уровень
BTB08-800TW Симистор   на 8 Ампер 800 Вольт, логический уровень
BTB10-600B Симистор   на 10 Ампер 600 Вольт, неизолированный корпус
Паспорт

bta10-600b (1/7 страниц) СТМИКЭЛЕКТРОНИКА | 10A TRIACS

®

1/7

Таблица 1: Основные характеристики

ОПИСАНИЕ

Доступно в комплектах

с сквозным или поверхностным монтажом, серии симисторов BTA10 и BTB10

подходит для кондиционеров общего назначения. переключение. Они

могут использоваться в качестве функции ВКЛ / ВЫКЛ в приложениях

, таких как статические реле, регулирование нагрева, пусковые цепи двигателя

... или для управления фазой

в регуляторах освещенности, регуляторах скорости двигателя

, ...

Безуборочная версия (суффикс W) специально рекомендована для использования на индуктивных нагрузках

, благодаря

из-за их высокой эффективности коммутации ,

Используя внутреннюю керамическую прокладку, серия BTA

обеспечивает напряжение

с изоляцией

с вкладкой

(номинал

при

2500VRMS) в соответствии со стандартами UL (File ref.:

E81734).

Символ

Значение

Единица

IT (RMS)

10

A

VDRM / VRRM

600 и 800

V

IGT (Q

1)

1 000

1 000

мА

BTA10 и BTB10 Series

10A TRIACS

REV. 6

февраль 2006 г.

SNUBBERLESS ™ & STANDARD

Таблица 2: Коды заказа

Номер заказа

Маркировка

BTA10-xxxxxRG

См. Стр. Таблицу 8 в

стр. 6

XXXXXXXXXXXXXXXXXXXX2000000BG10

А2

А1

G

А2

А2

А2

А2

А9 3: Абсолютные максимальные значения

Символ

Параметр

Значение

Единица

IT (RMS)

Среднеквадратичный ток в состоянии «включено» (полная синусоида

)

TO-220AB

Tc = 105 ° C

C

10

A

TO-220AB Ins.Tc = 95 ° C

ITSM

Неповторяющийся пиковый скачок напряжения в состоянии

ток (полный цикл, Tj начальный = 25 ° C)

F = 50 Гц

t = 20 мс

100

A

F = 60 Гц

t = 16,7 мс

105

I²tI²t Значение для фьюзинга

tp = 10 мс

55

A²s

dI / dt

Критическая скорость нарастания состояния в состоянии

IGT арендной платы = 2 x IGT, tr ≤ 100 нс

F = 120 Гц

Tj = 125 ° C

50

A / мкс

VDSM / VRSM

Неповторяющийся импульсный скачок в выключенном состоянии

напряжения

tp = 10 мс

Tj = 25 ° C

VDSM / VRSM

+ 100

V

IGM

пиковый ток затвора

tp = 20 мкс

40003 T000 = 125 ° C

PG (AV)

Средняя рассеиваемая мощность затвора

Tj = 125 ° C

1 Вт

Tstg

Tj

Диапазон температур места хранения

Диапазон температур рабочего места

- от 40 до + 150

- от 40 до + 125

° C

.

5 шт. / Лот BTA26 600B TO 3P BTA26600B TO3P BTA26 600 25A TRIACS | |

1 2

Если вам нужно больше деталей, пожалуйста, нажмите aeProduct.getSubject() и отправьте заказ. Если вам нужно больше количества, пожалуйста, свяжитесь с нами. Если вы не возражаете против цены, если некоторые детали не могут найти в моем магазине, пожалуйста, свяжитесь с нами, у нас еще есть много деталей, которые не опубликованы.

Мы вышлем последнюю версию продукта, обновленную функцию. Может иметь разную форму или цвет. Если вы не можете согласиться, пожалуйста, не покупайте.

Пожалуйста, не открывайте спор и оставляйте плохие отзывы, если у вас есть какие-либо вопросы, не стесняйтесь обращаться к нам, мы дадим вам удовлетворительный ответ.Надеюсь, вы понимаете нас, заранее спасибо.

HTB1XoZwIVXXXXayXFXXq6xXFXXXa

Когда вы размещаете заказ, пожалуйста, выберите способ доставки и оплатите заказ, включая стоимость доставки. Мы отправим товар в течение 5 дней после оплаты.

Мы не гарантируем время доставки для всех международных перевозок из-за различий во времени таможенного оформления в отдельных странах, которые могут повлиять на скорость проверки вашего продукта. Обратите внимание, что покупатели несут ответственность за все дополнительные таможенные сборы, брокерские сборы, пошлины и налоги при ввозе в вашу страну.Эти дополнительные сборы могут быть получены в момент доставки. Мы не возместим стоимость доставки за отказ в доставке.

Стоимость доставки не включает налоги на импорт, и покупатели несут ответственность за таможенные пошлины.

Все заказы будут отправлены в 1-5 странах после подтверждения оплаты. Пожалуйста, подождите у пациента.

Китай почтой не быстро, обычно нужно 15-60дней прибывающих. Если срочно. Пожалуйста, выберите DHL / FedEx / EMS. Мы можем написать низкое значение для клиентов, если в этом есть необходимость!

China Post Обычных Малых Пакетов Plus просто может отследить до нашей страны, но это не повлияет на ваше получение.

Если вы хотите, чтобы ваши продукты и не хотели тратить свое время, пожалуйста, выберите China Post Registered Air Mail. Если вы выберете China Post Обычных Малых Пакетов Plus, и пакет потерян. Мы докажем вам, что отправили посылку, и мы можем вернуть только 50%. Это ваш выбор, мы все должны рисковать. Если вы не можете согласиться, пожалуйста, не покупайте.

China Post Обычных Малых Пакетов Plus и China Post Зарегистрированной Воздушной Почтой все можно отследить по адресу www.17track.net/en/

HTB1HXAdHpXXXXahXpXXq6xXFXXX0

Мы вернем вам деньги, если вы вернете товары в течение 15 дней с момента получения товаров для любая причина.Однако покупатель должен убедиться, что возвращенные товары находятся в их первоначальных условиях. Если товары были повреждены или утеряны при их возврате, покупатель будет нести ответственность за такой ущерб или потерю, и мы не будем давать покупателю полный возврат средств. Покупатель должен попытаться подать иск в логистическую компанию, чтобы возместить стоимость ущерба или убытков.

Покупатель будет нести ответственность за доставку, чтобы вернуть предметы. HTB1Fa7xIVXXXXa0XFXXq6xXFXXXf

Ваше удовлетворение и положительные отзывы очень важны для нас.Пожалуйста, оставьте положительный отзыв и 5 звезд, если вы удовлетворены нашими товарами и услугами.

Если у вас возникли проблемы с нашими товарами или услугами, пожалуйста, свяжитесь с нами, прежде чем оставить отрицательный отзыв. Мы сделаем все возможное, чтобы решить любые проблемы и предоставить вам лучшее обслуживание клиентов.

10шт BTA16 800B BTA16 800 BTA16 Триаки 16 ампер 800 Вольт на 220 новый оригинал | триак bta16 | c c

14950

36852

Или нашли?

,
10 Шт. / Лот BTA08 800CRG BTA08 800C BTA08 800 BTA08 Триаки 8 Amp 800 В на 220 Новый оригинальный продукт | |

BTA08-800CRG BTA08-800C ST TO-220 _

= О нас цель =

Мы являемся лидером на рынке онлайн-дистрибьюторов и BOM-решений.
Если вы покупаете больше количества, пожалуйста, свяжитесь с нами, и я предложу выгодную цену.
Если вы не можете найти нужный вам товар, пожалуйста, свяжитесь с нами, мы предоставим вам расценки, предоставим комплексные услуги по закупкам.

Наша компания в основном занимается резисторами, конденсаторами, транзисторами, микросхемами памяти, микросхемами связи, высокочастотными радиочастотами и другими высокотехнологичными продуктами. Наш принцип - это поставка сырья и первая услуга честности. Компания в Северном Хуацяне, основанная в течение 10 лет, Интернет имеет мощный производитель систем в качестве агента по снабжению и продажам.

= Оплата =

1. Перед осуществлением платежа убедитесь, что ваш платежный аккаунт доступен.
2. Все платежи должны быть ликвидированы в течение 7 дней с момента получения товара.Если вы действительно не можете оплатить, сначала свяжитесь с нами, и мы поможем вам решить проблему.
3. Если у вас есть особые требования к деталям проекта, пожалуйста, оставьте сообщение в заказе.

= Отгрузка =
1. Мы можем отправить товар в мире.
2. AliExpress беспокоясь о логистике - стандарты , DHL, FedEx, TNT, UPS, EMS, Китай, Гонконг доступны. Друзья в Бразилии. Из-за высоких условий таможенной очистки DHL, FedEx, TNT и UPS на бразильских таможнях, таможенная очистка затруднена.Продавцы могут выбрать EMS. С логистикой EMS легче пройти таможню в Бразилии.
3. После получения оплаты, товар будет отправлен в течение 3 дней.
4. Когда вы делаете платеж, пожалуйста, убедитесь, что ваш почтовый адрес и номер телефона указаны правильно.
5. Вы можете отслеживать статус товара на сайте после отгрузки.

= Обратная связь =
1. Так как ваше мнение очень важно для нашего развития, если вы удовлетворены нашими продуктами и услугами, мы искренне приглашаем вас оставить нам хороший отзыв.Спасибо вам большое за ваше время.
2. Наш план оставит тот же отзыв после вашего положительного отзыва.
3. Пожалуйста, свяжитесь с нами, прежде чем оставлять какие-либо отрицательные отзывы или открывать какие-либо споры на сайте, и мы сделаем все возможное, чтобы решить эту проблему.
Большое спасибо за вашу поддержку и желаю вам приятного дня!

.

Отправить ответ

avatar
  Подписаться  
Уведомление о