Сила тока сечение кабеля: Сечение медного кабеля | Полезные статьи

Содержание

Сечение медного кабеля | Полезные статьи

Проектирование любых электрических сетей включает выбор кабеля с подходящими параметрами, ключевым из которых является сечение. От того, насколько правильно подобрано сечение медного кабеля, зависит работоспособность и надежность всей сети. Если неправильно рассчитать этот параметр, то можно столкнуться с проблемой, когда сеть будет работать с существенным перегрузом. Использование кабеля на переделе возможностей обычно приводит к его значительному нагреву и рано или поздно он выйдет из строя.

По определению, сечение медного кабеля — это площадь среза токоведущей жилы. Если кабель состоит из одной жилы круглого сечения, то его площадь вычисляется по формуле площади круга, а если из множества проводников — то суммой сечения всех жил. Этот параметр является стандартизированной величиной. Главным документом, регламентирующим этот вопрос, является ПУЭ («Правила устройства электроустановок»). Кроме того, зная марку кабеля, количество и сечение жил, можно также определить, сколько весит медный кабель.

Как рассчитать сечение медного кабеля

Для того чтобы правильно рассчитать сечение кабеля, необходимо знать следующие параметры медных кабелей: напряжение сети, сила тока и мощность потребителей. Основным же параметром, влияющим на подбор кабеля, является предельно допустимая токовая нагрузка. Выбор сечения по токовой нагрузке производится по следующему алгоритму:

1)    определение суммарной мощности нагрузки;
2)    расчет силы тока;
3)    выбор сечения кабеля по таблице.

Допустим, вам необходимо выбрать кабель для бытовой сети. Для начала необходимо определить суммарную мощность всех электрических приборов и оборудования, которые планируется использовать. Делается это простым арифметическим сложением всей нагрузки. Значение мощности у каждого прибора указывается в его паспортных данных и на табличке. Расчет силы тока для однофазной сети 220 В рассчитывается по формуле:

I = P / 220, где

Р — суммарная мощность, кВт;
220 — напряжение сети, В.


Формула расчета для 3-фазной сети 380В:

I = P / √3 х 380

Используя полученную величину, остается выбрать соответствующее значение сечения из таблицы в ПУЭ.

Кабель медный: технические характеристики

Описанная методика помогает выбрать для квартиры или дома силовой кабель для различных групп электропотребителей. Следует понимать, что токовая нагрузка для осветительной группы значительно ниже, чем у розеточной, следовательно, нет необходимости закладывать везде одинаковое сечение. Вес медного кабеля и его стоимость для освещения будут существенно ниже.

Дополнительные факторы, влияющие на выбор сечения

Дополнительным фактором, который может внести свои коррективы при выборе, является длина кабеля. Его следует учитывать при прокладке длинных трасс. Дело в том, что при увеличении длины увеличивается вес медного кабеля, а с ним — сопротивление и потери. Проектная величина потерь не должна превышать 5 %.

Потери можно рассчитать вручную, но проще всего воспользоваться готовыми данными зависимости потерь от момента нагрузки из ПУЭ и приведенными в таблицах ниже.

Момент нагрузки — величина, получаемая произведением длины кабеля в метрах на мощность в кВт. Например, момент нагрузки для медного кабеля длиной 40 м и мощности нагрузки 3 кВт составляет: 40 х 3 = 120 кВт*м.

Зависимость потерь напряжения от момента нагрузки для кабельной линии 220В при заданном сечении токопроводящей жилы

Зависимость потерь напряжения от момента нагрузки для кабельной линии 380 В при заданном сечении токопроводящей жилы

Приведенные данные не учитывают увеличение сопротивления от нагрева кабеля при токах эксплуатации, составляющих от 0,5 и выше от предельно допустимых значений для данного сечения. В этом случае необходимо применить поправочный коэффициент, который также приводится в ПУЭ.

При более точных расчетах длинных кабельных сетей учитывают также потери в контактных соединениях. Это обычно делается при наличии большого количества потребителей (например, при проектировании линии городского освещения). Существуют и другие, менее значительные факторы, влияющие на величину потерь, но ими, как правило, пренебрегают, если общая величина падения напряжения не превышает нормативные 5 %.

Компания «Кабель.РФ®» является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку медного кабеля по выгодным ценам.

Как рассчитать сечение кабеля по току

Расчет сечения кабеля по току, как правило, встречается на порядок реже, чем тот же расчет сечения кабеля по мощности или такой метод, как расчет сечения кабеля по планируемой нагрузке. Несмотря на это, стоит уделить особое внимание данному методу, так как иногда появляются ситуации, когда осуществить расчет сечения кабеля по току – это единственная возможность избежать проблем, которые могут возникнуть с электропроводкой в будущем. Итак, какие могут возникнуть ситуации?

Например, есть электроприбор, но нет соответствующей документации, а также нет специальной таблички по мощности или она не читается. Кроме того, очень часто бывает ситуация, когда среди большого количества цифр, которые стерлись, хорошо видно только показатель тока.

Вот именно тут и придет на помощь данный метод расчета.

Еще одной ситуацией, когда может потребоваться подобный метод, является случай, когда нет ничего, кроме такого устройства, как предохранитель, расположенный в специальном гнезде. Как правило, около него есть надпись значения номинального или максимального тока. Также значение силы тока можно прочитать на самом предохранителе. Возможны и иные, не менее сложные ситуации, когда из всех требуемых для вычисления показателей имеется только сила тока и параметры мощности прибора. Что можно сделать в каждой из ситуаций, будет написано ниже.

При выяснении точных показателей силы тока, достаточно просто следовать таблице выбора кабеля по сечению. При этом стоит опираться на ближайшее подходящее значение алюминиевого или медного кабеля. В случае, если известны показатели мощности, но нет больше ничего, прежде чем произвести вычисление по формуле, требуется удостовериться в точности показателей этого значения или потребляемого тока.

Для осуществления расчетов следует пользоваться формулой I = P/U·cosφ. Здесь под буквенными значения подразумеваются такие показатели, как P - это общая суммарная мощность, (Вт), I - сила тока, (А), cosφ – представляет собой  коэффициент, который равен 1, то только если сети относятся к бытовым. И последний параметр U – показывает напряжение в сети, (В).

Подводя итог, можно отметить, что для включения особого однофазного двигателя с показателями мощности в 2 кВт, потребуется подобрать кабель или провод, которые в состоянии долгое время, при этом без перегрева поддерживать нагрузку в 2000 Вт / 220 В = 9,1 А. Как правило, это может быть медный кабель из качественной меди, с сечением от 1 мм. или алюминиевый кабель, у которого сечение составляет 1,5 мм.

Данный метод считается упрощенной схемой расчета, так как в обязательном порядке должна быть учтена длина линии и иные многочисленные факторы, которые более-менее подробно описаны в специальном разделе «Выбор сечения кабеля».

Кроме того, очень часто проведение расчета требуется проводить не для одного только прибора, но для целой определенной группы. Именно по этой причине, прежде чем сделать выбор в том или ином отдельном случае, необходимо учесть все требования ПУЭ, то есть установленные на международном уровне прокладки и коммутации проводов и кабелей, а также не мене важно учесть возможность наращивания показателей нагрузки.

Подбор кабеля

Первоочередным параметром для выбора сечения кабеля (провода) является ток нагрузки.

В том случае, если в качестве входного параметра известна потребляемая мощность (P),

ток нагрузки (I) расчитывается следующим образом:

Одна фаза, либо постоянное напряжение, U:

              I = P / U

Три фазы (переменное напряжение), U:              

           I = P / (1,73*U)

* Данный алгоритм подбора сечения кабеля носит информативный характер.

Для получения более точной информации следует обратиться к специалисту.

Номинальное сечение жилы, мм2
Допустимые токовые нагрузки кабелей с алюминиевыми жилами с изоляцией
из поливинилхлоридного пластиката, напряжение до 3 кВ включительно, А
одножильных двужильных трехжильных четырехжильных пятижильных
на воздухена землена воздухена землена воздухена землена воздухена землена воздухена земле
Номинальное сечение жилы, мм2
Допустимые токовые нагрузки кабелей с медными жилами с изоляцией
из поливинилхлоридного пластиката, напряжение до 3 кВ включительно, А
одножильных двужильных трехжильных четырехжильных пятижильных
на воздухена землена воздухена землена воздухена землена воздухена землена воздухена земле

Расчет сечения кабеля по току и мощности

Электричество передаётся конечному потребителю от электростанции или генератора посредством проводников проводов и кабелей. Какая разница между проводниками этих видов?

Кабель – несколько проводов в защитной герметичной оболочке, изолированных друг от друга. Герметичная оболочка в свою очередь покрывается в несколько слоев защитным покровом, оберегающим оболочку от механических повреждений и коррозии.

Провод – изделие, состоящее из одной и более жил, изолированных друг от друга, или одной и более скрученных между собой проволок, покрытое дополнительно в зависимости от условий прокладки оболочкой из металла, проволоки или волокнистого материала.

А сколько средств нужно потратить на изготовление этих проводников? Прямо сказать, немало. Одно дело, когда покупатель электроприбора платит за 1–2 метра, входящего в комплект кабеля, а кто заплатит за сотни километров линий электропередач, если потребитель оплачивает только стоимость использованной электроэнергии?

Вопрос риторический. Следовательно, при электрификации того или иного объекта каждый подрядчик старается сэкономить на тоннах меди или алюминия, желательно, чтобы экономия не отразилась на качестве поставляемой электроэнергии. Оптимальный способ – провести правильный расчёт сечения кабеля по мощности, длине, силе тока и используемому металлу, меди или алюминия. Это позволит осуществить оптимальный выбор кабеля для прокладки к нужному объекту или в своей квартире.

Значение сечения для производителей и потребителей электроэнергии

Какие последствия неправильного выбора сечения? Сечение – площадь поперечного разреза провода. Проводники одинаковой толщины могут иметь разную площадь. Если провод круглый — диаметр жилы делится на 2, радиус поднимается до квадрата и умножается на 3,1415. при других формах жилы кабеля сечение рассчитываются как площадь той геометрической фигуры, поперечный разрез которой имеет жила проводника, входящего в состав кабеля. Измеряется в мм2.

Существует 3 вида подбора сечения кабеля – для прокладки ЛЭП; для производственных цехов тяжёлой промышленности, для бытовых нужд. Остальные виды, так или иначе, связаны с вышеперечисленными, например, при подборе сечения кабеля для электротранспорта, руководствуются тем же принципом, что и для прокладки воздушной линии (далее — ВЛ), в частности, ЛЭП.

Основной критерий, по которому нужно выбирать кабель, это максимальная нагрузка на кабель, при которой он не перегревается. Чем меньше сечение, тем больше сопротивление, соответственно, проводник нагревается, вследствие чего теряется мощность и нарушается целостность изоляции. Если площадь поперечного разреза проводника больше, то повышается безопасность и срок эксплуатации кабеля, но и цена соответственно тоже!

Если прокладывать ЛЭП и другие электрокоммуникации с большим запасом сечения, то такие линии влетят в копеечку электрификатору. Поэтому перед тем как выбрать кабель оптимального сечения, его значение подбирают с таблицы сечения. Но таблицы выбора для того, чтобы определиться какой кабель подойдёт под прокладку в том или ином случае, мало. Перед тем как рассчитать сечение кабеля необходимо учесть все нюансы при укладке для тех или иных потребностей.

Начнём с глобального, чтобы закончить тривиальным

При расчёте сечения учитываются 3 основных параметра – плотность или сила тока, длина кабеля, материал проводника. Мощность – результат умножения силы тока на напряжение, а сопротивление зависит от материала и длины проводника. В некоторых случаях рассчитывать сечение кабеля по мощности не целесообразно. Об этом речь пойдёт ниже.

Расчёт сечения кабеля по длине крайне важен при прокладке ЛЭП. Чем длиннее провод, тем больше его сопротивление, соответственно, на отдалённых участках таких магистралей сила тока падает. Возникает вопрос, как могут функционировать ЛЭП длиной в 50 км и более, если когда рассчитывают сечение кабеля по мощности в таблице, то потеря тока на 50 км может превысить 60%? Остаётся единственный выход – напряжение.

Как известно, электрон, потоком которых и является электрический ток, имеет 2 природы: корпускулярную – двигается как материальное тело с заданной скоростью; волновую – передвигается в пространстве как электромагнитная волна со скоростью около 300000 км/с. То есть, если увеличить напряжение и уменьшить силу тока, то жилы с малым сечением можно прокладывать на любую длину! Казалось бы, что может быть проще. При помощи повышающего трансформатора поднять напряжение до 10 МВ., тогда при силе тока в 10 А можно обеспечить электричеством более 20000 потребителей!

Но на практике все обстоит иначе. Чтобы поднять напряжение до умопомрачительных величин нужно изолировать жилу абсолютным диэлектриком, который не пропускал  электромагнитные колебания, а такими материалами современная наука, увы, не располагает. На практике ЛЭП даже с напряжением в 10 кВ представляют нешуточную опасность для окружающих. Мало того что наводящееся напряжение скапливается на близнаходящихся металлических предметах, да ещё и электромагнитные волны создают помехи в радиусе десятков километров. Так что приходится делать выбор сечения кабеля по току и по длине проводников.

Важно! Чтобы проверить безопасность кабеля при данном сечении, кабель должен выдержывать нагрузку, выше номанальной на 10–15%, 30 минут. При передаче электричества, напряжение неизменно, а сила тока и длина жилы разные. Поэтому при прокладке ЛЭП проводится расчёт сечения кабеля по мощности и длине. А правильность выбора испытывается посредством токовых нагрузок кабелей.

Борцы за экологию, считающие, что воздушные линии электропередач должны отойти в прошлое, скорее всего не дождутся их повсеместного демонтажа. Причина кроется всё в том же сечении. Открытые коммуникации меньше греются, ведь атмосфера – природное охлаждение, да и ремонтировать ВЛ намного проще, чем подземные кабельные линии.

Материал проводника

Что предпочесть – алюминий или медь? По техническим характеристикам медь предпочтительнее, да и сечение медного кабеля при передаче одинаковой мощности меньше, но медь дороже, следовательно, ЛЭП с алюминиевыми проводами экономичнее.

Оборудование в тяжёлой промышленности потребляет большую силу тока, например, электросварочный аппарат, может потреблять ток в 200 и более А. Чтобы обеспечить бесперебойную работу данного оборудования на производственные предприятия прокладывают силовые кабели. Сечение силового кабеля может достигать 120 мм2 и более. Чтобы увеличить пропускную способность кабеля, часто используют многожильные изделия. Такое решение обосновывается таким явлением как скин-эффект – распределением тока в поверхностном слое проводника.

Целесообразно ли подбирать сечение кабеля по диаметру? Диаметр кабеля имеет неодинаковое сечение. Производитель проводниковой продукции указывает площадь поперечного разреза и номинальную нагрузку в амперах.

А теперь к мощности

Вот решили вы немного прибарахлиться и купить несколько мощных электроприборов. У вас в квартире, как говорится, старая проводка. Нужно решать какой кабель и на какую розетку прокладывать. Естественно, о выборе материала речь не идёт, это медь. Рекомендации ПУЭ (Правила Устройства Электроустановок), долгий срок службы и безопасность — основные преимущества меди. По каким показателям рассчитывать сечение для квартиры?

Поскольку длина особого значения не имеет, остаётся мощность и сила тока. Мощность, самый простой вариант расчёта. Открываем таблицу или онлайн калькулятор. Находим или вводим предполагаемое значение суммарной мощности электроприборов, которые будут работать одновременно, находим или рассчитываем сечение исходя из материала проводника. У нас медь. Казалось бы, на этом всё. Осталось вызвать специалистов и заказать или приобрести кабель нужной поперечной площади.

Вот и всё установлено. Осталось только запустить, к примеру, колодезный насос или токарный бытовой станок. И вдруг что-то начинает вонять! Ах да, это изоляция плавится! Дело в том, что в момент пуска электродвигателя, пусковая мощность в 5-7 раза превышает номинальную мощность. Так, что рассчитывать сечение по мощности целесообразно, только если не планируется использовать электродвигатель, номинальной мощностью более 3,5 кВт. Иначе сечение нужно подбирать по силе тока в момент запуска мощного агрегата. Этот параметр указан в руководстве к прибору.

Никогда не нарушайте золотое правило! Лучше выбрать сечение, большее чем нужно, чтобы остался запас для непредвиденных высоких нагрузок, способных повредить изоляцию кабеля.

Расчет и правильный выбор сечения проводов и кабелей.

При замене существующей проводки, а так же при прокладке нового кабеля или провода, существенная роль отводиться правильному расчету сечения проводника. Ведь как ни странно, от этого зависит насколько долго будет служить электропроводка.

Первым шагом, определяемся из какого металла нужен кабель или провод. У проводов из алюминия есть только один плюс - низкая цена, а минусов целый вагон. К тому же, в последних версиях ПУЭ (Правила Устройства Электроустановок) в пункте 7.1.34 черным по белому написано - "В зданиях следует применять кабели и провода с медными жилами" и никак иначе. Но ничего не написано что делать тем, у кого алюминиевая проводка, наследие давно не существующей страны.

Если нужно поменять всю электропроводку, то тут проблем нет, берем медь и спим спокойно. А если нужно поменять проводку только в одном помещении и подцепить ее на старую алюминиевую? Тогда делаем расчет для алюминиевого провода и прокладываем его, или делаем расчет для медного провода и через клеммы соединяем с алюминием. Ни в коем случае не скруткой, а то потом долго будете думать, почему у вас сгорела квартира (алюминий и медь образуют гальваническую пару и место их непосредственного контакта сильно нагревается).

Вторым шагом высчитываем, сколько ватт будет потреблять помещение. Для этого суммируем мощность всех электроприборов, которые будут находиться в использовании.

Например: в комнате у нас будет работать телевизор (мощность 100Вт), компьютер (мощность 400Вт), кондиционер (мощность 1000Вт), свет (6 лампочек по 60Вт), ну и допустим обогреватель (мощность 2000Вт). Все мощности, взятые для примера, вымышленные.

Суммируем все мощности: 100Вт + 400Вт + 1000Вт + 360Вт + 2000Вт = 3860Вт

Третьим шагом высчитываем силу тока по формуле I=P/U·cosФ 

I - сила тока (А)
P - общая мощность (Вт)
U - напряжение в сети (В)

cosФ (косинус фи) лучше всего брать равным 1 (если у вас не промышленные агрегаты)

Напряжение в сети равно 220 вольт.

Рассчитываем силу тока для нашего примера: I=3860/220·1=17,5 А

По таблице выбираем значение сечения провода или кабеля (ПУЭ таблица 1.3.4 и 1.3.5).

Допустимый длительный ток для проводов и кабелей с медными жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух одножильных

трех одножильных

четырех одножильных

одного двухжильного

одного трехжильного

0,5

11

-

-

-

-

-

0,75

15

-

-

-

-

-

1

17

16

15

14

15

14

1,5

23

19

17

16

18

15

2

26

24

22

20

23

19

2,5

30

27

25

25

25

21

3

34

32

28

26

28

24

4

41

38

35

30

32

27

5

46

42

39

34

37

31

6

50

46

42

40

40

34

8

62

54

51

46

48

43

10

80

70

60

50

55

50


Допустимый длительный ток для проводов и кабелей с алюминиевыми жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух одножильных

трех одножильных

четырех одножильных

одного двухжильного

одного трехжильного

2

21

19

18

15

17

14

2,5

24

20

19

19

19

16

3

27

24

22

21

22

18

4

32

28

28

23

25

21

5

36

32

30

27

28

24

6

39

36

32

30

31

26

8

46

43

40

37

38

32

10

60

50

47

39

42

38

В нашем случае используем двухжильный провод с медными жилами проложенный в штробе. Подбираем сечение по 1 таблице и оно равняется 1.5 мм2 (при силе тока 18 А).

Вычисляем сопротивление провода: R=p·L/S

R - сопротивление провода (Ом)
p - удельное сопротивление (Ом·мм2/м)
L - длина провода или кабеля (м)
S - площадь поперечного сечения (мм2)

Измеряем длину нужного провода, берем удельное сопротивление из таблицы и рассчитываем сопротивление провода или кабеля.

Материал

Удельное сопротивление

медь

0,0175

алюминий

0,0281

В нашем примере используем медь и длина провода 10 метров.

Подставляем значения в формулу: R=0,0175·10/1,5=0,116 Ом

Это мы рассчитали сопротивление для одной жилы. Но так как у нас провод двужильный, то сопротивление будет в два раза больше.

R=0,232 Ом

Если провод трехжильный то сопротивление так же умножаем на 2, задействованы всего 2 жилы, третья это земля.

И последним шагом, подсчитываем потери напряжения по длине провода. Допустимое падение напряжения не более 5%.

Формула падения напряжения: dU=I·R

I - сила тока
R - сопротивление провода или кабеля

dU=17,5·0,232=4,06 В

Переводим в проценты: 220 вольт у нас 100%, отсюда 1% = 2,2 В  

dU=4,06/2,2=1,84 %

Падение напряжения в допустимых пределах, значит взятое сечение отлично подходит к заданной длине провода. Если падение напряжение будет больше 5%, то нужно взять в расчетах сечение побольше.

Для проверки используем онлайн расчет сечения кабеля или провода.


P.S. Не советую просто рассчитывать сечение на онлайн калькуляторе, его хорошо использовать только в совокупности со своими подсчетами, так вы точно не ошибетесь и выберете правильное сечение провода или кабеля.

Расчет сечения кабелей и проводов по мощности и току

При ремонте и проектировании электрооборудования появляется необходимость правильно выбирать провода. Можно воспользоваться специальным калькулятором или справочником. Но для этого необходимо знать параметры нагрузки и особенности прокладки кабеля.

Блок: 1/6 | Кол-во символов: 248
Источник: https://odinelectric.ru/wiring/kak-rasschitat-neobhodimoe-sechenie-provoda-po-moshhnosti-nagruzki

Если покупаете провод и замеряете его диаметр, то не забудьте, что площадь рассчитывается по формуле:

S=π*d²/4

d – диаметр.

Не стоит также забывать удельное сопротивление. Оно зависит от материала, из которого сделаны провода. Удельное сопротивление алюминия больше, чем меди. Значит, при одинаковой площади сильнее нагреваться будет алюминий. Сразу становится понятно, почему алюминиевые провода рекомендуют брать большего сечения, чем медные.

Чтобы каждый раз не вдаваться в длинный расчет сечения кабеля, были разработаны нормы выбора сечения проводов в таблицах.

Расчет сечения провода по мощности и току

Расчет сечения провода зависит от суммарной мощности, потребляемой электрическими приборами в квартире. Ее можно рассчитать индивидуально, или воспользоваться средними характеристиками.

Для точности расчетов составляют структурную схему, на которой изображены приборы. Узнать мощность каждого можно из инструкции или прочитать на этикетке. Наибольшая мощность у электрических печек, бойлеров, кондиционеров. Суммарная цифра должна получиться в диапазоне приблизительно 5-15 кВт.

Блок: 2/4 | Кол-во символов: 1080
Источник: https://electrosam. ru/glavnaja/jelektrotehnika/raschjoty/raschet-secheniia-kabelia/

Для чего нужен расчёт сечения кабеля

В главную очередь, проведение этой несильно сложной процедуры необходимо для обеспечения безопасности как самого помещения, так и находящихся в нём людей. На сегодня человечеством не изобретено более удобного метода распределения и доставки электрической энергии до потребителя, как по проводам. Людям практически ежедневно необходимы услуги электрика — кто-то нуждается в подключении розетки, кому-то необходимо установить светильник и т. д. Из этого выходит, что с операцией подбора требуемого сечения связана даже такая, казалось бы, незначительная процедура, как установка нового светильника. Что же тогда говорить о подключении электрической плиты или водонагревателя?

Несоблюдение норм может привести к нарушению целостности проводки, что нередко становится причиной короткого замыкания или даже поражения электрическим током.

Если при выборе сечения кабеля допустить ошибку, и приобрести кабель с меньшей площадью проводника, то это приведёт к постоянному нагреву кабеля, что станет причиной разрушения его изоляции. Естественно, все это негативно влияет на продолжительность эксплуатации проводки — нередки случаи, когда через месяц после успешного монтажа электропроводка переставала работать, и требовалось вмешательство специалиста.

Следует помнить, что от правильно подобранного значения сечения кабеля напрямую зависит электро и пожаробезопасность в здании, а значит, и жизнь самих жильцов.

Конечно, каждый собственник желает как можно больше сэкономить, но не стоит делать это ценой своей жизни, ставя её под угрозу — ведь в результате короткого замыкания может случиться пожар, который вполне может уничтожить все имущество.

Во избежание этого, перед началом электромонтажных работ следует подобрать кабель оптимального сечения. Для подбора необходимо учитывать несколько факторов:

  • общее количество электротехнических устройств, находящихся в помещении;
  • совокупную мощность всех приборов и потребляемую ими нагрузку. К полученному значению следует добавить «про запас» 20–30%;
  • затем, путём нехитрых математических расчётов, перевести полученное значение в сечение провода, учитывая при этом материал проводника.

Внимание! Ввиду более низкой электропроводимости, провода с алюминиевыми жилами должны приобретаться с большим сечением, нежели медные.

Блок: 2/7 | Кол-во символов: 2293
Источник: http://remontnichok.ru/elektrichestvo/raschet-secheniya-kabelya-po-moshchnosti-prakticheskie-sovety-ot-professionalov

Что влияет на нагрев проводов

Если во время эксплуатации бытовых приборов нагревается проводка, то следует незамедлительно принять все необходимые меры для устранения этой проблемы. Факторов, влияющих на нагрев проводов, существует немало, но к основным можно отнести следующие:

  1. Недостаточная площадь сечения кабеля. Выражаясь доступным языком, можно сказать так — чем толще будут у кабеля жилы, тем больший ток он может передавать, не греясь при этом. Величина этого значения указывается в маркировке кабельной продукции. Также можно измерить сечение самостоятельно при помощи штангенциркуля (следует убедиться, что провод не находится под напряжением) или по марке провода.
  2. Материал, из которого изготовлен провод. Медные жилы лучше передают напряжение до потребителя, и обладают меньшим сопротивлением, по сравнению с алюминиевыми. Естественно, они меньше греются.
  3. Тип жил. Кабель может быть одножильным (жила состоит из одного толстого стержня) или многожильным (жила состоит из большого числа маленьких проводков). Многожильный кабель более гибкий, но существенно уступает одножильному по допустимой силе передаваемого тока.
  4. Способ укладки кабеля. Плотно уложенные провода, находящиеся при этом в трубе, греются ощутимо сильнее, нежели открытая проводка.
  5. Материал и качество изоляции. Недорогие провода, как правило, имеют изоляцию низкого качества, что отрицательно сказывается на их устойчивости к воздействию высоких температур.

Блок: 3/7 | Кол-во символов: 1434
Источник: http://remontnichok.ru/elektrichestvo/raschet-secheniya-kabelya-po-moshchnosti-prakticheskie-sovety-ot-professionalov

Для чего нужен расчет сечения?

Электрические кабели и провода – основа энергетической системы, если они подобраны неправильно, это сулит множество неприятностей. Делая ремонт в доме или квартире, а особенно при возведении новой конструкции, уделите должное внимание схеме проводки и выбору корректного сечения кабеля для питания мощности, которая в процессе эксплуатации может возрастать.

Специалисты нашей компании при монтаже стабилизаторов напряжения и систем резервного электропитания сталкиваются с халатным отношением электриков и строителей к организации проводки в частных домах, в квартирах и на промышленных объектах. Плохая проводка может быть не только в тех помещениях, где длительное время не было капитального ремонта, а также когда дом проектировался одним владельцем под однофазную сеть, а новый владелец решил «завести» трехфазную сеть, но уже не имел возможности подключить нагрузку равномерно к каждой из фаз. Нередко провод сомнительного качества и недостаточного сечения встречается в тех случаях, когда строительный подрядчик решил сэкономить на стоимости провода, а также возможны любые другие ситуации, когда рекомендуется делать энергоаудит.

Современный набор бытовых приборов требует индивидуального подхода для расчета сечения кабеля, поэтому нашими инженерами был разработан этот онлайн калькулятор по расчету сечения кабеля по мощности и току. Проектируя свой дом или выбирая стабилизатор напряжения, вы всегда можете проверить, какое сечение кабеля требуется для этой задачи. Все что от вас требуется, это внести корректные значения соответствующие вашей ситуации.

Обращаем ваше внимание, что недостаточное сечение кабеля ведет к перегреванию провода, тем самым существенно повышая возможность возникновения короткого замыкания в электрической сети, выходу из строя подключенного оборудования и возникновению пожара. Качество силовых кабелей и корректность выбора их сечения гарантирует долгие годы службы и безопасность эксплуатации.

Блок: 3/4 | Кол-во символов: 1971
Источник: https://best-energy.com.ua/support/calc-cable

Несколько базовых понятий

А для чего вообще необходимо рассчитывать сечение проводов? Нельзя ли ограничиться подбором «на глаз»?

Нет, нельзя, так как совсем несложно впасть в две крайности:

  • Проводник недостаточного сечения начинает сильно перегреваться. Это ведет к оплавлению изоляции проводки, созданию условий для самовозгорания, для коротких замыканий. Все это становится причиной разрушительных пожаров, часто сопровождающихся человеческими трагедиями.
  • Проводники избыточного диаметра, безусловно, такими опасностями не грозят. Но зато они и существенно дороже (особенно если разговор идет о медных кабелях), и не столь удобны в работе. Получаются совершенно неоправданные материальные и трудовые затраты.

Так что руководствоваться следует принципом разумной достаточности. Тем более что произвести необходимые вычисления – по силам каждому, кто хоть немного разбирается в азах математики и физики.

Для начала вспомним некоторые понятия, многим, наверное, и без того хорошо известные. Но просто для того, чтобы в дальнейшем изложении не появилось разночтений.

Провода одножильные и многожильные

С этим вопросом часто бывает путаница, в том числе в статьях, опубликованных на интернет-сайтах.

Итак, в качестве проводника в проводах и кабелях может использоваться одна проволока —  с точки зрения электрической проводимости — это оптимальный вариант.

Но для достижения гибкости кабельной продукции приходится использовать более сложные конструкции – множество тонких проволочек, обычно скрученных при этом в «косичку». Чем больше таких проволочек – тем более гибким получается проводник.

Однако, это не следует путать с многожильностью провода. Под отдельной жилой подразумевается именно отдельный проводник. Чтобы стало понятнее – смотрим на иллюстрацию.

На картинке ниже – примеры одножильного провода. Просто с левой стороны – жесткий однопроволочный, а с правой – более гибкий многопроволочный вариант.

И слева, и справа — это одножильный провод.

Если провод (кабель) конструктивно совмещает два изолированных друг от друга проводника или больше, он становится двухжильным, трехжильным и т.п. Но он также может оставаться одно- или многопроволочным.

Двухжильный многопроволочный провод

Аналогичная ситуация и с кабелями. По определению, кабель – это конструкция из нескольких изолированных друг от друга проводников, заключенных в общую изолирующую и защитную оболочку. А вот проводники также могут быть одно- или многопроволочными.

Трехжильные силовые кабели – с однопроволочными или многопроволочными жилами

Жесткие однопроволочные изделия хороши для неподвижных участков проводки, например, вмуровываемых в стены. Многопроволочные провода и кабели отлично подходят для тех участков, где бывает нужна подвижность — типичным примером являются шнуры питания бытовой техники и осветительных приборов.

Итак, все последующие расчеты будут вестись для сечения жилы провода или кабеля.

При оценке условий расположения проводов в дальнейшем могут быть варианты, когда придется представлять разницу, например, между тремя одножильными проводами, протянутыми в одной трубе, или одним трехжильным кабелем.

Диаметр и площадь поперечного сечения провода

Два взаимосвязанных параметра, которые порой по неопытности путают. Смотрим на схему – по ней все станет понятно.

Слева – диаметр проводника (жилы), измеряется в миллиметрах. Справа – площадь поперечного сечения проводника, измеряется в мм².

Во всех справочника обычно используется параметр сечения, так как именно по этому критерию производится классификация различных марок проводов и кабелей.

Но это хорошо, если известна марка кабеля (провода). Если нет, то сечение остается подсчитать, опираясь на диаметр, который можно измерить штангенциркулем или микрометром.

Диаметр жилы (проволоки) поддается обычному измерению. Площадь сечения – только расчёту.

Формулу площади круга должны, наверное, помнить все. Но тем не менее – приведем ее на всякий случай.

Sc = π × d² / 4 ≈ 3.14 × d² / 4 ≈ 0.785 ×

Знак «примерно равно» применен только потому, что взято округление числа π до сотых, всем известное значение π ≈ 3,14. Но в нашем случае такой точности – более чем достаточно!

Это формула сечения однопроволочного проводника. А если нужно найти сечение неизвестного провода, с многопроволочной жилой?

Тоже ничего сложного. Жила распушается, чтобы появилась возможность подсчитать количество проволочек в «косичке». И останется только микрометром или штангенциркулем промерить диаметр одной проволочки.

Sc = n × π × d² / 4 ≈ n × 3.14 × d² / 4 ≈ 0.785 × n × d²

где n – это количество проволочек в одной жиле.

Калькулятор пересчёта диаметра проводника в площадь его поперечного сечения

Перейти к расчётам

Основные электрические параметры цепи

При проведении расчетов нам могут понадобиться формулы, показывающими взаимосвязь между основными электрическими параметрами.

I = U / R

I — сила тока, ампер, А.

U — напряжение (разность потенциалов), вольт, В.

R — электрическое сопротивление, ом, Ом.

Из этой формулы несложно вывести другие:

U = I × R

R = U / I

  • Теперь обратимся к мощности электрического тока.

Для начала – работа, выполняемая электрическим током. Она равна произведению силы тока на напряжение и на длительность промежутка времени, в течение которого она выполнялась.

А = I × U × Δt

А — работа электрического тока, джоулей, Дж.

Δt — длительность периода, секунд, с.

Но более наглядной величиной всегда является мощность, то есть показатель работы, выполненной за единицу времени, например, секунду.

P = A / Δt = I × U × Δt / Δt = I × U

P — мощность электрического тока, джоулей в секунду или ватт, Вт.

  • Отсюда напрашивается целый каскад производных формул, описывающих взаимосвязи напряжения, силы тока, сопротивления и мощности между собой. Чтобы не перечислять все формулы «в столбик», можно привести хорошо понятное графическое их представление.

Графическое представление формул взаимосвязей основных электрических параметров.

  • Вернемся к сопротивлению проводника. Как оно выражается через ток и напряжение – мы уже знаем.

Но оно в первую очередь зависит от материала изготовления проводника и его геометрических размеров. Описывается эта зависимость следующей формулой:

R = ρ × L / S

ρ — удельное сопротивление материала, из которого изготовлен проводник. Показывает, какое сопротивление имеет проводник длиной 1 метр с площадью поперечного сечения 1 мм².

Как правило, на практике в электротехнике чаще всего встречаются алюминий и медь. Реже применяются стальные проводники, но обычно – лишь в качестве каких-то токонесущих деталей электротехнической арматуры.

Для алюминия удельное сопротивление равно 0,029 Ом×м, у меди оно пониже – 0,0175 Ом×м.

L — длина линии (участка цепи) метров, м.

S — площадь поперечного сечения проводника, мм²

Эти соотношения полезно знать, так как иногда приходится оценивать собственные резистивные потери мощности на линиях большой протяженности.

  • Акцентируем внимание еще на одном взаимоотношении, которое, в принципе, уже было рассмотрено выше. Это – количество тепла, выделяемое проводником при прохождении по нему электрического тока. Описывается уравнением Джоуля-Ленца.

Q = I² × R × Δt

Как видно, нагрев проводника (Q) лежит в квадратичной зависимости от силы тока (I) и от сопротивления (R). Понятно, что при всех остальных равных параметрах медный провод будет иметь более низкое сопротивление, нежели алюминиевый, то есть при одинаковой нагрузке греться станет существенно меньше.

Так оно и есть – это будет очень хорошо заметно дальше, при работе с таблицами.

  • Можно еще вспомнить понятие плотности тока. Здесь все относительно просто – это количество ампер на единицу площади сечения проводника. Этот термин будет задействован в одном из способов оценки проводки.

Далеко не все их показанных формул и определений понадобятся для правильного подбора сечения проводника. Но зато они помогают более «рельефно» представить взаимосвязи между разными величинами.

Материалы изготовления проводки

Об этом уже вкратце говорилось – в подавляющем большинстве случаев используются медь и алюминий. Провода из иных металлов и сплавов если и встречаются, то имеют очень узкую специализацию.

Медь выигрывает у алюминия практически по всем статьям!

Сравнение меди и алюминия практически по всем статьям показывает ее преимущество.

  • Удельное сопротивление даже просто в «чистом виде» у меди практически в полтора раза ниже.
  • Оба этих металла от контакта с кислородом покрываются тонким слоем окислов. Однако, к меди этот слой практически не становится препятствием для токопроводимости. То есть в местах контактных соединений особых проблем не возникает (низкое переходное сопротивление).

А вот окислы алюминия по своим качествам близки к диэлектрикам. И проводимость обеспечивается только тем, что этот слой очень тонок. В местах механических контактов проблем  значительно больше. Поэтому рекомендуется зачистка проводников, а также использование специальных смазок, предотвращающих поверхностную коррозию алюминия.

  • Медь прочнее алюминия. Она в меру пластична, что позволяет достигать надёжных контактов при обжиме. Сломать медный проводник механическим воздействием – довольно сложно.

Переломить же алюминиевый провод можно буквально через несколько изгибов по одному месту. Недостаток упругости этого металла (слишком уж высокая пластичность) приводит к тому, что после выполнения скруток или обжима в клеммах, то есть при стабилизировавшейся механической нагрузке, алюминий продолжает «течь». А это значит, что надежность механических контактных соединений всегда постоянно снижается и требует регулярной подтяжки.

  • Оптимальный вариант контактов для любого металла – это сварка или пайка. Но и по этим позициям медь впереди. Произвести пайку меди можно, не прибегая к каким-то сложным технологическим приёмам. Пайка или сварка алюминия требует использования специальных припоев и флюсов, и неопытному человеку выполнить эту операцию – крайне затруднительно.
  • Единственные позиции, по которым алюминий обходит медь – он втрое легче и значительно дешевле. Этим и объясняется его широкое использование в эпоху массового городского многоэтажного строительства. Сейчас же по действующим СНиП в качестве проводки в жилых домах должна использоваться исключительно медь.

Блок: 2/5 | Кол-во символов: 10156
Источник: https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/raschet-secheniya-kabelya-po-toku.html

Для чего нужен расчет сечения кабеля

К электрическим сетям предъявляются следующие требования:

  • безопасность;
  • надежность;
  • экономичность.

Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.

Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода – это залог длительной безопасной эксплуатации и рационального использования финансовых средств.

Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( “Правила устройства электроустановок”). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:

  1. Напряжение питания (однофазное или трехфазное).
  2. Материал проводника.
  3. Ток нагрузки, измеряемый в амперах (А), или мощность – в киловаттах (кВт).
  4. Месторасположение кабеля.

В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину – 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.

В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно “Правилам устройства электроустановок”, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на порядок больше, чем у ВА. В данном случае после 25 А находится 35 А. Последнюю величину и необходимо брать за расчетную. Току 35 А соответствуют сечение 4 мм² и мощность 7,7 кВт. Итак, выбор сечения медного провода по мощности завершен: 4 мм².

Чтобы узнать, какое сечение провода нужно для 10 кВт, опять воспользуемся справочником. Если рассматривать случай для открытой проводки, то надо определиться с материалом кабеля и с питающим напряжением. Например, для алюминиевого провода и напряжения 220 В ближайшая большая мощность будет 13 кВт, соответствующее сечение – 10 мм²; для 380 В мощность составит 12 кВт, а сечение – 4 мм².

Блок: 2/6 | Кол-во символов: 2487
Источник: https://odinelectric.ru/wiring/kak-rasschitat-neobhodimoe-sechenie-provoda-po-moshhnosti-nagruzki

Таблица сечения кабеля по мощности и току

Сечение

Медные жилы проводов и кабелей

Токопроводящие жилы

Напряжение 220В Напряжение 380В

мм. кв.

Ток, А

Мощность, кВт

Ток, А

Мощность, кВт

1,5

4,1

10,5

2,5

5,9

16,5

4

8,3

19,8

6

10,1

26,4

10

15,4

33,0

16

18,7

49,5

25

115

25,3

59,4

35

135

29,7

115

75,9

50

175

38,5

145

95,7

70

215

47,3

180

118,8

95

260

57,2

220

145,2

120

300

66,0

260

171,6

Сечение

Алюминиевые жилы, проводов и кабелей

токопроводящие жилы

Напряжение, 220В Напряжение, 380В

мм. кв.

ток, А

Мощность, кВт

Ток, А

Мощность, кВт

2,5

4,4

12,5

4

6,1

15,1

6

7,9

19,8

10

11,0

25,7

16

13,2

36,3

25

18,7

46,2

35

100

22,0

56,1

50

135

29,7

110

72,6

70

165

36,3

140

92,4

95

200

44,0

170

112,2

120

230

50,6

200

132,0

Блок: 2/4 | Кол-во символов: 2608
Источник: https://best-energy. com.ua/support/calc-cable

Расчет сечения кабеля для постоянного тока

Данный калькулятор хорош также тем, что позволяет корректно рассчитать сечение кабеля для сетей постоянного тока. Это особенно актуально для систем резервного питания на основе мощных инверторов, где применяются аккумуляторы большой емкости, а разрядный постоянный ток может достигать 150 Ампер и более. В таких ситуациях учитывать сечение провода для постоянного тока крайне важно, поскольку при заряде аккумуляторов важна высокая точность напряжения, а при недостаточном сечении кабеля могут возникать ощутимые потери и, соответственно, аккумулятор будет получать недостаточный уровень напряжения заряда постоянного тока. Подобная ситуация может послужить ощутимым фактором сокращения срока службы батареи.

Блок: 4/4 | Кол-во символов: 841
Источник: https://best-energy.com.ua/support/calc-cable

Расчет падения напряжения

Любой проводник, кроме сверхпроводников, имеет сопротивление. Поэтому при достаточной длине кабеля или провода происходит падение напряжения.

Нормы ПЭУ требуют, чтобы сечение жилы кабеля было таким при котором падение напряжения составляло не более 5%.

Таблица 9. Удельное сопротивление распространенных металлических проводников (+)

В первую очередь это касается низковольтных кабелей малого сечения.

Расчет падения напряжения выглядит следующим образом:

R = 2*(ρ * L) / S,

Uпад = I * R,

U% = (Uпад / Uлин) * 100,

Где:

  • 2 – коэффициент, обусловленный тем, что ток течет обязательно по двум жилам;
  • R – сопротивление проводника, Ом;
  • ρ – удельное сопротивление проводника, Ом*мм2/м;
  • S – сечение проводника, мм2;
  • Uпад – напряжение падения, В;
  • U% – падение напряжения по отношению к Uлин,%.

Используя формулы, можно самостоятельно выполнить вне необходимые вычисления.

Блок: 4/6 | Кол-во символов: 873
Источник: https://sovet-ingenera.com/elektrika/provodka/raschyot-secheniya-kabelya.html

Особенности расчёта мощности скрытой проводки

Если проектной документацией подразумевается использование скрытой проводки, то необходимо приобретать кабельную продукцию «с запасом» — к полученному значению сечения кабеля следует прибавить порядка 20–30%. Это делается во избежание нагрева кабеля в процессе эксплуатации. Дело в том, что в условиях стеснённого пространства и отсутствия доступа воздуха нагрев кабеля происходит значительно интенсивнее, чем при монтаже открытой проводки. Если же в закрытых каналах предусматривается укладка не одного кабеля, а сразу нескольких, то следует увеличить сечение каждого провода не менее чем на 40%. Также не рекомендуется плотно укладывать различные провода — в идеале каждый кабель должен находиться гофротрубе, обеспечивающей его дополнительную защиту.

Важно! Именно по значению потребляемой мощности профессиональные электрики ориентируются при выборе сечения кабеля, и только такой способ является корректным.

Блок: 5/7 | Кол-во символов: 956
Источник: http://remontnichok.ru/elektrichestvo/raschet-secheniya-kabelya-po-moshchnosti-prakticheskie-sovety-ot-professionalov

Видео: Основные правила выбора сечения проводов

Блок: 5/5 | Кол-во символов: 63
Источник: https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/raschet-secheniya-kabelya-po-toku.html

Выводы и полезное видео по теме

Расчет сечения проводника по формулам:

Рекомендации специалистов по подбору кабельно-проводниковой продукции:

Приведенные расчёты справедливы для медных и алюминиевых проводников промышленного назначения. Для других типов проводников предварительно рассчитывается полная теплоотдача.

На основе этих данных производится расчет максимального тока способного протекать по проводнику, не вызывая чрезмерного нагрева.

Если остались какие-либо вопросы по методике расчета сечения кабеля или есть желание поделиться личным опытом, пожалуйста, оставляйте к этой статье. Блок для отзывов расположен ниже.

Блок: 6/6 | Кол-во символов: 625
Источник: https://sovet-ingenera.com/elektrika/provodka/raschyot-secheniya-kabelya.html

Открытая и закрытая прокладка проводов

В зависимости от размещения проводка делится на 2 вида:

  • закрытая;
  • открытая.

Сегодня в квартирах монтируют скрытую проводку. В стенах и потолках создаются специальные углубления, предназначенные для размещения кабеля. После установки проводников углубления штукатурят. В качестве проводов используют медные. Заранее всё планируется, т. к. со временем для наращивания электропроводки или замены элементов придется демонтировать отделку. Для скрытой отделки чаще используют провода и кабели, у которых плоская форма.

При открытой прокладке провода устанавливают вдоль поверхности помещения. Преимущества отдают гибким проводникам, у которых круглая форма. Их легко установить в кабель-каналы и пропустить сквозь гофру. Когда рассчитывают нагрузку на кабель, то учитывают способ укладки проводки.

Блок: 6/6 | Кол-во символов: 827
Источник: https://odinelectric.ru/wiring/kak-rasschitat-neobhodimoe-sechenie-provoda-po-moshhnosti-nagruzki

Кол-во блоков: 16 | Общее кол-во символов: 26462
Количество использованных доноров: 6
Информация по каждому донору:
  1. https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/raschet-secheniia-kabelia/: использовано 1 блоков из 4, кол-во символов 1080 (4%)
  2. https://odinelectric.ru/wiring/kak-rasschitat-neobhodimoe-sechenie-provoda-po-moshhnosti-nagruzki: использовано 3 блоков из 6, кол-во символов 3562 (13%)
  3. https://sovet-ingenera.com/elektrika/provodka/raschyot-secheniya-kabelya.html: использовано 2 блоков из 6, кол-во символов 1498 (6%)
  4. http://remontnichok.ru/elektrichestvo/raschet-secheniya-kabelya-po-moshchnosti-prakticheskie-sovety-ot-professionalov: использовано 3 блоков из 7, кол-во символов 4683 (18%)
  5. https://best-energy. com.ua/support/calc-cable: использовано 3 блоков из 4, кол-во символов 5420 (20%)
  6. https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/raschet-secheniya-kabelya-po-toku.html: использовано 2 блоков из 5, кол-во символов 10219 (39%)

Как рассчитать сечение кабеля? - «Электро Проф»

Подбор сечения кабеля является важным моментом при проектировании электросетей различных объектов. Именно от него зависит сопротевление проводки электрическому току, поэтому, необходимо правильно рассчитать необходимую толщину жил. При использовании слишком тонкого проводника возникает перегрев жил, который может повлечь их разрушение, перегорание изоляции, короткое замыкание  и стать причиной пожара. Слишком толстый кабель затрудняет прокладку, увеличивает стоимость монтажа сети, но не дает, при этом, никакого выигрыша.

Как правильно подобрать провод

Самым главным параметром, который необходимо учитывать при подборе сечения, является допустимая нагрузка в длительном режиме работы. Этот показатель равен силе тока, которую кабель способен пропускать в нормальном режиме на протяжении длительного отрезка времени.

Чтобы определить величину нагрузки в доме, необходимо рассчитать суммарную мощность всех потребителей (электроприборов), установленных в доме или квартире. В табличке ниже приведены усредненные показатели мощности электроприборов, используемых в типичной однокомнатной квартире и суммарная их нагрузка.

Но, так как сечение электропроводки необходимо рассчитывать по силе тока, а нам известно только энергопотребление, придется прибегнуть к некоторым расечтам.

Для стандартных бытовых электросетей, напряжением 220 вольт, применяется следующая формула перевода значений мощности электроприборов в силу тока.

Где:

Р – общая мощность всех потребителей (см. таблицу выше).

U – напряжение. Для бытовой сети, как правило, составляет 220 вольт.

Ки – коэффициент одновременности. Этот параметр равен 0.75.

cos – косинус. Равен единице для домашних электрических устройств, поэтому можно не учитывать.

Приведем небольшой пример:

Есть двухкомнатная квартира, в которой присутствует следующее электрооборудование: 4 лампочки по 100 Вт, 2 телевизора разных размеров, 50 и 150 Вт мощностью, холодильник 300 Вт, компьютер 400 Вт, пылесос с потреблением 1 кВт, такой же мощности микроволновка, чайник на 2 кВт, стиральная машина 2 кВт и утюг с таким же потреблением энергии.

4х100 + 50 + 150 + 300 + 400 + 2х1000 + 3х2000 = 10300 Вт

Посмотреть, какую мощность потребляют ваши электроприборы можно в документации к ним или на самом устройстве. Как правило, эти показатели размещены на этикетке или шильдике сзади или на дне прибора.

Получившийся показатель (10300 Вт в нашем случае) подставляем в формулу и производим расчет силы тока.

I = 10300х0.75/220х1 = 35.2 А (округлено до десятых в большую сторону)

Итак, сила тока известна, можно переходить к подбору сечения. Ниже расположена таблица подбора сечения медного кабеля для электросетей. Данные взяты из стандартов ГОСТ для силовых кабелей. В первом столбце указана площадь сечения проводника, в последующих –  предельные значения силы тока для различныхтипов провода. Если ни один кабель не соответствует вашему значению силы тока – следует выбрать ближайшее значение, с округлением в большую сторону. Например, для 35.2 А (наш показатель), при прокладке кабеля по воздуху (наружный монтаж) следует выбрать многожильный медный провод, сечением 4 мм².

Если вы планируете монтировать алюминиевую проводку – подбор производится аналогично предыдущему, только по следующей таблице:

 

То есть, для значения тока 35.2 А необходимо использовать кабель с сечением жил 6 мм².

Расчет кабеля для розеточных линий

После того, как с основным силовым кабелем разобрались – следует переходить к подбору сечения провода для подключения розеток. В целом, формула аналочична предыдущей, только для подсчета используется не суммарное электропотребление квартиры, а каждой розетки. Конечно, можно использовать тот же провод, что для монтажа основных линий, но такое решение является более трудоемким и дорогостоящим.

Чтобы определить нагрузку на розетку, следует выяснить, какие приборы к ней будут подключены. Если это небольшая бытовая техника малой мощности (светильник, компьютер, телевизор, зарядные устройства портативной электроники) – можно ограничиться кабелем, сечение которого составляет 1.5 мм (медь) или 2.5 мм (алюминий).

Важно: вдумчиво подходите к расположению розеток, чтобы не допускать перегрузок и избегать использования тройников, удлинителей и переносок. Лучше грамотно продумать их расположение, чем обременять себя внешними проводами, понижая стабильность и безопасность сети.

Если к розетке будет подключено мощное обогревательное оборудование или другие приборы, требующие высоких затрат энергии, подсчет сечения проводится согласно общей формуле.

Калибр проводов, сопротивление, сечение и таблица тока

AWG СТРОИТЕЛЬСТВО ДИАМЕТР (мм) ПЛОЩАДЬ (мм²) ВЕС (г / м) R Ом макс. (Ом / 100 м) при 20 ° C
4 133 x 0,455 R 6,48 21,62 197,9 0,09
6 133 х 0.361 R 5,14 13,61 124,9 0,14
8 1 x 3,26
133 x 0,287 R
3,26
4,09
8,37
8,60
74,38
79,02
0,21
0,22
10 1 x 2,59
37 x 0,404 C
91 x 0,254 U
2,59
2,80
2,70
5,26
4,77
4,61
46,77
44,43
42.22
0,35
0,38
0,43
12 1 x 2,05
19 x 0,455 C
37 x 0,320 C
45 x 0,300 C
91 x 0,203 U
2,05
2,27
2,22
2,45
2,15
3,31
3,09
2,98
3,18
2,95
29,46
28,66
27,88
28,27
27,00
0,55
0,59
0,61
0,58
0,65
13 1 х 1,83 1. 83 2,63 23,36 0,70
14 1 x 1,63
19 x 0,361 C
19 x 0,361 U
27 x 0,300 C
37 x 0,254 C
61 x 0,203 U
1,63
1,80
1,70
1,80
1,78
1,76
2,08
1,94
1,94
1,91
1,88
1,97
18,45
18,04
17,14
16,98
16,67
18,50
0,88
0,94
0,94
0,94
0.97
1,04
15 1 х 1,45 1,45 1,65 14,68 1.11
16 1 x 1,29
19 x 0,287 C
19 x 0,287 U
19 x 0,300 C
19 x 0,300 U
61 x 0,16 U
315 x 0,071 R
1,29
1,42
1,36
1,50
1,43
1,45
1,60
1,31
1,23
1,23
1,34
1,34
1,23
1,25
11.62
11,41
10,83
12,50
11,86
11,23
11,80
1,40
1,49
1,49
1,36
1,36
1,45
1,47
17 1 х 1,15 1,15 1. 04 9,24 1,76
18 1 x 1,02
7 x 0,404
19 x 0,254 C
19 x 0,254 U
61 x 0,142 U
1,02
1,21
1,27
1,21
1,24
0.824
0,901
0,962
0,962
0,966
7,32
8,25
8,93
8,49
9,00
2,22
2,03
1,90
1,90
1,89
19 1 х 0,91 0,91 0,653 5,80 2,80
20 1 x 0,813
7 x 0,320
19 x 0,203 C
19 x 0,203 U
37 x 0,142 U
135 x 0,071
0,813
0,960
1.009
0,966
0,970
0,92
0,518
0,563
0,616
0,616
0,586
0,534
4,61
5,17
5,70
5,42
5,38
4,90
3,53
3,25
2,97
2,97
3,12
3,42
21 1 х 0,724 0,724 0,412 3,66 4,44
22 1 x 0,643
7 x 0,254
19 x 0,160 C
19 x 0. 160 U
37 x 0,114 U
72 x 0,071
0,643
0,762
0,800
0,762
0,780
0,68
0,324
0,355
0,382
0,382
0,380
0,285
2,89
3,26
3,55
3,37
3,46
2,60
5,64
5,15
4,78
4,78
4,83
6,41
23 1 х 0,574 0,574 0,259 2,30 7,06
24 1 х 0.511
7 x 0,203
19 x 0,127 C
19 x 0,127 U
56 x 0,071 U
0,511
0,609
0,634
0,597
0,600
0,205
0,227
0,241
0,241
0,222
1,82
2,08
2,23
2,12
2,05
8,91
8,05
7,58
7,58
8,23
25 1 х 0,455 0,455 0,163 1,44 11,24
26 1 х 0. 404
7 x 0,160
19 x 0,102 C
19 x 0,102 U
33 x 0,071 U
0,404
0,480
0,504
0,483
0,450
0,128
0,141
0,155
0,155
0,130
1,14
1,29
1,44
1,37
1,20
14,26
12,96
11,79
11,79
14,06
27 1 х 0,320 0,361 0,102 0,91 17,86
28 1 х 0.320
7 x 0,127
19 x 0,079 C
0,320
0,381
0,395
0,080
0,089
0,093
0,72
0,82
0,86
22,72
20,60
19,63
29 1 х 0,287 0,287 0,065 0,58 28,25
30 1 x 0,254
7 x 0,102
19 x 0,063 C
0,254
0,304
0,315
0.051
0,057
0,059
0,45
0,53
0,57
36,07
31,95
30,87
31 1 х 0,226 0,226 0,040 0,36 45,56
32 1 x 0,203
7 x 0,079
19 x 0,050 C
0,203
0,237
0,250
0,032
0,034
0,037
0,29
0,32
0,36
56,47
53. 28
49,00
33 1 х 0,180 0,180 0,025 0,23 71,82
34 1 х 0,160
7 х 0,063
0,160
0,189
0,020
0,022
0,18
0,21
90,9
83,8
35 1 х 0,142 0,142 0,016 0,14 115,4
36 1 х 0.127
7 х 0,050
0,127
0,150
0,0127
0,0137
0,11
0,13
144,3
133,4
37 1 х 0,114 0,114 0,0102 0,09 179
38 1 х 0,102
7 х 0,040
0,102
0,120
0,0081
0,0088
0,07
0,0784
225
214
39 1 х 0. 089 0,089 0,00622 0,06 295
40 1 х 0,079
7 х 0,031
0,079
0,090
0,00490
0,00528
0,0436
0,0469
375
350
41 1 х 0,071 0,071 0,00396 0,0352 460
42 1 х 0,063
7 х 0.025
0,063
0,075
0,00316
0,0034
0,0281
0,0318
600
536
43 1 х 0,056 0,056 0,00246 0,0219 745
44 1 х 0,050
7 х 0,020
0,050
0,060
0,00203
0,0022
0,0180
0,0196
910
836
46 1 х 0.040
7 х 0,015
0,040
0,045
0,00126
0,001372
0,0112
0,0112
1500
1492
48 1 х 0,031
7 х 0,0125
0,031
0,0375
0,00075
0,000859
0,0067
0,0077
2450
2371
50 1 х 0,025
7 х 0,0100
0,025
0,0300
0,00049
0. 000550
0,0044
0,0049
3750
3872
52 1 х 0,020 0,020 0,00031 0,0028 5850
54 1 х 0,0158 0,0158 0,000196 0,00175 10441
56 1 х 0,0125 0,0125 0,000123 0,00109 16599
58 1 х 0.0100 0,0100 0,000079 0,00070 27101

Сечение кабеля высокого напряжения

Какую мощность и напряжение может передавать кабель на фотографии?

Это кабель высокого напряжения. Судя по толщине изоляции из сшитого полиэтилена (белый материал), она составляет не менее 132 кВ или выше.

Edit: Согласно Reddit OP, кабель имеет медный провод площадью 1,750 мм². Это огромный кабель . (Все, что превышает 630 мм², является необычным; все, что превышает примерно 1200 мм², является специальным заказом, который кабельная компания обычно не делает.) Такой кабель будет способен выдерживать примерно 1600 ампер. Предположим, что трехфазное напряжение 132 кВ составляет 365 МВА или около 292 мегаватт при коэффициенте мощности 0,80.

Вот аналогичный кабель, который у меня был на работе (я думаю) на 300 кВ. Он будет способен выдерживать не менее 100 ампер (возможно, намного больше) или около 100 МВт - достаточно, чтобы самостоятельно обеспечить питание CBD всего города.

Почему он состоит из множества небольших кабелей? Что, если бы диаметр одиночных медных кабелей был немного больше?

Провод является многожильным, поэтому его можно сгибать при установке. Сплошной медный провод очень сложно согнуть.

Диаметр жил - это компромисс между стоимостью производства (меньшие провода требуют большего производства) и простотой установки. Нет особой причины для точного размера отдельных прядей.

Как выбрать правильный диаметр для данной комбинации напряжения / мощности?

Не вдаваясь в подробности расчетов сечения кабелей (по этой теме существуют целые национальные стандарты - см. AS / NZS 3008 «Электрические установки - Выбор кабелей» .)

Сначала , мы решаем, какое напряжение мы используем. В Австралии обычные напряжения для распределения составляют 11, 22, 33 кВ; общие напряжения для передачи 66, 132, 220, 300 кВ.Чем выше напряжение, тем толще требуется изоляция (XLPE).

Во-вторых, , мы решаем, какая токовая нагрузка нам нужна. После некоторых расчетов мы можем определить, что схема должна выдерживать 100 ампер, чтобы удовлетворить спрос в настоящее время, учесть будущий рост нагрузки и немного увеличить мощность на случай непредвиденных обстоятельств. Чем больше токовая нагрузка нам нужна, тем больше должны быть медные проводники (мм²).

В-третьих, , мы определяем, в какой среде будет жить кабель.При протекании тока в кабеле выделяется тепло, а допустимая нагрузка по току кабеля ограничивается его температурой. Кабель, установленный в горячей среде, не может пропускать такой большой ток, пока не перегреется, поэтому мы должны использовать кабель большего размера, чем обычно.

Зная напряжение, допустимую нагрузку по току и условия установки кабеля, теперь мы можем выбрать необходимый размер кабеля. Мы бы сделали это, обратившись к каталогу производителя кабеля, в котором есть такие таблицы:

Таблица воспроизведена из каталога высоковольтных кабелей Olex Australia, 2009 г.

В качестве примера я мог бы решить, что мне нужен кабель на 33 кВ, способный выдерживать 400 ампер.Он будет установлен в подземных каналах. Я использую таблицу «номинальных значений тока», чтобы выбрать кабель наименьшего диаметра, способный выдерживать ток 400 А - в этом случае потребуется кабель 240 мм².

Номинальный диаметр такого кабеля составляет 45,9 мм.

Обратите внимание, что нас действительно не волнует «диаметр» кабеля как таковой - мы заботимся о площади поперечного сечения проводника (мм²), то есть о том, сколько меди в кабеле. Диаметр имеет значение только тогда, когда вы действительно собираетесь установить вещь.

Выбор сварочного кабеля подходящего размера

Мне нужно заказать сварочный кабель для нашего магазина, но я не уверен, что его правильный размер. Я видел несколько справочных таблиц, но хотел бы получить объяснение, как их использовать.

Сварочный кабель является проводником сварочного тока. Он состоит из ряда тонких медных нитей, обернутых внутри непроводящей, прочной оболочки (обычно из синтетического или натурального каучука различных цветов).Тонкие медные жилы придают сварочному кабелю большую гибкость, чем другие типы электрических проводников, а изолирующая оболочка предназначена для выдерживания повторяющихся движений по шероховатым поверхностям. По мере увеличения уровня тока (измеряется в амперах или амперах) диаметр сварочного кабеля и результирующая площадь поперечного сечения медной скрутки должны увеличиваться. Концепция похожа на поток воды через шланг. Требуется шланг большего диаметра, чтобы пропускать больший объем воды.Вы используете шланг меньшего размера для полива сада, а пожарная служба использует шланг гораздо большего размера для тушения пожаров.

«Допустимая нагрузка» сварочного кабеля, также известная как допустимый ток или номинальная сила тока, относится к максимальной величине электрического тока, которую кабель может безопасно проводить. Помимо площади поперечного сечения, другими факторами, влияющими на допустимую нагрузку сварочного кабеля, являются его длина, номинальное сопротивление (т. Е. Номинальное сопротивление), температурные характеристики изоляционного материала и температура окружающей среды.Более короткие кабели могут пропускать больший ток, чем более длинные кабели того же диаметра. Сварочный кабель часто рассчитан на температуру жилы 75 ° C (167 ° F), 90 ° C (194 ° F) или 105 ° C (221 ° F). Хотя сам медный провод может выдерживать высокие температуры, создаваемые более высокой силой тока, прежде чем будет поврежден, изоляция, защищающая их, расплавится. Сварочные кабели также часто рассчитаны на температуру окружающей среды 30 ° C (86 ° F). Более высокие температуры окружающей среды могут снизить их способность рассеивать тепло в окружающую среду и, таким образом, снизить их пропускную способность.Кроме того, несколько кабелей, плотно упакованных вместе, также могут иметь снижение способности рассеивать тепло. Несколько кабелей следует немного развести.

Обратите внимание, что хотя медь является отличным проводником электричества, она все же имеет определенную степень сопротивления потоку электронов через нее. Следовательно, в кабеле будет возникать нагрев за счет сопротивления. Сварочный кабель правильного размера может стать теплым на ощупь после продолжительной сварки. Однако, если диаметр кабеля слишком мал для уровня тока, протекающего по нему, кабель будет перегреваться.Это может привести к потенциальной опасности возгорания, а также к повреждению самого кабеля (и, в конечном итоге, к обрыву и отказу кабеля). Разрыв изоляционной оболочки также может стать причиной поражения электрическим током. И наоборот, кабель, размер которого превышает допустимый для данного уровня силы тока, не проводит ток более эффективно, чем кабель надлежащего размера. Однако кабель большего диаметра обычно стоит больше за фут или метр, чем кабель меньшего диаметра, из-за увеличенного количества медных жил. Следовательно, кабели увеличенного размера могут быть нерентабельными.

Электрический кабель обычно классифицируется по размеру AWG (American Wire Gauge), где у кабеля меньшего диаметра номер больше. На рис. 1 указаны размеры AWG. Калибровочные размеры больше единицы равны нулю, также обозначаются как 1/0 (произносится как «одна цифра»), два нуля, выражаются как 2/0 (произносится как «две доли»), 3/0 и 4/0. Кабели сечений от №4 до №4 / 0 обычно используются для сварочного кабеля.

Рисунок 1: Пример калибра проволоки

В метрической системе размер сварочного кабеля обычно выражается в квадратных миллиметрах (мм2), представляющих площадь поперечного сечения кабеля. На рис. 2 показано сравнение сварочных кабелей размеров AWG и метрических размеров.

Рисунок 2: Сравнение размеров кабелей AWG / метрических

Теперь при выборе кабеля подходящего размера для сварочного оборудования лучше всего выбрать кабель, способный выдержать максимальную мощность сварочного аппарата. Для этого нужно определить три фактора.К ним относятся:

• Общая длина сварочного контура
• Номинальная мощность источника сварочного тока
• Рабочий цикл источника сварочного тока

Сварочная цепь - это полный путь, по которому проходит электричество. Он включает в себя источник питания, кабель электрода, электрододержатель (или горелку TIG или механизм подачи проволоки и горелку), электрическую дугу, рабочий кабель и рабочий зажим. На рисунке 3 показана сварочная схема. Для определения правильного сечения сварочного кабеля необходимо сложить полную длину кабеля электрода и рабочего кабеля.Кабель электрода подключается к держателю электрода, горелке TIG или механизму подачи проволоки. Рабочий кабель прикрепляется к рабочему зажиму. Обратите внимание, что эти последние два элемента часто неправильно называют «заземляющий кабель» и «заземляющий зажим». Однако это неправильная терминология, так как «заземляющий» провод применяется только к первичной обмотке сварочной цепи (то есть к входящему силовому кабелю).

Рисунок 3: Пример сварочного контура

Обратите внимание, что полярность сварки не влияет на размер необходимого кабеля.Не имеет значения, в каком направлении протекает ток через сварочную цепь, будь то постоянный ток положительный (DC +), постоянный ток отрицательный (DC-) или переменный ток (AC). Полярность и направление тока влияют только на сварочные характеристики и выбор электрода.

Номинальная выходная мощность источника питания - это просто максимальный ток или уровень силы тока, при котором машина предназначена для использования (обратите внимание, что некоторые источники питания могут производить токи, превышающие их номинальную мощность, в течение коротких периодов времени).Этот номинальный выходной уровень обычно указывается в названии машины. Примеры включают «Idealarc® 250» (номинальный выход 250 А), Power Wave® S350 (номинальный выход 350 А), Flextec ™ 650 (номинальный выход 650 А) и т. Д.

Рабочий цикл - это номинальная мощность источника сварочного тока, выраженная в процентах (%). Это процент десятиминутного периода, в течение которого источник питания может работать при заданном уровне выходного тока, прежде чем превысит свой тепловой предел (т. Е. Обмотки становятся слишком горячими) и отключится, если он имеет защиту от тепловой перегрузки.Как правило, при уменьшении уровней выходной мощности рабочий цикл увеличивается (до 100% или непрерывной выходной мощности). И наоборот, по мере увеличения выходных уровней (до максимальной выходной мощности) рабочий цикл уменьшается. Номинальные значения рабочего цикла можно найти на паспортной табличке источника питания и / или в руководстве по эксплуатации. Номинальный рабочий цикл источника сварочного тока обычно зависит от сварочных процессов, в которых он будет использоваться, его предполагаемого использования и от того, работает ли он от однофазного или трехфазного источника питания. На рис. 4 перечислены некоторые типичные различия между однофазными и трехфазными источниками питания, включая их типичные рабочие циклы.

Рисунок 4: Однофазные и трехфазные блоки питания


Рисунок 5 - это пример диаграммы для выбора правильного размера сварочного кабеля. Другие таблицы можно получить у производителей кабелей и в справочниках по сварке. В качестве примера предположим, что у вас есть источник питания на 400 А при рабочем цикле 60%, и вам нужна общая общая длина электрода и рабочих кабелей 100 футов.Из таблицы следует выбрать подходящий размер кабеля №2 / 0. Размеры кабелей увеличиваются для увеличения длины, прежде всего, с целью минимизировать падение кабеля. Для более высоких уровней тока часто рекомендуются два или более кабеля, которые следует подключать параллельно или вместе, чтобы разделить текущую нагрузку.

Рисунок 5: Выбор сварочного кабеля подходящего размера

Следует также отметить, что помимо правильного выбора размера кабеля очень важно поддерживать сварочный кабель и кабельные соединения в хорошем состоянии.Любые трещины, порезы, пятна износа и т. Д. На сварочном кабеле могут снизить его токонесущую способность и создать горячие точки. Кроме того, изношенные или изношенные кабельные соединения с рабочим зажимом, наконечниками или соединителями с поворотным замком также могут снизить способность проводить ток и создавать горячие точки (см. Примеры в , рис. 6, ). Все изношенные, изношенные и поврежденные части должны быть немедленно отремонтированы для обеспечения надлежащей работы и сведения к минимуму любых потенциальных угроз безопасности.

Рисунок 6: Примеры изношенного и поврежденного сварочного кабеля

Как выбрать наиболее экономичный размер и тип кабеля?

Выбор кабеля заключается в выборе подходящего типа проводника и выборе подходящего размера / площади поперечного сечения / диаметра проводника в соответствии с применением.Во-первых, необходимо понять важность определения размеров и выбора кабеля. Затем будут обсуждены критерии выбора с учетом всех факторов снижения номинальных характеристик, которые могут снизить допустимую нагрузку на кабель. Закон, названный законом Кельвина, играет жизненно важную роль в экономическом определении размеров проводников, поэтому он также будет объяснен здесь. Помимо размера проводника, будут изучены различные типы проводника. Также в конце будет обсуждаться экранирование и изоляция кабеля.

Размеры кабеля обычно определяются с точки зрения площади поперечного сечения, Kcmil (килограмм круговых милов) или AWG (американский калибр проводов).

Доступные стандарты для выбора и размера кабеля:
  • IEC (Международная электротехническая комиссия)
  • NEC (Национальный электротехнический кодекс)
  • BS (Британские стандарты)

Важность выбора правильного размера и типа кабеля:

Выбор правильного размера и типа кабеля важен по следующим причинам:

  • Если размер кабеля очень мал, когда ток превышает допустимую нагрузку, кабель нагревается и повреждается.Таким образом, необходимо выбрать размер кабеля, при котором он способен выдерживать полный ток нагрузки и ток короткого замыкания, который может протекать по кабелю.
  • Увеличение площади поперечного сечения кабеля потребует использования большего количества материала в его конструкции, что приведет к его удорожанию. Следовательно, будет сложно поддерживать хороший баланс между стоимостью кабеля и требованиями к его использованию. Таким образом, диаметр кабеля должен соответствовать требованиям.
  • Необходимо обеспечить подачу на нагрузку подходящего напряжения, то есть с минимальным падением напряжения. Кабель с маленьким диаметром будет иметь более высокое сопротивление. Кроме того, это вызовет большее падение напряжения на кабеле. Поэтому необходимо выбирать такой кабель, который не вызывает падения напряжения или вызывает меньшее падение напряжения.
  • Необходимо выбрать лучший тип кабеля в соответствии с требованиями применения, поскольку каждый тип проводника имеет собственное сопротивление, теплопроводность и т. Д.

Критерии выбора кабелей:

Размер кабеля определяется на основе следующих факторов:

Пропускная способность по току: Определяется путем оценки силы тока, потребляемого оборудованием или нагрузкой, подключенными к принимающему концу кабеля. В нем также предусмотрен запас прочности по току перегрузки.

Падение напряжения: Из-за сопротивления кабеля возникают потери мощности, в результате чего напряжение падает на определенную величину.В дополнение к этому падение напряжения также зависит от температуры, поскольку температура влияет на сопротивление. Если нам известны значения сопротивления кабеля и тока, протекающего по кабелю, то мы можем определить падение напряжения на этом кабеле с помощью формулы V = I * R.

Рейтинг короткого замыкания: Это способность кабеля выдерживать ток короткого замыкания в течение определенного времени повреждения, прежде чем он будет устранен без каких-либо повреждений.

Коэффициенты снижения мощности:

Существуют некоторые внешние помехи, которые влияют на номинальный ток кабеля i.е. допустимая нагрузка кабеля. В таких сценариях текущие рейтинги должны быть улучшены путем применения некоторых подходящих факторов, известных как коэффициенты снижения номинальных характеристик. Поскольку у нас есть несколько типов коэффициентов снижения, поэтому значения всех коэффициентов снижения умножаются, чтобы получить среднее значение. Ниже приведены основные факторы снижения номинальных характеристик, которые следует учитывать при выборе размера кабеля.

Температурный коэффициент снижения номинальных характеристик (C T ): Температурный коэффициент снижения номинальных характеристик (CT): кабели должны быть расположены таким образом, чтобы у них было минимальное пространство для рассеивания тепла в окружающей среде.Этот коэффициент используется в расчетах сечения кабеля, чтобы учесть расположение кабеля для минимизации тепловых потерь и, таким образом, повышения допустимой нагрузки кабеля.

Фактор группировки проводников (C G ): Электромагнитное поле вокруг проводников в группе создается, когда протекает ток, что приводит к снижению допустимой нагрузки кабеля. По этой причине учитывается фактор группировки проводников.

Термическое сопротивление почвы (C R ): Стандартная температура окружающей кабели составляет 40 ° C.Но если кабели должны быть закопаны в почву, температура вокруг кабелей повышается, и это влияет на допустимую нагрузку кабеля. Поэтому в расчетах учитывается коэффициент термического сопротивления грунта, чтобы компенсировать повышение температуры.

Коэффициент снижения глубины залегания (C D ): Этот коэффициент зависит от глубины земли, на которой должен быть проложен проводник. Более глубокое проникновение в заземляющий кабель приведет к увеличению коэффициента снижения мощности.

Как рассчитать сечение кабеля для заданной нагрузки?

Где,

 P = Реальная мощность (кВт)
         S = Полная мощность (кВА)
         В  L  = Напряжение сети
         I  L  = Линейный ток или допустимая нагрузка кабеля 

С учетом факторов снижения номинальных характеристик:

Теперь выберите размер кабеля в зависимости от указанного выше тока из стандартных таблиц размеров кабеля e.г. «Каталоги МЭК».

Закон Кельвина для экономичного сечения кабеля:

Закон Кельвина

гласит, что:

Самый экономичный размер проводника - это размер, для которого годовые проценты и амортизация капитальных затрат на него равны годовым эксплуатационным расходам

Скажем,

 Размер (площадь поперечного сечения) проводника = a
         Годовая процентная и амортизационная стоимость кондуктора =  P 1 
         Годовые эксплуатационные расходы кондуктора =  P  
P.

Поскольку годовые проценты и амортизационная стоимость проводника прямо пропорциональны размеру проводника (поскольку увеличение размера проводника приведет к увеличению его капитальных затрат и, следовательно, процентов и амортизационных расходов) i.е.

P 1 ∝ a

Итак, P 1 = k 1 .a ------------------------ eq (i)

Кроме того, годовые эксплуатационные расходы на проводник обратно пропорциональны размеру проводника (так как увеличение размера проводника уменьшит потери энергии плюс повреждения из-за нагрева и, следовательно, эксплуатационные расходы), то есть

Итак, P 2 =

к 2 к

------------------------ уравнение (ii)

Здесь k 1 и k 2 - константы.

Общую годовую стоимость проводника (скажем, P) можно получить, сложив уравнение (i) и уравнение (ii):

Чтобы общая стоимость была минимальной, дифференциал «P» относительно «a» должен быть равен нулю:

дП / да

знак равно

д / да (к 1 .а + к 2 / а)

0 = k 1 + k 2 (- 1 / a 2 )

0 = к 1 - (к 2 / а 2 )

k 2 / a 2 = k 1

k 2 / a = k 1 .a

P 2 = P 1

Экономический размер проводника (при котором годовые проценты и амортизационные расходы равны годовым эксплуатационным расходам на проводника) можно рассчитать по приведенному выше выводу:

k 2 / a 2 = k 1

а = к 1 / к 2

а = √ (к 1 / к 2 )

Пример:
Рассмотрим кабель длиной 1 км с допустимой нагрузкой 150 А в течение года (8760 часов).Стоимость прокладки кабеля составляет 0,1 доллара США за метр, где a - размер жилы в см 2 . Стоимость энергии составляет 0,001 доллара США / кВтч, а 12% составляют проценты и амортизационные отчисления. Удельное сопротивление проводника составляет 1,91 мкОм · см, поэтому определите экономичный размер проводника.

Автор: EagleRJOCC BY-SA 4.0, ссылка

Сопротивление проводника =

ρL / a

знак равно

(1,91x10 -6 ) (10 5 ) / Ом

Потери энергии / год

знак равно

2I 2 Rt / 1000 кВтч

Потери энергии / год

знак равно

2x (150) 2 x (0.191 / а) (8760) / 1000

Потери энергии / год

знак равно

75292.2 / а

) кВтч Годовые текущие расходы =

Стоимость / кВтч

Икс

Потери энергии / год

Годовые текущие расходы = 0,1 x (

75292.2 / a

) Годовые текущие расходы = $ (

75292.2 / а

) Капитальные затраты = $

16a / метр

Капитальные затраты = 16 долларов США × 1000 = 16000 долларов США

Ежегодные фиксированные платежи = Проценты и амортизация капитальных затрат

Ежегодные фиксированные платежи = 12% от 16000 долларов СШАa = 1920 долларов СШАa

Согласно закону Кельвина,

Годовые текущие платежи = Ежегодные фиксированные платежи

7529.22 / а

= 1920a

a = 3,92 см 2

Итак, экономичный размер жилы 3,92 см 2 .

Ограничения:

  • Не могут быть определены точные проценты и амортизация по капитальной стоимости.
  • Некоторые факторы, такие как допустимая нагрузка кабеля, эффект коронного разряда и т. Д., Не рассматриваются в этом законе.
  • По закону Кельвина может иметь место чрезмерное падение напряжения в размере проводника.

Типы проводников:

В зависимости от физической структуры проводники могут быть скрученными (несколько тонких проводов) или сплошными (сплошная металлическая проволока). Типы кабелей (жилы), которые используются в линиях электропередачи:

ACSR (алюминиевый проводник, армированный сталью): Он состоит из стальных нитей, окруженных алюминиевыми нитями. Это наиболее рекомендуемый проводник для линий электропередачи и используемый для более протяженных участков.

ACAR (алюминиевый проводник, армированный сплавом): Он состоит из алюминиево-магниевого кремниевого сплава, окруженного алюминиевым проводником. Он имеет более высокую механическую прочность и проводимость, чем ACSR, поэтому его можно использовать для распределения и передачи в больших масштабах, но он более дорогой.

AAC (полностью алюминиевый проводник): Он также известен как ASC (алюминиевый многожильный проводник) и имеет проводимость 61% IACS. Хотя он имеет хорошую проводимость, он все же ограничен в применении из-за низкой прочности.

AAAC (проводник из алюминиевого сплава): Он изготовлен из сплава алюминия-магния-кремния и имеет проводимость 52,5% IACS. Из-за большей прочности его можно использовать для распространения, но не рекомендуется для передачи. Подходит для использования в помещениях с повышенным содержанием влаги.

⁘ IACS (Международный стандарт отожженной меди) - это стандарт, введенный США.

Это стандарт, с которым сравнивается проводимость любого проводника.

Это значение проводимости коммерчески доступной меди.

Экранирование и изоляция кабеля:

Существуют различные слои из различных материалов, которые должны быть наложены на проводник, чтобы обеспечить изоляцию и экран кабеля с целью защиты проводника. Каждый слой имеет свою особую функцию, и ее требования зависят от применения кабелей. Например, для воздушных линий нам не нужна изоляция или экранирование, поскольку там используются неизолированные проводники, но для подземных кабелей они должны быть изолированы и экранированы.

Изоляция: Изоляция кабеля выполняется с помощью любого диэлектрика, например ПВХ, чтобы предотвратить утечку тока из проводника.

Оболочка: Кабель снабжен оболочкой для защиты кабеля от влаги. Это должен быть какой-нибудь немагнитный материал, например свинцовый сплав.

Подкладка: Предназначение подстилки - защитить оболочку кабеля от повреждений, вызванных броней.

Армирование: Армирование - это еще один слой оцинкованной стали поверх кабеля, защищающий его от любых механических повреждений.

Обслуживания: Повышает механическую прочность кабеля. Обеспечивает общую защиту от влаги, пыли и т. Д.

Подведение итогов:

Систему передачи электроэнергии можно сделать эффективной и экономичной, если следовать надлежащей методологии определения размеров и выбора кабеля.Критерии выбора, коэффициенты снижения номинальных характеристик, тип проводника, надлежащая изоляция и экранирование и т. Д. Мы должны помнить об этом во время прокладки кабеля. Таким образом мы можем добиться эффективной, безопасной и рентабельной передачи электроэнергии.

Почему предварительно отформованный литц-провод лучше всего подходит для сильноточных магнитных устройств

Почему предварительно отформованный литц-провод - ваш лучший выбор для сильноточных магнитных устройств (диапазон кГц)

Большая часть электронной промышленности сосредоточена на разработке для обеспечения высокой эффективности и форм-факторов, которые растут все меньше, инженеры все чаще проектируют магнитные катушки и обмотки для работы на высоких частотах в мегагерцовом диапазоне.Более высокие частоты создают более сильные магнитные поля и более тесную связь с меньшим количеством меди, которая подходит для небольших физических пространств. Этот переход на более высокие частоты обычно требует новых наборов микросхем, магнитных сердечников и других компонентов, подходящих для этих частот. В результате на рынке появились новые топологии обмоток. В частности, предварительно отформованная проволока Litz стала предпочтительным выбором для ВЧ-магнетиков из-за ее уникальной топологии и конструкции. В этой статье объясняется, что такое Litz-провод, как он устроен, как он помогает производить магнитные устройства, которые меньше, холоднее и эффективнее, и как уникальные преимущества предварительно отформованного Litz помогают инженерам достигать целей, которым должна соответствовать современная электроника.

Для начала, проволока Litz предлагает три существенных преимущества в конструкции таких ВЧ магнитных устройств. Во-первых, магнитные устройства, использующие намотанный медный лицевый провод, работают более эффективно, чем устройства, использующие традиционный магнитный провод. Например, в диапазоне низких килогерц выигрыш в эффективности по сравнению с обычным проводом может превышать 50 процентов, а в диапазоне низких мегагерц - 100 процентов и более. Во-вторых, за счет предварительной формовки проволоки Литца коэффициент заполнения, иногда называемый плотностью упаковки, значительно улучшается.Литцевый провод чаще всего имеет квадратную, прямоугольную и трапецеидальную формы, что позволяет инженерам-разработчикам максимизировать добротность цепей и минимизировать потери и сопротивление устройства переменному току. В-третьих, в результате этого предварительного формования устройства, использующие предварительно сформованную проволоку Литца, помещают больше меди в меньшие физические размеры, чем устройства, использующие обычный магнитный провод.

Эти характеристики сделали Litz предпочтительным выбором инженеров-проектировщиков для широкого спектра продуктов и устройств на протяжении многих лет.Тем не менее, ускоренный рост в электронной промышленности еще больше популяризировал проволоку Litz и, в частности, преобразил ее.

Беспрецедентный рост в электронике

Инновации в области искусственного интеллекта и робототехники, автономные транспортные средства для коммерческого, военного и частного использования, достижения в области медицинских технологий, вычислений и телекоммуникаций, а также десятки других сегментов рынка породили во всем мире растущий спрос на технологии продукты.

Включая потребительский, промышленный и военный сегменты рынка, электроника в совокупности составляет значительную и постоянно растущую часть национального и даже мирового валового внутреннего продукта.Например, согласно данным Ассоциации потребительских технологий (CTA) TM , в 2015 году только потребительский сектор произвел 1,9 триллиона долларов, что составляет 5,2 процента валового внутреннего продукта (ВВП) США. Еще несколько примеров дополнительно иллюстрируют быстрый рост сектора электроники…

  • Ожидается, что рост в технологическом секторе Индии достигнет 1 триллиона долларов в следующие несколько лет, включая 650 миллиардов долларов в производстве оборудования и Интернета вещей.
  • Министерство обороны США представило бюджет на 2019 финансовый год на 12,93 миллиарда долларов на электронику, включая военную связь, телекоммуникации и разведывательные технологии.
  • С ростом потребительских расходов в развивающихся странах растет и спрос на электронную продукцию. В странах, производящих электронные устройства, растущая конкуренция снижает стоимость производства, делая эти устройства доступными для еще более широкого потребительского рынка.

В связи с мировым ростом производства электроники и необходимостью миниатюризации с одновременным увеличением плотности меди, а также с необходимостью создания катушек индуктивности с более высокой добротностью и номинальными потерями, спрос на предварительно сформованные провода Litz соответствует аналогичной тенденции роста.

Litz Wire 101

Тем, кто не знаком с основными характеристиками Litz Wire, обратите внимание на следующие факты.

Его происхождение

Проволока Litz получила свое название от немецкого litzendraht , что означает плетеный или многожильный провод. Литц-проволока изготавливается путем плетения или скручивания множества тонких жил изолированной проволоки по определенному шаблону. Литц-проволока была представлена ​​и коммерциализирована в США в 1898 году компанией New England Wire Technologies.

Основные характеристики

Литцовый провод состоит из ряда индивидуально изолированных магнитных проводов, скрученных или сплетенных в однородный узор. В некоторых конструкциях Litz скрученные связки соединяются с другими связками, которые затем скручиваются в конечный продукт.

Уникальное скручивание проволоки Litz позволяет разместить каждую жилу на внешней периферии проводника и в его центре в равной степени. Этот уникальный метод скручивания в сочетании с тщательно подобранным диаметром проволоки дает проволоке Litz возможность минимизировать потери от двух источников: скин-эффекта и эффекта близости.

  • Litz снижает потери скин-эффекта. Переменный ток, протекающий по проводу, все больше перемещается к поверхности проводника с увеличением частоты. Этот скин-эффект увеличивает сопротивление провода переменному току прямо пропорционально частоте тока. Например, при токе 5 кГц, протекающем по обычному проводу, плотность тока в основном ограничивается внешними 42,3 мил проводника, в то время как при 100 кГц он протекает только через крайние 9,46 мил.Эти меры известны как глубина кожи. На частотах до нескольких мегагерц сопротивление переменному току в одном проводе может быть в 20 или более раз больше, чем у лицевого провода того же диаметра, что приводит к тепловым потерям, которые в сильноточных приложениях могут поставить под угрозу устройство.

Дизайнеры могут практически устранить скин-эффект с помощью проволоки Litz. Ключевым моментом является выбор диаметра отдельных жилок, скрученных в конструкцию Litz, который подобен глубине скин-слоя для данной частоты.Это вызывает протекание тока почти через все поперечное сечение каждого провода, что сводит к минимуму сопротивление переменному току и тепловые потери.

  • Litz также снижает потери от эффекта близости. Переменный ток, протекающий через каждый проводник в катушке или обмотке, создает вокруг него переменное магнитное поле. Это поле индуцирует вихревые токи в соседних обмотках, изменяя общее распределение тока, протекающего через них, и создавая потери, которые проявляются в виде нежелательного тепла.В результате ток концентрируется в областях проводника, наиболее удаленных от соседних проводников, по которым ток проходит в том же направлении. Этот эффект близости увеличивается с частотой. На более высоких частотах эффект близости может повысить сопротивление проводника переменному току в десять раз по сравнению с сопротивлением постоянного тока.

Уникальная схема скручивания проводов Litz обеспечивает почти одинаковое расположение каждой жилы внутри и снаружи кабеля, что уравновешивает потокосоединения и реактивные сопротивления отдельных жил.Это заставляет ток равномерно распространяться по проводнику. Соотношение сопротивлений (переменного и постоянного тока) тогда приближается к единице, что особенно желательно в схемах с высокой добротностью.

Базовая конструкция

Литц-провод изготавливается с индивидуально изолированными жилами, которые могут иметь диапазон от 28 до 48 AWG. Обычная пленочная изоляция магнитных проводов - поливинилформаль, полиуретан, полиуретан / нейлон, паяемый полиэфир, паяемый полиэфир / нейлон, полиэфир / полиамид-имид и полиимид - обычно используются для изоляции каждой жилы.

Наружная изоляция и изоляция на проводниках компонентов в некоторых стилях может представлять собой порции или плетения из нейлона, хлопка, Nomex®, стекловолокна или керамики. Полиэфирные, термосвариваемые полиэфирные, полиимидные и тефлоновые ленты, а также экструзии из большинства термопластов также доступны в качестве внешней изоляции, если приложения диктуют особые требования к пробою напряжения или защите окружающей среды.

Предварительно отформованная проволока Litz изначально имеет круглое поперечное сечение.Формованные конструкции - это те, в которых пучок проводов изменен и сформирован для создания геометрии, отличной от исходной круглой конструкции. Следует проявлять особую осторожность, чтобы изменить форму пучка, не повредив внешнюю пленочную изоляцию отдельных жил провода. Типичными формами формованной проволоки Litz являются прямоугольная, квадратная и трапецеидальная.

Типы и конструкции лицевых проводов

Литц-проволоки производятся в восьми различных стилях. Конструкции проводов типа 4, 5 и 6 Litz используют по крайней мере один инертный сердечник и используются в основном в схемах настройки для мощных радиопередатчиков.Меньшие конструкции из литцевых проводов типов 1 и 2 обычно используются в схемах с высокой добротностью, таких как тороидальные катушки и трансформаторы. Более крупные конструкции Litz-проводов типа 2 и 3 имеют большую пропускную способность по току, необходимую для высокочастотного источника питания, инвертора и заземления. Типы 7 и 8 скручены и сжаты в прямоугольный профиль. (Узнайте больше здесь).

Высокая эффективность проволоки Litz делает ее предпочтительным выбором в перечисленных здесь областях применения.

Трансформаторы 9 0004 Катушки индукционного нагрева Поскольку Litz изготавливается в восьми стилях, конструкции Типа 8 и Тип 2 чаще всего используются для изготовления предварительно отформованной проволоки Litz.Тип 8 использует изолированные жилы квадратного или прямоугольного сечения. Более экономичный тип 2 имеет связки скрученных проводов, каждый из которых снова скручен вместе, а затем покрыт дополнительной внешней изоляцией. И тип 2, и тип 8 могут иметь квадратное, прямоугольное и трапецеидальное поперечное сечение.

Тип 2 обычно используется в схемах с высокой добротностью, таких как тороидальные катушки и трансформаторы, на частотах до 1 МГц. Конструкции типа 2 с более тяжелым калибром обладают большей допустимой нагрузкой по току, необходимой для высокочастотных источников питания, систем кондиционирования, инвертора и заземления.Тип 2 хорошо подходит для широкого спектра применений и быстро становится первым выбором для проектирования магнитных устройств.

Распространенные заблуждения о лицевом проводе

  • Литцевый провод нельзя паять.

Большинство проводов Litz покрыто изоляцией с использованием паяемого полиуретана, паяемого полиуретана / нейлона или других покрытий. Для немногих специализированных конструкций Litz, в которых используется изоляция из высокотемпературной эмали, ряд простых процессов позволяет легко удалить эмаль, которая делает эти конструкции легко паяемыми.(Узнайте больше здесь и здесь).

  • Литцевый провод сложно определить для конкретного применения.

Изначально необходимо ответить на два ключевых вопроса при выборе типа лицевого провода, наиболее подходящего для данного приложения. Во-первых, это ожидаемый среднеквадратичный ток, который помогает определить калибр и конструкцию провода.

Секунда - это частота, которая будет использоваться в приложении. Важно выбрать калибр проволоки для отдельных жил, диаметр которых сопоставим с глубиной поверхностного слоя на используемой частоте.В таблице показано, как различные частоты отображаются (примерно) в диаметры провода AWG. Однако, когда стоимость является проблемой, использование более дешевого провода более толстого сечения с диаметром примерно в два раза больше толщины скин-слоя редко приводит к значительным потерям ниже 1 МГц.

Litz Applications Например ...
Беспроводная передача энергии Системы зарядки транспортных средств
Схема высокого качества Катушки настройки
Трансформаторы Power
Катушки индуктивности, дроссели Солнечные инверторы, моторные приводы (VFD)
Двигатели и генераторы, линейные асинхронные двигатели, двигатели с постоянными магнитами Поезда Maglev, движение транспортных средств, бурение нефти и природного газа, ветряные турбины
Высокочастотные источники питания Катушки и трансформаторы
Инверторы DC to AC
Заземление с низким импедансом Промышленное оборудование
Преобразователи постоянного тока в постоянный ток Электрические транспортные средства
Индукционные варочные панели, герметизация бутылок, предварительный нагрев формы перед впрыском пластика
Балласт Флуоресцентное освещение
Распространение высокочастотного силового лицевого провода Выводы на оборудование для индукционного осаждения тонкой пленки, МРТ Нагревание
Накопитель энергии с маховиком Накопитель энергии
Катушки удержания плазмы Stellarator, эксперименты по слиянию
Specialty Audio High Fidelity Speaker Wire, Audio Interconnect

9 до кГц
от 60 Гц до 1 кГц 28 AWG
от 1 кГц до 10 кГц 30 AWG
от 10 кГц до 20 кГц 33 AWG
20 кГц 36 AWG
от 50 кГц до 100 кГц 38 AWG
от 100 кГц до 200 кГц 40 AWG
от 200 кГц до 350 кГц 42 AWG
44 AWG
от 850 кГц до 1.4 МГц 46 AWG
от 1,4 до 2,8 МГц 48 AWG

Однако эти два фактора не определяют точную необходимую конструкцию Litz. Дальнейшие расчеты необходимы для достижения целей проекта. Чарльз Салливан (Дартмутский колледж) и Ричард Чжан (Массачусетский технологический институт) предлагают упрощенный подход к выбору количества и диаметра нитей в проволоке Литца, и они показывают, как выбрать количество нитей или частей пучков для объединения при каждой операции скручивания.

Или, чтобы получить более точную помощь в выборе Litz-провода, наша команда инженеров по работе с клиентами может помочь определить лучшую конфигурацию Litz для данного приложения. Такая консультация часто приводит к обсуждению проекта; коллаборация по геометрии катушки; и, возможно, об использовании специальных программных средств компьютерного моделирования и других ресурсов.

  • Литц-провод слишком дорог.

Хотя Litz более дорогостоящий, чем простой магнитный провод, есть очевидные случаи, когда требуется Litz-провод.

  • Магнитное устройство будет использовать переменный ток высокой частоты. Литц-проволока сводит к минимуму потери, возникающие на высоких частотах. Как отмечалось выше, многие приложения работают на 50–100% эффективнее с использованием литцовой проволоки, а не обычной магнитной проволоки.
  • Проект требует устройств меньшего размера и веса. Использование Litz, и особенно предварительно отформованного Litz, может уменьшить размер и вес готового устройства.
  • Требуется миниатюризация. Реальная ценность Litz становится очевидной, когда готовое устройство настолько эффективно, что конечный продукт может быть уменьшен.
  • Стоимость владения. Litz может способствовать снижению стоимости владения конечным продуктом в долгосрочной перспективе за счет более эффективного использования энергии.
  • Аккумуляторные проекты. Более высокая эффективность и низкие потери Litz продлевают срок службы батареи. Например, электроника с батарейным питанием для спешившегося солдата должна работать с максимальной эффективностью, чтобы продолжать работать в расширенных миссиях, которые могут длиться до 72 часов.

Preformed Litz имеет небольшую разницу в цене по сравнению с круглой проволокой Litz.Тем не менее, предварительное формование дает еще меньшее, более легкое и более эффективное устройство (рассчитанное примерно на 10% более эффективное использование площади, энергоэффективность или сочетание того и другого), чем круглая проволока Litz. Если достижение 10% -ного прироста производительности является значительным для приложения, рост цен на предварительно отформованный Litz мало повлияет на стоимость сборки по сравнению с обычным круглым Litz.

Узнайте, как преформованная проволока Litz улучшает ваш дизайн

Производство предварительно формованной проволоки Litz - это специальность, которую компания New England Wire усовершенствовала после того, как более века поставляла круглые конструкции Litz электронной промышленности.В последние годы компания разработала запатентованные технологии изготовления, которые позволяют надежно обрабатывать круглые конструкции Litz с получением различной геометрии поперечного сечения - и все это без повреждения отдельных жил или их изоляции и при поддержке обширных программ компании по обеспечению качества.

Предварительно отформованная проволока Litz улучшает ваш дизайн не только за счет повышения эффективности вашего магнитного устройства. Для инженерных групп, использующих подход «Дизайн для совершенства» (DFX), использование предварительно отформованной проволоки Litz может повлиять на ремонтопригодность, технологичность, экономичность, надежность и удобство обслуживания.Независимо от того, требует ли ваша задача проектирования магнитных устройств низкие потери, высокую добротность или малый форм-фактор, свяжитесь с нами и воспользуйтесь нашими десятилетиями знаний.

Загрузите копию этого содержания для печати

Сопротивление и удельное сопротивление | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объясните понятие удельного сопротивления.
  • Используйте удельное сопротивление для расчета сопротивления материалов указанной конфигурации.
  • Используйте термический коэффициент удельного сопротивления для расчета изменения сопротивления в зависимости от температуры.

Зависимость сопротивления от материала и формы

Сопротивление объекта зависит от его формы и материала, из которого он составлен. Цилиндрический резистор на Рисунке 1 легко проанализировать, и таким образом мы сможем понять сопротивление более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорционально его длине L , подобно сопротивлению трубы потоку жидкости.Чем длиннее цилиндр, тем больше зарядов соударяется с его атомами. Чем больше диаметр цилиндра, тем больше тока он может пропускать (опять же, как поток жидкости по трубе). Фактически, R обратно пропорционален площади поперечного сечения цилиндра A .

Рис. 1. Однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление.Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.

Сопротивление данной формы зависит от материала, из которого изготовлен объект. Различные материалы обладают разным сопротивлением потоку заряда. Мы определяем удельное сопротивление ρ вещества так, чтобы сопротивление R объекта было прямо пропорционально ρ . Удельное сопротивление ρ - это внутреннее свойство материала, независимо от его формы или размера.Сопротивление R однородного цилиндра длиной L , площадью поперечного сечения A и изготовленного из материала с удельным сопротивлением ρ составляет

[латекс] R = \ frac {\ rho L} {A} \\ [/ латекс].

В таблице 1 приведены репрезентативные значения ρ . Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельных сопротивлений. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление.Проводники имеют различную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться. Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

Таблица 1.Удельное сопротивление ρ различных материалов при 20º C
Материал Удельное сопротивление ρ ( Ом м )
Проводники
Серебро 1. 59 × 10 −8
Медь 1. 72 × 10 −8
Золото 2. 44 × 10 −8
Алюминий 2.65 × 10 −8
Вольфрам 5. 6 × 10 −8
Утюг 9. 71 × 10 −8
Платина 10. 6 × 10 −8
Сталь 20 × 10 −8
Свинец 22 × 10 −8
Манганин (сплав Cu, Mn, Ni) 44 × 10 −8
Константан (сплав Cu, Ni) 49 × 10 −8
Меркурий 96 × 10 −8
Нихром (сплав Ni, Fe, Cr) 100 × 10 −8
Полупроводники
Углерод (чистый) 3.5 × 10 5
Углерод (3,5 - 60) × 10 5
Германий (чистый) 600 × 10 −3
Германий (1−600) × 10 −3
Кремний (чистый) 2300
Кремний 0,1–2300
Изоляторы
Янтарь 5 × 10 14
Стекло 10 9 - 10 14
Люцит > 10 13
Слюда 10 11 - 10 15
Кварц (плавленый) 75 × 10 16
Резина (твердая) 10 13 - 10 16
Сера 10 15
Тефлон > 10 13
Дерево 10 8 -10 11

Пример 1.Расчет диаметра резистора: нить накала фары

Нить накала автомобильной фары изготовлена ​​из вольфрама и имеет сопротивление холоду 0,350 Ом. Если нить представляет собой цилиндр длиной 4,00 см (ее можно свернуть в бухту для экономии места), каков ее диаметр?

Стратегия

Мы можем переставить уравнение [латекс] R = \ frac {\ rho L} {A} \\ [/ latex], чтобы найти площадь поперечного сечения A нити на основе данной информации. Тогда его диаметр можно определить, предположив, что он имеет круглое поперечное сечение.{-5} \ text {m} \ end {array} \\ [/ latex].

Обсуждение

Диаметр чуть меньше десятой миллиметра. Он состоит только из двух цифр, потому что ρ известен только из двух цифр.

Температурное изменение сопротивления

Удельное сопротивление всех материалов зависит от температуры. Некоторые даже становятся сверхпроводниками (нулевое сопротивление) при очень низких температурах. (См. Рисунок 2.)

Рис. 2. Сопротивление образца ртути равно нулю при очень низких температурах - это сверхпроводник до примерно 4.2 К. Выше этой критической температуры его сопротивление резко возрастает, а затем увеличивается почти линейно с температурой.

И наоборот, удельное сопротивление проводников увеличивается с увеличением температуры. Поскольку атомы колеблются быстрее и на больших расстояниях при более высоких температурах, электроны, движущиеся через металл, совершают больше столкновений, эффективно увеличивая удельное сопротивление. При относительно небольших изменениях температуры (около 100 ° C или менее) удельное сопротивление ρ изменяется с изменением температуры Δ T , как выражено в следующем уравнении

ρ = ρ 0 (1 + α Δ T ),

, где ρ 0 - исходное удельное сопротивление, а α - температурный коэффициент сопротивления .(См. Значения α в Таблице 2 ниже.) Для более значительных изменений температуры α может измениться, или может потребоваться нелинейное уравнение, чтобы найти ρ . Обратите внимание, что α положительно для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Например, у манганина (который состоит из меди, марганца и никеля) α близко к нулю (до трех цифр на шкале в Таблице 2), и поэтому его удельное сопротивление незначительно меняется с температурой.Это полезно, например, для создания не зависящего от температуры эталона сопротивления.

Таблица 2. Температурные коэффициенты удельного сопротивления α
Материал Коэффициент (1 / ° C)
Проводники
Серебро 3,8 × 10 −3
Медь 3,9 × 10 −3
Золото 3.4 × 10 −3
Алюминий 3,9 × 10 −3
Вольфрам 4,5 × 10 −3
Утюг 5,0 × 10 −3
Платина 3,93 × 10 −3
Свинец 3,9 × 10 −3
Манганин (сплав Cu, Mn, Ni) 0,000 × 10 −3
Константан (сплав Cu, Ni) 0.002 × 10 −3
Меркурий 0,89 × 10 −3
Нихром (сплав Ni, Fe, Cr) 0,4 ​​× 10 −3
Полупроводники
Углерод (чистый) −0,5 × 10 −3
Германий (чистый) −50 × 10 −3
Кремний (чистый) −70 × 10 −3

Также обратите внимание, что α отрицательно для полупроводников, перечисленных в Таблице 2, что означает, что их удельное сопротивление уменьшается с повышением температуры.Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках. Сопротивление объекта также зависит от температуры, поскольку R 0 прямо пропорционально ρ . Для цилиндра мы знаем, что R = ρL / A , и поэтому, если L и A не сильно изменяются с температурой, R будет иметь такую ​​же температурную зависимость, как ρ .(Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ .) Таким образом,

R = R 0 (1 + α Δ T )

- это температурная зависимость сопротивления объекта, где R 0 - исходное сопротивление, а R - сопротивление после изменения температуры Δ T .Многие термометры основаны на влиянии температуры на сопротивление. (См. Рис. 3.) Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры. Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Рис. 3. Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.(Источник: Biol, Wikimedia Commons)

Пример 2. Расчет сопротивления: сопротивление горячей нити

Хотя следует соблюдать осторожность при нанесении ρ = ρ 0 (1 + α Δ T ) и R = R 0 (1 + α Δ T ) для изменений температуры более 100 ° C, для вольфрама уравнения достаточно хорошо работают при очень больших изменениях температуры. Каково же тогда сопротивление вольфрамовой нити в предыдущем примере, если ее температура повышается с комнатной температуры (20ºC) до типичной рабочей температуры 2850ºC?

Стратегия

Это прямое применение R = R 0 (1 + α Δ T ), поскольку исходное сопротивление нити было задано равным R 0 = 0.{-3} / º \ text {C} \ right) \ left (2830º \ text {C} \ right) \ right] \\ & = & {4.8 \ Omega} \ end {array} \\ [/ latex] .

Обсуждение

Это значение соответствует примеру сопротивления фары в Законе Ома: сопротивление и простые цепи.

Исследования PhET: сопротивление в проводе

Узнайте о физике сопротивления в проводе. Измените его удельное сопротивление, длину и площадь, чтобы увидеть, как они влияют на сопротивление провода. Размеры символов в уравнении меняются вместе со схемой провода.

Щелкните, чтобы запустить моделирование.

Сводка раздела

  • Сопротивление R цилиндра длиной L и площадью поперечного сечения A составляет [латекс] R = \ frac {\ rho L} {A} \\ [/ latex], где ρ - удельное сопротивление материала.
  • Значения ρ в таблице 1 показывают, что материалы делятся на три группы - проводник, полупроводник и изолятор .
  • Температура влияет на удельное сопротивление; для относительно небольших изменений температуры Δ T удельное сопротивление равно [латекс] \ rho = {\ rho} _ {0} \ left (\ text {1} + \ alpha \ Delta T \ right) \\ [/ latex], где ρ 0 - исходное удельное сопротивление, а [латекс] \ text {\ alpha} [/ latex] - температурный коэффициент удельного сопротивления.
  • В таблице 2 приведены значения для α , температурного коэффициента удельного сопротивления.
  • Сопротивление R объекта также зависит от температуры: [латекс] R = {R} _ {0} \ left (\ text {1} + \ alpha \ Delta T \ right) \\ [/ latex], где R 0 - исходное сопротивление, а R - сопротивление после изменения температуры.

Концептуальные вопросы

1. В каком из трех полупроводниковых материалов, перечисленных в таблице 1, примеси дают свободные заряды? (Подсказка: изучите диапазон удельного сопротивления для каждого и определите, имеет ли чистый полупроводник большую или меньшую проводимость.)

2. Зависит ли сопротивление объекта от пути тока, проходящего через него? Рассмотрим, например, прямоугольный стержень - одинаковое ли сопротивление по длине и по ширине? (См. Рисунок 5.)

Рис. 5. Встречается ли ток, проходящий по двум разным путям через один и тот же объект, с разным сопротивлением?

3. Если алюминиевый и медный провода одинаковой длины имеют одинаковое сопротивление, какой из них имеет больший диаметр? Зачем?

4. Объясните, почему [латекс] R = {R} _ {0} \ left (1+ \ alpha \ Delta T \ right) \\ [/ latex] для температурного изменения сопротивления R объекта равен не так точен, как [латекс] \ rho = {\ rho} _ {0} \ left ({1} + \ alpha \ Delta T \ right) \\ [/ latex], что дает температурное изменение удельного сопротивления ρ .

Задачи и упражнения

1. Каково сопротивление отрезка медного провода 12 калибра длиной 20,0 м и диаметром 2,053 мм?

2. Диаметр медного провода нулевого калибра 8,252 мм. Найдите сопротивление такого провода длиной 1,00 км, используемого для передачи энергии.

3. Если вольфрамовая нить диаметром 0,100 мм в лампочке должна иметь сопротивление 0,200 Ом при 20 ° C, какой длины она должна быть?

4. Найдите отношение диаметра алюминиевого провода к медному, если они имеют одинаковое сопротивление на единицу длины (как в бытовой электропроводке).

5. Какой ток протекает через стержень из чистого кремния диаметром 2,54 см и длиной 20,0 см при приложении к нему 1,00 × 10 3 В? (Такой стержень может быть использован, например, для изготовления детекторов ядерных частиц.)

6. (а) До какой температуры нужно нагреть медный провод, изначально равный 20,0 ° C, чтобы удвоить его сопротивление, не обращая внимания на любые изменения размеров? (б) Происходит ли это в бытовой электропроводке при обычных обстоятельствах?

7. Резистор из нихромовой проволоки используется там, где его сопротивление не может изменяться более чем на 1.00% от его значения при 20,0ºC. В каком температурном диапазоне его можно использовать?

8. Из какого материала изготовлен резистор, если его сопротивление на 40,0% больше при 100 ° C, чем при 20,0 ° C?

9. Электронное устройство, предназначенное для работы при любой температуре в диапазоне от –10,0 ° C до 55,0 ° C, содержит резисторы из чистого углерода. В какой степени их сопротивление увеличивается в этом диапазоне?

10. (a) Из какого материала сделана проволока, если она имеет длину 25,0 м, диаметр 0,100 мм и сопротивление 77.7 Ом при 20,0 ° C? (б) Каково его сопротивление при 150 ° C?

11. При условии постоянного температурного коэффициента удельного сопротивления, каков максимальный процент снижения сопротивления константановой проволоки, начиная с 20,0 ° C?

12. Проволока протягивается через матрицу, растягивая ее в четыре раза по сравнению с исходной длиной. В какой степени увеличивается его сопротивление?

13. Медный провод имеет сопротивление 0,500 Ом при 20,0 ° C, а железный провод имеет сопротивление 0,525 Ом при той же температуре.При какой температуре их сопротивления равны?

14. (a) Цифровые медицинские термометры определяют температуру путем измерения сопротивления полупроводникового устройства, называемого термистором (который имеет α = –0,0600 / ºC), когда он находится при той же температуре, что и пациент. Какова температура пациента, если сопротивление термистора при этой температуре составляет 82,0% от его значения при 37,0 ° C (нормальная температура тела)? (b) Отрицательное значение α не может поддерживаться при очень низких температурах.Обсудите, почему и так ли здесь. (Подсказка: сопротивление не может стать отрицательным.)

15. Integrated Concepts (a) Повторите упражнение 2 с учетом теплового расширения вольфрамовой нити. Вы можете принять коэффициент теплового расширения 12 × 10 −6 / ºC. б) На какой процент ваш ответ отличается от приведенного в примере?

16. Необоснованные результаты (a) До какой температуры нужно нагреть резистор из константана, чтобы удвоить его сопротивление, при условии постоянного температурного коэффициента удельного сопротивления? б) разрезать пополам? (c) Что необоснованного в этих результатах? (d) Какие предположения необоснованны или какие посылки несовместимы?

Сноски

  1. 1 Значения сильно зависят от количества и типа примесей
  2. 2 значения при 20 ° C.

Глоссарий

удельное сопротивление:
внутреннее свойство материала, независимо от его формы или размера, прямо пропорциональное сопротивлению, обозначаемое как ρ
температурный коэффициент удельного сопротивления:
эмпирическая величина, обозначаемая как α , которая описывает изменение сопротивления или удельного сопротивления материала при температуре

Избранные решения проблем и упражнения

1.0,104 Ом

3. 2,8 × 10 −2 м

5. 1,10 × 10 −3 A

7. от −5ºC до 45ºC

9. 1.03

11. 0,06%

13. −17ºC

15. (a) 4,7 Ом (всего) (b) уменьшение на 3,0%


Что нужно знать о кабелях в солнечной фотоэлектрической системе

Солнечные кабели и провода рассматриваются как артерии и вены любой солнечной фотоэлектрической системы.

В основном, электричество, вырабатываемое фотоэлектрическими панелями, используется в другом месте.Кабели и провода от солнечных батарей необходимы для транспортировки этой электроэнергии.

В чем разница между кабелем и проводом?

Термины провода и кабели часто путают, но на самом деле между ними существует большая разница .

Солнечный провод - это одиночный провод , а солнечный кабель - это группа из двух или более проводов внутри изолированной оболочки. Провода являются составной частью кабелей.

Провода

(Источник: http: // www.rallison.com)

Проволока - это одножильный провод (обычно из меди или алюминия, оба из которых имеют очень хорошую проводимость, пластичность и пластичность). Всего двух форм проводов:

Одинарный или сплошной провод

Одиночный или сплошной провод - это одиночный провод , который либо оголен, либо изолирован защитной оболочкой.

Он используется в приложениях static , таких как домашние приложения в качестве электропроводки, которая заштукатурена внутри

Сплошные провода на дешевле и имеют на более компактный диаметр для такой же токопроводящей способности, что и многожильные провода.Однако они доступны только в малых калибрах .

Многожильный провод

Многожильный провод состоит из нескольких тонких жилок, скрученных вместе, чтобы образовать одну жилу.

Они подходят для приложений, в которых они подвержены частым движениям или даже вибрациям (например, в робототехнике или в транспортных средствах).

Многожильные провода на проще прокладывать , но они имеют на больший диаметр при той же несущей способности, что и сплошные провода, а также на дороже .

Кабели

Кабель состоит из двух или более изолированных проводов, заключенных вместе в одну оболочку.

Кабель может содержать любое количество (более одного) проводников, а его внешний диаметр может быть в зависимости от количества проводов . Кабели классифицируются по количеству жил и их калибру.

Различие проводится между кабелями солнечного модуля (или струны), силовыми кабелями постоянного тока солнечной батареи и соединительными кабелями переменного тока солнечной батареи.

Кабели постоянного тока для солнечных батарей

Есть два типа солнечных кабелей постоянного тока:

«Модульные кабели» или «струнные кабели».

Эти кабели обычно интегрированы в фотоэлектрические солнечные панели и оснащены подходящими соединителями для соединения.

Здесь у вас есть , небольшое влияние на тип используемого кабеля.

Главный кабель постоянного тока

Специальные удлинительные кабели следует использовать для подключения положительного и отрицательного кабелей от гирлянд к соединительной коробке генератора (или непосредственно к инвертору солнечной энергии).

В зависимости от выходной мощности обычно используются модулей, фотоэлектрические кабели с поперечным сечением 2,5 мм², 4 мм² и 6 мм².

Кабели постоянного тока используются вне помещений . Во избежание замыкания на землю и короткого замыкания положительный и отрицательный кабели нельзя прокладывать вместе в одном кабеле.

Однопроволочные кабели с двойной изоляцией оказались практичным решением и обладают высокой надежностью.

Кабели постоянного тока между модулями, а также между соединительной коробкой генератора и инвертором солнечной энергии представляют собой двухжильные кабели , токопроводящий, как правило, красный провод под напряжением, и отрицательный синий провод, оба обычно окружены изоляцией. слой.

Существует трех типов конструкций для подключения фотоэлектрических цепочек к инвертору солнечной энергии:

  • Фотоэлектрическая система с блоком сумматора постоянного тока

Соединительный кабель переменного тока

Соединительный кабель переменного тока соединяет инвертор солнечной энергии с электросетью через защитное оборудование.

В случае трехфазных инверторов подключение к сети низкого напряжения выполняется с помощью пятижильных кабелей переменного тока (три провода под напряжением для трех фаз, по которым проходит ток, нейтральный провод отводит ток от устройство и заземляющий провод (предохранительный провод), соединяющий корпус устройства с землей).

Для систем

с однофазными инверторами требуется трехжильных кабелей (один провод под напряжением, нейтральный провод и заземляющий провод).

Необходимо соблюдать национальные нормы и правила.

Правильный выбор размеров солнечных кабелей и проводов в солнечной системе

При подключении различных компонентов солнечной фотоэлектрической системы необходимо использовать кабель солнечного коллектора правильного размера .

Правильный выбор размеров солнечных кабелей гарантирует , что практически нет перегрева и очень мало потерь энергии.

Использование кабеля меньшего диаметра не только может вызвать пожар из-за перегрева, но также является нарушением норм в большинстве юрисдикций.

Факторы, определяющие размер солнечного провода

Размер используемого провода зависит от:

  1. генерирующая мощность солнечной панели (больше генерируемый ток, больше размер)
  2. расстояние системы солнечных батарей до нагрузок (больше расстояние, больше размер)

Какое сечение кабеля подходит для основного кабеля постоянного тока?

В случае подключения серии фотоэлектрических солнечных панелей (типичная ситуация), инверторы должны быть установлены как можно ближе к входному счетчику (подвал), так как потери, вызванные длиной солнечного кабеля на стороне переменного тока выше , как на стороне постоянного тока.

Постоянный ток , генерируемый фотоэлектрическими солнечными панелями, должен достигать, насколько это возможно, без потерь для инвертора солнечной энергии. Потери недостижимы, потому что каждый кабель имеет сопротивление потерь при температуре окружающей среды.

Какой толщины должно быть поперечное сечение основного кабеля постоянного тока для снижения потерь на разумном уровне , будет объяснено в следующем параграфе.

One проектирует основного кабеля постоянного тока так, чтобы его потери были меньше, чем 1% от пикового выхода фотоэлектрического генератора.

Каждый кабель имеет омическое сопротивление . Падение напряжения на этом сопротивлении соответствует закону Ома U = R * I (где U - напряжение, R - сопротивление и I - ток).

Сопротивление R кабеля зависит от трех параметров :

  • Длина кабеля : чем длиннее кабель, тем больше сопротивление.
  • Площадь поперечного сечения кабеля : чем больше эта площадь, тем меньше сопротивление.
  • Используемый материал и его удельное сопротивление, в общем, медь или алюминий. Проводимость двух веществ составляет:
  1. Медь : σ> = 58 * 10 6 См / м (Siemens pro m) = 58 м / (Ом · мм²)
  2. Алюминий : σ> = 36,59 * 10 6 См / м = 36,59 м / (Ом · мм²)

Оба значения рассчитаны при 300 K (около 27 ° C). При более высоких температурах сопротивление материала увеличивается, а проводимость уменьшается.

Расчет сопротивления кабеля (пример)

Омическое сопротивление солнечного кабеля составляет , рассчитанное по формуле:

R = 1 / σ * l / A (где l - длина кабеля, а A - площадь поперечного сечения кабеля)

Расстояние между солнечными фотоэлектрическими панелями и инвертором солнечной энергии составляет 15 метров. В результате общая длина кабеля, по которому протекает постоянный ток, составляет 30 метров (исходящий и входящий кабель).Мы используем кабель для солнечных батарей с поперечным сечением кабеля 4 мм².

Омическое сопротивление:

R = 1 / (58 м / Ом · мм²) * 30 м / 4 мм² = 129,3 мОм (Миллиом)

Сколько потерь в этом кабеле?

Потери мощности P при омическом сопротивлении: P = U * I = R * I 2

У нас есть модульная цепочка с 11 модулями (Schott poly 230, 60-ячеечные модули 230Wp), мощность на цепочку составляет 2,53 Втp.

Потеря мощности должна быть менее 1% (2530 Вт * 1% = 25,3 Вт).

При токе 7,66 А (I mpp ) максимальное сопротивление кабеля составляет:

25,2 Вт / (7,66 А) 2 = 0,431 Ом

Если в качестве материала кабеля использовать медь , минимальное поперечное сечение кабеля при длине кабеля 30 м составит:

A = 1 / (58 м / Ом · мм²) * 30 м / 0,431 Ом> = 1,2 мм²

Можно видеть, что здесь сечение кабеля 1x 2,5 мм² составляет , достаточное для поддержания потерь ниже 1%.

В Интернете представлено большое количество инструментов , которые помогают выбрать кабель правильного размера для установки солнечной панели.

AWG (Американский калибр проводов)

American Wire Gauge (AWG) - это стандартизированная система калибра , используемая в Северной Америке для определения диаметров проволоки.

Чем больше номер AWG, тем меньше размер провода.

Таблица ниже показывает емкость проводов разного калибра и их средний номинальный ток:

(Источник: http: // mr168.co)

Как проверить качество солнечного кабеля

Солнечные кабели должны соответствовать следующим требованиям для использования в фотоэлектрических системах:

  • Good Устойчивость к погодным условиям, озону и ультрафиолетовому излучению: солнечные кабели обычно используются на открытом воздухе и подвержены воздействию прямых солнечных лучей и влажности воздуха.
  • Подходит для большого диапазона температур (от -40 ° C до 90 ° C).
  • Выдерживает механическое напряжение , такое как сжатие, растяжение, изгиб и сдвиг.
  • Износостойкий , поэтому большинство кожухов изготовлено из пластика, сшитого с помощью электронов
  • Кислотостойкость и щелочность
  • Высокая диэлектрическая прочность (в зависимости от типа применения)
  • огнестойкий и безгалогенный (безгалогенные кабели обладают улучшенными характеристиками в случае пожара)
  • Защита от короткого замыкания даже при высоких температурах.
  • иметь малый внешний диаметр (компактный)
  • Дополнительное усиление (г., металлическая сетка) для защиты от куницы, грызунов и термитов.
  • Для сельскохозяйственных предприятий - , дополнительная стойкость к аммиаку, газам варочного котла, щавелевой кислоте, каустической соде и другим химическим средам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *