Схема зарядки акб: Простое зарядное устройство для аккумулятора своими руками

Содержание

10 простых схем зарядок литий-ионных аккумуляторов и как правильно заряжать —

Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.

Какими бывают литиевые аккумуляторы

В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

  • с катодом из кобальтата лития;
  • с катодом на основе литированного фосфата железа;
  • на основе никель-кобальт-алюминия;
  • на основе никель-кобальт-марганца.

У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

Как правильно заряжать литий-ионные аккумуляторы

Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.

Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются.

Итак, рассмотрим оба этапа заряда подробнее.

1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С — это емкость аккумулятора).

Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.

Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.

Важно: если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.

В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном — чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.

2. Второй этап заряда — это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.

На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.

По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.

Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т. е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.

За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.

Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда — т.н. предзаряд.

Предварительный этап заряда (предзаряд) — этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.

На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.

Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.

Еще одна польза предзаряда — это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).

Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.

Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:

Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4. 1-4.15 вольта.

Резюмирую вышесказанное, обозначим основные тезисы:

1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?

Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.

Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный — 3400 мА.

2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?

Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:

T = С / Iзар.

Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.

3. Как правильно зарядить литий-полимерный аккумулятор?

Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, разницы никакой нет.

Что такое плата защиты?

Плата защиты (или PCB — power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.

В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:

В этих платах используется шестиногий контроллер заряда на специализированной микрухе DW01 (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:

Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.

Плата увеличивает длину аккумулятора на 2-3 мм.

Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.

Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.

На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе («Protected»).

Не стоит путать PCB-плату с PCM-модулем (PCM — power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда — ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата — это и есть то, что мы называем контроллером заряда.

Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).

Схемы зарядок li-ion аккумуляторов

Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

Схема зарядного устройства li-ion аккумуляторов на LM317

Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 — не менее 1 Ватт.

Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

Вы также можете приобрести конструктор для сборки зарядного устройства на базе стабилизатора LM317.

Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Она выпускается в различных вариантах корпусов:

Назначение выводов (цоколевка):

Печатная плата и схема в сборе приведены ниже:

Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два — отечественного производства). Если взять LM350, то зарядный ток можно увеличить до 3А.

Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

Схема зарядного устройства li-ion аккумуляторов на MAX1555 или MAX1551

MAX1551/MAX1555 — специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона). Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Шикарные микрухи, всего 5 выводов. Только они маленькие слишком, паять неудобно!

Единственное отличие этих микросхем — МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 — сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее.

Подробное описание этих микросхем от производителя — datasheet.

Максимальное входное напряжение от DC-адаптера — 7 В, при питании от USB — 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА — это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

Типовая схема включения:

Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

Вариант зарядки от USB можно собрать, например, на такой печатной плате.

Схема зарядного устройства li-ion аккумуляторов на LP2951

Стабилизатор LP2951 производится фирмой National Semiconductors (даташит). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

Величина напряжения заряда составляет 4,08 — 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

Рекомендую выше 4.2В не подниматься. Если заряжать до 4.1-4.15, в емкости потеряете совсем немного, зато аккумулятор выдержит значительно больше циклов заряд/разряд.

Ток заряда составляет 150 — 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

Схема зарядного устройства li-ion аккумуляторов на MCP73831

Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

Типовая схема включения взята из даташита:

Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

Зарядка в сборе выглядит так:

Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

Пожалуй, это одна из самых простейших зарядок для литий-ионных аккумуляторов 18650, которую можно сделать своими руками. Подходит и для li-pol батарей.

Схема зарядного устройства li-ion аккумуляторов на LTC4054 (STC4054)

Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. описание микросхемы). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

Ток заряда (в амперах) рассчитывается по формуле I=1000/R. Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод «через выводы» — делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено «земляной» фольги, тем лучше.

Кстати говоря, большая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY

LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая — нет (нужно отдельно раскачивать).

Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

Схема зарядного устройства li-ion аккумуляторов на TP4056

Микросхема выполнена в корпусе SOP-8 (см. datasheet), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

Схема подключения требует самый минимум навесных элементов:

Принципиальные схемы зарядных устройств для автомобильных аккумуляторов - Moy-Instrument.Ru

Обзор схем зарядных устройств автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20: «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

1 схема мощного ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Простые схемы для зарядки самых разных аккумуляторов

Первые 2 схемы работают в линейном режиме, а линейный режим в первую очередь означает сильный нагрев. Но зарядное устройство вещь стационарная, а не портативная, чтобы КПД было решающим фактором, так что единственный минус представленных схем – это то, что они нуждаются в больших радиатор охлаждения, а в остальном все хорошо. Такие схемы всегда применялись и будут применяться, так как имеют неоспоримые плюсы: простота, низкая себестоимость, не «гадят» в сеть (как в случае импульсных схем) и высокая повторяемость.

Рассмотрим первую схему:


Дело в том, что даже без резистора максимальный ток на выходе микросхемы будет ограничен до указанного значения, резистор тут в большей степени для страховки, а его сопротивление снижено для минимизации потерь. Чем больше сопротивление, тем больше на нем будет падать напряжение, а это приведет к сильному нагреву резистора.

Микросхему обязательно устанавливают на массивный радиатор, на вход подается не стабилизированное напряжение до 30-35В, это чуть меньше максимально допустимого входного напряжения для микросхемы lm317. Нужно помнить, что микросхема lm317 может рассеять максимум 15-20Вт мощности, обязательно учитывайте это. Также нужно учитывать то, что максимальное выходное напряжение схемы будет на 2-3 вольта меньше входного.

Зарядка происходит стабильным напряжением, а ток не может быть больше выставленного порога. Данная схема может быть использована даже для зарядки литий-ионных аккумуляторов. При коротких замыканиях на выходе ничего страшного не произойдет, просто пойдет ограничение тока и, если охлаждение микросхемы хорошее, а разница входного и выходного напряжения небольшое, схема в таком режиме может проработать бесконечно долгое время.



Ее, а также печатные платы для 2-ух последующих схем можете скачать вместе с общим архивом проекта.

Вторая схема из себя представляет мощный стабилизированный источник питания с максимальным выходным током до 10А, была построена на базе первого варианта.

Максимальный выходной ток схемы зависит от сопротивления датчиков тока и тока коллектора использованного транзистора. В данном случае ток ограничен на уровне 7А.

Выходное напряжение схемы регулируется в диапазоне от 3 до 30В, что у позволит заряжать практически любые аккумуляторы. Регулируют выходное напряжение с помощью того же подстроечного резистора.

Этот вариант отлично подходит для зарядки автомобильных аккумуляторов, максимальный ток заряда с указанными на схеме компонентами составляет 10А.

Теперь давайте рассмотрим принцип работы схемы. При малых значениях тока силовой транзистор закрыт. При увеличении выходного тока падение напряжения на указанном резисторе становится достаточным и транзистор начинает открываться, и весь ток будет протекать по открытому переходу транзистора.

Естественно из-за линейного режима работы схема будет нагреваться, особенно жестко будут греться силовой транзистор и датчики тока. Транзистор с микросхемой lm317 прикручивают на общий массивный алюминиевый радиатор. Изолировать подложки теплоотвода не нужно, так как они общие.

Очень желательно и даже обязательно использование дополнительного вентилятора, если схема будет эксплуатироваться на больших токах.
Для зарядки аккумуляторов, вращением подстроечного резистора нужно выставить напряжение окончания заряда и все. Максимальный ток заряда ограничен 10-амперами, по мере заряда батарей ток будет падать. Схема коротких замыканий не боится, при КЗ ток будет ограничен. Как и в случае первой схемы, если имеется хорошее охлаждение, то устройство сможет долговременно терпеть такой режим работы.
Ну а теперь несколько тестов:












Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Схемы зарядных устройств для автомобильных аккумуляторов

Бывают случаи, особенно зимой, когда владельцы автомобилей нуждаются в подзарядке автомобильного аккумулятора от внешнего источника питания. Безусловно, людям, не имеющим хороших навыков работы с электротехникой, желательно купить заводское устройство зарядки аккумуляторной батареи, ещё лучше приобрести пуско-зарядное устройство для запуска двигателя с разряженным аккумулятором без потерь времени на внешнюю подзарядку.

Но если есть небольшие знания в области электроники, можно собрать простое зарядное устройство своими руками.

Общая характеристика

Для правильного обслуживания аккумулятора и продления срока его службы подзарядка требуется при падении напряжения на клеммах ниже 11,2 В. При таком напряжении двигатель, скорее всего, запустится, но при долгой стоянке зимой это приведёт к сульфатации пластин и, как следствие, к снижению ёмкости батареи. При длительной стоянке зимой необходимо регулярно следить за вольтажом на клеммах АКБ. Оно должно составлять 12 В. Лучше всего снять батарею и занести её в тёплое место, не забывая при этом следить за уровнем заряда.

Зарядка АКБ производится постоянным или импульсным током. При использовании блока питания постоянного напряжения ток для правильной зарядки должен составлять одну десятую часть от ёмкости батареи. Если ёмкость АКБ составляет 50 А-ч, то для зарядки необходим ток 5 ампер.

Для продления срока службы АКБ применяют методики десульфатации аккумуляторных пластин. Батарею разряжают до напряжения менее пяти вольт многократным потреблением большого тока краткой длительности. Пример такого потребления — запуск стартера. После этого производят медленную полную зарядку маленьким током в пределах одного ампера. Повторяют процесс 8—9 раз. Метод десульфатации является долгим по времени, но согласно всем исследованиям даёт хороший результат.

Нужно помнить, что при зарядке важно не допускать перезаряда АКБ. Заряд производится до напряжения 12,7—13,3 вольт и зависит от модели батареи. Максимальный заряд указывается в документации к аккумулятору, которую всегда можно найти в интернете.

Перезаряд вызывает закипание, увеличивает плотность электролита и, как следствие, разрушение пластин. Заводские устройства зарядки имеют системы контроля заряда и последующего отключения. Собрать самостоятельно такие системы, не обладая достаточными знаниями в электронике, достаточно сложно.

Схемы для сборки своими руками

Стоит рассказать о простых устройствах зарядки, которые можно собрать, обладая минимальными знаниями в электронике, а ёмкость заряда отследить путём подключения вольтметра или обыкновенного тестера.

Схема зарядки для экстренных случаев

Бывают случаи, когда автомобиль, простоявший ночь возле дома, утром невозможно завести из-за разряженного аккумулятора. Причин возникновения этого неприятного обстоятельства может быть много.

Если аккумулятор был в хорошем состоянии и немного разрядился, решить проблему помогут:

  1. Источник постоянного напряжения 12—25 вольт.
  2. Сопротивление ограничения тока.

В качестве источника питания отлично подойдёт зарядное устройство от ноутбука. Оно обладает выходным напряжением в 19 вольт и током в пределах двух ампер, чего вполне достаточно для выполнения поставленной задачи. На выходном разъёме, как правило, внутренний вход — плюс, внешний контур штекера — минус.

В качестве ограничительного сопротивления, которое является обязательным, можно применить салонную лампочку. Можно использовать и более мощные лампы, например, от габаритов, но это создаст лишнюю нагрузку на блок питания, что очень нежелательно.

Собирается элементарная схема: минус блока питания подключается к лампочке, лампочка к минусу АКБ. Плюс идёт напрямую от батареи к блоку питания. В течение двух часов аккумулятор получит заряд для запуска двигателя.

Из блока питания от стационарного компьютера

Такое устройство более сложно в изготовлении, но его можно собрать с минимальными познаниями в электронике. Основой послужит ненужный блок от системного блока компьютера. Выходные напряжения таких блоков +5 и +12 вольт с выходным током около двух ампер. Эти параметры позволяют собрать немощное зарядное устройство, которое при правильной сборке долго и надёжно послужит хозяину. Полная зарядка аккумулятора займёт длительное время и будет зависеть от ёмкости батареи, но не будет создаваться эффекта десульфатации пластин. Итак, пошаговая сборка прибора:

  1. Разобрать блок питания и выпаять все провода кроме зелёного. Запомнить или отметить места входа чёрного (GND) и жёлтого +12 В.
  2. Зелёный провод припаять к месту, где находился чёрный (это необходимо для старта блока без системной платы ПК). На место чёрного провода припаять отвод, который будет минусовым для зарядки АКБ. На место жёлтого провода припаять плюсовой отвод зарядки аккумулятора.
  3. Необходимо найти микросхему TL 494 или её аналог. Список аналогов легко найти в интернете, один из них обязательно будет найден в схеме. При всём многообразии блоков без этих микросхем их не производят.
  4. От первой ноги этой микросхемы — она левая нижняя, найти резистор, который идёт на выход +12 вольт (жёлтый провод). Это можно сделать визуально по дорожкам на схеме, можно при помощи тестера, подключив питание и замерив напряжение на входе резисторов, идущих к первой ноге. Не стоит забывать, что на первичную обмотку трансформатора идёт напряжение 220 вольт, поэтому нужно соблюдать меры безопасности при запуске блока без корпуса.
  5. Выпаять найденный резистор, замерить его сопротивление тестером. Подобрать близкий по номиналу переменный резистор. Выставить его на номинал нужного сопротивления и запаять на место удалённого элемента схемы гибкими проводами.
  6. Запустив блок питания путём регулировки переменного резистора, получить напряжение 14 В, в идеале 14.3 В. Главное, не перестараться помня, что 15 В, как правило, предел для отработки защиты и, как следствие, отключения.
  7. Выпаять переменный резистор, не сбив его настройку, и замерить получившееся сопротивление. Необходимый или максимально близкий номинал сопротивления подобрать или набрать из нескольких резисторов и запаять в схему.
  8. Блок проверить, на выходе должно быть искомое напряжение. При желании к выходам на схеме плюса и минуса можно подключить вольтметр, поместив его на корпусе для наглядности. Последующая сборка происходит в обратном порядке. Прибор готов к использованию.

Блок прекрасно заменит недорогую заводскую зарядку и достаточно надёжен. Но ОБЯЗАТЕЛЬНО нужно помнить, что устройство имеет защиту от перегрузки, но это не спасёт от ошибки в полярности. Проще говоря, если перепутать плюс и минус при подключении к АКБ, зарядное мгновенно выйдет из строя.

Схема зарядного устройства из старого трансформатора

Если под рукой нет старого блока питания от компьютера, и радиотехнический опыт позволяет самостоятельно монтировать несложные схемы, то можно воспользоваться следующей довольно интересной схемой зарядки АКБ с контролем и регулировкой подаваемого напряжения.

Для сборки устройства можно воспользоваться трансформаторами от старых блоков бесперебойного питания или телевизоров советского производства. Подойдёт любой мощный понижающий трансформатор с сум

Схемы самодельных зарядных устройств для автомобильного аккумулятора

Для того чтобы автомобиль завёлся, ему необходима энергия. Такая энергия берётся из аккумулятора. Как правило, его подзарядка происходит от генератора во время работы двигателя. Когда автомобиль долго не используется или батарея неисправна, она разряжается до такого состояния, что машина уже не может завестись. В этом случае требуется внешняя зарядка. Такое устройство можно купить или собрать самостоятельно, но для этого понадобится схема зарядного устройства.

Принцип работы автомобильного аккумулятора

Автомобильный аккумулятор подаёт питание на различные приборы в автомобиле при выключенном двигателе и предназначен для его запуска. По виду типу исполнения применяется свинцово-кислотная батарея. Конструктивно она собирается из шести элементов питания с номинальным значением напряжения 2,2 вольта, соединённых между собой последовательно. Каждый элемент представляет собой набор решетчатых пластин из свинца. Пластины покрываются активным материалом и погружаются в электролит.

Раствор электролита включает в свой состав дистиллированную воду и серную кислоту. От плотности электролита зависит морозостойкость батареи. В последнее время появились технологии, позволяющие адсорбировать электролит в стеклянном волокне или сгущать его с использованием силикагеля до гелеобразного состояния.

Каждая пластина имеет отрицательный и положительный полюс, а изолируются они между собой использованием пластмассового сепаратора. Корпус изделия выполняется из пропилена, не разрушающегося под действием кислоты и служащий диэлектриком. Положительный полюс электрода покрывается диоксидом свинца, а отрицательный губчатым свинцом. В последнее время стали выпускаться аккумуляторные батареи с электродами из свинцово-кальциевого сплава. Такие аккумуляторы полностью герметичные и не требуют обслуживания.

При подключении к аккумулятору нагрузки активный материал на пластинах вступает в химическую реакцию с раствором электролита, и возникает электрический ток. Электролит со временем истощается из-за осаждения сульфата свинца на пластинках. Аккумуляторная батарея (АКБ) начинает терять заряд. В процессе зарядки химическая реакция происходит в обратном порядке, сульфат свинца и вода преобразуются, повышается плотность электролита и восстанавливается величина заряда.

Аккумуляторы характеризуются значением саморазряда. Он возникает в АКБ при его бездействии. Основной причиной служит загрязнения поверхности батареи и плохого качества дистиллятора. Скорость саморазряда ускоряется при разрушении свинцовых пластин.

Виды зарядных устройств

Разработано большое количество схем автомобильных зарядных устройств, использующих разные элементные базы и принципиальный подход. По принципу действия приборы заряда разделяются на две группы:

  1. Пуско-зарядные, предназначенные для запуска двигателя при нерабочем аккумуляторе. Кратковременно подавая на клеммы аккумулятора ток большой величины, происходит включение стартера и запуск двигателя, а в дальнейшем заряд батареи происходит от генератора автомобиля. Они выпускаются только на определённое значение тока или с возможностью выставления его величины.
  2. Предпусковые зарядные, к клеммам аккумуляторной батареи подключаются выводы с устройства и подаётся ток длительное время. Его значение не превышает десяти ампер, в течение этого времени происходит восстановление энергии батареи. В свою очередь, они разделяются: на постепенные (время зарядки от 14 до 24 часов), ускоренные (до трёх часов) и кондиционирующие (около часа).

По своей схемотехники выделяются импульсные и трансформаторные устройства. Первого вида используют в работе высокочастотный преобразователь сигнала, характеризуются малыми размерами и весом. Второго вида в качестве основы используют трансформатор с выпрямительным блоком, просты в изготовлении, но обладают большим весом и низким коэффициентом полезного действия (КПД).

Выполнено зарядное устройство для автомобильных аккумуляторов своими руками или приобретено в торговой точке, требования, предъявляемые к нему одинаковы, а именно:

  • стабильность выходного напряжения;
  • высокое значение КПД;
  • защита от короткого замыкания;
  • индикатор контроля заряда.

Одной из главных характеристик прибора заряда является величина тока, которым заряжается батарея. Правильно зарядить аккумулятор и продлить его рабочие характеристики получится только при подборе нужного его значения. При этом важна и скорость заряда. Чем больше ток, тем выше и скорость, но высокое значение скорости приводит к быстрой деградации аккумулятора. Считается, что правильным значением тока будет величина равная десяти процентам от ёмкости батарейки. Ёмкость определяется как величина тока, отдаваемая АКБ за единицу времени, измеряется она в ампер-часах.

Самодельный зарядный прибор

Приспособление для заряда должно быть у каждого автолюбителя, поэтому если нет возможности или желания приобрести готовый прибор, ничего не останется, как сделать зарядку для аккумулятора самостоятельно. Несложно изготовить своими руками как простейшее, так и многофункциональное устройство. Для этого понадобится схема и набор радиоэлементов. Существует также возможность переделать источник бесперебойного питания (ИБП) или компьютерный блок (АТ) в прибор для подзарядки АКБ.

Трансформаторное зарядное устройство

Такое устройство самое простое в сборке и не содержит дефицитных деталей. Схема состоит из трёх узлов:

  • трансформатор;
  • выпрямительный блок;
  • регулятор.

Напряжение из промышленной сети поступает на первичную обмотку трансформатора. Сам трансформатор может использоваться любого вида. Состоит он из двух частей: сердечника и обмоток. Сердечник собирается из стали или феррита, обмотки — из проводникового материала.

Принцип работы трансформатора основан на появлении переменного магнитного поля при прохождении тока по первичной обмотке и передачи его на вторичную. Для получения на выходе требуемого уровня напряжения количество витков во вторичной обмотке делается меньше, по сравнению с первичной. Уровень напряжения на вторичной обмотке трансформатора выбирается равным 19 вольт, а его мощность должна обеспечивать троекратный запас по току заряда.

С трансформатора пониженное напряжение проходит через выпрямительный мост и поступает на реостат, подключённый последовательно к аккумулятору. Реостат предназначен для регулирования величины напряжения и тока, путём изменения сопротивления. Сопротивление реостата не превышает 10 Ом. Величина тока контролируется включённым последовательно перед аккумулятором амперметром. Такой схемой не получится заряжать АКБ с ёмкостью более 50 Ач, так как реостат начинает перегреваться.

Упростить схему можно, убрав реостат, а на входе перед трансформатором установить набор конденсаторов, использующихся как реактивные сопротивления для уменьшения напряжение сети. Чем меньше номинальное значение ёмкости, тем меньше напряжение поступает на первичную обмотку в сети.

Особенность такой схемы в необходимости обеспечения уровня сигнала на вторичной обмотке трансформатора в полтора раза большее, чем рабочее напряжение нагрузки. Такую схему можно использовать и без трансформатора, но это очень опасно. Без гальванической развязки можно получить поражение электрическим током.

Импульсное устройство подзаряда

Достоинство импульсных устройств в высоком КПД и компактных размерах. В основе прибора лежит микросхема с широтно-импульсной модуляцией (ШИМ). Собрать мощное импульсное зарядное устройство своими руками можно по следующей схеме.

В качестве ШИМ контроллера используется драйвер IR2153. После выпрямительных диодов параллельно АКБ ставится полярный конденсатор С1 с ёмкостью в пределах 47−470 мкФ и напряжением не менее 350 вольт. Конденсатор убирает всплески сетевого напряжения и шумы линии. Диодный мост используется с номинальным током более четырёх ампер и с обратным напряжением не менее 400 вольт. Драйвер управляет мощными N-канальными полевыми транзисторами IRFI840GLC, установленными на радиаторах. Ток такой зарядки будет равен до 50 ампер, а выходная мощность до 600 Ватт.

Изготовить импульсное зарядное устройство для автомобиля своими руками можно, используя переделанный компьютерный источник питания формата АТ. В качестве ШИМ контроллера в них используется распространённая микросхема TL494. Сама переделка заключается в увеличении выходного сигнала до 14 вольт. Для этого понадобится правильно установить подстроечный резистор.

Резистор, который соединяется первую ногу TL494 со стабилизированной шиной + 5 В, удаляется, а вместо второго, связанного с 12 вольтовой шиной, впаивается переменный резистор с номиналом 68 кОм. Этим резистором и устанавливается требуемый уровень выходного напряжения. Включение блока питания осуществляется через механический выключатель, согласно указанной на корпусе блока питания схеме.

Устройство на микросхеме LM317

Довольно простая, но стабильно работающая схема зарядки легко выполняется на интегральной микросхеме LM317. Микросхема обеспечивает установку уровня сигнала 13,6 вольт при максимальной силе тока 3 ампера. Стабилизатор LM317 снабжён встроенной защитой от короткого замыкания.

Напряжение на схему прибора подаётся через клеммы от независимого блока питания постоянного напряжения 13−20 вольт. Ток, проходя через индикаторный светодиод HL1 и транзистор VT1, поступает на стабилизатор LM317. С его выхода непосредственно на АКБ через X3, X4. Делителем, собранным на R3 и R4, устанавливается необходимое значение напряжения для открывания VT1. Переменным резистором R4 задаётся ограничение тока подзарядки, а R5 уровень выходного сигнала. Выходное напряжение устанавливается от 13,6 до 14 вольт.

Схему можно максимально упростить, но её надёжность уменьшится.

В ней резистором R2 подбирают ток. В качестве резистора используется мощный проволочный элемент из нихрома. Когда АКБ разряжен, ток заряда максимальный, светодиод VD2 горит ярко, по мере заряда ток начинает спадать и светодиод тускнеет.

Зарядное из источника бесперебойного питания

Сконструировать зарядник можно из обычного бесперебойника даже с неисправностью узла электроники. Для этого удаляется из блока вся электроника, кроме трансформатора. К высоковольтной обмотке трансформатора на 220 В добавляется схема выпрямителя, стабилизации тока и ограничения напряжения.

Выпрямитель собирается на любых мощных диодах, например, отечественных Д-242 и сетевом конденсаторе 2200 мкФ на 35−50 вольт. На выходе получится сигнал с напряжением 18−19 вольт. В качестве стабилизатора напряжения используется микросхема LT1083 или LM317 с обязательной установкой на радиатор.

Подключив аккумуляторную батарею, выставляется напряжение, равное 14,2 вольта. Контролировать уровень сигнала удобно с помощью вольтметра и амперметра. Вольтметр подключается параллельно клеммам батареи, а амперметр последовательно. По мере заряда АКБ его сопротивление будет возрастать, а ток падать. Ещё проще выполнить регулятор с помощью симистора, подключённого к первичной обмотке трансформатора наподобие диммера.

При самостоятельном изготовлении устройства следует помнить про электробезопасность при работе с сетью переменного тока 220 В. Как правило, верно выполненный прибор зарядки из исправных деталей начинает работать сразу, требуется лишь только выставить тока заряда.

Схема и принцип работы зарядного устройства для мобильных аккумуляторов

Схема зарядного устройства для мобильных аккумуляторов - это устройство, которое может автоматически заряжать аккумулятор мобильного телефона при низком уровне заряда. В настоящее время мобильные телефоны стали неотъемлемой частью жизни каждого человека и, следовательно, требуют частой зарядки аккумулятора из-за более длительного использования.

Зарядные устройства для аккумуляторов бывают простыми, непрерывными, с таймером, интеллектуальными универсальными зарядными устройствами-анализаторами, быстрыми, импульсными, индуктивными, USB-зарядными устройствами, зарядными устройствами на солнечных батареях и зарядными устройствами с подвижным приводом.Эти зарядные устройства также различаются в зависимости от приложений, таких как зарядное устройство для мобильных телефонов, зарядное устройство для транспортных средств, зарядные устройства для аккумуляторов электромобилей и зарядные станции.

Способы зарядки подразделяются на две категории: метод быстрой зарядки и метод медленной зарядки. Быстрая зарядка - это система, используемая для подзарядки батареи примерно за два часа или меньше, а медленная зарядка - это система, используемая для подзарядки батареи в течение ночи. Медленная зарядка выгодна, поскольку не требует какой-либо схемы обнаружения заряда.Кроме того, это дешево. Единственным недостатком этой системы зарядки является то, что для зарядки аккумулятора требуется максимальное время.

Зарядное устройство с автоматическим выключением

Этот проект направлен на автоматическое отключение аккумулятора от сети, когда аккумулятор полностью заряжен. Эта система также может использоваться для зарядки частично разряженных элементов. Схема проста и состоит из преобразователя переменного тока в постоянный, драйверов реле и зарядных станций.

Схема зарядного устройства для мобильных аккумуляторов
Описание схемы

В секции преобразователя переменного тока в постоянный трансформатор понижает доступное напряжение переменного тока до 9 В переменного тока при 75 мА, которое выпрямляется с помощью двухполупериодного выпрямителя и затем фильтруется конденсатором.Зарядное напряжение 12 В постоянного тока обеспечивается регулятором, и при нажатии переключателя S1 зарядное устройство начинает работать, а светодиод включения питания светится, указывая на то, что зарядное устройство «включено».

Секция драйвера реле состоит из транзисторов PNP для включения электромагнитного реле. Это реле подключено к коллектору первого транзистора и управляется вторым PNP-транзистором, который, в свою очередь, управляется PNP-транзистором.

В секции зарядки микросхема регулятора смещена примерно на 7.35V. Для регулировки напряжения смещения используется предустановка VR1. Между выходом ИС включен диод D6, и для зарядки аккумулятора используется ограничивающее выходное напряжение аккумулятора до 6,7 В.

При нажатии переключателя происходит защелка реле и начинается зарядка аккумулятора. Когда напряжение на ячейку превышает 1,3 В, падение напряжения начинает уменьшаться на R4. Когда напряжение падает ниже 650 мВ, транзистор T3 отключается и переходит на транзистор T2 и, в свою очередь, отключает транзистор T3.В результате реле RL1 обесточивается, чтобы отключить зарядное устройство, и красный светодиод LED1 гаснет.

Зарядное напряжение в зависимости от никель-кадмиевого элемента может быть определено с помощью технических характеристик, предоставленных производителем. Зарядное напряжение установлено на 7,35 В для четырех ячеек по 1,5 В. В настоящее время на рынке доступны элементы емкостью 700 мАч, которые можно заряжать от 70 мА в течение десяти часов. Напряжение холостого хода около 1,3В.

Точка напряжения отключения определяется путем полной зарядки четырех элементов (при 70 мА в течение четырнадцати часов) и добавления падения напряжения на диоде (до 0.65 В) после измерения напряжения и соответственно смещения LM317.

В дополнение к вышеупомянутой простой схеме, реализация этой схемы в реальном времени на основе проектов солнечной энергетики обсуждается ниже.

Контроллер заряда солнечной энергии

Основная цель этого проекта контроллера заряда солнечной энергии - заряжать аккумулятор с помощью солнечных батарей. В этом проекте рассматривается механизм контроля заряда, который также обеспечивает защиту аккумулятора от перезаряда, глубокого разряда и пониженного напряжения.В этой системе с помощью фотоэлектрических элементов солнечная энергия преобразуется в электрическую.

Контроллер заряда солнечной энергии

Этот проект включает в себя такие аппаратные компоненты, как солнечная панель, операционные усилители, полевой МОП-транзистор, диоды, светодиоды, потенциометр и аккумулятор. Солнечные панели используются для преобразования энергии солнечного света в электрическую. Эта энергия накапливается в аккумуляторе в дневное время и используется в ночное время. Набор OP-AMPS используется в качестве компараторов для непрерывного контроля напряжения панели и тока в проводе.

Светодиоды используются в качестве индикаторов и горят зеленым цветом, показывая, что аккумулятор полностью заряжен. Точно так же, если аккумулятор недостаточно заряжен или перегружен, они светятся красным светом. Контроллер заряда использует MOSFET - силовой полупроводниковый переключатель для отключения нагрузки, когда батарея разряжена или находится в состоянии перегрузки. Транзистор используется для передачи солнечной энергии в фиктивную нагрузку, когда батарея полностью заряжена, и защищает батарею от чрезмерного заряда.

Фотовольтаический MPPT-контроллер заряда на основе микроконтроллера

Этот проект направлен на разработку контроллера заряда с отслеживанием точки максимальной мощности на основе микроконтроллера.

Photovoltaic MPPT Charge Controller

Основными компонентами, используемыми в этом проекте, являются солнечная панель, аккумулятор, инвертор, беспроводной трансивер, ЖК-дисплей, датчик тока и датчик температуры. Электроэнергия от солнечных панелей поступает на контроллер заряда, который затем выдается в батарею и используется для хранения энергии. Выход батареи подключен к инвертору, который предоставляет пользователю выходы для доступа к накопленной энергии.

Солнечная панель, аккумулятор и инвертор покупаются отдельно, а контроллер заряда MPPT разработан и изготовлен солнечными рыцарями.ЖК-экран предназначен для отображения заряда аккумулятора и других предупреждающих сообщений. Выходное напряжение изменяется с помощью широтно-импульсной модуляции от микроконтроллера к драйверам MOSFET. Способ отслеживания точки максимальной мощности с использованием реализации алгоритма MPPT в контроллере гарантирует, что аккумулятор заряжается на максимальной мощности от солнечной панели.

Так можно сделать зарядное устройство для мобильных телефонов. Два упомянутых здесь примера могут облегчить вам процесс. Более того, если у вас есть какие-либо сомнения и вам нужна помощь в реализации проектов в реальном времени и схем промышленных зарядных устройств, вы можете оставить комментарий в разделе комментариев ниже.

Фото:

  • Схема зарядного устройства для мобильных аккумуляторов от ggpht
  • Контроллер заряда для фотоэлектрических MPPT от eecs

Как работает схема зарядки от зарядного устройства для зарядки аккумулятора мобильного телефона ~ Бесплатные руководства по ремонту мобильных телефонов

Этот урок также важен для устранения неполадок при зарядке, чтобы знать, какие части или компоненты используются для создания цепи зарядки. Многие специалисты по мобильным телефонам спрашивали меня, , как работает схема зарядки мобильного телефона ? Как зарядное устройство может заряжать аккумулятор мобильного телефона?
По правде говоря, многие из них никогда не слышали об этом, даже если они уже чинили тысячи мобильных телефонов за годы своей карьеры по ремонту мобильных телефонов."и я один из них.
Я не знаю, но знаю, как это исправить, это так просто », - мы часто говорим.
Что ж, мы все знаем, что все мобильные телефоны - это все телефоны с батарейным питанием, которым необходимо заряжать аккумулятор, чтобы он продолжал работать, отказ от зарядки приведет к невозможности включить мобильные телефоны.

Вот краткое объяснение того, как работает схема зарядки,
Я подготовил эту простую идею и уменьшил некоторые технические термины, связанные с электроникой, чтобы каждый, не обладающий достаточными знаниями в области технических терминов, мог понять это.


Цепь зарядки состоит из следующих этапов или секций.

1. Цепи зарядного устройства - Хотя это не встречается на печатной плате мобильных телефонов и имеет отдельную цепь, но определенно это также часть цепи зарядки; без этого цепь зарядки не будет полной и не будет работать полностью.
Эта схема представляет собой все части и компоненты, которые устанавливаются на любое зарядное устройство для мобильных телефонов, это та схема, которая преобразует напряжение AC (переменный ток) в напряжение DC (постоянный ток).
Что такое напряжение переменного тока? Это напряжение является источником питания, который мы используем в наших бытовых приборах для работы и эксплуатации, это напряжение может вызвать риск поражения электрическим током и очень опасно для людей при прикосновении. Этот вид напряжения имеет альтернативную полярность.
Что такое постоянное напряжение? Это напряжение низкого уровня, которое обычно встречается в любых типах батарей.
У этого вида напряжения есть две полярности: отрицательная и положительная.

Вот как работает зарядное устройство: 110 или 220 вольт переменного тока, идущие от домашней розетки или т. Д.будут преобразованы в желаемое напряжение постоянного тока, например от 4,5 до 6 вольт постоянного тока, потому что телефон принимает только небольшое количество постоянного напряжения и может работать с ним.

Выходное постоянное напряжение зарядного устройства - это только искусственное постоянное напряжение, почему это так? потому что только элемент батареи может производить постоянное напряжение на 100% чистой.

2. Схема защиты - эта схема состоит из предохранителя, катушки индуктивности, диода и конденсаторов, прежде чем напряжение постоянного тока достигнет цепей управления зарядным напряжением, цепь защиты контролирует и проверяет, соответствует ли это напряжение количество.Допустим, желаемое значение постоянного напряжения всего на 5,6 вольт выше этой точки, предохранитель перегорит, чтобы остановить прохождение напряжения, чтобы предотвратить повреждение других соответствующих цепей.
В приведенной ниже схеме защиты мобильных телефонов Nokia BB5 диод - это диод, который измеряет величину напряжения от зарядного устройства, этот диод имеет точку достижения желаемого напряжения для измерения того, какое количество напряжения будет разрешено течь внутри Эта линия, когда напряжение превысит желаемую точку, диод отключит ее.

как, например, если этот диод проектируется, что позволяет только 7 вольт от зарядного устройства батареи течь по этой линии. Теперь, выше этого желаемого напряжения, допустим, что напряжение становится 8 или выше, диод затем реагирует и разрушается, это то, что тогда называется закороченным компонентом; так что ток будет течь прямо на землю и не достигнет следующей или соответствующей цепи. Если диод отключится или закорочен, предохранитель будет иметь тенденцию перегорать и полностью отключать линию напряжения.Роль катушки индуктивности заключается в фильтрации нежелательного насыщения напряжения, она отклоняет аномальную модуляцию напряжения, вызванную электростатическими помехами.

3. Схема управления напряжением зарядного устройства - Это этап, на котором напряжение и ток зарядного устройства стабилизируются, усиливаются, выпрямляются, регулируются и другие процессы очистки напряжения проводятся в этой области до того, как оно будет подано на аккумулятор. Этот вид схемы обычно упаковывается в микросхему вместе с другими схемами.

Отказ этой определенной области приведет к статусу проблемы с зарядкой.Эта область в основном называется микросхемой Charging IC , потому что эта схема находится внутри определенной микросхемы IC, но в конечном итоге эта схема также сопровождается многими другими типами схем, а не исключительно для определенной области зарядки.

На этом рисунке показана следующая соответствующая схема из области схемы защиты. Теперь напряжение от зарядного устройства подается на три клеммных входа схем управления напряжением зарядного устройства.
на этом рисунке показывает, что после процесса стабилизации и очистки напряжения напряжение теперь подается на клемму аккумулятора.

4. Схема управления зарядкой - это область, в которой отслеживается процесс зарядки, это та область, которая отправляет информацию процессору приложения, чтобы начать или остановить процесс зарядки. Эта область является частью схемы управления питанием , так называемой POWER IC , которую многие специалисты называют .

На этом рисунке показаны два сигнала терминала от регулятора напряжения, который отправляет данные в схему управления зарядкой, эти два сигнала данных сообщают схеме управления зарядкой, что напряжение зарядного устройства вводится или подключается.После того, как эти схемы управления зарядкой получают данные, они затем анализируют и преобразуют эти данные в цифровой сигнал, а затем отправляют его в процессор приложений.
Процессор приложений, который теперь является мозгом всех схем, затем решает, все ли данные верны или содержат правильную информацию, чтобы начать процесс,
Он всегда полагается на данные, которые отправляет схема управления зарядкой, затем определяет все данные и полностью их обрабатывает.

Хорошо, теперь давайте возьмем пример и применим этот конкретный метод к компоновке компонентов схемы мобильного телефона. У меня есть плата Nokia N95, с которой можно начать, пока мы все еще работаем над предварительным обучением.Теперь попробуйте проанализировать и сравнить все эти предыдущие изображения выше и объединить их в каждый соответствующий этап или раздел, таким образом вы можете построить пошаговую процедуру отслеживания того, как решать проблемы с зарядкой.

На картинке выше показано, как и где напряжение протекает от источника напряжения зарядного устройства по всей цепи печатной платы. Это метод, с помощью которого вы можете начать и управлять поиском и отслеживанием каждого компонента, чтобы найти возможные проблемы, касающиеся проблем с зарядкой.

Лучшая схема зарядки аккумулятора - отличные предложения на схему зарядки аккумулятора от глобальных продавцов схем зарядки аккумулятора

Отличные новости !!! Вы находитесь в правильном месте для цепи зарядки аккумулятора. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эта лучшая схема зарядки аккумулятора в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели схему зарядки аккумулятора на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в схеме зарядки аккумулятора и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести battery charge circuit по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

цепей питания :: Next.гр

- Страница 9

  • Следующая схема показывает электрическую схему зарядного устройства для солнечной батареи с ограничением тока. Эта принципиальная схема зарядного устройства для свинцово-кислотных или никель-кадмиевых аккумуляторов использует солнечную энергию для зарядки 6-вольтовой аккумуляторной батареи 4 5 Ач для различных применений. Это отличный ....

  • Можно с уверенностью сказать, что большинству часов Bulle потребуется обновить магнит, прежде чем они начнут нормально работать с обычного сингла 1.Ячейка 5В. Первым «настоящим» материалом магнита была кобальт-хромовая сталь в 1921 году [1]. До этого углеродистая сталь была ....

    .
  • Схема была построена на плате Vero и протестирована с использованием электролитического конденсатора большой емкости вместо батареи. Предустановленный резистор на 500 Ом устанавливает фактическое выходное напряжение. Предустановка 47k контролирует гистерезис и устанавливает напряжение, при котором зарядное устройство....

  • Electronic Design имеет схему интеллектуального зарядного устройства, использующего только один транзистор. Это интересно, поскольку аналогичные схемы теперь содержат простые интегральные схемы. Когда заряд аккумулятора падает ниже порогового напряжения, он автоматически заряжается ....

  • Вот принципиальная схема простого и понятного зарядного устройства 12 В со схемой.Эта схема может использоваться для зарядки всех типов аккумуляторных батарей 12 В, включая автомобильные и мотоциклетные ...

  • ..

  • Полезная информация о схеме USB-зарядного устройства для мобильного телефона Вы можете узнать и скачать USB-схему зарядного устройства для мобильного телефона здесь....

  • ..

  • Номинальное напряжение модуля схемы солнечного зарядного устройства определяется количеством заряжаемых элементов батареи.Из-за типичного падения напряжения на диоде Шоттки D1 ​​от 0,3 до 0,4 В номинальное напряжение должно превышать напряжение заряда, установленное на P1 ....

  • Создайте талисман роботизированной команды для моей команды на работе. Моей первой скромной частью этого проекта было создание зарядного устройства для батарей робота. Я хотел зарядное устройство, которое могло бы заряжать различные аккумуляторные батареи NiMH, которые у меня есть, от 700 до 2200 мАч....

  • На литий-ионном элементе 3,8 В / элемент указывает на уровень заряда около 50%. Следует отметить, что использование напряжения в качестве функции измерителя уровня топлива неточно, потому что элементы, изготовленные разными производителями, дают немного другой профиль напряжения. Это связано с ....

  • ..

  • ..

  • NiMH ЗАРЯДНОЕ УСТРОЙСТВО Принципиальная схема с использованием ADM66A Поиски, связанные с цепью ЗАРЯДНОГО УСТРОЙСТВА, цепью зарядного устройства nimh, цепью зарядного устройства свинцово-кислотных аккумуляторов, цепью липо-зарядного устройства, цепью автоматического зарядного устройства, простой схемой зарядного устройства, цепью зарядного устройства для литиевых аккумуляторов....

  • ..

  • ..

  • Простая схема зарядки 7805 для зарядки таких смартфонов, как Incredible.По дизайну похож на Minty Boost ....

  • После выхода из строя 4-го зарядного устройства Apple iPad и нежелания тратить еще больше денег с Apple на их замену, мы решили попробовать сделать зарядные устройства с питанием от 12 В, чтобы использовать избыток фотоэлектрической энергии, который у нас теперь есть в дневное время, для зарядки iPad и других устройств. ....

  • Сделайте себе это простое зарядное устройство для мобильных аккумуляторов постоянного тока и заряжайте аккумулятор мобильного телефона в любое время и в любом месте, просто подключив его к источнику 12 В от аккумулятора автомобиля или мотоцикла....

  • ..

  • Конструкция и программирование Контроллер заряда батареи солнечных панелей PICAXE ....

  • Этот проект начался, потому что мне нужна была литий-ионная зарядная схема с большей гибкостью, чем у других схем, сделанных своими руками, но с меньшей стоимостью, чем программируемые компьютеризированные зарядные устройства.С самого начала целью было спроектировать, построить, испытать и ....

  • Эта схема может автоматически, быстро и правильно заряжать аккумуляторы 6В и 12В. Основным фактором успеха в работе схемы является использование трансформатора [T1] хорошего качества с очень хорошей изоляцией и устойчивостью к коротким замыканиям....

  • Это схема, аналогичная приведенной выше, и имеет гистограмму с 4 светодиодами, показывающую напряжение 3,6-вольтовой литий-ионной аккумуляторной батареи сотового телефона. Опорное напряжение обеспечивается с помощью программируемого источника напряжения TL431, который установлен до 3,9 вольт ....

  • Простой метод зарядки аккумулятора от аккумулятора с более высоким напряжением показан на схеме внизу слева.Для установки желаемого зарядного тока необходим только один резистор, который рассчитывается делением разницы в напряжениях батареи на заряд ....

  • Эта схема может быть полезна для определения того, правильно ли подключена нагрузка любого зарядного устройства или адаптера. Нагрузка может быть комплектом заряжаемых батарей, батареями любого другого типа или устройством с низким постоянным напряжением.Схема может ....

  • Почти все системы питания 24 В в грузовиках, полноприводных автомобилях, внедорожниках, лодках и т. Д. Используют две последовательно соединенные свинцово-кислотные батареи на 12 В. Система зарядки может поддерживать только сумму напряжений отдельных батарей. Если одна батарея выйдет из строя, в этой цепи загорится светодиод.....

  • Это небольшой электронный переключатель, который подключает аккумулятор к оборудованию на определенное время при кратковременном нажатии кнопки. И мы также приняли во внимание уровень внешней освещенности; в темноте вы не сможете прочитать ....

  • Защитите дорогие аккумуляторы от повреждений при разрядке с помощью этого миниатюрного электронного выключателя.Он практически не потребляет энергии и может быть сконструирован для работы с аккумулятором в широком диапазоне напряжений. Еще в мае 2002 года мы (Silicon Chip) представили "Battery Guardian", ....

  • В отличие от многих устройств, это зарядное устройство непрерывно заряжается с максимальным током, постепенно снижаясь только при почти полном напряжении аккумулятора. В этом агрегате полный ток нагрузки секции питающего трансформатора / выпрямителя составлял 4.4А. Он уменьшается до 4 А при 13,5 В, 3 А при 14,0 В, ....

  • Большинство мобильных зарядных устройств не имеют регулирования тока / напряжения или защиты от короткого замыкания. Эти зарядные устройства обеспечивают исходное напряжение 6–12 В постоянного тока для зарядки аккумуляторной батареи. Большинство аккумуляторных блоков мобильных телефонов имеют номинальное напряжение 3,6 В, 650 мАч. Для увеличения срока службы....

  • Большинство имеющихся в наличии зарядных устройств для автомобильных аккумуляторов нельзя оставлять подключенными к аккумулятору на длительное время, поскольку это может привести к чрезмерной зарядке и последующему повреждению аккумулятора. Эта дополнительная цепь подключается последовательно к заряжаемой батарее и питается от ...

Общие сведения о цепи зарядки аккумулятора для досуга

Существует много путаницы и мифов относительно того, что на самом деле происходит, когда вы подключаете свой караван к буксирующему транспортному средству и запускаете двигатель.Чтобы действительно понять, что происходит, мы должны сначала понять, как работают аккумулятор и генератор тягача. Тогда легко увидеть, как подключение вашего автоприцепа позволяет двигателю заряжать аккумулятор для отдыха прицепа.

Я написал это, чтобы попытаться раскрыть некоторую загадку (или это должно быть неприятно?) В том, что происходит, когда вы подключаете свой караван к буксируемой машине. Мы надеемся, что лучшее понимание того, что происходит, поможет вам найти неисправности в случае возникновения проблем.

Немного истории…

« О нет… это как школа «…. не паникуйте! Однако нам нужно оглянуться на несколько лет назад. Не так давно единственным устройством для зарядки автомобильного аккумулятора была динамо-машина. В нем были закреплены тяжелые магниты, намотанные вокруг вращающейся катушки, которая приводилась в движение двигателем, обычно через ремень вентилятора. Однако это было не очень эффективно. Он был тяжелым, у него был коммутатор, который позволял вращающейся катушке пропускать выходной ток через угольные щетки, что требовало регулярного обслуживания.Выход динамо-машины поступал на регулятор, который контролировал напряжение постоянного тока…. что в итоге пошло на аккумулятор.

Dynamo обычно имел выходную мощность от 25 до 30 ампер, что по сравнению с современными генераторами переменного тока на 120–160 ампер было крошечным. Динамо обычно приводилось в движение так, что он вращался вдвое быстрее, чем двигатель автомобиля, что было здорово, когда средний двигатель Ford мог делать только 4500 оборотов в минуту ... с автомобильными двигателями, которые теперь развивают до 7000 оборотов в минуту, наша бедная старая динамо-машина будет вращаться со скоростью 14000 оборотов в минуту и ​​продержится около недели, поскольку центростремительная сила, действующая на эти тяжелые медные катушки, вращающиеся с такой скоростью, довольно быстро разорвет их.

У динамо

было несколько других проблем - не только они были тяжелыми, но и угольные щетки требовали регулярной замены, коллектор нуждался в чистке, и если он появлялся из-за дуги, обычно требовалась повторная обработка на токарном станке. Регулятор также был неэффективным и часто приводил к перезарядке и кипению батареи, а на медленной скорости они просто не работали. Отсюда и один из мифов - « вам нужно увеличить обороты двигателя, чтобы генератор заряжал вашу батарею!

Эээ… нет, не понимаешь.В старых динамо-машинах действительно требовалось, чтобы двигатель работал на высокой скорости - от 1800 до 2000 об / мин на холостом ходу, чтобы генерировать достаточно напряжения для зарядки аккумулятора, но современные генераторы переменного тока будут производить достаточную мощность для зарядки аккумуляторной батареи транспортного средства при нормальной работе двигателя или на холостом ходу. Почему это? Я слышал, вы спросите. Что ж, старые динамо-машины вращались слишком медленно на тиковой скорости или на холостом ходу, генерировалось напряжение около 9 или 10 вольт… недостаточно для зарядки аккумулятора, однако на более высоком конце диапазона оборотов автомобиля выходная мощность могла быть такой же до 20 вольт, поэтому у них был блок или регулятор для управления этим избыточным напряжением путем включения или выключения динамо-машины.

Автомобильные дизайнеры должны учитывать, что зимой вы заведете машину, включите обогрев окон и зеркал, вентилятор отопителя, стереосистему, а затем, возможно, оставите машину на холостом ходу для прогрева. Они должны гарантировать, что даже во время тикания выходной мощности генератора будет достаточно, чтобы вернуть некоторый заряд в батарею, привести в действие электрические системы двигателя и все остальное. Если бы они этого не сделали, просто оставив машину на холостом ходу зимой, можно разрядить аккумулятор!

Хорошо, давайте немного пропустим… автомобили теперь оснащены генераторами.Эти легкие генераторы более эффективны. Во-первых, они генерируют переменный ток (переменный ток) и не имеют тяжелых магнитов. Вместо того, чтобы вращать катушку внутри магнита для выработки электричества, они вращают магнит внутри катушки, однако на самом деле этот магнит представляет собой небольшой «электромагнит» (иногда называемый «ротор»), который питается (или «возбуждается») от ваш аккумулятор. Ток для этих вращающихся катушек по-прежнему подается через коммутатор и угольные щетки, но, поскольку сила тока настолько мала, они, как правило, не изнашиваются.Катушки, намотанные снаружи вращающихся катушек, называются статором - они действительно производят переменное напряжение. Очевидно, что нам нужен постоянный ток, чтобы заряжать аккумулятор и управлять транспортными системами, поэтому он выпрямляется с помощью мостового выпрямителя, который состоит из 6 диодов. Есть трио диодов, которые питают обмотки ротора…. но он начинает немного вмешиваться, поэтому мы оставим его там. Есть еще и бесщеточные генераторы ... но это отдельная история.

Мощность генератора переменного тока регулируется регулятором, который может быть установлен внутри или на задней части генератора переменного тока (с внутренней регулировкой), а иногда и на межсетевой экран транспортного средства (с внешней регулировкой).Это чаще встречается у больших 4х4, особенно если у них есть системы с двумя батареями. Эти регуляторы не похожи на старые регуляторы динамо-машины, они твердотельные, и они намного сложнее в эксплуатации. Регулятор работает, «просто» увеличивая или уменьшая ток возбуждения, подаваемый на ротор, для управления выходом.

Если у вас есть генератор переменного тока, который может производить 120 ампер (макс.), А общий ток, потребляемый электрическими аксессуарами (включая аккумулятор), составляет всего 20 ампер, генератор будет вырабатывать только ток, необходимый (20 ампер) для поддержания заданного напряжения. .Это определяется регулятором напряжения и сопротивлением электрической нагрузки генератора. Если напряжение начинает падать ниже целевого напряжения, ток увеличивается, позволяя напряжению оставаться на том же уровне. Однако полная мощность генератора обычно не доступна на холостых оборотах двигателя. Выходная мощность увеличивается с увеличением числа оборотов, а максимальная выходная мощность составляет от 1800 до 2000 об / мин.

Однако на более новых автомобилях сейчас происходит отход от генератора переменного тока, имеющего собственный или отдельный регулятор, а ЭБУ двигателя управляет или регулирует мощность зарядки, чтобы он мог сбалансировать электрическую нагрузку и эффективность двигателя.В некоторых современных «экологичных» автомобилях блок управления двигателем отключает генератор, когда двигатель работает на холостом ходу, например, на светофоре. Если ЭБУ обнаруживает высокую нагрузку на генератор ... например, зимним утром вы запускаете двигатель, включаете свет, обогревает окна и автомобильное радио, тогда ЭБУ точно знает, как изменить топливо, поступающее в двигатель, чтобы оно было максимально экономичный. Раньше генератор просто создавал динамическую нагрузку на двигатель, и скорость холостого хода упала бы, поэтому ранние органы управления двигателем просто добавляли бы больше топлива, чтобы вернуть скорость холостого хода ... до этого вы могли бы даже просто потянуть немного приглушите воздушную заслонку, чтобы двигатель не работал грубо и не заглох.

На некоторых автомобилях теперь есть электрические подогреватели CAT, чтобы довести каталитический нейтрализатор до рабочей температуры…. Во время прогрева некоторые автомобили не позволяют полностью включить вентилятор обогревателя или включить обогрев окон или сидений. Это часто является источником жалоб владельцев, которые купили эти автомобили и не знают о системе.

Итак, как все это влияет на мой караван?

Ну…. помните Динамо? В те времена на зарядку аккумулятора для отдыха в вашем доме на колесах ушла бы неделя, поэтому люди забирали их домой и сажали в гараже на зарядное устройство, подключенное к розетке.Когда вышли первые генераторы переменного тока, у них все еще был примитивный регулятор, и выходная мощность была немного «ненадежной», но все работало нормально. Следующим шагом вперед была возможность заряжать аккумулятор для досуга своего каравана, буксируя его по дороге. В Великобритании мы посмотрели на наш 12N и подумали…. « нам нужна другая вилка », поэтому мы придумали 12S… 12 для 12 вольт и S для «дополнительного». (Да, вы можете получить 24N и 24S, которые используются на коммерческих автомобилях). Однако наши родственники с континента посмотрели на вещи и решили адаптировать существующие 13-контактные вилки и розетки военного назначения.

Это было здорово, теперь мы могли заряжать аккумулятор для досуга во время езды в какой-то нечестивый утренний час, чтобы обыграть соседей на лучшем поле. Однако старые динамо-динозавры предупреждали: « вы не будете заряжать аккумулятор вашего автомобиля, если у вас нет реле с регулируемым напряжением ». Ну и да, и нет.

Некоторые из более крупных 4x4 имеют просто провод, который идет от батареи через предохранитель на 15 или 20 ампер прямо к контакту 9 (13-контактное гнездо) или контакту 4 (на 12S) и не имеют другого контроля.Поэтому, когда вы подключаете свой фургон к электросети, в трейлере постоянно присутствует напряжение от буксирующего транспортного средства. но здесь мы забегаем вперед.

Современные генераторы и их регуляторы достаточно сложны. Фактическое выходное напряжение, создаваемое генератором переменного тока, будет варьироваться в зависимости от температуры и нагрузки, но обычно будет примерно на 1-1 / 2–2 В выше, чем напряжение аккумулятора. В режиме ожидания большинство систем зарядки вырабатывают от 13,8 до 14,2 вольт без включенного освещения и аксессуаров. Вы можете измерить это, подключив положительный (+) и отрицательный (-) измерительные провода вольтметра к клеммам аккумулятора при работающем двигателе.

При первом запуске двигателя напряжение должно быстро подняться примерно до двух вольт выше напряжения аккумуляторной батареи, а затем оставаться стабильным. Точное напряжение зарядки будет варьироваться в зависимости от уровня заряда аккумулятора, нагрузки на электрическую систему автомобиля и температуры. Чем ниже температура, тем выше зарядное напряжение, и, наоборот, более высокая температура требует более низкого зарядного напряжения. «Нормальный» диапазон зарядного напряжения составляет от 13,9 до 15,1 В при 25 ° C, но ниже 0 ° C напряжение зарядки может составлять 14.От 9 до 15,8 вольт.

Современные генераторы имеют выходную мощность от 120 до 160 А, чего более чем достаточно для одновременной зарядки аккумулятора автомобиля, аккумулятора для отдыха в прицепе и работы холодильника, при этом у них все еще имеется достаточно в резерве для питания всех фар и автомобиля. аксессуары.

Что происходит, когда вы подключаете свой дом на колесах к тягачу?

Что ж, в Европе действуют другие правила, чем в США и Австралии. Мы (в Европе) должны соблюдать правило, которое в основном гласит, что во время путешествия можно включать только дорожные фонари.Это было сделано для того, чтобы убедиться, что ничто в караване не может повлиять на какие-либо системы безопасности в буксирующем автомобиле, побочный эффект этого означает, что мы не можем использовать электрические тормоза на прицепах, которые успешно использовались в США и Австралии в течение ряда лет, что позволяет буксировать больший вес. Это также ставит под сомнение статус некоторых вторичных тормозных систем и систем стабилизации, имеющихся в настоящее время на рынке…. в настоящее время они работают в серой зоне.

Чтобы остановить что-либо, находящееся в караване при работающем двигателе буксирующего транспортного средства, имеется «реле жилья», которое при обнаружении работающего двигателя переключает и отключает караван от аккумуляторной батареи для отдыха и подключает автомобиль. цепь зарядки аккумуляторной батареи.Это гарантирует, что все в караване отключено.

Помните, когда я сказал: « У некоторых из больших 4х4 просто есть провод, который идет от батареи через предохранитель на 15 или 20 ампер прямо к контакту 9 (13-контактное гнездо) или контакту 4 (на 12S) и не имеют другой контроль. Поэтому, когда вы подключаете свой фургон к электросети, от буксирующего транспортного средства, находящегося в трейлере, постоянно присутствует напряжение дюймов, ну, эта цепь заряжает аккумулятор для отдыха. У некоторых автомобилей есть отдельный выход от ЭБУ для этой цепи, у других есть второе реле, управляемое ЭБУ для этого выхода.В будущем будет очень активно установка буксирной электрики на автомобили, поскольку они становятся все более сложными. Теперь нам нужно добавить что-то еще в микс… ..

Типовая электрическая система для буксировки автомобиля - реле может управляться выключателем зажигания, ЭБУ или системой управления питанием ECO. Это НЕ реле разделения заряда, хотя его часто ошибочно называют.

Холодильник также можно подключать к электрической системе, но только при работающем двигателе автомобиля это может быстро разрядить аккумулятор буксируемого автомобиля.Холодильник никогда не может работать от аккумуляторной батареи для дома на колесах (хотя есть соединение, позволяющее управлять газовым предохранительным клапаном и автоматическим газовым зажигателем). Итак, как мы это сделаем? Что ж, есть еще один вывод, который проходит через реле в тягаче. Помните, я сказал, что ЭБУ двигателя контролирует его и включал его только тогда, когда двигатель работал ... ну, есть цепь, которая проходит от этого реле к прицепу через контакт 10 (13-контактное гнездо) или контакт 6 (на 12S). Когда караван видит напряжение на этом штыре, он переключает реле жилого дома фургона, отсоединяя аккумуляторную батарею фургона от каравана и подключая его к цепи зарядки (штырьки 9-13 штырьков, штырь 4 на 12S).Это гарантирует две вещи ... во-первых, аккумулятор для отдыха каравана никогда не сможет обеспечить автомобиль энергией - поэтому, если у вас разряженный автомобильный аккумулятор, он не будет использовать аккумулятор для автоприцепа, чтобы попытаться включить двигатель, позволяя высокому пусковому току разрушить проводка каравана и вторая - он отключает внутренние 12-вольтовые системы каравана от аккумулятора, поэтому ничто не может работать и потенциально повлиять на безопасную работу буксирующего автомобиля.

Простой рисунок, показывающий разницу между реле, когда двигатель ВЫКЛЮЧЕН и двигатель РАБОТАЕТ.Это показывает, что тягач не может использовать аккумуляторную батарею для запуска двигателя.

Это не реле разделения заряда….!

Теперь это не «реле разделения заряда » . Это простое переключающее реле, управляемое цепью зажигания на автомобиле или ЭБУ автомобиля, для включения сильноточной подачи в цепь холодильника. Многие люди называют это реле сплит-заряда, но это не так, если хотите, можете назвать его «реле холодильника»!

Простая установка SCR

«Реле раздельного заряда» и «реле измерения напряжения» были первоначально разработаны для транспортных средств с динамо-машиной или генераторами переменного тока с ограниченной выходной мощностью и обнаруживались, когда пусковая батарея транспортного средства заряжалась выходным напряжением динамо-машины или генератора переменного тока. Когда стартовая батарея была заряжена, напряжение поднялось до 13,6 или 13,8 вольт, и реле переключило выход генератора переменного тока на вторую батарею, чтобы ее можно было зарядить. Если напряжение пусковой батареи упадет ниже заданного уровня, реле раздельного заряда переключится обратно и снова зарядит пусковую батарею.На некоторых более дорогих реле измерения напряжения вы можете регулировать напряжение.

Если у вас установлен запасной электрический буксирный ткацкий станок, он вполне может быть снабжен реле, чувствительным к напряжению. При установке важно расположение реле. Некоторые монтажники устанавливают его в задней части автомобиля, а не в моторном отсеке. Это неверно, так как реле теперь должно «определять» напряжение на конце кабеля, который проложен по всей длине транспортного средства и сам подвержен падению напряжения.Это потребует регулировки реле с учетом этого падения напряжения. Это также означает, что когда вы включаете дополнительные аксессуары - фары, вентиляторы обогревателя, обогреватели экрана, дельта падения напряжения изменится, и тогда реле может начать «циклически» включаться и выключаться. Реально его следует установить в моторном отсеке, чтобы он был максимально точным.

ОБНОВЛЕНИЕ: август 2013 г. : эта статья появилась в LRO относительно интеллектуальных генераторов в автомобилях Land Rover Discovery 4.Это также может иметь отношение к другим автомобилям 4 x 4 и буксируемым автомобилям.

Статья появилась в журнале Land Rover Owner International - сентябрь 2013 г. (c) LRO / Bauermedia

SCR в отличие от VSR теперь больше, чем просто реле. Первоначально они должны были убедиться, что были выключатели « сделать до разрыва », что означает, что они подключали вторую батарею перед отключением стартерной батареи, иначе позволить генератору перейти в «разомкнутую цепь» было верным способом преждевременного прекращения его срока службы.

В настоящее время SCR

(, и я не имею в виду аббревиатуру торговой марки, используемую General Electric для описания тиристоров! ) используют MOSFET и другие технологии для мониторинга аккумуляторов и динамического переключения и пропорционального заряда… на самом деле многие теперь включают в себя некоторую форму интеллектуальной зарядки технологии, возможности для подключения более двух батарей, а некоторые даже имеют возможность зарядки от берега и встроенные инверторы переменного тока. На рынке имеется ряд SCR, которые теперь также выполняют функцию регулятора генератора и требуют модификации вашего генератора для улучшения возможностей зарядки.Однако они обычно больше подходят для использования на море. Одна из лучших компаний, которых я знаю в области технологий такого рода, - Sterling Power .

Вы часто найдете «реле раздельного заряда» в транспортных средствах 4 x 4, которые имеют вторую батарею для лебедки на 12 вольт, или на лодках, где у них есть обычная батарея запуска двигателя, но может быть группа из нескольких батарей на 12 вольт для обеспечения питания. находясь под парусом или пришвартовавшись без берегового источника питания. Некоторые топовые модели 4 x 4 имеют генераторы с двойным выходом для работы с системой с двумя батареями.Для получения дополнительной информации о различиях между реле, реле измерения напряжения и реле раздельной зарядки прочтите мой пост «Реле , VSR, SCR… В чем разница?»

Типичная 13-контактная проводка каравана с реле жилого помещения

В качестве аварийной системы безопасности производитель прицепа установит плавкий предохранитель между аккумуляторной батареей прицепа и 12-вольтовой системой на борту прицепа. Это делает две вещи ... защищает 12-вольтовую электрическую систему прицепа в случае перегрузки или неисправности, второе - защищает электропроводку прицепа от повреждений, если реле жилого помещения должно выйти из строя и вы запускаете двигатель буксирующего транспортного средства с подсоединенным прицепом. .Предохранитель сработает до того, как автомобиль попытается использовать аккумуляторную батарею в качестве источника энергии. Этот предохранитель обычно рассчитан на 15 или 20 ампер.

Внимание!

Некоторые люди скажут вам, что вы можете проверить выходную мощность своего генератора, запустив двигатель, а затем отключив аккумулятор, чтобы провести измерения ... некоторые скажут вам, есть ли у вас разряженная аккумуляторная батарея для автофургона, чтобы завести машину, отсоедините исправную батарею и подключите квартиру аккумулятор.

Ну, если отсоединить аккумулятор при работающем двигателе….Вы позже сделаете покупки для нового генератора. Отключение аккумулятора при работающем двигателе - действительно плохая идея. Вы вызовете скачки напряжения в электрической системе буксировщика, которые могут просто провожать ваш ECU и радио…. он обязательно увидит диодное трио в генераторе.

«Хорошо, дайте мне все это на английском…»

1 - Когда вы подключаете караван к автомобилю с выключенным двигателем, контакт 9 (13-контактный) или 4 (12S) будет подавать напряжение на караван, это активирует вашу систему ATC Al-Ko, если она у вас установлена. а на некоторых караванах позволит вам вручную переключаться с аккумуляторной батареи каравана для отдыха на аккумулятор буксируемого автомобиля.Все дорожные фонари будут работать. Аккумулятор прицепа НЕ подключен к цепи зарядки (поэтому вы не можете использовать аккумулятор для отдыха прицепа для запуска автомобиля, если аккумулятор автомобиля разряжен!)

2 - Запустите двигатель. Теперь это делает контакт 10 (13-контактный) контакт 6 (12S) под напряжением и обеспечивает питание холодильника в трейлере. Он также включает реле жилого помещения, отсоединяя аккумуляторную батарею от прицепа и снова подключая ее только к цепи зарядки тягача.

На самом деле все очень просто….даже я получил это тогда!

13-контактное или «континентальное» гнездо на моем Freelander

Некоторые вещи, на которые следует обратить внимание….

Кабели на электрооборудовании буксировки должны быть достаточного размера, чтобы пропускать ток, необходимый для различных компонентов прицепа. Обычно для дорожных фонарей требуется только кабель квадратного сечения 1 мм или 1,5 мм. Тем не менее, для цепи зарядки требуется квадратный кабель не менее 2,5 мм, как и для цепи холодильника. Если вы посмотрите на схемы подключения выше, вы также увидите, что имеется несколько нейтральных или заземляющих кабелей.Они хранятся отдельно в караване и никогда не должны соединяться в караване. Единственный раз, когда эти нейтральные или заземляющие кабели подключаются, - это когда они соединяются с центральной точкой заземления на буксирующем автомобиле. Эти кабели также должны иметь квадрат не менее 2,5 мм.

Если вы хотите установить две батареи параллельно в буксируемое транспортное средство или даже в свой дом на колесах - особенно если у вас есть тяжелая сдвоенная ось с установленным двигателем, есть правильный и неправильный способ сделать это. Я написал руководство «Как подключить две батареи параллельно».

Для поиска неисправности в цепи зарядки аккумулятора для досуга первым делом необходимо убедиться, что с буксирным разъемом на автомобиле все в порядке. Чтобы помочь с его разборкой, я сделал чертеж, показывающий штыревое соединение со стороны гнезда ...

Разъемы для 13-контактной буксирной розетки, если смотреть со стороны розетки (вилки).

Вы можете нажать на ссылку, чтобы загрузить копию в формате PDF: 13-контактная буксирная розетка 01

Дополнительная литература:

Общие сведения о ваттах, амперах, вольтах и ​​омах - очень базовое введение в некоторые простые математические вычисления, которые позволяют вычислить мощность, ток и сопротивление.

Реле, VSR, SCR… В чем разница? - включает различные типы реле, которые могут использоваться для зарядки аккумуляторов вашего досуга.

Знакомство с электрикой прицепов и эвакуаторов

13-контактное гнездо - поиск основных неисправностей

ISO 11446 - 13-контактные соединения прицепа

Дорожные огни для караванов - поиск основных неисправностей

Как: подключить две батареи параллельно

.

Авторские права © 2011-2020 Саймон П. Барлоу - Все права защищены

Как это:

Like Loading ...

Схемы зарядного устройствабесплатные ссылки на электронные схемы

Зарядное устройство 12 В - переменный источник питания - Схема, представленная здесь, может заряжать свинцово-кислотную батарею 12 В от 50 Ач до 80 Ач (даже до до 100 Ач) и даже может использоваться как переменный источник постоянного тока до 18 В __ Electronics Projects for You

Вход 12 В Зарядное устройство для аккумулятора 12 В - Хорошо подходит для зарядки гелевых аккумуляторов от автомобиля при работающем или неработающем двигателе.__ Дизайн Манфреда Морнхинвега

Зарядное устройство с дифференциальной температурой 12 В, 4 элемента AA. В этом проекте есть ряд улучшений по сравнению с моей схемой зарядного устройства NIC D с контролируемой температурой. Новая схема работает от 12 В постоянного тока, что позволяет использовать ее в автомобиле или от солнечной системы на 12 В. Кроме того, светодиод датчика тока проверяет, получают ли элементы зарядный ток. Обратите внимание, что схема датчика тока __ Разработана G. Forrest Cook

12v_To_24v_Solar_Battery_Charger - Некоторое время назад я получил электронное письмо от посетителя Discover Circuits.Он хотел знать, как можно использовать одну солнечную панель на 12 В для зарядки батареи свинцово-кислотных аккумуляторов на 24 В. Он сказал, что использовал 24-вольтовую батарею для работы в аварийной системе электроснабжения на 120 В переменного тока. Используя более высокие 24 В вместо 12 В, его инвертор постоянного тока в переменный мог выдавать больше пиковой мощности для запуска таких вещей, как колодезные насосы и оконные кондиционеры. . . . Hobby Circuit Дэвида Джонсона P.E. - июль 2017 г.

Зарядное устройство для 2-элементных литий-ионных аккумуляторов

- эта схема была создана для зарядки нескольких литиевых элементов (3.6 вольт каждый, емкость 1 ампер-час), установленный в переносном транзисторном радиоприемнике. Зарядное устройство работает путем подачи короткого импульса тока через последовательный резистор и последующего контроля напряжения батареи, чтобы определить, требуется ли еще один импульс. Ток можно регулировать путем изменения последовательного резистора или регулировки входного напряжения __ Разработано Биллом Боуденом

Схема изолятора батареи 2–12 В с LTC4412 - только что анонсировал небольшой аккуратный чип (LTC4412). Он был разработан для использования вместе с внешним силовым полевым транзистором P-канала, чтобы сформировать идеальную диодную функцию с очень низким 0.Падение напряжения 05в. Микросхема контролирует напряжение на eit. . . Hobby Circuit, разработанный Дэвидом А. Джонсоном P.E. - август 2006 г.

Зарядное устройство для литий-ионных аккумуляторов с 2-элементными солнечными панелями

- На этой схеме показано компактное зарядное устройство на солнечных батареях, использующее LTC3105 в качестве повышающего преобразователя и LTC4071 в качестве шунтирующего литий-ионного зарядного устройства. Двухэлементная солнечная панель мощностью 400 мВт обеспечивает входную мощность для LTC3105 для выработки тока заряда более 60 мА при полном солнечном свете. Контроль максимальной мощности предотвращает попадание напряжения солнечной панели __ Linear Technology / Analog Devices App Note, 1 июля 2011 г.

3.Для питания литиевых элементов 3 В требуется один индуктор - 05.08.99 Идеи дизайна EDN: из-за растущей популярности литий-ионных (Li-ion) батарей и источников питания 3,3 В разработчикам портативного оборудования часто приходится создавать источник питания 3,3 В, который один литий-ионный элемент может питать __ Схема разработки Мэтта Шиндлера и Джея Сколио, Maxim Integrated Products, Саннивейл, Калифорния

4-элементный никель-кадмиевый стабилизатор / зарядное устройство для портативных компьютеров - DN54 Примечания по конструкции__ Linear Technology / Analog Devices

4_D-Cell_LED_Lantern_Modified - Однажды, делая покупки в магазине спортивных товаров, я заметил компактный светодиодный фонарь.Похоже на фонарь, который я мог переделать. Светодиоды фонаря были сгруппированы в три секции по 7 светодиодов в каждой, ориентированные под углом 120 градусов. Светодиоды были стандартными эпоксидными типами Т 1-3 / 4. Фонарь имел трехрежимный переключатель, который выбирал между выключенным, полным и половинным режимами. В режиме половинной мощности горела только половина из 21 светодиода. На полной мощности горели все светодиоды. . . . Hobby Circuit Дэвида Джонсона P.E. - сентябрь 2017 г.

Регулятор 5 В - Прокрутите для этого - Вам нужно добавить регулятор 5 В для питания USB-устройства, и этот регулятор должен быть с низким падением напряжения, потребляющим "микро" мощность, чтобы не разряжать батарею на свой собственный.В корпусе PWP есть коммерческие стабилизаторы, такие как TPS76750Q, которые справятся с этой задачей с помощью всего лишь пары хороших керамических байпасных конденсаторов. (Существует поразительное количество подходящих вариантов регуляторов.) Но если вам нравится собирать свой гаджет из имеющихся деталей, ниже приведены несколько схем, которые будут работать. __ Контактное лицо: Чарльз Венцель из Wenzel Associates, Inc.

Солнечное зарядное устройство на 5 В - В этом проекте используется аккумулятор 1,2 В и солнечная панель от солнечного садового светильника. Эти фонари можно купить менее чем за 5 долларов.00 в большинстве магазинов по 2,00 доллара или аналогичных магазинов, где продаются предметы домашнего обихода. __ Связаться с Коллином Митчеллом

Зарядное устройство для гелевых аккумуляторов на 6 В - для этой схемы требуется стабилизированный входной каскад 10 В постоянного тока, способный обеспечить ток 2 А. Начинает цикл зарядки при 240 мА и при полной зарядке автоматически переключается в состояние плавающего заряда (постоянный заряд) 12 мА. __ Разработан Тони ван Рооном VA3AVR

Тестер аккумуляторов NMH / NiCd 6 В - я разработал эту схему для тестирования аккумуляторных батарей на 6 В в условиях постоянного тока.В соответствии с конструкцией схема прикладывает к аккумуляторной батарее нагрузку 10 А. На главном силовом транзисторе необходимо использовать радиатор. . . Схема Дэйва Джонсона P.E. - декабрь 2004 г.

Полевое зарядное устройство 7,2 В - Это зарядное устройство было разработано мной в 1993 году, чтобы удовлетворить мою потребность. Это было у меня два R.C. модели лодок, которым требовалось по 2 аккумулятора, и мне нужно было заряжать их одновременно от автомобильного аккумулятора. Я не мог найти коммерческое подразделение для этого, поэтому придумал отличный проект, чтобы оплатить счет.Макет был выполнен на 2 прототипах, одна плоская, а другая вертикальная для отображения гистограмм. Перед ними отображается красный фильтр. __ Разработан Тони ван Рооном VA3AVR

Зарядное устройство для литий-ионных аккумуляторов на 8 солнечных элементов, версия 2 - Джим Уилбер посмотрел на мою конструкцию зарядного устройства и прислал мне несколько предложенных изменений. Он предложил использовать идеальную диодную ИС LTC4412 для отключения пути тока от солнечной батареи к батарее в темноте. Он также отметил, что версия 2.Выбранный мною регулятор 5 В от Seiko больше не производился и предлагал использовать шунтирующий источник.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *