Сечение ток таблица: Сечение провода и сила тока таблица — Ремонт в квартире

Содержание

Таблица выбора сечения кабеля в зависимости от силы тока или мощности при прокладке проводов. Выбор сечения автомобильного провода — Ізолітсервіс

Таблица выбора сечения кабеля при прокладке проводов

Проложенные открыто

Проложенные в трубе

 Сечение

Медь

Алюминий 

Медь

Алюминий

 каб.,

 ток

W, кВт

 ток

W, кВт

ток 

W, кВт

 

W, кВт

мм2

А

220в

380в

А

220в

380в

А

220в

380в

А

220в

380в

0,5

11

2,4

--

--

--

--

--

--

--

-- 

--

--

0,75

15

3,3

--

--

--

--

--

--

--

--

--

--

1,0

17

3,7

6,4

--

--

--

14

3,0

5,3

--

--

--

1,5

23

5,0

8,7

--

--

--

15

3,3

5,7

--

--

--

2,0

26

5,7

9,8

21

4,6

7,9

19

4,1

7,2

14,0

3,0

5,3

2,5

30

6,6

11,0

24

5,2

9,1

21

4,6

7,9

16,0

3,5

6,0

4,0

41

9,0

15,0

32

7,0

12,0

27

5,9

10,0

21,0

4,6

7,9

6,0

50

11,0

19,0

39

8,5

14,0

34

7,4

12,0

26,0

5,7

9,8

10,0

80

17,0

30,0

60

13,0

22,0

50

11,0

19,0

38,0

8,3

14,0

16,0

100

22,0

38,0

75

16,0

28,0

80

17,0

30,0

55,0

12,0

20,0

25,0

140

30,0

53,0

105

23,0

39,0

100

22,0

38,0

65,0

14,0

24,0

35,0

170

37,0

64,0

130

28,0

49,0

135

29,0

51,0

75,0

16,0

28,0

Выбор сечения автомобильного провода:

Номин. сечение, мм2

Сила тока в одиночном проводе, А при длительной нагрузке и при температуре окружающей среды, оС

20

30

50

80

0,5

17,5

16,5

14,0

9,5

0,75

22,5

21,5

17,5

12,5

1,0

26,5

25,0

21,5

15,0

1,5

33,5

32,0

27,0

19,0

2,5

45,5

43,5

37,5

26,0

4,0

61,5

58,5

50,0

35,5

6,0

80,5

77,0

66,0

47,0

16,0

149,0

142,5

122,0

88,5

*Примечание: при прокладке проводов сечением 0,5 - 4,0 мм2 в жгутах, в поперечном сечении которых по трассе содержится от двух до семи проводов, сила допустимого тока в проводе составляет 0,55 от силы тока в одиночном проводе согласно таблице, а при наличии 8-19 проводов - 0,38 от силы тока в одиночном проводе.

Сечение кабеля (провода) по току и мощности таблица

При прокладке электропроводки в частном доме или квартире важно правильно подобрать сечение используемых проводов (кабелей). Если взять слишком толстый кабель (большого сечения) — это «влетит вам в копеечку», так как его цена сильно зависит от диаметра токопроводящих жил. Применение же тонкого кабеля, приводит к его перегрузке и, при несрабатывании защиты, перегреву, оплавлению изоляции, короткому замыканию и пожару. Правильным будет выбор сечения провода в зависимости от тока, что отражено в приведенных ниже таблицах.

Сечение кабеля

Сечение кабеля — это площадь среза токоведущей жилы. Если срез жилы круглый (как в большинстве случаев) и состоит из одной проволочки — то площадь/сечение определяется по формуле площади круга. Если в жиле много проволочек, то сечением будет сумма сечений всех проволочек в данной жиле.

Величины сечения во всех странах стандартизированы, причем стандарты бывшего СНГ и Европы в этой части полностью совпадают. В нашей стране документом, которым регулируется этот вопрос, являются «Правила устройства электроустановок» или кратко — ПУЭ.

Сечение кабеля выбирается исходя из нагрузок с помощью специальных таблиц, называемых «Допустимые токовые нагрузки на кабель.» Если нет никакого желания разбираться в этих таблицах — то Вам вполне достаточно знать, что на розетки желательно брать медный кабель сечением 1,5-2,5 мм², а на освещение — 1,0-1,5мм².

Для ввода одной фазы в рядовую 2-3 комнатную квартиру вполне хватит 6,0 мм². Все равно на Ваших 40-80 м² большего оборудования не поместиться, даже с учетом электроплиты.

Многие электрики для «прикидки» нужного сечения считают, что 1 мм² медного провода может пропустить через себя 10А электрического тока: соответственно 2,5 мм² меди способны пропустить 25А, а 4,0 мм² — 40А и т.д. Если Вы немного проанализируете таблицу выбора сечения кабеля, то увидите, что такой метод годится только для прикидки и только для кабелей сечением не выше 6,0 мм².

Ниже дана сокращенная таблица выбора сечения кабеля до 35 мм² в зависимости от токовых нагрузок. Там же для Вашего удобства приведена суммарная мощность электрооборудования при 1-фазном (220В) и 3-фазном (380В) потреблении.

При прокладке кабеля в трубе (т.е. в любых закрытых пространствах) возможные токовые нагрузки на кабель должны быть меньше, чем при прокладке открыто. Это связано с тем, что кабель в процессе эксплуатации нагревается, а теплоотдача в стене или в земле значительно ниже, чем на открытом пространстве.

Когда нагрузка называется в кВт — то речь идет о совокупной нагрузке. Т.е. для однофазного потребителя нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем трем. Когда величина нагрузки названа в амперах (А) — речь всегда идет о нагрузке на одну жилу (или фазу).

Таблица нагрузок по сечению кабеля:

Сечение кабеля, мм²Проложенные открытоПроложенные в трубе
медьалюминиймедьалюминий
ток, Амощность, кВтток, Амощность, кВтток, Амощность, кВтток, Амощность, кВт
220В380В220В380В220В380В220В380В
0. 5112.4
0.75153.3
1173.76.41435.3
1.52358.7153.35.7
2.5306.611245.29.1214.67.9163.56
44191532712275.910214.67.9
6501119398.514347.412265.79.8
10801730601322501119388. 314
161002238751628801730551220
25140305310523391002238651424
35170376413028491352951751628

Для самостоятельного расчета необходимого сечение кабеля, например, для ввода в дом, можно воспользоваться кабельным калькулятором или выбрать необходимое сечение по таблице.

Настоящая таблица касается кабелей и проводов в резиновой и пластмассовой изоляции. Это такие широко распространенные марки как: ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ. АВВГ и ряд других. На кабели в бумажной изоляции есть своя таблица, на не изолированные провода и шины — своя.

При расчетах сечения кабеля специалист должен также учитывать методы прокладки кабеля: в лотках, пучками и т. п.

    Кроме того, величины из таблиц о допустимых токовых нагрузках должны быть откорректированы следующими снижающими коэффициентами:
  • поправочный коэффициент, соответствующий сечению кабеля и расположению его в блоке;
  • поправочный коэффициент на температуру окружающей среды;
  • поправочный коэффициент для кабелей, прокладываемых в земле;
  • поправочный коэффициент на различное число работающих кабелей, проложенных рядом.

Расчет сечения провода

Начнем не с таблицы, а с расчета. То есть, каждый человек, не имея под рукой интернет, где в свободном доступе ПУЭ с таблицами имеется, может самостоятельно определить сечение кабеля по току. Для этого потребуется штангенциркуль и формула.

Если рассмотреть сечение кабеля, то это круг с определенным диаметром.
Существует формула площади круга: S= 3,14*D²/4, где 3,14 – это Архимедово число, «D» — диаметр измеренной жилы. Формулу можно упростить: S=0,785*D².

Если провод состоит из нескольких жил, то замеряется диаметр каждой, вычисляется площадь, затем все показатели суммируются. А как вычислить сечение кабеля, если каждая его жила состоит из нескольких тоненьких проводков?

Процесс немного усложняется, но не сильно. Для этого придется подсчитать количество проводков в одной жиле, измерить диаметр одного проводка, вычислить его площадь по описанной формуле и умножить данный показатель на количество проводков. Это и будет сечение одной жилы. Теперь необходимо это значение умножить на количество жил.

Если нет желания считать проводки и измерять их размеры, надо просто замерить диаметр одной жилы, состоящий из нескольких проводов. Снимать размеры надо аккуратно, чтобы не смять жилу. Обратите внимание, что этот диаметр не является точным, потому что между проводками остается пространство.

Соотношение тока и сечения

Чтобы понять, как работает электрический кабель, необходимо вспомнить обычную водопроводную трубу. Чем больше ее диаметр, тем больше воды через нее будет проходить. То же самое и с проводами.

Чем больше их площадь, тем большей силы ток, через них пройдет, тем большую нагрузку такой провод выдерживает. При этом кабель не будет перегреваться, что является самым важным требованием правил пожарной безопасности.

Поэтому связка сечение – ток является основным критерием, который используется в подборе электрических проводов в разводке. Поэтому вам необходимо сначала разобраться, сколько бытовых приборов и какой общей мощности будет подключены к каждому шлейфу.

Сечение жилы провода, мм2Медные жилыАлюминиевые жилы
Ток, АМощность, ВтТок, АМощность, Вт
0.561300
0.75102200
1143100
1.5153300102200
2194200143100
2.5214600163500
4275900214600
6347500265700
105011000388400
1680176005512100
25100220006514300

К примеру, на кухне обязательно устанавливается холодильник, микроволновка, кофемолка и кофеварка, электрочайник иногда посудомоечная машина. То есть, все эти прибору могут в один момент быть включены одновременно. Поэтому в расчетах и используется суммарная мощность помещения.

Узнать потребляемую мощность каждого прибора можно из паспорта изделия или на бирке.

    Для примера обозначим некоторые из них:
  1. Чайник – 1-2 кВт.
  2. Микроволновка и мясорубка 1,5-2,2 кВт.
  3. Кофемолка и кофеварка – 0,5-1,5 кВт.
  4. Холодильник 0,8 кВт.

Узнав мощность, которая будет действовать на проводку, можно подобрать ее сечение из таблицы. Не будем рассматривать все показатели данной таблицы, покажем те, которые преобладают в быту.

Чем отличается кабель от провода

Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Несмотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется.

Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.

Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию.

Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.

Выбор кабеля

Делать внутреннюю разводку лучше всего из медных проводов. Хотя алюминиевые им не уступят. Но тут есть один нюанс, который связан с правильно проведенном соединении участков в распределительной коробке. Как показывает практика, места соединений часто выходят из строя из-за окисления алюминиевого провода.

Еще один вопрос, какой провод выбрать: одножильный или многожильный? Одножильный имеет лучшую проводимость тока, поэтому именно его рекомендуют к применению в бытовой электрической разводке. Многожильный имеет высокую гибкость, что позволяет его сгибать в одном месте по несколько раз без ущерба качеству.

Одножильный или многожильный

При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой.

Здесь мы хотели бы сказать вам одну вещь. Если ваша проводка не будет шевелиться, то есть это не удлинитель, не место сгиба, которое постоянно меняет свое положение, то предпочтительно использовать моножилу.

Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди.

В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше.

Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.

Медь или алюминий

В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот.

Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться.

Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 «В зданиях следует применять кабели и провода с медными жилами…».

Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал.

Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5 мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт.

Так что еще раз повторимся — только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.

Зачем производится расчет

Провода и кабели, по которым протекает электрический ток, являются важнейшей частью электропроводки.

Расчет сечения провода необходимо производить затем, чтобы убедится, что выбранный провод соответствует всем требованиям надежности и безопасной эксплуатации электропроводки.

Безопасная эксплуатация заключается в том, что если вы выберете сечение, не соответствующее его токовым нагрузкам, то это приведет к чрезмерному перегреву провода, плавлению изоляции, короткому замыканию и пожару.

Поэтому к вопросу о выборе сечения провода необходимо отнестись очень серьезно.

Что нужно знать

Основным показателем, по которому рассчитывают провод, является его длительно допустимая токовая нагрузка. Проще говоря, это такая величина тока, которую он способен пропускать на протяжении длительного времени.

Чтобы найти величину номинального тока, необходимо подсчитать мощность всех подключаемых электроприборов в доме. Рассмотрим пример расчета сечения провода для обычной двухкомнатной квартиры.

Таблица потребляемой мощности/силы тока бытовыми электроприборами


ЭлектроприборПотребляемая мощность, ВтСила тока, А
Стиральная машина2000 – 25009,0 – 11,4
Джакузи2000 – 25009,0 – 11,4
Электроподогрев пола800 – 14003,6 – 6,4
Стационарная электрическая плита4500 – 850020,5 – 38,6
СВЧ печь900 – 13004,1 – 5,9
Посудомоечная машина2000 – 25009,0 – 11,4
Морозильники, холодильники140 – 3000,6 – 1,4
Мясорубка с электроприводом1100 – 12005,0 – 5,5
Электрочайник1850 – 20008,4 – 9,0
Электрическая кофеварка630 – 12003,0 – 5,5
Соковыжималка240 – 3601,1 – 1,6
Тостер640 – 11002,9 – 5,0
Миксер250 – 4001,1 – 1,8
Фен400 – 16001,8 – 7,3
Утюг900 –17004,1 – 7,7
Пылесос680 – 14003,1 – 6,4
Вентилятор250 – 4001,0 – 1,8
Телевизор125 – 1800,6 – 0,8
Радиоаппаратура70 – 1000,3 – 0,5
Приборы освещения20 – 1000,1 – 0,4

После того как мощность будет известна расчет сечения провода или кабеля сводится к определению силы тока на основании этой мощности. Найти силу тока можно по формуле:

1) Формула расчета силы тока для однофазной сети 220 В:

расчет силы тока для однофазной сети

где Р — суммарная мощность всех электроприборов, Вт;
U — напряжение сети, В;
КИ= 0.75 — коэффициент одновременности;
cos для бытовых электроприборов- для бытовых электроприборов.
2) Формула для расчета силы тока в трехфазной сети 380 В:

расчет силы тока для трехфазной сети

Зная величину тока, сечение провода находят по таблице. Если окажется что расчетное и табличное значения токов не совпадают, то в этом случае выбирают ближайшее большее значение. Например, расчетное значение тока составляет 23 А, выбираем по таблице ближайшее большее 27 А — с сечением 2.5 мм2.

Какой провод лучше использовать

На сегодняшний день для монтажа, как открытой электропроводки, так и скрытой, конечно же большой популярностью пользуются медные провода.

    Медь, по сравнению с алюминием, более эффективна:
  • она прочнее, более мягкая и в местах перегиба не ломается по сравнению с алюминием;
  • меньше подвержена коррозии и окислению. Соединяя алюминий в распределительной коробке, места скрутки со временем окисляются, это приводит к потере контакта;
  • проводимость меди выше чем алюминия, при одинаковом сечении медный провод способен выдержать большую токовую нагрузку чем алюминиевый.

Недостатком медных проводов является их высокая стоимость. Стоимость их в 3-4 раза выше алюминиевых. Хотя медные провода по стоимости дороже все же они являются более распространенными и популярными в использовании чем алюминиевые.

Расчет сечения медных проводов и кабелей

Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на примере двухкомнатной квартиры.

Как известно, вся нагрузка делится на две группы: силовую и осветительную.

В нашем случае основной силовой нагрузкой будет розеточная группа, установленная на кухне и в ванной. Так как там устанавливается наиболее мощная техника (электрочайник, микроволновка, холодильник, бойлер, стиральная машина и т.п.).

Для этой розеточной группы выбираем провод сечением 2.5 мм2. При условии, что силовая нагрузка будет разбросана по разным розеткам. Что это значит? Например, на кухне для подключения всей бытовой техники нужно 3-4 розетки подключенных медным проводом сечением 2.5 мм2 каждая.

Если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 будет недостаточно, в этом случае нужно использовать провод сечением 4-6 мм2. В жилых комнатах для питания розеток можно использовать провод сечением 1.5 мм2, но окончательный выбор нужно принимать после соответствующих расчетов.

Питание всей осветительной нагрузки выполняется проводом сечением 1.5 мм2.

Необходимо понимать, что мощность на разных участках электропроводки будет разной, соответственно и сечение питающих проводов тоже разным. Наибольшее его значение будет на вводном участке квартиры, так как через него проходит вся нагрузка. Сечение вводного питающего провода выбирают 4 – 6 мм2.

При монтаже электропроводки применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ.

Сечение кабеля по мощности (таблица)

Вот мы добрались и до сути нашей статьи. Однако всё, что было выше, упускать нельзя, а значит и мы умолчать не могли.

Если попытаться изложить мысль логично и по-простому, то через каждое условное сечение проводника может пройти ток определенной силы. Заключение это вполне логичное и теперь лишь осталось узнать эти соотношения и соотнести для разных диаметров провода, исходя из его типоряда.

Также нельзя умолчать, что здесь, при расчете сечения по току, в «игру вступает» и температура. Да, это новая составляющая – температура. Именно она способна повлиять на сечение. Как и почему, давайте разбираться.

Все мы знаем о броуновском движении. О постоянном смещении ионов в кристаллической решетке. Все это происходит во всех материалах, в том числе и в проводниках. Чем выше температура, тем больше будут эти колебания ионов внутри материала. А мы знаем, что ток — это направленное движение частиц.

Так вот, направленное движение частиц будет сталкиваться в кристаллической решетке с ионами, что приведет к повышению сопротивления для тока.

Чем выше температура, тем выше электрическое сопротивление проводника. Поэтому по умолчанию, сечение провода для определенного тока принимается при комнатной температуре, то есть при 18 градусах Цельсия. Именно при этой температуре приведены все справочные значения в таблицах, в том числе и наших.

Несмотря на то, что алюминиевые провода мы не рассматриваем в качестве проводов для электропроводки, по крайней мере, в квартире, тем не менее, они много где применяются. Скажем для проводки на улице. Именно поэтому мы также приведем значения зависимостей сечения и тока и для алюминиевых проводов.

Итак, для меди и алюминия будут следующие показатели зависимости сечения провода (кабеля) от тока (мощности). Смотрите таблицу.

Таблица проводников под допустимый максимальный ток для их использования в проводке:

С 2001 года алюминиевые провода для проводки в квартирах не применяются. (ПЭУ)

Да, здесь как заметил наш читатель, мы фактически не привели расчета, а лишь предоставили справочные данные, сведенные в таблицу, на основании этих расчетов. Но смеем вас замерить, что для расчетов необходимо перелопатить множество формул, и показателей. Начиная от температуры, удельного сопротивления, плотности тока и тому подобных.

Поэтому такие расчеты мы оставим для спецов. При этом необходимо заметить, что и они не являются окончательными, так как могут незначительно разнится, в зависимости от стандарта на материал и запаса провода по току, применяемого в разных странах.

А вот о чем мы еще хотели бы сказать, так это о переводе сечения провода в диаметр. Это необходимо, когда имеется провод, но по каким-то причинам маркировки на нем нет. В этом случае по диаметру провода можно вычислить сечения и наоборот из сечения диаметр.

Общепринятые сечения для проводки в квартире

Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства.

Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2.

Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.

Выбор сечения провода исходя из количества потребителей

О чем еще хотелось сказать, так это о том, что лучше использовать несколько независимых линий питания для каждого из помещений в комнате или квартире. Тем самым вы не будете применять провод с сечением 10 мм 2 для всей квартиры, проброшенный во все комнаты, от которого идут отводы.

Такой провод будет приходить на вводный автомат, а затем от него, в соответствии с мощностью потребляемой нагрузки будут разведены выбранные сечения проводов, для каждого из помещений.

Типовая принципиальная схема электропроводки для квартиры или дома с электрической плитой (с указанием сечения кабеля для электроприборов)

Токовые нагрузки в сетях с постоянным током

В сетях с постоянным током расчет сечения идет несколько по-другому. Сопротивление проводника постоянному напряжению гораздо выше, чем переменному (при переменном токе сопротивлением на длинах до 100 м вообще пренебрегают).

Кроме этого, для потребителей постоянного тока как правило очень важно, чтобы напряжение на концах было не ниже 0,5В (для потребителей переменного тока, как известно колебания напряжения в пределах 10% в любую сторону допустимы).

Есть формула, определяющая насколько упадет напряжение на концах по сравнению с базовым напряжением, в зависимости от длины проводника, его удельного сопротивления и силы тока в цепи:

U = ((p l) / S) I

    где:
  • U — напряжение постоянного тока, В
  • p — удельное сопротивление провода, Ом*мм2/м
  • l — длина провода, м
  • S — площадь поперечного сечения, мм2
  • I — сила тока, А

Зная величины указанных показателей достаточно легко рассчитать нужное Вам сечение: методом подстановки, или с помощью простейших арифметических действий над данным уравнением.

Если же падение постоянного напряжения на концах не имеет значения, то для выбора сечения можно пользоваться таблицей для переменного тока, но при этом корректировать величины тока на 15% в сторону уменьшения, т.е. при постоянном токе справочные сечения кабеля могут пропускать тока на 15 % меньше, чем указано в таблице.

Подобное правило также работает для выбора автоматических выключателей для сетей с постоянным током, например: для цепей с нагрузкой в 25А, нужно брать автомат на 15% меньшего номинала, в нашем случае подходит предыдущий типоразмер автомата — 20А.

Кабель, передающий электрический ток, – один из важнейших элементов электрической сети. В случае выхода кабеля из строя работа всей системы становится невозможной, поэтому для предотвращения отказов, а также опасности возгорания от перегрева, следует произвести точный расчёт сечения кабеля по нагрузке.

Такой расчёт дает уверенность в безопасной и надёжной работе сети и приборов, но что ещё важнее – безопасности людей.

Выбор сечения, недостаточного для токовой нагрузки, приводит к перегреву, оплавлению и повреждению изоляции, а это, в свою очередь, – к короткому замыканию и даже пожару. Так что для проведения расчётов и тщательного выбора подходящего кабеля есть масса причин.

Что необходимо для расчёта по нагрузке

Основной показатель, помогающий рассчитать сечение и марку кабеля – предельно допустимая длительная нагрузка (по току). Если проще, то это – величина тока, которую кабель способен пропускать в условиях его прокладки без перегрева достаточно долго.

Для этого необходимо простое арифметическое суммирование мощностей всех электроприборов, которые будут включаться в сеть.

Следующим важным этапом, позволяющим достичь безопасности, является расчёт сечения кабеля по нагрузке, для чего необходимо подсчитать силу тока, используя формулу:

Для однофазной сети напряжением 220 В:

    Где:
  • Р – это суммарная мощность для всех электроприборов, Вт;
  • U — напряжение сети, В;
  • COSφ — коэффициент мощности.

Для трёхфазной сети напряжением 380 В:

Наименование прибораПримерная мощность, Вт
LCD-телевизор140-300
Холодильник300-800
Пылесос800-2000
Компьютер300-800
Электрочайник1000-2000
Кондиционер1000-3000
Освещение300-1500
Микроволновая печь1500-2200

Получив точное значение величины тока, следует обратиться к таблицам, позволяющим найти кабель или провод требуемого сечения и материала. Но если полученное значение величины тока не совсем совпадает с табличным значением, то не стоит «экономить», а лучше выбрать ближайшее, но большее значение сечения кабеля.

Пример: при напряжении сети 220 В полученное значение величины тока составило 22 ампера, ближайшее большее значение (27 А) имеет медный провод или кабель из меди, сечением 2,5 мм кв. Это означает, что оптимальным выбором станет именно такой кабель, а не с сечением 1,5 мм кв., имеющим значение допустимого длительного тока 19 А.

Сечение токо-
проводящих
жил, мм
Медные жилы проводов и кабелей
Напряжение 220ВНапряжение 380В
Ток, АМощность, кВтТок, АМощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066260171,6

Если выбирается кабель с алюминиевыми жилами, то лучше взять сечение жилы не 2,5, а 4 мм кв.

Сечение токо-
проводящих
жил, мм
Алюминиевые жилы проводов и кабелей
Напряжение 220ВНапряжение 380В
Ток, АМощность, кВтТок, АМощность, кВт
2,5204,41912,5
4286,12315,1
6367,93019,8
1050113925,7
166013,25536,3
258518,77046,2
35100228556,1
5013529,711072,6
7016536,314092,4
9520044170112,2
12023050,6200132

Расчёт для помещений

Предыдущий расчёт позволил точно вычислить материал и сечение вводного кабеля, по которому будет идти общая максимальная нагрузка. Теперь следует произвести аналогичные расчёты по каждому помещению и его группам. И вот почему: нагрузка на розеточные группы может значительно отличаться.

Так, розетки с подключённой стиральной машиной и феном нагружены гораздо больше, чем розетка для миксера и кофеварки на кухне. Поэтому не стоит «упрощать» задачу, без раздумий укладывая провод сечением 2,5 квадрата на розетки, так как иногда этого просто не хватит.

Следует помнить, что суммарная нагрузка в помещении состоит из 1) силовой и 2) осветительной. И если с осветительной нагрузкой всё ясно – она выполняется медным проводом с сечением в 1,5 мм кв., то с розетками не так всё просто.

Следует помнить, что обычно кухня и ванная комната – наиболее «нагруженные» линии, так как именно там расположены холодильник, электрочайник, бойлер, микроволновка, а иногда и стиральная машинка. Поэтому лучше всего распределить эту нагрузку по различным розеточным группам, а не использовать блок на 5-6 розеток.

Иногда от «специалистов» можно услышать, что для розеток в остальных помещениях достаточно и «кабеля-полторушки», однако выдели бы вы те чёрные полосы, видные из-под обоев, которые оставляет после себя прогоревший кабель после включения в него масляного обогревателя или тепловентилятора!

    Наиболее распространенные марки проводов и кабелей:
  1. ППВ — медный плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
  2. АППВ — алюминиевый плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
  3. ПВС — медный круглый, количество жил — до пяти, с двойной изоляцией для прокладки открытой и скрытой проводки;
  4. ШВВП – медный круглый со скрученными жилами с двойной изоляцией, гибкий, для подключения бытовых приборов к источникам питания;
  5. ВВГ — кабель медный круглый, до четырех жил с двойной изоляцией для прокладки в земле;
  6. ВВП — кабель медный круглый одножильный с двойной ПВХ (поливинилхлорид) изоляцией, П — плоский (токопроводящие жилы расположены в одной плоскости).

Расчёт сечения провода. Теория

При монтаже электроустановок различного назначения, в том числе и солнечных электростанций особое внимание следует уделить выбору сечения проводников. Заниженное сечение кабеля приводит к потерям энергии из - за нагрева и зачастую становится причиной возгорания. Завышенное сечение провода влечет необоснованное удорожание системы.

Площадь сечения проводника должна соответствовать величине протекаемого тока

В бытовых сетях переменного тока 220 Вольт сечение проводов очень редко превышает 6 мм², так как ток обычно не больше 50 Ампер. Мощные нагрузки обычно стараются распределить по нескольким фазам. 

В солнечных электростанциях имеется низковольтная часть постоянного тока, которая может быть выполнена проводом  25, 50, или даже 100 мм², в зависимости от мощности и напряжения системы. Самый большой ток протекает в цепи аккумуляторной батареи и преобразователя напряжения (инвертора).

Чтобы рассчитать сечение кабеля, нужно получить ток, разделив мощность на напряжение системы, и подобрать сечение токопроводящей жилы. Поможет Вам в этом таблица, расположенная ниже. 

Приведем пример: Если мощность инвертора 3кВт и напряжение системы 12 Вольт, ток в низковольтной цепи составит 3000/12=250 Ампер, и если провод проложен открыто, то его сечение должно составлять не менее 70 мм2. Если использовать инвертор той же мощности, но уже на 24 Вольт, ток получим в два раза меньше, 125 Ампер и, соответственно, сечение провода 25 мм².

Поэтому преобразователи напряжения высокой мощности, как правило, рассчитаны на входное напряжение 24 или 48 Вольт. Не сложно определить максимальный ток в контуре солнечных панелей. Если фотоэлектрические модули соединены последовательно, то следует взять ток короткого замыкания для одного модуля. Если же солнечные батареи соединены параллельно, ток короткого замыкания одной панели нужно умножить на количество солнечных модулей. Руководствуясь данным принципом можно рассчитать ток для любой системы солнечных модулей. 

Предельный ток в контуре «контроллеры заряда – аккумуляторы» следует принять равным номиналу контроллера.

Табл.1 Допустимый ток для кабелей с резиновой и поливинилхлоридной изоляцией и медными жилами

Данные приведены из ПУЭ7, «Правила устройства электроустановок», Издание 7. Все значения приняты для:

  • температуры жил +65 °С;
  • температуры окружающего воздуха +25 °С;
  • температуры земли +15°С.

Их следует применять независимо от количества используемых труб, места их прокладки (в воздухе, в перекрытиях или фундаментах). Допустимые длительные токи для кабелей, проложенных в коробах и в лотках пучками, должны быть рассчитаны как для кабелей, проложенных в трубах.

 

Таблицы выбора сечения кабеля по мощности

Таблица подбора сечения кабеля и провода по мощности и силе тока (Сu)

Сечение токопроводящей жилы мм2 Для кабеля с медными жилами
Напряжение 220 В Напряжение 380 В
Ток А Мощность кВт Ток А Мощность кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33,0
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66 260 171,6

Таблица подбора сечения кабеля и провода по мощности и силе тока (Al)

Сечение токопроводящей

 

жилы мм2
Для кабеля с алюминиевыми жилами
Напряжение 220 В Напряжение 380 В
Ток А Мощность кВт Ток А Мощность кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,0

Выбрать и купить кабель и провод Вы можете в разделе кабельно-проводниковая продукция.


Добавить вопрос/отзыв

Таблицы выбора сечения

Таблицы выбора сечения

Данная форма может быть свободно использована в автономном режиме "как есть" - т.е. без изменения исходного текста.
По поводу использования программы на сайтах необходимо связаться с автором - Мирошко Леонид: [email protected]

С уважением Мирошко Леонид.

Таблицы ПУЭ и ГОСТ 16442-80 для программы WireSel -


Выбор сечения провода по нагреву и потерям напряжения.  

ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров
с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы, мм2 Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)
открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1*2
(один 2ж)
1*3
(один 3ж)
0,5 11 - - - - -
0,75 15 - - - - -
1,00 17 16 15 14 15 14
1,5 23 19 17 16 18 15
2,5 30 27 25 25 25 21
4,0 41 38 35 30 32 27
6,0 50 46 42 40 40 34
10,0 80 70 60 50 55 50
16,0 100 85 80 75 80 70
25,0 140 115 100 90 100 85
35,0 170 135 125 115 125 100
50,0 215 185 170 150 160 135
70,0 270 225 210 185 195 175
95,0 330 275 255 225 245 215
120,0 385 315 290 260 295 250
150,0 440 360 330 - - -
185,0 510 - - - - -
240,0 605 - - - - -
300,0 695 - - - - -
400,0 830 - - - - -
Сечение токопроводящей жилы, мм2 открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1 * 2
(один 2ж)
1 * 3
(один 3ж)
Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)

 

ПУЭ, Таблица 1.3.5. Допустимый длительный ток для проводов
с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм2 Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)
открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1*2
(один 2ж)
1*3
(один 3ж)
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255 - - -
185 390 - - - - -
240 465 - - - - -
300 535 - - - - -
400 645 - - - - -
Сечение токопроводящей жилы, мм2 открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1 * 2
(один 2ж)
1 * 3
(один 3ж)
Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)

 

ПУЭ, Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в воздухе в земле в воздухе в земле
1,5 23 19 33 19 27
2,5 30 27 44 25 38
4 41 38 55 35 49
6 50 50 70 42 60
10 80 70 105 55 90
16 100 90 135 75 115
25 140 115 175 95 150
35 170 140 210 120 180
50 215 175 265 145 225
70 270 215 320 180 275
95 325 260 385 220 330
120 385 300 445 260 385
150 440 350 505 305 435
185 510 405 570 350 500
240 605 - - - -

 

ПУЭ, Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в воздухе в земле в воздухе в земле
2,5 23 21 34 19 29
4 31 29 42 27 38
6 38 38 55 32 46
10 60 55 80 42 70
16 75 70 105 60 90
25 105 90 135 75 115
35 130 105 160 90 140
50 165 135 205 110 175
70 210 165 245 140 210
95 250 200 295 170 255
120 295 230 340 200 295
150 340 270 390 235 335
185 390 310 440 270 385
240 465 - - - -

 

ПУЭ, Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
0.5 - 12 -
0.75 - 16 14
1 - 18 16
1.5 - 23 20
2.5 40 33 28
4 50 43 36
6 65 55 45
10 90 75 60
16 120 95 80
25 160 125 105
35 190 150 130
50 235 185 160
70 290 235 200

ГОСТ 16442-80, Таблица 23. Допустимые токовые нагрузки кабелей до 3КВ включ. с медными жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в земле в воздухе в земле в воздухе в земле
1,5 29 32 24 33 21 28
2,5 40 42 33 44 28 37
4 53 54 44 56 37 48
6 67 67 56 71 49 58
10 91 89 76 94 66 77
16 121 116 101 123 87 100
25 160 148 134 157 115 130
35 197 178 166 190 141 158
50 247 217 208 230 177 192
70 318 265 - - 226 237
95 386 314 - - 274 280
120 450 358 - - 321 321
150 521 406 - - 370 363
185 594 455 - - 421 406
240 704 525 - - 499 468

ГОСТ 16442-80, Таблица 24. Допустимые токовые нагрузки кабелей до 3КВ включ. с алюминиевыми жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в земле в воздухе в земле в воздухе в земле
2.5 30 32 25 33 51 28
4 40 41 34 43 29 37
6 51 52 43 54 37 44
10 69 68 58 72 50 59
16 93 83 77 94 67 77
25 122 113 103 120 88 100
35 151 136 127 145 106 121
50 189 166 159 176 136 147
70 233 200 - - 167 178
95 284 237 - - 204 212
120 330 269 - - 236 241
150 380 305 - - 273 278
185 436 343 - - 313 308
240 515 396 - - 369 355


* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

Сечения приняты из расчета нагрева жил до 65°С при температуре окружающей среды +25°С. При определении количества проводов, прокладываемых в одной трубе, нулевой рабочий провод четырехпроводной системы трехфазного тока (или заземляющий провод) в расчет не входит.

Токовые нагрузки для проводов, проложенных в лотках (не в пучках), такие же, как и для проводов, проложенных открыто.

Если количество одновременно нагруженных проводников, проложенных в трубах, коробах, а также в лотках пучками, будет более четырех, то сечение проводников нужно выбирать как для проводников, проложенных открыто, но с введением понижающих коэффициентов для тока: 0,68 при 5 и 6 проводниках, 0,63 - при 7-9, 0,6 - при 10-12.

Для облегчения выбора сечения и учета дополнительных условий можно воспользоваться формой "Расчет сечения провода по допустимому нагреву и допустимым потерям напряжения". Значения токов для малых сечений для медных проводников получен методом экстрапляции.

Расчет по экономическому критерию для конечных потребителей не производится.

ПУЭ Раздел 1 => Таблица 1.3.31. допустимый длительный ток для шин прямоугольного сечения.

string(76) "/var/www/firenotes.ru/public_www/x_pue/pue-razdel-1/pue-razdel-1_a_0014.html"

 

 

Таблица 1.3.31. Допустимый длительный ток для шин прямоугольного сечения

 

Размеры,

Медные шины

Алюминиевые шины

Стальные шины

мм

Ток *, А, при количестве полос на полюс или фазу

Размеры, мм

Ток *, А

 

1

2

3

4

1

2

3

4

 

 

15х3

210

-

-

-

165

-

-

-

16х2,5

55/70

20х3

275

-

-

-

215

-

-

-

20х2,5

60/90

25х3

340

-

-

-

265

-

-

-

25х2,5

75/110

30х4

475

-

-

-

365/370

-

-

-

20х3

65/100

40х4

625

-/1090

-

-

480

-/855

-

-

25х3

80/120

40х5

700/705

-/1250

-

-

540/545

-/965

-

-

30х3

95/140

50х5

860/870

-/1525

-/1895

-

665/670

-/1180

-/1470

-

40х3

125/190

50х6

955/960

-/1700

-/2145

-

740/745

-/1315

-/1655

-

50х3

155/230

60х6

1125/1145

1740/1990

2240/2495

-

870/880

1350/1555

1720/1940

-

60х3

185/280

80х6

1480/1510

2110/2630

2720/3220

-

1150/1170

1630/2055

2100/2460

-

70х3

215/320

100х6

1810/1875

2470/3245

3170/3940

-

1425/1455

1935/2515

2500/3040

-

75х3

230/345

60х8

1320/1345

2160/2485

2790/3020

-

1025/1040

1680/1840

2180/2330

-

80х3

245/365

80х8

1690/1755

2620/3095

3370/3850

-

1320/1355

2040/2400

2620/2975

-

90х3

275/410

100х8

2080/2180

3060/3810

3930/4690

-

1625/1690

2390/2945

3050/3620

-

100х3

305/460

120х8

2400/2600

3400/4400

4340/5600

-

1900/2040

2650/3350

3380/4250

-

20х4

70/115

60х10

1475/1525

2560/2725

3300/3530

-

1155/1180

2010/2110

2650/2720

-

22х4

75/125

80х10

1900/1990

3100/3510

3990/4450

-

1480/1540

2410/2735

3100/3440

-

25х4

85/140

100х10

2310/2470

3610/4325

4650/5385

5300/6060

1820/1910

2860/3350

3650/4160

4150/4400

30х4

100/165

120х10

2650/2950

4100/5000

5200/6250

5900/6800

2070/2300

3200/3900

4100/4860

4650/5200

40х4

130/220

 

 

 

 

 

 

 

 

 

50х4

165/270

 

 

 

 

 

 

 

 

 

60х4

195/325

 

 

 

 

 

 

 

 

 

70х4

225/375

 

 

 

 

 

 

 

 

 

80х4

260/430

 

 

 

 

 

 

 

 

 

90х4

290/480

 

 

 

 

 

 

 

 

 

100х4

325/535

________________

* В числителе приведены значения переменного тока, в знаменателе - постоянного.


Как можно определить какую мощность выдержит кабель или провод

Как можно определить какую мощность выдержит кабель или провод

Нам часто приходится подключать электроприборы к сети. Для этого нужен кабель или провод подходящего сечения. Но как же самому подобрать именно тот, что нам нужен и справиться с этой ситуацией без помощи специалистов.

Если подключить слишком большую нагрузку на кабель, то он будет греться, а может и вовсе перегреться. Из-за этого оплавится изоляция, что опасно коротким замыканием, поражением электрическим током и возгоранием. Отсюда возникает вопрос: "как узнать какую мощность выдерживает кабель или провод?". Давайте разбираться!

Что влияет на допустимую мощность?

Сразу стоит отметить что сечение и мощность кабеля в принципе не связаны между собой. Для проводника решающую роль играет допустимый длительный ток. Эти величины описаны в ПУЭ раздел 1, глава 1.3. Дело в том, что если он выдерживает ток 16А, то в сети 220В это 3.5 кВт, для 380В - это 10 кВт, а в сети 12В это всего 192Вт. Поэтому говорить о допустимой мощности для кабеля разумно говорить лишь в контексте заведомо известного напряжения.

Чтобы перевести киловатт в ватты нужно просто разделить кВт на 1000.

Чтобы перевести Ватты в Амперы нужно Ватты разделить на напряжение в вольтах.

А для трёхфазной сети то разделить ещё и на 1.73 (корень из 3) и на CosФ.

CosФ – коэффициент мощности, указывается на табличке расположенной на корпусе большинства электроприборов.

Таблица сечений провода и допустимый ток

Есть специальные таблицы, в которых описано соответствие сечения кабеля, тока, напряжения и мощности. Но информация в них не всегда справедлива для подбора кабелей.

Если для расчётов квартирной электропроводки, где длина линии редко превышает 15-20 метров между крайними точками, а температура окружающей среды обычно около 20-25 градусов, это ещё справедливо...

Но представим ситуацию, когда вы собрались ставить забор на участке частного дома, и придется использовать электроинструмент при его монтаже и сварочный аппарат, еще и бетономешалку, да к тому же на улице жара на солнце далеко за 30 градусов Цельсия. Тогда вам нужен хороший удлинитель, чтобы подключить его в гараже или в доме, а работать будете по всему периметру участка.

Все вышесказанное включало в себя ряд факторов влияющих на то, какую мощность выдержат кабеля, а именно:

1. Длина линии.

2. Температура окружающей среды и самого проводника.

Оба фактора влияют на сопротивление кабеля, а оно, в свою очередь, на потери мощности и нагрев проводника. Если выбрать проводник со слишком малым сечением для этой мощности, то под нагрузкой напряжение на его конце просядет. Нежелательно допускать потери более 3-5%. В цепях освещения допустимо 10% падения напряжения.

Сопротивление, длина, материал, температура как связаны?

Сопротивление проводника определяется по формуле

R=ро*L/S

Где Ро - удельное сопротивление металла Ом*кв.мм/м, L - длина в метрах, S - площадь поперечного сечения в кв. мм.

Например, удельное сопротивление Ро у меди 0.018, а у алюминия 0.029. Поэтому, вы могли видеть в таблице выше, что при одинаковом сечении медный проводник выдержит больший ток, чем алюминиевый. Это связано с потерями, о них поговорим ниже.

Также в формуле фигурируют ещё две величины - длина и площадь поперечного сечения. Чем больше длина и чем меньше площадь поперечного сечения, тем больше сопротивление. Соответственно с увеличением сечения при постоянной длине сопротивление падает, также и с уменьшением длины.

Есть интересная аналогия с автомобильной дорогой: чем больше полос для движения в одном направлении, тем быстрее едут автомобили, а если автомобилей много (большой ток) и есть всего по одной полосе в каждую сторону, то они будут толкаться в пробке.

У металлов с ростом температуры повышается и сопротивление, соответственно снижается проводимость, если объяснить простыми словами, то это связано с тем, что при нагреве частицы в металле и носители зарядов начинают хаотичное движение, из-за чего чаще сталкиваются.

Потери

Подведем небольшие итоги, от чего зависят потери:

1. Материал кабеля (алюминий или медь).

2. Длина линии.

3. Площадь поперечного сечения.

4. Температура окружающей среды.

5. Прокладка нескольких кабелей в одной трубе. В таком случае нет условий для их охлаждения, к тому же температуры соседних кабелей влияют друг на друга худшим образом.

Подбирать кабель нужно так чтобы итоговые потери были как можно меньшими. В идеале до 3-5%. В крайнем случае, если других вариантов нет, то до 10%. Ведь, при напряжении в сети 220 вольт 10% - это уже 22В потерь и 192В на выходе, при условии что сеть и без того не просажена. А при токе хотя бы в 10А это 220Вт потерь только на проводах. Это описано в ГОСТ 721 и ГОСТ 21128.

Сечение

Перейдем к сути вопроса "Как узнать мощность, которую выдержит кабель?". Исходя из вышесказанного, следует определить сечение проводника. Для этого нужно измерить его диаметр. Удобнее и быстрее это сделать штангенциркулем. Этот способ подойдёт для любых сечений и проводов.

Если провод с однопроволочной (монолитной) жилой, то нужно просто измерить её диаметр. Если жила гибкая многопроволочная - меряют диаметр одной проволоки, находят её площадь и умножают её на общее количество жил в проводе. Так находят общее поперечное сечение кабелей и проводов.

Чтобы вычислить поперечное сечение по диаметру, нужно возвести его в квадрат, и умножить на 0.785.

Как измерить диаметр кабеля линейкой?

Для толстых кабелей особой проблемы нет, нужно просто приложить линейку к жиле, но с тонкими кабелями так сделать не получится. Поэтому воспользуйтесь следующим способом.

Нужно плотно намотать на отвёртку или другой продолговатый предмет витков 10 провода, а затем измерить линейкой длину получившейся спирали и разделить её на количество витков. Для определения сечения тоненькой жилки из многопроволочной жилы придётся намотать больше витков 30-50, чтобы было удобнее измерять.

Когда вы уже знаете площадь поперечного сечения жил кабеля, можно заглянуть в таблицу и узнать её допустимый ток. Если линия не длинная (до 10 метров) и ток больше тока предполагаемой нагрузки, то можно смело его использовать.

Как упростить расчёты?

Чтобы избежать расчётов потерь и сечений можно воспользоваться онлайн калькуляторами или приложениями для смартфонов, тем более они работают в оффлайн режиме и он всегда с вами. К примеру, для пользователей ОС Android есть приложение "Мобильный Электрик" в нем есть функции:

1. Расчёта сопротивления проводника при известном: материале, сечении, длине и температуре.

2. Расчёта длины проводника при известных: сопротивлении, температуры и сечении.

3. Расчёта сечения при известных: длине, напряжении, допустимых потерях, материале жилы токе и температуре.

4. Расчёта максимальной длины проводника при известных: напряжении, допустимых потерях, материале жилы, токе и температуре. И другие.

Они позволят оценить допустимую мощность и подобрать нужный провод для конкретной мощности.

Кроме этого приложения есть и другие я рассмотрел то, чем пользуюсь сам в работе.

Заключение

Подведем итоги. Чтобы узнать выдержит ли кабель или провод нагрузку нужно определить:

1. Материал, из которого изготовлены жилы.

2. Их сечение.

3. Длину линии.

4. Ток нагрузки.

После чего произвести расчёты или воспользоваться калькуляторами.

Ранее ЭлектроВести писали, почему происходят скачки напряжения и как от них защититься.

Под понятием скачков напряжения подразумевают, как правило, кратковременные или импульсные изменения значения напряжения, как в сторону увеличения, так и в сторону уменьшения. В зависимости от причины перепады напряжения могут иметь различную частоту, амплитуду и общую продолжительность.

По материалам electrik.info

Калибр проводов, сопротивление, сечение и таблица тока

AWG СТРОИТЕЛЬСТВО ДИАМЕТР (мм) ПЛОЩАДЬ (мм²) ВЕС (г / м) R Ом макс. (Ом / 100 м) при 20 ° C
4 133 x 0,455 R 6,48 21,62 197,9 0,09
6 133 х 0.361 R 5,14 13,61 124,9 0,14
8 1 x 3,26
133 x 0,287 R
3,26
4,09
8,37
8,60
74,38
79,02
0,21
0,22
10 1 x 2,59
37 x 0,404 C
91 x 0,254 U
2,59
2,80
2,70
5,26
4,77
4,61
46,77
44,43
42.22
0,35
0,38
0,43
12 1 x 2,05
19 x 0,455 C
37 x 0,320 C
45 x 0,300 C
91 x 0,203 U
2,05
2,27
2,22
2,45
2,15
3,31
3,09
2,98
3,18
2,95
29,46
28,66
27,88
28,27
27,00
0,55
0,59
0,61
0,58
0,65
13 1 х 1,83 1.83 2,63 23,36 0,70
14 1 x 1,63
19 x 0,361 C
19 x 0,361 U
27 x 0,300 C
37 x 0,254 C
61 x 0,203 U
1,63
1,80
1,70
1,80
1,78
1,76
2,08
1,94
1,94
1,91
1,88
1,97
18,45
18,04
17,14
16,98
16,67
18,50
0,88
0,94
0,94
0,94
0.97
1,04
15 1 х 1,45 1,45 1,65 14,68 1.11
16 1 x 1,29
19 x 0,287 C
19 x 0,287 U
19 x 0,300 C
19 x 0,300 U
61 x 0,16 U
315 x 0,071 R
1,29
1,42
1,36
1,50
1,43
1,45
1,60
1,31
1,23
1,23
1,34
1,34
1,23
1,25
11.62
11,41
10,83
12,50
11,86
11,23
11,80
1,40
1,49
1,49
1,36
1,36
1,45
1,47
17 1 х 1,15 1,15 1.04 9,24 1,76
18 1 x 1,02
7 x 0,404
19 x 0,254 C
19 x 0,254 U
61 x 0,142 U
1,02
1,21
1,27
1,21
1,24
0.824
0,901
0,962
0,962
0,966
7,32
8,25
8,93
8,49
9,00
2,22
2,03
1,90
1,90
1,89
19 1 х 0,91 0,91 0,653 5,80 2,80
20 1 x 0,813
7 x 0,320
19 x 0,203 C
19 x 0,203 U
37 x 0,142 U
135 x 0,071
0,813
0,960
1.009
0,966
0,970
0,92
0,518
0,563
0,616
0,616
0,586
0,534
4,61
5,17
5,70
5,42
5,38
4,90
3,53
3,25
2,97
2,97
3,12
3,42
21 1 х 0,724 0,724 0,412 3,66 4,44
22 1 x 0,643
7 x 0,254
19 x 0,160 C
19 x 0.160 U
37 x 0,114 U
72 x 0,071
0,643
0,762
0,800
0,762
0,780
0,68
0,324
0,355
0,382
0,382
0,380
0,285
2,89
3,26
3,55
3,37
3,46
2,60
5,64
5,15
4,78
4,78
4,83
6,41
23 1 х 0,574 0,574 0,259 2,30 7,06
24 1 х 0.511
7 x 0,203
19 x 0,127 C
19 x 0,127 U
56 x 0,071 U
0,511
0,609
0,634
0,597
0,600
0,205
0,227
0,241
0,241
0,222
1,82
2,08
2,23
2,12
2,05
8,91
8,05
7,58
7,58
8,23
25 1 х 0,455 0,455 0,163 1,44 11,24
26 1 х 0.404
7 x 0,160
19 x 0,102 C
19 x 0,102 U
33 x 0,071 U
0,404
0,480
0,504
0,483
0,450
0,128
0,141
0,155
0,155
0,130
1,14
1,29
1,44
1,37
1,20
14,26
12,96
11,79
11,79
14,06
27 1 х 0,320 0,361 0,102 0,91 17,86
28 1 х 0.320
7 x 0,127
19 x 0,079 C
0,320
0,381
0,395
0,080
0,089
0,093
0,72
0,82
0,86
22,72
20,60
19,63
29 1 х 0,287 0,287 0,065 0,58 28,25
30 1 x 0,254
7 x 0,102
19 x 0,063 C
0,254
0,304
0,315
0.051
0,057
0,059
0,45
0,53
0,57
36,07
31,95
30,87
31 1 х 0,226 0,226 0,040 0,36 45,56
32 1 x 0,203
7 x 0,079
19 x 0,050 C
0,203
0,237
0,250
0,032
0,034
0,037
0,29
0,32
0,36
56,47
53.28
49,00
33 1 х 0,180 0,180 0,025 0,23 71,82
34 1 х 0,160
7 х 0,063
0,160
0,189
0,020
0,022
0,18
0,21
90,9
83,8
35 1 х 0,142 0,142 0,016 0,14 115,4
36 1 х 0.127
7 х 0,050
0,127
0,150
0,0127
0,0137
0,11
0,13
144,3
133,4
37 1 х 0,114 0,114 0,0102 0,09 179
38 1 х 0,102
7 х 0,040
0,102
0,120
0,0081
0,0088
0,07
0,0784
225
214
39 1 х 0.089 0,089 0,00622 0,06 295
40 1 х 0,079
7 х 0,031
0,079
0,090
0,00490
0,00528
0,0436
0,0469
375
350
41 1 х 0,071 0,071 0,00396 0,0352 460
42 1 х 0,063
7 х 0.025
0,063
0,075
0,00316
0,0034
0,0281
0,0318
600
536
43 1 х 0,056 0,056 0,00246 0,0219 745
44 1 х 0,050
7 х 0,020
0,050
0,060
0,00203
0,0022
0,0180
0,0196
910
836
46 1 х 0.040
7 х 0,015
0,040
0,045
0,00126
0,001372
0,0112
0,0112
1500
1492
48 1 х 0,031
7 х 0,0125
0,031
0,0375
0,00075
0,000859
0,0067
0,0077
2450
2371
50 1 х 0,025
7 х 0,0100
0,025
0,0300
0,00049
0.000550
0,0044
0,0049
3750
3872
52 1 х 0,020 0,020 0,00031 0,0028 5850
54 1 х 0,0158 0,0158 0,000196 0,00175 10441
56 1 х 0,0125 0,0125 0,000123 0,00109 16599
58 1 х 0.0100 0,0100 0,000079 0,00070 27101

Искусство определения правильного поперечного сечения проводов низкого напряжения

Максимальная допустимая нагрузка по току

Чтобы пояснить в начале этой статьи, определение поперечного сечения проводов и кабелей, конечно, не самая захватывающая часть электрического дизайна. Есть гораздо более сложные и захватывающие части, чем смотреть на бесконечные столы дирижеров.Однако эта часть должна выполняться профессионально так же, как и все остальные части дизайна. Итак, возьмите очки (если вы их носите), выпейте кофе и приступим.

Искусство определения правильного поперечного сечения проводов низкого напряжения

Определение поперечного сечения проводников основано на знании максимальной допустимой токовой нагрузки системы проводки, которая сама определяется на основе проводов и условия их эксплуатации. Стандарт IEC 60364-5-52 определяет текущие значения в соответствии с основными принципами работы для установок и безопасности людей.Основные элементы приведены ниже.

Таблица допустимых значений тока может использоваться для непосредственного определения поперечного сечения проводников в соответствии с:

  1. Тип проводника
  2. Эталонный метод (метод установки)
  3. Теоретическая допустимая нагрузка по току Iz (Iz th )

Iz th рассчитывается путем применения всех поправочных коэффициентов (f) к значению рабочего тока (I B ) .Коэффициенты f определяются в соответствии с методом установки, группировкой, температурой и т. Д.

I B = Iz th × f , что дает Iz th = I B / f

Рисунок 1 - Определение поперечного сечения с использованием таблицы допустимой токовой нагрузки

Весь процесс определения правильного поперечного сечения проводов низкого напряжения объясняется следующими шагами.

Содержание:

  1. Характеристики проводов
  2. Системы электромонтажа: методы монтажа
    1. Приложение 1 - «Группы монтажа» в зависимости от типа кабеля
  3. Группы цепей
  4. Температура окружающей среды
  5. Риски взрыва
  6. Параллельные проводники
  7. Общий поправочный коэффициент
    1. Пример определения трехфазной цепи
  8. Поперечное сечение нейтрального проводника
    1. Примеры: Применение понижающих коэффициентов для гармонических токов

1.Характеристики жил

Учитываются следующие данные:

  1. Тип жилы: медь или алюминий.
  2. Тип изоляции, определяющий максимально допустимую температуру во время эксплуатации, XLPE или EPR для изоляции, выдерживающей 90 ° C, и ПВХ для изоляции, выдерживающей 70 ° C

Таблица 1 - Макс. рабочие температуры в зависимости от типа изоляции

Тип изоляции Максимальная температура (1) ° C
Поливинилхлорид (ПВХ) Проводник: 70
Сшитый полиэтилен (XlPE) и этилен-пропиленовый (EPr) Проводник Проводник: 90 (1)
Минеральный (с ПВХ-оболочкой или без нее, доступен) Оболочка: 70
Минеральная (без оболочки, доступны и не контактируют с горючими материалами) Оболочка: 105 (2)

(1) Если проводник работает при температуре выше 70 ° C, рекомендуется проверить, что оборудование, подключенное к этому проводу, подходит для конечной температуры соединения.

(2) Более высокие рабочие температуры могут быть разрешены для определенных типов изоляции в зависимости от типа кабеля, его концов, условий окружающей среды и других внешних воздействий.

Вернуться к таблице содержания ↑


2. Системы электропроводки: методы установки

Стандарт определяет ряд методов установки, которые представляют различные условия установки. В следующих таблицах они разделены на группы и определены буквами от A до G , которые определяют, как читать таблицу допустимой токовой нагрузки в проводниках (см. Приложение 1). длина системы электропроводки, необходимо выбрать методы, для которых условия рассеивания тепла наименее благоприятны. .

В стандарте нет четкого положения об определении поперечного сечения проводников внутри низковольтных распределительных щитов. Однако стандарт IEC 60439-1 определяет токи (используемые для испытаний на превышение температуры) для медных проводников с ПВХ изоляцией.

Таблица 2 - Группа монтажа в зависимости от типа кабеля

A1) в теплоизолированной стене
Группа монтажа Тип кабеля
Изолированные жилы Одножильные кабели Многожильные кабели
(A1) в канале в теплоизолированной стене
(A1-A2) теплоизолированная стена
(B1-B2) в канале на деревянной стене
(C) На деревянной стене
(C) на деревянной стене
(D) в воздуховодах в земле
(E) на открытом воздухе
(F) на открытом воздухе
0
429 G) На открытом воздухе

Подробное описание каждой монтажной группы см. В Приложении 1 ниже.

Вернуться к таблице содержимого ↑


3. Группы цепей

Таблицы, в которых представлены методы установки, также относятся к конкретным таблицам, которые используются для определения поправочных коэффициентов, связанных с группой цепей и кабелепроводов.

Таблица 3 - Коэффициенты уменьшения для групп из более чем одной цепи или из более чем одного многожильного кабеля, которые будут использоваться с допустимой нагрузкой по току

Таблица 3 - Коэффициенты уменьшения для групп из более чем одной цепи или из более чем один многожильный кабель для использования с допустимой нагрузкой по току

Эти коэффициенты применимы к одинаковым группам кабелей, имеющих одинаковую нагрузку.Если горизонтальные зазоры между соседними кабелями в два раза превышают их общий диаметр, коэффициент уменьшения не требуется.

Те же коэффициенты применяются к:

  • Группам из двух или трех одножильных кабелей;
  • Многожильные кабели

Если система состоит как из двухжильных, так и из трехжильных кабелей, общее количество кабелей принимается как количество цепей, и соответствующий коэффициент применяется к таблицам для двух нагруженных проводников. для двухжильных кабелей и в таблицы для трех нагруженных жил для трехжильных кабелей.

Если группа состоит из n одножильных кабелей , она может рассматриваться либо как n / 2 цепей с двумя нагруженными проводниками, либо как n / 3 цепей из трех нагруженных проводников. Приведенные значения усреднены по диапазону размеров проводов и типам установки, включенным в таблицы, общая точность табличных значений находится в пределах 5%.

Для некоторых установок и других методов, не предусмотренных в приведенной выше таблице, может оказаться целесообразным использовать коэффициенты, рассчитанные для конкретных случаев.

Таблица 4 - Коэффициенты уменьшения для групп из более чем одной цепи, кабели, проложенные непосредственно в земле, способ прокладки D - одножильные или многожильные кабели

Таблица 4 - Коэффициенты уменьшения для групп из более чем одной цепи, кабелей проложенный непосредственно в грунте, метод D - одножильные или многожильные кабели

Приведенные значения относятся к монтажной глубине 0,7 м и тепловому сопротивлению грунта 2,5 км / Вт . Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах.Процесс усреднения вместе с округлением в некоторых случаях может приводить к ошибкам до ± 10% .

Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287-2-1.

Рисунок 2 - Группирование цепей вместе приводит к уменьшению допустимой нагрузки по току (применение поправочного коэффициента)

Таблица 5 - Коэффициенты уменьшения для групп, состоящих из более чем одной цепи, кабели, проложенные в каналах методом заземления D multi -жильные кабели в односторонних каналах

Таблица 5 - Многожильные кабели в односторонних каналах Таблица 5 - Одножильные кабели в односторонних каналах

Приведенные значения относятся к глубине прокладки 0,7 м и тепловому воздействию почвы. удельное сопротивление 2,5 км / Вт.Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах. Процесс усреднения вместе с округлением в некоторых случаях может приводить к ошибкам до ± 10%.

Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287.

Таблица 6 - Коэффициенты уменьшения для групп из более чем одного многожильного кабеля, которые должны применяться к справочным номинальным значениям для многожильных кабелей в свободном доступе. воздух - метод установки E

Таблица 6 - Коэффициенты уменьшения для групп из более чем одного многожильного кабеля, которые должны применяться к эталонным номинальным значениям для многожильных кабелей на открытом воздухе - способ установки E

(1) Значения даны для вертикальных расстояний между лотками 300 мм и не менее 20 мм между лотками и стеной.Для более близкого расстояния коэффициенты следует уменьшить.

(2) Значения даны для горизонтального расстояния между лотками 225 мм с лотками, установленными спина к спине. Для более близкого расстояния коэффициенты должны быть уменьшены.

Таблица 7 - Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , должны применяться к эталонному номиналу для одной цепи одножильных кабелей на открытом воздухе - метод установки F

Таблица 7 - Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , которые должны применяться к эталонному номиналу для одной цепи одножильных кабелей на открытом воздухе - метод установки F

(1) Коэффициенты даны для одинарных слоев кабелей (или групп трилистников), как показано в таблице, и не применяются, когда кабели проложены более чем в одном слое, соприкасаясь друг с другом.Значения для таких установок могут быть значительно ниже и должны определяться соответствующим методом.

(2) Значения даны для вертикального расстояния между противнями 300 мм. для более близкого расстояния коэффициенты следует уменьшить.

(4) Значения даны для горизонтального расстояния между лотками 225 мм с лотками, установленными вплотную, и не менее 20 мм между лотком и любой стеной. для более близкого расстояния коэффициенты следует уменьшить.

(5) для цепей, имеющих более одного параллельного кабеля на фазу, каждый трехфазный набор проводников следует рассматривать как цепь для целей данной таблицы.

Вернуться к таблице содержания ↑ v


4. Температура окружающей среды

Температура окружающей среды напрямую влияет на размер проводов. Следует учитывать температуру воздуха вокруг кабелей (установка на открытом воздухе) и температуры земли для подземных кабелей.

Следующие таблицы, взятые из стандарта IEC 60364-5-52, могут использоваться для определения поправочного коэффициента, применяемого для температур от 10 до 80 ° C . Во всех этих таблицах базовая температура воздуха составляет 30 ° C, а температура земли - 20 ° C.

Не следует путать температуру окружающей среды вокруг кабелей с температурой, принимаемой во внимание для защитных устройств, то есть внутренней температурой распределительного щита, в котором установлены эти защитные устройства.

Таблица 8 - Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в воздухе (1) .

Таблица 8 - Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в воздухе

При более высоких температурах окружающей среды вам следует проконсультироваться с производителем.

Таблица 9 - Таблица поправочных коэффициентов для температур окружающей среды земли, отличных от 20 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в кабельных каналах в земле

Таблица 9 - Таблица поправочных коэффициентов для температур окружающей среды земли, отличных от 20 ° C применяется к допустимой токовой нагрузке для кабелей в кабельных каналах в земле

Таблица 10 - Таблица поправочных коэффициентов для кабелей в подземных каналах для теплового сопротивления почвы, отличного от 2,5 К.м / Вт, применяемые к допустимой нагрузке по току для эталонного метода D

Таблица 10 - Таблица 10 - поправочный коэффициент для кабелей в подземных каналах для удельного теплового сопротивления почвы, отличный от 2,5 км / Вт, который применяется к допустимой нагрузке по току для эталонного метода D

Приведенные поправочные коэффициенты усреднены по диапазону размеров проводов и типам установки, приведенным в таблицах. Общая точность поправочных коэффициентов находится в пределах ± 5% . Поправочные коэффициенты применимы к кабелям, протянутым в заглубленные каналы; для кабелей, проложенных непосредственно в земле, поправочные коэффициенты для теплового сопротивления менее 2,5 К.м / Вт будет выше.

Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287 . Поправочные коэффициенты применимы к каналам, проложенным на глубине до 0,8 м.

Вернуться к таблице содержания ↑


5. Риски взрыва

В установках, где существует риск взрыва (наличие, обработка или хранение материалов, которые являются взрывоопасными или имеют низкую температуру вспышки, включая присутствие взрывчатых веществ). пыль), системы электропроводки должны иметь соответствующую механическую защиту n, а допустимая нагрузка по току будет подвергаться понижающему коэффициенту.

Описание и правила установки приведены в стандарте IEC 60079.

Интересное чтение:

Почему оборудование подстанции выходит из строя и почему стоит подумать об этом до отказа

Вернуться к таблице содержимого ↑


6. ​​Параллельные проводники

Пока расположение проводов соответствует правилам группировки, допустимая нагрузка по току системы проводки может считаться равной сумме допустимой нагрузки по току каждого проводника к которому применяются поправочные коэффициенты, связанные с группой проводников.

Рисунок 3 - Параллельные проводники и кабели (фото: nktphotonics.com)

Вернуться к таблице содержимого ↑


7. Общий поправочный коэффициент

Когда известны все конкретные поправочные коэффициенты, можно определить глобальный поправочный коэффициент (f) , который равен произведению всех конкретных факторов. Затем процедура состоит из расчета теоретической допустимой нагрузки по току Iz th системы электропроводки:

Iz th = I B / f

Знание Iz th позволяет ссылаться на таблицы на допустимые токи для определения необходимого сечения.

Считайте данные из столбца, соответствующего типу проводника и эталонному методу. Затем просто выберите в таблице значение допустимой нагрузки непосредственно над значением Iz th , чтобы найти поперечное сечение.

Обычно допускается отклонение в 5% от значения iz. например, рабочий ток I B 140 A приведет к выбору сечения 35 мм 2 с допустимой нагрузкой по току 169 A .Применение этого допуска позволяет выбрать меньшее поперечное сечение 25 мм 2 , которое может выдерживать ток 145 A (138 + 0,5% = 145 A) .

Таблица 11 - Максимальный ток в амперах

Таблица 11 - Допустимый ток в амперах

Где (1)

  • PVC 2: ПВХ изоляция, 2 нагруженных проводника
  • PVC 3: PVC изоляция, 3 нагруженных проводника
  • PR 2: изоляция XLPE или EPR, 2 нагруженных проводника
  • PR 3: изоляция XLPE или EPR, 3 нагруженных проводника.

Используйте PVC 2 или PR 2 для однофазных или двухфазных цепей и PVC 3 или PR 3 для трехфазных цепей.

Вернуться к таблице содержимого ↑


7.1 Пример

Определение трехфазной цепи, образующей связь между главным распределительным щитом и вторичным распределительным щитом.


Гипотезы
  • Оценка нагрузок позволила рассчитать рабочий ток проводов: I B = 600 A
  • Система электропроводки состоит из одножильных медных кабелей с изоляцией PR
  • Проводники устанавливаются в перфорированном кабельном канале, соприкасаясь друг с другом.
  • Предпочтительно прокладывать кабели параллельно, чтобы ограничить поперечное сечение устройства до 150 мм 2

Решение

Установка одножильных кабелей в перфорированном кабельном лотке соответствует эталонному методу F

Таблица 12 - Выдержка из таблицы методов установки

Если достаточно одного провода на фазу, коррекция не требуется.Если необходимы два проводника на фазу, следует применить понижающий коэффициент 0,88.

Таблица 13 - Выдержка из таблицы с поправочными коэффициентами для групп

Таким образом, теоретическое значение Iz th будет определяться следующим образом: Iz th = I B / F = 600 / 0,88 = 682 A , т.е. 341 А на провод .

Таблица 14 - Считывание из таблицы допустимых значений тока

Для проводника PR 3 по эталонному методу f и допустимой нагрузке по току 382 A (значение непосредственно выше 341 A) в таблице указано поперечное сечение из 120 мм 2 .

Вернуться к таблице содержания ↑


8. Поперечное сечение нейтрального провода

В принципе, нейтраль должна быть на того же поперечного сечения, что и фазный провод во всех однофазных цепях. В трехфазных цепях с поперечным сечением более 16 мм 2 (25 мм 2 алюмин.) Поперечное сечение нейтрали может быть уменьшено до поперечного сечения / 2.

Однако это уменьшение недопустимо, если:

  • На практике нагрузки не сбалансированы.
  • Содержание третьей гармоники превышает 15%.

Если это содержание на больше, чем 33% , сечение токоведущих проводов многожильных кабелей выбирается путем увеличения тока I B . Стандарт IEC 60364-5-52 дает таблицу, показывающую поправочные коэффициенты в соответствии с THD (полное гармоническое искажение), с последующим примером определения допустимой токовой нагрузки кабеля.

Таблица 15 - Таблица коэффициентов уменьшения гармонических токов в 4- и 5-жильных кабелях

Таблица 15 - Таблица коэффициентов уменьшения гармонических токов в четырех- и пятижильных кабелях (IEC 60364-5-52)

Вернуться к таблице содержимого ↑


8.1 Примеры

Применение коэффициентов снижения гармонических токов (IEC 60352-5-52)

Рассмотрим трехфазную цепь с расчетной нагрузкой 39 А , которая должна быть установлена ​​с использованием четырехжильного кабеля с ПВХ изоляцией, прикрепленного к стене. , способ установки C . Кабель 6 мм 2 с медными жилами имеет допустимую нагрузку по току 41 A и, следовательно, подходит, если в цепи отсутствуют гармоники.

Если присутствует 20% третьей гармоники , то применяется понижающий коэффициент 0,86, и расчетная нагрузка становится: 39 / 0,86 = 45 A .Для этой нагрузки необходим кабель 10 мм 2 .

Если присутствует 40% третьей гармоники , выбор размера кабеля основан на токе нейтрали, который составляет: 39 × 0,4 × 3 = 46,8 A , и применяется понижающий коэффициент 0,86 , что приводит к расчетной нагрузке: 46,8 / 0,86 = 54,4 А . Для этой нагрузки подходит кабель 10 мм 2 .

Если присутствует 50% третьей гармоники , размер кабеля снова выбирается на основе тока нейтрали, который составляет: 39 × 0,5 × 3 = 58,5 A .В этом случае номинальный коэффициент равен 1 , и требуется кабель 16 мм 2 .

Выбор всех вышеперечисленных кабелей основан на допустимой нагрузке на кабель; падение напряжения и другие аспекты конструкции не учитывались.

Вернуться к таблице содержимого ↑


Приложение 1 - «Группы установки» в зависимости от типа кабеля

Приложение 1 - «Группы установки» в зависимости от типа кабеля

Вернуться к таблице содержимого ↑

Источники :

Energy Solutions

Размер проводника кабеля и номинальный ток

Требования к проводникам по ISO 10133 и ISO 13297

Это приложение воспроизведено из приложения «А» (нормативного) стандартов ISO 10133 и 13297.Оба ISO поддерживают стандарты Директивы о развлечениях. Использование этих рекомендаций может быть использовано для демонстрации соответствия данной Директиве.

Текущие рейтинги

В таблице приведены допустимые значения продолжительного тока в амперах, определенные для температуры окружающей среды 30 ° C и минимального количества жил для проводов.

Площадь поперечного сечения проводника, допустимый постоянный ток и скрутка.
Максимальный ток в амперах для одиночного проводника при номинальной температуре изоляции
Площадь поперечного сечения мм2 60 ° С 70 ° С от 85 до 90 ° C 105 ° С 125 ° С 200 ° С Минимальное количество прядей
Тип A * Тип B *

0.75

6

10

12

16

20

25

16

1

8

14

18

20

25

35

16

1.5

12

18

21

25

30

40

19

26

2,5

17

25

30

35

40

45

19

41

4

22

35

40

45

50

55

19

65

6

29

45

50

60

70

75

19

105

10

40

65

70

90

100

120

19

168

16

54

90

100

130

150

170

37

266

25

71

120

140

170

185

200

49

420

35

87

160

185

210

225

240

127

665

50

105

210

230

270

300

325

127

1064

70

135

265

285

330

360

375

127

1323

95

165

310

330

390

410

430

259

1666

120

190

360

400

450

480

520

418

2107

150

220

380

430

475

520

560

418

2107

Примечания:
Номинальные значения тока проводника могут быть интерполированы для площадей поперечного сечения между значениями, указанными в таблице.

* Для общей электропроводки плавсредств следует использовать жилы со скрученными проводами как минимум типа А. Проводники со скручиванием типа B должны использоваться для любой проводки, в которой во время использования возникает частое изгибание.

Для проводов в машинных отделениях (окружающая среда 60 ° C) максимальный номинальный ток в таблице должен быть занижен на следующие факторы:
Температурный диапазон изоляции жил, ° C Умножьте максимальный ток из таблицы выше на

70

0.75

85-90

0,82

105

0,86

125

0,89

200

1,0

Объединение в пучки (только для переменного тока)
При объединении более трех проводов переменного тока в пучок максимальные номинальные значения тока в таблице должны быть снижены на коэффициент, указанный ниже: -
Количество жгутов в пучке Умножьте максимальный ток от A1 на

от 4 до 6

0.7

от 7 до 24

0,6

25 или более

0,5

Примечания:
Снижение номинальных значений для температуры и здания, где это применимо, является кумулятивным. Коэффициенты уменьшения пакетирования обычно не считаются необходимыми для кабелей постоянного тока на малых судах.

Расчет падения напряжения

Для информации (только для сверхнизкого напряжения постоянного тока) падение напряжения на нагрузке можно рассчитать по следующей формуле: -

Где

E = Падение напряжения в вольтах

S = площадь поперечного сечения проводника в квадратных миллиметрах

I = ток нагрузки в амперах

L = общая длина в метрах проводника от положительного источника питания. Подключение к электрическому устройству и обратно к отрицательному источнику.

Состояние заряда

Следующая таблица позволит преобразовать полученные показания в оценку степени заряда. Стол хорош для аккумуляторов при 25 град. C (77 ° F), находящиеся в состоянии покоя в течение 3 часов или более. Если батареи имеют более низкую температуру, можно ожидать более низких значений напряжения

Процент полной зарядки Система постоянного тока 12 В Система 24 В постоянного тока

100%

12.7

25,4

90%

12,6

25,2

80%

12,5

25

70%

12,3

24,6

60%

12.2

24,4

50%

12,1

24,2

40%

12,0

24

30%

11,8

23,6

20%

11.7

23,4

10%

11,6

23,2

0%

11,6

23,2

Емкость по меди

Расчет размера проводника очень важен для электрических и механических свойств шины. Требования к электрическому току определяют минимальную площадь поперечного сечения проводников.Механические аспекты включают жесткость, монтажные отверстия, соединения и другие элементы подсистемы. Приведенную ниже таблицу можно использовать для приблизительного расчета размера проводника при заданном установившемся токе, что приведет к повышению температуры самонагрева. Эта таблица обычно используется для токов выше 300 ампер. Для токов ниже 300 ампер обратитесь к формуле руководства по проектированию. Вы можете найти диаграммы емкости и сравнительные графики на веб-сайте Ассоциации производителей меди, Copper.org.

Повышение 30 ° C Повышение 50 ° C Повышение 65 ° C
Размеры, дюймы Коэффициент скин-эффекта при 70 ° C Максимальный ток 60 Гц, * А Коэффициент скин-эффекта при 90 ° C Максимальный ток 60 Гц, * А Коэффициент скин-эффекта при 105 ° C Максимальный ток 60 Гц, * А
1/16 x 1/2 1,00 103 1,00 136 1,00 157
1/16 x 3/4 1,00 145 1,00 193 1.00 225
1/16 x 1 1,00 187 1,00 250 1,00 285
1/16 x 1 1/2 1,00 270 1,00 355 1,00 410
1/16 x 2 1.01 345 1.01 460 1.01 530
1/8 x 1/2 1.00 153 1,00 205 1,00 235
1/8 x 3/4 1,00 215 1,00 285 1,00 325
1/8 x 1 1.01 270 1.01 360 1.01 415
1/8 x 1 1/2 1.01 385 1.01 510 1.01 590
1/8 x 2 1.02 495 1.02 660 1.02 760
1/8 x 2 1/2 1.02 600 1.02 800 1.02 920
1/8 x 3 1.03 710 1.03 940 1.03 1,100
1/8 x 3 1/2 1.04 810 1.03 1,100 1.03 1,250
1/8 x 4 1.04 910 1.04 1,200 1.04 1,400
3/16 x 1/2 1,00 195 1,00 260 1,00 300
3/16 x 3/4 1.01 270 1.01 360 1.01 415
3/16 x 1 1.01 340 1.01 455 1.01 520
3/16 x 1 1/2 1.02 480 1.02 630 1.02 730
3/16 x 2 1.03 610 1.03 810 1.03 940
3/16 x 2 1/2 1.04 740 1.04 980 1.03 1,150
3/16 x 3 1,05 870 1,05 1,150 1.04 1,350
3/16 x 3 1/2 1.07 990 1.06 1,300 1.06 1,500
3/16 x 4 1,09 1,100 1.08 1,450 1.07 1,700
1/4 x 1/2 1.01 240 1.01 315 1.01 360
1/4 x 3/4 1.01 320 1.01 425 1.01 490
1/4 x 1 1.02 400 1.02 530 1.02 620
1/4 x 1 1/2 1.03 560 1.03 740 1.03 860
1/4 x 2 1.04 710 1.04 940 1.04 1,100
1/4 x 2 1/2 1.06 850 1.06 1,150 1.06 1,300
1/4 x 3 1.08 990 1.08 1,300 1.07 1,550
1/4 x 3 1/2 1,10 1,150 1,09 1,500 1,09 1,750
1/4 x 4 1,12 1,250 1.11 1,700 1.10 1 950
1/4 x 5 1,16 1,500 1,15 2 000 1,14 2350
1/4 x 6 1,18 1,750 1,17 2350 1,17 2,700
1/4 x 8 1,23 2,250 1,22 3 000 1,21 3,450
1/4 x 10 1.27 2,700 1,26 3 600 1,25 4 200
1/4 x 12 1,31 3 150 1,3 4 200 1,28 4 900
3/8 x 3/4 1.02 415 1.02 550 1.02 630
3/8 x 1 1.03 510 1.03 680 1.03 790
3/8 x 1 1/2 1,05 710 1.04 940 1.04 1,100
3/8 x 2 1.08 880 1.08 1,150 1.07 1,350
3/8 x 2 1/2 1,12 1 050 1,10 1,400 1.09 1,600
3/8 x 3 1,15 1,200 1,14 1,600 1,13 1850
3/8 x 3 1/2 1,18 1,350 1,16 1,800 1,15 2 100
3/8 x 4 1,20 1,500 1,19 2 000 1,18 2350
3/8 x 5 1.24 1,800 1,23 2,400 1,22 2 800
3/8 x 6 1,27 2 100 1,26 2 800 1,24 3 250
3/8 x 8 1,33 2,650 1,31 3,550 1,30 4 100
3/8 x 10 1,38 3 200 1.36 4 300 1,35 4 900
3/8 x 12 1,42 3,700 1,4 5 000 1,38 5,800
1/2 x 1 1.04 620 1.04 820 1.04 940
1/2 x 1 1/2 1.08 830 1.08 1,100 1.07 1,250
1/2 x 2 1,12 1 000 1.11 1,350 1,10 1,550
1/2 x 2 1/2 1,16 1,200 1,15 1,600 1,14 1850
1/2 x 3 1,20 1,400 1,19 1850 1,18 2 150
1/2 x 3 1/2 1.24 1,550 1,22 2 100 1,21 2,400
1/2 x 4 1,26 1,700 1,25 2 300 1,24 2,650
1/2 x 5 1,32 2 050 1,30 2,750 1,29 3 150
1/2 x 6 1,36 2,400 1.34 3 150 1,33 3,650
1/2 x 8 1,42 3 000 1,40 4 000 1,39 4 600
1/2 x 10 1,47 3 600 1,45 4,800 1,44 5 500
1/2 x 12 1,52 4 200 1,51 5,600 1.5 6 400
3/4 x 4 1,42 2 050 1,40 2,750 1,38 3 150
3/4 x 5 1,48 2,400 1,46 3 250 1,44 3,750
3/4 x 6 1,52 2 800 1,50 3,750 1,48 4 300
3/4 x 8 1.60 3,500 1,58 4,700 1,56 5 400
3/4 x 10 1,67 4 200 1,64 5,600 1,62 6 500
3/4 x 12 1,72 4 900 1,69 6 500 1,67 7 500

* Применимо к типичным условиям эксплуатации (в помещении, температура окружающей среды 40 ° C), горизонтальное движение по краю и отсутствие внешних магнитных воздействий.

Таблица любезно предоставлена ​​медью. Org

Как нарисовать маршрут сечения Таблица

Общий

Списки поперечных сечений сегментов маршрута могут быть помещены на чертеж в табличной форме. В списке сечений будет отображаться тэг сегмента, за которым следует список кабелей или проводов, проложенных через этот сегмент. Показанные данные взяты из выбранных полей отчетов о поперечных сечениях проводов и кабелей. Эти отчеты о поперечных сечениях создаются при создании трасс проводов и кабелей.Они создаются в текущем каталоге проекта Elecdes.

Процедура

  1. Лучше всего удалить любую 3D конструкцию дорожки качения перед продолжением, так как это упрощает выбор сегментов маршрута для составления списка проводников. См. Удаление конструкции дорожки качения.

  2. Выберите запись Импорт воздуховода / кабеля X Sect в меню «Маршрутизация: провода и кабели».

  3. Будет отображено диалоговое окно с вопросом, хотите ли вы отобразить данные поперечного сечения маршрута в пространстве модели или пространстве листа.Бумажное пространство обычно дает наилучшие результаты.

  4. Выберите Да, для пространства листа, чтобы отображать список поперечных сечений в тех же единицах, что и ваш бордюрный лист (т. Е. 1 единица чертежа = 1 единица бордюрного листа) и для размещения текста в плоскости бордюрного листа. .

    Выберите Нет, для пространства модели, чтобы отображать список поперечных сечений в тех же единицах, что и ваша модель. (т.е. 1 единица чертежа = 1 x базовая единица чертежа FT или M, вы можете ввести такие единицы, как IN, FT, MM или M, чтобы масштабировать размер таблицы).Текст таблицы будет размещен в плоскости текущего пространства модели UCS .

    Если вы рисуете таблицы сечений в пространстве листа и впоследствии меняете вид вашей модели в одном или нескольких видовых экранах, вам может потребоваться повторно выровнять таблицы с новым видом вашей модели.

  5. Теперь будет запрошен размер текста .

    При использовании пространства модели введите размер текста таблицы в масштабированных единицах (например.грамм. 20 см, 5 дюймов). При использовании пространства листа введите размер в единиц чертежа - относительно масштаба вашего пограничного листа (например, для метрических 5,0 и 0,25 британских единиц).

  6. Затем вас спросят, хотите ли вы перечислить провода или кабели.

  7. Вам будет предложено выбрать участок маршрута, для которого вы хотите указать проводников. Выберите один сегмент маршрута из модели. Если вы в данный момент находитесь в пространстве листа, перед выбором сегмента маршрута вы автоматически переключитесь в пространство модели.

  8. Если вы выбрали длину кабелепровода, который находится в блоке воздуховодов, вас спросят, хотите ли вы нарисовать поперечное сечение для всего блока воздуховодов или только для отдельного канала, который вы выбрали. Канальный блок - это группа отрезков кабелепровода, которые расположены близко друг к другу и параллельны друг другу. Paneldes рассматривает их как один сегмент маршрута, чтобы улучшить скорость прокладки маршрута. Когда вы рисуете поперечное сечение для блока воздуховодов, Paneldes нарисует массив кругов, представляющих каждый канал в блоке воздуховодов, и разместит имена проводников в каждом трубопроводе рядом с кружком.

  9. Затем укажите точку вставки в верхнем левом углу таблицы сечений. Если вы выбрали рисование таблицы в пространстве для бумаги, перед выбором точки вставки вы автоматически переключитесь на пространство для листа. Таблица будет нарисована с названием тега сегмента маршрута вверху, за которым следует список проводников, проложенных через выбранный сегмент. Вокруг списка будут нарисованы границы.

  10. Таблицы сечений состоят из стандартных линий AutoCAD и текста.После того, как они были вставлены, они могут быть изменены по вашему желанию.

В следующем примере показан сегмент кабельного лотка TRAY3018, содержащий кабели CM3061, CM3041, CM3051, C30502, C30602, CL30903, CL30901, CL30902. Таблица поперечных сечений была произведена в бумажном пространстве. Обратите внимание, что для ясности таблица показана больше обычного.

См. Также ...

Процесс маршрутизации.

База данных отчетов по поперечным сечениям.

Запросить сечение провода или кабеля

TKD KABEL GmbH - Главный каталог

Максимальный ток 16.076 Базовая таблица Таблица 1: Допустимая нагрузка на кабели с номинальным напряжением до 1000 В при температуре окружающей среды + 30 ° C в соответствии с VDE A Одножильный кабель - с резиновой изоляцией - с изоляцией из ПВХ - с изоляцией из ТПЭ - термостойкие B Многожильные кабели и шнуры для бытовой и переносной аппаратуры - с резиновой изоляцией - с изоляцией из ПВХ - с изоляцией из ТПЭ C Многожильные кабели и шнуры, искл. бытовая и портативная аппаратура - с резиновой изоляцией, - с изоляцией из ПВХ - с изоляцией из ТПЭ, - термостойкими D Многожильные кабели из сверхпрочной резины мин. 0,6 / 1 кВ Одножильные специальные резиновые кабели 0,6 / 1 кВ или 1,8 / 3 кВ Способ установки Количество токоведущих проводов 1 2 3 2 или 3 3 1 Номинальное сечение в мм 2 Номинальный ток в A 0,08 1) 0,14 1) 0,2 1) 0,34 1) 0, 0, 7 1 1, 2, 4 6 10 16 2 3 0 70 9120 1 0 18 240 300 400 00 1, 3 8 12 2) 1 19 24 32 42 4 73 98 129 1 8 198 24 292 344 3

28 608 726 830 - - - - 3 6 10 16 2 32 40 63 - - - - - - - - - - - - - - - - - 3 6 10 16 20 2 - - - - - - - - - - - - - - - 1 2 4 6 9 1) 12 1 18 26 34 44 61 82 108 13 168 207 2 0 292 33 382 4 3 23 - - - - - - - - - 23 30 41 3 74 99 131 162 202 2 0 301 - - - - - - - - - - - - - - 30 41 70 98 132 176 218 276 347 416 488 66 644 77 898 - - Допустимая нагрузка по току DIN VDE 0298-4, 2003-08 DIN VDE 0298-4, 2003- 08 DIN VDE 0298-4, 2003-08 DIN VDE 0298-4, 2003-08 Представленная таблица отличается от версии в стандарт.Пожалуйста, при любых обстоятельствах учитывайте коэффициенты пересчета. Коэффициенты пересчета для различных факторов окружающей среды см. Таблицу 2 Многожильные кабели см. Таблицу 3 Накопление см. Таблицу 4 1) Для малых сечений допустимая нагрузка по току согласно VDE 0891, часть 1. 2) Согласно VDE 0100, часть 23, расширенный диапазон, который не является учитывается VDE 0298.

Сделано с FlippingBook

RkJQdWJsaXNoZXIy MjY2NDg =

Расчет площади поперечного сечения и пропускной способности проводника по току_Luoyang Yilan Electric Appliance Co., ООО

Во-первых, общий ток по медному проводу. Безопасность проводника зависит от максимально допустимой температуры сердечника, условий охлаждения и условий прокладки, которые необходимо определить. Как правило, безопасная пропускная способность медного провода составляет 5 ~ 8 А / мм2, а безопасный ток алюминиевого провода составляет 3 ~ 5 А / мм2. <Ключевые моменты> Общая пропускная способность по току безопасности для медного провода 5 ~ 8A / мм2, допустимая нагрузка по току безопасности для алюминиевого провода 3 ~ 5A / мм2. Например: медный провод 2,5 мм2BVV, рекомендуемая безопасная несущая способность 2.5 × 8A / мм2 = 20A 4 мм2BVV медный провод, рекомендуемая допустимая нагрузка по току 4 × 8A / мм2 = 32A

Во-вторых, рассчитайте площадь поперечного сечения медного проводника, используя безопасную пропускную способность медного провода рекомендуемого значения 5 ~ 8A / мм2, рассчитайте выбранную площадь поперечного сечения медного провода S диапазон: S = = 0,125I ~ 0,2I (мм2) S ----- площадь поперечного сечения медного провода (мм2) I ----- ток нагрузки (A)

В-третьих, расчет мощности общей нагрузки (также можно использовать электрические приборы, например, осветительные приборы, холодильники и т. Д.) делится на два вида: резистивная нагрузка и индуктивная нагрузка. Для формулы расчета резистивной нагрузки: P = UI для формулы расчета нагрузки люминесцентных ламп: P = UIcosф, где коэффициент мощности люминесцентной лампы cosф = 0,5. У разных индуктивных нагрузок коэффициент мощности разный, можно использовать единый расчет бытовой техники, когда коэффициент мощности cosф принимают 0,8. То есть, если в доме есть вся техника общей мощностью 6000 Вт, то максимальный ток I = P / Ucosф = 6000/220 * 0.8 = 34 (A) Однако в нормальных условиях бытовая техника не может использоваться одновременно, поэтому добавьте общий коэффициент, общий коэффициент обычно равен 0,5. Поэтому приведенный выше расчет следует переписать в виде I = P * общий коэффициент / Ucosф = 6000 * 0,5 / 220 * 0,8 = 17 (А) То есть суммарное значение тока этого семейства составляет 17А. Общий выключатель воздуха на воротах не может использовать 16А, он должен быть больше 17А.

Примерная формула:

Двести пятьдесят раз умножить на девять, подняться по прямой.

Тридцать пять на 3,5, обе группы по пять очков.

Условия изменились, высокотемпературная модернизация меди Цзюцзян.

Пробив числа двести тридцать четыре, восемь семь шесть раз полной нагрузки.

Описание:

(Защитный ток) прямо не указывается, но выражается «поперечное сечение, умноженное на определенное количество раз» с помощью мысленной арифметики, полученной из сердцевины линии (провод с резиновой и пластиковой изоляцией). Как видно из Таблицы 53 кратность уменьшается с увеличением сечения.«2,5 балла умножить на девять, подняться на прямой участок», который составляет 2,5 мм и ниже различных сечений изолированного провода с алюминиевым сердечником, грузоподъемность примерно в 9 раз превышает количество поперечного сечения. Например, провод 2,5 мм, несущая способность 2,5 × 9 = 22,5 (А). От 4 мм 'и выше проводник тока и номер поперечного сечения отношения - это количество линий вдоль линейного ряда, умноженное на 1, то есть 4 × 8,6 × 7,10 × 6 , 16 × 5,25 × 4.

«35 на 3.5, удвойте группу из пяти точек, "указанная 35-миллиметровая" несущая способность провода в 3,5 раза больше числа поперечного сечения, то есть 35 × 3,5 = 122,5 (A). Пропускная способность и количество пересечений между несколькими линиями между двумя линиями в группу из двух, с последующими 0,5 раза, то есть пропускная способность проводника 50,70 мм, в 3 раза превышающая количество переходов; 95 120 мм "Расход в 2,5 раза больше площади поперечного сечения и т. Д.

«Условия переменные преобразования, высокотемпературное обновление меди Цзюцзян.«Приведенная выше формула представляет собой изолированный провод с алюминиевым сердечником, применение температуры окружающей среды 25 ℃ в зависимости от условий. Если линия изоляции алюминиевого провода при температуре окружающей среды в долгосрочной перспективе выше 25 ℃ в регионе, пропускная способность линии может рассчитывается в соответствии с формулой формулы, а затем может быть девять раз; когда использование алюминиевой проволоки не является медной проволокой, она немного больше, чем емкость тех же спецификаций алюминиевой линии, в соответствии с приведенными выше формулами для рассчитать линию, чем алюминиевая линия, чтобы увеличить пропускную способность по току.Например, пропускная способность медной линии 16 мм, согласно расчету алюминиевой линии 25 мм2

Оптимизация участка кабеля передачи

Раньше при выборе силового распределительного кабеля тип кабеля обычно определялся в соответствии с условиями прокладки, а затем сечение кабеля выбиралось в соответствии с условиями нагрева. Наконец, сечение кабеля соответствует требованиям по допустимой нагрузке по току, а также требованиям по потерям напряжения и термической стабильности.

Если принять во внимание экономические выгоды, оптимальное поперечное сечение кабеля должно быть минимальным для начальных инвестиций и стоимости всего срока службы кабеля. С этой точки зрения, чтобы выбрать сечение кабеля, необходимо для теплового режима выбрать сечение основы, а затем искусственно увеличить с 4 до 5 сечение, называемое сечением наилучшего сечения.

По мере увеличения поперечного сечения сопротивление линии уменьшается, так что падение давления в линии уменьшается, что значительно улучшает качество электропитания, потери мощности уменьшаются, так что эксплуатационные расходы на кабель для уменьшения пропускной способности кабеля , Таким образом, можно гарантировать, что общая стоимость всего кабеля будет самой низкой.

Следующее будет использоваться, чтобы доказать метод полной стоимости владения, кабель должен иметь лучшее поперечное сечение в соответствии с обычными методами на основе выбранного, а затем повысить уровень от 4 до 5.

Для гончарной сушилки, например, трехфазная мощность 70кВт, напряжение питания 400В, ток 101А, длина линии 100м. 2 Выберите поперечное сечение кабеля в соответствии с условиями нагрева

В соответствии с требованиями к прокладке выбранного типа YJLV, трехжильный силовой кабель 1 кВ, прямая прокладка трубы под землей, в соответствии с тепловыми условиями выбранное сечение кабеля S составляет 25 мм2, это сечение допускает замыкание на 125 А.

3 Выбрать сечение кабеля по совокупной стоимости владения

Метод полной стоимости владения - это распространенный метод сравнения экономических выгод от различных схем. Текущие инвестиции сравнительной схемы и будущая стоимость схемы выражаются текущей стоимостью. Будущая стоимость схемы умножается на коэффициент текущей стоимости Q, и после расчета рассчитывается общая стоимость владения.

Общая стоимость владения C = первоначальные инвестиции + стоимость PV

Значение PV называется приведенной стоимостью PV = Q × годовые потери энергии

Первоначальные вложения в это оборудование, включая стоимость кабеля, плюс стоимость прокладки.Различное сечение силового кабеля, длина 100 м при первоначальных вложениях в таблице 1.

Таблица 1 начальные вложения в силовые кабели различного сечения

Сечение кабеля Цена за единицу кабеля (юаней / м) Цена кабеля (юаней) Полная стоимость оборудования (× 105 юаней) первоначальные инвестиции C

257.757750.1616775

359.179170.1616917

Первоначальные вложения в кабель C = цена за единицу кабеля × длина кабеля + интегральная стоимость прокладки.Общая стоимость владения:

Потери мощности P = 3I2r0l × 10-3 (кВт), где I = 101A, l = 0,1 км.

Годовые потери мощности A = Pτ (кВтч), где τ - часы максимальной потери нагрузки в год, возьмем τ = 4500ч.

Годовые затраты на потерю энергии Cf = A × цена на электроэнергию (в юанях), возьмем цену на промышленную электроэнергию Северо-Востока (0,398 юаня / кВтч).

Значение PV (приведенная стоимость) = Q × Cf (юань), Q (коэффициент текущей стоимости)

Q = {1 - [(1 + a) / (1 + i)] n} / (i-a)

Где i - годовая процентная ставка, i = 7%;

A - годовой уровень инфляции, a = 0;

N - лет использования, n = 20 лет.Замена Q-style

Q = {1- [1 / (1 + 0,07)] 20} /0,07=10,59

Оптимальное экономичное сечение распределительного кабеля составляет 120 мм2 при минимальной совокупной стоимости владения. По мере роста цены оптимальное сечение распределительного кабеля станет больше.

Расчет несущей способности жилы

1, использование: различную пропускную способность провода (безопасный ток) обычно можно найти в руководстве. Но с помощью формул, а затем с помощью простой арифметики в уме, можно вычислить напрямую, не ищите в таблице.(Алюминий или медь), тип (изолированный провод или неизолированный провод и т. Д.), Способ прокладки (Ming или труба и т. Д.), Температура окружающей среды (25 градусов или около того выше) и т. Д., Влияние большего количества факторов, расчет более сложный.

10 на пятом, 100 на втором.

25,35, четыре или три круга.

70,95, дважды с половиной.

Температура проникновения - восемьдесят девять раз.

Голый плюс половина.

Медная проволока.

4.Описание: формула представляет собой изолированный провод с алюминиевым сердечником, Ming Fu при температуре окружающей среды 25 градусов преобладает. Если условия другие, есть другое утверждение. Линии изоляции включают различные типы проводов с резиновой или пластиковой изоляцией. Формулы для различных сечений тока (тока, безопасности) прямо не указываются, но выражаются «с определенным количеством пересечений». Для этого следует ознакомиться с сечением провода, (квадратный мм) расположение:

11.52.54610162535507O95l20150185 ...

Площадь поперечного сечения изолированного провода с алюминиевым сердечником на заводе-изготовителе обычно начинается с 2,5, а у медного изолированного провода - от 1; голая алюминиевая линия начинается с 16; голый медный провод начинается с 10

① Эта формула указала: пропускная способность линии изоляции алюминиевого сердечника, безопасность, можно рассчитать по количеству пересечений, количество раз. В формуле арабскими цифрами указано сечение провода (квадратные миллиметры), а китайскими иероглифами - кратное.Расположение сечения формулы и кратных следующее:

..1016-2535-5070-95120 ....

В пять раз вдвое больше, чем в два раза больше, чем в два раза

Иногда формула становится еще более ясной. Исходное «10 следующих пяти» относится к поперечному сечению от 10 ниже, грузоподъемность в пять раз больше числа поперечного сечения. «100 на двоих» (читайте первые два) относится к более чем 100 поперечному сечению, грузоподъемность в два раза больше числа поперечного сечения.Разделы 25 и 35 в четыре и три раза превышают границы. Это «трюки 25,35 четыре три круга». При этом сечение 70,95 было в 2,5 раза. Из приведенного выше расположения видно: помимо 10 внизу и 100 и более, середина поперечного сечения провода одинакова для каждой из двух спецификаций.

Ниже, чтобы покрыть алюминиевый сердечник изолированным проводом, температура окружающей среды 25 градусов, например:

[Пример 1] 6 квадратных миллиметров, согласно 10 пять, рассчитать поток нагрузки 30 An.

[Пример 2] 150 квадратных миллиметров, согласно 100 на втором, рассчитать расход 300 ампер.

[Пример 3] 70 квадратных миллиметров, согласно 70,95 два с половиной раза, вычислить поток нагрузки 175 am.

Из приведенной выше компоновки также видно, что кратность уменьшается с увеличением поперечного сечения. На стыке множественных преобразований ошибка немного больше. Например, секции 25 и 35 в четыре и три раза превышают границу, 25 - в четыре раза больше диапазона, но близко к трехкратной стороне изменения, это в четыре раза больше тона, то есть 100A.Но реально меньше четырех раз (по мануалу на 97). А 35 наоборот, по формуле это три раза, то есть 105 An, на самом деле 117 An. Но влияние на использование этого невелико. Конечно, если количество сундуков при выборе сечения провода 25 не должно превышать 100 А, то 35 может быть чуть больше 105 А. точнее. Точно так же квадратный провод 2,5 мм расположен в пять раз больше исходного (левого) конца, на самом деле более чем в пять раз <до 20 или более>, но для уменьшения потерь мощности в проводе обычно не должно быть так. большой, ручной В общем только стандартный 12 Ан.

② снизу, формула заключается в изменении условий лечения. (Включая пластину желоба и другие прокладки, то есть с защитным слоем оболочки, не обнаженным) по расчету ①, а затем нажмите 20% (на 0,8), если температура окружающей среды выше 25 градусов, следует рассчитать с помощью ①, затем нажмите Скидка 10. (По 0,9).

По температуре окружающей среды, по условиям лета самый жаркий месяц, средняя максимальная температура. На самом деле температура переменная, в нормальных условиях она влияет на ток проводника не очень сильно.Поэтому только для какого-то высокотемпературного цеха или более жарких мест более 25 градусов учитывайте только скидку.

Также существует ситуация, когда оба условия меняются (выше трубы и температуры). По расчету после 20% скидки, скидка 10%. Или просто дюжина шансов (например, 0,8 × 0,9 = 0,72, около 0,7). Также можно сказать, что температура трубки в восемьдесят девять раз больше значения.

Например: (изолированный провод с алюминиевым сердечником) 10 квадратных миллиметров, через трубку (скидка 20%) 40 А (10 × 5 × 0.8 = 40)

Трубка и высокая температура (30%) 35A (1O × 5 × 0,7 = 35)

95 квадратных миллиметров, сквозная трубка (скидка 20%) 190 Ann (95 x 2,5 x 0,8 = 190)

Высокая температура (скидка 10%), 214 утра (95 x 2,5 x 0,9 = 213,8)

Трубка и высокая температура (Qizhe). 166A (95 x 2,5 x 0,7 = 166,3)

Для допустимой токовой нагрузки неизолированного алюминия, код горловины плюс половина неизолированной линии, то есть на после расчета половины (на 1,5). Это относится к тому же сечению изолированного провода с алюминиевым сердечником по сравнению с алюминиевым неизолированным проводом, пропускная способность может быть увеличена вдвое.

[Пример 1] Квадратный неизолированный алюминиевый провод 16 мм, 96 А (16 x 4 x 1,5 = 96). Высокотемпературный, 86 А (16 × 4 × 1,5 × 0,9 = 86,4)

[Пример 2] Алюминиевый провод без покрытия, 35 квадратных миллиметров, 150 А (35 × 3 × 1,5 = 157,5)

[Пример 3] Оголенный алюминиевый провод 120 квадратных миллиметров, 360 А (120 × 2 × 1,5 = 360)

③ для определения допустимой токовой нагрузки медного провода, формулы, которые рассчитывает оператор медной линии. То есть поперечное сечение медного провода для повышения порядка ряда, а затем в соответствии с соответствующими условиями алюминия.

[Пример 1] 35 квадратный голый медный провод 25 градусов, увеличение до 50 квадратных миллиметров, а затем на 50 квадратных миллиметров неизолированный алюминиевый провод, 25 градусов, рассчитано для 225 An (50 × 3 × 1,5)

[Пример 2] Проволока с медной изоляцией диаметром 16 кв. Мм, 25 градусов, в соответствии с теми же условиями, для 25 кв. Миллиметров алюминиевой изоляции, рассчитано как 100 А (25 × 4)

[Пример 3] 95 квадратных миллиметров медного изолированного провода под углом 25 градусов через 120 квадратных миллиметров алюминиевого изолированного провода при тех же условиях, рассчитанных как 192 An (120 × 2 × 0.8).

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *