Самодельный светильник на светодиодах: Самодельный светильник на светодиодах — как сделать своими руками

Содержание

Самодельный светильник на светодиодах - как сделать своими руками

Светильник в восточном стиле

Проблемы энергосбережения все чаще встают перед потребителями электроэнергии. Для решения данной проблемы промышленность начала производить светильники на светодиодах. Правда качество производимых светильников не всегда соответствуют своей цене. Отсюда у многих появляется  вопрос: “Как самому сделать светильник на светодиодах?”. Плюсы такого решения – более выгодная цена и лучшее качество, ведь Вы сами подбираете компоненты.

Преимущества светодиодных ламп

Светодиодные лампы имеют ряд преимуществ по сравнению с обычными лампами накаливания:

  • простота устройства;
  • долгий срок службы;
  • низкий уровень энергопотребления;
  • эксплуатация в режиме низких температур;
  • неподверженность механическим воздействиям;
  • высокая светоотдача, экономия электроэнергии;
  • экологичность;
  • влагозащищенные светодиодные ленты успешно применяются во влажных помещениях. Их даже можно использовать в аквариумах, для подсветки дна бассейнов. Светодиодные ленты применяют, когда необходимо осветить длинный объект.

Технология устройства светодиодных ламп

Несмотря на преимущества светодиодных ламп, у них есть один недостаток – высокая цена. Самодельный светодиодный светильник является выходом из положения. Это достаточно простой и не затратный процесс, даже  если светильник из светодиодной ленты.

Рассмотрим его  на примере обычного изделия для бытового использования. При устройстве простейшего светильника необходимы следующие материалы и детали: светодиоды-3, драйвер -1, радиатор и двухсторонний скотч. Светодиоды рекомендуется брать более мощные, так как при работе с ними трудоемкость будет намного ниже, предпочтительными считаются выводные. Рекомендуемая мощность – не более 1 Вт. Следующий этап – выбор драйвера. Правильный выбор обеспечит светодиоды нужным напряжением и долгим сроком службы. В целях обеспечения длительной работы светильника требуется определиться с материалом для радиатора. Его, желательно, изготавливать из алюминия.

Выводные светодиоды

Приступаем к работе:

  1. Сначала отрезается полоска скотча 6-7 мм;
  2. Обезжириваются донышки светодиодов и радиатор. Для этих целей рекомендуется пользоваться ацетоном, чтобы линза светодиода не потеряла яркость;
  3. Радиатор размечается путем наклейки скотча;
  4. Светодиоды устанавливаются на скотч и для лучшего контакта слегка прижимаются;
  5. На выводы светодиодов наносится олово и припаивается драйвер;
  6. При применении светодиодной ленты защитная пленка удаляется, и липкая сторона прикладывается на место установки.

После окончания сборки светильника, его оставляют включенным на 2-3 часа. По истечении этого срока определяется уровень нагрева радиатора – если он нагревается, значит светильник работает. При устройстве сложных и более мощных моделей потребуются другие материалы и детали, но принцип устройства такой же. Созданный светильник можно оформить в разных стилях, смотря для каких целей он будет использоваться.

Назначение и применение светодиодных ламп

Светильник, устроенный на светодиодах, можно использовать при эксплуатации объектов в разных областях. Это – объекты ЖКХ, промышленность, офисные помещения, строительные объекты и объекты дорожно-мостового хозяйства и др. Самодельные качественные светодиодные лампы, решают основную задачу по замене обычных источников света на более эффективные.

Наиболее часто они применяются для обустройства жилых домов. Среди них: люстры, домашние лампы, светильники для освещения коридоров, ванных комнат, кухонных помещений. Его применяют как источник энергии для создания оригинального дизайна, интерьера, с помощью которого можно воплотить любую дизайнерскую идею при создании настольных декоративных ночников, светильников в восточном стиле.

Светильник в восточном стиле

На базе светильника, выполненного на светодиодах, можно эффективно решить устройство внутреннего и наружного освещения, архитектурно-художественное и ландшафтное оформление, вопросы рекламы, освещение улиц и промышленных зон. Эффективность их применения обусловлена технико-экономическими показателями. Более современный вид светильников – светодиодные ленты. Они бывают универсальными, монохромными и меняющими цвета в зависимости от заданной программы. Ленты длиной 5 метров при желании можно продлить до любой длины.

Использование светильников на светодиодных лампах приносит реальную выгоду владельцам помещений, которые заменили лампы накаливания на энергосберегающие. Эффективность светодиодных ламп более чем втрое выше их электролюминесцентных аналогов. Даже при минимальных затратах на обслуживание и длительном сроке эксплуатации (до 20 лет), первые 5 лет придется экономить, зато все последующие годы получать реальную прибыль.

Советы и рекомендации

Как говорят специалисты, создание светодиодного светильника своими руками не является сложным процессом, на это не требуется много времени и сил. Самодельные светильники на светодиодных лампах обладают самыми прекрасными характеристиками, и по своим свойствам не уступают известным светильникам марки СПО.

При их сборке необходимо соблюдать определенные правила и следовать следующим рекомендациям:

  • при выборе светодиода для светильника, нужно обращать внимание на качество материала, так как если он дешевый, качественное изделие не получится;
  • в качестве пластинки можно использовать не только стекло, но зеркало и другие материалы;
  • когда позволяет конструкция можно вклеить несколько светодиодов и соединить их последовательно или параллельно в зависимости от источника питания;
  • если светодиодные ленты не светятся, значит вышел из строя один из светодиодов или резистор. Ленты ремонтируются просто путем замены светодиода.

как сделать лампу из светодиодов своими руками

Светодиодные лампы, на сегодняшний день, – это удовольствие экологически безвредное, но, к сожалению, очень дорогое. Цена на качественные светодиодные светильники (СПО 70/100, ДРЛ-20) будет варьировать в пределах 200 – 700 долларов. По этому, конечно же, из-за такого высокого уровня цен, эффективным есть поиск альтернативных путей и создание таких ламп своими силами. Светильники на светодиодах сэкономят потребность электрики на 75-85%, при этом образуют безупречное качество вечного света.

Для того чтобы сделать светильник на светодиодах, необходимый набор следующие инструменты:

  • Материал для основания, силикатный клей;
  • Канифоль, олово, мощный паяльник;
  • Сильный светодиод, пластинка (металлическая), двойной провод.

При выборе светодиода для светильника, нужно обратить внимание на его качество, не брать дешевку, так как она не сможет дать нужное светодиодное освещение. Не плохими являются китайские светодиоды, цена которых примерно один доллар на один ватт.

Простой и удобный светильник для бытовых потребностей своими руками на подобии светодиодного светильника СМО 70/100.

Светильник СПО своими силами

Светильник СПО служит для освещения офисов, подъездов, складов и прочих помещений, которые защищены от влияния влаги.

Именно такой светильник мы будем делать. Поначалу нужно разобраться, какие светодиоды нам нужны. Выбирая между мощными и менее мощными диодами, лучше взять всё же первые, так как они более трудоёмкие. Для замены одного светодиода на 1 Вт нужно 17-20 маломощных пятимиллиметровых светодиодов, при этом обратить внимание на то, что увеличивается количества пайки, поэтому удобным вариантом есть мощные светодиоды не более 1 Вт.

Для того чтоб светодиоды долго служили нужен радиатор, самый эффективный – алюминиевый. Драйвер тока – еще один элемент, который понадобится при создании светильника. Он позволит светодиодам получать необходимое количество напряжения.

Каждый светодиод требует кусочек алюминия размером 50 на 50 мм и толщиной где-то 1 мм. Если взять кусок 25 на 25 мм, толщиной 5 мм, то это будет не эффективно, так как для рассеивания тепла нужна площадь, а не толщина. Для модели простого светильника понадобится: светодиоды — три по 1 Вт, драйвер – 3 по 1 Вт, двухсторонний скотч для теплопроводности, П-образный алюминиевый радиатор длинной 7-8 см и толщиной около 1 мм.

Обычный двухсторонний скотч не подходит, так как он не проводит тепло, поэтому берём теплопроводящий, режем полоску шириной 7-8 см. Очищаем и обезжириваем наш радиатор и сами светодиоды. Для этого не рекомендуется использовать ацетон, так как линза светодиода из пластика, и может помутнеть. На радиатор клеем скотч и делаем разметку для ровной установки светодиодов и размещаем их на скотч. При этом нужно соблюдать полярность так, что бы все светодиоды были развернуты одинаково – «плюс» первого диода должен смотреть на «минус» второго и так дальше. Дальше берём олово и наносим на выводы светодиодов, это облегчит процесс пайки. Для того, чтобы скотч не прогорел нужно поднять выводы диодов, придерживая их конуса пальцами, чтобы они не оторвались от скотча. Чтобы не проводить эту процедуру, можно выводы загнуть заранее. Берём любой многожильный провод и соединяем наши светодиоды друг с другом. К первому и к последнему диоду припаиваем драйвер. Для проверки качества светильника рекомендуется включить его на 2-3 часа, после этого попробовать пальцем заднюю стенку радиатора.

Если она не чрезмерно нагрета значить всё в порядке.

Самая простая модель светильника готова к эксплуатации. Теперь её можно ставить в любой корпус. Конечно же, можно делать и намного мощнее такие самодельные светильники, при этом нужно брать большее количество светодиодов и, разумеется, драйвер мощнее – методика изготовления такого светильника остаётся та же. Подобная технология подходит как для изготовления маленького светильника, так и для светильников многосерийного производства.

Светильник со светодиодами в помещения в 10 м2

Для того, чтобы сделать такой светильник своими силами необходимое такое количество материалов:

  • плафон;
  • металлический лист в 30 сантиметров квадратных;
  • источник энергии;
  • 8-10 светодиодов.

Светодиоды крепим с металлической пластиной, используя винты или саморезы. Для обеспечения хорошего теплоотвода, детали сильно прижимаем. Потом эти же светодиоды с пластиной устанавливаем в плафон, который скроет точечный источник света.

Похожим способом можно сделать также домашнюю светодиодную настольную лампу. Для этого источником света будет служить светодиод мощностью 3 Вт и со светоотдачей 278 лм. Хороший радиатор получится с любой старой материнской платы, размерами где-то 5 на 5 сантиметров.

Необходимый ток и напряжение для питания светодиодов даст импульсный источник в комплекте с электронным адаптером. Необходимо не превысить предназначены для выбранного светодиода токи. Также предлагается к использованию микро-трансформатор, для того, чтобы в ходе установки и проверки работы будущей настольной лампы проводить регулировку освещения. К примеру, для диода на один ват допустимо прямое питание от трёх батареек, а если питание осуществляется от зарядного устройства, то нужно ставить переменный резистор для того чтобы светодиод не сгорел от высоких токов.

И так для источника питания берём устройство для зарядки мобильных телефонов, а так же резистор в 1 Ом. Для создания предохранительных условий, всю электронную часть помещают в патрон старой лампы. Делаем замеры габаритов оправы и вырезаем детали. Тщательно очищаем их от всей грязи и на чистую поверхность наносим клей.

Нужно обратить внимание, что в случае неправильной упаковки каких-либо элементов, может возникнуть взрыв, так что последовательность инструкции строго необходима. В большинстве случаев проблема возникает из-за неточностей при спайке и сварки.

При сборке нужно вскрыть блок питания и изъять детали, которые монтируют в корпус будущей настольной лампы. Плату закрепляем в корпусе с помощью санитарного силикона с высоким уровнем сопротивляемости к высоким температурам. Клеим боковые стенки и светодиод на основу, наверх – стеклянную крышку, к которой крепим радиатор с подключенными светодиодами.

После того, как клей высох и все детали приклеились, готовый светильник монтируем к металлическому держателю (к пластине). И так – лампа готова к использованию. Потребительная мощность не превышает 2,5 Вт, поток света – 200 лм. Такие показатели идеально подходят для долговечной и прочной самодельной лампы.

Заключение

Как показывает практика, никакой сложности не возникает при сборке своими руками обычных светодиодных светильников и настольных ламп, а их ремонт не будет занимать много силы и времени. Эти светильники подойдут к любому применению, и будут иметь не худшие характеристики по сравнению с известными светодиодными светильниками марки СПО.

Светодиодный светильник своими руками

Света много не бывает. Приходится работать по вечерам и часто основного освещения не хватает. Выход – использовать дополнительный настольный светильник. Светодиоды дают много света, очень экономичны и долговечны. Поэтому светильник должен быть светодиодным. Его, конечно же, можно купить, но гораздо интереснее сделать его своими руками.

Итак, мне нужен настольный светильник. Буду делать его практически из подручных материалов и простыми инструментами. За идеальным исполнением гнаться мне ни к чему, но и торчащие во все стороны провода – тоже не вариант. Мой выбор – достаточно аккуратное, но предельно практичное исполнение. Питаться светильник будет от бытовой сети 220В.

Для светодиодного настольного светильника нужны светодиоды, драйвер к ним и корпус, где все это будет монтироваться.

Как-то по случаю я приобрел два десятка дешевых одноваттных светодиодов. Пришло их время!

Дешевые белые светодиоды теплого свечения мощностью 1Вт

Спаиваем их в 2 линейки.

Спаянные в линейки светодиоды

В качестве драйвера мне послужит модернизированный балласт энергосберегающей лампы. О подробностях этой переделки читайте в статье «Простой драйвер светодиода от сети 220В».

Драйвер, сделанный из балласта энергосберегающей лампы

Теоретически, мои светодиоды рассчитаны на ток до 350мА при падении напряжения 3В. Но это дешевые NoName светодиоды и я совсем не питаю иллюзий – думаю, реальный рабочий ток не должен превышать половину, т. е. 150мА. К тому же из 20 диодов один оказался сюрпризный (начинал моргать после разогрева). Я решил использовать 2 линейки по 9 светодиодов, соединенные параллельно. Мой «драйвер» настроен так, что будет выдавать примерно 220мА на две линейки – по 110мА на каждую. Получим примерно 6-7Вт света, будет очень экономично и для настольного светильника вполне достаточно.

Светодиоды, даже потребляя всего треть своего максимального тока, греются весьма существенно. Металлический корпус светильника будет весьма кстати. У меня в хозяйстве обнаружился алюминиевый уголок 25*25мм. Соорудим из него коробку 200*50*25мм.

Из этого добра будет собран корпус светильника

Отрезаем куски уголка и с помощью пленочного двухстороннего скотча собираем коробку.

Собранная коробка - корпус светильника

К сожалению, двухсторонний скотч не может заменить полноценное соединение (шурупами, например). Но для временного монтажа или чтобы ничего никуда не разъезжалось – пользоваться им очень удобно.

Получившуюся коробку нужно очень тщательно обработать напильников и мелкой наждачной бумагой – убираем все заусеницы и крупные царапины.

Далее берем вот такое чудо:

Самоклеющаяся пленка - ей будет обтянут корпус светильника

Это зеркальная серебристая и матовая темно-зеленая самоклеящиеся пленки. Пленки очень качественные и с могучим клеем. Ими будет обтянута моя коробка. Получится красиво, плюс, можно будет обойтись без шурупов и всего такого.

На металле не должно быть царапин и неровностей – они проступят через пленку. Перед поклейкой очистите поверхности от пыли и обезжирьте, например, изопропиловым спиртом. Заклеиваем зеркальной пленкой поверхность, где будут светодиоды, и торцевые грани. Получится как-то так.

Корпус светильника обтянут зеркальной пленкой

Чтобы получился настольный светильник, источник света нужно поднять и закрепить над столом. Для этих целей приспособим бесхозную штангу от минигравера. На ее вершине имеется отогнутый в сторону крюк. Он и будет удерживать коробку.

Для этого понадобится небольшой кусок П-обрасного профиля и 2 шурупа, которые, с одной стороны, будут крепить профиль к корпусу и, с другой стороны, служить зацепом и опорой для крюка штанги.

Крепление корпуса светильника к стойке

Прицеливаемся, размечаем и сверлим отверстия, но закреплять пока не будем.

Размечаем и максимально аккуратно вырезаем на пленке места под светодиоды.

Разметка и подготовка мест под светодиоды на корпусе

Светодиоды через термопасту будут передавать тепло прямо в алюминиевый корпус. Линейки светодиодов будут крепиться поперечными стяжками и, там где нужно, суперклеем.

Сверлим отверстия под стяжки и провода питания.

Корпус с подготовленными местами для светодиодов и отверстия для крепежа и проводов питания

Щедро смазав посадочные места термопастой, сажаем линейки светодиодов. Закрепляем их стяжками. В нужных местах используем суперклей.

Светодиоды уже закреплены на корпусе светильника

Внутрь коробки устанавливаем драйвер, выводим и подпаиваем провода питания.

Корпус светильника - что у него будет внутри

Электрические детали сажаются на толстый скотч, дополнительно фиксируются клеем.

Почти все готово. Сверху коробку можно закрыть подходящей пластиковой крышкой. Теперь берем темно-зеленую пленку и затягиваем боковые грани и крышку. Закрепляем и декорируем профиль крепления к штанге.

Вот теперь точно все. Вот что в итоге получилось.

Собранный корпус самодельного светодиодного светильника

Настольный светодиодный светильник в полный рост

Получился практичный и достаточно яркий настольный светодиодный светильник, собранный своими руками. Все предельно просто и потребовало всего несколько часов времени. И света стало больше! 🙂

Простая LED фитолампа для растений своими руками

Сегодня купить светодиодную фитолампу через интернет-магазины не составит труда. Это может быть лампочка с цоколем Е27 под стандартный светильник, мощный прожектор, собранный на COB-матрице или готовый фитосветильник на нескольких светодиодах. Вот только стоимость готовой продукции достойного качества слишком велика. К тому же размер и параметры стандартной подсветки не всегда отвечают требованиям растениеводов. Преодолеть данные препятствия можно, сконструировав светодиодные фитолампы для растений своими руками.

Расчёт необходимого света

Для того чтобы фитосветильник действительно ускорил рост растений, необходимо произвести корректный расчёт его параметров. Главной оптической характеристикой любого источника света является световой поток, который указывает на то, сколько световой мощности (люмен) выдаёт лампа. Его значение указывается на упаковке. В свою очередь, для растений основным показателем является освещённость, указывающая количество люмен в 1 м2.

Расчёт светового потока, необходимого для эффективной подсветки, производят по формуле Ф= E×S/Kи, где:

Ф – световой поток, лм;
E – требуемая освещённость, величина которой задаётся индивидуально для каждого вида растений, лк;
S – площадь, которую следует освещать, м2;
Ки – коэффициент, учитывающий потери света на рассеивание.

В ламповых светильниках с плохим отражателем за счёт отсутствия строго направленного свечения значение Ки может снижать КПД светильника более чем наполовину. Светодиод имеет направленное свечение, угол распространения которого определяется линзой. В связи с этим в светодиодных светильниках отражатель не столь сильно влияет на эффективность осветительной системы в целом, а Ки достигает 0,8–0,9 единиц.

И всё же подсветка рассады светодиодными лампами в домашних условиях зачастую нуждается в отражателе. Особенно это касается фитосветильников, сконструированных на основе светодиодных лент, где отражатель помогает сконцентрировать максимальное количество света на полезной площади.

Не стоит забывать о мощности светодиодного светильника и угле половинной яркости, часто именуемом как угол рассеивания. Иногда, даже правильно собранный фитосветильник оказывается неэффективным. Излишняя удалённость приводит к потерям световой мощности (закон обратных квадратов), а маленький угол рассеивания – к недосветам по краям.

Светодиоды испускают тепло в противоположную сторону относительно излучаемого светового потока. Поэтому их можно максимально приблизить к растениям, оставляя в запасе всего несколько сантиметров.

Как сделать фитолампу и что для этого понадобится?

Для изготовления фитолампы своими руками понадобятся:

  • светодиоды со специальным спектром излучения;
  • источник питания;
  • система охлаждения;
  • корпус;
  • вспомогательный материал и инструмент.

Чипы синих, красных и пурпурных фитосветодиодов встречаются в разных модификациях: в виде дискретных SMD-элементов или COB-матриц. Все они пригодны для изготовления светильника своими руками. Проще всего делать подсветку из готовой светодиодной ленты для растений, разрезав её на несколько отрезков. Сложнее – из отдельных SMD чипов или COB-матриц, для которых потребуется правильный расчёт радиатора.

Источник питания для светодиодов и матриц представляет собой драйвер со стабилизированным постоянным током на выходе, а для светодиодных лент – это источник напряжения +12В соответствующей мощности.

Пассивная система охлаждения является обязательным элементом светильника для растений. Она отвечает за соответствие оптических характеристик излучающих диодов в течение всего срока службы. О форме, размерах и материалах для изготовления радиатора рассказано в отдельной статье. В большинстве самодельных светильников радиатор одновременно является корпусом.

Кроме перечисленных светодиодов, в качестве источников света можно использовать фитодиоды, изготовленные по технологии УСКИ (универсальное сине-красное излучение). Они имеют уникальный спектр излучения, полученный за счёт особого состава люминофора. В данном случае люминофор выполняет функцию избирательного фильтра, пропуская волны преимущественно в синем, красном диапазоне, а также незначительную часть жёлтого и зелёного света. При этом синяя область имеет ширину 380–480 нм с небольшим переходом в ультрафиолет и пиком на длине волны 445 нм. Красная область намного шире, захватывает оранжевый и инфракрасный спектр, доля которых достигает 50%. Общая ширина красного излучения примерно составляет 570–770 нм с максимумом на 640–660 нм.

Благодаря расширенной спектральной характеристике, светодиоды УСКИ идеальны в конструировании ламп для растений своими руками. Светильник на их основе обеспечит растение полным циклом роста: от вегетативного развития до созревания плодов и может применяться для подсветки растений с крайне низкой долей солнечного воздействия.

Применение фитоленты

Чтобы сконструировать простой светодиодный светильник для растений, понадобится фитолента с блоком питания и недорогие детали для корпуса, в качестве которых можно использовать подручный материал. Светильник может иметь любую форму и размер, благодаря гибкости и возможности резать ленту на отрезки, кратные 5 см, а клейкое основание позволяет монтировать её на любую гладкую поверхность.

Оптимальным материалом для корпуса станет тонкая алюминиевая (в крайнем случае, жестяная) пластина, которая послужит прекрасным отводом тепла для светоизлучающих чипов ленты. В углах пластины нужно сделать крепёжные отверстия. Вся конструкция подвешивается на двух декоративных цепочках, которые цепляются за крюки-саморезы, вкрученные в стену. Переставляя звенья цепи можно регулировать высоту.

Мощная фитолампа с цоколем Е27 своими руками

Сделать эффективную и экономичную подсветку для рассады своими руками можно из нескольких светодиодных ламп, которые собирают из отдельных компонентов.

Для этого на нужно купить DIY-набор (например на Aliexpress), включающий все необходимые детали для сборки лампы, а именно:
  • пластиковый корпус и разборный металлический цоколь Е27;
  • алюминиевый радиатор с саморезами;
  • плата под smd-светодиоды;
  • линзы с углом рассеивания 90° и держатель для них.

Отдельно приобретают синие и красные smd led, драйвер подходящей мощности, легкоплавкий припой и термопасту. Сборку начинают с монтажа светодиодов на плату при помощи фена и паяльника, разогретого до температуры 280°C. После этого к плате припаивают провода от драйвера и кратковременным включением проверяют схему на работоспособность. Убедившись в свечении всех чипов, переходят к сборке корпуса.

В местах контакта платы с радиатором наносят тонкий слой термопасты и прижимают их саморезами. Над всеми светодиодами устанавливают линзы, которые фиксируют держателем с винтами. Внутри пластикового корпуса размещают драйвер, выходные провода которого припаивают к плате, а входные прижимают к центральной и боковой части цоколя.

Одна такая фитолампа способна обеспечить полноценный досвет в вечернее время нескольким комнатным цветкам или рассаде, высаженной на площади до 0,25 м2.

Топ 4 ошибки при самостоятельной сборке фитосветильника

Сделать светодиодную лампу для растений своими руками несложно. Но всегда есть нюансы, о которых следует помнить, начиная со стадии проектирования. Перечислим основные ошибки, которые свойственны начинающим растениеводам:

Покупка дешёвых светодиодов. Каким бы хорошим ни был светильник, если в нём установлены светодиоды низкого качества, то результирующая эффективность будет крайне низкой. У фитосветодиода есть два основных параметра – это световой поток и спектр излучения, измерить которые без специальных приборов невозможно. Этим активно пользуются китайские производители, выдавая обычные синие и красные led за высококачественный продукт. Попасться на подделку очень легко, так как продавцы привлекают потенциальных покупателей всяческими заманчивыми предложениями, скидками и акциями.

Неправильный расчёт системы охлаждения. Эта распространённая ошибка для многих радиолюбителей, в том числе собирающих своими руками светодиодные светильники. Неважно, какой тип охлаждения выбран: пассивный или активный – радиатор должен быть всегда. Тем не менее, в китайских фитолампах мощностью более 20 Вт нередко можно встретить вентилятор, установленный непосредственно на тыльную сторону платы со светодиодами. Такое решение не обеспечивает отвод тепла должным образом. Любая система охлаждения должна состоять из:

  • радиатора, способного равномерно рассеивать тепло от чипов;
  • термопасты, улучшающей контакт радиатора с подложкой;
  • блока защиты для отключения фитолампы при аварийном останове вентилятора.

Низкое качество сборки и комплектующих. С целью удешевления конструкции многие китайские фирмы используют некачественные детали при сборке светодиодных фитоламп. Не стоит ориентироваться на их изделия и пытаться что-либо скопировать. Все комплектующие должны быть надёжно скреплены между собой и иметь определённый запас прочности. Кроме этого корпус светильника не должен препятствовать естественной конвекции воздуха.

Нестабильность выходных параметров источника питания. Подать на светодиод номинальный и, главное, стабильный ток – значит гарантировать продолжительную работу всего светильника. Поэтому экономить на драйвере нельзя. Изготовить драйвер для небольшой светодиодной фитолампы для растений своими руками можно на основе LM317. При этом выходная модность драйвера должна быть в 1,2-1,5 раза больше мощности потребления светодиода.

Подводя итоги

На основании информации из разных источников, включая практические наблюдения и видеорепортажи с обзором различных фитоламп, можно сделать следующий вывод. На сегодняшний день ситуация на российском рынке такова, что выгоднее сделать подсветку для растений своими руками, чем купить готовый продукт. Дешёвые фитолампы имеют много недостатков, а фитосветильники высокого качества многим не по карману. Поэтому самодельный светодиодный светильник – это золотая середина.

Как сделать LED светильник с аккумулятором своими руками: самодельная светодиодная настольная лампа для рабочего стола с регулятором яркости

Настольная светодиодная лампа очень полезна и присутствует дома практически у каждого. Люди используют LED светильники для чтения и обучения. Наиболее часто можно встретить флуоресцентные настольные лампы, но они потребляют слишком много энергии и их нужно подключать к внешнему блоку питания.

Светодиодные лампы стоят гораздо дешевле и они более энергоэффективны, но их стоимость в магазинах и интернете обычно превышает 600р. Что если сделать такую лампу своими руками? Она легко собирается из дешевых базовых элементов, сборка в домашних условиях займёт кое-какое время и позволит сэкономить, ведь стоимость деталей лампы обойдётся в 300-1000р.

Вы, возможно, уже видели инструкции по сборке ламп, но особенность этой состоит в том, что она очень дешева и её основа собирается из металлической линейки и картона, что обычно находится под рукой у большинства людей. В лампе нет дерева, пластика, акрила, поэтому вам не придётся использовать специальные инструменты для резки материалов.

Самодельный светильник питается от 4V кислотных аккумуляторов и состоит из 36 светодиодов, которые производят достаточно света для чтения в темноте. Также в схему встроен диммер, работающий на базе интегральной схемы 555 ic и с помощью него можно менять яркость, настраивая потенциометр. Лампу можно заряжать при помощи 9V адаптера.

Я написал детальное руководство как сделать светодиодный светильник своими руками и уверен, что его поймёт даже новичок.

Шаг 1: Собираем нужны части

Для создания лампы вам понадобятся детали, перечисленные в следующем списке. Цена каждой детали может сильно варьироваться в зависимости от места, в котором вы её покупаете.

Список компонентов:

  • 36x светодиодов
  • 36x транзиторов на 82 Ом
  • 2x герметичная свинцово-кислотная аккумуляторная батарея на 4v 1.5ah
  • 1x регулятор напряжения 7805
  • 1x выключатель
  • 1x красный или зеленый светодиод
  • 1x разъём-мама 3.5мм
  • 1x потенциометр 50 кОм
  • 1x кнопка на потенциометр
  • 1x таймер 555 ic
  • 2x 1n4001 или аналогичные диоды
  • 1x 8-пиновый сокет DIP IC
  • 2x резистора 1 кОм
  • 1x резистор 330 Ом
  • 2x керамический конденсатор 0. 1 uf
  • 1x TIP 31c или другой npn транзистор
  • Макетная плата
  • Кабель «радуга»

Инструмент:

  • Паяльник
  • Провода
  • Вытяжка для дыма
  • Ножницы

Прочее:

  • Картонная коробка
  • Стальная линейка на 30 см
  • Скотч (изолента)
  • Листы черной и белой бумаги
  • Самоклейка

Шаг 2: Собираем батарею

Источник питания для нашей лампы должен быть больше, чем на 5V. Если напряжение будет менее 5V, то мы не добьёмся максимальной яркости от светодиодов. Таким образом, вы должны использовать батареи на 6 и более вольт, но напряжение не должно превышать 12V, иначе регулятор напряжения перегреется. Я купил батареи на 4V, так как они были самыми дешевыми и общее их напряжение в 8V позволит производить достаточно энергии для питания лампы.

Свинцово-кислотные аккумуляторные батарейки были выбраны для удешевления проекта. Их особенность состоит в том, что их можно подключит напрямую к адаптеру питания, и они не нуждаются в дополнительных переходниках. Использование литий-ионных или никель-кадмиевых, алкалиновых и других типов батареек сделают этот проект значительно более дорогим, но при этом такие батареи будут работать дольше.

Для сборки батарей скрепите их двусторонним скотчем и соедините последовательно, что значит соедините положительную клемму одной батареи с отрицательной клеммой другой батареи. Затем припаяйте по проводу к оставшимся свободным клеммам. Соединение батарей в последовательную цепь увеличит их напряжение (общий вольтаж будет равен сумме напряжений каждой батареи), в то время как параллельное соединение увеличит время их работы или силу тока. Спаивайте клеммы батарей быстро, так как перегрев может вывести их из строя.

Шаг 3: Подготавливаем линейку

Согните линейку руками или плоскогубцами как показано на фотографии, а затем покройте её бумагой черного цвета. Линейка нужна для поддержки светодиодов. Причина, по которой я использовал линейку — её дешевизна, гибкость и доступность.

Шаг 4: Подготавливаем плату

Покройте плату белой бумагой. Так как вся плата теперь покрыта бумагой, то для проделывания в ней отверстий приготовьте иглу.

Шаг 5: Припаиваем светодиоды

Так как источник питания на выходе имеет 5V, а светодиодам нужно 3.6V, то их нельзя подключать последовательно. Если соединить их параллельно, то им всё равно нужно будет 3.6V, и если подать на них 5V, то они повредятся. Чтобы избежать этой проблемы, мы добавим в цепь для каждого светодиода резистор. Формула для расчёта значений резистора такая:

Значение резистора (в Омах)= (напряжения блока питания — напряжение источника) / сила тока, необходимая каждому светодиоду (в амперах)

= 5 — 3.6 / 0.02 (20 миллиампер = 0.02 A)
= 1.4 / 0.02
= 70 Ом

Так как 70 Ом — это нестандартное значение, то нам понадобится резистор на 68 или 82 Ом.

При припаивании светодиодов ссылайтесь на приложенную схему.

Шаг 6: Припаиваем светодиоды (шаг 2)

После того, как вы припаяли все светодиоды, последовательно соедините все наборы светодиодов. Затем просто соедините два длинных конца провода с положительной и отрицательной дорожкой.

Шаг 7: Отрежьте лишнюю часть платы

Отрежьте лишнюю часть макетной платы. У вас должна получиться квадратная форма с перпендикулярным выступом, который скрепляется с линейкой. Не выбрасывайте остатки платы, так как они пригодятся для сборки электросхемы диммера.

Шаг 8: Подготавливаем потенциометр

Причина, по которой этот шаг идёт первым кроется в том, что он будет нужен для прототипирования схемы следующего шага. Припаяйте к потенциометру два диода, а затем два провода, как показано на картинке — один к среднему пину, а второй к точке, где соединяются два диода.

Шаг 9: Прототипирование схемы (опционально)

Этот шаг не обязателен и описан для тех людей, кто считает, что сборка схемы сразу на плате не является хорошей идеей. Так что можете собрать приложенную схему на плате прототипирования, подключить 5V источник питания и покрутите потенциометр. На приложенных фотографиях показана работа светильника на 5% и 95% (наименьшая и наибольшая яркость).

Шаг 10: Паяем схему диммера

555 может работать максимум на 200mA, поэтому соединение всех диодов напрямую с выходом перегреет его. Я доработал схему и добавил в неё транзистор tip31c, что позволило безопасно подключить диоды.

Спаяйте всё согласно приложенной схеме. Не припаивайте интегральную схему напрямую, так как её перегрев может повредить устройство — используйте сокет.

Шаг 11: Приклеиваем линейку

При помощи горячего клея или клейкой ленты, приклейте линейку к центру задней части коробки.

Шаг 12: Приклейте плату

Приклейте печатную плату к линейке согласно приложенной фотографии.

Шаг 13: Присоедините батарею

Двусторонним скотчем приклейте батарею к коробке. Убедитесь, что коробку легко закрыть и в ней остается достаточно места.

Шаг 14: Присоединяем выключатель

Выключатель нужен для включения и выключения лампы. Соедините его согласно приложенной схеме.

Шаг 15: Присоединяем потенциометр

Средний пин потенциометра соединяется с пином 2 интегральной схемы, а пин, соединённый с диодом потенциометра соединяется с пином 7 интегральной схемы.

Шаг 16: Подключаем светодиоды

Сделайте отверстие на задней стенке коробки и пропустите в неё провода от светодиодов. Затем соедините положительный провод светодиодов с пином 8 интегральной схемы, а отрицательный провод с коллектором транзистора.

Шаг 17: Подключаем разъём адаптера

Диод соединяется с разъёмом адаптера, поэтому светодиод индикации зарядки горит только во время подключения адаптера, но не горит во время работы лампы. Соедините разъём адаптера с положительной и отрицательной клеммами батареи.

Шаг 18: Присоединяем светодиод индикации зарядки

Соедините светодиод индикации зарядки напрямую с разъемом адаптера и резистором на 330 Ом, подключенным последовательно.

Шаг 19: Приклейте схему

Когда вы всё подключите, приклейте электросхему поверх батареи. Убедитесь, что в коробке еще есть свободное пространство.

Шаг 20: Делаем отверстия

Проделайте в коробке в выбранных вами местах 4 отверстия. Они нужны для установки выключателя, потенциометра, разъёма адаптера и светодиода индикации зарядки. Я разместил выключатель и потенциометр на передней стенке коробки. Для проделывания отверстия подойдёт обыкновенный карандаш.

Шаг 21: Устанавливаем всё в коробку

Следуя приложенным фотографиям, установите все компоненты в коробку.

Шаг 22: Добавляем кнопку

При помощи клея прикрепите к потенциометру кнопку.

Шаг 23: Заклеиваем коробку

Перепроверьте все соединения и при необходимости перепаяйте, а затем заклейте коробку

Шаг 24: Добавляем чёрную крышку

Возьмите кусок картона по размеру чуть больший, чем плата с диодами. Покройте одну сторону картона черной бумагой, а другую — белой. Приклейте картон на плату диодов, черной стороной вперёд.

Шаг 25: Завершающие штрихи

Финальным штрихом при завершении лампы будет нанесение черных полос на края коробки. Комбинация черного и белого цвета придаст лампе опрятный вид.

Отрежьте полосы черного цвета шириной примерно 2 см и проклейте грани коробки.

Шаг 26: Готово!

Чтобы зарядить лампу, просто подключите её к любому адаптеру питания на 9V, светодиод на боку загорится, обозначая, что зарядка началась.

Для получения лучших результатов вы можете смело изменять светодиодную настольную лампу для рабочего стола:

  • Увеличьте или уменьшите количество светодиодов. Увеличение количества светодиодов уменьшит время работы батареи между зарядками, а уменьшение количества светодиодов уменьшит яркость лампы.
  • Вы можете использовать другие светодиоды, например на 1 или 3 Ватта, 5мм светодиоды, которые фокусируют свет на одной небольшой области.
  • Используйте другие типы батарей, например литий-ионные или литий-полимерные: они сделают лампу легче.
  • Пристройте к лампе линзу для фокусировки света на столе, как это делается у магазинных ламп.
  • Покрасьте лампу в свои цвета.
  • Поменяйте дизайн лампы и используйте другие материалы для сборки её корпуса.

Описание светильников на светодиодах

Со значительным подорожанием электрической энергии потребители стали все чаще задумываться о замене стандартных источников освещения светодиодными, которые помогают значительно сократить расходы на электричество. Но еще не каждый может позволить себе приобрести достаточно дорогостоящие светильники, выполненные на светодиодах. В результате народные умельцы научились делать такие светильники самостоятельно в бытовых условиях.

В этой статье:

Что собой представляют осветители со светодиодными элементами

Светодиоды — это электронные полупроводниковые устройства, которые излучают световой поток после прохождения через них электротока. На рынке светотехнического оборудования такие приборы освещения появились примерно 15 лет назад и сразу завоевали огромную популярность. Но были доступны не всем, так как очень дорого стоили. Сегодня цена такого светового оборудования тоже довольно высокая, но уже в разы меньше.

Сегодня такие устройства освещения представлены на рынке в широком ассортименте. Разные модели отличаются размерами, формой, мощностью, предназначением, дизайнерским оформлением, цветовыми оттенками. Отдельно можно приобрести и комплектующие для изготовления светотехнического оборудования своими руками в домашних условиях. Если придерживаться пошаговой инструкции по изготовлению светодиодного светильника для дома, то, чтобы его сделать, необязательно быть опытным радиолюбителем.

К сведению! Самые простые устройства способны работать от напряжения всего в 3—5 В (мощность стандартной батарейки). Конечно же, такой светильник годится для эксплуатации только как фонарик или для подсветки, к примеру, домашних цветов. Как же сделать более серьезную осветительную светодиодную систему?

Конструктивные особенности, принцип работы светодиодного оборудования

Перед тем как начать самостоятельно изобретать светодиодный прибор освещения, рекомендуется разобраться в его конструкции и принципе работы.

  • Диод представляет собой полупроводниковый элемент, который пропускает через себя электрический ток в одном направлении. В процессе рекомбинации электронов происходит образование энергии и излучение фотонов, в результате чего выделяется световой поток, тепло.

В светодиодном устройстве отвод тепловой энергии — это основной нюанс, на который необходимо обращать внимание при самостоятельной сборке светильника, так как повышенная температура может послужить причиной преждевременного выхода из строя самодельной конструкции. Поэтому обязательным элементом конструкции такого светотехнического устройства является радиатор охлаждения.

Самая простая конструкция радиатора представляет собой подложку, изготовленную из алюминия, непосредственно на которой размещаются светодиодные элементы. Но этого недостаточно для полноценного теплового отвода в оборудовании с более чем тремя полупроводниками. Для таких осветительных устройств предусмотрены специализированные стальные конструкции радиаторов. В бытовых устройствах им является сам корпус люстры.

Лед-изделие комплектуется не только радиатором. В его конструкцию также входят рассеиватель и отражатель светового потока, которыми вполне могут быть линза и рефлектор. Светодиодные элементы чаще всего производят в уже готовой сборке.

Важно! Чтобы осветитель не раздражал органы зрения достаточно ярким излучением света, рекомендуется дополнительно накрывать корпус изделия матовой колбой.

Сборка светодиодного осветителя своими руками

Прежде чем собирать прибор освещения, нужно проверить светодиоды на работоспособность, измерить сетевое напряжение.

Рекомендации! Чтобы защититься от поражения электротоком при настройке и в процессе эксплуатации такого оборудования, рекомендуется использовать трансформатор разделительный 220/220 В.

Также важно понимать, что в случае неверного подсоединения отдельных элементов схемы может произойти взрыв. Обычно неправильная сборка устройства заключается в некачественной спайке составляющих.

При проведении измерений падения токового напряжения светодиодного источника рекомендуется пользоваться специальным измерительным устройством — мультиметром. Чаще всего для подобных самодельных конструкций берется напряжение 12 В.

В нашем случае светодиодная конструкция рассчитана на 220 В сети переменного тока.

К сведению! Высокая светоотдача на диодах достигается при токе 20—25 мА. Дешевые элементы будут излучать неприятный световой поток голубоватого цвета, который при этом негативно влияет на органы зрения. Рекомендуется дополнительно использовать красные светодиоды (к примеру, на 10 белых 4 красных).

Схема сборки LED-светильника

Схема достаточно простая. Она была разработана для питания светодиодных элементов непосредственно от сетевого напряжения, без применения дополнительного источника питания.

Важно! Недостаток подобной схемы — все входящие в нее составляющие не изолированы от сети, соответственно, осветитель не имеет защиты от поражения электротоком. Поэтому при сборке оборудования необходимо быть предельно осторожными. Но впоследствии можно будет произвести изоляцию.

Комплектующие детали для сборки прибора

  • Для защиты электросхемы от перепадов напряжения используется резистор (сопротивление 100 Ом). Если такой отсутствует, тогда рекомендовано использовать модный диодный выпрямительный мост.
  • Для ограничения силы электрического тока, нужной для нормального функционирования светодиодных элементов, предназначен конденсатор 400 нФ. Если нужно, можно добавить еще диоды. Потребление тока в сумме не должно выходить за установленные конденсатором пределы. Важно убедиться, что применяемый конденсатор для электрической схемы рассчитан на напряжение от 350 В (данный параметр должен превышать сетевое напряжение в 1.5 раза).
  • Для обеспечения стабильного свечения без мигания светового потока используется конденсатор 10 мкФ. Напряжение данного элемента должно быть больше напряжения светодиодов, соединенных последовательно в цепи, в процессе эксплуатации.

Пошаговая инструкция по сборке основания для светодиодного осветителя

  1. Разбираем осторожно лампу или торшер, чтобы не нанести повреждение цоколю. Очищаем его, при помощи спиртосодержащего раствора обезжириваем поверхность. Особенное внимание стоит уделить зачистке отверстия (убирается лишний припой, производится обезжиривание). Эти процедуры обязательны для дальнейшей качественной пайки элементов цоколя.
  2. Вставляем в цоколь резистор (100 Ом), два конденсатора (каждый 220 нФ, 400 В).
  3. С помощью обычного паяльника припаиваем крохотный выпрямитель и диодный мост, который был приготовлен заранее. Все поверхности обрабатываем, но аккуратно, чтобы не повредить уже вмонтированные компоненты.
  4. Проводим изоляцию конструкции. Для этих целей подойдет монтажный клей из пистолета, поливинилхлоридная трубка. Но рекомендуется использовать специальное изолирующее средство, которое заполнит все пустое пространство между компонентами, при этом лучше их зафиксирует на месте.

Основание для будущего осветительного прибора готово!

После проведенных манипуляций можно приступать непосредственного к сборке самого светильника на энергосберегающих светодиодах.

Инструкция по монтажу светодиодных элементов

  1. За основание берем монтажную плату, которую можно приобрести в любом магазине радиоэлектронных товаров. Можно разобрать какой-нибудь старый электротехнический прибор, непригодный к эксплуатации (в данном случае плату нужно очистить от ненужных элементов).
  2. Важно! Предварительно каждую плату проверяем на работоспособность, чтобы наша работа была проделана не зря. Особое внимание стоит уделить светодиодным контактам, при необходимости производим их дополнительную зачистку, после чего зауживаем.
  3. Далее собираем конструктор: припаиваем четыре предварительно подготовленные платы к конденсатору, изолируем всю конструкцию специальным средством. Осуществляем проверку качественного соединения между собой отдельных диодов.
  4. Платы должны быть расположены друг от друга на одинаковом расстоянии. Это необходимо для равномерного распределения освещения в процессе работы осветительного устройства.
  5. Подпаиваем конденсатор 10 мкФ без дополнительных проводов, резистор 100 Ом (к любой плате). Производим изоляцию всех контактов.
  6. Изделие готово! Проверяем работоспособность.

Рекомендации! Светодиодные элементы излучают довольно яркий световой поток, поэтому рекомендуем накрыть самодельную лампу каким-нибудь декоративным абажуром.

Светодиодная фитолампа для растений своими руками

Предлагаем вашему вниманию решение проблемы с освещением – инструкцию по сборке фитолампы. Светодиодная фитолампа для растений своими руками – это недорогое и эффективное решение в вопросе искусственного освещения.

Сейчас в продаже есть специальные светильники для цветов и рассады, стоят они очень дорого, и не каждый садовод — любитель может позволить себе купить их. Поэтому, собрать фитолампу с необходимыми характеристиками самостоятельно, станет отличным решением.

Рассчитаем необходимое количество ламп и рассмотрим три способа сборки с разной степенью сложности.

Расчёт необходимого количества фитоламп

Прежде чем приступать к сбору фитолампы, нужно рассчитать, какое освещение и цветовой спектр Вам необходимы. Фитолампа должна иметь спектр как минимум двух цветов: красный и синий. Длина волны красного должна составлять 660 нанометров, а синего 445 нанометров. Эти значения указаны в характеристике светодиодов.

Красный цвет нужен взрослому растению, готовому к цветению и плодоношению, небольшое количество красного цвета нужно и только начинающей проклевываться рассаде.

Синий цвет отвечает за рост клеток. Растения, у которых в избытке синий спектр освещения перестают расти в длину. Можно использовать сочетание синего и фиолетового.

Зеленый и желтый цвета приносят растению пользу, хоть и не являются обязательными.

Варьировать количество этих цветов в фитолампе нужно в зависимости от цели. Точно подсчитать количество светодиодов трудно из-за разной энергии квантов, однако существует грубое соотношение цветов. Если нужно общее воздействие света на растения, то берут соотношение: 4-6 красных на 1 синий цвет. Для стимулирования роста нужно меньше красных, всего 4 и 1 синий, либо обойтись одним синими. Для плодоношения необходимо брать соотношение больше чем 6:1, либо только красные светодиоды.

На картинке представлен график зависимости активности роста растения от длины волны спектра.

Чтобы рассчитать необходимое количество фитоламп, нужно воспользоваться формулой: Р=L*H*В*K/S

  • P –суммарная мощность освещения всех ламп, В
  • L – длина площади, которую надо осветить, м,
  • H – ширина площади, которую надо осветить, м,
  • B – потребность в свете для растения в люксах или взять минимальное значение 8000Лк.

Таким образом, зная мощность фитолампы (мощность указана как на светодиодах, так и на светодиодных лентах), замерив освещаемую площадь и зная потребность света для растения в люксах можно рассчитать сколько нужно ламп.

Как самому сделать фитолампу из светодиодной ленты

Наиболее простой способ сделать фитолампу своими руками – это использовать LED-ленту. В ее основе лежит гибкий материал из пластика со встроенными токопроводящими дорожками, а значит можно сделать лампу, которая будет повторять необходимые Вам контуры.

Необходимая мощность блока питания рассчитывается довольно просто. Для этого нужно узнать мощность потребления светодиодной ленты. Мощность ленты фиксирована: 4.8Вт/м, 7.2Вт/м и 14.4Вт/м. Смотрим значение на своей ленте и умножаем на метры. Таким образом, Вы легко рассчитаете мощность блока питания.

Что нам потребуется:

  • Светодиодные ленты на 12 вольт: 2 м с красными светодиодами и 30 см с синими. Фотолампа будет квадратного размера на полотне 20х20 см.
  • Жесткий лист ПВХ толщиной 2 мм, размер 20х20 см. Похож на пластик, можно купить в любом строительном магазине.
  • Коннектор питания для светодиодной ленты
  • Блок питания напряжением 12В и мощностью достаточной для запитывания нашей led ленты.
Коннектор для подключения светодиодной ленты

Существует два основных типа светодиодов: SMD 3028 и SMD 5050. Цифры 3028 и 5050 означают размер светодиода в миллиметрах, следовательно, они имеют размеры 3,0 на 2,8 мм и 5,0 на 5,0 мм соответственно.

Для примера возьмем ленту фиксированной длины — 2,6 метра, с потреблением — 4,8 В/м. Путем простых вычислений получаем необходимую мощность блока питания 12,5 В (длину светодиодной ленты в метрах умножаем на ее мощность: 2,6 м х 4,8 В/м = 12,48 В). Подбираем блок питания мощностью, не менее 13 Ватт (с запасом).

Для начала разрезаем ленты на отрезки по 20 см. Получается 10 красных лент и 3 синих. Размещаем их на листе ПВХ в следующем порядке: 3 красных, 1 синяя, 2 красных, 1 синяя, 2 красных, 1 синяя, 3 красных.

В качестве основы для фитолампы можно использовать не только лист ПВХ, но и, например, лист пластика, поликарбоната или метала.

Существуют светодиодные ленты с клеящим слоем и без. Лента с клеящим слоем — это не самый лучший вариант, потому что она может отклеиваться и придется постоянно ее подклеивать. Поэтому, независимо от того, какой тип ленты вы используете, основу led ленты будущей фитолампы обязательно приклейте на термостойкий клей.
Далее нужно спаять кусочки ленты проводами. Не забывайте соблюдать полярность! В конце подсоединяем разъем для подключения к блоку питания. Вот так должна выглядеть готовая конструкция:

Готовая фитолампа из кусков ленты

Осталось только разместить фитолампу из светодиодной ленты над растениями, подсоединить блок питания и включить его в сеть.

В видео показан альтернативный способ сборки фитолампы из светодиодной ленты. Используется лента со светодиодами 5730. В качестве крепления ленты к основе – доске используется кабельный канал.

Светодиодная фитолампа из алюминиевого профиля и светодиодов

Рассмотрим третий способ сборки LED-освещения для растений. Отличие этой лампы от предыдущих в большей мощности.

Что нам потребуется:

  • Радиатор для ламп. Например, радиаторный ребристый профиль АВМ-002.1 размерами 30 х 72 х 500 мм
  • Светодиоды мощностью 350 мА. Красные3GR-R – 3 штуки, синие3GR-B – 9 штук.
  • Специальный готовый драйвер для светодиодов. Необходимо обратить внимание на то, что силу тока драйвера нужно выбирать в соответствии с силой тока светодиодов.
  • Термоклей.
  • Медная проволока.

Количество светодиодов того или иного цвета зависит от вашей цели. Чтобы взошла рассада нужно больше синего цвета и немного красного. Для взрослых растений нужно соответственно больше красного.

Сперва нужно прикрепить к профилю из алюминия светодиоды на термоклей. Расстояние между ними 5 сантиметров.

Припаиваем все светодиоды последовательно при помощи медной проволоки. Не забывайте соблюдать полярность.

Соединяем сеть светодиодов с драйвером как показано на схеме:


Лампа готова. Осталось закрепить ее над растениями. Используйте для этого крючки, либо любой другой подходящий крепежный материал.

Закрепите крючки в нужном месте, просверлите отверстия в металлическом профиле и повесьте лампу на стальном тросе.

Светильник для растений из светодиодов своими руками

Так же, как и в двух предыдущих вариантах искусственного освещения для рассады, тут тоже будут использоваться светодиоды. Однако этот светильник более мощный и подходит для освещения больших площадей, например, в теплице.

Что нам потребуется:

  • Светодиоды: красные светодиоды FRM-R1 — 5 шт., синие светодиоды FRM-B1 — 5 шт.
  • Алюминиевый радиатор.
  • Драйвер RLD
  • Радиатор
  • Провод электрический.
  • Паяльник.
  • Припой для паяния.
  • Флюс для пайки.
  • Токопроводящий скотч.
  • Клей теплопроводящий.

Перед началом работы рекомендуется проверить светодиоды с помощью мультиметра, чтобы исключить неработающие элементы.

Приклеиваем диоды на теплопроводящий клей. Цвета должны чередоваться. Для изоляции используем слой из токопроводящего скотча. После того как все светодиоды приклеены, нужно их спаять между собой с помощью провода.

Плюс одного элемента соединяется с минусом следующего.

Как только цепь спаяна, нужно подключить драйвер. Не забываем для начала рассчитать его мощность. Она равна сумме мощностей всех элементов цепи. Также необходимо поместить драйвер в пластиковый корпус, чтобы защитить его от влажности. Все провода изолируйте изолентой. Лампа готова, и вы можете ее повесить.

На видео показана готовая конструкция фитолампы и объяснён принцип ее сбора. Лампа состоит из 56 светодиодов: 41 красных, 9 синих, 6 имеют полный спектр, питание от 2х драйверов, дополнительно встроен вентилятор.

Подводя итоги

Из трех приведенных способов самый простой и недорогой – это лампа из светодиодной ленты. Ее сможет с легкостью собрать даже человек, никогда не имевший ничего общего с электроникой. Несомненным плюсом самодельных фитоламп является не только дешевизна по сравнению с готовыми светильниками, но и свобода в выборе его формы, количестве светодиодов и соотношении цветов. А это залог хорошего урожая или просто великолепных цветов у Вас на подоконнике.

Сделать освещение своими руками проще, чем когда-либо

Работа со светодиодным освещением не должна быть сложной. Вы, вероятно, подумали о крутой идее освещения, которую не пытались реализовать в прошлом. Почему нет? Я считаю, что большинство людей, таких как вы, считают, что они недостаточно образованы или недостаточно квалифицированы, чтобы самостоятельно создать идею светодиодного освещения.

Что ж, у меня для вас новости ... Стой, оставь эту мысль «но я не могу». В этом посте я покажу вам, насколько легко можно настроить светодиодное освещение с помощью правильных продуктов!

Что нужно для создания светодиодной лампы

Когда-нибудь хотели построить светодиодную лампу? Теперь вы можете использовать всего 2 части!

С ростом популярности светодиодного освещения многие исследовали и связывались со мной, спрашивая, как создать небольшие светодиодные фонари, светодиодные лампы, светодиодные панельные светильники, даунлайты… вы называете это. Это положит начало обсуждению различных компонентов, необходимых для завершения настройки светодиода:

  • Светодиоды для устройств поверхностного монтажа (SMD) или светодиодные модули
  • Драйверы постоянного тока
  • Источники питания переменного / постоянного тока
  • Радиаторы


Этот список по понятным причинам может запутать новичка и сделать этот крутой световой проект головной болью. Прежде чем бросать проект в стопку «Сохранить на потом / Кто-то еще», вы должны знать, что есть способ использовать все эти компоненты для одного простого источника света.Двигателям светодиодных фонарей нужен только источник питания и немного воображения, чтобы создавать светодиодные фонари как для малых, так и для крупных приложений.

Удобные светодиоды - «Светодиодные двигатели»

Что такое двигатель светодиодного освещения? Это светодиодный эквивалент обычной лампы. Световой двигатель обычно состоит из светоизлучающего диода (СИД), установленного на печатной плате с электрическими и механическими креплениями, что означает, что он готов к установке в светильник.

Наши светодиодные двигатели разработаны с учетом перечисленных выше компонентов и объединения их в единый корпус.Это устраняет барьеры для входа для людей, таких же, как и вы, которые хотят разработать систему светодиодного освещения, не лезя через голову. Звучит слишком хорошо, чтобы быть правдой? Посмотрите, как мы разработали эти светодиодные фонари.

Проектирование светодиодных ламп "все в одном"

После множества звонков и запросов здесь, в LEDSupply, я понял, что нам нужно больше светодиодных источников света, которые могли бы использовать постоянный вход 12-24 В постоянного тока и загораться. Гибкие светодиодные ленты отлично подходят для такого использования, но иногда требуется более компактный, прямой и качественный свет.

Я начал сотрудничать с LuxDrive, чтобы создать светодиодный светильник, который работал бы таким образом. В нашем сотрудничестве я хотел, чтобы наши новые продукты имели 4 основные функции.

Бортовые драйверы

При работе со светодиодами SMD требуется драйвер постоянного тока или токоограничивающий резистор. Электрические свойства светодиодных фонарей меняются по мере их нагрева, водитель будет следить за тем, чтобы светодиод оставался на безопасном токе, вместо того, чтобы потреблять слишком много и в конечном итоге выгорать.

Вместо использования внешнего драйвера, целью было встроить небольшие встроенные драйверы на плату светодиодов. Эти небольшие драйверы действуют как переменные резисторы на плате, поэтому вы можете вводить постоянное напряжение постоянного тока (например, 12 вольт), и устройства будут ограничивать ток, разрешенный для протекания через плату.

Это поможет вам в трех основных направлениях:

  1. Встроенные драйверы означают, что нет необходимости во внешнем драйвере, который может стоить около 10-15 долларов.
  2. Встроенные драйверы намного меньше, что делает установку более компактной и дискретной.
  3. Снимает напряжение, связанное с согласованием драйвера со светодиодной схемой.

Радиатор не требуется

Светодиоды с радиатором - еще одна область, которая сбивает с толку, когда вы начинаете работать со светодиодным освещением. Светодиоды обычно имеют большое количество энергии, протекающей через очень небольшой источник, что способствует накоплению тепла. Радиатор необходим для рассеивания тепла, отводя его от светодиода, чтобы избежать необратимого повреждения.

Радиатор - всегда хорошая идея, но цель заключалась в создании небольших светодиодных фонарей, которым не требовалось ничего, кроме источника питания. Радиаторы имеют тенденцию быть громоздкими и значительно увеличивают размер вашей установки. Когда LuxDrive разработал светодиодную плату, мы проверили температуру и убедились, что эти светодиодные двигатели могут работать без какого-либо радиатора.

Простое подключение светодиодов

«Как мне соединить несколько светодиодов вместе?» Это частый вопрос, который я задаю каждый день. Есть способы подключения светодиодных ламп SMD к последовательным или параллельным цепям.Эти две разные схемы подключения будут очень отличаться друг от друга в электронном виде.

Нашей целью было создать светодиод, который можно было бы просто соединить гирляндой. Это упрощает процесс подключения, так как все, о чем вам нужно беспокоиться, - это мощность и убедиться, что ваш источник питания будет обеспечивать достаточную мощность для системы.

Качественный световой поток по доступной цене

Наконец, очень важно было иметь эффективный и яркий светодиод, который позволил бы сделать светодиодный световой двигатель доступным по цене.Этот последний шаг занял больше всего времени, так как нам нужно было найти диод, который был бы достаточно эффективным, чтобы выдавать яркий свет, не подавляя при этом систему.

Большая часть ассортимента LEDSupply - это высокомощные светодиоды, такие как семейство Cree XP и светодиоды Luxeon Rebel. Эти светодиоды излучают много света, но также не подходят для желаемого продукта, потому что:

  1. Слишком большая мощность (нагрев) - светодиоды высокой мощности работают при более высоких токах возбуждения от 350 мА и выше. Для высокого тока требуются драйверы большего размера, из-за чего светодиодный модуль слишком сильно нагревается и требуется светодиодный радиатор.
  2. Высокая стоимость - светодиоды высокой мощности стоят дороже и требуют дорогих деталей для создания полного двигателя светодиодного освещения. Это сделает цену слишком высокой, особенно для тех, кто хочет использовать несколько источников света.

Заключение: использование светодиодов средней мощности

О сверхмощных светодиодах не может быть и речи из-за более высокого тока, приводящего к слишком большому нагреву и общей стоимости. Это привело нас к поиску более доступного светодиода с низким током. Наш поиск привел нас к светодиодам средней мощности.

Светодиоды средней мощности работают при более низких токах возбуждения: максимум 180 мА по сравнению с максимумом 1000 + мА для диодов большой мощности. Светодиоды тоже примерно в 10 раз дешевле! Светодиоды средней мощности не такие яркие, но их низкая мощность и стоимость позволили добавить несколько диодов на плату, чтобы сделать их сопоставимыми с выходной мощностью светодиодов высокой мощности.

Nichia 757 - светодиод, чтобы все произошло

Nichia 757 - самый привлекательный светодиод средней мощности. Светоотдача была выдающейся, учитывая цену и ограничения низкой мощности.LuxDrive приступил к тестированию диодов средней мощности, построенных на печатных платах со встроенными драйверами.

Тестирование дало положительные результаты, которые успешно достигли всех поставленных целей. Это привело к появлению двух новаторских продуктов для LEDSupply. Приведенные ниже светодиодные двигатели обладают всеми четырьмя необходимыми нам характеристиками. Они помогают создать удобный для пользователя светодиод: встроенные драйверы, не требуется радиатор, легко подключаемый и качественный световой поток.

The DynaSquare

DynaSquare - это дискретная светодиодная лампа на 12 В, чрезвычайно простая в использовании.Квадратная печатная плата размером 1 дюйм содержит 3 светодиода средней мощности Nichia 757. Использование нескольких диодов средней мощности увеличивает световой поток до 150 люмен и , что сравнимо со светоотдачей мощного светодиода 1-Up. DynaSquare идеально подходит для ламп и светильников, а также для светодиодных панелей и освещения дисплеев.

DynaSquare предлагается в белом цвете с CCT от 2700K до 6500K. Доступны цвета: красный, желтый, синий и зеленый. Пожалуй, наиболее интересными вариантами являются Horticulture 3000K и 5000K DynaSquares.В DynaSquare для садоводства используется матрица с очень широким спектром действия, идеально подходящая для выращивания растений. Не забудьте проверить этот индикатор для небольших приложений для выращивания.

Соединение нескольких светодиодов вместе - создайте свою собственную схему!

DynaSquare спроектирован так, чтобы обеспечить простое соединение между платами. Квадратная плата имеет контактные площадки с каждой из четырех сторон. Это позволяет подавать питание на одну сторону DynaSquare, а затем последовательно подключать несколько светодиодов к любой из трех сторон, как показано ниже.Это обеспечивает гибкость перемещения плат в любом месте, где это необходимо для вашего приложения. Пожалуйста, свяжитесь с нами в LEDSupply, прежде чем объединить более 20 DynaSquares вместе.

DynaSquare можно подключить параллельно к источнику питания, как показано ниже. Параллельно нет ограничений на количество подключенных к одному источнику питания.

Мощность

DynaSquare обычно питается от 12 В, но может принимать 11-15 В постоянного тока. Это позволяет вам питаться от простого источника переменного / постоянного тока или даже от батареи! Один DynaSquare работает на 1.5 Вт. С выходной мощностью 150 люмен это высокоэффективный светодиод мощностью около 100 люмен на ватт!

Чтобы найти источник питания, просто убедитесь, что ваша мощность покрыта. Для одного DynaSquare это будет легко. Если вы подключаете несколько светодиодов, последовательно или параллельно, убедитесь, что мощность вашего источника питания соответствует требованиям. (1,5 Вт на используемый DynaSquare)

Затемнение

DynaSquare имеет ШИМ диммирование. Это работает с нашим беспроводным диммером PWM или может работать с другими выходными сигналами PWM, просто посмотрите лист данных здесь.

The Duo - Светодиодная лента высокой яркости

DUO - это светодиодная лента на 24 В, которая является самой яркой светодиодной лентой на нашем сайте с яркостью более 100 люмен на ватт! Duo использует новейшую технологию в светодиодах средней мощности, размещая 48 диодов Nichia 757 на 12-дюймовой жесткой полосе. Двухрядная светодиодная лента излучает 870 люмен на фут при высокой плотности светодиода, поэтому свет выходит равномерно и качественно.

Светодиодная лента DUO предлагается в белом цвете с CCT от 2700K до 6500K.Доступны цвета: красный, желтый, синий и зеленый. Возможно, наиболее интересными вариантами являются полосы Horticulture 3000K и 5000K. В вариантах для садоводства используются диоды Nichia 757 с очень широким спектром выходного сигнала. Этот широкий спектр идеален для выращивания растений, и это идеальный свет для выращивания рассады и выращивания растений в помещении.

Модульная конструкция

Duo выпускается в виде 12 дюймов в длину и 0,95 дюйма в ширину. Модульная конструкция полосы позволяет разрезать ее на более мелкие части.Через каждые 3 дюйма есть черная пунктирная линия, которую можно разрезать, чтобы из одного куска сделать несколько светодиодных двигателей.

При самостоятельном разрезании полосы старайтесь разрезать по пунктирной линии. Обычно лучше всего подходят прочные ножницы, кусачки для бумаги или большие кусачки. Если вы хотите предоставить нам разрезание, мы предлагаем полосу в 3, 6 и 9 дюймов в дополнение к стандартной 12-дюймовой полосе.

Подключение светодиодных лент

Duo сконструирован так, что несколько полосок можно соединять в гирляндную цепочку.Количество светодиодных лент, соединенных гирляндой, не должно превышать 8 полных 12-дюймовых плат. Другими словами, не соединяйте вместе полоски длиной более 8 футов.

Мощность

Duo принимает входное напряжение 24 В, которое может поступать от источника переменного / постоянного тока или аккумуляторной батареи. 12-дюймовая деталь - это 7,68 Вт (1,92 Вт на 3-дюймовую деталь). При такой мощности полоса будет выдавать 870 люмен… это 113 люмен / ватт! Эта полоса высокой яркости обеспечивает наивысшую эффективность (люмен / ватт) из всей линейки ламп LEDSupply Strip.

При поиске источника питания убедитесь, что он выдает 24 В постоянного тока, и убедитесь, что учитывается общая мощность.

Профессиональный монтаж

С алюминиевым каналом для светодиодных лент эти ленты превращаются в готовый светильник. У нас есть полосовая дорожка шириной 1 дюйм в квадратном или скошенном стиле, которая идеально сочетается с полосой DUO. Каждая дорожка оснащена матовой поликарбонатной линзой для защиты полос и равномерного распределения света. Посмотрите их здесь.

В заключение

С этими двумя новыми продуктами вы можете увидеть, насколько простой может быть установка светодиодов.Просто найдите источник 12 или 24 В и приступайте к реализации той крутой идеи освещения, которую вы так долго откладывали. Если вам нужна моя помощь, позвоните в LEDSupply или напишите по адресу [email protected] com.

Как всегда, присылайте нам свои творения с этими продуктами. Нам всегда нравится видеть, что делают наши читатели, чтобы воспользоваться преимуществами светодиодного освещения!

DIY Акриловая и деревянная светодиодная лампа, меняющая цвет

Сегодняшний проект Creativity Hero - это светодиодная лампа из дерева и акрила, меняющая цвет.Сочетание дерева, акрила и света идеально сочетается с материалами, дополняющими друг друга.

Я думаю, получилось замечательно!

Посмотрите мое видео на YouTube о том, как я сделал эту светодиодную лампу:

Вот материалы, которые я использовал:

Типы инструментов, которые я использовал:

Раскрытие информации: как партнер Amazon я зарабатываю на соответствующих покупках.

А теперь приступим.

Связано: DIY Интерактивный светодиодный журнальный столик

Шаг 1: Обрезка дерева и акрила по размеру.

Прежде всего, я начал с настройки настольной пилы, установив салазки для поперечной резки и отрегулировав стопорный блок и лезвие, чтобы иметь возможность делать все пропилы.

Для этого проекта я использовал древесину бука толщиной 20 мм и акрил толщиной 5 мм. Основание светильника 16 на 9 см, а значит, все разрезы повторяются.

Только один кусок акрила должен быть больше, примерно 28 на 14 см, который будет размещен вертикально на верхней части основания.Во время резки акрила я заметил, что, когда я режу медленнее, акрил начал плавиться, поэтому мне нужно было двигать салазки быстрее, чтобы получить красивые и чистые разрезы.

Шаг 2: Подготовка акриловой поверхности к гравировке.

После того, как я сделал все разрезы, я перешел к большему куску акрила, который останется на верхней части лампы.

Я положил его на лист бумаги, обвел карандашом контуры и вырезал по линиям. Затем я взял линейку и нарисовал несколько линий.

В результате я хотел получить узор, состоящий из полос одинаковой ширины, но разной длины.

Я сделал все надрезы и получил красивый узор, который перенесу на акрил.

Чтобы прикрепить бумагу к акрилу, я снял защитную пленку с одной стороны и скотчем закрепил ее на месте.

Со стороны, которую я собираюсь гравировать, я не снимал защитную пленку, потому что акрил легко царапается.

Шаг 3: Гравировка акрила с помощью вращающегося инструмента Dremel.

Гравировка на акриле - это техника, которую я попробую впервые, поэтому я выбрала этот простой узор, который поможет мне добиться современного и чистого дизайна лампы.

Для гравировки на акриле я решил использовать свой новый ротационный инструмент Dremel. Я выиграл этот многофункциональный инструмент в качестве главного приза на конкурсе Instructables Workshop Hacks Challenge.

В комплект входит так много аксессуаров и насадок, которые можно использовать в любом проекте, что отлично подходит для производителей и домашних мастеров.

Для этого проекта я прикрепил удлинитель гибкого вала и вставил насадку для гравировки, которая делает гравировку намного проще и точнее.

Теперь я готов начать. Металлическая линейка может очень помочь в построении идеально прямых линий, я настоятельно рекомендую использовать ее для этой цели.

Когда я закончу гравировку, я могу сделать все дополнительные пропилы копировальной пилой. Все разрезы нужно делать под прямым углом, поэтому здесь нужно быть осторожным.

На этом я закончил с большей акриловой частью, так что могу перейти к основе.

Шаг 4: Проделываем отверстия в середине основания лампы для светодиодов.

Я отметил центральные точки этих кусков дерева и акрила, которые будут помещены в середину основы.

Отверстия для светодиодов я проделал с помощью коронки диаметром 35 мм, которую я прикрепил к сверлу.

Деревянный лом под ним - отличный способ защитить поверхность стола от повреждений.

Связанный: Как построить деревянную настольную лампу | Сделай сам Проект

Шаг 5: Делаем прорезь в верхней части основания для гравированной акриловой детали.

В верхней части цоколя лампы мне нужно сделать отверстие, достаточно большое, чтобы в него поместилась гравированная акриловая деталь. Расположив акрил вертикально посередине, я обрисовала его контур карандашом. Итак, я просверлил столько отверстий, сколько нужно внутри контура, а затем удалил лишнее с помощью рашпиля.

Светодиоды

будут размещены прямо под акрилом, поэтому мне нужно освободить для них место, вырезав канавку шириной около 10 мм и глубиной 4 мм.

Шаг 6: Работа с нижней частью лампы.

Контроллер светодиодов я помещу в основание основания. Несмотря на то, что он довольно большой, я должен найти способ вставить его в нижнюю часть.

Вместо того, чтобы крепить его несколькими винтами, я прикреплю его только горячим клеем, поэтому я вырезаю эти монтажные отверстия, чтобы расплющить коробку.

В этой деревянной детали мне нужно сделать большое отверстие для контроллера. Чтобы сделать отверстие, я просверлил отверстие сверлом 12 мм, а затем вставил в отверстие копировальную пилу, чтобы сделать разрез.С помощью рашпиля я внесла некоторые коррективы.

Теперь я просверливаю 2 отверстия на задней стороне дна, одно большее для адаптера, а другое меньшее для инфракрасного приемника.

Шаг 7: Обрезка светодиодной ленты.

В цоколь лампы помещается светодиодная лента длиной 50 см, поэтому я аккуратно разрезаю ножницами по обозначенным линиям между медными пластинами.

Последний шаг перед сборкой всех частей - это удаление защитной пленки с акрила.

Шаг 8: Сборка лампы.

Чтобы собрать лампу, я начал сверху и вклеил светодиоды в паз, который я предварительно проделал эпоксидной смолой.

Затем продолжил приклеивать другие части эпоксидной смолой, чтобы не повредить светодиоды. Эпоксидная смола - один из лучших клеев для приклеивания акрила к дереву, и я очень рекомендую его.

Собрав все части вместе, зажимаю и дожидаюсь полного высыхания.

Шаг 9: Шлифование и нанесение финишного покрытия на основу.

Я временно вставил светодиоды в отверстие, закрыв их малярным скотчем, чтобы можно было шлифовать основание.

Затем я слегка отшлифовал всю основу, чтобы сделать ее красивой и гладкой.

После этого я могу нанести прозрачную отделку, чтобы подчеркнуть естественную красоту дерева.

Шаг 10: Установка светильников.

А теперь перейдем к установке контроллера.

Так как кабель на контроллере немного длинный, мне нужно его отрезать. Я отрезал половину его длины и удалил примерно 1 см внешней изоляции. Он состоит из 4 проводов, 1 общего положительного и 3 отрицательных проводов для каждого из 3 каналов.

Я оголил концы проводов с помощью приспособлений для зачистки проводов, а затем припаял их на медные контактные площадки светодиодной ленты. Здесь вы можете заметить, что, хотя цвета проводов в порядке, они не соответствуют буквам на медных контактных площадках.Зеленый провод я припаиваю к R, а красный провод к G.

.

Чтобы проверить, правильно ли они работают, я подключил к контроллеру адаптер 12 В.

Все отлично работает, так что могу приклеить контроллер к нижней части основания горячим клеем.

Поэтому я аккуратно разместил светодиоды внутри цоколя. Затем вставил ИК-приемник в отверстие и, наконец, закрепил контроллер на месте, приклеив его горячим клеем.

Чтобы дно не царапало поверхность стола, я вырезаю из войлока квадраты вместо ножек.2 квадрата в каждом углу обеспечат достаточно места для контроллера.

Связанный: Как создать 3D-световой короб для вырезки из бумаги | Сделай сам Проект

Шаг 12: Закрепите выгравированный акриловый кусок в прорези наверху.

Наконец, я снял защитную пленку с гравированной акриловой детали и закрепил ее эпоксидной смолой в гнезде.

С помощью прямоугольной линейки проверяю правильность ее положения и оставляю сохнуть.

Это означает, что светодиодная лампа в комплекте.

Теперь я могу включить его и насладиться этой удивительной лампой, меняющей цвет.

Он очень простой и современный, и я думаю, он станет прекрасным акцентом в гостиной.

Это был действительно интересный и увлекательный процесс создания такой лампы. Я надеюсь тебе понравится. Если вам нравится, поделитесь и подпишитесь на мой канал YouTube.

Создание собственных светодиодных светильников

Мы все любим возиться и вносить изменения в оборудование, которое мы покупаем, но это далеко не создание чего-либо с нуля.Вы бы попытались сделать свои собственные светодиодные фонари? Лично я бы не стал, но это, вероятно, потому, что я не любитель DIY, а некоторые люди.

Когда мой хороший друг Джефф Кук пригласил меня проверить его самодельные светодиодные фонари, я, конечно, был настроен скептически. Зачем вам создавать свои собственные, когда на рынке так много доступных светодиодных светильников? Я задал этот вопрос Джеффу, и он ответил просто: «Цена и полезность».

Создание собственных светодиодных светильников, безусловно, не для всех.Это не только отнимает много времени, но и нужно знать, что вы делаете. Это не значит, что вы отрабатываете набор инструкций, все идет методом проб и ошибок. Джефф использовал самодельные светодиодные фонари в течение последних нескольких лет, поэтому я подумал, что было бы неплохо провести несколько фотометрических измерений и посмотреть, что он на самом деле сделал.

Прежде чем мы перейдем к результатам, я задал Джеффу ряд вопросов о его светодиодных светильниках «сделай сам».

Почему вы решили создавать свои собственные светодиодные фонари?
В основном две причины: цена и полезность.Для заводских фонарей цена обычно составляет около 1000 долларов за единицу 1 × 1. Утилита - заводские фонари тяжелые и громоздкие (за исключением волны гибких панельных светильников, выходящей в последнее время). Светильники, которые я построил, можно легко вылететь на руке на световой стойке. При необходимости их даже можно приклеить к стене или потолку. Плюс третья причина: мне нравится создавать вещи и экспериментировать.

Как вы пришли к концепции того, что строить и какой тип освещения вам нужен?
Я нашел магазин в Акихабаре (Токио), в котором продавались различные светодиодные ленты, которых я больше нигде не видел.Это остается верным по сей день. Светодиоды плотно упакованы и очень яркие. Издалека они выглядят как сплошная линия, а не как набор точек. Я купил несколько и поэкспериментировал с ними. Я сделал несколько панельных светильников, применив ленту к нескольким алюминиевым листам, и сделал несколько стержней, используя алюминиевые профили длиной в метр. В качестве основного источника света мне нужен был большой источник, поэтому я скрепил две панели на липучках и прикрепил большой рассеивающий слой на лицевой стороне. Большой гибкий диффузор дает такое же качество света (за исключением большего и мягкого), что и тяжелый, за 400 долларов. 00 софтбокс прикреплен к заводской панели.

Сколько времени потребовалось, чтобы построить?

На создание панели уходит около часа. Измерить ленту и приклеить ее к панелям или профилям - самая простая часть. Далее идет военное дело. Я давно ничего не паял, но чем больше вы это делаете, тем лучше становится ваша техника.

Были ли они сложны в изготовлении? Кто-нибудь мог это сделать?
Они не требуют особых навыков. Сами по себе огни могут выглядеть довольно ужасно, но это не повлияет на качество излучаемого света.

Сколько, по вашему мнению, стоило его строительство?
Одна из панелей стоит около 140 долларов, а палка - около 50 долларов.

Изменились ли ваши светильники DIY с годами?
Я всегда стараюсь их улучшить. Все по модульному принципу. У меня есть мешки с блоками питания с силовыми кабелями. Я сделал кабели питания длинными, чтобы свет мог быть высоко на подставке, а блок питания не висел в воздухе на полпути к подставке. При необходимости я могу соединить вместе несколько кабелей питания.Я также сделал разветвительные кабели, чтобы я мог питать более одного осветительного прибора от одного источника питания. Еще одно преимущество длинных силовых кабелей состоит в том, что они избавляют от необходимости использовать множество удлинителей.

Довольны ли вы результатами, которые дает свет?

Я очень доволен. Я сделал тот тип света, который мне нужен для моей цели. Большая площадь поверхности для основного света и длинная палка для подсветки, которая покрывает волосы и плечи, чтобы отделить объект от фона.У меня также есть вертикально установленный на подставке фонарь, который поддерживает мою подсветку, чтобы добавить немного в щеку. Это также дает красивый ободок на плече и, если объект съемки - женщина, красивый светлый блик сбоку на ее волосах.

Вещи, которые я хотел бы улучшить: я еще не нашел диммера, который не вызывает неприятного мерцания, поэтому сейчас я должен использовать правило обратного квадрата. Свет не двухцветный, но я считаю, что дневной свет - это то, что я использую больше всего. Обычно я снимаю в офисе или комнате с окнами, поэтому дневной свет хорошо работает.У меня тоже есть вольфрамовые панели, и они не занимают много места в моей сумке, поэтому я использую их, когда мне нужно. Если бы я захотел, я мог упаковать в сумку дюжину фонарей размером «кино-фло».

Каковы ограничения использования ваших фонарей?
Они могут работать только от электросети, и у меня нет никакого способа затемнить светильники. Я попытался построить несколько диммеров, но обнаружил, что они просто заставляли свет мерцать. Конечно, здесь нет стандартных софтбоксов или аксессуаров, поэтому все, что мне нужно, я должен построить или создать сам.

Что думают или говорят клиенты, когда вы увлекаете их на работу?
Часто это корпоративные клиенты, которые комментируют, насколько профессионально выглядит установка освещения. Обычно они удивляются и впечатляются, когда я говорю им, что они «самодельные». (что меня всегда шокирует)

Фотометрия

А теперь перейдем к фотометрическим результатам. Я всегда проверяю освещение таким образом, чтобы получить представление о том, как они сравниваются с другими приборами. Результаты рассказывают только часть истории и никогда не должны использоваться в одиночку для оценки источника света.На протяжении многих лет я обнаружил, что некоторые источники света с хорошими фотометрическими результатами не всегда выглядят хорошо, а огни с худшими фотометрическими показателями иногда могут выглядеть лучше, чем показывают их результаты.

ВЫХОДНАЯ ТОЧНОСТЬ ЦВЕТОВОЙ ТЕМПЕРАТУРЫ ПО КЕЛЬВИНУ

Я протестировал самодельный светодиодный светильник дневного света 2 × 1 Джеффа с помощью спектрометра Sekonic C-700, чтобы выяснить, какой световой поток имел свет и насколько точным было воспроизведение цветовой температуры по шкале Кельвина.Показания были сняты на расстоянии 1 м (3,28 фута) в контролируемой среде.

Как вы можете видеть из показаний выше, свет зарегистрировал мощность 1690 лк (157 фк). 1690 лк от гибкой арматуры размером 2 × 1 - это немного меньше. Свет зафиксировал цветовую температуру по Кельвину 7343K, что было более чем на 1700K при воспроизведении истинного источника 5600K. Это определенно показывает вам, что покупка готовых светодиодных лент дневного света не обязательно гарантирует, что вы действительно приобретете светодиоды 5600K.

Чтобы представить себе производительность DIY 2 × 1 в перспективе, давайте сравним ее с Aladdin Bi-Flex 2 × 1, когда он установлен на 5600K:

Как вы можете видеть, Aladdin выдает 3650 люкс (339fc) и зарегистрировал цветовую температуру по Кельвину, равную 5899K.

Цветопередача

Итак, теперь, когда мы увидели, сколько отпечатков дает Jeff DIY 2 × 1, каковы его результаты, когда дело доходит до точного воспроизведения цветов. Выше вы можете видеть, что при освещении средний индекс цветопередачи (R1-R8) составляет 70.8 и расширенный CRI (R1-R15) 60,4. Для точного воспроизведения оттенков кожи он составил -27,5 для R9 (красный), 69,4 для R13 (наиболее близкий к кавказским оттенкам кожи) и 64,7 для R15 (наиболее близкий к азиатским оттенкам кожи). Эти результаты были откровенно ужасными, и цифры были худшими из всех светодиодных ламп, которые я когда-либо тестировал.

таких низких баллов указывают на то, что светильник DIY не может точно воспроизводить большинство цветов, и ваши изображения должны быть серьезно скорректированы по цвету при публикации, чтобы получить разумно выглядящее изображение.

Давайте снова посмотрим, как это выглядит в сравнении с Aladdin Bi-Flex 2 × 1 (просто чтобы нам было с чем его сравнить):

Как видите, между этими двумя источниками света существует огромная разница, когда дело касается точного воспроизведения цветов.

Спектральное распределение

Выше вы можете увидеть спектральное распределение DIY 2 × 1 Джеффа. Судя по полученным мною показателям цветопередачи, неудивительно, что спектральное распределение довольно ужасное.Несмотря на равномерный спектр от 600 до 540 нм, свету не хватает тонны информации для большинства длин волн. Мало того, что спектр не полон, в нем есть огромные пробелы, где он вообще не может воспроизвести определенные цвета.

Давайте снова сравним DIY 2 × 1 Джеффа с Aladdin Bi-Flex 2 × 1. Выше вы можете увидеть, как должен выглядеть хороший светодиодный светильник, установленный на 5600K.

Я задал Джеффу вопрос после того, как показал ему результаты фотометрии его источников света:

Мы сделали несколько фотометрических измерений ваших фонарей. Вы были удивлены результатами?
Всегда был доволен качеством света, но немного подозреваю в цвете.Фотометрические показания подтвердили мои подозрения, поэтому я был удивлен и немного смущен результатами.

Реальная производительность

Несмотря на то, что важно проверять свет на фотометрические характеристики, графики и цифры могут рассказать вам только часть истории. Просто потому, что свет работает хорошо, когда дело доходит до фотометрии, нет никакой гарантии, что эти результаты будут перенесены на хорошее качество света.

Несмотря на то, что Jeff DIY 2 × 1 показал ужасные фотометрические результаты, он на удивление выглядел не так плохо, как я думал. Нельзя сказать, что он был хорош с точки зрения любого воображения, но он действительно работал лучше, чем то, что показали его фотометрические результаты. Я ясно видел, как неспособность света воспроизводить полный спектр влияла на получаемые нами изображения. Отсутствие красного в DIY 2 × 1 явно делало оттенки кожи очень зелеными, а другие цвета просто не совсем подходили.

В ситуациях, когда освещение полностью контролируется и вы балансируете белый цвет своей камеры, эти источники света, вероятно, будут работать лучше.Самая большая проблема с использованием света - это окружающая среда, где есть другие источники окружающего освещения. Как только вы установите баланс белого для светильников DIY, вы начнете видеть, что другие объекты на заднем плане начинают приобретать странный цветовой оттенок.

Что касается качества света, то он был более чем способен производить приятный мягкий, ровный источник при использовании с рассеиванием. В свете определенно не было ничего плохого, кроме того, как он воспроизводит цвета.

У Джеффа была полоса красных светодиодов, поэтому я предложил добавить несколько перед его светом, чтобы посмотреть, что произойдет.Удивительно, но свет внезапно стал намного лучше, и результаты CRI значительно выросли. Ниже вы можете увидеть, как это изменение повлияло на оттенки кожи.

Свет до того, как мы добавили несколько красных светодиодов Свет после того, как мы добавили несколько красных светодиодов

Ниже вы можете увидеть некоторые быстрые тестовые кадры, которые мы сделали с использованием света. Материал снят на Sony a7R II.

Как вы можете видеть из этого видения, результаты далеки от хороших, и попытка исправить изображения была очень сложной.Из-за того, что в цветовом спектре отсутствует так много информации, трудно получить изображение, которое выглядело бы естественным и подходящим для оттенков кожи. Я не колорист и уверен, что кто-то с более умелым набором навыков, вероятно, добьется лучшего результата. После того, как мы добавили красные полоски к свету, результаты действительно улучшились до такой степени, что он, вероятно, стал немного приближаться к тому, чтобы выглядеть как дешевый с полки 1 × 1.

Я почти уверен, что если бы Джефф смог найти для использования несколько более качественных светодиодных лент, результаты от этого света действительно могли бы быть довольно хорошими.Нам удалось улучшить точность цветопередачи, просто добавив полосу красных светодиодов, что вряд ли научно, но это действительно сработало.

Я спросил Джеффа,

Узнали ли вы что-нибудь из результатов, которые заставили вас переосмыслить, как улучшить свои светодиодные фонари?
Да, у меня был запас красных светодиодов, купленных в том же магазине, поэтому я добавил несколько красных полос между белыми, и это действительно помогло округлить цветовой спектр огней.

Сковорода

Один из других источников света, над которым работал Джефф, я назвал «Сковорода», потому что это буквально светодиодные ленты, прикрепленные к внутренней части сковороды.Это новый подход, и использование металлической основы с высокой отражающей способностью, такой как сковорода, безусловно, помогает увеличить интенсивность света. Поскольку светодиоды утоплены в кастрюлю, это также помогает источнику света не разливаться повсюду. Теперь я просто вижу Kickstarter: «Днем светло, ночью готовлю».

Удачи и промахи

Построить свои собственные светильники своими руками по-прежнему остается нелегкой задачей. Хотя вы можете добиться неплохих результатов, на самом деле все зависит от качества светодиодов, которые вы используете.Поиск и поиск правильных требует большого количества проб и ошибок. Поскольку некоторые светодиодные светильники продаются в розницу всего за несколько сотен долларов, создание собственного может показаться не очень разумным решением. Если вы считаете себя мастером / инженером, вы определенно можете попробовать, но лично я бы предпочел просто выложить немного денег и купить тот, который уже сделал кто-то другой.

Вы раньше использовали или делали светильники своими руками? Какой у вас был опыт? Дайте нам знать в комментариях ниже.

DIY Настольная лампа со светодиодной подсветкой, меняющей цвет

Как сделать самодельную светодиодную настольную лампу

  1. Полоски для настольной лампы
  2. Заклеить рамки для лампы
  3. Сделайте верх и основание
  4. Просверлить отверстия для сборки
  5. Провод к розетке
  6. Соберите настольную лампу

1. Нарезанные полоски для настольной лампы DIY

Я использую ореховые доски для настольной лампы DIY толщиной чуть более 1 дюйма. Это позволило мне разделить их пополам и получить вдвое больше частей.

Затем я взял доски к своей настольной пиле, чтобы разрезать полоски толщиной ½ дюйма.

Лампа DIY состоит из ряда открытых скошенных рамок 10-5 дюймов на 5 дюймов, которые находятся между основанием и верхом. Чтобы сделать скошенные сегменты, я установил угол наклона на настольной пиле на 45 градусов.

Я сделал надрез под углом 45 градусов на конце каждой полоски. Удерживая полоски рукой, всегда держите руки за пределами красной области игольной пластинки и соблюдайте осторожность.

Я решил перейти на торцовочную пилу, где мне было легче контролировать работу. Я использовал забор на моей пиле с упором на 5 дюймов, затем я использовал изогнутую полосу в качестве прижима, чтобы мои пальцы не касались лезвия.

2 × 4, установленный на дальнем конце ограждения, позволяет мне прижать фиксатор к 2 × 4 и полосе, которую нужно разрезать, чтобы придать ему сильное давление на ограждение.

Я вырезал сегмент из каждой полосы и прошел через всю стопку.К сожалению, обрезанные края оставшихся полос были не полностью обрезаны. У них были небольшие выступы на углу с другой стороны, которые не держались крепко.

Итак, я сделал новую митру на каждой полосе и повторил весь процесс. После трех раундов у меня было достаточно сегментов, чтобы сделать все нужные кадры.

2. Приклейте рамы и основание для настольной лампы DIY

Затем я перешел к приклеиванию рамок для настольной лампы DIY. Чтобы получить красивый, плотно скошенный угол, я разложил малярную ленту и выровнял митры рядом друг с другом.Лента будет плотно удерживать угол, не позволяя ему двигаться и создавать зазор.

Я перекошил ленту в одну сторону, оставив другую чистую, чтобы я мог положить ее заподлицо на кусок фанеры и получить плоский клей. Чтобы скрепить их вместе, я использовал густой прозрачный клей для высыхания, который идеально подходит для этой ситуации.

Я не наклеил на стыки целую тонну клея. И после пары первых кадров я перестал даже размазывать клей кистью и просто нанес немного клея на одну сторону каждого стыка. Опять же, это такие маленькие кусочки, на них не будет стресса, и этот клей их отлично удержит.

После того, как все рамки были склеены, я отложил их для просушки.

Пока рамы сохли, перебрался на базу. Я склеил две ореховые доски толщиной 1 дюйм, чтобы получилось основание 5 × 5.

3. Сделайте верхнюю часть настольной лампы DIY

Я только что снял видео "5 лучших применений ленточной пилы" | Как использовать ленточную пилу и вырезать из орехового бревна доску с большим отверстием для узла.Узел был идеальным местом для эпоксидной смолы, чтобы свет проходил через верхнюю часть настольной лампы DIY. Поэтому я заклеил заднюю часть, чтобы залить ее эпоксидной смолой.

Я смешал небольшую чашку эпоксидной смолы, затем добавил золотой пигмент и тщательно перемешал, чтобы получить хорошее отверждение. Вы всегда должны хорошо перемешать эпоксидную смолу до и после добавления пигмента, чтобы получить наилучшие результаты.

Отверстия и трещины были заполнены золотой эпоксидной смолой, чтобы получился красивый прочный верх.

Когда эпоксидная смола затвердела, я пропустил верхнюю часть через строгальный станок, чтобы расплющить доску и довести ее до моей окончательной толщины.

Затем я разорвал основу до такой же ширины, что и скошенные рамы. Я использовал одну из рамок настольной лампы DIY в качестве образца, чтобы установить забор для точного соответствия.

После этого я вытащил свои салазки для поперечной резки, чтобы обрезать основание и верх до окончательных размеров. Я снова использовал одну из рамок, чтобы выровнять свои порезы. Использование базовых измерений быстрее и точнее, чем перенос меток рулетки.

Я повторил те же шаги для верха и сделал все четыре пропила прямо на салазках настольной пилы.

4. Просверлите отверстия для настольной лампы

Для каждой рамы настольной лампы DIY необходимо четыре отверстия для дюбелей, которые удерживают свет вместе. Я зажал и прикрутил несколько упоров к временному фанерному столу на своем сверлильном станке. Эта установка позволила мне просверлить отверстия в одном и том же месте с каждой стороны каждого кадра.

Верхняя и нижняя части закрываются отверстиями вместо сквозных отверстий. Я использовал ограничитель глубины на своем сверлильном станке, чтобы получить постоянную глубину, но вы также можете использовать синюю ленту, обернутую вокруг сверла, чтобы отметить желаемую глубину.

5. Подключите разъем для светодиодной лампы

Наконец, мне нужно было установить светодиодный светильник и проложить провода. Я использовал сверло Форстнера, чтобы просверлить отверстие 1–1½ дюйма в центре дна глубиной примерно дюйма. Затем я переключился на коронку диаметром ⅜ дюйма и просверлил отверстие на всем протяжении основания для проводки и монтажного оборудования.

Чтобы вывести проволоку из задней части фонаря, я отметил отверстие прямо под тем местом, где должен останавливаться стержень. Я просверлил основание и проложил путь для проволоки, идущей из центра в сторону.

Я использую фарфоровый патрон с резьбой на переходнике для подключения лампы. Розетка и адаптер удерживаются на месте с помощью резьбового ниппеля и некоторого фиксатора.

Я установил стопорную шайбу и крепеж на ниппель и пропустил их через основание в переходную пластину. На переходной пластине есть небольшой установочный винт, который фиксирует ее на резьбе. Затем я использовал гаечный ключ, чтобы затянуть гайку и стопорную шайбу на нижней стороне основания для плотного прилегания.

Я пропустил провод лампы через просверленное отверстие и протянул еще немного.

Присоединить проводку к розетке довольно просто, следуйте инструкциям и обратитесь к сертифицированному электрику, если вам неудобно. Затем розетку можно надеть на адаптер и прикрутить.

Закрепив розетку, я завязал на проволоке узел, чтобы она не вырвалась. Я прикрепил тумблер к проводу лампы, разделив провода, чтобы пропустить их через переключатель, и следуя инструкциям на упаковке.

Я прикрутил цветную светодиодную лампу Wiz 60w, чтобы протестировать ее, и она сразу же загорелась!

Компания

Home Depot прислала мне эту светодиодную лампу мощностью 60 Вт от Wiz в рамках кампании Smart Home, которую я проводил в этом году. Он подключается к вашему телефону через вашу сеть Wi-Fi, и вы можете изменить цветовую температуру белого света или выбрать полный диапазон цветов.

Это отличный способ подключить и играть, чтобы добавить настройки цвета и настроения на эту или любую настольную лампу. В описании есть ссылка, чтобы узнать об этом подробнее.

6. Соберите самодельную светодиодную настольную лампу

Я запечатал грецкий орех полиуретаном на масляной основе.

Для сборки лампы я использовал дюбеля 5/16 ”. Я измерил стопку рамок, а затем добавил длину латунных рукавов, а также углубления в верхней части и основании.

Затем я отрезаю дюбели до нужной длины, немного прогибаясь по длинной стороне. Любые излишки можно обрезать после сборки.

Я начал надевать рамы на дюбели, и это было нелегко.Я вытащил их обратно и хорошо отшлифовал дюбели, чтобы облегчить посадку. После этого сборка стала намного плавнее.

Я перевернул верх дном и надел на каждый дюбель по латунной втулке. Эти рукава представляют собой просто компрессионные фитинги для сантехники, но они отлично подходят, чтобы закрыть дюбели и добавить немного изящества. Я добавил кадр за кадром, прижимая их вместе с латунными втулками между ними.

Изначально я собирался приклеить дюбели к основанию, но прилегание было настолько плотным, что я решил не делать этого, чтобы облегчить любой ремонт.Вместо этого я сдвинул все детали вниз к основанию и отметил лишний дюбель, показывающийся после того, как верх надет.

Я использовал пилу, чтобы отрезать лишнюю длину дюбеля. Затем я закруглял концы дюбелей, чтобы было легче надевать верх.

Я добавил несколько резиновых ножек для нижней части, установил лампу и снова надел верхнюю часть, и она была готова к работе в прайм-тайм. Это будет забавная лампа на столе, чтобы добавить немного света, но в основном я буду получать удовольствие, играя с цветами.

Если вам понравился этот проект, обязательно ознакомьтесь с другими моими проектами домашнего декора своими руками.

Самодельные светодиодные лампы - Первый проект - Vince Electric Laboratory

За последние несколько лет популярность светодиодов значительно выросла, и можно ожидать, что к следующему десятилетию они станут наиболее широко используемым источником освещения.

Но покупать их необязательно! На самом деле довольно легко построить очень эффективную светодиодную лампу малой мощности, используя всего несколько деталей и корпус из сгоревшей компактной люминесцентной лампы!

==============

Когда дело доходит до работы светодиодов от сети, есть два способа ограничить ток, чтобы они работали правильно.Вы либо добавляете в цепь сопротивление, либо реактивное сопротивление.

В Интернете есть множество схем, использующих резисторы в диапазоне 1–3 Вт для балласта группы из 20–30 последовательно соединенных светодиодов. Что касается простоты, вы не сможете пойти дальше. Но проблема в эффективности. У вас будет примерно в 1,5–2 раза больше выходной мощности светодиодов по тепловым потерям от резистора (ов). Во многих случаях это, вероятно, не будет проблемой ...

Но есть способ управлять светодиодами с гораздо большей эффективностью с помощью реактивного сопротивления!


Вот схема, которую я нарисовал для первой светодиодной лампы, которую я собираюсь построить.Давайте объясним это по одному компоненту за раз: F1 - это предохранитель, который используется исключительно для защиты от короткого замыкания. Его точное значение не очень важно, но, конечно, чем ближе к току в цепи, тем лучше. C1 - это конденсатор класса X2, который действует как балласт в цепи. Он расположен на стороне переменного тока, потому что, конечно, вам нужен переменный ток для создания реактивного сопротивления. Я почти уверен, что вы могли бы построить небольшой дроссель, который служил бы той же цели. Но очень маленькие магнитные сердечники, подходящие для работы на частоте 60 Гц, найти не так-то просто. С другой стороны, если у вас есть доступ к старым печатным платам, найти конденсаторы класса X2 очень просто! В большинстве источников питания есть хотя бы один из них сразу после входного предохранителя и используется для фильтрации гармоник. Круто то, что они как раз подходят для балласта светодиодов с низким энергопотреблением! Следует использовать конденсаторы класса X2, поскольку они рассчитаны на работу от сети. Но любой неполяризованный конденсатор номиналом не менее 250 В подойдет.

R1 - резистор утечки, используемый для разряда конденсатора при выключенной лампе.Подойдет все, что находится в диапазоне от 470 кОм до 1 МОм.

D1 - D4 - диоды 1N4007. Если вы хотите использовать другие диоды из серии 1N400x, убедитесь, что номинальное обратное напряжение составляет не менее 200 В. В конечном итоге любой диод, способный поддерживать 200 В при обратной полярности, может быть использован для изготовления мостового выпрямителя. Если вы найдете мостовой выпрямитель в старой светодиодной лампе, это даже лучше! C2 - фильтрующий конденсатор. Это устраняет небольшое мерцание, которое все еще может остаться. Убедитесь, что он рассчитан как минимум на 200 В.К сожалению, у меня нет никаких расчетов, чтобы найти лучшее значение, но я использовал конденсатор 33 мкФ 400 В с 9 белыми светодиодами на 20 мА, и, похоже, он довольно хорошо устраняет остающееся мерцание! При разработке собственной схемы вы можете протестировать с разными значениями, чтобы увидеть, какой из них наиболее подходит для вашей схемы. LT1 - LT9 - это девять белых светодиодов, которые я буду использовать для лампы. Большинство 5-миллиметровых белых светодиодов рассчитаны на 20 мА, однако использование более низкого тока увеличивает срок их службы в геометрической прогрессии. В моей схеме они работают при 11 мА, поэтому я не думаю, что они скоро сгорят! R2 - это резистор, который ограничивает пусковой ток, чтобы избежать перегрузки светодиодов при запуске, особенно если вы ожидаете большого количества запусков в час. жизни.Его значение не критично, но оно повлияет на конечный ток. Вот значения, используемые в моей схеме:

- F1: 3A 250 В

- C1: 0,33 мкФ, 275 В, класс X2

- R1: 1 МОм, 1/4 Вт

- D1 - D4: 1N4007

- C2: 33 мкФ, 400 В

- LT1 - LT9: белые светодиоды 5 мм, ~ 3,5 В, 20 мА

- R2: 100 ом, 1Вт

Вот сама схема на маленькой макетной плате.



Та же цепь горит.
Текущие измерения.Справа ток на выходе мостового выпрямителя, следовательно, ток, протекающий в светодиодах, составляет чуть более 11 мА. Слева линейный ток, ровно 13 мА. Разница между двумя измерениями, вероятно, является комбинацией небольшой неточности приборов, тока, протекающего в спускном резисторе R1 (при 120 В, резистор 1 МОм потребляет 120 мкА) и тока утечки из фильтрующего конденсатора. Излишне говорить, что этот метод балластировки практически не приносит потерь!

Далее идет процесс расчета необходимых значений для всех компонентов.Здесь также будет подробно описан процесс сборки самой светодиодной лампы.

Если вы чувствуете, что у вас нет навыков или знаний, чтобы на самом деле спроектировать лампу с нуля, вы можете использовать значения из списка деталей выше вместе со схемой. Однако вы застрянете с 9-светодиодной лампой для работы на 120 В, 60 Гц. Если вы хотите что-то более подходящее для конкретного приложения, вам придется создать свое собственное! Но не волнуйтесь, все объяснено чуть ниже на примере, отличном от моего прототипа, чтобы помочь вам понять, нужно ли вам это.Вот он:

Первое, что вам нужно учесть, - это количество светодиодов, которое вам нужно. Теоретически ограничений нет, вы можете выбрать от одного до десятков или даже больше, изменится только способ их подключения. Для нашего примера мы выберем что-то довольно мощное, скажем, 36 светодиодов на 100 мА. Вы не обязательно найдете их в старой электронике, но их легко найти в Интернете.

После того, как вы выбрали реальный источник света, нам нужно определить, что ему нужно с точки зрения напряжения и тока.Даже на этой ранней стадии проектирования вам необходимо знать, в каком приложении будет использоваться ваша лампа, потому что в зависимости от того, насколько важны эффективность или надежность, вам не обязательно управлять светодиодами с одним и тем же током! Допустим, нам нужна хорошая надежность с минимальным риском преждевременного отказа. Чтобы светодиоды не перегорели преждевременно, они будут работать при более низком токе, например 80 мА. Чтобы проиллюстрировать этот 1-й шаг, вот первая схема, показывающая наши светодиоды, а также расчеты для следующего шага.

[Изображение скоро появится]

Теперь, когда мы знаем ток для наших светодиодов, нам нужно выяснить, какое напряжение они будут принимать. Большинство белых светодиодов работают при напряжении около 3,5 В. Для 36 последовательно соединенных светодиодов это дает в сумме 126 В. На первый взгляд вы можете подумать: «Подождите, а что, если я проектирую лампу для работы на 120 В, значит ли это, что им не понадобится балластировка?»

Вот где нужно быть осторожным! Да, он будет работать при 120 В. Но имейте в виду, что это среднеквадратичное значение! Пиковое напряжение, посылаемое сетью, на самом деле значительно выше.Для синусоидальной волны 120 В она превышает 170 В. Это напряжение и нужно учитывать при расчетах. Вычтение 126 В светодиодов из этого пикового напряжения оставляет 44 В, которые должны быть «съедены» дополнительным компонентом, то есть балластным компонентом! Для расчетов сначала рассмотрим резистор. Позже его поменяют на конденсатор.

Теперь у нас есть напряжение, поглощаемое токоограничивающим резистором, вместе с его током. Помните, что ток, протекающий через последовательно соединенные компоненты, одинаков для всех компонентов! У нас также есть все необходимое для расчета номинала резистора по закону Ома, R = V / I.В нашем примере 44 В / 0,08 А = 550 Ом. Таким образом, использование резистора, близкого к 550 Ом, будет приводить наши светодиоды к желаемой мощности. Чтобы избежать получения более высокой мощности, мы будем использовать ближайшее сопротивление резистора с более высоким номиналом, а не меньшее. Поэтому выберем резистор 560 Ом. Чтобы найти минимальную необходимую номинальную мощность, вам нужно умножить напряжение резистора на его ток, что дает 3,52 Вт. Как я упоминал ранее, поскольку это довольно мощная конструкция, потери энергии будут несколько важны, если мы будем использовать резистор.На этом этапе мы можем переключиться на конденсатор для повышения эффективности! Если только вас не устраивают эти более высокие потери. Тогда вы можете пропустить следующий шаг.

Чтобы заменить резистор конденсатором, нам потребуются дополнительные вычисления, а также дополнительные знания. Во-первых, давайте посмотрим, какие значения у нас уже есть. Во-первых, мы уже знаем необходимое окончательное реактивное сопротивление, которое также выражается в Омах. Реактивное сопротивление зависит от частоты, которая фиксирована, поэтому у нас также есть это значение. Стандартная формула для емкостного реактивного сопротивления: Xc = 1 / (2πFC).

Вместо этого мы воспользуемся модифицированной версией для расчета емкости, перевернув C и Xc, что составляет C = 1 / (2πF × Xc). При сложении значений 1 / (2π × 60 × 550) получается 4,8229e-6 или 4,8229 мкФ. Это довольно высокое значение, учитывая, что самые большие конденсаторы X2 имеют емкость всего 1 мкФ. Но это не проблема! Это будет непросто, но если у вас их четыре, мы можем подключить их параллельно, чтобы получить 4 мкФ! Если вы настаиваете на получении максимально возможного значения, вы можете добавить 5-й конденсатор 0.22 мкФ, если в цоколе лампы будет достаточно места.

Я рекомендую подключить разрядный резистор параллельно конденсатору (ам), чтобы исключить остаточное напряжение при выключенной лампе, даже если это не является абсолютно необходимым. Подходит все, что находится в диапазоне от 470 кОм до 1 МОм.

Давайте посмотрим на обновленную схему:

[Изображение скоро появится]

К настоящему времени самые большие вычисления выполнены! Остальные компоненты нуждаются в небольшом количестве вычислений, если вообще требуют. В этой схеме светодиодной лампой будет фактически использоваться только половина синусоидальной волны.Это потребляет меньше тока, но, скорее всего, будет раздражающее мерцание. Чтобы решить эту проблему, давайте добавим мостовой выпрямитель между балластом и светодиодами:

[Изображение скоро появится]

Этот мостовой выпрямитель в основном берет отрицательную половину цикла и превращает ее в положительную. Это позволяет светодиодам использовать всю синусоидальную волну переменного тока, значительно увеличивая светоотдачу. Однако небольшое мерцание все еще может быть видно, особенно на близком расстоянии. Чтобы его устранить, мы можем добавить фильтрующий конденсатор сразу после мостового выпрямителя.Однако имейте в виду, что добавление этого компонента делает лампу нелинейной нагрузкой, которая генерирует гармоники. Другими словами, его текущая форма волны больше не будет такой же, как форма волны напряжения. Это то, что создает гармоники. Не думаю, что для небольшого количества ламп это будет проблемой. Только беспокойтесь об этом, если вы планируете построить сотни таких светодиодных ламп, что, на мой взгляд, маловероятно, LOL.

К сожалению, у меня нет формулы для определения точного значения для данной схемы.Поскольку это значение тоже не критично, вы можете попробовать разные значения, чтобы найти лучшие. Начните с приблизительного значения, которое подходит для вашей схемы, и при необходимости отрегулируйте. Чем больше требуется фильтрации, тем больше должно быть значение.

[Изображение скоро появится]

Следующий компонент, R2, состоит из резистора небольшого номинала, включенного последовательно с нашими светодиодами для уменьшения / устранения пускового тока при запуске, если таковой имеется. Вы можете попытаться вычислить его значение, если хотите, но все в районе 100-200 Ом подойдет, возможно, немного ниже в нашем примере, поскольку это лампа с более высокой мощностью.

Последний компонент, который мы добавим, - это предохранитель для защиты проводки, питающей лампу, от любой неисправности указанной лампы. Опять же, его значение не критично, но, поскольку потребление тока составляет около 100 мА, предпочтительнее выбрать небольшой предохранитель на 150–250 мА. Конечно, поскольку это исключительно защита от короткого замыкания, все, что ниже 5А, должно быть в порядке.

Вот и все! Вся актуальная дизайнерская часть сделана! Теперь нам нужна только окончательная схема, чтобы мы могли опробовать ее на макете!

[Картинка скоро появится]

В следующем мы вернемся к моему прототипу и добавим дополнительные светодиоды к последней лампе, чтобы сделать ее пригодной для обслуживания указателей выхода.Речь идет о пересчете C1, R2 и, возможно, C2.

===============

Вот материалы, которые я собираюсь использовать в процессе строительства.


На макете прототип, который я превращу в постоянную схему. Печатные платы необходимы для построения схемы, печатные платы для питающей части схемы и непечатные платы исключительно для поддержки светодиодов, поскольку на данный момент у меня нет ничего другого в наличии. Чтобы сделать последнюю лампу ярче, у меня есть 13 дополнительных белых светодиодов.Думаю, я планировал сделать эту лампу из 21 светодиода, поэтому мне понадобится всего 12 штук. Наряду со светодиодами мне нужен новый конденсатор для регулировки значения реактивного сопротивления. Внутри корпуса будет все от старого КЛЛ и прозрачная красная крышка, чтобы сделать его менее уродливым, хотя я могу выбрать прозрачную, поскольку она блокирует значительную часть светового потока.

[СТРАНИЦА ЕЩЕ В КОНСТРУКЦИИ - БУДЬТЕ НАСТРОЕНЫ!]

DIY LED в Indoor Grow

Чтобы предложить вам оптимальный опыт работы с сайтом, мы используем файлы cookie.Это маленькие Текстовые файлы, хранящиеся на вашем компьютере. К ним относятся файлы cookie для работа и оптимизация сайта, а также таких услуг, как отображение Делитесь ценами или картами Google, а также контентом в зависимости от вашего поведения в Интернете. Так можно распознать, например, если вы повторно посещаете наш сайт с одного и того же устройства. Мы хотел бы предоставить вам выбор, какие файлы cookie вы разрешаете.

Основные файлы cookie

Эти файлы cookie необходимы, чтобы вы могли перемещаться по страницам и использовать основные функции.

Аналитические файлы cookie

Эти файлы cookie помогают нам лучше понимать поведение пользователей.Файлы cookie для анализа позволяют собирать данные об использовании и распознавании сторонними или собственными поставщиками в так называемых псевдонимных профилях использования. Например, мы используем аналитические файлы cookie для определения количества отдельных посетителей веб-сайта или службы или для сбора другой статистики, касающейся работы наших продуктов, а также для анализа поведения пользователей на основе анонимной и псевдонимной информации о том, как посетители взаимодействуют. с сайтом. Прямой вывод о человеке невозможен.

Показать больше Показывай меньше
Маркетинговые файлы cookie

Эти файлы cookie и аналогичные технологии используются для отображения персонализированного и, следовательно, релевантного рекламного контента.Маркетинговые файлы cookie используются для отображения интересного рекламного контента и измерения эффективности кампаний. Это делается не только на этом веб-сайте, но и на других сайтах-партнерах по рекламе (сторонних поставщиков). Это также известно как ретаргетинг, он используется для создания псевдонимного профиля интересов и для размещения соответствующей рекламы на других веб-сайтах. Прямой вывод о человеке невозможен.

Показать больше Показывай меньше
Сторонние сервисы (Youtube и другой внешний контент)

На этом сайте интегрированы сторонние сервисы, которые предоставляют свои услуги самостоятельно.Когда вы посещаете этот сайт, данные собираются с помощью файлов cookie или аналогичных технологий и передаются третьим лицам, в некоторых случаях для наших собственных целей. В какой степени, для каких целей и на каком правовом основании происходит дальнейшая обработка для собственных целей стороннего поставщика, можно найти в информации о защите данных стороннего поставщика. Вы можете найти информацию о сторонних поставщиках, которые несут ответственность за свое использование, в уведомлениях о защите данных.

Показать больше Показывай меньше

29 DIY светодиодных панелей для выращивания растений, которые вы можете сделать дома

Создайте свои собственные светодиодные панели для выращивания

DIY по низкой цене, чтобы начать посев и выращивать растения в помещении без солнечного света.

Светодиодные лампы для выращивания растений потребляют меньше энергии и выделяют меньше тепла. Мало того, они служат долго.

1. Дешевые высокомощные светодиодные лампы для выращивания

Создайте эту мощную светодиодную лампу DIY для выращивания света по низкой цене для ваших растений. Учебное пособие доступно на сайте "Наука в гидропонике".

Также читайте: 14 гидропонных вертикальных садовых идей

2. Светодиодный светильник мощностью 15 Вт в ванне

Выращивайте свои растения при искусственном освещении с помощью этого DIY.Вы можете сделать это легко, если у вас есть базовые знания в области электроники.

3. Светодиодный светильник для выращивания растений COB

Из этой статьи вы узнаете, как построить маленький, средний или большой светодиодный светильник для выращивания растений.

4. Светодиодная панель для выращивания растений мощностью 108 Вт

Коммерческие светодиодные лампы для выращивания растений стоят дорого, но вы можете сделать свой собственный, следуя этому руководству на Instructables.

5. Самодельные светодиодные лампы для выращивания комнатных растений

Следуйте этому руководству, чтобы построить самодельные светодиодные лампы для выращивания для выращивания комнатных растений.

6. Светодиодная вытяжка для выращивания в аквариуме своими руками

Эта светодиодная система освещения не только украсит ваш аквариум, но и поддержит растения в нем. Узнайте, как это было сделано, в обучающем видео.

7. Проект DIY LED Grow Light

Если вам нравится заниматься электронными проектами, вы должны попробовать это DIY здесь.

8. Светодиодная система освещения для выращивания растений в помещении

Эта светодиодная система освещения для выращивания растений с проволочными полками и таймером идеально подходит для выращивания небольших растений и посадки семян в помещении

9.Светодиодный 5-полосный светильник для выращивания растений

Этот DIY рассказывает об идеальной длине волны для выращивания растений и о том, как этого добиться.

10. Как сделать свои собственные лампы для выращивания

В этом обучающем видео есть все шаги, которые вам нужно знать, чтобы создать свои собственные лампы для выращивания.

11. Доступный светодиодный светильник для выращивания за 35 долларов

Из этого урока на YouTube научитесь создавать эти дешевые маломощные светильники для выращивания растений.

12. Светодиодный светильник для выращивания растений из мусорной корзины

Узнайте, как этот ютубер создал самодельный светодиодный светильник для выращивания растений из мусорного ведра и стоит 6 долларов.76 дюймов светодиодов.

13. Светодиодные лампы для выращивания растений своими руками

Если у вас есть аквариум с растениями или вы планируете его построить, этот учебник по светодиодному освещению поможет вам.

15. DIY 12 В светодиодный светильник для выращивания растений

Этот светодиодный светильник для выращивания растений требует перепрофилирования. Все инструкции доступны в видео.

16. Яркий светодиодный светильник для выращивания растений своими руками

Потратив от 400 до 500 долларов, вы сможете построить эту функциональную систему освещения для выращивания растений, которая идеально подходит для выращивания всех небольших горшечных растений и саженцев.Получите инструкции в видео.

17. Фанерные кашпо и светодиодные фонари для выращивания

Если вы хорошо разбираетесь в деревообработке (или можете нанять кого-то), стоит попробовать этот умелый проект Modular Wall Garden. Это вертикальный сад, в котором используются светодиодные лампы для выращивания.

Также читайте: 12 DIY вертикальных идей для овощных садов

18. 4-футовая DIY LED 2 × 4 палатка для выращивания растений лампа для выращивания

Эта большая DIY LED 2 × 4 лампа для выращивания растений достаточно велика, чтобы содержать много контейнерных растений.Зимой в нем можно выращивать травы и зелень.

19. Домашний сад со светодиодными лампами для выращивания

Выращивайте свои растения без солнечного света стильно в этом ультрасовременном автоматизированном домашнем саду с помощью этого руководства.

20. Суперяркая светодиодная панель «сделай сам» менее чем за 30 долларов

Узнайте, как этот ютубер построил эту недорогую панель для выращивания растений, используя обычные светодиодные лампы для своих комнатных растений.

21. Цветной светодиодный светильник для выращивания растений

Изготовление собственного светодиодного светильника для выращивания растений - более дешевая альтернатива покупке нового.Также таким образом можно выбрать диапазон светового спектра. Узнайте больше здесь.

22. Светодиодный светильник для выращивания растений на металлической панели

Вот еще один доступный проект светодиодного светильника для выращивания растений, который можно выполнить всего за 100–150 долларов. Учебник здесь.

23. DIY Grow Tent LED Grow Light

Создайте этот дешевый светодиодный светильник для выращивания растений в теплице с помощью этого урока DIY.

24. Светодиодный светильник для выращивания растений с подставкой из ПВХ

Эта подставка для выращивания растений из ПВХ своими руками пригодится, когда вы выращиваете семена в помещении.Инструкции здесь.

25. 10 $ Легко сделать DIY LED Grow Light

Для этого проекта DIY LED Grow Light вам не потребуются дорогие расходные материалы и продвинутые навыки DIY, и вы можете сделать это всего за 10 долларов. Как? Посмотрите видео!

26. Ohms Ultra 4 × 4 Светодиодный светильник для выращивания DIY

С помощью этого светодиодного светильника 4 × 4 вы можете вырастить несколько комнатных растений без солнечного света. Узнайте, как это было сделано, на видео.

27. Акриловый светодиодный светильник для выращивания растений

Узнайте, как создать этот прозрачный акриловый светильник для выращивания растений, в этом длинном пошаговом видеоуроке.

28. Компактный светодиодный светильник для выращивания растений «Сделай сам»

Из этого руководства вы узнаете, как сделать свой собственный компактный светодиодный светильник для выращивания растений с мощностью всего 16,5 Вт.

29. Управление самодельными светодиодными светильниками для выращивания растений

Узнайте, как создать управляющие светодиодные светильники для выращивания растений, в этом видео, транслируемом в прямом эфире на YouTube.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *