Реверсивное подключение трехфазного двигателя: Схемы подключения трехфазных электродвигателей

Содержание

Подключение кнопок реверс двигатель 380в

Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.

Общая схема реверса электродвигателей

В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.

Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.

Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.

Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.

На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.

Схема реверса трехфазного двигателя и кнопочного поста

В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.

Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.

Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).

Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.

В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.

Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.

По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.

Схема реверса трехфазного двигателя в однофазной сети

Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.

Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.

Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

Условные обозначения на схемах

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Изменение направление вращения трехфазного двигателя. Реверсивное подключение однофазного асинхронного двигателя своими руками

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

Со всеми этими

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайн ие (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском ( , например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Реверсивное подключение однофазового асинхронного мотора своими руками

Перед выбором схемы подключения однофазового асинхронного мотора принципиально найти, сделать ли реверс. Если для настоящей работы для вас нередко необходимо будет поменять направление вращения ротора, то целенаправлено организовать реверсирование с внедрением кнопочного поста. Если однобокого вращения для вас будет довольно, то подойдет самая обычная схема без способности переключения. Но что делать, если после подсоединения по ней вы решили, что направление необходимо все таки поменять?

Постановка задачи

Представим, что у уже подсоединенного с внедрением пускозарядной емкости асинхронного однофазового мотора вначале вращение вала ориентировано по часовой стрелке, как на картинке ниже.

Уточним принципиальные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К исходной клемме A подсоединен провод кофейного, а к конечной – зеленоватого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К исходному контакту подсоединен провод красноватого, а к конечному – голубого цвета.
  • Направление вращения ротора обозначено при помощи стрелок.

Ставим впереди себя задачку – сделать реверс однофазового мотора без вскрытия его корпуса так, чтоб ротор начал крутиться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить 3-мя методами. Разглядим их подробнее.

Вариант 1: переподключение рабочей намотки

Чтоб изменить направление вращения мотора, можно только поменять местами начало и конец рабочей (неизменной включенной) обмотки, как это показано на рисунке. Можно поразмыслить, что для этого придется вскрывать корпус, доставать намотку и крутить ее. Этого делать не надо, так как довольно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из их соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Обусловьте, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединены две полосы: фаза и ноль. При отключенном движке произведите реверс методом перекидывания фазы с исходного контакта намотки на конечный, а нуля – с конечного на исходный. Либо напротив.

В итоге получаем схему, где точки С и D изменяются меж собой местами. Сейчас ротор асинхронного мотора будет крутиться в другую сторону.

КАК ИЗМЕНИТЬ

НАПРАВЛЕНИЕ ВРАЩЕНИЕ ВАЛА В ОДНОФАЗНОМ ДВИГАТЕЛЕ

Моторчик взят от бытовой мясорубки. Направление движения нас не устраивало, пришлось его поменять Всю инфо.

Как изменить направление вращения трехфазного

асинхронного двигателя ?

Разберемся, как просто поменять направление вращения трехфазного двигателя на противоположное.

Вариант 2: переподключение пусковой намотки

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя своими руками. Как это сделать на практике (расчет и сборку), используя стандартные схемы управления или самодельные устройства , попробуем разобраться далее.

    • Двигатели с фазным ротором

Что такое асинхронный двигатель?

Асинхронные электродвигатели бывают двух основных типов: с фазным ротором и с короткозамкнутым ротором, отличие которых состоит в разных исполнениях обмотки ротора. Это происходит потому что мы присоединяем 3-х вахный двигатель в одно вазную сеть. Первичная обмотка содержит 120 витков провода диаметром 0,7мм, с отводом от середины, вторичная — две отдельные обмотки по 60 витков тем же проводом. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Известно, что сопротивление холодной нити лампы накаливания в 10 раз меньше сопротивления раскаленной нити.

Если включить АД в 1ф сеть, вращающий момент будет создаваться только одной обмоткой.

В данном случае обмотки двигателя включают последовательно. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Бирки К1 и Н3 (или Н2) надевают па выводы, находящиеся в общих узелках (завязанных при выполнении первой части работы) с Н1 и К3 соответственно. Для того, чтобы его создать необходимо сдвинуть фазы на обмотках при помощи специальной схемы.

Конденсаторы использовались типа КБГ-МН или другие с рабочим напряжением не менее 400 В.При отключении генератора на конденсаторах оставался электрический заряд, поэтому их надежно ограждали, чтобы избежать поражения электрическим током.

Для подключения мотора по довольно редкой схеме звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Двигатель начинает издавать характерный звук (гудеть). Переключение двигателя с одного напряжения на другое производится подключением обмоток. Не следует перегружать двигатель и работать «сутки напролет».

Если двигатель и после этого гудит, то эту фазу следует также поставить по-прежнему, а повернуть следующую фазу — II.

Недостатки это: пониженный и пульсирующий момент однофазного двигателя; повышенный его нагрев; не все стандартные преобразователи готовы для такой работы, т.к. некоторые производители прямо запрещают использовать свои изделия в таком режиме.

Если использовать диммер в соответствии с его назначением и соблюдать все условия использования, можно добиться хороших результатов по управлению источниками света в помещении и на воздухе.

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

В прошлой статье мы говорили про, знакомились со схемой его подключения к электрической сети напряжением 220 (В), обозначением и маркировкой выводов.

В той же статье я обещал Вам в ближайшее время рассказать о том, как можно организовать его реверс, т.е. управлять направлением вращения двигателя дистанционно, а не с помощью перемычек в клеммной коробке.

Итак, приступим.

В принципе ничего сложного нет. Принцип схемы управления аналогичен, за исключением некоторых деталей. Вообще то раньше мне не приходилось сталкиваться со схемой реверса однофазных двигателей, и данная схема была воплощена мною на практике впервые.

Суть схемы сводится к изменению направления вращения вала однофазного конденсаторного двигателя дистанционно с помощью кнопок (кнопочного поста). Помните, в предыдущей статье мы вручную меняли на клеммнике двигателя положение двух перемычек, чтобы изменить направление рабочей обмотки (U1-U2). Теперь Вам нужно убрать эти перемычки, т.к. их роль в данной схеме будут осуществлять нормально-открытые (н.о.) контакты контакторов.

Подготовка оборудования для реверса однофазного двигателя

Для начала перечислим все электрооборудование, которое нам необходимо приобрести для организации реверса конденсаторного двигателя АИРЕ 80С2:

1. Автоматический выключатель

Применяем двухполюсный 16 (А), с характеристикой «С» от фирмы IEK.


В этом кнопочном посту есть 3 кнопки:

  • кнопка «вперед» (черного цвета)
  • кнопка «назад» (черного цвета)
  • кнопка «стоп» (красного цвета)



Разберем кнопочный пост.


Мы видим, что каждая кнопка имеет 2 контакта:

  • нормально-открытый контакт (1-2), который замыкается в том случае, когда нажмете на кнопку
  • нормально-закрытый контакт (3-4), который замкнут до тех пор, пока не нажать кнопку


Прошу заметить, что на фотографии самая крайняя кнопка слева перевернута. Если будете подключать схему реверса однофазного двигателя самостоятельно, то будьте внимательны, кнопки в кнопочном посту могут быть перевернуты. Ориентируйтесь на маркировку контактов (1-2) и (3-4).

3. Контакторы

Также необходимо приобрести два контактора. В своем примере я использую малогабаритные контакторы КМИ-11210 от фирмы IEK, которые устанавливаются на DIN-рейку. Эти контакторы имеют 4 нормально-открытых (н.о.) контакта и способны коммутировать нагрузку до 3 (кВт) при переменном напряжении 230 (В). Вот они как раз нам и подходят, т.к. наш испытуемый однофазный двигатель АИРЕ 80С2 имеет мощность 2,2 (кВт).

Вместо контакторов можно приобрести, на примере которых я рассказывал их устройство и принцип действия.


Катушки этого контактора рассчитаны на переменное напряжение 220 (В), что нужно будет учесть при сборке схемы управления реверсом однофазного двигателя.

Вот, собственно говоря, мое произведение.

Я уже говорил в прошлой статье, что один из читателей сайта «Заметки электрика» по имени Владимир, попросил меня помочь ему мощностью 2,2 (кВт) и составить (придумать) для него схему реверса. По моим эскизам (в том числе монтажным) Владимир собрал вышеприведенную схему в. Чуть позже отписался мне в почту, что схему испытал, все работает, претензий нет.



Если у Вас по материалам сайта имеются какие то вопросы, то задавайте мне их в комментариях или на. В течение 12-24 часов, а может и быстрее, все зависит от моей занятости, я отвечу Вам.

А сейчас я расскажу, как эта схема работает.

Принцип работы схемы реверса однофазного двигателя

Первым делом включаем питающий автомат.

При нажатии на кнопку «вперед» катушка контактора К1 получает питание по следующей цепи: фаза — н.з. контакт (3-4) кнопки «стоп» — н.з. контакт (3-4) кнопки «назад» — н.о. контакт (1-2) нажатой кнопки «вперед» — катушка контактора К1 (А1-А2) — ноль.

Контактор К1 подтягивается и замыкает все свои нормально-открытые (н.о.) контакты:

  • 1L1-2T1 (самоподхват катушки К1)
  • 5L3-6T3 (имитирует перемычку U1-W2)
  • 13НО-14НО (имитирует перемычку V1-U2)

Кнопку «вперед» удерживать не нужно, т.к. катушка контактора К1 встает на «самоподхват» через свой же н.о. контакт (1L1-2T1).

Однофазный двигатель начинает вращаться в прямом направлении.

2. Вращение в обратном направлении

При нажатии на кнопку «назад» катушка контактора К2 получает питание по следующей цепи: фаза — н.з. контакт (3-4) кнопки «стоп» — н.з. контакт (3-4) кнопки «вперед» — н.о. контакт (1-2) нажатой кнопки «назад» — катушка контактора К2 (А1-А2) — ноль.

Контактор К2 срабатывает и замыкает следующие свои нормально-открытые (н.о.) контакты:

  • 1L1-2T1 (самоподхват катушки К2)
  • 3L2-4T2 (фаза на двигатель в силовой цепи)
  • 5L3-6T3 (имитирует перемычку W2-U2)
  • 13НО-14НО (имитирует перемычку U1-V1)

Кнопку «назад» удерживать пальцем не требуется, т.к. катушка контактора К2 встает на «самоподхват» через свой же н.о. контакт (1L1-2T1).

Однофазный двигатель начинает вращаться в обратном направлении.

Чтобы остановить двигатель, нужно нажать на кнопку «стоп».

3. Блокировка

Представленная схема реверса конденсаторного однофазного двигателя имеет блокировку кнопок, т.е. если при включенном двигателе в прямом направлении Вы ошибочно нажмете на кнопку «назад», то вначале отключится контактор К1, а потом уже сработает контактор К2. И наоборот. Таким образом мы имеем блокировку от одновременно двух включенных контакторов К1 и К2.

Можно применить и другие виды блокировок, но я ограничился только этой.

P.S. На этом я завершаю свою статью. Если Вам понравилась моя статья, то буду очень благодарен, если Вы поделитесь ей в социальных сетях. А также не забывайте подписываться на мои новые статьи — дальше будет интереснее.

  • 15. Мощность трехфазной электрической цепи.
  • 16. Соединение трехфазного потребителя электрической энергии звездой с N-проводом (схема и формула для расчета напряжения UN).
  • 18. Измерение активной мощности трехфазных электрических цепей методом двух ваттметров.
  • 19. Основные понятия о магнитных цепях и методах их расчета.
  • 20. Магнитные цепи с постоянной магнитодвижущей силой.
  • 21. Магнитные цепи с переменной магнитодвижущей силой
  • 22. Катушка с ферромагнитным сердечником.
  • 2. Полупроводниковые диоды, их свойства и область применения.
  • 3. Принцип действия транзистора.
  • 4, 5, 6. Схема включения транзистора с общей базой и ее коэффициенты усиления по току Ki, напряжению KU и мощности KP.
  • 7, 8, 9. Схема включения транзистора с общим эмиттером и ее коэффициенты усиления по току Ki, напряжению KU и мощности KP.
  • 10, 11, 12. Схема включения транзистора с общим коллектором и ее коэффициенты усиления по току Ki, напряжению KU и мощности KP.
  • 13. Однополупериодный выпрямитель, принцип действия, коэффициент пульсации выпрямленного тока.
  • 14. Двухполупериодный выпрямитель, принцип действия, коэффициент пульсации выпрямленного тока.
  • 15. Емкостной электрический фильтр в выпрямительной схеме и его влияние на коэффициент пульсации выпрямленного тока.
  • 16. Индуктивный электрический фильтр в выпрямительной схеме и его влияние на коэффициент пульсации выпрямленного тока.
  • III. Электрооборудование промышленных предприятий.
  • 1. Устройство и принцип действия трансформатора.
  • 2. Схема замещения и приведение параметров трансформатора.
  • 3. Потери мощности и КПД трансформатора.
  • 4. Опыт холостого хода трансформатора и его назначение.
  • 5. Опыт короткого замыкания трансформатора и его назначение.
  • 6. Внешняя характеристика трансформатора и ее влияние на режим работы потребителя электроэнергии.
  • 7. Устройство трехфазного асинхронного электродвигателя.
  • 8. Принцип действия и реверс (изменение направления вращения) трехфазного асинхронного двигателя.
  • 9. Схема замещения и механическая характеристика трехфазного асинхронного двигателя.
  • 10. Способы пуска трехфазного асинхронного двигателя.
  • 11. Способы регулирования частоты (скорости) вращения трехфазного асинхронного электродвигателя с короткозамкнутой обмоткой ротора.
  • 13. Устройство и принцип действия синхронного генератора и его применение в промышленности.
  • 14. Внешняя характеристика синхронного генератора.
  • 15. Регулировочные характеристики синхронного генератора.
  • 17. Способы пуска синхронного двигателя.
  • 18. Угловая и механическая характеристики синхронного двигателя.
  • 19. U-образные характеристики синхронного двигателя (регулирование реактивного тока и реактивной мощности).
  • 20. Устройство и принцип действия генератора постоянного тока.
  • 21. Классификация генераторов постоянного тока по способу возбуждения и их электрические схемы.
  • 22. Сравнение внешних и характеристик генераторов постоянного тока с различными схемами возбуждения.
  • 23. Устройство и принцип действия двигателя постоянного тока.
  • 24. Способы пуска в ход двигателей постоянного тока.
  • 26. Способы регулирования частоты вращения двигателей постоянного тока.
  • На рисунке представлена электромагнитная схема АД с короткозамкнутой обмоткой ротора в разрезе, включающая статор (1), в пазах которого расположены три фазные обмотки статора (2), представленные одним витком. Начала фазных обмоток A, B, C, а концы соответственно X, Y, Z. В цилиндрическом роторе (3) двигателя расположены стержни (4) короткозамкнутых обмоток, замкнутых по торцам ротора пластинами.

    При подаче на фазные обмотки статора трехфазного напряжения в витках обмотки статора протекают токи статора iA , iB , iC , создающие вращающееся магнитное поле с частотой вращения n1 . Это поле пересекает стержни короткозамкнутой обмотки ротора и в них индуцируются ЭДС, направление которых определяется по правилу правой руки. ЭДС в стержнях ротора создают токи ротора i2 и магнитное поле ротора, которое вращается с частотой магнитного поля статора. Результирующее магнитное поле АД равно сумме магнитных полей статор и ротора. На проводники с током i2 , расположенные в результирующем магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарное усиление Fрез , приложенное ко всем проводникам ротора, образует вращающий эле5ктромагнитный момент M асинхронного двигателя.

    Вращающий электромагнитный момент М, преодолевая момент сопротивления Мс на валу, принуждает вращаться ротор с частотой n2 . Ротор вращается с ускорением, если момент М больше момента сопротивления Мс , или с постоянной частотой, если моменты равны.

    Частота вращения ротора n2 всегда меньше частоты вращения магнитного поля машины n1 , т. к. только в этом случае возникает вращающий электромагнитный момент. Если частота вращения ротора будет равна частоте вращения МП статора, то ЭМ момент равен нулю (стержни ротора не пересекают МП двигателя, и ток равен нулю). Разница частот вращения МП статора и ротора в относительных единицах называется скольжением двигателя:

    s = n 1− n 2. n 1

    Скольжение измеряется в относительных единицах или процентах по отношению к n1 . В рабочем режиме близком к номинальному скольжение двигателя составляет 0.01-0.06. Частота вращения ротораn 2 = n 1 (1− s ) .

    Таким образом, характерной особенностью асинхронной машины является наличие скольжения — неравенства частот вращения магнитного поля двигателя и ротора. Поэтому машину называют асинхронной.

    При работе асинхронной машины в двигательном режиме частота вращения ротора меньше частоты вращения МП и 0

    Если ротор АД заторможен (s = 1) – это режим короткого замыкания. В случае, если частота вращения ротора совпадает с частотой вращения МП, то вращающий момент двигателя не возникает. Это режим идеального холостого хода.

    Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения МП. Для реверса двигателя нужно изменить порядок чередования фаз подведенного напряжения, т. е. Переключить две фазы.

    9. Схема замещения и механическая характеристика трехфазного асинхронного двигателя.

    Rн =R» ——

    Rн =R» ——

    E =E»

    В схеме асинхронная машина с электромагнитной связью статорной и роторной цепей заменена эквивалентной приведенной схемой замещения. При этом параметры обмотки ротора R2 и x2 приводятся к обмотке статора при условии равенства E1 = E2 » . E2 » , R2 » , x2 » – приведенные параметры ротора.

    включенное в обмотку неподвижного ротора, т. е. машина имеет активную нагрузку.

    Величина этого сопротивления определяется скольжением, а, следовательно, механической нагрузкой на валу двигателя. Если момент сопротивления на валу двигателя Мс = 0, то скольжение s = 0; при этом величинаR н =∞ и I2 » = 0, что соответствует работе

    двигателя в режиме холостого хода.

    В режиме холостого хода ток статора равен току намагничивания I 1 =I 0 . Магнитная цепь машины представляется намагничивающим контуром с параметрами x0 , R0 – индуктивное и активное сопротивления намагничивания обмотки статора. Если момент сопротивления на валу двигателя превышает его вращающий момент, то ротор останавливается. При этом величина Rн = 0, что соответствует режиму короткого замыкания.

    Первая схема называется Т-образной схемой замещения АД. Она может быть преобразована в более простой вид. С этой целью намагничивающий контурZ 0 = R 0 + jx 0

    выносят на общие зажимы. Чтобы при этом намагничивающий ток I 0 не изменял своей величины, в этот контур последовательно включают сопротивления R1 и x1 . В полученной Г- образной схеме замещения сопротивления контуров статора и ротора соединены последовательно. Они образуют рабочий контур, параллельно которому включен намагничивающий контур.

    Величина тока в рабочем контуре схемы замещения:

    I» 2 =

    Где U1 – фазное

    » 1 − s 2

    √ (R 1 +

    R» 2

    √ (R 1+ R 2+ R 2s

    ) +(x 1 +x 2 )

    ) +(x 1 +x 2 )

    напряжение сети.

    Электромагнитный момент АД создается взаимодействием тока в обмотке ротора с вращающимся МП машины. Электромагнитный момент М определяется через электромагнитную мощность:

    P эм

    2 πn 1

    Угловая частота вращения МП статора.

    P э2

    m1 I2 » 2 R» 2

    Т. е. ЭМ момент пропорционален мощности электрических

    ω 1s

    ω 1s

    потерь в обмотке ротора.

    2 R 2″

    2 ω 1 [(R 1 +

    ) +(x 1 +X 2 » )2 ]

    Приняв в уравнении число фаз двигателя m1 = 3; x1 + x2 » = xк , исследуем его на экстремум. Для этого приравниваем производную dM / ds к нулю и получаем две экстремальные точки. В этих точках момент Мк и скольжение sк называются критическими и соответственно равны:

    ±R » 2

    √ R1 2 + sк 2

    Где «+» при s > 0, “-” при s

    M к =

    3U 1 2

    2 ω 1 (R 1 ±√

    R1 2 + Xк 2

    Зависимость ЭМ момента от скольжения M(s) или от частоты вращения ротора M(n2 ) называется механической характеристикой АД.

    Если разделить M на Mк , получим удобную форму записи уравнения механической характеристики АД:

    2 Mк (1 + asк )

    2asк

    R2 »

    2 Mк

    3 Uф 2

    R2 »

    2 ω 1x к

    Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

    В прошлой статье мы говорили про , знакомились со схемой его подключения к электрической сети напряжением 220 (В), обозначением и маркировкой выводов.

    В той же статье я обещал Вам в ближайшее время рассказать о том, как можно организовать его реверс, т.е. управлять направлением вращения двигателя дистанционно, а не с помощью перемычек в клеммной коробке.

    Итак, приступим.

    В принципе ничего сложного нет. Принцип схемы управления аналогичен , за исключением некоторых деталей. Вообще то раньше мне не приходилось сталкиваться со схемой реверса однофазных двигателей, и данная схема была воплощена мною на практике впервые.

    Суть схемы сводится к изменению направления вращения вала однофазного конденсаторного двигателя дистанционно с помощью кнопок (кнопочного поста). Помните, в предыдущей статье мы вручную меняли на клеммнике двигателя положение двух перемычек, чтобы изменить направление рабочей обмотки (U1-U2). Теперь Вам нужно убрать эти перемычки, т.к. их роль в данной схеме будут осуществлять нормально-открытые (н.о.) контакты контакторов.

    Подготовка оборудования для реверса однофазного двигателя

    Для начала перечислим все электрооборудование, которое нам необходимо приобрести для организации реверса конденсаторного двигателя АИРЕ 80С2:

    1. Автоматический выключатель

    Применяем двухполюсный 16 (А), с характеристикой «С» от фирмы IEK.

    В этом кнопочном посту есть 3 кнопки:

    • кнопка «вперед» (черного цвета)
    • кнопка «назад» (черного цвета)
    • кнопка «стоп» (красного цвета)


    Разберем кнопочный пост.

    Мы видим, что каждая кнопка имеет 2 контакта:

    • нормально-открытый контакт (1-2), который замыкается в том случае, когда нажмете на кнопку
    • нормально-закрытый контакт (3-4), который замкнут до тех пор, пока не нажать кнопку

    Прошу заметить, что на фотографии самая крайняя кнопка слева перевернута. Если будете подключать схему реверса однофазного двигателя самостоятельно, то будьте внимательны, кнопки в кнопочном посту могут быть перевернуты. Ориентируйтесь на маркировку контактов (1-2) и (3-4).

    3. Контакторы

    Также необходимо приобрести два контактора. В своем примере я использую малогабаритные контакторы КМИ-11210 от фирмы IEK, которые устанавливаются на DIN-рейку. Эти контакторы имеют 4 нормально-открытых (н.о.) контакта и способны коммутировать нагрузку до 3 (кВт) при переменном напряжении 230 (В). Вот они как раз нам и подходят, т.к. наш испытуемый однофазный двигатель АИРЕ 80С2 имеет мощность 2,2 (кВт).

    Вместо контакторов можно приобрести , на примере которых я рассказывал их устройство и принцип действия.

    Катушки этого контактора рассчитаны на переменное напряжение 220 (В), что нужно будет учесть при сборке схемы управления реверсом однофазного двигателя.

    Вот, собственно говоря, мое произведение.

    Я уже говорил в прошлой статье, что один из читателей сайта «Заметки электрика» по имени Владимир, попросил меня помочь ему мощностью 2,2 (кВт) и составить (придумать) для него схему реверса. По моим эскизам (в том числе монтажным) Владимир собрал вышеприведенную схему в . Чуть позже отписался мне в почту, что схему испытал, все работает, претензий нет.

    Если у Вас по материалам сайта имеются какие то вопросы, то задавайте мне их в комментариях или на . В течение 12-24 часов, а может и быстрее, все зависит от моей занятости, я отвечу Вам.

    А сейчас я расскажу, как эта схема работает.

    Принцип работы схемы реверса однофазного двигателя

    Первым делом включаем питающий автомат.

    1. Вращение в прямом направлении

    При нажатии на кнопку «вперед» катушка контактора К1 получает питание по следующей цепи: фаза — н.з. контакт (3-4) кнопки «стоп» — н.з. контакт (3-4) кнопки «назад» — н.о. контакт (1-2) нажатой кнопки «вперед» — катушка контактора К1 (А1-А2) — ноль.

    Контактор К1 подтягивается и замыкает все свои нормально-открытые (н.о.) контакты:

    • 1L1-2T1 (самоподхват катушки К1)
    • 5L3-6T3 (имитирует перемычку U1-W2)
    • 13НО-14НО (имитирует перемычку V1-U2)

    Кнопку «вперед» удерживать не нужно, т.к. катушка контактора К1 встает на «самоподхват» через свой же н.о. контакт (1L1-2T1).

    Однофазный двигатель начинает вращаться в прямом направлении.

    2. Вращение в обратном направлении

    При нажатии на кнопку «назад» катушка контактора К2 получает питание по следующей цепи: фаза — н.з. контакт (3-4) кнопки «стоп» — н.з. контакт (3-4) кнопки «вперед» — н.о. контакт (1-2) нажатой кнопки «назад» — катушка контактора К2 (А1-А2) — ноль.

    Контактор К2 срабатывает и замыкает следующие свои нормально-открытые (н.о.) контакты:

    • 1L1-2T1 (самоподхват катушки К2)
    • 3L2-4T2 (фаза на двигатель в силовой цепи)
    • 5L3-6T3 (имитирует перемычку W2-U2)
    • 13НО-14НО (имитирует перемычку U1-V1)

    Кнопку «назад» удерживать пальцем не требуется, т.к. катушка контактора К2 встает на «самоподхват» через свой же н.о. контакт (1L1-2T1).

    Однофазный двигатель начинает вращаться в обратном направлении.

    Чтобы остановить двигатель, нужно нажать на кнопку «стоп».

    3. Блокировка

    Представленная схема реверса конденсаторного однофазного двигателя имеет блокировку кнопок, т.е. если при включенном двигателе в прямом направлении Вы ошибочно нажмете на кнопку «назад», то вначале отключится контактор К1, а потом уже сработает контактор К2. И наоборот. Таким образом мы имеем блокировку от одновременно двух включенных контакторов К1 и К2.

    Можно применить и другие виды блокировок, но я ограничился только этой.

    P.S. На этом я завершаю свою статью. Если Вам понравилась моя статья, то буду очень благодарен, если Вы поделитесь ей в социальных сетях. А также не забывайте подписываться на мои новые статьи — дальше будет интереснее.

    Как подключается трехфазный двигатель в сеть 380в

    Дорогие читатели, а вы знаете как подключить асинхронный двигатель?

    Имею в виду, можете определить по шильдику, когда надо подключить обмотки электродвигателя звездой, а когда треугольником?

    В этой статье я подробно расскажу как подключить асинхронный двигатель. А также Вы узнаете много разных нюансов при подключении электродвигателя.

    А вы знали, что если двигатель рассчитан на напряжение 380/660В- треугольник/звезда, и если его подключить по схеме звезда на напряжение 380 вольт, то в определённых условиях он сгорит. Стало интереснее? Тогда советую ознакомиться со статьёй.

    Перед чтением этой статьи рекомендую прочитать статью «Что такое мощность».

    Что нужно знать о двигателе перед подключением

    Трёхфазный электродвигатель бывает по способу работы двух типов:

    • Синхронный имеет повышенные скорости работы, но требует для своего разгона дополнительных затрат энергии. Изначально он работает в асинхронном режиме, пока не достигает требуемых оборотов, и не переходит в синхронную стадию. Синхронные моторы позволяют постепенно снижать или наращивать обороты. Однако, они сложны в изготовлении, вследствие чего имеют большую себестоимость. Это обусловило их небольшое распространение, по сравнению с асинхронными вариантами трёхфазных электромоторов.
    • Асинхронный электродвигатель не допускает регулировки оборотов в процессе работы. Максимальная скорость его вращения также несколько ниже. Но подобные моторы более просты по своей конструкции, не такие дорогие, и отличаются большей надёжностью и ремонтопригодностью. Благодаря этим преимуществам, они используются гораздо чаще, как в промышленных производствах, так и в быту.

    Трёхфазные моторы, выпускаемые современной промышленностью, имеют различные эксплуатационно-технические характеристики.

    Вся необходимая информация указывается на корпусе устройства:

    • Тип – синхронный или асинхронный.
    • Напряжение и частота питающей сети.
    • Максимальная мощность мотора.
    • Число развиваемых оборотов за минуту.

    Более подробная информация относительно технических параметров даётся в прилагаемом к электродвигателю техпаспорте. Конструктивно устройство состоит из следующих основных элементов:

    • Корпус, служащий основой для крепления остальных деталей.
    • Статор.
    • Ротор, отделённый от статора воздушным пространством.
    • Обмотка, состоящая из трёх проводников, располагающихся по окружности под углом 120о.
    • Шкив вала, служащий для передачи крутящего момента внешним рабочим механизмам.

    Концы всех трёх обмоток двигателя выведены в распредкоробку, расположенную в верхней части корпуса. Трёхфазные электромоторы бывают рассчитанными только на одно напряжение, например, на 380В, либо на два – на 220 и на 380 вольт.

    Для устройств, работающих с двумя типами напряжения, в распредкоробку выводятся сразу шесть концов, а для моторов, предназначенных только для одного типа напряжения – три. На внутренней поверхности крышки коробки наносится схема подсоединения выводов к питающей электросети.

    Виды УПП

    По способу регулировки напряжения различают одно-, двух-, трехфазные устройства:

    • Устройство плавного пуска с регулировкой напряжения по одной фазе.
      Применяются в электроприводе оборудования мощностью 11 кВт. Такие УПП обеспечивают снижение динамических ударов и отсутствие рывков при старте привода. Недостатками устройств такого типа являются несимметричная нагрузка при запуске, большие пусковые токи.
    • Двухфазные УПП.
      Применяются в приводах мощностью до 250 кВт для снижения динамических нагрузок при пуске. Обеспечивают некоторое снижение пусковых токов, нагрева двигателя. Используется в оборудовании со среднетяжелыми условиями пуска при отсутствии жестких требований к ограничению тока.
    • Трехфазные софт-стартеры.
      УПП такого типа снижают пусковые токи до 3-х кратного значения от номинала, позволяют осуществлять плавную остановку, обеспечивают аварийное отключение привода. Регулировка напряжения осуществляется по всем трем фазам, что исключает появление асимметрии. Номинальная мощность привода ограничена только характеристиками полупроводниковых силовых элементов. Такие УПП используют в приводе с особо тяжелыми условиями пуска, с частым включениями и остановками.

    Две схемы подключения трёхфазного двигателя

    Подключение двигателя должно производиться чётко по схеме, очень важно не перепутать концы и начала обмоток. Все они должны работать одинаково, когда ток по ним двигается в одном направлении. Если же у одной любой обмотки выход и вход при подключении перепутаются, то создаваемое ей электромагнитное поле будет иметь обратное направление, чем у двух оставшихся. Мотор потеряет треть своей установленной мощности, будет постоянно перегреваться. Как результат – повышенный износ и скорый выход из строя.

    ремонт болгарки сгорел статор

    Здрасти Павел. Считаю, что при данной неисправности Для вас также необходимо будет оглядеть и проверить на сопротивление обмотку статора электродвигателя болгарки. Вероятной предпосылкой резвого нагрева электродвигателя является причина межвиткового замыкания в обмотке, то-есть, нарушена изоляция (покрытие проводов лаком). При резкой остановке ротора, в схеме электродвигателя создается ток, превосходящий номинальное значение значительно. Это только лишь лично мое суждение и мне также хотелось бы выяснить мировоззрение моих друзей, участников переписки. Виктор.

    Источник

    Схема включения трёхфазного электродвигателя на 220В

    Трёхфазные моторы предназначаются для подключения к сети, имеющей также три выхода фаз. При работе от однофазного питания, выдаваемая агрегатом мощность будет на 30% ниже установленной. Кроме того, далеко не каждый трёхфазник подходит для однофазной цепи. Имеются также и различия в схемах включения таких электромоторов в 220-вольтную сеть. Но в быту далеко не всегда имеется возможность запитать мотор от трёхфазной проводки. Непосредственно к жилым домам и в квартиры, согласно стандартам СНиП, обычно не подводится 380В.

    Электродвигатели с возможностью подключения и к двум типам электрической цепи, имеют различные технические характеристики, касающиеся рабочего напряжения. От этого зависит схема их подключения к 220В, и показатели потери рабочих мощностей.

    Установить, как подключить определённый тип мотора, можно по обозначению на шильдике корпуса:

    Для подключения двигателя к однофазной цепи используются два варианта:

    • С помощью преобразователя частот.
      Данный прибор способен преобразовывать одну фазу, имеющуюся в сети 220-вольтовой сети, в три фазы с таким же напряжением. Однако, вследствие высокой стоимости преобразователя, в быту такой вариант используется редко.
    • Посредством конденсатора.
      Такой метод более распространён из-за своей простоты и доступности. Именно его подробнее рассмотрим далее.

    Подключение трёхфазного электродвигателя потребует использования конденсаторов для переменного тока. Без них электричество от одной фазы будет проходить по обмоткам, но вращения ротора не происходит. Чтобы создать смещение фазы, получить крутящий момент магнитного поля, к одной из обмоток подключаются конденсаторы. Важный момент – использовать конденсаторы постоянного тока для переменной сети нельзя, из-за высокой вероятности их взрыва в процессе работы.

    Электрическая схема болгарки

    Сегодня болгарка есть почти у каждого, кто не любит сидеть без дела. Хороший хозяин всегда следит за своим инструментом и старается не допускать его поломки. Появление люфта, биения или треска редуктора свидетельствует о неполадках механического характера, однако случается так, что болгарка перестает работать без видимых причин. В этом случае причину нужно искать в электрической цепи инструмента. Электрическая схема болгарки не отличается особой сложностью, а в большинстве случаев ремонт можно выполнить самостоятельно.

    Подключение трёхфазного двигателя на 380В

    Схема подключения трёхфазного электродвигателя к сети 380 вольт ещё проще. В наличии имеем три вывода обмотки, расположенных в распредкоробке корпуса, и также три фазы питающей электросети. Для двигателя, имеющего обозначение 220/380, выводы его обмоток соединяются «звездой», а подключение нуля не требуется.

    Сменить направление вращения вала двигателя 380В можно, просто поменяв своими местами две обмотки, какие конкретно – значения не имеет. Как видим, подключить трёхфазный мотор можно и к сети в 220, и в 380 вольт. Сделать это не представит особых трудностей для человека, имеющие начальные навыки обращения с электроприборами.

    Основные и дополнительные функции УПП

    Современные софт-стартеры – многофункциональные электротехнические устройства. Основное их предназначение – снижение пусковых токов и смягчение динамических ударов при старте двигателя. Кроме того, УПП обеспечивают:

    • Пуск с номинальным моментом.
      При этом при старте на электродвигатель подается максимальное напряжение, после чего включаются тиристоры. Разгон до номинальной частоты осуществляется плавно. Софт-стартеры такой конструкции применяют для механизмов со значительной пусковой нагрузкой.
    • Динамическое торможение.
      УПП с данной функцией обеспечивают остановку привода без выбега. Их устанавливают в приводе инерционного технологического оборудования: тяговых вентиляторов, подъемниках и т.д.
    • Пуск в функции тока и напряжения.
      УПП такой конструкции позволяют задавать предельное значение пускового тока. Устройства применяются при низкой мощности сети, а также в приводе оборудования с низким стартовым моментом.
    • Защиту электродвигателя.
      Софт-стартеры обеспечивают остановку привода при обрыве фаз, перегрузках, превышении времени разгона, а также при возникновении других аномальных и аварийных режимов. УПП не имеют защиты от коротких замыканий и включаются через предохранители или автоматы.
    • Интеграцию в САР и системы телемеханики.
      Софт-стартеры с процессорными блоками управления и устройствами поддержки протоколов связи с удаленным оборудованием контроля легко встраиваются в многоуровневые системы автоматизации технических процессов.
    • Регулировку частоты вращения вала.
      УПП с такой функцией не заменяют частотные преобразователи. Такой режим допустим при непродолжительной настройке оборудования.

    Звезда и треугольник

    Конструктивно мотор состоит из статора, на котором размещены три обмотки, и ротора. При подаче питающего напряжения, мы создаем вокруг этих обмоток вращающее поле, которое пытается «вытолкнуть» ротор из статора, представляющего собой набор короткозамкнутых витков, заставляя его вращаться.

    Взглянем повнимательнее на статор. Он, как было сказано выше, состоит из трех обмоток, соединенных одним из двух способов:

    Какая из схем лучше? Соединение «треугольником» обеспечивает более мягкий пуск, и, соответственно, меньшие пусковые токи. Но при таком подключении электродвигатель не развиваем паспортной мощности на валу. При включении «звездой» паспортная мощность развивается полностью, но пусковые токи много больше, что может потребовать специальных мер.

    Важно! Есть и еще один нюанс при выборе схемы включения – питающее напряжение. Один и тот же двигатель, включенный по разным схемам, требует разных напряжений питания.

    Принцип работы УПП

    Силовая часть устройства плавного пуска состоит из силовых тиристоров, включенных встречно-параллельно и обходных контакторов. Изменение напряжения достигается регулировкой проводимости полупроводниковых устройств путем подачи отпирающих импульсов на управляющие контакты.

    В состав УПП также входит:

    • Генератор управляющих импульсов.
      Этот блок вырабатывает сигналы, изменяющие угол проводимости полупроводниковых устройств при пуске и остановки электродвигателя.
    • Управляющее устройство на базе контроллера или микропроцессора.
      Его основные функции – подача команд на генератор импульсов, обеспечение связи с другими устройствами, прием сигналов от датчиков, обеспечение защитного отключения электрической машины при аварийных и ненормальных режимах работы.

    Старт электрической машины осуществляется на напряжении, составляющем 30-60% от номинального. При этом происходит плавное зацепление шестеренок передаточного механизма, постепенное натяжение ремней привода. Далее управляющий блок постепенно увеличивает проводимость тиристоров до полного разгона электродвигателя. При достижении номинальной частоты вращения вала, замыкаются контакты шунтирующих коммутационных устройств. Ток начинает течь в обход тиристоров. Это необходимо для снижения нагрева полупроводниковых устройств, увеличения срока службы УПП, снижения энергопотребления.

    При остановке электродвигателя, контактор включает в цепь тиристоры. С генератора импульсов поступают сигналы, плавно уменьшающие проводимость тиристоров до остановки электрической машины.

    Напряжения

    Самыми распространенными на сегодняшний день являются трехфазные двигатели на 380/220, 660/380 и 220/127 В. Что это значит, почему напряжения разбиты по парам? Дело в том, что при включении обмоток «звездой» требуется большее напряжение питания. К примеру 380/220 означает, что «звездой» двигатель нужно подключить к сети 380 В (линейное), а треугольником – 220 В (линейное). Поэтому прежде, чем выбирать схему, необходимо определиться, какие электродвигатель и сеть есть в нашем распоряжении.

    Ну какое напряжение у нас в доме, мы, конечно, знаем. Осталось разобраться с двигателем. Взглянем на шильдики, расположенные на корпусе моторов. Согласно им оба эти мотора можно включить «треугольником» в сеть 220 В или «звездой» 380 В.

    При этом в первом случае ток потребления будет несколько выше. Но, как было замечено выше, есть двигатели и на другое напряжение. Шильдики, фото которых представлены ниже, говорят о том, что их обладатели могут работать по схеме «звезда» в сети 380 и «треугольник» 660 В. Причем один из них (верхнее фото) способен использоваться в сетях 440/760 В, но частота этих сетей должна быть 60 Гц.

    Важно! Вполне очевидно, что моторы из обоих примеров можно включить в сеть 380 В, но только по разным схемам – «треугольником» и «звездой» соответственно.

    Ремонт электроинструмента. Перемотка статора (катушек возбуждения) часть1.

    Причина неисправности коллекторного электродвигателя выявляется измерительным устройством, на примере таких устройств как:

    Так допустим, перегорание обмоток статора (рис. 3) обычно вызвано по завершении общего перегрева электродвигателя. В этом случае нарушается изоляция проводов в обмотке статора и сама обмотка может замыкать на корпус станины. Для установления таковой вероятной предпосылки неисправности, один наконечник щупа устройства подсоединяется к выведенному концу провода обмотки статора, 2-ой наконечник щупа подсоединяется к корпусу станины статора.

    Чтоб проверить обмотку ротора, щупы устройства необходимо подсоединить к ламелям (пластинам) коллектора (рис. 4).

    На этом деле пока нашему клиенту остается. Смотрите за рубрикой.

    READ Как подключить проводку на альфе видео

    подскажите,пожалуйста,сечение провода обмотки статора болгарки Kolner 580 wt.Кол-во витков 167

    Здрасти Дамир. Тут то то не нужно проводить расчетные вычисления. Необходимо взять отрезок провода обмотки статора болгарки и измерить сечение медного провода штангель-циркулем \токарным измерительным инвентарем\ или с данным отрезком провода обратиться при приобретении провода — к торговцу консультанту. Лучше, чтоб перемотку статора электродвигателя делал соответственный спец, потому что тут учитывается и сопротивление обмотки.

    Здрасти, господа электрики! Подскажите, пожалуйста, почему может нагреваться электродвигатель болгарки при вращении вхолостую за период 2-3 минут после включения на прохладную после смены ротора. Вначале во время работы алмазным диском на новейшей болгарке перегрели ее методом остановки диска на полном вращении ротора. Разобрали, проверили ротор — разрыв цепи на коллекторе (две ламели темные). Не просто диски или кассеты элементы не инспектировали. Поставили новый ротор — стала нагреваться без нагрузки.

    Как переключить обмотки?

    Большинство трехфазных электромоторов изготавливаются с открытой схемой – их можно подключить и звездой, и треугольником. Достаточно просто переставить перемычки на распредкоробке БРНА (Блок Распределения (расключения) Начал Обмоток).

    Стандартная схема установки перемычек для схем «звезда» и «треугольник» приведена на рисунке ниже.

    Но встречаются двигатели, у которых блок распределения имеет всего 3 клеммы. Это означает, что обмотки уже включены по той или иной схеме и их осталось только подключить к сети. К примеру, двигатель, шильдик которого изображен ниже, можно включить только «звездой».

    Полезно! При желании и некоторых умениях можно разобрать двигатель, разобраться в обмотках и соединить их по другой схеме. При этом мотор будет отлично работать.

    Принципиальная электрическая схема болгарки

    В угловой шлифовальной машине применяется коллекторный двигатель, который имеет несложную схему подключения. Сетевой провод подключается к кнопке пуска, а затем к двигателю. Положение фаза-ноль при этом не имеет значения. После кнопки провода подключаются к концам обмоток статора (их две), а вторые концы обмоток подсоединены к щеткам, которые контактируя через ламели коллектора замыкают цепь через противоположные обмотки ротора.

    В более функциональных моделях в цепь включен блок регулировки оборотов, который выполнен на основе потенциометра и подключен после кнопки. В электрической схеме болгарки Bosh, как и у многих моделей других известных брендов, например, Интерскол, этот блок выполнен на одной компактной плате и закреплен внутри корпуса в направляющих пазах.

    Схема включения в сеть

    С напряжениями и «звездами» разобрались, попробуем включить электродвигатель в сеть. Обычно это делают при помощи мощного реле – пускателя (контактора). Независимо от того, как соединены между собой обмотки, схема будет одна и та же.

    Включение без возможности реверса

    Начнем с обычного включения, когда нам не требуется реверс (обратное вращение). Взглянем на схему, она предельно проста:

    Как только мы включим автомат QF, напряжение с фазы «В» поступит на электромагнит пускателя КМ-1. Напряжение же с фазы «С» пройдет через нормально замкнутую кнопку «Стоп» и появится на одном из выводов нормально разомкнутой кнопки «Пуск». Электромагнит контактора обесточен, его силовые контакты разомкнуты, двигатель АД не работает.

    Включаемся в однофазную сеть

    оказывается, трехфазный двигатель может работать и от одной фазы. Правда, развиваемая им мощность будет много меньше паспортной, но нередко и этого достаточно. В зависимости от рабочего напряжения самого мотора и напряжения питания обмотки в однофазную сеть можно подключить и «звездой», и треугольником. Для этого понадобится лишь дополнительный фазосдвигающий конденсатор, который будет питать третью обмотку.

    Если в нашем распоряжении двигатель с рабочим напряжением 220/127 В, то включаем его по схеме «треугольника»

    такие двигатели в настоящее время встречаются намного реже, чем моторы на 380/220 В, поэтому чаще всего включение в однофазную сеть производится по схеме «звезда».

    Емкость фазосдвигающего конденсатора, который называют рабочим, зависит от мощности двигателя, и может быть рассчитана по формуле:

    Важно! Если мотор во время пуска имеет большую нагрузку на валу, то для надежного его запуска используют дополнительный пусковой конденсатор, кратковременно подключаемый к рабочему. После выхода мотора на номинальную мощность, этот конденсатор нужно отключить.

    Схемы включения трехфазного двигателя в однофазную сеть по схеме «треугольник» и «звезда» с пусковым конденсатором

    Вот, вроде, и все на тему включения трехфазного асинхронного двигателя. Теперь мы знаем, какими эти моторы бывают, по какой схеме можно соединить их обмотки, каким напряжением запитать и как запустить.

    Источник

    Использование конденсатора

    Метод отличается от предыдущего тем, что мотор с расщепленной фазой при подключении к однофазной линии, имеет высокое сопротивление только в момент запуска.

    Для обеспечения наибольшего значения Мпуск необходимо круговое и вращающееся магнитное поле. Для этого токи в рабочей и дополнительной обмотках смещают на 90 градусов. Такое смещение может обеспечить только конденсатор. Его использование помогает достичь хорошей пусковой характеристики асинхронного двигателя, питающегося от однофазной электросети.

    Выбор способа пуска асинхронного электродвигателя зависит от того, к какой сети он включается: к однофазной или трехфазной. Влияет также мощность мотора и его конструкция.

    Ещё по теме: — Схемы подключения асинхронного и синхронного однофазных двигателей — Схемы подключения электродвигателя через конденсаторы — Реверсивная схема подключения электродвигателя — Плавный пуск электродвигателя своими руками —В чем разница асинхронного и синхронного двигателей — Реверсивное подключение однофазного асинхронного двигателя своими руками — Как проверить электродвигатель — Ремонт электродвигателей

    Как подключить трехфазный двигатель к сети 220 или 380 В?

    Среди электрических машин, предназначенных для совершения механической работы, одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток. Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом. Как можно выполнить подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.

    Статоры

    408-317 Статор для BOSCH GWS7-125/GWS7-115 HAMMER. Фото 220Вольт

    Компактная конструкция из электропривода и механического редуктора, повышающего крутящий момент на рабочем валу, позволяет по весовым и габаритным параметрам успешно применять УШМ в качестве ручного электроинструмента. Простота замены насадок на рабочем шпинделе делает болгарку удобным универсальным устройством для обработки самых различных материалов (металл, дерево, пластик, камень и многие другие). Болгарка пользуется популярностью как у пользователей, производящих простые работы в бытовых условиях, так и у профессионалов, выполняющих сложную работу, требующую высокой квалификации. Основным конструктивным элементом электропривода болгарки является статор. Данная статья описывает особенности этого одного из основных узлов электрической части УШМ.

    Общая информация

    Подключение трехфазных двигателей подразумевает относительно сложную операцию, которая требует понимания процессов, протекающих в электроустановке. Для чего необходимо рассмотреть как составляющие элементы, так и их назначение.

    Конструктивно трехфазные электродвигатели состоят из:

    • Статора с магнитопроводом;
    • Ротора с валом;
    • Обмоток.

    В зависимости от типа двигателя встречаются модели с короткозамкнутым или фазным ротором. В одних ротор вращается только за счет электромагнитного поля, наводимого от обмоток статора, в других, вращение вала получает усилие от поля ротора при протекании тока в его обмотках. Для включения трехфазных двигателей необходимо разобраться с тем, как фазы обмоток соединяются между собой.

    Соединение ротора с реостатом во время включения

    Метод подходит для включения в работы моторов с фазным ротором. Если роторная цепь включает в себя реостат, то активное сопротивление повышается. При этом точка К на рисунке а ниже перемещается ближе к О и обозначается К`. Это не приводит к уменьшению Ммакс, зато обеспечивает повышение Мпуск. Вместе с этим критическое скольжение увеличивается, и зависимость момента от s смещается к зоне больших скольжений. Число же оборотов смещается в зону меньших вращательных частот (рисунки б и в).

    Обычно реостат, используемый для пуска мотора, имеет от 3 до 6 ступеней (смотрите рисунок а ниже). Пусковое сопротивление плавно уменьшается, что обеспечивается большой Мпуск. Изначально мотор приводится в ход по четвертой характеристике, проиллюстрированной на рисунке б. Она соответствует сопротивлению запускающего реостата и обеспечивает максимальную пусковую мощность.

    Вращающий момент (Мвр) уменьшается с ростом оборотов. При некотором минимальном значении необходимо отключить часть реостата, чтобы Мвр возрос снова до максимального (смотрите третью характеристику). Но обороты растут, поэтому Мвр снова уменьшается. Тогда отключается еще одна часть реостата, и начинается работа по второй характеристике. Когда реостат двигателя с фазным ротором отключают вовсе, пусковой процесс завершается. Мотор продолжает работу по характеристике 1.

    Запуск в ход таким методом характеризуется изменением Мвр от максимального до минимального значения. Сопротивление в данном случае уменьшается ступенчато по ломаной кривой линии (выделена жирным на графике). Выключение частей реостата осуществляется автоматически или вручную.

    Преимущество запуска электродвигателя с фазным ротором с использованием реостата заключается в возможности включать его при Мпуск, близком к Ммакс. Пусковые токи при этом минимальны. Изменение силы тока проиллюстрировано на рисунке в.

    Недостатков хватает. Во-первых, это сложность включения. Во-вторых, это необходимость использования совсем не дешевых моторов с фазным ротором. Характер работы хуже, чем у аналогов с короткозамкнутым ротором при мощности одинакового значения – это третий минус. Это объясняет, почему электродвигатели с фазным ротором используют преимущественно в случае возникновения сложностей с запуском других двигателей.

    Схемы подключения обмоток двигателя

    В трехфазных асинхронных электродвигателях применяется два варианта соединения – в звезду и треугольник. В трехфазных асинхронных электрических машинах, в зависимости от модели, можно реализовать схему:

    • Звезда;
    • Треугольник;
    • Звезда и треугольник.

    Простейший способ определения возможностей конкретного асинхронного электромотора – посмотреть на шильд (металлическая пластина с техническими параметрами). На них обозначается в том числе и номинал рабочего напряжения для соответствующего соединения. Здесь может указываться обозначение только для звезды, только для треугольника или и тот и другой вариант одновременно, пример такой маркировки приведен на рисунке ниже:

    Варианты подключения

    Трехфазные двигатели имеют отличные характеристики, довольно широкий модельный ряд и применяются в самых разнообразных устройствах. Поэтому их применяют как в промышленных устройствах с трехфазным питанием, так и в бытовых однофазных электроустановках. Далее разберем оба варианта подключения электрических машин.

    В однофазную сеть

    Конструктивная особенность трехфазного агрегата, в отличии от однофазных асинхронных двигателей, состоит в необходимости сдвига фаз в обмотках, иначе вращения вала не будет происходить. Чтобы изменить ситуацию одну фазу разделяют для всех трех обмоток, в две из которых включаются дополнительная индуктивность и пусковая емкость. Которые и обеспечивают сдвиг тока и напряжения относительно напряжения в сети. Индуктивность позволяет осуществить сдвиг напряжения в отрицательную область до -90°, а вот однофазный конденсатор, наоборот, в положительную до +90°.

    Графически функция отставания напряжения от тока будет выглядеть следующим образом:


    Изменение тока и напряжения на емкости и индуктивности

    Однако на практике смещение обеспечивается только емкостными элементами, которые включаются в цепь электроснабжения одной из обмоток, а две другие запускаются между фазным и нулевым проводом. Схема подключения трехфазного двигателя в однофазной цепи приведена на рисунке ниже:


    Схема включения в однофазную сеть

    Как видите на рисунке, от фазного провода делается отпайка, содержащая конденсаторный однофазный магазин из двух элементов, один для пуска C2, второй для постоянной работы C1. При нажатии кнопки пуска происходит одновременное замыкание контактов SA1 и SA2, но после создания достаточного момента и начала вращения SA1 отбрасывается и выводит C1 из цепи, оставляя C2. Мощность, при такой схеме включения двигателя, снижается до 30 – 50%.

    Расчет конденсаторного пуска производится по формуле:

    Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

    Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

    Пусковой конденсатор используется только в нагруженном пуске, поэтому в легком запуске его можно не применять. Тогда вместо емкости пускового будет задействоваться рабочий.

    В трёхфазную сеть

    В трехфазной сети, несмотря на наличие необходимого типа питающего напряжения, всегда используется магнитный пускатель для приведения двигателя во вращение. Производить запуск без пускателя или контактора довольно опасно, поэтому они являются неотъемлемым элементом.


    Схема включения в трехфазную сеть

    На рисунке выше приведена обычная схема подключения двигателя к трехфазной сети, которая работает по такому принципу:

    • подача напряжения на двигатель от сети производится через рубильник 1.
    • далее, при включении кнопки пуска 6 осуществляется питание катушки контактора 4, которая притягивает силовые контакты пускателя 3;
    • после чего двигатель начинает вращение, а пусковая кнопка 6 шунтируется через повторитель 5;
    • для остановки трехфазного двигателя используется кнопка Стоп – 7, находящаяся в нормально замкнутом положении;
    • защита двигателя от перегрузки контролирует токовую нагрузку в сети и при возникновении угрозы размыкает контакты 2.

    Источник

    Прямой пуск

    Подразумевает подключение намоток статора к электросети без «посредников». Подходит моторам с короткозамкнутым ротором. Это двигатели небольшой мощности, у которых при подключении напрямую к электросети статорных обмоток, образующимися пусковыми токами не вызывается перегрев, способный вывести технику из строя.

    В асинхронных двигателях соотношение индуктивности обмоток к их сопротивлению (L/R) небольшое. И оно тем меньше, чем меньше мощность устройства. Поэтому во время запуска образующийся свободный ток быстро затухает, и им можно пренебречь. Брать в учет будет только ту силу тока, которая установилась в результате переходного процесса.

    Ниже на рисунке (а) представлена схема магнитного пускателя, обозначенного буковой К. Технически это электромагнитный выключатель, часто применяемый при запуске электродвигателей с короткозамкнутым ротором. Он необходим для автоматического разгона по естественной механической характеристике (обозначим М) от начала запуска (точка П) до момента, когда М станет равным моменту сопротивления (Мс).

    На картинке (б) представлен график зависимости пускового тока от начального момента. Исходя из него, ускорение разгона равно разности абсцисс графиков М и М(с). В таком случае, если Мпуск будет меньше Мс, то разогнаться у электродвигателя не получится. Чтобы получить оптимальное для разгона значение Мпуск для мотора с короткозамкнутым ротором используйте формулу (коэффициент скольжения s равен единице):

    Отношение Мпуск к номинальному (Мном) – это величина, определяемая как кратность начального момента. Обозначается kпм. Коэффициент для двигателей с короткозамкнутым ротором входит в диапазон от 1 до 1,8 и устанавливается ГОСТом.

    Пример. Если kпм=1,4, а Мном=5000 Н*м, то прямой запуск должен начинаться с Мп = 7000 Н*м.

    Внимание! Нельзя превышать установленные ГОСТом нормы. Это ведет к повышению активного сопротивления на вращающемся элементе мотора.

    Прямой запуск двигателя обладает преимуществами:

    • Дешевизна;
    • Простота;
    • Минимальный нагрев обмоток при запуске.

    Недостатки метода:

    • Величина Мпуск составляет до 300% от Мном;
    • Пусковой ток составляет до 800% от номинального (смотрите графики снизу).

    Даже с перечисленными недостатками прямой запуск остается наиболее предпочтительным для асинхронных электродвигателей с короткозамкнутым ротором, т.к. обеспечивает высокие энергетические показатели.

    Схема управления реверсивным магнитным пускателем

    Магнитные пускатели (МП) представляют собой коммутационные устройства, предназначенные для дистанционного запуска электрических двигателей и другого электрооборудования.

    По своему устройству, магнитный пускатель аналогичен электромагнитному реле, но при этом способен осуществлять подключение и отключение трёхфазной нагрузки. В основе конструкции МП находится Ш – образный магнитный сердечник, набранный из листов электротехнической стали.

    Магнитный сердечник разделён на две половины, одна из которых неподвижно закреплена на основании устройства, вторая подвижна. В обесточенном состоянии подвижная часть магнитопровода под воздействием пружины отодвинута от неподвижной части, образуя воздушный зазор.

    На центральном стержне неподвижной части сердечника расположена катушка, с помощью которой осуществляется управление подключением электромагнитного пускателя.

    На движущемся магнитопроводе закреплены контактные мостики. При срабатывании магнитного пускателя мостики, перемещаясь вместе с магнитопроводом замыкают неподвижные контактные группы, установленные на стационарной, остающейся неподвижной части корпуса МП.

    Срабатывание устройства происходит при подключении напряжения к катушке управления магнитного пускателя. Под воздействием намагничивающей силы подвижная часть магнитного сердечника притягивается к стационарной. При этом происходит замыкание силовых контактных групп, и рабочее напряжение подаётся на выходные клеммы устройства.

    После обесточивания катушки, подвижный магнитопровод отходит под воздействием возвратной пружины, размыкая контакты.

    Особенностью характеристики контактной группы магнитного пускателя является образование двойного разрыва в цепи каждого полюса, что благоприятно сказывается на способности устройства гасить электрическую дугу. Контакты находятся под крышкой, одновременно служащей дугогасительной камерой.

    Кроме основных контактных групп, обеспечивающих подключение и отключение силовых цепей полюсов, МП оборудованы вспомогательной контактной группой, которую называют блок – контактами. Вспомогательные контактные устройства используются в схемах управления, сигнализации и блокировки.

    ПОДКЛЮЧЕНИЕ МАГНИТНОГО ПУСКАТЕЛЯ

    Типовая схема подключения асинхронного двигателя через магнитный пускатель, предназначена для пуска и останова двигателя с короткозамкнутым ротором и содержит кнопочный пост. Кнопочным постом называются размещённые в одном корпусе кнопки «Пуск» и «Стоп».

    В типовой схеме управления задействованы:

    • нормально открытая контактная группа кнопки «Пуск»;
    • нормально закрытая контактная группа кнопки «Стоп»;
    • нормально открытый блок – контакт МП.

    Подключение катушки управления (К) к напряжению питания осуществляется через последовательно соединённые контактные устройства кнопок «Стоп» и «Пуск». Кнопочный контакт «Пуск» зашунтирован нормально открытой вспомогательной контактной группой МП. Работает схема следующим образом.

    При нажатии кнопки «Пуск» замыкаются её контактные пластины и через замкнутые контакты «Стоп» происходит подключение катушки управления к питающему напряжению (Uупр). Магнитный пускатель срабатывает, замыкая основные цепи (К2).

    Замыкающийся вспомогательный контакт (К1) шунтирует контакты кнопки «Пуск». В результате этого, подключение напряжения к катушке производится через остающийся замкнутым контакт кнопки «Стоп» и замкнувшийся при срабатывании МП его блок-контакт. Кнопка «Пуск» при её отпускании размыкается.

    Таким образом, МП остается подтянутым благодаря своему же замкнувшемуся контакту. Это явление на жаргоне электриков называется самоподхват. При отсутствии шунтирующих блок-контактов, осуществляющих самоподхват, устройство будет отключаться при отпускании кнопки «Пуск». То есть, подключение будет происходить только во время нажатия кнопки.

    Отключение устройства осуществляется нажатием «Стоп». При этом размыкается нормально закрытый контакт этой кнопки и питание катушки управления прерывается.

    Кнопочные посты устанавливаются в непосредственно близости от управляемого двигателя. Запуск двигателя также может осуществляться с пульта управления технологическим процессом. В этом случае на панели оператора установлены ключи управления всеми механизмами данного процесса.

    ПОДКЛЮЧЕНИЕ В РЕВЕРСИВНОМ РЕЖИМЕ

    Схема реверсивного магнитного пускателя необходима для подключения двигателей обеспечивающего их вращение, как в прямом, так и в обратном (реверсивном) направлении.

    Типичный пример использования реверсивного пуска – внутрицеховые грузоподъёмные механизмы. В реверсивном режиме работают двигатели, выполняющие подъём и опускание груза, а также двигатели, перемещающие таль или кран-балку по цеху.

    Для того, чтобы заставить асинхронный двигатель вращаться в реверсивном направлении, необходимо произвести смену чередования фаз на его выводах. Для реализации реверсивной схемы включения необходимо подключить два магнитных пускателя.

    К входным клеммам одного из них производится подключение трёх фаз в прямой последовательности, на вход другого – в обратной (реверсивной) последовательности. Выходные клеммы устройства соединены параллельно и подключены к выводам асинхронного двигателя.

    Для реверсивного управления используется кнопочный пост из трёх кнопок – «Стоп», «Вперёд» и «Назад». Нажатие кнопки «Вперёд» подключает к двигателю прямую последовательность фаз, «Назад» — реверсивную, обратную. Одновременное включение прямого и реверсивного магнитных пускателей недопустимо, так как приводит к междуфазному короткому замыканию.

    Для увеличения надёжности реверсивной схемы дополнительно применяют механическую блокировку устройства от одновременного включения реверсивных магнитных пускателей. В цепях запуска прямого и реверсивного пускателей используется самоподхват, аналогично типовой схеме.

    Для смены направления вращения двигателя необходимо сначала нажать «Стоп», после чего выбрать требуемое направление. Термин «реверсивный» часто употребляют в качестве характеристики разновидности МП. Если быть точным, то реверсивным является не сам МП, а определённая схема управления двумя устройствами, позволяющая осуществлять реверсивный пуск двигателей.

    РАЗНОВИДНОСТИ УСТРОЙСТВ

    Модели магнитных пускателей классифицируются по следующим параметрам:

    • рабочий ток, коммутируемый основными контактами;
    • рабочее напряжение нагрузки;
    • напряжение и род тока катушки управления;
    • категория применения.

    Номинальные токи аппаратов составляют стандартизованный ряд значений от 6,3 А до 250 А. Этот ряд соответствует устаревшей классификации этих коммутационных приборов по величине, согласно которой все МП подразделялись на величины от нулевой (0) до седьмой (7).

    Каждому значению величины МП соответствовал определённый номинальный ток. Например, нулевой величине соответствует значение 6,3 ампера, первой – 10 ампер и так далее.

    С появлением большого числа зарубежных МП, распространённость классификации по величинам стала угасать. Действительно, логику введения дополнительного понятия величины МП понять трудно. Типичная «бритва Оккама». При выборе аппарата в первую очередь нас интересует его номинальный ток, о нём и следует говорить.

    МП относятся к низковольтным устройствам, рассчитанным на подключение в сетях напряжением до 1000 вольт. В этом сегменте имеется два стандартных напряжения – 380 В и 660 В. На какое напряжение рассчитана конкретная модель указывается в техническом паспорте устройства, а также написано на корпусе.

    Гораздо более разнообразен ряд напряжений, на подключение к которым рассчитана катушка управления. Это объясняется тем, что МП работают в различных системах управления и автоматики.

    В этом случае подключение напряжения к катушке управления производится не просто от одной или двух фаз питающей электросети. В системах автоматики сформированы специальные цепи оперативного тока, которые бывают различными по уровню напряжения и роду тока.

    Катушки управления коммутационных аппаратов могут быть рассчитаны на подключение к переменному напряжению в диапазоне от 12 до 660 вольт или к постоянному от 12 до 440 вольт.

    В соответствии с ГОСТ МП делятся на 12 категорий (от AC–1 до AC–8b), в зависимости от характера нагрузки переменного тока, подключение которой они производят. Наибольшее распространение имеют категории AC-3 и AC-4, предназначенные для подключения двигателей с короткозамкнутым ротором.

    МП могут различаться также комплектацией, внешним оформлением. К распространённым вариантам относятся модели, размещённые в корпусе, снаружи которого расположены кнопки «Пуск» и «Стоп». В комплект поставки магнитного пускателя может входить тепловое реле защиты.

    © 2012-2019 г. Все права защищены.

    Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

    Для переключения вращения электропривода в прямом и обратном направлении применяется схема реверсивного пускателя. Ниже рассмотрены пусковые и рабочие режимы, защитные мероприятия. Дополнительные рекомендации предотвратят ошибки при монтаже и аварии в процессе эксплуатации.

    Нереверсивное подключение электродвигателя

    Сначала следует рассмотреть относительно простой вариант, когда электрический двигатель выполняет свои функции с вращением только в одном направлении. Такие решения вполне достаточны для насосных станций, компрессорных установок.

    В этом варианте подключен трехфазный источник питания 220 V последовательно через автомат и магнитный пускатель «КМ». Реле «Р» в нулевой цепи обеспечивает защиту при чрезмерном нагреве силового агрегата. Второй контакт обмотки пускателя подсоединен к одной из фаз «С» через плавкий предохранитель «FU», ограничивающий силу тока. Двумя кнопками устанавливают соответствующие режимы: «Пуск» и «Стоп».

    Нереверсивный запуск

    Включение автомата – подготовительный этап. Электродвигатель начинает вращение после нажатия кнопки «Пуск». Это действие подключает питание обмоток. Силой магнитной индукции якорь перемещается в нужное положение. Комбинированный контактор пускателя подает напряжение на рабочие обмотки. В этом положении шунт замыкает вспомогательную цепь, что сохраняет питание силового агрегата в рабочем режиме при отжатой кнопке.

    Остановка

    Для остановки нажимают «Стоп». В этом положении отключается питание катушек пускателя. Пружина перемещает якорь в исходное положение с одновременным размыканием силовых контактов.

    Защита двигателя при нереверсивном пуске

    При попадании в механический привод посторонних предметов ток в обмотках двигателя увеличивается. Нагрев изгибает биметаллические элементы теплового реле. На определенном уровне повышения температуры цепь нулевого провода разрывается. Контактные группы «КМ» возвращаются в исходное положение. Плавкий предохранитель выполняет свои функции при коротком замыкании между витками катушки индукции магнитного пускателя.

    Устройство магнитного пускателя для реверсного пуска

    Стандартный пускатель состоит из следующих компонентов:

    • сердечник с закрепленной на нем катушкой индукции;
    • якорь с механизмом перемещения контактных групп;
    • корпус, обеспечивающий целостность конструкции вместе с защитой от внешних воздействий.

    При подаче (отключении) тока питания движением якоря замыкаются (отсоединяются) соответствующие контакты силовых цепей. Реверсивные модификации создают из двух обычных пускателей, установленных на одной монтажной панели. Дополнительными проводниками обеспечивается блокировка, препятствующая одновременному включению двух изделий.

    К сведению. В некоторых моделях блокировка организована с применением специальных механических приспособлений.

    В этом варианте используют отдельные клавиши, которые инициируют вращение ротора в прямом и обратном направлении. Первый рабочий режим сопровождается шунтированием контактной группой «КМ1» соответствующей цепи. Если нажать после этого клавишу «Назад», ничего не произойдет.

    Для активизации обратного вращения следует сначала остановить двигатель, чтобы исключить поломку. Нажатием «Стоп» (С – на рисунке ниже) отключают питающее напряжение 380 V. После можно подать ток в нужные обмотки через силовые контактные группы «КМ2».

    Как подключается реверсивный пускатель

    Такие пускатели применяют в станках и других устройствах, где необходимо попеременное вращение двигателя в разных направлениях. Принцип подключения однофазной сети аналогичен рассматриваемому варианту. В обоих случаях устанавливают плавкие предохранители для предотвращения повреждения цепей сильными токами.

    Как происходит включение

    На первой стадии основной выключатель «QF» обеспечивает подачу трех фаз на все входные контакты двух пускателей. Разомкнутая цепь управления отключает питание обмоток двигателя.

    Как происходит переключение

    Нажатием второй клавиши «Пуск-2» подают ток в обмотки для вращения двигателя в обратном направлении. Как видно по схеме, одновременное включение двух устройств невозможно.

    Реверсивное подключение трехфазного двигателя

    В остановленном положении система управления готова к работе. Однократным нажатием «Пуск-1» подают питание на обмотки для вращения ротора в прямом направлении. Шунт поддерживает целостность электрической цепи после возврата кнопки пружиной в исходное положение.

    Переключение системы при противоположном вращении

    Первый пускатель отключается, так как электромагнитный привод второго разрывает цепь контактной группы «КМ2» (схема реверс).

    Изменение поворотного движения

    Изменение режимов через остановку предотвращает быструю подачу напряжения на другие обмотки электродвигателя. Действие с определенной временной задержкой предотвращает механические повреждения, исключает сильные броски напряжения при подключении к источнику нагрузки с индуктивными характеристиками.

    Схема подключения

    Далее подробно рассмотрена однолинейная схема подключения реверсивного магнитного пускателя.

    После включения силового автомата QF питание поступает на верхнюю группу контактов пускателей. Цепь управления подключается к фазе «А» и нейтральному проводнику, но находится в разомкнутом состоянии, которое поддерживается соответствующим положением элементов: SB2 (3), КМ 1.1. (2.1.).

    Работа цепей управления при вращении двигателя влево

    Однократное нажатие кнопки «Влево» подает питание на катушку для перемещения якоря и замыкания контактов КМ2. Шунт КМ 1.1. поддерживает целостность электрической цепи в рабочем режиме.

    Работа цепей управления при вращении двигателя вправо

    Для активации противоположного вращения меняют местами две фазы на обмотках двигателя. Предварительно нажимают «Стоп» (SB1), так как без этой промежуточной операции включить второй реверсивный магнитный пускатель не получится.

    Силовые цепи

    На следующих рисунках показано, как именно переключаются обмотки в схеме реверсивного пуска для вращения ротора в одну и другую стороны. Фаза «А» остается на том же месте. Меняются местами «В» и «С».

    Защита силовых цепей от короткого замыкания или «защита от дурака»

    Если переключение пускателей выполнить без перерыва, две фазы будут одновременно поданы на силовые клеммы КМ1. Короткое замыкание повредит конструкцию. Для предотвращения подобных ситуаций применяют отдельные контактные группы (КМ 2.2. и КМ1.2.), которые устанавливают перед катушками КМ1 и КМ2. При подключении этих устройств, кроме соответствия по нагрузкам, отдельное внимание следует уделить корректному монтажу и защитным мероприятиям.

    Следует учитывать особенности решения разных практических задач. Так, асинхронный двигатель подключают через пусковой конденсатор. Обеспечить функциональность пускателя от источника постоянного напряжения можно. Однако в этом случае понадобится ограничить силу тока специальным резистором, чтобы предотвратить повреждение катушки. Придется подобрать оптимальное электрическое сопротивление для сохранения работоспособности привода якоря.

    Видео

    Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

    В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

    В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

    Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

    Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

    — 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

    — поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

    — тепловое реле Р, которое служит для защиты от перегрузок.

    Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

    Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

    Катушки магнитных пускателей с одной стороны подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

    Кнопочный пост состоит из 3-х кнопок:

    1) нормально-разомкнутой кнопки ВПЕРЕД ;

    2) нормально-разомкнутой кнопки НАЗАД ;

    3) нормально-замкнутой кнопки СТОП .

    К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

    Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

    Работа схемы

    Переводим рычаг трехполюсного автоматического выключателя во включенное положение , его контакты замыкаются, схема готова к работе.

    Запуск вперед

    Нажимаем кнопку ВПЕРЕД . Цепь питания обмотки магнитного пускателя КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД .

    Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя.

    Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

    Отпускаем кнопку ВПЕРЕД , она возвращается в исходное нормально-разомкнутое состояние. Теперь питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

    Останов двигателя из положения ВПЕРЕД

    Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП . Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

    Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

    Отпускаем кнопку СТОП . Она возвращается в исходное, нормально-замкнутое положение. Но поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

    Реверс двигателя

    Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД .

    Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД . Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

    На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

    Отпускаем кнопку НАЗАД . Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

    Останов двигателя из положения НАЗАД

    Для останова повторно нажимаем кнопку СТОП . Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

    Отпускаем кнопку СТОП , схема готова к следующему пуску.

    Защита от перегрузок

    Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В, схема подключения будет следующая.

    Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

    Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

    Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

    Не забудьте посмотреть новые статьи сайта.

    Рекомендую также прочитать:

    Запуск двигателя с реверсом — Морской флот

    Автор admin На чтение 20 мин Просмотров 1 Опубликовано

    Новости и информация

    Posted By: beron 26.01.2019

    Реверсивный пуск двигателя необходим для того, чтобы обусловить вращение в обе стороны. Принцип встречается во многих устройствах: сверлильные, токарные, фрезерные станки. А кран-балки? Там все приводы работают в реверсивном режиме для обеспечения возможности хода моста вперед-назад, тельфера влево-вправо, лебедки вверх–вниз. И это далеко не все, где применяется такой режим работы. Именно о схеме реверсивного пуска двигателя можно прочитать в статье ниже.

    Чем обусловлено реверсивное включение трехфазного двигателя

    Для начала разберемся поверхностно, чем обусловлен реверс? Он обусловлен сменой 2-х проводов местами, как правило, в клейменной коробке двигателя.

    На фото: образец клейменной коробки с подключением «звезда».

    На рисунке выше мы видим, что начала обмоток (С1, С3, С5) свободны для включения в сеть. Концы обмоток (С2, С4, С6) соединены вместе.

    На фото: подключение с прямым включением двигателя в сеть.

    На рисунке цветными кругами обозначены контакты для подключения фаз. Желтым цветом обозначена фаза А, и подведена она к контакту С1, зеленым — фаза В (С3), желтым — фаза С (С5).

    Соблюдая вышесказанные условия, мы сменим любые 2 фазы местами и подключим следующим образом. Фаза А остается на своем месте, контакте С1, фаза В ставится на контакт С5, а фаза С ставится на контакт С3.

    На фото: подключение «звезда» с реверсивным включением.

    Таким образом, выходит, что нам необходимо 2 пускателя. Один пускатель необходим для обеспечения прямого включения, а второй — для реверсивного включения.

    Определение режима работы

    Теперь определимся, как будет работать двигатель: постоянно включен и отключается при нажатии кнопки «стоп». Как, к примеру, в сверлильном, токарном, фрезерном станках. Или же нам нужно, чтобы он работал при удерживании кнопки «пуск-вправо» или «пуск-влево», как, к примеру, в лебедках, электротележках, кран-балках.

    Для первого случая необходимо составить схему реверсивного пуска асинхронного двигателя таким образом, чтоб осуществлялось самошунтирование пускателя, а также защитить от случайного включения второго пускателя.

    Схема реверсивного включения с блокировкой, и защитой

    Описание работы вышеуказанной схемы

    Разберем работу принципиальной схемы реверсивного пуска двигателя. Ток поступает от фазы С на нормально замкнутую общую кнопку КнС, кнопка «стоп». После чего проходит через общее реле тока, которое защитит двигатель от перегрузок. Затем при нажатии КнП «право» ток проходит через нормально замкнутый контакт пускателя КМ2. Поступая на катушку пускателя КМ1, сердечник втягивается, замыкая силовые контакты, разрывая питание на пускатель КМ2.

    Так необходимо делать для того, чтобы разорвать питание второго пускателя и защитить цепи от короткого замыкания. Ведь реверс обеспечен тем, что 2 любые фазы меняются местами. Таким образом, если при включенном КМ1 нажать кнопку КнП «лево», пуск не произойдет. Самошунтирование обеспечено вспомогательным контактом, изображенным под КнП «право». Когда пускатель включен, замкнут и этот контакт, обеспечивая питание на катушку пускателя.

    Для того чтобы остановить двигатель, необходимо нажать КнС («стоп»), вследствие чего катушка пускателя потеряет питание и придет в нормальное состояние. Теперь, когда КМ1 пришел в нормальное состояние, он замкнул нормально замкнутую группу вспомогательных контактов, благодаря чему катушка пускателя КМ2 снова может получать питание, и стало возможно запустить вращение в противоположную сторону. Для этого нажмем КнП «лево», тем самым включая пускатель КМ2. Получая питание, катушка втягивает сердечник и замыкает силовые контакты, включая питание на двигатель, сменив 2 фазы местами.

    Разбирая работу данной схемы реверсивного пуска двигателя, можно заметить что шунтирование обеспечено нормально разомкнутым вспомогательным контактом, изображенным под кнопкой КнП «лево», и оно разрывает питание на пускатель КМ1, делая невозможным его включение.

    Выше была рассмотрена схема для трехфазного привода. В самом начале схемы сразу после КнС можно увидеть нормально замкнутый контакт от реле тока. В случае потребления двигателем чрезмерного тока, реле срабатывает, разрывая питание на всю цепь управления. Все, что работает в цепи управления, потеряет питание, это и спасет двигатель от выхода из строя.

    Подробнее о взаимоблокировке

    Электрическая схема реверсивного пуска асинхронного двигателя требует наличия взаимоблокировки. Стоит понимать, что для смены направления вращения асинхронного двигателя нужно сменить любые 2 фазы местами. Для этого входы пускателей соединяются прямо, а выход соединяется накрест любые 2 фазы. В случае включения обоих пускателей одновременно произойдет короткое замыкание, которое, скорее всего, спалит силовые контактные группы на пускателях.

    Для того чтобы избежать короткого замыкания при монтаже реверсивного пуска двигателя, нужно исключить одновременную работу обоих пускателей. Именно поэтому необходимо применять схему взаимоблокировки. При включенном первом пускателе разрывается питание на второй пускатель, чем и исключается его случайное включение, к примеру, одновременно нажаты обе кнопки «пуск».

    Если так вышло, что при нажатии кнопки, которая должна включить «вращение вправо», а двигатель вращается влево, и, наоборот, при нажатии «вращение влево» двигатель вращается вправо, не стоит собирать заново всю схему. Просто поменяйте местами на вводе 2 провода — вот и все, проблема решена.

    Может случиться так, что на вводе это сделать невозможно по каким-либо обстоятельствам. В таком случае смените местами 2 провода в клейменной коробке на двигателе. И снова проблема решена. Кнопка, отвечающая за вращение вправо, запустит вращение вправо, а кнопка, отвечающая за вращение влево, запустит вращение влево.

    Монтажная схема реверсивного пуска двигателя асинхронного (однофазного)

    Выше показана схема реверсивного подключения однофазного двигателя. Данная схема реверсивного пуска двигателя намного проще предыдущей. Здесь используется 3-позиционный выключатель.

    Описание схемы реверсивного подключения однофазного двигателя

    В позиции 1 сетевое напряжение передается на левую ножку конденсатора, благодаря чему двигатель вращается, условно говоря, влево. В положении 2 питание поступает на правую ножку конденсатора, благодаря чему двигатель вращается, условно выражаясь, вправо. В среднем положении двигатель остановлен.

    РТ здесь устроено намного проще. Как видим, и здесь исключено одновременное включение 3-позиционным выключателем. Для тех, кого интересует вопрос, а что же, все-таки, произойдет при одновременном включении, ответим просто: двигатель выйдет из строя.

    Схема реверсивного включения без самошунтирования

    Подробнее о схеме управления пуском реверсивного асинхронного двигателя мы расскажем вам так. При нажатии кнопки КнП «право» питание поступает через нормально замкнутый контакт КнП «лево», а благодаря механическому соединению разрывает питание пускателя КМ2, исключая возможность включения КМ2 при одновременном нажатии 2-х кнопок. Далее ток течет к нормально замкнутому контакту пускателя КМ2 на катушку пускателя КМ1, вследствие чего он срабатывает, включая питание на двигатель. Реверс включается КнП «лево», которая так же своими нормально замкнутыми контактами разрывает питание пускателя КМ1, а нормально разомкнутым включает питание пускателя КМ2. Тот, в свою очередь, включает питание на двигатель, но со сменой 2-х фаз местами.

    Обратим внимание на схему управления. А точнее, на взаимоблокировку. Она здесь устроена немного по-другому. Питание одного пускателя, мало того что заблокировано нормально замкнутым контактом противоположного пускателя, так еще и блокируется нажатием кнопки. Это сделано для того, чтоб при одновременном нажатии 2-х кнопок за те доли секунды, пока пускатель не разорвет питание второго пускателя, они не включились одновременно.

    Для однофазного двигателя схема

    При нажатии и удержании одной кнопки происходит разрыв питания на вторую кнопку, питание подходит к 1-й ножке конденсатора. При нажатии второй кнопки питание разрывается после первой кнопки и поступает на 2-ю ножку конденсатора. РТ все так же защищает двигатель от перегрузок.

    Заключение

    В заключение можно отметить, что, где бы вы ни применяли подобные схемы, обращайте внимание на взаимоблокировку. Это та необходимая мера, которая защитит оборудование от поломки. Кроме того, нужно правильно подбирать пускатели для трехфазных вариантов, и кнопки для однофазных вариантов. Ведь неправильно подобранное оборудование по мощности, току и напряжению, быстро придет в негодность, еще и может вывести из строя двигатель.

    Цель:Сформировать умение собирать схему реверсирования асинхронного электродвигателя с короткозамкнутым ротором.

    По окончании выполнения лабораторной работы студент должен

    знать:

    – элементный состав схемы реверсирования асинхронного электродвигателя с короткозамкнутым ротором;

    – назначение, устройство и принцип действия каждого элемента схемы;

    – безопасные правила эксплуатации;

    уметь:

    – собирать схему пуска, реверсирования и останова асинхронного электродвигателя с короткозамкнутым ротором.

    Основные теоретические положения:

    Схема реверса приведена на рисунке 28.

    При включении автоматического выключателя QF напряжение подается к цепи управления и к разомкнутым силовым контактам IKMI – IKM3, 2KMI – 2KM3. При нажатии кнопки ISBI, механически связанной с кнопкой ISB2, образуется цепь: точка С, катушка IKM, кнопка ISB4, точка В. По катушке электромагнитного пускателя IKM протекает ток, замыкаются его контакты IKMI –IKM3 в силовой цепи. На двигатель подается напряжение, он начинает вращаться в прямом направлении. Кроме того, замыкается контакт IKM5 в цепи управления, поэтому, независимо от состояния кнопочного выключателя ISBI, катушка IKM остается под напряжением.

    Для реверса АД необходимо изменить чередование фаз питающего напряжения, т.е. переключить два линейных провода, подключенных к обмотке статора. Эту функцию выполняют силовые контакты 2KMI – 2KM3. При нажатии кнопки 2SBI, технически связанной с кнопкой 2SB2, размыкается предыдущая цепь и образуется новая цепь: точка С, катушка 2KM, кнопка 2SBI, кнопка 2SB2, контакт 3КК – 4КК, контакт IKM4, контакт IB4. Ток протекает по катушке 2КМ, а катушка IKM обесточивается, силовые контакты IKMI – IKM3 размыкаются, а контакты 2KMI – 2KM3 замыкаются, двигатель тормозится и разгоняется в обратном направлении. При этом контакт 2КМ5 находится в замкнутом состоянии, и ток через катушку 2КМ протекает, независимо от состояния кнопки 2SBI.

    В случае недопустимого нагрева двигателя при вращении в прямом или обратном направлении размыкаются контакты теплового реле соответственно IKK-2KK или 3KK – 4KK, катушка IKM или 2КМ обесточивается, двигатель отключается от сети. Для остановки двигателя нажимают кнопку ISB4, цепь управления обесточивается, и силовые контакты IKMI – IKM3 или 2KMI – 2KM3 размыкаются.

    Рисунок 28 – Реверсивная схема пуска асинхронного двигателя с короткозамкнутым ротором

    Монтажная схема для лучшего понимания кнопочного поста приведена на рисунке 29.

    Рисунок 29 – Монтажная схема к рисунку 28

    Порядок выполнения работы:

    1. Выполнить задание лабораторной работы.

    2. Составить отчет.

    3. Ответить на контрольные вопросы.

    Ход работы:

    Рабочий инструмент: отвертка плоская, бокорезы, монтажный нож, кабель (провод) одножильный, круглогубцы, плоскогубцы, трехфазная вилка с питающим шнуром (рисунок 30).

    Рисунок 30 – Рабочий инструмент для сборки схемы

    Необходимые машины и аппараты для реализации схемы приведены на рисунке 31.

    Рисунок 31 – Элементный состав схемы

    Обозначения элементов схемы приведены на рисунке 32.

    Рисунок 32 – Элементы схемы реверса асинхронного электродвигателя

    Расшифровка кнопок (рисунок 33):

    Рисунок 33 – Расшифровка кнопок кнопочного поста

    Виды контактов приведены на рисунке 34.

    Рисунок 34 – Виды контактов

    Например, контакты на магнитном пускателе ПМЕ-211 (рисунки 35, 36):

    Рисунок 35 – Виды контактов магнитного пускателя

    Рисунок 36 – Виды контактов магнитного пускателя

    Такой же контакт стоит в кнопке «пуск» и «стоп» (рисунки 37, 38).

    Рисунок 37 – Виды контактов кнопок

    Рисунок 38 – Виды контактов кнопок

    Технологический процесс сборки схемы реверса асинхронного двигателя (АД) с короткозамкнутым ротором.

    Цепь управления:

    1. Питающий кабель присоединяем с фазы «В» на нормально замкнутый контакт (3) кнопки SB3 (рисунки 39-41).

    Рисунок 39 – Сборка питающего кабеля на принципиальной схеме

    Рисунок 40 – Сборка питающего кабеля на монтажной схеме

    Рисунок 41 – Сборка питающего кабеля на стенде

    2. С нормально замкнутого контакта (4) кнопки SB3 присоединить перемычку на нормально разомкнутый контакт (1) кнопки SB2 (рисунки 42-44).

    Рисунок 42 – Сборка перемычки между кнопками на принципиальной схеме

    Рисунок 43 – Сборка перемычки между кнопками на монтажной схеме

    Рисунок 44 – Сборка перемычки между кнопками на стенде

    3. С нормально замкнутого контакта (4) кнопки SB3 присоединить перемычку на нормально разомкнутый контакт (1) кнопки SB1 (рисунки 45-47).

    Рисунок 45 – Сборка перемычки между кнопками на принципиальной схеме

    Рисунок 46 – Сборка перемычки между кнопками на монтажной схеме

    Рисунок 47 – Сборка перемычки между кнопками на стенде

    4. С нормально разомкнутого контакта (2) кнопки SB1 присоединить провод на нормально замкнутый контакт магнитного пускателя КМ2 (рисунки 48-51).

    Рисунок 48 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на принципиальной схеме

    Рисунок 49 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на монтажной схеме

    Рисунок 50 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на стенде

    Рисунок 51 – Нормально разомкнутый контакт пусковой кнопки

    прямого вращения двигателя

    5. С нормально замкнутого контакта магнитного пускателя КМ2 присоединяем провод на катушку К1 магнитного пускателя КМ1 (рисунки 52-54).

    Рисунок 52 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на принципиальной схеме

    Рисунок 53 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на монтажной схеме

    Рисунок 54 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на стенде

    6. С нормально разомкнутого контакта (1) кнопки SB1 присоединяем провод на нормально разомкнутый контакт магнитного пускателя КМ1 (рисунки 55-58).

    Рисунок 55 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на принципиальной схеме

    Рисунок 56 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на монтажной схеме

    Рисунок 57 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на стенде

    Рисунок 58 – Нормально разомкнутый контакт кнопки

    прямого вращения двигателя

    7. С нормально разомкнутого контакта магнитного пускателя КМ1, присоединяем перемычку на нормально замкнутый контакт магнитного пускателя КМ2 (рисунки 59-61).

    Рисунок 59 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на принципиальной схеме

    Рисунок 60 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на монтажной схеме

    Рисунок 61 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на стенде

    8. С нормально разомкнутого контакта (2) кнопки SВ2 присоединить провод на нормально замкнутый контакт магнитного пускателя КМ1 (рисунки 62-65).

    Рисунок 62 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на принципиальной схеме

    Рисунок 63 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на монтажной схеме

    Рисунок 64 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на стенде

    Рисунок 65 – Нормально разомкнутый контакт пусковой кнопки

    9. С нормально замкнутого контакта магнитного пускателя КМ1 присоединяем провод на катушку магнитного пускателя КМ2 (рисунки 66-68).

    Рисунок 66 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на принципиальной схеме

    Рисунок 67 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на монтажной схеме

    Рисунок 68 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на стенде

    10. С нормально разомкнутого контакта (1) кнопки SВ2 присоединить провод на нормально разомкнутый контакт магнитного пускателя КМ2 (рисунок 69-72).

    Рисунок 69 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на принципиальной схеме

    Рисунок 70 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на монтажной схеме

    Рисунок 71 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на стенде

    Рисунок 72 – Нормально разомкнутый контакт пусковой кнопки

    11. С нормально разомкнутого контакта магнитного пускателя КМ2 присоединяем перемычку на нормально замкнутый контакт магнитного пускателя КМ1 (рисунки 73-75).

    Рисунок 73 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на принципиальной схеме

    Рисунок 74 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на монтажной схеме

    Рисунок 75 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на стенде

    12. Закрыть крышку кнопочного поста (рисунок 76).

    Рисунок 76 – Сборка кнопочного поста завершена

    13. Делаем перемычку между катушками К1 и К2 магнитных пускателей КМ1и КМ2 (рисунки 77, 78).

    Рисунок 77 – Сборка перемычки между катушками магнитных пускателей на принципиальной схеме

    Рисунок 78 – Сборка перемычки между катушками

    магнитных пускателей на стенде

    14. От катушки К1 магнитного пускателя КМ1 присоединить провод к замкнутому контакту теплового реле КК (рисунки 79, 80).

    Рисунок 79 – Сборка соединения между магнитным пускателем и тепловым реле на принципиальной схеме

    Рисунок 80 – Сборка соединения между магнитным пускателем и тепловым реле на стенде

    15. С нормально замкнутого контакта теплового реле КК присоединяем провод на фазу «С» (рисунки 81, 82).

    Рисунок 81 – Соединение теплового реле с фазой «С» на принципиальной схеме

    Рисунок 82 – Соединение теплового реле с фазой «С» на стенде

    16. На магнитных пускателях осуществить реверс путём переключения контактов по схеме (рисунки 83, 84).

    Со стороны двигателя:

    Со стороны подключения кнопочного поста:

    Рисунок 83 – Сборка цепей силовых контактов магнитных пускателей на монтажной схеме (подключение к фазам сети)

    Рисунок 84 – Сборка цепей силовых контактов магнитных пускателей на стенде (подключение к фазам сети)

    17. Подключение двигателя с КЗ-ротором фазой «В» к фазе «В» на магнитный пускатель. Фазу «А» и «С» подключаем к выходным контактам теплового реле КК (рисунок 85).

    Рисунок 85 – Подключение двигателя к фазам на стенде

    18. С выходных концов теплового реле КК присоединить провода к фазе «А» и к фазе «С» (рисунки 86, 87).

    Рисунок 86 – Подключение тепловых реле к фазам «А» и «С» сети

    на монтажной схеме

    Рисунок 87 – Подключение тепловых реле к фазам «А» и «С» сети

    19. Подключить трёхфазную вилку к магнитному пускателю на фазы «А», «В» и «С» (рисунки 88-90).

    Рисунок 88 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на монтажной схеме

    Рисунок 89 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на стенде

    Рисунок 90 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на стенде

    20. Проверить правильность сборки схемы реверса асинхронного двигателя и только после этого подать напряжение и запустить двигатель.

    Задание.

    Собрать и запустить схему реверсирования асинхронного электродвигателя с короткозамкнутым ротором по приведенной выше наглядной инструкции.

    Контрольные вопросы:

    1. Приведите примеры электроприводов электроприемников, в которых требуется реверсирование электродвигателя?

    2. Как устроен реверсивный магнитный пускатель?

    3. Как устроен кнопочный пост для реверсивной схемы?

    4. Зачем в схеме используются тепловые реле?

    Лабораторная работа №9

    Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

    Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

    Папиллярные узоры пальцев рук – маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

    Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

    В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

    В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

    Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

    Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

    — 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

    — поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

    — тепловое реле Р, которое служит для защиты от перегрузок.

    Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

    Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

    Катушки магнитных пускателей с одной стороны подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

    Кнопочный пост состоит из 3-х кнопок:

    1) нормально-разомкнутой кнопки ВПЕРЕД ;

    2) нормально-разомкнутой кнопки НАЗАД ;

    3) нормально-замкнутой кнопки СТОП .

    К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

    Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

    Работа схемы

    Переводим рычаг трехполюсного автоматического выключателя во включенное положение , его контакты замыкаются, схема готова к работе.

    Запуск вперед

    Нажимаем кнопку ВПЕРЕД . Цепь питания обмотки магнитного пускателя КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД .

    Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя.

    Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

    Отпускаем кнопку ВПЕРЕД , она возвращается в исходное нормально-разомкнутое состояние. Теперь питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

    Останов двигателя из положения ВПЕРЕД

    Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП . Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

    Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

    Отпускаем кнопку СТОП . Она возвращается в исходное, нормально-замкнутое положение. Но поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

    Реверс двигателя

    Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД .

    Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД . Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

    На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

    Отпускаем кнопку НАЗАД . Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

    Останов двигателя из положения НАЗАД

    Для останова повторно нажимаем кнопку СТОП . Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

    Отпускаем кнопку СТОП , схема готова к следующему пуску.

    Защита от перегрузок

    Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В, схема подключения будет следующая.

    Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

    Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

    Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

    Не забудьте посмотреть новые статьи сайта.

    Рекомендую также прочитать:

    Схема подключения трехфазного электродвигателя на 220 (видео)

    Трёхфазный двигатель незаменим для использования мощных устройств, работающих от сети 220. Устройство на три фазы в разы превосходит однофазный механизм. Правильная схема подключения трехфазного электродвигателя на 220, а также пусковые приборы, обмотки, необходимы для обеспечения высокой эффективности эксплуатации.

    Метод включения электродвигателя на 220 вольт зависит от вида электропусковой системы. Типы соединений бывают следующие:

    Использование магнитных пускателей

    Довольно популярная модель присоединения электромоторов.

    Подсоединение АД через магнитный контактор к сети 220

    L1 –первый провод, L2 – вторая провод, L3 – третья провод, КМ – магнитный пускатель

    Рассмотрим схему включения электродвигателя через магнитный контактор 220 подробней.

    Три провода под напряжением проходят через пускатель. Для управления включением в сеть есть кнопка Пуск. А для выключения используется кнопка Стоп. Кнопки можно вынести на пульт через провода.

    Питание 220 цепи проходит с первого провода, то есть сL1 на нормально замкнутую фазу Стоп.

    Бывают ситуации, когда пускатель не действует из-за подгорания контактов. Если включить Пуск, то произойдёт замыкание цепи питания катушки. Контакты пускателя замыкают, а на двигатель поступают три фазы. Подобные чертежи могут иметь ещё один добавочный контакт. Он называется блокировочный или контакт-самоподхвата.

    Активируя пускатель кнопкой включения блокировочный контакт замыкается. А если он замкнут, то цепь питания катушки пускателя будет замкнутой, даже отжав кнопку пуска. Эксплуатация прибора будет происходить до выключения кнопки Стоп.

    Пуск через двухполюсник

    Под данным термином имеется в виду объем конденсатора, который зависит от вида подключения обмоток двигателя. При соединении треугольником ёмкость равняется 70 умножить на номинальную мощность мотора.

    Соединение звездой

    Подключение электродвигателя по схеме «звезда»

    Сп  пусковой конденсатор, Ср рабочий конденсатор, 1, 2, 3 начало обмоток, 4, 5, 6 концы обмоток

    Выбор неправильного объёма в большую сторону приведет к тому, что мотор будет нагреваться. А недостаточная ёмкость снизит мощность. Поэтому подбирать ёмкость рекомендуется при включенном в сеть 220 конденсаторе, воспользовавшись щипцами. Прибор должен быть в обычном режиме.

    Для определения пусковой ёмкости необходимо создать момент запуска. Объём впуска определяется суммой рабочего и пускового конденсатора.

    При запуске без нагрузки, ёмкости пусковые одинаковы с рабочими. В таком случае в электропусковом конденсаторе необходимости нет. Схема становится проще и дешевле.

    При нагрузке на впуске необходима дополнительная ёмкость. Большее отключение ёмкости увеличит момент запуска. Дальнейшее увеличение уменьшает момент. Следовательно, электропусковая ёмкость превосходит рабочую в 2—3 раза. Общая продолжительность действия конденсатора несколько секунд.

    Подключение через УЗО

    УЗО является защитным устройством, которое отключает двигатель от сети 220.

    УЗО имеет три фазы и четыре полюса. Во время соединения могут использоваться все полюсы, а могут подсоединяться три полюса, как показано на картинке выше.

    Схема может быть двух вариантов.

    Треугольник

    Данная схема позволяет контролировать утечки тока на корпус. При подключении треугольником идут в ход фазные провода, а нейтральная клемма не подсоединены к обмоткам. При нормальной работе двигателя, УЗО не работает, так как оно измеряет векторную разность токов.

    На схеме изображено подсоединение мотора способом звезда. Особенность подключения через УЗО— это количество проводов, которые входят и отходят. УЗО работает на 4 полюса, а нейтральная клемма присоединяется к отдельной клемме, расположенной со стороны рычага.

    Ток пусковой нагрузки двигателя превышает его рабочую нагрузку в 4—5 раз, пока ротор не начинает вращаться. Тогда ток уменьшается. Для того чтобы избежать замыкания и обеспечить способность мотора запускаться, необходимо использовать УЗО.

    Подключение звездой

    Данный вид включения (2а) обеспечивает плавный пуск.

    Начала обмоток статора соединить в одной точке, а концы обмоток соединяются с тремя фазами электропитания.

    Пуск треугольником

    Для достижения полной мощности двигателя необходимо подключение треугольником (2б).

    Обмотки статора подсоединяется между собой. Начало следующей обмотки соединяется с концом предыдущей. К местам их соединения проводятся трехфазное питание 220.

    На рисунке выше изображена схема включения «звезда треугольник». Редко используется для пуска двигателя.

    Сначала применяется звезда на впуске, а в рабочем режиме треугольник. Таким образом, достигается максимальная мощность, но сложным исполнением.

    Для функционирования необходимо 3 пускателя. На первый подключается питание, которое соединяется с концом обмоток статора. Начало подсоединяется с другими двумя контакторами. Со второго устройства начало обмотки соединяется с другими фазами в треугольник. При запуске третьего устройства образуется звезда, закорачивая все провода.

    Важно! Нельзя включать одновременно 2, 3-й пускатель, иначе может произойти аварийное отключение автоматической защиты. Необходимо сделать блокировку между ними.

    Работает схема так: сначала пускатель подает сигнал на 3-йконтактор, при этом механизм начинает работать.Далее отключается третий контактор, а второй включается. Далее применяется треугольник. Отключает двигатель первый пускатель.

    Трёхфазный двигатель может работать от сети 220 вольт по чертежу звезда треугольник. Но если розетка обычная бытовая, то необходим частотный преобразователь.

    Внимание! Используя любой способ подключения, будьте предельно внимательны, так как неправильные соединения могут привести к сгоранию устройства.

    Корректно подобранная схема соединения трехфазного электродвигателя на 220 обеспечит плавность пуска, стабильность и работы.

    Схема подключения кнопок реверса — tokzamer.ru

    Схема реверса трехфазного двигателя и кнопочного поста

    В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.

    Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.

    Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).

    Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.

    В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.

    Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.

    По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.

    Возможности пускателей

    Ситуация, с которой чаще всего сталкивается обычный человек на практике, это необходимость собрать схему подключения реверса электродвигателя асинхронного переменного тока либо коллекторного мотора постоянного тока.


    В некоторых случаях под потребности приходится собирать какой-то конкретный инструмент, который стоит довольно дорого или под него просто есть все необходимые компоненты. Чтобы свести риски к минимуму, потребуется пускатель. С учетом параметров пускателя, он может иметь до 5 пар контактов. Защита работы реверсного включения электродвигателя Всегда, перед тем как изменить порядок подключения 3-фазного двигателя, изменяя порядок фаз на обмотках электродвигателя, надо его остановить. Тепловое реле в этой схеме играет для электродвигателя защитную функцию от перегрузки и включено в разрыв питающей фазы.

    Обратите внимание! К трехфазной сети Руководствуясь представленной схемой легко составить последовательность, в которой должно производиться подключение электродвигателя. Если прямой пуск двигателя невозможен и необходимо ограничить пусковой ток асинхронного короткозамкнутого двигателя, применяют пуск на пониженное напряжение

    Шунт поддерживает целостность электрической цепи после возврата кнопки пружиной в исходное положение. Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2.

    Реверсивные магнитные пускатели в своем устройстве могут иметь контакты в верхней части конструкции и на стороне обмотки якоря КМ ; блок-контакты функционально предназначены для коммутации цепи управления; переход в начальное положение пускатель осуществляет при помощи возвратного механизма, это пружина, которую якорь катушки управления КМ возвращает в начальное положение, размыкая все контакты. В этом случае используются электромагнитные пускатели с катушками на напряжение , 48, 36 или 24 В.
    Реверсивная схема пускателя

    Принцип работы и устройство

    Очень важно понять, на чем основан принцип работы пускателей, а также как они устроены, чтобы лучше понимать схему подключения. Основу конструкции представляет электрический магнит, который, в свою очередь, состоит из подвижной и неподвижной части

    Магнитопровод отличается «Ш» — образной формой, при этом он как бы разрезан по середине и установлен «ногами» друг против друга

    Основу конструкции представляет электрический магнит, который, в свою очередь, состоит из подвижной и неподвижной части. Магнитопровод отличается «Ш» — образной формой, при этом он как бы разрезан по середине и установлен «ногами» друг против друга.

    Устройство магнитного пускателя

    Как правило, нижняя часть является неподвижной и надежно закреплена на корпусе. Верхняя часть является подвижной и установлена на пружинах, которые автоматически отключают пускатель, если на катушке отсутствует рабочее напряжение. Следует отметить, что выпускаются пускатели на различное рабочее напряжение, от 12 до 380 вольт. Катушки легко меняются, поэтому пускатели достаточно ремонтопригодные и наиболее слабым звеном является именно катушка. Кроме этого, у пускателя имеются также подвижные и неподвижные контакты, как силовые, так и управляющие. Подвижные контакты располагаются на подвижной части магнитного пускателя.

    Когда катушка обесточена, подвижные контакты находятся в разомкнутом состоянии за счет действия пружины. Когда нажимается кнопка «Пуск» на катушке появляется напряжение. В результате подвижная часть сердечника притягивается, а вместе с ней и подвижные контакты. Соединяясь с неподвижными контактами, образуется электрическая цепь, в результате чего на управляющем устройстве (электродвигателе) появляется рабочее напряжение: двигатель запускается. Это можно увидеть на картинке ниже.

    Так выглядит в разобранном виде

    Когда нажимается кнопка «Стоп», напряжение на катушке исчезает и верхняя, подвижная часть, за счет действия пружины, возвращается в исходное состояние. Контакты размыкаются, электрическая цепь пропадает, как и напряжение на электродвигателе: электрический двигатель останавливается. Электромагнит срабатывает, как от постоянного, так и от переменного напряжения, главное, чтобы катушка была рассчитана на рабочее напряжение.

    Бывают пускатели с нормально замкнутыми и нормально разомкнутыми контактами, при этом последние наиболее распространенные и наиболее востребованные.

    Схема подключения

    Далее подробно рассмотрена однолинейная схема подключения реверсивного магнитного пускателя.

    Силовая часть и цепи управления

    После включения силового автомата QF питание поступает на верхнюю группу контактов пускателей. Цепь управления подключается к фазе «А» и нейтральному проводнику, но находится в разомкнутом состоянии, которое поддерживается соответствующим положением элементов: SB2 (3), КМ 1.1. (2.1.).

    Токи в исходном состоянии

    Работа цепей управления при вращении двигателя влево

    Однократное нажатие кнопки «Влево» подает питание на катушку для перемещения якоря и замыкания контактов КМ2. Шунт КМ 1.1. поддерживает целостность электрической цепи в рабочем режиме.

    Положение управляющих компонентов при вращении двигателя в прямом направлении

    Работа цепей управления при вращении двигателя вправо

    Для активации противоположного вращения меняют местами две фазы на обмотках двигателя. Предварительно нажимают «Стоп» (SB1), так как без этой промежуточной операции включить второй реверсивный магнитный пускатель не получится.

    Изменения при вращении электродвигателя в обратном направлении

    Силовые цепи

    На следующих рисунках показано, как именно переключаются обмотки в схеме реверсивного пуска для вращения ротора в одну и другую стороны. Фаза «А» остается на том же месте. Меняются местами «В» и «С».

    Подключение двигателя в разных режимах

    Защита силовых цепей от короткого замыкания или «защита от дурака»

    Если переключение пускателей выполнить без перерыва, две фазы будут одновременно поданы на силовые клеммы КМ1. Короткое замыкание повредит конструкцию. Для предотвращения подобных ситуаций применяют отдельные контактные группы (КМ 2.2. и КМ1.2.), которые устанавливают перед катушками КМ1 и КМ2

    При подключении этих устройств, кроме соответствия по нагрузкам, отдельное внимание следует уделить корректному монтажу и защитным мероприятиям

    Следует учитывать особенности решения разных практических задач. Так, асинхронный двигатель подключают через пусковой конденсатор. Обеспечить функциональность пускателя от источника постоянного напряжения можно. Однако в этом случае понадобится ограничить силу тока специальным резистором, чтобы предотвратить повреждение катушки. Придется подобрать оптимальное электрическое сопротивление для сохранения работоспособности привода якоря.

    Реверсивная схема подключения электродвигателя через пускатели

    В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

    Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

    Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

    Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2

    Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

    Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

    На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

    Добавить сайт в закладки

    Схема подключения трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении — треугольником.

    К двигателю подходит шесть концов. Магнитный пускатель КМ служит для включения и отключения двигателя. Контакты магнитного пускателя КМ1 работают как перемычки для включения асинхронного двигателя в треугольник

    Обратите внимание, что провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе. Главное — не перепутать

    Магнитный пускатель КМ2 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

    При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель КМ. Он срабатывает, и на него подается напряжение через блок-контакт. Теперь кнопку можно отпустить. Далее напряжение подается на РВ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени подается на магнитный пускатель КМ2, и двигатель запускается в «звезду».

    Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается. Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок-контакт магнитного пускателя КМ2, а оттуда на катушку магнитного пускателя КМ1. Иэлектродвигатель включается в треугольник.

    Пускатель КМ2 следует также подключать через нормально-замкнутый блок контакт пускателяКМ1 для защиты от одновременного включения пускателей.

    Магнитные пускатели КМ1 и КМ2 лучше взять сдвоенные с механической блокировкой одновременного включения.

    Кнопкой «СТОП» схема отключается.

    Схема состоит:

    1. Автоматический выключатель.
    2. Три магнитных пускателя КМ, КМ1, КМ2.
    3. Кнопка пуск — стоп;- Трансформаторы тока ТТ1, ТТ2;- Токовое реле РТ;- Реле времени РВ.
    4. БКМ, БКМ1, БКМ2– блок-контакты своего пускателя.

    Устройство магнитного пускателя для реверсного пуска

    Запуск мотора схемой звезда-треугольник При прямом запуске мощных трехфазных электродвигателей, применяя схему управления реверсом, происходят просадки напряжения в сети

    Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение

    Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Внутренняя схемотехника реверсивного устройства характерна тем, что невозможно запустить одновременно два режима — прямой и реверс. Теперь посмотрите на контакты КМ2.

    Действие с определенной временной задержкой предотвращает механические повреждения, исключает сильные броски напряжения при подключении к источнику нагрузки с индуктивными характеристиками.

    Как происходит защита двигателя при нереверсивном пуске Защита электрического двигателя реализуется при помощи биметаллических контактов ТР , они изгибаются при увеличении тока, и расцепитель воздействует на контакт в пусковой обмотке, прекращая подачу электрической энергии. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления.

    Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. Это связано с большими пусковыми токами, протекающими в этот момент. В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя. Очень рекомендую ознакомиться, перед дальнейшим чтением.

    На компонентах для подключения лучше не экономить, т. Это так называемый кнопочный пост. В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. Простейшая схема управления двигателем представлена на рис.

    Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение В. Когда требуется изменение направления вращения его вала, для пуска применяют реверсивный пускатель, схема подключения которого является объектом изучения профессионалов и простых обывателей. При применении двигателей малой мощности, не требующих ограничения пусковых токов, пуск осуществляется включением их на полное напряжение сети.

    Силовые и блокировочные контакты бывают нормально-разомкнутыми или норамально-замкнутыми. Изменение направления вращения двигателя, связанных с ним исполнительных механизмов — довольно востребованная процедура. Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме.
    Электрическая схема тельфера

    Переменная сеть: мотор 380 к сети 380

    Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

    Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

    Для подключения дополнительно понадобятся:

    • Магнитный пускатель (или контактор) – КМ2;
    • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

    Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

    Для запуска двигателя:

    1. Включите автоматы АВ1 и АВ2;
    2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
    3. Двигатель работает.

    Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

    Оцените статью:

    Как реверсировать трехфазный двигатель

    Каждый электрик и специалист по обслуживанию электрооборудования должен знать, как реверсировать трехфазный двигатель. К счастью, это довольно просто, если вы знаете, как это сделать.

    Мне нужно реверсировать хотя бы один мотор в неделю. Часто из-за того, что конвейер, на котором он работает, забит мусором.

    Как реверсировать трехфазный двигатель

    Для реверсирования трехфазного двигателя необходимо поменять местами любые две фазы. Это можно сделать на JB двигателя, местных и удаленных разъединителях или на ЦУД.

    • Убедитесь, что реверс двигателя безопасен. Некоторое оборудование, такое как насосы и компрессоры, предназначено для работы только в одном направлении. Я порвал несколько приводных цепей, пытаясь реверсировать конвейер, который не имел смысла реверсировать. К сожалению, есть только один способ узнать, что может и что не может идти в обратном направлении!
    • Остановите двигатель и заблокируйте источник питания. Следуйте процедурам блокировки в вашей компании.
    • Проверка нулевой энергии с помощью мультиметра или тестера напряжения .Прежде чем отсоединять какие-либо провода, убедитесь, что на оборудование, с которым вы собираетесь работать, не подается питание.
    • Поменять местами подключение любое две фазы . Например, если текущая конфигурация Т-отведений — «черный-красный-синий», измените ее на «красный-черный-синий».
    • Снимите замок и убедитесь, что желаемое вращение достигнуто. Хорошая привычка — проверять любую работу, которую вы сделали. Ошибки могут быть допущены даже при выполнении таких простых действий, как реверсирование двигателя.

    Почему это работает?

    Во время работы асинхронный двигатель создает вращающееся магнитное поле. Это поле вращает ротор, соединенный с выходным валом двигателя. Переключение двух фаз заставляет магнитное поле вращаться в противоположном направлении, таким образом, поворачивая ротор в противоположном направлении.

    Если вы хотите узнать больше о компонентах трехфазного двигателя и о том, как они работают, ознакомьтесь с этой статьей Electrical4U.

    Двигатель

    — Как изменить направление вращения трехфазных электрических машин? Двигатель

    — Как изменить направление вращения трехфазных электрических машин? — Stack Overflow на русском
    Сеть обмена стеками

    Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

    Посетите биржу стека
    1. 0
    2. +0
    3. Авторизоваться Зарегистрироваться

    Электротехника Stack Exchange — это сайт вопросов и ответов для специалистов в области электроники и электротехники, студентов и энтузиастов.Регистрация занимает всего минуту.

    Зарегистрируйтесь, чтобы присоединиться к этому сообществу

    Любой может задать вопрос

    Любой может ответить

    Лучшие ответы голосуются и поднимаются на вершину

    спросил

    Просмотрено 125 тысяч раз

    \$\начало группы\$

    Меня учили, что если вы хотите изменить направление трехфазной вращающейся машины, которая вращается в прямом направлении, вы меняете фазы.Поскольку фазы имеют одинаковые характеристики (напряжение и ток), что отвечает за то, что машина вращается в обратном направлении, когда фазы меняются местами?

    Питер

    42655 серебряных знаков1919 бронзовых знаков

    Создан 01 авг.

    Эзеатум СоломонЭзеатум Соломон

    3111 золотой знак11 серебряный знак33 бронзовых знака

    \$\конечная группа\$ 2 \$\начало группы\$

    Обмотки в 3-фазном двигателе при активации 3-фазным источником питания создают вращающееся магнитное поле в области ротора двигателя.Замена фазы A на фазу B изменяет порядок потоков, так что поток вращается в противоположном направлении. Замена B на C делает то же самое, что и замена A на C. Думайте об этом как о треугольнике с углами, называемыми A, B и C. Если вы поменяете любые два угла и будете следовать точкам A, B и C, вы пойдете в противоположном направлении. Поменяйте местами еще два угла, и вы вернетесь к исходному вращению.

    Вот как это выглядит. Черная стрелка — поток, создаваемый обмотками трех фаз: —

    Понятно, что если бы желтую фазу поменять местами с синей фазой, то вращение было бы противоположным.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *