Реле контроля фаз принцип работы: Реле контроля фаз — принцип работы, схема подключения – СамЭлектрик.ру

Содержание

Реле контроля фаз - назначение, принцип работы и схема подключения

Существует много различных аппаратов, которые в ходе их эксплуатации приходится нередко переносить с одного места на другое, каждый раз подключая их к трехфазной сети. Нередки случаи, когда неопытный работник в ходе подключения оборудования нарушает порядок чередования фаз, что может привести к выходу техники из строя. Чтобы не допустить этого, необходимо обеспечить контроль фаз, установив специальное устройство защиты. В этом материале мы расскажем о том, что представляет собой реле контроля фаз, какова схема его подключения и рассмотрим принцип работы этого прибора.

Назначение и принцип работы реле контроля фаз

Реле для контроля напряжения фаз следует включать в схемы приборов, которые приходится часто переподключать к питающей трехфазной сети. К примеру, винтовой компрессор, не являющийся стационарным аппаратом, постоянно перемещают с одного места на другое, каждый раз подсоединяя его к линии заново. Если неправильно выполнить действия по его подключению, спутав при этом фазы, пяти секунд после запуска оборудования будет достаточно для того, чтобы произошла серьезная поломка.

Ремонт аппаратуры сопряжен с немалыми затратами, поэтому в таких устройствах контроль напряжения фаз просто необходим.

Есть и другие приборы, которые при неправильном соединении проводов не сгорают, а просто не включаются. В этом случае работники обычно приходят к выводу, что аппарат сломан, начинают его проверять – а прозвонка показывает, что все в порядке. И хорошо, если понимание того, что при подключении были просто перепутаны фазные жилы, придет быстро, иначе рабочее время будет потрачено впустую.

Что такое реле напряжения и как оно настраивается – на следующем видео:

Теперь поговорим о том, как работает реле контроля. Основная задача прибора заключается в защите электрических аппаратов от повреждения в результате воздействия некачественного напряжения. Это очень важно для дорогостоящего оборудования, поэтому электроприборы импортного производства устанавливаются только вместе с контрольным реле. Оно обеспечивает защиту аппаратуры при обрыве фаз, неправильном подсоединении, а также асимметричном напряжении.

При соответствии фаз параметрам контрольного прибора релейные контакты включаются, пропуская через контактор в цепь трехфазное напряжение. Если ток хотя бы на одной фазной жиле отсутствует, напряжение в линию пропущено не будет

После восстановления питания на фазном проводе по истечении нескольких секунд произойдет автоматическое включение нагрузки. Итак, как можно убедиться, реле осуществляет автоматический контроль, отключая подачу напряжения в случае аварии и включая нагрузку после нормализации параметров электрической цепи.

Порядок подключение реле

Очень важно, чтобы контрольное устройство было включено в схему любого передвижного агрегата, в составе которого имеется трехфазный электрический мотор. Если такого реле в составе оборудования не имеется, неправильное чередование фаз может привести к серьезным последствиям – от нарушения работы аппарата до выхода его из строя.

Наглядно про подключение на видео:

Если оборвется хотя бы один фазный кабель, произойдет быстрый перегрев силового агрегата, и устройство за считанные секунды придет в негодность. Чтобы не допустить этого, на контактор вместо контрольного реле зачастую устанавливают тепловое. Но проблема заключается в том, чтобы правильно его подобрать и отрегулировать по номинальному току. Для этого требуется специальный стенд, которым располагают далеко не все. Поэтому установка прибора фазного контроля – более простой способ решения проблемы.

Принцип работы РК основан на том, что устройство улавливает гармоники обратной последовательности, возникающие в случае перекоса фаз или при обрыве токоведущих проводов. Аналоговые фильтры контрольного прибора выделяют их и подают сигнал на управляющую плату, включающую после его получения релейные контакты.

Схема подключения реле контроля фаз сложностью не отличается. Все три фазных проводника и нулевой кабель нужно подсоединить к соответствующим клеммам прибора, а его контакты пустить в разрыв соленоида магнитного пускателя. Если устройство работает в нормальном режиме, то контактор включен, релейные контакты замкнуты, и производится подача напряжения на аппаратуру.

В случае обнаружения неполадок происходит размыкание контактов контрольного прибора, и электропитание отключается до того момента, когда будут восстановлены сетевые параметры.

Чаще всего для защиты бытовой техники используются реле заводского изготовления, которые имеются в продаже. Но иногда их изготавливают и своими руками. Приведем схему простого самодельного устройства, на которой имеются графические обозначения элементов, включенных в цепь.

Заключение

В этой статье мы рассказали о том, что такое реле контроля фаз, для чего оно нужно и по какому принципу работает. В промышленных условиях оно защищает компрессоры, электродвигатели и другие агрегаты. В быту их наиболее часто используют для защиты стиральных машин и холодильников.

Виды реле контроля фаз


Трехфазные сети нередко испытывают на себе такое явление, как «перекос» фаз. Данная ситуация довольно пагубно сказывается на работе всей электролинии, а также на функционировании электроприборов, которые в данный момент работают от питания. Негативное воздействие происходит именно потому, что непосредственно от порядка фаз и показателя напряжения работают важные устройства, к которым относятся электродвигатели и трансформаторы. Во избежание различных повреждений применяются реле контроля фаз.

Данное устройство крайне необходимо в трехфазной электросети для того, чтобы происходило чередование фаз в правильном порядке.

Конструктивные особенности

Все современные устройства, в конструкцию которых входят микропроцессоры, отличаются простой настройкой и высокими параметрами надежности. В число таких устройств входят и реле контроля фаз.

Устройства импортного изготовления требуют к себе наибольшего внимания, а именно обеспечения сети электропитания наивысшего качества. Это крайне необходимо, поскольку совсем незначительный перепад или сбой в показателях может обернуться огромными потерями, а также вывести из рабочего состояния довольно дорогостоящее оборудование.

Основа устройства реле данного типа – микросхема, которая контролирует и полностью управляет функционированием изделия. При снижении (полном исчезновении) напряжения в фазах микросхема отправляет определенный сигнал реле, который в дальнейшем приостанавливает нагрузку.  Некоторые модели оснащаются специальными индикаторами для фазных напряжений и регулятором периода срабатывания.

Применение реле контроля фаз

На сегодняшний день любое предприятие, административное здание или жилая квартира оснащены огромным числом различного электротехнического оборудования. Все электрические приборы отличаются высокой стоимостью, следовательно, их срок службы должен быть по возможности продлен. Для данной цели как раз и применяются специальные защитные устройства от перепадов в напряжении, от коротких замыканий и перекоса фаз.

Реле контроля фаз активно используется в наши дни и защищает трехфазные устройства. Защита осуществляется в следующих направлениях: от обрыва, перекоса, слипания. Также осуществляется контроль над правильным чередованием фаз.

Кроме того, данные устройства контролируют не только фазы, но и напряжение. Иными словами, реле отслеживает показатель напряжения и при значительном понижении от критической величины обрывает электропитание.

Суть работы

Принцип функционирования – это, так называемый, самовозврат. То есть, реле контроля фаз перестает функционировать в момент, когда происходит срабатывание сигнала об аварийной ситуации. Тогда, когда на механизм передается трехфазное напряжение, все параметры проходят тщательную проверку. Если по итогу проверки все параметры в норме, происходит включение встроенного реле электромагнитного типа. Но в случае, когда даже один параметр находится далеко от нормы, механизм моментально перестает действовать.

По возвращении всех показателей в нормированное состояние прибор в автоматическом режиме возобновляет свою работу.

При аварийных ситуациях происходит отключение нагрузки при помощи реле. К таковым нагрузкам относятся: исчезновение какой-либо фазы, выход за нормированные рамки показателя напряжения, ошибка в подключении трехфазного электропитания.

Использование реле контроля фаз обеспечивает качественную защиту электрической сети и всего электрического оборудования, работающего от нее. Более того, данный прибор помогает осуществлять контроль над объемами потребляемой энергии.

Торговая сеть "Планета Электрика" имеет в своем ассортименте огромный выбор различного защитного и контролирующего оборудования. К нему относятся и реле контроля фаз. В наших торгово-выставочных залах Вы можете найти устройства от выдающихся мировых производителей: ABB, EATON, Schneider Electric, SIEMENS, TDM ELECTRIC и др. 

Статьи по теме:

принципиальная электрическая схема, назначение и устройство

На чтение 7 мин Просмотров 548 Опубликовано Обновлено

Реле контроля фаз представляет собой устройство, основное назначение которого – защита линейных цепей от перегрузок и КЗ. Помимо этого оно способно реагировать на такое распространенное для электросетей явление, как перекос по отдельным фазам. В итоге этот прибор обеспечивает комплексную защиту рабочих цепей и подключенного к ним оборудования.

Общая информация

Реле контроля фаз

Известно несколько разновидностей реле перекоса фаз, отличающихся типом корпуса и своими конструктивными особенностями. Несмотря на большое число исполнений и обилие схемных решений, рабочие функции всех моделей практически одинаковы. Установка реле контроля фаз в 3 фазных цепях позволяет:

  • продлить время службы электродвигателей;
  • исключить необходимость восстановительных или ремонтных работ;
  • снизить сроки простоя из-за неисправности трехфазного двигателя и риски удара током.

Установленное в линейные цепи реле фаз гарантирует защиту обмоток агрегата от возгорания и однофазного КЗ.

Для чего предназначено

Применение реле контроля фазового напряжения

Специальные контроллеры фаз востребованы в местах, где требуется часто подключаться к питающей сети и где важно соблюдать их чередование. В качестве примера обычно рассматривается ситуация, когда подключаемое оборудование постоянно переносится с одного места на другое. В этом случае вероятность перепутать фазы линейных напряжений очень велика.

В некоторых нагрузках неверное их чередование способно привести к неправильной работе устройства и последующей поломке. Любой агрегат, включенный в такую сеть длительное время, с большой вероятностью выйдет из строя. При эксплуатации такого прибора можно легко ошибиться с оценкой его состояния, считая, что устройство нуждается в ремонте.

Особенности различных исполнений и их возможности

Известны две разновидности приборов, используемых в составе линейных трехфазных систем: фазные реле тока и коммутаторы напряжения. Они имеют типовое исполнение, определяемое требованиями нормативной документации. Интерес представляет сравнительная оценка двух разновидностей модульных устройств.

Плюсы токовых реле

Классическая схема подключения прибора контроля фаз и напряжения в цепь управления трехфазным мотором

Бесспорными преимуществами токовых защитных реле (ТР) при их сравнении с устройствами контроля напряжения являются:

  • независимость от ЭДС, постоянно возникающей при фазных сбоях в случае перегрузки электродвигателя;
  • возможность определения отклонений в поведении электрической машины;
  • допустимость контроля не только самой линии (перед ответвлением), но и подключенной к ней нагрузки.

В отличие от ТР приборы контроля напряжения не позволяют реализовать большинство из перечисленных функций. Они предназначаются в основном для установки в линейные цепи.

Обнаружение фазного сбоя

Сбой из-за обрыва фазы – рядовое явление, связанное со сгоревшим предохранителем или механическим повреждением в сети. В схожих условиях 3-хфазный двигатель, например, при пропадании одной из фаз продолжает работать за счет мощности, отбираемой от оставшихся двух. Любая попытка запустить его вновь при отсутствии одной из фаз будет безуспешной.

Длительность ее обнаружения (реакция на перегрузку) бывает настолько продолжительной, что за это время тепловая защита просто не успевает отключить агрегат. В ее отсутствии реле обрыва фазной жилы срабатывает из-за перегрева обмоток электродвигателя. Но это случается далеко не всегда, что объясняется особенностями работы недогруженного по одной из фаз устройства. В этом случае в нем начинает действовать так называемая «обратная ЭДС».

Обнаружение реверса

Использование защитных реле – это обеспечение безопасности рабочего персонала: 1 – оборванная фаза; 2 – шаговое напряжение

Возможность обнаружения реверса фазы востребована в следующих ситуациях:

  • на двигателе проводится техобслуживание;
  • в систему распределения энергоносителя внесены существенные изменения;
  • после восстановления показателя мощности меняется фазовая последовательность.

Необходимость в использовании реле смены чередования фаз связана с недопустимостью реверса двигателя, который способен повредить сам механизм, а также угрожает обслуживающему персоналу. Положениями ПУЭ предписывается применение этого устройства для любого оборудования, включая транспортеры, эскалаторы, лифты и другие движущиеся системы.

Выявление дисбаланса

Выявление дисбаланса в электроцепи

Несбалансированность в электросетях обычно проявляется как значительное различие амплитуд фазных напряжений, поступающих с районной подстанции. Такой дисбаланс наблюдается в ситуациях, когда на стороне потребителя нарушено равномерное распределение нагрузок по каждой из фаз. Его наличие в системе приводит к разбросу токов в отдельных линиях, что заметно сокращает срок службы подключенного оборудования (электродвигателей, например).

Объясняется это тем, что так называемое «слипание» фаз в линиях индуктивных нагрузок вызывает дополнительный нагрев проводов и способствует разрушению изоляции. Все это является обоснованием необходимости установки в действующие электросети указанной модели реле защиты фазы.

Порядок подключения

Разобраться с порядком подключения реле поможет предварительное ознакомление с особенностями его конструкции. Заметно облегчит этот процесс понимание принципа работы, а также умение настраивать прибор непосредственно перед запуском.

Конструктивные элементы

Конструкция реле контроля напряжения

Корпус реле рассчитан для установки на DIN рейку или на заранее подготовленную ровную поверхность. Вынесенный наружу разъем позволяет подключать его к электросети с помощью типовых зажимов, к которым подводятся медные жилы сечением до 2,5 мм2. На передней панели располагаются органы настройки, а также контрольная лампочка индикации включения прибора.

В рабочей схеме предусмотрены индикаторы аварийной ситуации и подключенной нагрузки, а также переключатели режима, регуляторы асимметрии и задержки по времени. Для подключения устройства используются три клеммы, имеющие обозначение L1, L2 и L3. Подобно автоматам защиты в них не предусмотрено подсоединение нулевого проводника (это справедливо не для всех моделей реле).

На корпусе устройства имеется еще одна контактная группа из 6-ти клемм, используемая для соединения с цепями управления. С этой целью в разводке силового оборудования предусматривается жгут, содержащий соответствующее количество проводов. Одна из контактных групп управляет цепью катушки магнитного пускателя, а вторая – коммутацией подключенного к линии оборудования.

Элементы настройки

Инструкция по подключению и настройке предполагает наличие различных схемных решений самого прибора. В простейших моделях на лицевую панель выводится не более одного или двух регуляторов. Этим они отличаются от образцов с расширенными настройками. В моделях с большим числом регулирующих элементов (их называют мультифункциональными) предусмотрен отдельный блок микропереключателей. Он располагается на печатной плате, размещенной прямо под корпусом прибора или в специальной скрытой нише.

Нужная конфигурация реле получается последовательной настройкой каждого из имеющихся регулировочных элементов. С их помощью – путем вращения ручек управления с одновременным нажатием соответствующего микропереключателя – выставляются требуемые параметры защиты. Шаг их установки или чувствительность прибора у большинства образцов составляет 0,5 Вольт.

Маркировка устройства

Таблица технических характеристик реле

С целью маркировки контрольных приборов на их передней или боковой панели наносится последовательность из нескольких символов (иногда она указывается только в паспорте). В качестве примера рассматривается прибор российского производства ЕЛ-13М-15 АС400В, рассчитанный на подключение без нулевого провода. Он маркируется следующим образом:

  • ЕЛ-13М-15 –наименование серии;
  • сочетание АС400В – допустимое напряжение.

Маркировка импортных моделей несколько иная. Реле серии «PAHA», имеющее аббревиатуру PAHA B400 A A 3 C расшифровывается более подробно:

  • B400 – рабочее напряжение 400 Вольт.
  • А – тип регулировки.
  • А (Е) – способ крепления (на DIN рейку или на разъем).
  • 3 – габариты корпуса в мм.

Символ «С» означает завершение кодовой комбинации.

Особенности выбора

При выборе контрольных устройств, прежде всего учитываются их технические параметры. В качестве примера рассматривается случай подбора модели для подключения АВР, предполагающий следующий порядок действий:

  1. Определяется способ включения (с «нулем» или без).
  2. Выясняются параметры выбранного прибора.
  3. При этом учитывается, что при работе с АВР потребуется контролировать обрыв и последовательность фаз.

Для контроля АВР время задержки выставляется в границах 10-15 секунд.

Знакомство с отдельными модификациями контрольных приборов поможет исполнителю учесть особенности их функционирования в конкретных цепях.

Как подключить реле контроля фаз

Многие агрегаты в качестве источника питания используют трехфазный электрический ток. 

Это позволяет значительно увеличить их мощность. К таким агрегатам относятся и мощные электродвигатели. В условиях большой нагрузки на сеть, по различным причинам происходят перебои в электропитании. Это может быть отсутствие одной из фаз, их асимметрия, а также обрыв нулевого провода.

В случае возникновения одной из неисправностей электродвигатель неизбежно выйдет из строя, а его ремонт очень трудоемок. Для защиты используется автомат защиты электродвигателей, оно же реле контроля наличия и чередования фаз.

Как установить и подключить реле контроля фаз

Схема самого реле довольно проста. В случае возникновения сбоя в электропитании реле отключает катушку контактора электродвигателя от электропитания.

Реле контроля наличия фаз устанавливается в месте прохождения силового кабеля на вертикальную поверхность путем крепления на четыре шурупа. Порядок проведения монтажных работ и схема подключения:

  • Предварительно необходимо разметить, просверлить необходимые отверстия и установить в них дюбеля.
  • Реле имеет световую индикацию, поэтому устанавливать его целесообразно в месте, где имеется достаточная видимость при осуществлении работ.
  • Подключение осуществлять только после проверки отключения силового кабеля от питания.
  • К зажимам 1, 2, 3 подключить к входным зажимам контактора, а нулевой кабель к зажиму 4.
  • Цепь управления катушкой контактора подключить к зажиму 8, а одну из фаз к зажиму 7.
  • Включить питание и проверить работу реле.

Инструкция по эксплуатации реле контроля фаз определяет три режима работы световой индикации:

  • Зеленый светодиод – нормальная работа.
  • Красный светодиод – неправильное чередование фаз, в этом случае необходимо поменять местами провода в зажимах 1 и 2.
  • Отсутствие горения светодиодов сигнализирует об отсутствии фазы, асимметрии выше установленной или снижения напряжения менее установленного значения.

принцип работы, виды, маркировка, регулировка и подключение

Настройки

Чтобы провести настройки реле напряжения, необходимо подключить его в сеть и подать напряжение

Теперь обратите внимание на следующее

  • Если на дисплее высветились цифры, но при этом он моргает красным цветом, то это говорит о том, что нагрузка еще не была подана.
  • Если вместо цифр на мониторе появились прочерки, то здесь два варианта: или нет одной из фаз, или поменялось чередование фаз.
  • Если все нормально, то есть, нет нарушения чередования фаз, входное напряжение соответствует номинальному, нет большого перекоса по фазам, то уже через пятнадцать секунд в реле должен замкнуться контакт 1-3, который запитает катушку контактора. После чего напряжение начнет поступать потребителю.
  • Если прибор все еще моргает, то контактор не включится. То есть, где-то вами не было соблюдено одно из условий правильного подключения и настройки.

Теперь переходим непосредственно к настройкам реле напряжения марки VP-380V. Около дисплея есть две кнопки, которыми придется манипулировать. На них нанесены значки в виде треугольников. На верхней кнопке треугольник смотрим вершиной вверх, на нижней вниз. Чтобы выставить верхний предел отключения, необходимо нажать на верхнюю кнопку и удерживать ее пару секунд. В центре дисплея высветиться число – это уровень, установленный на заводе. Теперь манипулируя кнопками (вверх-вниз), можно выставить необходимый вам верхний предел отключения.

То же самое и с нижним пределом. Кстати, программирование реле установится автоматически, как вы только окончите настройку буквально через 10 секунд, все показатели останутся в памяти прибора, и сам прибор будет реагировать именно на них.

Установка времени повторного включения

Есть на корпусе около дисплея еще одна кнопка, с помощью которой можно настроить время на повторное включение реле. Кнопка расположена между кнопками «вверх» и «вниз». На нее нанесен значок в виде часов. Нажимаете на нее, пока не высветится число, установленное на заводе. Обычно это 15 секунд. Для чего необходима данная функция.

К примеру, произошел скачок напряжения на одной из фаз до 280 В при 250 В установленных. То есть, реле отключит сеть полностью. Через полчаса напряжение в фазе восстановилось. Мимо реле это не пройдет незамеченным, поэтому оно включится именно через 15 секунд. Чтобы изменить данное значение, необходимо удерживать кнопку с часами в течение 5 секунд, после чего можно повысить величину, нажимая на верхнюю кнопку, или снизить, нажимая на нижнюю. В это время на дисплее число будет изменяться в ту или другую сторону. При этом шаг изменения показателей составляет 5 секунд.

Настройка перекоса фаз

Чтобы установить разницу между величинами напряжения в разных фазах, необходимо нажать одновременно две кнопки: «вверх» и «вниз». На дисплее появится цифра (обычно 50 В), установленная в заводских условия, которая говорит о том, что реле отключится сразу же, если разница между фазами составит 50 вольт. Время отключение 20 секунд.

Чтобы снизить или повысить этот показатель, надо удерживать две кнопки 5 секунд, после чего нижней кнопкой провести уменьшение или верхней повышение. Шаг установки 1 вольт, пределы установки 20-80 вольт.

Реле РНПП-311

Устройство защищает сеть при следующих авариях:

  • превышение напряжения выставленных значений;
  • замыкание или нарушение чередования фаз;
  • перекос или обрывы фаз.

Аппарат также следит за другими параметрами сети и размыкает питание нагрузки при их отклонении от нормы. Трехфазное реле напряжения РНПП-311 может настраиваться на два режима контроля.

  • Линейный – срабатывание по перекосу фаз, когда для потребителя не представляет опасности смещение ноля.
  • Фазный – когда перекос фазных напряжений и смещение нуля недопустимы.

На передней панели расположены индикаторы наличия напряжения, подключения нагрузки и некоторых отклонений от нормы. Настройка производится шестью потенциометрами. Устанавливаются следующие параметры:

  • граничные значения максимального и минимального напряжений, а также предельная величина перекоса фаз;
  • выдержка времени отключения нагрузки при авариях;
  • задержка на подключение к сети после того, как восстановятся параметры.

Прибор остается работоспособным, когда остаются действующими ноль и одна из фаз или как минимум две.

Схема работы реле и контактора

Дополнительное подключение контактора становится целесообразным в случаях регулярной коммутации слишком больших токов. Подобная схема обойдется значительно дешевле, чем приобретение реле с соответствующими параметрами. Номинальный ток реле уже не будет иметь значения, поскольку вся токовая нагрузка ляжет на контактор, обладающий необходимым запасом прочности. Единственный недостаток данной схемы заключается в некотором снижении быстродействия. В этом случае требуется время на срабатывание реле и дополнительное время для срабатывания контактора.

Для того чтобы соединить их между собой вначале используется схема подключения силового фазного провода от автомата на вводе к входу 1 контактора, то есть к его силовой цепи. На фазный вход реле контроля используется отдельный провод с меньшим сечением, поскольку нагрузки на него будут незначительными.

Этот провод подключается не только к выходному контакту автомата, но и с клеммой входа контактора. Поскольку он имеет небольшое сечение, то будучи подключенным в одно гнездо с нормальным проводом, он может легко выскочить оттуда. Во избежание подобной ситуации, тонкий проводник наматывается на толстый провод и покрывается слоем припоя. Иногда для такой скрутки делается опрессовка с использованием специального наконечника.

На выходе реле также используется провод малого сечения, подключаемый к клемме 1 контакторной катушки. Клемма 2 вместе с нулевым проводом реле подключаются к общей нулевой шине без каких-либо проблем.

Общая информация по прибору

Функциональность электрических приборов подобного типа существенно шире, нежели только лишь защита от перегрева и КЗ.

На практике отмечены эффективные свойства реле выбора перегруженных фаз, которые в конечном счете обеспечивают комплексную защиту.

Один из многочисленных вариантов конструкторских решений в производстве реле фаз. Однако, несмотря на разнообразие корпусов и схемных конфигураций, функциональность приборов едина

Благодаря устройствам отслеживания состояния фаз достигаются преимущества:

  • увеличение срока службы двигателя;
  • сокращение дорогостоящего ремонта или замену мотора;
  • уменьшение времени простоя из-за дефектов двигателя;
  • снижение рисков поражения электрическим током.

Кроме того, приспособление обеспечивает надежную защиту от возгорания и от КЗ обмоток двигателя.

Особенности подключения и функционирования устройства

Монтаж автоматического переключателя производится сразу после электросчетчика. Аппарат, подсоединенный к линии, тестирует состояние проводников и подключает цепь к жиле, параметры которой максимально соответствуют требуемым. В ходе работы прибор постоянно следит за напряжением, которое не должно выходить за установленные пределы.

Порядок работы и устройство переключателя фаз на видео:

При работе контроль напряжения осуществляется не только на приоритетной фазе, но и на двух резервных. Это нужно для того, чтобы при нарушении параметров на основном проводнике без задержек выбрать другую жилу для переключения питания. Если напряжение на обеих резервных линиях находится в допустимых пределах, переключение идет от L1 к L2 и далее (обозначения фаз имеются на корпусе приборов, каждой соответствует свой светодиод).

Если разность потенциалов не соответствует заданным параметрам ни на одном проводнике, питание подаваться через них не будет. При нормализации напряжения на приоритетной линии подключение произойдет к ней в первую очередь.

Подключение

Практически любой потребитель сможет установить и подключить реле в электрощит. При этом не надо обладать специальными навыками. Клеммы прибора выведены на фронтальную часть корпуса для удобства проведения электромонтажных работ. Клеммы предназначены для медных или алюминиевых проводников, имеющих сечение до 2,5 кв. мм. Защитное устройство устанавливается в распределительном щитке на дин-рейку.

Три фазы и ноль необходимо присоединить к клеммам защитного прибора подходящего значения. А контакты данного устройства следует подсоединить к соленоиду электромагнитного пускателя. В случае если прибор находится в работоспособном состоянии, при этом контактор должен быть включен, контактные соединения должны быть в замкнутом положении, а напряжение подается на электроприборы.

Во-первых, необходимо помнить, что данное реле предназначено только для работы в трехфазной сети. При подключении в однофазную сеть устройство сразу сработает и обесточит линию, так как не будет хватать фаз и реле рассмотрит это как обрыв фаз.

Во-вторых, необходимо точно соблюдать последовательность, то есть фазный провод А подключается к клемме А, фазный провод В подсоединяется к клемме В, а С – к С. Если нарушится данный порядок, реле не включится, так как оно рассмотрит это как перекос фаз.

В-третьих, если защитное реле имеет нулевую клемму, то к ней необходимо подключить нейтральный проводник. Если в конструкции не предусмотрена нулевая клемма, то такой прибор предназначен только для работы в трехфазной сети, которая не имеет нулевого провода.

В случае не подключения нейтрального провода к нулевой клемме, устройство не будет работать, так как включится аварийный режим по причине обрыва нулевого провода.

Передняя панель оснащена регуляторами настройки. На ней находятся индикаторы, которые показывают работоспособность прибора.

Описание и технические характеристики реле ЕЛ-11Е (380 Вольт, 50 Гц)

Реле ЕЛ-11Е имеет по одному нормально замкнутому, нормально-разомкнутому и перекидному контакту.

Устройство предназначено для контроля фаз в 3-фазной сети, работает на переменном напряжении 380 Вольт. На практике применяется для контроля наличия U и правильности симметрии.

Кроме того, реле могут применяться для проверки правильности чередования фазировки в системах 3-фазного напряжения и в других случаях.

Технические характеристики ЕЛ-11Е и других модификаций серии.

К дополнительным плюсам стоит отнести контроль минимального и максимального U, функцию гистерезиса для 3-фазного тока.

Принципиальная схема показана ниже.

Реле ASP-3RVN

Трехфазное реле напряжения и контроля фаз с микропроцессором применяется для управления подачей электроэнергии в холодильники, кондиционеры, компрессоры и другие устройства, где используются электродвигатели. Прибор удобен тем, что позволяет контролировать напряжение на каждой фазе по дисплею, а также следить за его несимметричностью. Встроенная память с питанием от независимого источника дает возможность запоминать параметры и количество аварийных отключений с возможностью вывода на экран. Для этого не требуются особые навыки по настройке. Дополнительные функции доступны через кнопки управления.

Устройство ASP-3RVN включается в сеть параллельно нагрузке аналогично схемам, представленным ранее. Аппарат следит за действующим напряжением сети. При аварии происходит размыкание его контактов, включенных в разрыв обмотки пускателя. После подключения и подачи питания реле защиты проверяет наличие напряжения. Об этом сигнализируют три светодиода. При нарушении чередования или слипания фаз на индикаторе выводятся прочерки (—). Далее, измеренные фазные напряжения выводятся на экран с интервалом в несколько секунд. При этом загораются соответствующие им светодиоды.

При аварии на экран выводятся причины ее возникновения. Настройки стоят сначала заводские, но их можно менять нажатием соответствующих кнопок. Если при установке появляются ошибки, их можно сбросить и выставить снова заводские одним нажатием кнопки. Все настройки сохраняются в памяти, и их можно проверить.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок.

Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/автоматическими выключателями.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания. Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

Для чего предназначено

Применение реле контроля фазового напряжения

Специальные контроллеры фаз востребованы в местах, где требуется часто подключаться к питающей сети и где важно соблюдать их чередование. В качестве примера обычно рассматривается ситуация, когда подключаемое оборудование постоянно переносится с одного места на другое

В этом случае вероятность перепутать фазы линейных напряжений очень велика.

В некоторых нагрузках неверное их чередование способно привести к неправильной работе устройства и последующей поломке. Любой агрегат, включенный в такую сеть длительное время, с большой вероятностью выйдет из строя. При эксплуатации такого прибора можно легко ошибиться с оценкой его состояния, считая, что устройство нуждается в ремонте.

Схема АВР с применением реле контроля фаз ЕЛ-11Е.

Подключение реле серии ЕЛ очень простое и не представляет особых затруднений: к клеммам L1, L2, L3 подключаются фазы А, В, С соответственно, а через контакты 15-16 и 25-28 напряжение подается в цепь управления катушек контакторов, где в зависимости от состояния электрической сети реле управляет работой контакторов замыканием или размыканием этих контактов.

На рисунке ниже изображена схема АВР, обеспечивающая бесперебойное снабжение трехфазным питающим напряжением потребителей. Схема собрана на двух контакторах КМ1 и КМ2, реле контроля фаз KV1, трехполюсных автоматических выключателей QF1, QF2 и SF1, однополюсного автоматического выключателя SF2 и двух ламп накаливания HL1 и HL2, обеспечивающих индикацию работы АВР.

Рассмотрим работу схемы.
Первым в работу запускаем основной ввод включением автоматических выключателей QF1 и SF1, после чего трехфазное напряжение основного ввода подается на входные клеммы реле L1, L2, L3. Если напряжение основного ввода в норме, то контакт реле KV1.1 замыкается и через него фаза А поступает на левый по схеме вывод катушки контактора КМ1, контактор срабатывает, его силовые контакты КМ1 замыкаются и через них трехфазное сетевое напряжение А3, В3, С3 поступает к потребителю.

Одновременно с этим нормально-замкнутые контакты реле KV1.2 и контактора КМ1.1 размыкаются и разрывают цепь питания катушки КМ2, а нормально-разомкнутый контакт КМ1.2 замыкается и включает лампу HL1, сигнализирующую о работе основного ввода.

Теперь включаем автоматы QF2 и SF2 и запускаем резервный ввод.
Напряжение резервного ввода А2, В2, С2 поступает на верхние клеммы силовых контактов контактора КМ2 и остается там дежурить. Фаза А2 через автомат SF2 поступает на левые по схеме клеммы контактов КМ1.1 и КМ2.2 и также остается на них дежурить. При этом никаких изменений в работе АВР не происходит, так как в данный момент работает основной ввод.

При возникновении аварийной ситуации на основном вводе реле KV1 переключает потребителя на резервный ввод: контакт реле KV1.1 (25-28) размыкается и прекращает подачу питания на катушку контактора КМ1, отчего контактор обесточивается, его силовые контакты КМ1 размыкаются и напряжение основного ввода перестает поступать к потребителю. Об этом также сигнализирует лампа HL1, которая гаснет при размыкании контакта КМ1.2.

Одновременно с этим нормально-замкнутые контакты реле KV1.2 (15-16) и контактора КМ1.1 становятся замкнутыми и через них фаза А2 поступает на катушку контактора КМ2, контактор срабатывает и теперь через его силовые контакты КМ2 трехфазное сетевое напряжение А3, В3, С3 поступает к потребителю.

Также нормально-замкнутый контакт КМ2.1 размыкается и разрывает цепь питания катушки контактора КМ1, а контакт КМ2.2 замыкается и включает лампу HL2, которая сигнализирует о работе резервного ввода.

При восстановлении параметров сетевого напряжения на основном вводе реле контроля фаз автоматически переключит потребителя с резервного ввода на основной.

В рамках этой части статьи мы рассмотрели стандартную схему АВР, реализованную на реле серии ЕЛ. Как уже было сказано выше, отечественной промышленностью выпускается достаточное количество различных типов реле контроля фаз, но принцип построения схем и работа автоматического ввода резерва с использованием подобных реле остается неизменным – будь то трех или четырехпроводная электрическая сеть. Главное надо понимать, что для каждого конкретного случая выбирается конкретный тип реле контроля фаз.

На этом хочу закончить статью о простых системах АВР, выполненных с применением контакторов и реле контроля фаз.
Удачи!

Литература:
Паспорт: реле контроля трехфазного напряжения ЕЛ-11Е, ЕЛ-12Е, ЕЛ-13Е. ТУ 3425-007-49874443-07.

Характеристики

Ниже приведены основные характеристики реле.

1) Рабочие напряжения:

  • EЛ11 – 100 V, 110 V, 220 V, 380 V, 400 V, 415 V
  • ЕЛ12 -100 V, 200V, 280 V
  • ЕЛ13 – 220 V, 380 V

2) Предел срабатывания реле.

а) При симметричном снижений напряжений на фазе:

  • EЛ11 – 0.7 * Uфн
  • ЕЛ12 – 0,5 * Uфн
  • ЕЛ13 – 0,5 * Uфн

б) При разрыве 1-ой или более фаз:

Срабатывают все виды реле.

в) При неправильном чередования фаз

  • ЕЛ11,ЕЛ12 – срабатывают
  • ЕЛ13 – не срабатывает

3) Время задержки (срабатывания) в секундах

  • ЕЛ11,ЕЛ12 – 0,1 до 10
  • ЕЛ13 – не более 0,15

4) Рабочие температуры:

  • ЕЛ11,ЕЛ12 – -40до +40 С
  • ЕЛ13 – – 10 до +45 C

5) Температура хранения от -60 до +50

6) Масса устройства

  • ЕЛ11,ЕЛ13 – 0,3  кг
  • ЕЛ12 -0,25  кг

Подключение несколько реле контроля напряжения

Технические условия допускают подключение к частному дому или квартире трех фаз. Если для защиты электрооборудования использовать трехфазные блоки, то при аварийной ситуации на одном ответвлении обесточиваться будет все оборудование, что не очень удобно. Эта проблема решается тремя реле, подключенными отдельно на каждую фазу.

С нижней клеммы автомата производим подсоединение ко входу первого блока. С другой клеммы — на вход следующего блока. Для удобства обслуживания и ремонта делать это нужно разноцветными проводами, при этом помнить, что синий цвет — всегда «ноль». Нулевой провод выводим на нулевую шину.

Можно установить отдельные входные автоматы, чтобы в случае необходимости обесточить нужное реле, если вдруг придется его отключать. Как видим, монтаж ничем не отличается от рассмотренных примеров выше, только вместо одного блока — сразу три, каждый на свою фазу.

Выходы реле подключаем на автоматы, которые идут каждый непосредственно на свою нагрузку: освещение, розетки, бойлер. В соответствии с этим каждое реле можно настроить на разное время задержки.

Маркировка устройства

С целью маркировки контрольных приборов на их передней или боковой панели наносится последовательность из нескольких символов (иногда она указывается только в паспорте). В качестве примера рассматривается прибор российского производства ЕЛ-13М-15 АС400В, рассчитанный на подключение без нулевого провода. Он маркируется следующим образом:

  • ЕЛ-13М-15 –наименование серии;
  • сочетание АС400В – допустимое напряжение.

Маркировка импортных моделей несколько иная. Реле серии «PAHA», имеющее аббревиатуру PAHA B400 A A 3 C расшифровывается более подробно:

  • B400 – рабочее напряжение 400 Вольт.
  • А – тип регулировки.
  • А (Е) – способ крепления (на DIN рейку или на разъем).
  • 3 – габариты корпуса в мм.

Символ «С» означает завершение кодовой комбинации.

Зачем нужны защитные аппараты?

Даже если электропривод грамотно спроектирован и используется без нарушения базовых правил эксплуатации, всегда остается вероятность возникновения неисправностей.

К аварийным режимам работы относят однофазные и многофазные КЗ, тепловые перегрузки электрооборудования, заклинивание ротора и разрушение подшипникового узла, обрыв фазы.

Функционируя в режиме повышенных нагрузок, электрический двигатель расходует огромное количество электроэнергии. А при регулярном превышении показателей номинального напряжения оборудование интенсивно нагревается.

В результате быстро изнашивается изоляция, что приводит к значительному снижению эксплуатационного срока электромеханических установок.

Чтобы исключить подобные ситуации, в цепи электрического тока подключают реле тепловой защиты. Их основная функция – обеспечить нормальный режим работы потребителей.

Они отключают мотор с определенной выдержкой времени, а в некоторых случаях – мгновенно, чтобы предотвратить разрушение изоляции или повреждение отдельных частей электроустановки.

Токовое реле постоянно защищает электрический двигатель от обрыва фазы и технологических перегрузок, а также торможения ротора. Это главные причины, из-за которых возникают аварийные режимы

С целью не допустить понижение сопротивления изоляции задействуют устройства защитного отключения, ну а если поставлена задача предотвратить нарушение охлаждения, подключают специальные аппараты встроенной тепловой защиты.

Заключение

Контрольное реле напряжения трехфазное является необходимой частью системы подачи электроэнергии к приборам. Оно будет надежно охранять электросеть квартиры или дома, а также дорогостоящую электронику от скачков и перекосов напряжения.

20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.

Каково быть девственницей в 30 лет? Каково, интересно, женщинам, которые не занимались сексом практически до достижения среднего возраста.

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Реле контроля фаз ЕЛ-11, ЕЛ-12 и ЕЛ-13

Здравствуйте, уважаемые посетители и читатели сайта «Заметки электрика».

Речь в данной статье пойдет о реле контроля фаз типа ЕЛ-11, ЕЛ-12, ЕЛ-13, а также модернизированных его моделей ЕЛ-11МТ и ЕЛ-12МТ.

Эти реле еще называют реле контроля трехфазного напряжения.

Впервые с этими реле я столкнулся недавно, потому как широкого распространения в цепях релейной защиты и автоматики они не получили. Для этих целей мы используем более простые и не менее надежные электромеханические реле.

А тут на днях коллега по «цеху» попросил проверить реле контроля фаз ЕЛ-11, которое было установлено у него в схеме АВР (автоматического ввода резерва) на вводе административного здания. По его словам реле контроля фаз работало не правильно, а скорее всего совсем не работало.

По приезду на место его установки, я обнаружил, что реле трехфазного напряжения действительно работало не правильно, т.е. светодиод «сеть» на реле не горел, хотя все три фазы (А, В, С) приходили на реле.

Мною было предложено проверить это реле на стенде нашей электролаборатории и, если оно неисправно, то заменить его.

Ну раз реле мы сняли, то и схему АВР перевели из автоматического режима в ручной. Но об этом мы поговорим в следующих статьях, например, читайте про самую простую схему АВР. Если не хотите пропустить выход новых статей на сайте, то пройдите простую процедуру подписки. Форма подписки находится в конце каждой статьи и в правой колонке сайта.

Реле ЕЛ-11, ЕЛ-12, ЕЛ-13, ЕЛ-11МТ и ЕЛ-12МТ применяют для:

ЕЛ-11 и ЕЛ-11МТ используются чаще всего для защиты источников питания и преобразователей электрической энергии, генераторов, а также в схемах АВР (автоматического ввода резерва).

ЕЛ-13 применяется в качестве защиты реверсивных электрических приводов мощностью не более 75 (кВт).

А теперь подробнее разберем каждый тип реле в отдельности.

 

Технические характеристики ЕЛ-11, ЕЛ-12 и ЕЛ-13

Технические характеристики приведены в таблице ниже (при нажатии на картинку она увеличится).

Это табличка с данными по коммутационной способности этих реле.

А вот их габаритные размеры.

Установка реле контроля фаз ЕЛ-11, ЕЛ-12 и ЕЛ-13

ЕЛ-11, ЕЛ-12 и ЕЛ-13 крепятся двумя способами. Первый способ крепления осуществляется с помощью двух крепежных винтов М4.

Второй способ крепления более удобный по моему мнению — это крепление на DIN-рейку.

Кстати, в паспорте на это реле сказано, что у него допускается произвольное пространственное положение.

В общем, хоть «вверх ногами» его устанавливай.

Подключение и схема реле ЕЛ-11, ЕЛ-12 и ЕЛ-13

Подключение реле контроля трехфазного напряжения типа ЕЛ-11, ЕЛ-12 и ЕЛ-13 осуществляется с помощью проводов под зажимы. Под каждый зажим допустимо подключать, либо один провод сечением 2,5 кв.мм, либо два провода сечением до 1,5 кв.мм.

Напоминаю Вам, что я уже писал статью на тему как определить сечение провода по его диаметру. Можете почитать.

Чтобы все правильно подключить, необходимо знать схему. В принципе, производители позаботились о подсказке и изобразили схем подключения на самом корпусе реле.

При подключении реле необходимо соблюдать правильный порядок чередования фаз — А, В и С.

Кстати, при проверке этого реле я обнаружил, что на стенде у меня обратный порядок чередования фаз источника трехфазного напряжения. Вместо А, В, С на выводах фактически было С, В, А.

На днях сделаю маркировку фаз в виде наклеек.

Итак, для более наглядного представления работы этого реле я собрал следующую схему.

Так схема выглядит на стенде.

На зажимы (клеммы) А, В, С реле ЕЛ-11 подведено трехфазное напряжение ~ 110 (В) с правильным чередованием фаз.

Чтобы наблюдать работу выходных н.з. (1-2) и н.о. (3-4) контактов реле я подключил к ним светодиодные лампы СКЛ красного и зеленого цветов.

На н.з. (нормально-закрытый) контакт подключил зеленую лампу, а на н.о. (нормально-открытый) — красную.

Работа реле ЕЛ-11, ЕЛ-12 и ЕЛ-13

Рассмотрим несколько случаев работы реле контроля трехфазного напряжения.

1. Нет напряжения на зажимах реле А, В, С

При отсутствии питающего трехфазного напряжения на зажимах реле А, В, С красный светодиод «сеть» не горит. Контакт (1-2) замкнут, (3-4) разомкнут. Это отчетливо видно по лампам — горит зеленая лампа.

2. Есть напряжение на зажимах реле А, В, С

При подаче питающего трехфазного напряжения на зажимы реле А, В, С красный светодиод загорается. Контакт (1-2) размыкается, (3-4) замыкается. Опять же это хорошо видно по лампе — горит красная лампа.

3. Есть напряжение на зажимах реле А, В, С, но его параметры вышли за допустимые нормы 

Рассмотрим случай, когда напряжение на зажимах реле контроля фаз А, В, С присутствует, но его параметры вышли за допустимые значения, которые указаны в технических характеристиках. В этот момент красный светодиод на лицевой панели реле контроля фаз гаснет, а контакт (1-2) замкнется и (3-4) разомкнется через промежуток времени, установленный с помощью регулятора.

У реле ЕЛ-11, ЕЛ-12 и ЕЛ-13 выдержку времени можно регулировать в пределе от 0,1 — 10 (сек).

После восстановления параметров сети, красный светодиод на лицевой панели реле контроля фаз снова загорается, контакт (1-2) размыкается, (3-4) замыкается, т.е. схема восстанавливается.

Как говорится, «лучше один раз увидеть, чем сто раз услышать», вообщем смотрите видео о принципе работы этого реле:

Дополнение: по просьбе читателей выкладываю функциональные схемы реле.

Это мы  с Вами рассмотрели реле контроля фаз типа ЕЛ-11, ЕЛ-12 и ЕЛ-13. Теперь перейдем к их модернизированным «собратьям» типа ЕЛ-11МТ и ЕЛ-12МТ.

Технические характеристики ЕЛ-11МТ и ЕЛ-12МТ

Технические характеристики:

А вот их габаритные размеры.

Установка и подключение ЕЛ-11МТ и ЕЛ-12МТ

ЕЛ-11МТ и ЕЛ-12МТ крепятся, либо с помощью двух крепежных винтов, либо на DIN-рейку.

Подключение и схема реле ЕЛ-11МТ и ЕЛ-12МТ

Подключение реле контроля трехфазного напряжения типа ЕЛ-11МТ и ЕЛ-12МТ осуществляется аналогично.

Разница заключается лишь в маркировке зажимов. Вместо А, В, С в этих реле используется маркировка L1, L2, L3. Такая же ситуация и по контактам. Вместо н.з. контакта (1-2) используется (11-12), а вместо н.о. (3-4) — (21-24).

В принципе, производители опять позаботились о подсказке электрикам и нарисовали схему подключения реле прямо на его корпусе.

В качестве примера изобразили схему защиты двигателя с помощью реле контроля трехфазного напряжения.

А сейчас расскажу Вам работу этой схемы.

Питание электродвигателя осуществляется от сети трехфазного напряжения через плавкие предохранители. После предохранителей установлено реле контроля фаз ЕЛ-12МТ и силовые контакты магнитного пускателя (контактора) КМ. Управление контактором КМ осуществляется следующим образом.

Питание цепей управления в этом примере берется с двух фаз L1 и L2 (можно взять и другое линейное напряжение). Катушка контактора КМ должна быть выбрана на линейное напряжение сети, т.е. если линейное напряжение сети 380 (В), то и катушка КМ должна быть на 380 (В).

При нажатии на кнопку SB1 включается контактор КМ по цепи: фаза L1 — нажатая кнопка SB1 — нормально-закрытый контакт кнопки SB2 (стоп) — замкнутый контакт (24-21) реле контроля фаз ЕЛ-12МТ — катушка контактора КМ — фаза L2. Кнопку SB1 удерживать не нужно, т.к. при срабатывании контактора КМ его нормально-открытым контактом КМ шунтируется кнопка SB1.

Соответственно, контакт ЕЛ-12МТ (24-21) будет замкнут в том случае, если параметры питающей трехфазной сети удовлетворяют всем условиям, сказанным в начале этой статьи.

Например, двигатель работает в нормальном режиме. Вдруг пропала фаза питающего трехфазного напряжения. Реле через 2 (сек.) разомкнет контакт (24-21), катушка контактора КМ обесточится и разомкнет свои силовые контакты КМ. Двигатель отключится от сети.

При подключении реле ЕЛ-11МТ и ЕЛ-12МТ необходимо соблюдать правильный порядок чередования фаз.

Реле контроля трехфазного напряжения типа ЕЛ-11МТ и ЕЛ-12МТ имеют небольшие отличия от своих предшественников.

1. Регуляторы уставки срабатывания при повышенном и пониженном напряжении

На лицевой панели реле находятся 2 регулятора для регулирования уставки срабатывания реле при превышении и понижении напряжения питающей трехфазной сети.

Их пределы Вы можете посмотреть в технических характеристиках, про которые я писал чуть выше.

2. Регуляторы уставки выдержки времени при превышении и понижении напряжения

С помощью этих регуляторов Вы можете настроить конкретную выдержку времени срабатывания реле при превышении и понижении напряжения питающей сети. Все пределы регулирования по ним Вы найдете в технических характеристиках.

3. На лицевой панели реле находится 3 красных светодиода

На лицевой панели расположены 3 красных светодиода. При обрыве одной из фазы или нарушении порядка чередования фаз питающего трехфазного напряжения, загорается первый светодиод. Кстати, чуть не забыл сказать, что при обрыве или изменении порядка чередования фаз реле срабатывает с установленной (нерегулируемой) выдержкой времени 2 (сек).

При превышении напряжения больше уставки загорается второй светодиод. И наоборот, при понижении напряжения ниже уставки — загорается третий светодиод. Смотрите таблицу.

P.S. Думаю на этом можно и остановиться на знакомстве и изучении ЕЛ-11, ЕЛ-12, ЕЛ-13, ЕЛ-11МТ и ЕЛ-12МТ. Если у Вас возникли вопросы по этим реле или необходима помощь в их подключении, то пишите в комментариях. И еще, если статья показалась Вам полезной, то поделитесь ей с друзьями и коллегами в социальных сетях. Буду очень Вам благодарен.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

устройство, принцип работы, технические характеристики и схема подключения

Реле контроля фаз устанавливается в цепи питания ответственных электродвигателей. Его работа незаметна. Но в случае обрыва одной из фаз данное автоматическое устройство спасет дорогостоящий двигатель от сгорания обмоток.

Функционал реле

Реле фазного контроля (РКФ) создано для защиты промышленного и бытового электрооборудования от ненормальных режимов работы питающей сети. Устройство контролируют такие параметры как:

  • наличие всех 3 питающих фаз;
  • угол сдвига между фазами;
  • симметричность напряжений;
  • величина напряжения в каждой фазе в отдельности.

Распространенная сфера применения прибора — это защита асинхронных электрических двигателей. Они неспособны работать от 2 фаз. В таком режиме двигатели быстро выходят из строя. С помощью реле контроля реализуется схема, отключающая мотор при пропаже одной из фаз.

Обратите внимание! По своей задаче РКФ напоминает трехфазное реле контроля напряжения. Оба прибора отслеживают вольтаж в сети. Но реле фазного контроля обладает более широким перечнем настроек и возможностей.

Устройство и принцип работы

Большинство приборов данного типа предназначены для крепления в электрические шкафы защищаемого оборудования. На корпусе предусмотрена защелка под монтаж на DIN рейку. Спереди находятся регуляторы для настройки пределов срабатывания.

Принцип работы устройства основан на непрерывном отслеживании состояния сети. Если напряжение или угол между фазами выходят за критический уровень, защитное устройство сформирует отключающий сигнал и выведет оборудование из работы. Отключение производится с задержкой по времени. Его величина также настраивается.

Виды РКФ

Различные модели РКФ имеют отличающиеся технические характеристики. Поэтому каждый из подобных приборов относится к тому или иному типу.

По возможностям настройки реле делятся на 2 категории:

  1. Регулируемые. Возможно выставить требуемую уставку срабатывания по напряжению и времени (ЕЛ-11, ЕЛ-12, ЕЛ-13, ЕЛ-15).
  2. Нерегулируемые. Поддерживают только настройки завода изготовителя. Пример подобного устройства — Е-511.
Реле ЕЛ-13Е

Основные технические параметры

Защитные устройства применяются в широком перечне оборудования. Поэтому их параметры способны заметно отличаться в зависимости от условий работы. Из важнейших технических характеристик реле фазного контроля отмечают следующие:

  • рабочее напряжение;
  • пределы регулировок срабатывания;
  • время задержки срабатывания;
  • диапазон рабочих температур;
  • условия хранения.

Напряжение питания

Этот параметр выбирается в зависимости от напряжения питания защищаемого оборудования. Если оно работает от 380 В, то подбирается реле с аналогичным значением вольтажа. Помимо этого, распространены РКФ на 110 и 220 В линейного напряжения.

Важно! Линейным напряжением называется потенциал между фазными проводами. Обычно он составляет 380 В. Фазное же напряжение находится между фазным проводом и нейтралью. Обычно это 220 В как в квартирной розетке.

Блок контроля фаз на максимальное линейное напряжение 250V

Пределы настроек РКФ

Различные реле фазного контроля обладают отличающимися пределами регулировок. Если оборудование предназначено для работы с точными параметрами питающего напряжения, то можно выбрать реле с узким диапазоном регулирования 0,9-1,1 Uном, которое подходит, например, для электрических двигателей.

Если точность питающего напряжения не принципиальна, то подойдет реле с пределами 0,7-1,3 Uном. Подобные защитные приборы пригодны для трехфазных нагревательных устройств и ТЭНов.

Задержка включения/отключения

Многие промышленные потребители электроэнергии имеют нелинейную пусковую характеристику. В момент включения двигателя или ТЭНа пусковой ток в десятки раз превышает номинальный. Соответственно, при запуске просаживается и напряжение.

Чтобы РКФ не отключало сеть в момент падения напряжения, в алгоритм его работы добавлена задержка срабатывания. При запуске двигателя напряжение снижается ниже допустимого уровня, но реле не отключает питание в течение некоторого времени. Этот параметр можно настроить регулятором на передней панели устройства.

 

Рабочая температура

Сильная жара или холод пагубно сказываются на электронной схеме РКФ. Ненормальное значение температуры способно привести к дрейфу характеристик внутренних радиокомпонентов устройства, что спровоцирует его ложные срабатывания и отключения. Также резкое охлаждение может вызвать конденсацию паров воды внутри прибора, что выведет его из строя. Поэтому важно соблюдать температурный режим РКФ.

Для примера, устройства серии ЕЛ-11Е, ЕЛ-12Е и ЕЛ-13Е способны работать при температурах от –40 до +80°C. Поэтому их возможно эксплуатировать в условиях не слишком морозных зим.

Требования при хранении

У каждого электронного устройства есть как условия для эксплуатации, так и для хранения. Обычно они похожи. Любое реле фазного контроля должно храниться в заводской упаковке. По возможности необходимо избегать попадания прибора во влажную среду или в условия экстремальных температур. При хранении следует исключить вибрацию и лишнюю транспортировку реле.

Обзор популярных реле фазного контроля

На рынке представлены десятки моделей от отечественных и зарубежных производителей. Каждая из них обладает своими особенностями и техническими характеристиками. Выбирая РКФ, необходимо учесть, кто и для каких задач его выпускает.

Zamel CKM 01

Трехфазное реле контроля чередования фаз с крепежом на DIN рейку. Обладает компактными размерами. Ширина стандартная для 1 модуля и составляет 17,5 мм. Более подробные характеристики указаны в таблице.

Питающее напряжение Однофазное 220 или двухфазное 380 В
Максимальное допустимое напряжение для контактов 250 В
Предельная мощность внутреннего реле 2,5 кВА
Выходные контакты 1NO и 1NC
Максимальный коммутируемый ток 10 А
Собственное потребление 34 мА
Класс защиты корпуса от пыли и влаги IP 20
Габаритные размеры 9х17,5х6,6 см
Устройство Zamel CKM 01 для монтажа на DIN-рейку

РНПП 311

Реле от отечественного производителя «Новатек-электро». Устанавливается в щит на DIN-рейку. Имеет на передней панели минимум регуляторов для настройки, что делает его пригодным для обслуживания даже неподготовленным персоналом.

Номинальное напряжение питания 380 В
Частота питающей сети 45-55 Гц
Собственный потребляемый ток Не более35 мА
Диапазон регулирования по напряжению 1,05-1,25Umax (для Umin аналогичные значения)
Фиксированная задержка отключения 12 сек
Напряжение катушки пускателя 110-380 В
Критические значения питающего напряжения 80-500 В
Рабочая температура –25 +40°C
Климатическое исполнение УХЛ4
Количество циклов переключений при нагрузке 5 А Не менее100 тыс. раз
Монитор напряжения РНПП-311

ABB 1SVR750488R8300

Компания ABB специализируется на высококлассном электротехническом оборудовании. Качество соответствует цене. Рассматриваемое реле стоит около 11 тыс.

Напряжение питания цепи управления 450 В
Рабочая частота 50-60 Гц
Задержка включения/отключения 0,1-30 сек
Количество переключающих (перекидных) контактов 2
Габаритные размеры 85,6х45х104,8 мм

OMRON K8AB

Компактный прибор, имеющий несколько другое назначение, чем обычное РКФ. OMRON K8AB контролирует не напряжение, а ток. Поэтому для его работы требуется дополнительный трансформатор тока. Производитель позиционирует прибор как идеальное средство для контроля тока в промышленных нагревателях и электродвигателях.

Питающее напряжение (зависит от модификации) 24 Впер./пост. тока или 100-115 В или 200-230 В
Контролируемый ток 2 мА– 200 А
Количество контролируемых фаз 1
Максимальный ток выходного реле 6 А
Гистерезис срабатывания 5-50 %
Модель необходимого для работы реле трансформатора тока K8AC-CT200L

Важно! Гистерезис, если говорить простым языком — это задержка переключения. Он позволяет включать и выключать реле при отличающихся значениях тока. Это необходимо, чтобы предотвратить слишком частое переключение и механический износ контактов. Например, реле выключается при 5 А, а включается при 4. Или регулятор температуры выключает обогреватель, когда в комнате 24°C и включает, когда 18°C.

Carlo Gavazzi DPC01

Мультифункциональное трехфазное РКФ с расширенным перечнем регулировок. Реле данного производителя встречается в промышленном компрессорном оборудовании. На передней панели имеются стандартные регуляторы напряжения и задержки срабатывания. А также индикаторные светодиоды, что облегчает взаимодействие человека с устройством.

Напряжение питания 24 В пост. тока или 230 переменного
Предельный ток выхода 8 А
Регулировка задержки срабатывания От 0,1 до30 сек
Диапазон регулировки напряжения срабатывания 2-22 %от номинального значения
Количество контролируемых фаз 3
Степень защиты от пыли и влаги IP 20
Монтаж На DIN-рейку
Предельное напряжение для контактов выходного реле 550 В

Евроавтоматика ФиФ CKF-318-1

Белорусское реле фазного контроля, зарекомендовавшее себя как простое, дешевое и надежное решение для защиты электродвигателей. Данное РКФ срабатывает на критическое снижение/превышение напряжения и пропажу одной и более питающих фаз. Характеристики в таблице.

Рабочее напряжение 220/380 В
Предельный ток выходного реле 8 А при 250 В
Тип контактов 2NO и 2NC
Цвет индикатора аварии Красный
Диапазон нижнего предела напряжения 150-210 В
Диапазон верхнего предела напряжения 240-280 В
Гистерезис 5 В
Потребляемая от сети мощность 1,6 Вт
Реле контроля наличия и чередования фаз F&F CKF-318-1

Плюсы и минусы отечественных реле

Разработчикам и наладчикам оборудования периодически приходится выбирать между отечественными и зарубежными производителями автоматики. С одной стороны, все хочется сделать дешевле, а с другой — надежнее. Для правильного выбора необходимо учесть плюсы и минусы каждого из вариантов.

Достоинства российских реле контроля:

  1. Низкая цена. Импортные РКФ стоят минимум в 2 раза больше.
  2. Возможность действия устройства при температурах ниже –25°C. У зарубежных такая выносливость встречается реже.
  3. Российские реле серии ЕЛ не требуют дополнительного питания 24 В. Большинству же зарубежных требуется дополнительный источник напряжения.
Устройства производства Электротехнической Компании Меандр

Недостатки российских РКФ:

  1. Высокое тепловыделение. Это указывает на ненадежность силовых контактов или большое потребление тока собственных нужд.
  2. Некорректность работы аналоговых цепей РКФ. Чувствительность к внешним помехам.
  3. Устаревший внешний вид. Хотя в последнее десятилетие в плане дизайна отечественной автоматики наблюдается «оттепель».

Схемотехника

В разумных пределах схема подключения РКФ зависит от фантазии разработчика. Стандартное устройство имеет 3 входа для подключения фаз. Обычно они расположены в верхней части прибора. Снизу находится клеммник с 4 выводами — NO и NC контактами реле. К ним подключается какой-либо исполнительный механизм. Например, более мощное реле, контактор или магнитный пускатель. Возможно подключить нагрузку и напрямую, но требуется учесть потребляемый ею ток.

Элементы конструкции реле

Старые советские реле контроля обрыва и чередования фаз фиксировались на монтажном месте с помощью 2 винтов. Современные приборы оснащаются крепежом под DIN-рейку. Такой подход упрощает ремонт и разработку электрических шкафов.

Вторая конструктивная особенность реле фазного контроля — винтовые клеммники для подключения проводов. Подобными контактами оснащается подавляющее большинство устройств защиты.

Регуляторы для настройки

Регуляторы настройки рабочих параметров реле находятся на передней панели. Это позволяет внести изменения, не снимая само устройство с электрического щита. Регуляторы выполнены на основе подстроечных резисторов. Они не выпирают с поверхности прибора. Для их вращения необходимо воспользоваться любой подходящей отверткой.

Некоторые модели реле защиты от перекоса в сети оснащены кнопками и дисплеем. В таких устройствах ничего вращать не требуется. Однако несколько сложнее разобраться в том, что и как регулируется. Особенно без руководства пользователя.

Устройство контроля с электронным управлением

Маркировка назначения выводов

В плане маркировки и обозначения клемм все так же, как и на любых современных устройствах. Буквы на корпусе прибора имеют следующие обозначения:

  • L1, L2, L3 — выводы для подключения 3 фаз контролируемой сети;
  • NO/NC — контакты выходных реле;
  • Umax — максимальный порог напряжения, при котором РКФ отключит защищаемое оборудование;
  • Umin — соответственно минимальный порог отключения;
  • задержка — время, через которое сработает реле.

Обратите внимание! NC/NO (normal closed / normal open) — нормально закрытые/открытые контакты реле. Данная маркировка применяется во всем современном оборудовании. NC контакты находятся в замкнутом состоянии и накоротко прозваниваются мультиметром, если на катушку реле не подано напряжение. Как если бы оно просто лежало на столе. NO — контакты наоборот. Без напряжения находятся в разомкнутом состоянии.

Итог

На любом промышленном предприятии имеются сотни и тысячи трехфазных асинхронных двигателей. Каким бы современным и надежным не был мотор, если во время работы пропадет одна из питающих его фаз, то он сгорит. Стоимость самых больших и мощных двигателей сопоставима с ценой неплохого автомобиля. Реле контроля стоит гораздо дешевле мотора. Но оно точно спасет его при обрыве фазы. Этим объясняется экономическая целесообразность установки РКФ для защиты двигателя.

Качество напряжения важно не только для асинхронных машин. При коротком замыкании в линии вольтаж в одной из фаз просаживается практически до нуля. Такой режим работы недопустим. РКФ заметит критический перекос напряжения и отключит линию. Тем самым все потребители будут защищены от ненормальных режимов работы и последующих убытков.

С учетом сказанного, РКФ — это далеко не последнее по важности защитное устройство. Оно нисколько не потеряло актуальности с советских времен. Напротив, с развитием и усложнением оборудования реле становится только востребованней, ведь оно позволяет защитить от поломки дорогостоящие электрические машины.

Реле контроля фаз: устройство, принцип работы, технические характеристики и схема подключения

Реле обрыва фазы: определение, принцип работы, преимущества

Если конечный потребитель плохо управляет электроэнергией, это может привести к потерям и серьезным проблемам как для нагрузки, так и для пользователя. В связи с недавним увеличением использования электроэнергии в наших домах и на производстве, возникла необходимость в адекватной защите наших домов, промышленных предприятий и всех других устройств, использующих электричество. Таким образом, реле обрыва фазы чрезвычайно важно для защиты жизни и свойств потребителей электроэнергии.

Одна из распространенных неисправностей промышленных предприятий - это перегрев и повреждение нагрузки из-за обрыва фазы. Несмотря на то, что для защиты используются такие устройства, как реле перегрузки или автоматические выключатели, электрические нагрузки нуждаются в чем-то быстром и электронном.

Что такое реле обрыва фазы?

Реле обрыва фазы - это устройство управления специального типа, которое контролирует последовательность фаз, обрыв фаз, дисбаланс фаз, перенапряжение и пониженное напряжение в трехфазных электрических системах.

На рынке электроэнергии они также известны как реле защиты фаз, реле контроля фаз, реле контроля линии или реле контроля фаз.

Как работает реле обрыва фазы?

Основная функция реле обрыва фазы - принимать входные сигналы и определять их. При достижении заданного значения выходной контакт изменит свое положение. Этот контактный выход подключен к таким устройствам, как контакторы и переключатели, которые могут размыкать цепь.(Или сигнал тревоги отправляется на ПЛК)

Функции реле обрыва фазы

Реле обрыва фазы имеет различные типы защитных функций. Вот некоторые из них:

Несимметрия фаз

Если питание трехфазной системы несимметрично из-за неравномерного распределения нагрузки, двигатель преобразует часть энергии в реактивную мощность. Эта энергия теряется без использования; также двигатель подвергается более высокой термической нагрузке.Несимметрия фаз вызывает сильное снижение мощности двигателей переменного тока. При дисбалансе более 5% настоятельно рекомендуется выключить двигатель. Только контрольные реле (с функцией контроля асимметрии фаз) могут автоматически останавливаться до того, как двигатель будет поврежден. Надежный контроль дисбаланса продлевает срок службы двигателя и предотвращает дорогостоящие поломки.

Последовательность фаз

Неправильная последовательность фаз при запуске или изменение последовательности фаз во время работы приведет к тому, что трехфазный двигатель будет работать с обратным вращением.Работа в обратном направлении приведет к повреждению некоторых двигателей или нагрузок, таких как насосы, винтовые компрессоры и вентиляторы. Работа с неправильной последовательностью фаз может ослабить части машины или заготовок и вызвать чрезвычайно опасные ситуации. Этого можно избежать, постоянно отслеживая последовательность фаз. Все, что вам нужно, это устройство контроля и контактор для отключения устройств.

Обрыв фазы (обрыв фазы)

Обрыв фазы может быть результатом, например, перегоревшего предохранителя, механического отказа оборудования, обрыва линии электропередачи, повреждения обмотки трансформатора или удара молнии.Как только одна фаза потеряна, нагруженный трехфазный двигатель не может запуститься или может остановиться под нагрузкой. Но он также может продолжать работать асимметрично. Если двигатель глохнет, электрическое сопротивление значительно меньше, чем у вращающегося двигателя. Это вызывает увеличение тока до 600% от номинального тока двигателя. Такой высокий ток разрушит обмотки двигателя за секунды. Запрещается запускать двигатели при обрыве фазы. Если двигатель глохнет, его необходимо немедленно отключить.

Контроль напряжения

Все электрические устройства могут быть повреждены при продолжительной работе при неправильных уровнях напряжения.Пики напряжения могут разрушить электронные компоненты, а в худшем случае изоляция электронного или электрического устройства может быть повреждена в результате электрического пробоя. Определяющими факторами являются уровень напряжения, время и результирующий перегрев. Пониженное напряжение может быть причиной того, что двигатель не запускается или контактор не работает. Снова пониженное напряжение приводит к нагреву, вызывая термическое повреждение и неопределенное состояние оборудования.

Преимущества реле обрыва фазы

Использование реле обрыва фазы дает следующие преимущества:

  • Увеличивает срок службы двигателя.
  • Снижает затраты на обслуживание и ремонт двигателей.
  • Минимизирует время простоя из-за проблем с двигателем.
  • Исключает риск поражения электрическим током или возгорания из-за короткого замыкания обмоток двигателя.
  • Повышает безопасность электрической цепи.
  • Экономит место в шкафах.

Параметры выбора реле обрыва фазы

При выборе реле обрыва фазы следует учитывать следующие параметры:

  • Управляющее напряжение.
  • Функции. (Пониженное напряжение, последовательность фаз, обрыв фазы и т. Д.)
  • Количество и тип выходных контактов.
  • Максимальный и минимальный диапазон настройки пороговых значений напряжения.
  • Диапазон настройки задержки срабатывания.

Применение реле обрыва фазы

Может использоваться в следующих приложениях.

  • Управление подключением движущегося оборудования, такого как компрессоры кондиционеров, рефрижераторы и контейнеры, а также краны.
  • Контроль против реверсивной работы двигателя (подъемные, погрузочно-разгрузочные работы, лифты, эскалаторы и т. Д.)
  • Управление чувствительными трехфазными источниками питания.
  • Перегрев двигателя из-за несимметричного напряжения.
  • Защита оборудования от разрушения из-за перенапряжения.
  • Направление вращения привода.

Схема подключения

Дан пример схемы подключения реле обрыва фазы. Эти связи могут варьироваться от бренда к бренду.

Продолжить чтение

Руководство по выбору защитных и контрольных реле

: типы, характеристики, применение

Защитные реле и реле контроля обнаруживают или контролируют ненормальные условия энергосистемы. Защитные реле обнаруживают неисправные линии, неисправные устройства или другие состояния энергосистемы ненормального или опасного характера. Затем реле инициирует соответствующие действия цепи управления.Реле контроля используются для проверки условий в энергосистеме или в системе защиты. Функции контрольного реле включают обнаружение неисправностей, проверку напряжения и определение направления, которые подтверждают состояние энергосистемы, но не определяют неисправность или проблему напрямую. И защитные реле, и реле контроля могут быть чувствительны к напряжению, мощности или фазе, току или частоте.

Защитные реле часто имеют схемы для функции защиты, а также реле для переключения.Большинство из них не являются простыми электромеханическими устройствами, такими как автоматический выключатель, а вместо этого содержат схему, которая измеряет некоторую величину и может быть установлена ​​в точке срабатывания. У некоторых есть визуальные дисплеи, такие как огни или даже экраны для их настройки. Управление может осуществляться посредством программирования или с помощью регуляторов, а более простые элементы управления могут не регулироваться.

Реле защиты и реле контроля Категории

Реле защиты и контроля можно разделить на несколько категорий. Реле защиты и реле контроля можно разделить на реле, чувствительные к напряжению, реле, чувствительные к мощности (фазе), реле, чувствительные к току, и реле, чувствительные к частоте.

Реле чувствительное к напряжению

Реле напряжения идентифицируют повышенное и пониженное напряжение или и то, и другое. Они могут обнаруживать ненормальное состояние только на той стороне линии, к которой подключено реле. Это позволяет устройству обеспечивать предпусковую защиту. Реле напряжения просты в установке, не требуют трансформаторов тока и, следовательно, менее дороги. Для этого требуется только подключение напряжения, чтобы их можно было применять независимо от нагрузки системы.

Реле, чувствительное к напряжению. Кредит изображения: Wirthco

Пониженное напряжение

Реле минимального напряжения срабатывают, когда напряжение падает ниже заданного значения. Пониженное напряжение - это постоянное напряжение системы ниже номинального напряжения трансформатора, двигателя, генератора или напряжения, которое может привести к отказу оборудования. Они могут быть вызваны перегрузкой системы или отказом оборудования. Особое внимание следует уделять пониженному напряжению, поскольку многие нагрузки энергосистем являются нагрузками МВА (двигатели, источники бесперебойного питания и т. Д.). Это означает, что при уменьшении напряжения ток нагрузки увеличивается, а передаточная способность энергосистемы снижается.Реле минимального напряжения обычно являются устройствами мгновенного действия и должны завершать свою работу каждый раз, когда входное напряжение падает ниже уставки. Переключение нагрузки, регулировка напряжения и защита двигателя - все это приложения для реле защиты от пониженного напряжения.

Повышенное напряжение

Реле максимального напряжения срабатывают, когда напряжение превышает заданное значение. Перенапряжение - это постоянное напряжение системы, превышающее номинальное напряжение конденсатора трансформатора, двигателя, генератора или реактора. Перенапряжения могут привести к отказу оборудования или быть вызваны отказом оборудования, например, отказом контроллера РПН или внезапной потерей нагрузки потребителя.Реле максимального напряжения могут быть устройствами мгновенного действия или реле с выдержкой времени. Регулировка напряжения, защита шины и резервного копирования, а также защита генератора - это области применения реле защиты от перенапряжения.

Дифференциал

Реле дифференциального напряжения реагируют на разницу между входящим и исходящим напряжениями, связанную с защищаемым оборудованием. Электрические величины, входящие в систему и выходящие из нее, сравниваются трансформаторами тока. Если цепь между цепями равна нулю, то неисправности или проблемы нет.Если сеть не равна нулю, можно определить внутреннюю проблему. Этот тип реле применим ко всем частям энергосистемы и часто является основным выбором для защиты.

Реле, чувствительное к питанию (фазе)

Реле

, чувствительные к мощности или фазе, могут контролировать последовательность фаз, чередование фаз, замыкание на землю или замыкание на землю, коэффициент мощности, обрыв или обрыв фазы, а также асимметрию фаз.

Реле обратной последовательности фаз. Изображение предоставлено: Circuitmaniac.com

Обрыв (потеря) фазы - Реле контролирует напряжение с неправильной последовательностью фаз или обрыв одной или нескольких фаз. Отказ может произойти из-за перегоревшего предохранителя, механического отказа коммутационного оборудования или обрыва одной из линий электропередачи. Обрыв фазы включает три фазы, где есть три провода. Если трехфразовый двигатель запущен на одной фазе, двигатель не запустится. Если один провод отсоединяется, это определяется как потеря фазы.Предлагается объединить устройство контроля обрыва фазы с устройством, которое может обнаруживать сдвиг фазового угла. Это связано с тем, что устройства измерения напряжения, которые контролируют только величину напряжения, могут не обеспечивать защиту при работающем двигателе.

Реверсирование фазы - Реле реверсирования фазы отслеживают изменение фазы на половину цикла или 180 °. Реверсирование фазы часто происходит из-за неправильного подключения, неисправности входящего питания из-за модификаций, внесенных в систему распределения питания, или когда Восстановление питания приводит к иному чередованию фаз, чем до отключения электроэнергии.Эта защита требуется для всего оборудования, перевозящего людей, например, эскалаторов или лифтов.

Чередование фаз - Реле чередования фаз контролируют правильность чередования фаз, если два провода имеют обратное соединение и выходят из строя. Устройство используется для обеспечения правильной последовательности при подключении трехфазных нагрузок. Если последовательность фаз неправильная, реле обесточивается, предотвращая запуск неправильно подключенного оборудования

Разбаланс фаз - Реле срабатывает, когда величина одного тока превышает величину другого тока на заданную степень.Баланс напряжений работает аналогичным образом.

Коэффициент мощности - При передаче и распределении электроэнергии переменного тока коэффициент мощности представляет собой косинус фазового угла между напряжением и током. Речь идет о разной реальной и кажущейся мощности. Плохой коэффициент мощности может привести к искажению формы сигнала и более высокому потреблению энергии.

Заземление (короткое замыкание) - Реле замыкания на землю (заземление) обнаруживают любой нежелательный путь тока от точки с разным потенциалом до земли.

Реле чувствительное к току

Защитные реле и реле контроля включают в себя реле, чувствительные к току. Реле, чувствительные к току, имеют преимущество перед реле, чувствительными к напряжению, поскольку они не реагируют на противоэлектродвижущую силу (ЭДС), которая сопровождает обрыв фазы на нагрузках двигателя. Они могут обнаружить проблему либо на стороне линии, либо на стороне нагрузки в ответвленной цепи, в которой используется реле.

Реле тока. Изображение предоставлено: ChipDipvideo / CC BY-SA 4.0

Пониженный ток - Реле минимального тока срабатывают, когда ток падает ниже заданного значения. Пониженные токи могут возникать при неисправности источника питания или при разгружении нагруженного двигателя. Часто перенапряжение вызывает недостаточный ток и может привести к повреждению оборудования.

Перегрузка по току - Реле максимального тока срабатывают, когда ток превышает заданное значение. Перегрузка по току может быть вызвана либо нагрузкой, либо питанием, например, внезапным увеличением нагрузки из-за неисправной электроники или физической нагрузки на двигатель.Кроме того, падение напряжения также может вызвать перегрузку по току.

Условия дифференциального тока - Реле дифференциального тока реагируют на разницу между входящим и исходящим токами, связанными с защищаемым оборудованием. Принцип работы дифференциальных реле одинаков для станционной шины и для генераторов; устройство контролирует, чтобы сумма всех токов на шине или генераторе и на выходе из них была равна нулю. В случае неисправности возникает чистый ток, и срабатывает дифференциальное реле.

Чувствительный к частоте

Чувствительные к частоте реле - это реле защиты и реле контроля с возможностью понижения частоты, повышения частоты и дифференциальной частоты. Изменения частоты обычно связаны с подаваемой мощностью. Мощность энергокомпании вряд ли изменится, однако, если электроэнергия вырабатывается на месте с помощью инвертора, резервной системы или альтернативной энергии, более вероятно возникновение проблем с частотой. Частота важна, потому что многие электронные устройства полагаются на нее для определения времени.Например, скорость асинхронного двигателя переменного тока зависит от частоты. Увеличение или уменьшение частоты может привести к увеличению или уменьшению мощности двигателя, что вызовет проблемы в производственном процессе. Частота в конечном итоге зависит от генератора и от того, как быстро он вращается, или, в случае инвертора, от схемы синхронизации в инверторе.

  • Реле понижения частоты реагирует на уменьшение частоты переменного электрического входного сигнала.
  • Реле защиты от повышения частоты реагирует на повышение частоты. Они подпадают под категории реле мгновенного действия и реле максимального тока с выдержкой времени.
  • Дифференциальная частота Реле реагируют на разницу между входящей и исходящей частотами, связанную с защищаемым устройством.

Справочная таблица реле защиты

Защита от замыканий на землю (GFP)

Тип

Система

Типичные области применения

Реле замыкания на землю

Незаземленный переменный ток

Системы управления постоянным током, системы зарядки аккумуляторов, транспортные системы

Реле замыкания на землю

Незаземленный переменный ток

Старые производственные объекты

Реле замыкания на землю

Незаземленный переменный ток

Старые производственные объекты

Реле замыкания на землю

Постоянно заземленный переменный ток

Производители, компании по аренде и пользователи надежно заземленных генераторов

Реле замыкания на землю

Постоянно заземленный переменный ток

Двигатели, генераторы, насосы, оросительные системы, нагревательные кабели, нагреватели с SCR,

Оборудование для производства полупроводников

Сопротивление заземления (RG)

Тип

Система

Типичные области применения

Реле замыкания на землю

Сопротивление заземленного переменного тока

Системы с заземлением через сопротивление

Реле замыкания на землю

Жестко заземленный или заземленный через сопротивление переменного тока

Питатель или защита нагрузки, двигатели, генераторы, насосы, нагревательный кабель, регулируемые приводы

Система заземления

Незаземленный

или с глухим заземлением переменного тока

Используется в системах среднего напряжения

для снижения опасности дугового разряда

Система заземления

Незаземленный

или с глухим заземлением переменного тока

Используется в системах низкого и среднего напряжения для снижения опасности дугового разряда и простоев

Защита двигателя (MP)

Тип

Система

Типичные области применения

Базовый двигатель

Реле защиты

Системы переменного тока

Защита от замыканий на землю и

Контроль изоляции двигателей

Стандартный двигатель

Реле защиты

Системы переменного тока

Небольшие двигатели, требующие дополнительной защиты (обычно <75 л.с.)

Стандартный двигатель

Система защиты

Системы переменного тока

Премиальная защита для двигателей малого и среднего размера (> 50 В)

Реле усовершенствованной защиты двигателя

Системы переменного тока

Малогабаритные двигатели для ответственных применений и двигатели среднего размера для стандартных применений (обычно> 100 л.с.)

Усовершенствованный двигатель

Реле защиты

Системы переменного тока

Двигатели большего размера, требующие максимальной защиты (обычно> 500 л.с.)

Комплект дооснащения

Системы переменного тока

Заменяет GE Multilin 169, 269 и 369

Реле защиты насоса

Системы переменного тока

Двигатели для погружных насосов и технологических насосов

Защита фидера (FP)

Тип

Система

Типичные области применения

Реле защиты фидера

Системы переменного тока

Распределительные цепи среднего напряжения

Дополнительный мониторинг (SM)

Тип

Система

Типичные области применения

Монитор наземной проверки

Жестко заземленный или заземленный через сопротивление переменного тока

Электростанции с берега на судно, насосы, краны, погрузочно-разгрузочные работы

Монитор сопротивления

Сопротивление заземленного переменного тока

Системы с заземлением через сопротивление

Монитор изоляции

Системы переменного / постоянного тока

Системы в суровых условиях, таких как пыль, влажность, вибрация или воздействие коррозионных материалов

Схема адаптирована из Littelfuse

Критерии эффективности

Характеристики

Важные характеристики датчиков и измерений, которые следует учитывать при поиске реле защиты и реле контроля, включают:

  • Диапазон измерения напряжения - Диапазон измерения напряжения применяется к реле мощности (фазы), напряжения, напряжения / частоты и параллельного (синхронного) измерения.
  • Диапазон измерения тока - Диапазон измерения тока относится к силовым (фазным) и токовым реле.
  • Диапазон линейного напряжения -Диапазон линейного напряжения относится к реле измерения мощности (фазы).
  • Режим линейного напряжения - (между фазой или фазой в нейтраль)
  • Диапазон измерения частоты - Диапазон частот, в которых может действовать реле. Типичные частоты - 50 Гц, 60 Гц или 400 Гц.
  • Диапазон напряжения питания
  • Рабочая температура - важный параметр окружающей среды.Это полный требуемый диапазон рабочих температур окружающей среды. Это представляет собой пределы температуры окружающего воздуха.

Дополнительные функции

Другие защитные функции включают:

Временная задержка - Временная задержка, при которой реле может иметь различные временные функции, такие как задержка с момента обнаружения неисправности до отключения или задержка времени, необходимая для сброса. Задержка устанавливается на основе времени устранения неисправности или времени повреждения двигателя. Существует пять различных версий, определяемых крутизной характеристик максимальной токовой защиты с выдержкой времени: с независимой выдержкой времени, умеренно инверторные, инверсные, очень инверсные, крайне инверсные.

Кредит изображения: xnet.rrc.mb.ca

Синхронная проверка - Синхронная проверка предназначена для двух источников питания, таких как два генератора или генератор и настенная розетка, когда при соединении или переключении между ними оба будут подключены одновременно. Этот тип реле будет проверять выравнивание фазы, чтобы пользователь мог выполнить это переключение.

Характеристики

Общие характеристики защитных реле и реле контроля включают:

  • Программируемая выдержка времени - Реле имеет функцию программируемой выдержки времени.
  • Автоматический сброс - Реле автоматически сбрасывается после восстановления нормальных условий.
  • Визуальные индикаторы - Реле имеет визуальный индикатор, такой как светодиод, для определения различных состояний системы.
  • Элементы управления с фиксацией - Реле используются для приложений с фиксацией (например, контроллеры пределов фиксации). Защелки сохраняют последнее определенное состояние перед отключением питания. Если защелка не включена, система должна быть спроектирована для обеспечения отказоустойчивости или приемлемого режима ожидания в случае потери питания контроллера.

Стандарты

BS EN 50216-3 - Арматура силового трансформатора и реактора - Часть 3: защитное реле для герметичных жидкостных трансформаторов и реакторов без газовой подушки

IEEE C37.113 - Руководство по применению реле защиты в линиях передачи

MIL-PRF-32484 - Защитные реле и приспособления, вакуумные выключатели среднего напряжения

Ресурсы

Слева, Энтони Ф. Принципы защитных реле.Бока-Ратон: CRC, 2009. Печать.

Ван Кортланд Уоррингтон, Альберт Р. Защитные реле: их теория и практика. Том 2 . Лондон: Chapman & Hall, 1978. Печать.

Steven Engineering - Реле обрыва фазы

Изображение кредита:

Grainger | Phoenix Contact США | Ньюарк element14 | GE


Прочтите информацию пользователя о защитных реле и реле контроля

Реле перегрузки - Принцип действия, типы, подключение

Каждый двигатель должен быть защищен от всех возможных неисправностей, чтобы обеспечить длительную и безопасную работу, а также потерю времени из-за поломки.Почти все отрасли промышленности полагаются на электродвигатель для управления своими процессами и производством. Следовательно, необходимо сделать двигатель отказоустойчивым.

Реле перегрузки

- одно из таких устройств, которое защищает двигатель от повреждений, вызванных перегрузками и токами . Он используется с контакторами и может быть найден в центрах управления двигателями и пускателях двигателей.

Изображение: реле перегрузки

Определение из реле перегрузки

Реле перегрузки - это устройство, которое защищает электродвигатель от перегрузок и обрыва фазы.

Он определяет перегрузку двигателя и прерывает поток энергии к двигателю, тем самым защищая его от перегрева и повреждения обмотки. Помимо перегрузок, он также может защитить двигатель от обрыва / пропадания фаз и дисбаланса фаз . Они широко известны как OLR .

Что такое перегрузка?

Перегрузка - это состояние, при котором двигатель потребляет ток, превышающий его номинальное значение, в течение длительного периода.

Это наиболее распространенная неисправность, которая может привести к повышению температуры обмотки двигателя. Следовательно, важно быстрое возвращение к нормальной работе.

Принцип операция

Тепловое реле перегрузки работает по принципу электротермических свойств биметаллической ленты. Он размещен в цепи двигателя таким образом, чтобы ток, подаваемый на двигатель, проходил через его полюса. Биметаллическая полоса прямо или косвенно нагревается током и, когда ток превышает установленное значение, изгибается.

Они всегда работают в сочетании с контакторами. Когда биметаллические полоски нагреваются, срабатывает размыкающий контакт, который, в свою очередь, прерывает подачу питания на катушку контактора, обесточивая ее и прерывая ток, протекающий к двигателю. Это время отключения всегда обратно пропорционально току, протекающему через OLR. Следовательно, чем больше ток, тем быстрее он сработает. Следовательно, тепловые реле перегрузки называются реле , зависящими от тока и с обратной выдержкой времени.

A = Биметаллические ленты с косвенным нагревом
B = Шток выключателя
C = Рычаг выключения
D = Рычаг контакта
E = Биметаллическая планка компенсации
Авторы и права: Rockwell

Типы перегрузки реле

Реле перегрузки можно классифицировать следующим образом:

  1. Биметаллические тепловые реле перегрузки
  2. Электронные реле перегрузки

Принцип работы , описанный выше, немного отличается друг от друга.Давайте обсудим это в следующих разделах.

Как объяснено выше, биметаллическое тепловое реле работает на нагревательные свойства биметаллической полосы. В методе прямого нагрева полный ток двигателя протекает через OLR. Следовательно, он нагревается непосредственно током.

Но в случае косвенного нагрева биметаллическая полоса удерживается в плотном контакте с проводником с током внутри OLR. Чрезмерный ток, протекающий к двигателю, нагревает проводник и, следовательно, биметаллическую полосу.Проводник должен быть изолирован, чтобы ток через ленту не протекал.

Работа электронного реле перегрузки

Электронные реле перегрузки не имеют внутри биметаллической планки. Вместо этого он использует датчики температуры или трансформаторы тока, чтобы определять величину тока, протекающего к двигателю. Для защиты используется микропроцессорная технология. Температура измеряется с помощью PTC, и он используется для отключения цепи в случае сбоев из-за перегрузки.Некоторые электронные реле перегрузки поставляются с трансформаторами тока и датчиками Холла, которые напрямую определяют величину протекающего тока.

Основным преимуществом электронного OLR перед тепловым OLR является то, что отсутствие биметаллической полосы приводит к низким тепловым потерям внутри реле. Кроме того, электронные реле более точны, чем тепловые реле. Некоторые производители создают электронные реле с расширенными функциями, такими как защита от замыкания на землю, защита двигателя от опрокидывания и т. Д. Электронные реле перегрузки хорошо подходят для приложений, требующих частого запуска и остановки двигателей.

Они сконструированы таким образом, чтобы выдерживать пусковой ток (который обычно в 6-10 раз превышает ток полной нагрузки) двигателя в течение ограниченного периода (обычно 15-30 секунд в зависимости от порогового значения тока).

Детали теплового реле перегрузки

Помимо биметаллической ленты и контактов, обсуждаемых в Раздел принципа работы, в реле перегрузки есть еще несколько частей это необходимо упомянуть.

Терминал

Клеммы L1, L2, L3 являются входными клеммами.Это может быть прямо установлен на контактор. Питание двигателя может быть подключено к клеммам T1, Т2, Т3.

Установка диапазона ампер

Поворотная ручка присутствует над реле перегрузки. С помощью этой ручки можно установить номинальный ток двигателя. Сила тока может быть установлена ​​между предусмотренными верхним и нижним пределами. В случае электронного реле перегрузки также предусмотрена дополнительная ручка для выбора класса срабатывания.

Кнопка сброса

На реле перегрузки имеется кнопка сброса для сброса реле перегрузки после отключения и устранения неисправности.

Выбор ручного / автоматического сброса

С помощью кнопки выбора ручного / автоматического сброса мы можем выбирать между ручным и автоматическим сбросом этих реле после отключения. Если устройство настроено на автоматический режим, возможен удаленный сброс OLR.

Вспомогательный контакт

Они снабжены двумя вспомогательными контактами - одним нормально разомкнутым (97-98) и другим нормально замкнутым (95-96). НО контакт предназначен для сигнализации срабатывания, а НЗ контакт - для отключения контактора. НЗ-контакты должны обеспечивать прямое переключение катушки контактора.

Тестовая кнопка

Используя кнопку тестирования, можно проверить проводку управления.

Символ реле перегрузки Символ теплового OLR

Здесь 1, 2, 3, 4, 5 и 6 - клеммы питания, 95 и 96 - контакты отключения, а 97 и 98 - контакты сигнализации.

Что такое поездка Класс реле перегрузки?

Время, затрачиваемое ими на размыкание контактора при перегрузках, определяется классом отключения .Обычно он подразделяется на класс 10, класс 20, класс 30 и класс 5. OLR отключается через 10 секунд, 20 секунд, 30 секунд и 5 секунд соответственно при 600% тока полной нагрузки двигателя.

Очень часто используются

Class 10 и Class 20. Реле перегрузки класса 30 используются для защиты двигателей, приводящих в движение высокоинерционные нагрузки, а реле класса 5 используются для двигателей, требующих очень быстрого отключения.

Предоставлено: Шнайдер.

Как пользоваться реле перегрузки в цепи?

Они всегда используются в комбинации с контакторами в цепи.Он подключен к двигателю так, что ток, идущий к двигателю, полностью протекает через него. Ниже представлены различные типы соединений для однофазных и трехфазных двигателей.

Где К1 и К1М - реле перегрузки. Первый и второй рисунки показывают подключение однофазного двигателя, а третий показывает подключение трехфазного двигателя.

Что вызывает отключение OLR?

Как обсуждалось выше, существует трех основных условий для отключения по перегрузке :

  1. Перегрузка мотора.
  2. Обрыв входной фазы
  3. Неуравновешенность фаз.

Помимо этого, может быть доступна дополнительная функция защиты. Это варьируется от одного производителя к другому.

Как реле перегрузки защищает от обрыва фазы?

Во время нормальной работы ток, протекающий через каждый полюс реле перегрузки к двигателю, остается неизменным. Если какая-либо из фаз прерывается, ток через две другие фазы возрастает до 1.73 раза больше нормального значения. Следовательно, реле перегрузки нагревается и срабатывает. Обрыв фазы также известен как однофазный двигатель или обрыв фазы.

Может ли OLR защитить от короткие замыкания?

Реле перегрузки не могут защитить от короткого замыкания. Их всегда следует использовать с устройствами защиты от короткого замыкания. В противном случае короткое замыкание в двигателе может привести к его повреждению. Они могут защитить от перегрузок, потери фазы и дисбаланса фаз, но не от короткого замыкания.

Сводка

Реле перегрузки - это устройство, которое может защитить двигатель от перегрузок, обрыва фазы и дисбаланса фаз. По принципу действия они подразделяются на тепловые и электронные реле перегрузки. Thermal OLR основан на принципе деформации биметаллической ленты при нагревании, а электронное реле перегрузки представляет собой микропроцессорное устройство.

OLR используются в сочетании с контакторами. Он размыкает контактор всякий раз, когда обнаруживает неисправность.Время, затрачиваемое ими на размыкание контактора при перегрузках, определяется его классом отключения. Реле перегрузки не могут защитить от короткого замыкания.

Работа, преимущества и их применение

Разработка реле была начата в 1809 году. Как часть изобретения электрохимического телеграфа, электролитическое реле было найдено Самуэлем в 1809 году. ученый Генри в 1835 году, чтобы сделать импровизированную версию телеграфа, а затем разработал ее в 1831 году.В то время как в 1835 году Дэви полностью открыл реле, но первоначальные патентные права были даны Самуэлем в 1840 году на первое изобретение электрического реле. Подход этого устройства выглядел так же, как цифровой усилитель, таким образом воспроизводя телеграфный сигнал и позволяя распространяться на большие расстояния. И эта статья дает четкое объяснение того, что такое реле, различные типы реле, работа и многие другие связанные концепции.


Что такое реле?

Реле обычно используются там, где требуется регулировать цепь с помощью отдельного сигнала минимальной мощности, или там, где необходимо регулировать несколько цепей с помощью одного сигнала.Первоначально реле использовались в телеграфных цепях увеличенной длины, таких как ретрансляторы сигналов, поскольку они усиливают волну, которая принимается и передается в другие цепи. Основное применение реле было в телефонных станциях и первых версиях компьютеров.

Реле являются первичной защитой, а также переключающими устройствами в большинстве процессов управления или оборудования. Все реле реагируют на одну или несколько электрических величин, таких как напряжение или ток, так что они размыкают или замыкают контакты или цепи.Реле - это переключающее устройство, поскольку оно работает, чтобы изолировать или изменить состояние электрической цепи из одного состояния в другое.

Поскольку реле обеспечивает защиту цепи от повреждений. Каждое реле состоит из трех важнейших компонентов, которые рассчитываются, сравниваются и управляются. Вычисляемому компоненту известно изменение фактического измерения, а компонент сравнения оценивает фактическое значение с таким же значением заранее выбранного реле.А управляющий компонент обрабатывает быстрое изменение измеренной емкости, например, замыкание текущей функциональной цепи.

Реле повторного включения используются для подключения различных компонентов и устройств в системной сети, таких как процесс синхронизации, и для восстановления различных устройств вскоре после исчезновения любой электрической неисправности, а затем для подключения трансформаторов и фидеров к линейной сети. Регулирующие реле - это переключатели, которые контактируют таким образом, что напряжение повышается, как в случае трансформаторов с переключением ответвлений.Вспомогательные контакты используются в автоматических выключателях и другом защитном оборудовании для увеличения числа контактов. Реле контроля контролируют состояние системы, например, направление мощности, и соответственно генерируют аварийный сигнал. Их также называют реле направления.

В реле общего типа используется электромагнит, чтобы выполнять размыкание и замыкание контактов, тогда как в других типах подходов, таких как твердотельные реле, они используют свойства полупроводника для управления, независимо от подвижного элемента. составные части.Реле с калиброванными свойствами и, в некоторых случаях, различные функциональные катушки используются для защиты систем электрических цепей от токов перегрузки. В современных энергосистемах эти операции выполняются цифровыми устройствами, которые называются реле защитного типа.


Твердотельные реле

Различные типы реле

В зависимости от принципа работы и конструктивных особенностей реле бывают разных типов, например, электромагнитные реле, тепловые реле, реле переменной мощности, многомерные реле и т. Д., С различными номинальными характеристиками, размеры и приложения.Классификация или типы реле зависят от функции, для которой они используются.

Некоторые категории включают реле защиты, повторного включения, регулирования, вспомогательные и контрольные реле. Защитные реле постоянно контролируют следующие параметры: напряжение, ток и мощность; и если эти параметры нарушают установленные пределы, они генерируют сигнал тревоги или изолируют эту конкретную цепь. Эти типы реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.

Различные типы реле

В целом классификация реле зависит от электрической емкости, которая активируется током, мощностью, напряжением и многими другими величинами.Классификация основана на механической мощности, активируемой скоростью истечения газа или жидкости, давлением. Тогда как на основе теплоемкости, активируемой мощностью нагрева, а другие величины - акустические, оптические и другие.

Электромагнитные реле различных типов

Эти реле состоят из электрических, механических и магнитных компонентов и имеют рабочую катушку и механические контакты. Следовательно, когда катушка активируется системой питания, эти механические контакты размыкаются или замыкаются.Тип питания может быть переменным или постоянным током. Эти электромагнитные реле далее классифицируются как

  • Реле постоянного и переменного тока
  • Тип притяжения
  • Индукционный тип
Реле постоянного и переменного тока

Реле переменного и постоянного тока работают по тому же принципу, что и электромагнитная индукция, но конструкция несколько отличается дифференцированы и также зависят от области применения, для которой выбраны эти реле. Реле постоянного тока используются с диодом свободного хода для обесточивания катушки, а реле переменного тока используют многослойные сердечники для предотвращения потерь на вихревые токи.

Очень интересным аспектом переменного тока является то, что на каждом полупериоде направление подачи тока меняется; следовательно, для каждого цикла катушка теряет свой магнетизм, поскольку нулевой ток в каждом полупериоде заставляет реле непрерывно замыкать и размыкать цепь. Итак, чтобы предотвратить это - дополнительно, одна заштрихованная катушка или другая электронная схема помещается в реле переменного тока, чтобы обеспечить магнетизм в положении нулевого тока.

Электромагнитные реле притягивающего типа

Эти реле могут работать как с переменным, так и с постоянным током и притягивать металлический стержень или кусок металла, когда на катушку подается питание.Это может быть плунжер, притягиваемый к соленоиду, или якорь, притягиваемый к полюсам электромагнита, как показано на рисунке. У этих реле нет временных задержек, поэтому они используются для мгновенного срабатывания. Существует больше разновидностей притяжения электромагнитного реле , а именно:

  • Сбалансированная стопка - Здесь две измеряемые величины связаны из-за того, что генерируемое электромагнитное давление изменяется вдвое по отношению к количеству ампер-витков.Доля функционального тока для этого типа реле очень минимальна. Реле имеет тенденцию выходить за пределы допустимого диапазона, когда устройство настроено на работу в быстром режиме.
  • Шарнирный якорь - Здесь можно повысить чувствительность реле для работы с постоянным током, вставив постоянный магнит. Это также называется реле поляризованного движения.

Это различных типов электромагнитных реле .

Реле индукционного типа

Они используются как реле защиты только в системах переменного тока и могут использоваться с системами постоянного тока.Приводная сила для движения контакта создается движущимся проводником, который может быть диском или чашей, за счет взаимодействия электромагнитных потоков из-за токов короткого замыкания.

Индукционное реле

Они бывают нескольких типов, например, с экранированным полюсом, ватт-часами и индукционными чашками, и в основном используются в качестве направленных реле в защите энергосистемы, а также для высокоскоростных коммутационных операций. В зависимости от конструкции индукционные реле классифицируются как:

  • Затененный полюс - Структурированный полюс обычно активируется протеканием тока в одиночной катушке, которая намотана на магнитную структуру с воздушным зазором.Нестабильности воздушного зазора, создаваемые регулирующим током, разделяются на два потока, смещаемые заштрихованным полюсом и во времени-пространстве. Это затемненное кольцо изготовлено из медного материала, окружающего каждую часть мачты.
  • Двойная обмотка, также называемая ваттметром. - Этот тип реле поставляется с E- и U-образным электромагнитом, имеющим бездисковый вращающийся между электромагнитами. Фазовый сдвиг, который находится между потоками, генерируемыми электромагнитом, достигается за счет развиваемого потока двух электромагнитов, которые имеют различные значения индуктивности сопротивления для обеих систем цепи.
  • Индукционная чашка - Это основано на теории электромагнитной индукции и так называемое реле индукционной чашки. Устройство состоит из двух или более электромагнитов, которые активируются катушкой реле. Катушка, которая окружает электромагнит, создает вращающееся магнитное поле. Из-за этого вращающегося магнитного поля в чашке будет индукция тока, и чашка сможет вращаться. Текущее направление вращения аналогично направлению вращения чашки.
Магнитные фиксирующие реле

В этих реле используется постоянный магнит или детали с высоким коэффициентом передачи, чтобы якорь оставался в той же точке, что и катушка наэлектризована, когда источник питания катушки отключен. Реле с защелкой состоит из минимальной металлической полосы, которая входит между двумя краями.

Блокировочные реле

Переключатель либо прикреплен, либо намагничен на одном конце небольшого магнита. Другая сторона прикреплена к проводу небольшого размера, который называется соленоидами.Переключатель снабжен одним входом и двумя выходными секциями по краям. Это можно использовать для переключения схемы в положения ВКЛ и ВЫКЛ. Обозначение реле с защелкой показано следующим образом:

Обозначение реле с защелкой

Твердотельное реле

Твердотельное реле

использует твердотельные компоненты для выполнения операции переключения без перемещения каких-либо частей. Поскольку требуемая энергия управления намного ниже по сравнению с выходной мощностью, которая должна регулироваться этим реле, это приводит к увеличению мощности по сравнению с электромагнитными реле.Они бывают разных типов: ТТР с трансформаторной связью, ТТР с фотосвязью и так далее.

Твердотельные реле

На приведенном выше рисунке показан SSR с фотосвязью, в котором управляющий сигнал подается светодиодом и обнаруживается светочувствительным полупроводниковым устройством. Выходной сигнал этого фотодетектора используется для запуска затвора TRIAC или SCR, который переключает нагрузку.

В твердотельных реле с трансформаторной связью минимальное количество постоянного тока подается на первичную обмотку трансформатора с помощью преобразователя постоянного тока в переменный.Затем подаваемый ток преобразуется в переменный ток и повышается, чтобы SSR работал вместе со схемой запуска. Степень изоляции между выходной и входной секциями зависит от конструкции трансформатора.

Принимая во внимание, что в сценарии твердотельного устройства с фотосвязью, для выполнения функции переключения используется светочувствительное SC-устройство. На светодиод подается регулируемый сигнал, который заставляет светочувствительный компонент переходить в режим проводимости за счет обнаружения света, излучаемого светодиодом.Изоляция, создаваемая SSR, сравнительно больше по сравнению с изоляцией трансформаторного типа из-за теории фотодетектирования.

В большинстве случаев SSR имеют более высокую скорость переключения, чем реле электромеханического типа. Кроме того, отсутствуют подвижные компоненты, срок их службы больше, а уровень шума минимален.

Гибридное реле

Эти реле состоят из электромагнитных реле и электронных компонентов. Обычно входная часть содержит электронную схему, которая выполняет выпрямление и другие функции управления, а выходная часть включает электромагнитное реле.

Было известно, что в реле твердотельного типа больше энергии тратится в виде теплового потока, электромагнитное реле имеет проблему изгиба контактов. Чтобы избавиться от этих недостатков в твердотельных и электромагнитных реле, используется гибридное реле. В гибридном реле одновременно работают реле EMR и SST.

Твердотельное устройство принимает ток нагрузки, что устраняет проблему архивирования. Затем система управления включает катушку в ЭМИ и контакт замыкается.Когда контакт в электромагнитном реле установлен, то регулирующий вход твердотельного реле вынимается. Это реле также снижает проблему перегрева.

Тепловое реле

Эти реле основаны на тепловом воздействии, что означает - повышение температуры окружающей среды от предельного значения заставляет контакты переключаться из одного положения в другое. Они в основном используются для защиты двигателей и состоят из биметаллических элементов, таких как датчики температуры, а также элементов управления.Реле тепловой перегрузки являются лучшими примерами таких реле.

Герконовое реле

Герконское реле состоит из пары магнитных полос (также называемых язычковыми), которые помещены в стеклянную трубку. Этот язычок действует как якорь и как контактный нож. Магнитное поле, приложенное к катушке, наматывается на эту трубку, заставляя эти язычки двигаться так, что выполняется операция переключения.

Герконовые реле

По размерам реле подразделяются на микроминиатюрные, сверхминиатюрные и миниатюрные.Также по конструкции эти реле классифицируются как герметичные, герметичные и реле открытого типа. Кроме того, в зависимости от рабочего диапазона нагрузки, реле бывают микро-, малой, средней и высокой мощности.

Реле

также доступны с различными конфигурациями контактов, такими как 3-, 4- и 5-контактные реле. Способы работы этих реле показаны на рисунке ниже. Переключающие контакты могут быть типа SPST, SPDT, DPST и DPDT. Некоторые из реле являются нормально разомкнутыми (NO), а другие - нормально замкнутыми (NC).

Конфигурации контактов реле

Дифференциальное реле

Эти реле работают, когда изменение вектора между двумя или более электрическими величинами одного типа превышает указанный диапазон. В случае токового дифференциального реле оно функционирует, когда существует выходное соотношение между величиной и изменением фазы токов, принимаемых и выходящих из системы, которое необходимо защитить.

В общих функциональных условиях токи, принимаемые и выходящие из системы, будут иметь одинаковую фазу и величину, так что реле не срабатывает.Принимая во внимание, что когда в системе возникает проблема, эти токи не будут иметь одинаковых величин и фаз.

Дифференциальное реле

Это реле будет иметь такое соединение, при котором колебания между входящими и выходящими токами протекают через функциональную катушку реле. Следовательно, катушка в реле активируется в состоянии неисправности из-за изменения величины тока. Таким образом, срабатывает реле и автоматический выключатель, и происходит отключение.

В дифференциальном реле один ТТ соединен с первичной обмоткой трансформатора, а другой ТТ - с вторичной обмоткой трансформатора. Реле связывает текущие значения с обеих сторон, и когда есть какая-либо дестабилизация в значении, реле будет работать.

Существуют дифференциальные реле тока, напряжения и смещения.

Различные типы реле в автомобильной промышленности

Это общий вид электрохимических реле, используемых в различных автомобилях, таких как легковые автомобили, фургоны, прицепы и грузовики.Они допускают минимальный ток для регулирования и обеспечивают работу большего количества токовых цепей в транспортных средствах. Они доступны во многих типах и размерах, некоторые из них:

Реле переключения

Это наиболее внедренное автомобильное реле, которое имеет пять контактов, которые имеют следующие электрические соединения:

  • Нормально разомкнутые до 30 и 87 штырьки
  • Нормально замкнуты через контакты 30 и 87a
  • Переключение, подключенное через 30 и (87 и 87a)

Когда реле работает в режиме переключения, оно переключается с одной цепи на другую и возвращается к исходному состоянию состояние в зависимости от состояния катушки (ВЫКЛ или ВКЛ).

Нормально разомкнутые реле

В качестве переключателя реле может иметь подключение проводки как нормально разомкнутое, тогда как в этом типе у него есть только четыре контакта, которые позволяют подключать проводку только одним способом, то есть нормально разомкнутым.

Реле мигания

Реле любого общего типа имеет 4 или 5 контактов, но в этом реле мигания будет 2 или 3 контакта.

В двухконтактном реле указателя поворота один контакт соединяется со световой цепью, а другой - с питанием.В трехконтактном реле мигалки два контакта подключены к источнику питания и свету, а третий - к светодиодному индикатору, который указывает, что мигалка находится в состоянии ВКЛ. Несмотря на то, что название указывает на то, что это тип реле, некоторые из них ведут себя как выключатели.

Электромеханический проблесковый маячок

Этот тип автомобильного реле содержит печатную плату с конденсатором, парой диодов и одной катушкой для создания формы вспышки, такой же, как и у стандартного проблескового маячка.Эти реле обладают способностью управлять увеличенными нагрузками, обеспечивая более высокую производительность, чем у тепловых мигалок. Несмотря на то, что в этом типе подключено больше источников света, это оказывает минимальное влияние на результат.

Терморегулирующие устройства

Большинство реле мигающих сигналов имеют терморегуляцию, например, автоматические выключатели. Протекание тока через катушку мигалки генерирует тепло, когда есть необходимое количество тепла, это вызывает отклонение контактов, вызывая размыкание контактов и прерывая прохождение тока.Когда имеется необходимое количество теплоотдачи, то отклонение контактов меняется на исходное, и снова будет протекать ток.

Этот процесс непрерывного размыкания и замыкания контактов генерирует мигающую диаграмму сигналов. Общее количество огней, которые связаны с термомигальщиком, показывает влияние на выходную мощность.

Светодиодные мигалки

Они полностью электронные по регулировке и функциям. Они управляются минимальными твердотельными платами IC.Общее количество источников света, которые связаны со светодиодной мигалкой, не влияет на выход. Эти реле в основном предназначены для работы с минимальным током с использованием светодиодов без каких-либо проблем.

В дополнение к этому существует еще различных типов автомобильных реле , в том числе:

  • в горшке
  • Wig-Wag
  • Skirted
  • Time delay
  • Dual open contact

Mercury Wetted Relay

Это подпадает под классификацию герконовых реле, в которых используется ртутный переключатель, а контакты в этом реле увлажняются ртутью.Этот металл снижает значение контактного сопротивления и снижает соответствующее падение напряжения. Повреждение оболочки может снизить характеристики проводимости для сигналов с минимальным значением тока.

Принимая во внимание, что для увеличения скорости нанесения ртуть устраняет функцию отскока контактов и предлагает почти быстрое замыкание цепи. Эти реле полностью зависят от положения и должны быть установлены в соответствии с требованиями проектировщика. Но с учетом вредных свойств жидкой ртути и ее стоимости, реле, контактирующие с ртутью, минимально используются в этих приложениях.

Повышенная скорость переключения в этих реле является дополнительным преимуществом. Капли ртути, присутствующие на каждом краю, объединяются, и приращение текущего значения по краям обычно учитывается как пикосекунды. Но в практических схемах это может регулироваться индуктивностью проводки и контактов.

Реле защиты от перегрузки

Электродвигатели

широко используются в различных приложениях, например, в двигателях с вращающимися инструментами.Поскольку двигатели немного дороги, более важно следить за тем, чтобы двигатели не подвергались повреждениям.

Для предотвращения повреждений необходимо использовать реле защиты от перегрузки. Реле защиты от перегрузки предотвращают выход из строя двигателя, наблюдая за величиной тока в двигателе, и, таким образом, разрывают цепь, когда происходит электрическая перегрузка или обнаруживается какое-либо повреждение фазы. Поскольку реле не дороже двигателей, они предлагают недорогой подход к защите двигателей.

Существуют различные типы реле защиты от перегрузки, и лишь немногие из них включают электромеханические реле, электронные реле, предохранители и тепловые реле.Предохранители широко применяются для защиты устройств с минимальным током, например, в домашних условиях. В то время как электронные, тепловые и электромеханические реле используются для защиты повышенных значений тока в устройствах, таких как инженерные двигатели. Важнейшими преимуществами использования реле защиты от перегрузки являются:

  • Простое управление
  • Соответствующие горные комплекты будут доступны для различных типов реле защиты от перегрузки
  • Точная синхронизация с подрядчиками
  • Надежная защита

Статические реле

Реле которые не имеют подвижных компонентов, называются статическими реле.В этих статических реле результат достигается за счет статических частей, таких как электронные и магнитные цепи и другие статические устройства. Реле, которое входит в состав электромагнитного и статического реле, даже называется статическим реле по той причине, что статические секции получают обратную связь, тогда как электромагнитное реле используется для целей переключения. Немногочисленные преимущества статических реле:

  • Минимальное время сброса
  • Использует минимальную мощность там, где это снижает нагрузку на измерительные устройства и повышает точность
  • Обеспечивает быстрый выход, увеличенный срок службы, повышенную надежность и высокую точность
  • Ненужное срабатывание минимально, и благодаря этому эффективность будет увеличена.
  • Эти реле не будут сталкиваться с какими-либо проблемами накопления тепла.
  • Усиление входного сигнала выполняется в самом реле, и это увеличивает чувствительность.
  • Эти устройства могут работать при землетрясениях. также в местах расположения на животе, что показывает, что они также обладают ударопрочностью.

Существует различных типов статических реле . Вот некоторые из них:

Электронное статическое реле

Эти электронные статические реле были первыми в классификации статических реле. Ученый по имени Фитцджеральд в 1928 году продемонстрировал испытание на несущем токе, которое демонстрирует безопасность линий электропередачи. Вследствие этого была обнаружена последовательность электронных систем для большинства основных типов реле предохранительных механизмов.Устройства, которые используются для измерения, представляют собой электронные клапаны.

Статические реле преобразователя

Это устройство в основном состоит из магнитного сердечника, который состоит из двух секций обмоток, обычно называемых функциональной и регулирующей обмотками. Каждая секция может состоять из одной обмотки или, если имеется более одной обмотки, будет магнитная связь всех подобных типов обмоток. Когда есть обмотки разных групп, они не будут связаны магнитным способом.

В то время как обмотки регулирования активируются постоянным током, а функциональные обмотки питаются переменным током. Это реле работает, чтобы отображать изменяющиеся значения импеданса для токов, протекающих через функциональные обмотки.

Статические реле выпрямительного моста

Реле пользуются повышенной популярностью благодаря усовершенствованию полупроводниковых диодов. Он включает в себя два выпрямительных моста и подвижную катушку или реле типа подвижного железа с поляризацией. Тогда общий тип - это релейные компараторы, которые зависят от выпрямительных мостов, где они могут быть скомпонованы в виде фазовых или амплитудных компараторов.

Транзисторные реле

Это обычно используемые типы статических реле. Транзистор, который функционирует как триод, может преодолеть большинство недостатков, создаваемых электронными лампами, поэтому это наиболее развитый тип электронных реле, так называемых статических реле.

Реальность, что транзистор может использоваться как усилительный инструмент, а также как переключающий инструмент, что позволяет ему подходить для выполнения любых рабочих функций.Транзисторные схемы не только выполняют важные функции реле (например, сравнение входов, вычисление и их усвоение), но и обладают существенной эластичностью, позволяющей удовлетворить потребности нескольких реле.

В дополнение к этим другим типам статических реле относятся:

  • Реле на эффекте Холла
  • МТЗ с обратнозависимой выдержкой времени
  • Направленное статическое реле максимального тока
  • Статическое дифференциальное реле
  • Статическое дистанционное реле

Применения различных типов Реле

Поскольку существует множество типов реле, эти устройства найдут применение в различных отраслях промышленности, включая электрическую, авиационную, медицинскую, космическую и другие.Области применения:

  • Используется для регулирования различных цепей
  • Защищает устройства от перегрузки по напряжению и току и снижает влияние электрического повреждения цепей
  • Реализовано как автоматическое изменение
  • Используется для изоляции минимального уровня цепь напряжения
  • Автоматические стабилизаторы - одна из его реализаций, в которых реализовано реле. Когда уровень питающего напряжения отличается от номинального напряжения, тогда набор реле анализирует изменения напряжения и регулирует цепь нагрузки, интегрируя автоматические выключатели.
  • Используется для управления переключателями электродвигателя. Чтобы включить электродвигатель, нам обычно требуется источник переменного тока 230 В, но в некоторых ситуациях / приложениях может потребоваться включение двигателя с использованием напряжения питания постоянного тока. В таких случаях может использоваться реле.

Это некоторые из различных типов реле, которые используются в большинстве электронных и электрических цепей. Информация о различных типах реле служит целям читателей, и мы надеемся, что они сочтут эту основную информацию очень полезной.Учитывая огромное значение реле с zvs в схемах, эта конкретная статья о них заслуживает отзывов, запросов, предложений и комментариев читателей. Еще более важно знать о других темах, связанных с реле, таких как реле против контактора , реле и переключатель , и многие другие.

SSR Принцип работы | Средства автоматизации | Промышленные устройства

Японский Английский Английский (Азиатско-Тихоокеанский регион) Китайский (упрощенный)


Характеристики переключения SSR

1.SSR для нагрузок переменного тока

1. Нулевой переход SSR

SSR с переходом через ноль использует фотоэлектрический ответвитель для изоляции входа от выхода (см. Конфигурацию схемы на предыдущей странице). Когда входной сигнал активирован, внутренняя схема детектора перехода через ноль запускает симистор для включения, когда напряжение нагрузки переменного тока пересекает ноль.
Ток нагрузки поддерживается за счет эффекта фиксации симистора после деактивации входного сигнала до тех пор, пока симистор не отключится, когда напряжение нагрузки пересечет нулевое значение.Ниже описаны формы сигналов напряжения и тока для различных типов нагрузок:

● Резистивные нагрузки

Поскольку резистивные нагрузки не вызывают сдвига фаз между напряжением и током, симистор включается, когда напряжение нагрузки переменного тока достигает нуля после активации входного сигнала. SSR выключается, когда напряжение нагрузки переменного тока достигает нуля, а ток нагрузки отключается после того, как входной сигнал впоследствии деактивируется.

● Индуктивные нагрузки

SSR включается, когда напряжение нагрузки пересекает ноль после активации входного сигнала.Он выключается, когда ток нагрузки впоследствии пересекает ноль после деактивации входного сигнала. Разность фаз между напряжением и током может вызвать скачок напряжения в SSR, когда он выключен. Хотя демпферная цепь поглощает этот выброс, слишком большой выброс может привести к ошибке dv / dt во внутреннем симисторе SSR.

2. случайный тип SSR

SSR случайного типа использует фотоэлемент для изоляции входа от выхода. Когда входной сигнал активирован, выход сразу же включается, так как нет схемы детектора перехода через ноль.Ток нагрузки поддерживается за счет эффекта фиксации симистора после деактивации входного сигнала до тех пор, пока напряжение нагрузки переменного тока не станет равным нулю.

● Резистивные нагрузки

2.SSR для нагрузок постоянного тока

SSR для нагрузок постоянного тока использует драйвер MOS-FET для изоляции входа от выхода.
Выход немедленно реагирует на вход, поскольку драйвер MOS-FET напрямую включает или выключает выходной MOS-FET.

Вернуться к началу

Твердотельные реле Связанная информация


Вернуться к началу

  • Фототриак-муфта
    Фотоприемник для промышленного оборудования и бытовой электроники
  • Твердотельное реле AQ8
    Тип SIL, толщина 9 мм, высокое диэлектрическое напряжение 3000 В переменного тока, контроль до 3 А

К сожалению, страница, которую вы ищете, не может быть найдена.

  1. в строке RouteCollection.php 161
  2. в RouteCollection -> соответствие ( объект ( запрос )) в строке Router.php 750
  3. на Маршрутизатор -> findRoute ( объект ( Запрос )) в Router.php строке 659
  4. на маршрутизаторе -> dispatchToRoute ( объект ( запрос )) в маршрутизаторе.php строка 635
  5. на маршрутизаторе -> отправка ( объект ( запрос )) в строке Kernel.php 236
  6. в Ядро -> Illuminate \ Foundation \ Http \ {closure} ( объект ( Запрос ))
  7. в call_user_func ( объект ( Закрытие ), объект ( Запрос )) в строке Pipeline.php 139
  8. at Pipeline -> Illuminate \ Pipeline \ {closure} ( объект ( запрос )) в VerifyCsrfToken.PHP строка 50
  9. в VerifyCsrfToken -> дескриптор ( объект ( запрос ), объект ( закрытие ))
  10. в call_user_func_array ( массив ( объект ( VerifyCsrfToken ), 'handle'), массив ( объект ( запрос ), объект () закрытие ) линия 124
  11. at Pipeline -> Illuminate \ Pipeline \ {closure} ( объект ( запрос )) в ShareErrorsFromSession.PHP строка 49
  12. в ShareErrorsFromSession -> дескриптор ( объект ( Запрос ), объект ( Закрытие ))
  13. в call_user_func_array ( массив ( объект ( ShareErrorsFromSession ), 'handle'), array ( object ( Request ), object ( Clopure) ) линия 124
  14. at Pipeline -> Illuminate \ Pipeline \ {closure} ( объект ( запрос )) в StartSession.PHP строка 62
  15. в StartSession -> дескриптор ( объект ( Запрос ), объект ( Закрытие ))
  16. в call_user_func_array ( массив ( объект ( StartSession ), 'handle'), array ( object ( Request ), object ( Closure .ph)) в конвейере линия 124
  17. at Pipeline -> Illuminate \ Pipeline \ {closure} ( объект ( запрос )) в AddQueuedCookiesToResponse.PHP строка 37
  18. на AddQueuedCookiesToResponse -> дескриптор ( объект ( Запрос ), объект ( Закрытие ))
  19. в call_user_func_array ( массив ( объект ( AddQueuedCookiesToResponse ), 'handle'), массив ( объект ( запрос ), объект () закрытие) линия 124
  20. at Pipeline -> Illuminate \ Pipeline \ {closure} ( объект ( запрос )) в EncryptCookies.PHP строка 59
  21. в EncryptCookies -> дескриптор ( объект ( Запрос ), объект ( Закрытие ))
  22. в call_user_func_array ( массив ( объект ( EncryptCookies ), 'handle'), array ( object ( Request ), object ( Closure in .ph)) линия 124
  23. at Pipeline -> Illuminate \ Pipeline \ {closure} ( объект ( запрос )) в CheckForMainastedMode.PHP строка 44
  24. в CheckForMainastedMode -> дескриптор (объект , ( запрос ), объект (закрытие ))
  25. в call_user_func_array ( массив ( объект ( CheckForMainastedMode ), 'handle'), массив ( объект ( запрос ), объект () закрытие в .ph) линия 124
  26. at Pipeline -> Illuminate \ Pipeline \ {closure} ( объект ( Запрос ))
  27. в call_user_func ( объект ( Закрытие ), объект ( Запрос )) в конвейере.php строка 103
  28. at Pipeline -> then ( object ( Closure )) в Kernel.php line 122
  29. в Ядро -> sendRequestThroughRouter ( объект ( Запрос )) в строке Kernel.php 87
  30. в Ядро -> дескриптор ( объект ( Запрос )) в строке index.php 54

Реле обрыва фазы



ЦЕЛИ ОБУЧЕНИЯ :

  • Объясните назначение реле обрыва фазы.
  • Перечислите опасности, связанные с обрывом фазы и ее изменением.

Если две линии питания трехфазного двигателя поменяны местами, это заставит двигатель изменить направление вращения. Это может быть серьезной проблемой с некоторыми типами оборудования. Непреднамеренный разворот направления может привести к срезанию зубьев шестерни, разрыву цепей и крыльчатке. погружных насосов открутить конец вала двигателя. Это может привести не только к повреждению оборудования, но и к травмам операторов или персонала. в непосредственной близости от машины.

Обрыв фазы происходит, когда пропадает питание одной из линий питания. питание трехфазного двигателя. Двигатель продолжит работу, но будет потребляют чрезмерное количество тока. В этом состоянии реле перегрузки должен привести к отключению стартера двигателя от сети правильно ли подобраны нагреватели перегрузки. Одиночная фазировка будет заставляют две фазы, которые остаются под напряжением в трехфазном двигателе, увеличиваться ток в среднем на 173%.

Влияние колебаний напряжения на двигатели

Двигатели подвержены воздействию при эксплуатации с номинальными значениями, отличными от их номинальных значений, указанных на паспортной табличке. Напряжение. Двигатели с рейтингом NEMA рассчитаны на работу при плюс-минус 10% их номинального напряжения. Fgr. 1 показано примерное изменение полной нагрузки. ток и пусковой ток для типичных электродвигателей при работе выше номинального напряжения (110%) и ниже номинального (90%). Двигатели обычно работают в системах со сбалансированным напряжением (напряжение одинаков для всех фаз).Несбалансированное напряжение - одно из ведущих причины отказа мотора.

Несбалансированное напряжение обычно возникает при питании однофазных нагрузок. трехфазными системами.

Определение величины несимметрии напряжений

Изменение напряжения - ток полной нагрузки - пусковой ток

110% --7% - 10-12% Увеличение

90% - 11% - 10-12% Уменьшение


Fgr. 1 Изменение тока электродвигателей при работает с повышенным или пониженным номинальным напряжением .

Fgr. 1 относится к напряжению на фазных проводниках симметричного трехфазная система, измеренная между фазами AB, BC и AC. В другом словами, таблица показывает влияние на ток двигателя, когда напряжение больше или меньше номинальных значений двигателя, указанных на паспортной табличке в сбалансированной системе. Больше Вред причиняется несимметричным напряжением. NEMA рекомендует, чтобы несимметричное напряжение не должно превышать плюс-минус 1%. Следующие шаги иллюстрируют как определить процент асимметрии напряжения в трехфазном система:

1.Измерьте напряжение между всеми фазами. В этом примере предположим напряжение между AB _ 496 вольт, BC _ 460 вольт и AC _ 472 вольт.

2. Найдите среднее напряжение.

496 460 472

- - -

1428 ---> 1428/3 = 476 В

3. Вычтите среднее напряжение из полученного значения напряжения. в наибольшей разнице.

496 - 476 = 20 В

4. Определите разницу в процентах.2

2 x 4,2 x 4,2 = повышение температуры обмотки на 35,28% с максимальным Текущий.

Твердотельное реле контроля фазы показано в Fgr. 2. Это реле обеспечивает защита в случае асимметрии напряжения или смены фаз. В устройство автоматически перезагружается после восстановления правильного напряжения. Световой индикатор показывает, когда реле активировано.


Fgr. 2 Твердотельное реле контроля фаз .

ВИКТОРИНА :

1. Трехфазный двигатель имеет номинальный ток 56 ампер. Если одна фаза теряется, и двигатель начинает работать в однофазном режиме, что будет в среднем количество тока, протекающего в двух оставшихся фазах?

2. Двигатели с рейтингом NEMA рассчитаны на работу при том, какой процент от их Номинальное напряжение?

3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *