Расчет петля фаза ноль: Электробезопасность — Измерение цепи фаза-нуль

Содержание

Электробезопасность — Измерение цепи фаза-нуль


ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЦЕПИ ФАЗА-НУЛЬ, ПОЛНОГО СОПРОТИВЛЕНИЯ, ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ И ЗАЩИТНОГО ОТКЛЮЧЕНИЯ

Петлёй «ФАЗА-НУЛЬ» принято называть цепь, состоящую из фазы трансформатора и проводников — нулевого и фазного.
По измеренному полному сопротивлению петли «ФАЗА-НУЛЬ» производится расчет тока однофазного короткого замыкания. Основной целью является проверка временных параметров срабатывания аппаратов защиты от cверхтоков при замыкании фазы на корпус. Данная проверка так же подверждает непрерывность PE цепи. Время срабатывания аппаратов защиты должно удовлетворять требованиям п.1.7.79 ПУЭ.
Надёжность срабатывания защиты от сверхтоков является одним из основных требований как при проектировании, так и при монтаже и требует расчетной и натурной проверки.

Поскольку речь идёт о замыкании на корпус, то под нулевым проводником мы понимаем совокупность защитных (PE) и защитно-рабочих (PEN) проводников от «корпуса» до трансформатора.

Таким образом, проверка петли «ФАЗА-НУЛЬ» позволяет оценить и качество защитной цепи.


ИЗМЕРЕНИЯ

Существует несколько методик измерения сопротивления петли «ФАЗА-НУЛЬ» и токов короткого замыкания, как с отключением напряжения линии, так и без.
В настоящее время в основном применяются современные микропроцессорные измерительные приборы, реализующие методику измерения полного сопротивления петли «ФАЗА-НУЛЬ» без отключения напряжения, и автоматического расчета тока короткого замыкания на основании значения сопротивления петли. Применение данных приборов упрощает процесс испытаний. Кроме того, испытания оказываются более щадящими по отношению к испытываемым линиям и аппаратам защиты. Некоторые из этих приборов позволяют проводить измерения без искючения из испытываемой линии УЗО и не вызывают их срабатывания, что представляется достаточно важным и удобным, поскольку измерения проводятся между фазным проводником и нулевым защитным проводником.

Измерения проводятся на концах проводников, защищаемых аппаратами защиты от сверхтока.

Результаты измерений оформляются протоколом установленного образца.

Перед проведением измерений петли «ФАЗА-НУЛЬ» рекомендуется провести измерение сопротивлений защитных проводников, проверку их непрерывности (проверка металлосвязи, проверка заземления).


УСТРАНЕНИЕ ДЕФЕКТОВ

Если при проведении измерений петли «ФАЗА-НУЛЬ» в действующей электроустановке получены неудовлетворительные результаты, то требуется срочное устранение дефекта. Как правило, бывает достаточно заменить аппарат защиты от сверхтоков на другой, с более подходящими характеристиками. Но иногда требуется замена существующего кабеля на кабель с другим сечением жил. Подобные случаи, как правило, сложнее с точки зрения монтажа.


РАСЧЁТ ПЕТЛИ «ФАЗА-НУЛЬ»

С целью своевременного согласования параметров кабельных линий и аппаратов защиты от сверхтоков необходимо производить расчёты петли «ФАЗА-НУЛЬ» на стадии проектных работ. Подобные расчеты удобно проводить в комплексе: мощность нагрузки; cos φ; длина кабельной линии; сечение жилы; вид монтажа; падение напряжения на линии; расчетное полное сопротивление петли; прогнозируемый ток короткого замыкания; номинальный ток аппарата защиты; характеристика аппарата защиты. Расчет петли «ФАЗА-НУЛЬ» является одним из наиболее сложных, поскольку требует принятия во внимание ряда трудно учитываемых параметров.

 


ВРЕМЯ-ТОКОВЫЕ ХАРАКТЕРИСТИКИ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

Согласно ГОСТа Р 50345-99, п.3.5.17 — это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. его электромагнитная защита.

В этом же ГОСТе Р 50345-99, п.5.3.5., говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):

B — от 3·In до 5·In
C — от 5·In до 10·In
D — от 10·In до 20·In (встречаются от 10·In до 50·In)
In – номинальный ток автоматического выключателя.

Рассмотрим каждый вид характеристики на примере модульного автоматического выключателя ВА47-29.


Время-токовая характеристика типа В

На графике (кривой) показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах.

График разделен двумя линиями, которые и определяют разброс времени срабатывания тепловой и электромагнитной защит автомата. Нижняя линия — это горячее состояние автомата (после срабатывания), а верхняя линия — это холодное состояние.

 

Характеристики практически всех автоматов изображаются при температуре +30°С. 

На представленных время-токовых характеристиках (сокращенно, ВТХ) пунктирная линия — это верхняя граница (предел) для автоматов с номинальным током меньше 32 (А).

По графику видно:

1.  Если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 35 секунд в холодном состоянии (для автоматов менее 32А) и до 80 секунд в холодном состоянии 

2. Если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за 0,01 секунду в горячем состоянии или за 0,04 секунды в холодном.

(для автоматов более 32А). 

Автоматы с характеристикой В применяются в основном для защиты потребителей с преимущественно активной нагрузкой, например, электрические печи, электрические обогреватели, цепи освещения.

Правда, в магазинах их количество почему то всегда ограничено, т.к. распространенным видом является характеристика С. И кто так решил? Вполне целесообразно на автоматы групповых линий для освещения и розеток ставить именно тип В, а на вводной автомат — тип С. Так будет соблюдена селективность, и при коротком замыкании где нибудь в линии не будет отключаться вводной автомат и «гасить» всю квартиру.


Время-токовая характеристика типа С

Вот ее график:

1. Если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 11 секунд в холодном состоянии (для автоматов менее 32А) и до 25 секунд в холодном состоянии 

(для автоматов более 32А).

2. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за 0,01 секунду в горячем состоянии или за 0,03 секунды в холодном.

Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Нашли они достаточно широкое распространение в жилом фонде, хотя свое мнение об этом я высказал чуть выше.


Время-токовая характеристика типа D

График:

1.  Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 3 секунд в холодном состоянии (для автоматов менее 32А) и до 7 секунд в холодном состоянии (для автоматов более 32А).

2. Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за 0,009 секунд в горячем состоянии или за 0,02 секунды в холодном.

Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).


ПЛАВКИЕ ПРЕДОХРАНИТЕЛИ

Плавкие предохранители — это электрические аппараты, защищающие установки от перегрузок и токов короткого замыкания.
Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство, гасящее дугу, возникающую после плавления вставки.

К предохранителям предъявляются следующие требования:

  1. Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта.
  2. При коротком замыкании предохранители должны работать селективно.
  3. Время срабатывания предохранителя при коротком замыкании должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны работать с токоограничением.
  4. Характеристики предохранителя должны быть стабильными. Разброс параметров из-за производственных отклонений не должен нарушать защитные свойства предохранителя.
  5. В связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность.
  6. Замена сгоревшего предохранителя или плавкой вставки не должна требовать много времени.

В промышленности наибольшее распространение получили предохранители типа и ПН-2.


ВРЕМЯ-ТОКОВЫЕ ХАРАКТЕРИСТИКИ ПРЕДОХРАНИТЕЛЕЙ СЕРИИ ПН2


Устройство предохранителей ПН-2

Эти предохранители более совершенны, чем предохранители ПР-2. Корпус квадратного сечения №1 предохранителя типа ПН-2 изготавливается из прочного фарфора или стеатита. Внутри корпуса расположены ленточные плавкие вставки №2 и наполнитель — кварцевый песок №3. Плавкие вставки привариваются к диску №4, который крепится к пластинам №5, связанным с ножевыми контактами №9. Пластины №5 крепятся к корпусу винтами.

В качестве наполнителя в предохранителях ПН-2 используется кварцевый песок с содержанием SiO2 не менее 98 %, с зернами размером (0,2—0,4)10-3 м и влажностью не выше 3 %. Перед засыпкой песок тщательно просушивается при температуре 120—180 °С. Зерна кварцевого песка имеют высокую теплопроводность и хорошо развитую охлаждающую поверхность.

Плавкая вставка предохранителей ПН-2 выполняется из медной ленты толщиной 0,1— 0,2 мм. Для получения токоограничения вставка имеет суженные сечения №8. Плавкая вставка разделена на три параллельных ветви для более полного использования наполнителя. Применение тонкой ленты, эффективный теплоотвод от суженных участков позволяют выбрать небольшое минимальное сечение вставки для данного номинального тока, что обеспечивает высокую токоограничивающую способность.

Соединение нескольких суженных участков по-следовательно способствует замедлению роста тока после плавления вставки, так как возрастает напряжение на дуге предохранителя. Для снижения температуры плавления на вставки наносятся оловянные полоски №7 (металлургический эффект).


Принцип действия предохранителя ПН-2

При коротком замыкании плавкая вставка предохранителя ПН-2 сгорает и дуга горит в канале, образованном зернами наполнителя. Из-за горения в узкой щели при токах выше 100 А дуга имеет возрастающую вольт-амперную характеристику. Градиент напряжения на дуге очень высок и достигает (2—6)104 В/м. Этим обеспечивается гашение дуги за несколько миллисекунд.

После срабатывания предохранителя плавкие вставки вместе с диском №4 заменяются, после чего патрон засыпается песком. Для герметизации патрона под пластины №5 кладется асбестовая прокладка №6 что предохраняет песок от увлажнения. При номинальном токе 40 А и ниже предохранитель имеет более простую конструкцию.


Технические характеристики предохранителей ПН-2

Предохранители ПН-2 выполняются на номинальный ток до 630 А. Предельный отключаемый ток короткого замыкания, котор

Методические рекомендации по проведению проверки цепи фаза — нуль в электроустановках до 1кВ при системе питания с глухозаземленной нейтралью — Методики испытаний / Документы — Электротехническая лаборатория, г.Ханты-Мансийск

Цель проведения измерения.

Измерение сопротивления петли “фаза-нуль” проводится с целью проверки срабатывания защиты электрооборудования и отключения аварийного участка при замыкании фазы на корпус. По измеренному полному сопротивлению петли “фаза-нуль” определяется ток однофазного короткого замыкания. Полученная расчетом величина тока сравнивает с номинальным током защитного аппарата.

2. Меры безопасности.

Пред началом работ необходимо:

• Получить наряд (разрешение) на производство работ

• Подготовить рабочее место в соответствии с характером работы: убедиться в достаточности принятых мер безопасности со стороны допускающего (при работах по наряду), либо принять все меры безопасности самостоятельно (при работах по распоряжению).

• Подготовить необходимый инструмент и приборы.

• При выполнении работ действовать в соответствии с программами (методиками)по испытанию электрооборудования типовыми или на конкретное присоединение. При проведении высоковольтных испытаний на стационарной установке действовать в соответствии с инструкцией.

• При окончании работ на электрооборудовании убрать рабочее место, восстановив нарушенные в процессе работы коммутационные соединения (если таковое имело место).

• Сдать наряд (сообщить об окончании работ руководителю или оперативному персоналу).

• Оформить протокол на проведённые работы

Измерения сопротивления петли «фаза — нуль» необходимо производить пользуясь диэлектрическими перчатками, предварительно необходимо обесточить испытуемую цепь. Только после отключения напряжения необходимо проводить подключение прибора с последующей подачей напряжения и проведением измерения.

3. Нормируемые величины.

Измерения сопротивления петли “фаза-нуль” проводится в сроки, устанавливаемые графиком планово-предупредительного ремонта (ППР). По сопротивлению петли “ фаза-нуль” Zфо (Ом) ток короткого замыкания Iкз (А) определяется по формуле Iкз=Uср/Zфо

где Uср -среднее значение питающего напряжения, В.

В электроустановках до 1кВ с глухим заземленной нейтралью с целью

обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой защитный проводник возникал ток КЗ, превышающий не менее чем:

· в 3 раза номинальный ток плавкого элемента ближайшего предохранителя;

· в 3 раза номинальный ток нерегулируемого расцепителя или уставку тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику.

При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (отсечку), проводимость указанных проводников должна обеспечивать ток не ниже уставки тока мгновенного срабатывания, умноженной на коэффициент, учитывающий разброс(по заводским данным), и на коэффициент запаса 1,1.

4. Определяемые характеристики.

Согласно ПУЭ в электроустановках до 1000В с глухозаземлённой нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых рабочих и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, который обеспечивает время автоматического отключения питания не превышающего значений, указанных в табл. 1.7.1.

Таблица 1.7.1

Наибольшее допустимое время защитного автоматического отключения для системы TN

Номинальное фазное напряжение U0, В

Время отключения, с

127

0,8

220

0,4

380

0,2

Более 380

0,1

Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1. В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.

Допускаются значения времени отключения более указанных в табл. 1.7.1, но не более 5 с в цепях, питающих только стационарные электроприемники от распределительных щитов илиьщитков при выполнении одного из следующих условий:

1) полное сопротивление, защитного проводника между главной заземляющей шиной и распределительным щитом или щитком не превышает значения, Ом:

50=Zц/U0,

где Zц — полное сопротивление цепи «фаза-нуль», Ом;

U0 — номинальное фазное напряжение цепи, В;

50 — падение напряжения на участке защитного проводника между главной заземляющей шиной и распределительным щитом или щитком, В;

2) к шине РЕ распределительного щита или щитка присоединена дополнительная система уравнивания потенциалов, охватывающая те же сторонние проводящие части, что и основная система уравнивания потенциалов.

Допускается применение УЗО, реагирующих на дифференциальный ток.

А также ток возникающий при однофазном КЗ во взрывоопасных зонах должен превышать:

В 6 раз номинальный ток автоматического выключателя с обратнозависимой характеристикой

во взрывоопасном помещении.

В 4 раза номинальный ток плавкой вставки во взрывоопасном помещении

При защите автоматическими выключателями имеющими только электромагнитный расцепи-

тель время отключения должно соответствовать данным таблицы 1.7.1

Для расчёта тока однофазного КЗ по результатам измерения сопротивления петли «фаза

— нуль» используют следующую формулу:

Z = U / I,

где Z— сопротивление петли «фаза—нуль», Ом;

U — измеренное испытательное напряжение, В;

I — измеренный испытательный ток, А…

По рассчитанному току однофазного КЗ определяют пригодность аппарата защиты установленного в цепи питания электроприёмника.

В системе IT время автоматического отключения питания при двойном замыкании на открытые проводящие части должно соответствовать табл. 1.7.2.

Таблица 1.7.2

Наибольшее допустимое время защитного автоматического отключения для системы IT

Номинальное линейное напряжение U0, В

Время отключения, с

220

0,8

380

0,4

660

0,2

Более 660

0,1

Для определения времени отключения аппарата защиты после измерения сопротивления петли «фаза-нуль» и расчёта тока однофазного КЗ необходимо использовать время-токовые характеристики данного аппарата (смотри «Методику проведения испытаний автоматических выключателей и аппаратов управления напряжением 0,4кВ»).

5. Условия испытаний и измерений

Измерение сопротивления петли «фаза — нуль» следует производить при положительной температуре окружающего воздуха, в сухую, спокойную погоду. Атмосферное давление особого влияние на качество проводимых испытаний не оказывает, но фиксируется для занесения данных в протокол.

Влияние нагрева проводников на результаты измерений:

а) Рассмотрение повышения сопротивления проводников, вызванного повышением температуры.

Когда измерения проведены при комнатной температуре и малых токах, чтобы принять в расчет повышение сопротивления проводников в связи с повышением температуры, вызванного током замыкания, и убедиться для системы TN в соответствии измеренной величины сопротивления петли «фаза—нуль» требованиям таблицы 1.7.1, может быть применена нижеприведенная методика.

Считают, что требования таблицы 1.7.1 выполнимы, если петля «фаза—нуль» удовлетворяет следующему уравнению

Z S(m) ≤2U0 / 3Ia,

Где ZS(m) — измеренная величина сопротивления петли «фаза—нуль», Ом;

U0 — фазное напряжение. В;

Ia — ток, вызывающий автоматическое срабатывание аппаратов защиты в течение времени, указанного в таблице 1.7.1., или в течение 5 с для стационарных электроприёмников

Если измеренная величина сопротивления петли «фаза—нуль» превышает 2 U0/3Iа, более точную оценку соответствия требованиям таблицы 1.7.1 можно сделать путем измерения величины сопротивления петли «фаза—нуль»в следующей последовательности:

— сначала измеряют сопротивление петли «фаза—нуль» источника питания на вводе электроустановки Ze;

— измеряют сопротивление фазного и защитного проводников сети от ввода до распределительного пункта или щита управления;

— измеряют сопротивление фазного и защитного проводников от распределительного пункта или щита управления до электроприемника;

— величины сопротивлений фазного и нулевого защитного проводников увеличивают для учета повышения температуры проводников при протекании по ним тока замыкания. При этом необходимо учитывать величину тока срабатывания аппаратов защиты;

— эти увеличенные значения сопротивления добавляют к величине сопротивления петли «фаза—нуль» источника питания Ze и в результате получают реальную величину ZS в условиях замыкания.

6. Применяемые приборы, инструменты и аппараты.

Измерения проводятся специальным приборами типа EurotestXE 2,5 кВ MI 3102H, позволяющим определять полное сопротивление петли “фаза-нуль” при наличии напряжения на источнике питания в электроустановках напряжением 380 В с глухозаземленной нейтралью питающего трансформатора. Во время работы применяют инструмент с изолированными ручками и индикатор напряжения.

6. Методика проведения измерения.

7.1 Полное сопротивление контура и предполагаемый ток короткого замыкания

В данной функции доступны две подфункции измерения полного сопротивления контура: Подфункция Z LOOP применяется для измерения полного сопротивления контура в системах питания без встроенного УЗО. Подфункция Zs(узо) — функция блокировки срабатывания УЗО — применяется для измерения полного сопротивления контура в системах питания со встроенным УЗО.

7.1.1 Полное сопротивление контура

Полное сопротивление контура представляет собой полное сопротивление контура повреждения при возникновении короткого замыкания на открытых проводящих частях (замыкание между фазным проводником и защитным проводником заземления).

7.1.2. Порядок проведения измерения полного сопротивления контура

Шаг 1 С
помощью переключателя функций выберите функцию Контур. Используя кнопки, выберите подфункцию полного сопротивления контура Z LOOP. Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2 Установите следующие параметры измерения:

Тип предохранителя,

Номинальный ток предохранителя,

Время срабатывания предохранителя,

Масштабный коэффициент IPSC

Шаг 3 Для измерения полного сопротивления контура подключите прибор к испытываемому объекту в соответствии со схемой соединения, приведенной на рисунке 1.

Рисунок 1: Подключение измерительного кабеля с вилкой и 3-проводного измерительного кабеля

Шаг 4 Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка результата.

Отображаемые результаты:

Z … … … … Полное сопротивление контура,

ISC … … …Предполагаемый ток короткого замыкания,

Lim… … … Минимальный предел предполагаемого тока короткого замыкания (если применяется).

Примечания:

Измерительные выводы L и N автоматически заменяются в следующих случаях: если измерительные провода L/L1 и N/L2 (3-проводный измерительный кабель) подключены в обратном порядке, если выходы сетевой вилки перепутаны или если щуп «commander» перевернут.

Минимальный предел тока короткого замыкания зависит от типа предохранителя, номинального тока и времени срабатывания предохранителя, а также от масштабного коэффициента IPSC.

Указанная погрешность измеренных параметров действительна только тогда, когда сетевое напряжение стабильно во время измерений. Измерение полного сопротивления контура в подфункции Z LOOP приводит к срабатыванию УЗО.

7.1.3. Функция блокировки срабатывания УЗО

В данной подфункции Zs(узо) измерение полного сопротивления контура не вызывает срабатывания УЗО, благодаря низкому измерительному току. Данная подфункция также может применяться для измерения полного сопротивления контура в электроустановках, оснащенных УЗО с номинальным током срабатывания 10 мA.

7.1.4. Порядок проведения измерения полного сопротивления контура в функции блокировки срабатывания УЗО

Шаг 1 С
помощью переключателя функций выберите функцию Контур. Используя кнопки, выберите подфункцию блокировки срабатывания УЗО Zs(узо). Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2 Установите следующие параметры измерения:

Тип предохранителя,

Номинальный ток предохранителя,

Время срабатывания предохранителя,

Масштабный коэффициент IPSC

Шаг 3 Для измерения полного сопротивления контура в функции блокировки срабатывания УЗО подключите прибор к испытываемому объекту в соответствии со схемой соединения, приведенной на рисунке 1. При необходимости воспользуйтесь меню помощи.

Шаг 4 Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка

результата.

Отображаемые результаты:

Z … … … … Полное сопротивление контура,

ISC … … …Предполагаемый ток короткого замыкания,

Lim… … … Минимальный предел предполагаемого тока короткого замыкания (если применяется). Сохраните отображенные результаты с целью дальнейшего документирования.

Примечания:

При проведении измерения полного сопротивления контура в функции блокировки срабатывания УЗО, срабатывания УЗО, как правило, не происходит. Однако срабатывание УЗО может произойти вследствие протекания тока утечки по РЕ-проводнику или в случае наличия емкостного соединения между фазным и защитным проводниками.

Указанная погрешность измеренных параметров действительна только тогда, когда сетевое напряжение стабильно во время измерений.

7.2 Полное сопротивление линии и предполагаемый ток короткого замыкания

Полное сопротивление линии — это полное сопротивление токовой петли при возникновении короткого замыкания между фазным и нулевым проводниками в однофазной системе или между двумя фазными проводниками в трехфазной системе.

7.2.1. Порядок проведения измерения полного сопротивления линии

Шаг 1 С помощью переключателя функций выберите функцию Линия.

Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2 Установите следующие параметры измерения:

Тип предохранителя,

Номинальный ток предохранителя,

Время срабатывания предохранителя,

Масштабный коэффициент IPSC

Шаг 3 Для измерения сопротивления линии фаза — фаза или фаза — нейтраль подключите прибор к испытываемому объекту согласно схеме соединений, приведенной на рисунке 2.

Рисунок 2: Подключение измерительного кабеля с вилкой или 3-проводного измерительного кабеля при измерении полного сопротивления линии

Шаг 4 Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка результата

Отображаемые результаты:

Z … … … … Полное сопротивление линии,

ISC … … …Предполагаемый ток короткого замыкания,

Lim… … … Минимальный предел предполагаемого тока короткого

замыкания (если применяется).

Примечания:

Минимальный предел тока короткого замыкания зависит от типа предохранителя, номинального тока и времени срабатывания предохранителя, а также от масштабного коэффициента IPSC.

Указанная погрешность измеренных параметров действительна только тогда, когда сетевое напряжение стабильно во времяизмерений.

8.
Оформление результатов измерений.

Первичные записи рабочей тетради должны содержать следующие данные:

-дату измерений

-температуру,

-влажность и давление

-наименование, тип, заводской номер оборудования

-номинальные данные объекта испытаний

-результаты испытаний

-используемую схему

По данным испытаний и измерений производятся соответствующие расчёты и сравнения. Вычислив ток однофазного КЗ необходимо определить время срабатывания защитного аппарата по его время-токовой характеристике, и затем дать заключение о времени срабатывания выключателя и его соответствии требованиям ПУЭ. Пример работы с время — токовой характеристикой автоматического выключателя, выполненного в соответствии с ГОСТ Р 50345-99 представлен на рисунке 5. Определённый (измеренный, рассчитанный) ток однофазного КЗ откладывается на время-токовой характеристике в виде вертикальной прямой линии. Токи правее зоны срабатывания обеспечивает срабатывание автоматического выключателя со временем менее 0,4 с. Токи внутри зоны срабатывания обеспечивают отключение автоматического выключателя со временем менее 5 с. Таким образом считаем, что для обеспечения требуемого времени срабатывания автоматического выключателя в пределах менее 0,4 с, ток КЗ должен превышать 10Iн для автоматического выключателя с характеристикой типа С (работает электромагнитный расцепитель).

Рисунок 3. Работа с время-токовой характеристикой автоматического выключателя с характеристикой типа С

Если время срабатывания автоматического выключателя должно быть не более 5 с, то в этом случае считаем, что наиболее вероятно срабатывание обратнозависимого расцепителя, поэтому для определения зоны срабатывания необходимо пользоваться индивидуальной время-токовой характеристикой конкретного автоматического выключателя. На рисунке 5 индивидуальная время-токовая характеристика построена черной линией, принципы построения данной индивидуальной характеристики описаны в «Методике проведения испытаний автоматических выключателей и аппаратов управления напряжением 0,4кВ». При работе с время токовой характеристикой автоматических выключателей промышленного исполнения уставка электромагнитного расцепителя считается основой для определения времени срабатывания. Соответственно при величине однофазного тока КЗ, превышающем уставку электромагнитного расцепителя, считаем, что автоматический выключатель отключится за время меньше 0,4 с. Для определения тока однофазного КЗ при котором автоматический выключатель отключится с временем не более 5 с необходимо, как и в первом случае, пользоваться индивидуальной время-токовой характеристикой для конкретного автоматического выключателя. Цепи с применением УЗО в качестве дополнительных защитных устройств также необходимо проверять на соответствие полного сопротивления петли «фаза-нуль» и времени срабатывания защитных аппаратов, реагирующих на сверхток.

РАЗРАБОТАЛ:

Начальник электролаборатории

Измерение полного сопротивления петли «фаза-нуль»

Такой тип электроизмерительных работ используется для того, чтобы установить соответствие существующей электросети требованиям безопасности на случай аварийных ситуаций. С помощью специальных приборов мастера электролаборатории производят контроль срабатывания автоматической защиты в момент возникновения неисправностей, а также рассчитывают полное сопротивление, которое оказывает петля фаза ноль, при однофазном коротком замыкании.

Предприятия и организации должны регулярно проводить подобные работы, так как согласно существующим ГОСТ измерение петли фаза ноль является одним из обязательных пунктов контроля состояния электрооборудования. Частные лица могут  осуществлять замер петли фаза ноль при возникновении проблем в домашней электросети или в профилактических целях. Ведь при наличии неисправностей в цепи, простое короткое замыкание приводит к таким серьезным последствиям как поломка электротехники и возникновение пожароопасной ситуации.

Существует несколько способов высчитать полное сопротивление петли фаза нуль. В одном из них используются амперметр и вольтметр. Специалисты искусственно воссоздают ситуацию однофазного короткого замыкания и самостоятельно производят все необходимые вычисления. Такой метод работы требует большого количества времени и отключения электросети, поэтому он считается устаревшим и малоэффективным.

Наши мастера производят измерение сопротивления петли фаза ноль с помощью высокоточного прибора. Он создан специально для осуществления электроизмерительных работ электроустановок, в которых из-за реактивного сопротивления существует большой уровень погрешности. Именно поэтому показания характеризуются высочайшей точностью. Используя этот прибор, мы можем в короткий срок произвести все необходимые измерения и испытания, которые впоследствии вносятся в протокол сопротивления петли фаза ноль. При этом нет необходимости отключать электроснабжение и электрозащитные установки, все измерения осуществляются в рабочем режиме, под напряжением.

Проверка петли фаза ноль производится в соответствии с техническим регламентом электроизмерений, требованиями безопасности при проведении электроизмерительных работ, а также с учетом специфических особенностей электроустановки. По завершению всех требуемых измерений специалисты составляют протокол петля фаза ноль.

Основы фазовой автоподстройки частоты (ФАПЧ) | Analog Devices

Реферат:

Цепи фазовой автоподстройки частоты (ФАПЧ) используются в широком спектре высокочастотных приложений, от простых схем очистки часов до гетеродинов (гетеродинов) для высокопроизводительных каналов радиосвязи и сверхбыстрых синтезаторов частоты переключения в векторных анализаторах цепей ( ВНА). В этой статье объясняются некоторые строительные блоки схем контура фазовой автоподстройки частоты со ссылками на каждое из этих приложений, в свою очередь, чтобы помочь новичку и эксперту по контуру фазовой автоподстройки частоты одинаково ориентироваться в выборе деталей и компромиссах, присущих каждому отдельному приложению.В статье упоминаются семейства аналоговых устройств ADF4xxx и HMCxxx с ФАПЧ и генераторов, управляемых напряжением (ГУН), и используется ADIsimPLL (собственный симулятор схемы ФАПЧ компании Analog Devices) для демонстрации этих различных параметров рабочих характеристик схемы.

Базовая конфигурация: Цепь очистки часов

В своей самой базовой конфигурации контур фазовой автоподстройки частоты сравнивает фазу опорного сигнала (F REF ) с фазой регулируемого сигнала обратной связи (RF IN ) F 0 , как показано на рисунке 1.На рисунке 2 показан контур управления с отрицательной обратной связью, работающий в частотной области. Когда сравнение находится в установившемся состоянии, а выходная частота и фаза согласованы с входящей частотой и фазой детектора ошибок, мы говорим, что ФАПЧ заблокирована. Для целей этой статьи мы будем рассматривать только классическую архитектуру цифровой ФАПЧ, реализованную в семействе ФАПЧ Analog Devices ADF4xxx.

Первым важным элементом в этой цепи является частотно-фазовый детектор (PFD).PFD сравнивает частоту и фазу входа REF IN с частотой и фазой обратной связи RF IN . ADF4002 — это система ФАПЧ, которая может быть сконфигурирована как автономный PFD (с делителем обратной связи N = 1). Таким образом, его можно использовать с высококачественным кварцевым генератором, управляемым напряжением (VCXO), и узким фильтром нижних частот для устранения зашумленных часов REF IN .

Рисунок. 1 Базовая конфигурация ФАПЧ. Рисунок 2. Базовая конфигурация ФАПЧ.

Детектор фазовой частоты

Рисунок 3.Частотно-фазовый детектор.

Частотно-фазовый детектор на рисунке 3 сравнивает входной сигнал с F REF на + IN и сигнал обратной связи на –IN. В нем используются два триггера D-типа с элементом задержки. Один выход Q включает источник положительного тока, а другой выход Q включает источник отрицательного тока. Эти источники тока известны как зарядовая накачка. Для получения дополнительных сведений о работе PFD см. «Цепи фазовой автоподстройки частоты для высокочастотных приемников и передатчиков».

Используя эту архитектуру, вход на + IN ниже имеет более высокую частоту, чем -IN (рисунок 4), и результирующий выход накачки заряда имеет высокий ток накачки, который при интеграции в фильтр нижних частот ФАПЧ будет подталкивать напряжение настройки VCO вверх.Таким образом, частота –IN будет увеличиваться по мере увеличения VCO, и два входа PFD в конечном итоге сойдутся или зафиксируются на одной и той же частоте (рисунок 5). Если частота до –IN выше, чем + IN, происходит обратное.

Рис. 4. Неправильная фаза и синхронизация частоты PFD. Рис. 5. Частотно-фазовый детектор, частота и фазовая синхронизация.

Возвращаясь к нашему первоначальному примеру с зашумленными часами, которые требуют очистки, профиль фазового шума тактовых импульсов, автономный VCXO и замкнутый контур ФАПЧ можно смоделировать в ADIsimPLL.

Рисунок 6. Эталонный шум. Рисунок 7. Автономный VCXO. Рисунок 8. Общий шум ФАПЧ.

Как видно из представленных графиков ADIsimPLL, зашумленный профиль фазового шума REF IN (рисунок 6) фильтруется фильтром нижних частот. Весь внутриполосный шум, вносимый опорной схемой ФАПЧ и схемой PFD, отфильтровывается фильтром нижних частот, оставляя только гораздо более низкий шум VCXO (рисунок 7) за пределами полосы пропускания контура (рисунок 8). Когда выходная частота равна входной частоте, создается одна из простейших конфигураций ФАПЧ.Такая ФАПЧ называется ФАПЧ с очисткой тактовой частоты. Для таких приложений очистки тактовой частоты рекомендуется узкая (<1 кГц) полоса пропускания фильтра нижних частот.

Высокочастотная архитектура с целым числом N

Для генерации диапазона более высоких частот используется VCO, который настраивается в более широком диапазоне, чем VCXO. Это регулярно используется при скачкообразной перестройке частоты или при скачкообразной перестройке частоты с расширенным спектром (FHSS). В таких схемах ФАПЧ выходной сигнал многократно превышает опорную частоту. Генераторы, управляемые напряжением, содержат регулируемый элемент настройки, такой как варакторный диод, который изменяет свою емкость в зависимости от входного напряжения, обеспечивая настраиваемый резонансный контур, который позволяет генерировать диапазон частот (рисунок 9).ФАПЧ можно рассматривать как систему управления для этого ГУН.

Делитель обратной связи используется для деления частоты VCO на частоту PFD, что позволяет системе PLL генерировать выходные частоты, кратные частоте PFD. В опорном тракте также может использоваться делитель, который позволяет использовать опорные частоты с большей частотой, чем частота PFD. Такой PLL является ADF4108 от Analog Devices. Счетчики ФАПЧ — второй важный элемент, который необходимо учитывать в нашей схеме.

Рисунок 9. Генератор, управляемый напряжением.

Ключевыми рабочими параметрами ФАПЧ являются фазовый шум, нежелательные побочные продукты процесса синтеза частоты или паразитные частоты (кратко, паразитные помехи). Для систем ФАПЧ с целым N паразитные частоты генерируются частотой PFD. Ток утечки от зарядового насоса будет модулировать порт настройки ГУН. Этот эффект ослабляется фильтром нижних частот, и чем он уже, тем сильнее фильтрация паразитных частот. Идеальный тон не будет иметь шума или дополнительной паразитной частоты (рисунок 10), но на практике фазовый шум проявляется как юбка вокруг несущей, как показано на рисунке 11.Фазовый шум с одной боковой полосой — это относительная мощность шума несущей в полосе пропускания 1 Гц, заданная при смещении частоты от несущей.

Рисунок 10. Идеальный спектр гетеродина. Рисунок 11. Фазовый шум с одной боковой полосой.

Делитель целых и дробных чисел

Для узкополосных приложений разнос каналов узкий (обычно <5 МГц), а счетчик обратной связи N высокий. Получение высоких значений N с помощью небольшой схемы достигается за счет использования предварительного делителя с двойным модулем P / P + 1, как показано на рисунке 12, и позволяет вычислять значения N с вычислением N = PB + A, которое, используя в примере предварительного делителя 8/9 и значения N, равного 90, вычисляется значение 11 для B и 2 для A.Предварительный делитель двойного модуля будет делить на 9 для A или двух циклов. Затем он будет делиться на 8 для оставшихся (BA) или 9 циклов, как описано в таблице 1. Прескалер обычно разрабатывается с использованием высокочастотной схемы цепи, такой как схемы с биполярной эмиттерно-связанной логикой (ECL), в то время как A и B Счетчики могут принимать этот выходной сигнал предделителя более низкой частоты и могут быть изготовлены с использованием более низкоскоростной КМОП-схемы. Это уменьшает площадь схемы и энергопотребление. В низкочастотных очищающих ФАПЧ, таких как ADF4002, этот предварительный делитель отсутствует.

Рис. 12. ФАПЧ с двухмодульным счетчиком N.
Таблица 1. Работа с предварительным масштабированием с двойным модулем упругости
N Значение P / P + 1 B Значение А Значение
90 9 11 2
81 9 10 1
72 8 9 0
64 8 8 0
56 8 7 0
48 8 6 0
40 8 5 0
32 8 4 0
24 8 3 0
16 8 2 0
8 8 1 0
0 8 0 0

Внутриполосный (внутри полосы пропускания фильтра контура ФАПЧ) фазовый шум напрямую зависит от значения N, а внутриполосный шум увеличивается на 20log (N).Таким образом, для узкополосных приложений, в которых значение N высокое, внутриполосный шум преобладает за счет высокого значения N. Система, которая допускает гораздо более низкое значение N, но все же обеспечивает высокое разрешение, включается синтезатором дробного N, например ADF4159 или HMC704. Таким образом можно значительно уменьшить внутриполосный фазовый шум. На рисунках с 13 по 16 показано, как это достигается. В этих примерах две системы ФАПЧ используются для генерации частот, подходящих для гетеродина (гетеродина) системы 5G, в диапазоне от 7.От 4 ГГц до 7,6 ГГц с разрешением канала 1 МГц. ADF4108 используется в конфигурации с целым числом N (рис. 13), а HMC704 используется в конфигурации с дробным N. HMC704 (рисунок 14) может использоваться с частотой PFD 50 МГц, что снижает значение N и, следовательно, внутриполосный шум, но при этом допускает размер шага по частоте 1 МГц (или даже меньше) — улучшение на 15 Отмечается дБ (при частоте смещения 8 кГц) (рисунок 15 и рисунок 16). Однако ADF4108 вынужден использовать PFD 1 МГц для достижения того же разрешения.

Следует проявлять осторожность при использовании ФАПЧ с дробным коэффициентом деления, чтобы паразитные тоны не ухудшали работу системы. В системах ФАПЧ, таких как HMC704, наибольшее беспокойство вызывают целочисленные граничные шпоры (генерируемые, когда дробная часть значения N приближается к 0 или 1, например, 147,98 или 148,02, очень близка к целочисленному значению 148). Это может быть уменьшено путем буферизации выхода VCO на вход RF и / или тщательного частотного планирования, при котором REF IN может быть изменен, чтобы избежать этих более проблемных частот.

Рисунок 13. Целое число N PLL.

Рисунок 14. ФАПЧ с дробным коэффициентом деления.

Рисунок 15. Внутриполосный фазовый шум ФАПЧ с целым числом N.

Рисунок 16. Внутриполосный фазовый шум системы ФАПЧ с дробным коэффициентом деления.

Для большинства ФАПЧ внутриполосный шум сильно зависит от значения N, а также от частоты PFD. Вычитание 20log (N) и 10log (F PFD ) из плоской части измерения внутриполосного фазового шума дает добротность (FOM). Обычная метрика для выбора ФАПЧ — это сравнение FOM.Еще одним фактором, влияющим на внутриполосный шум, является шум 1 / f, который зависит от выходной частоты устройства. Вклад FOM и шум 1 / f вместе с эталонным шумом доминируют над внутриполосным шумом системы ФАПЧ.

Узкополосный гетеродин для связи 5G

Для систем связи основными спецификациями с точки зрения ФАПЧ являются величина вектора ошибок (EVM) и спецификации блокировки VCO. EVM аналогичен по объему интегрированному фазовому шуму, который учитывает вклад шума в диапазоне смещений.Для системы 5G, перечисленной ранее, пределы интеграции довольно широки, начиная с 1 кГц и заканчивая 100 МГц. EVM можно представить как процентное ухудшение идеально модулированного сигнала от его идеальной точки, выраженное в процентах (рисунок 17). Подобным образом интегрированный фазовый шум объединяет мощность шума при различных смещениях от несущей и выражает этот шум как число дБн по сравнению с выходной частотой. ADIsimPLL можно настроить для расчета EVM, интегрированного фазового шума, среднеквадратичной фазовой ошибки и джиттера.Современные анализаторы источников сигналов также включают эти числа одним нажатием кнопки (Рисунок 18). По мере увеличения плотности схем модуляции значение EVM становится критическим. Для 16-QAM требуемая минимальная EVM согласно спецификации ETSI 3GPP TS 36.104 составляет 12,5%. Для 64-QAM требование составляет 8%. Однако, поскольку EVM состоит из различных других неидеальных параметров из-за искажений усилителя мощности и нежелательных продуктов смесителя, интегральный шум (в дБн) обычно определяется отдельно.

Рисунок 17.Визуализация фазовой ошибки.

Рисунок 18. График анализатора источника сигнала.

Спецификации блокировки

VCO очень важны в сотовых системах, которые должны учитывать наличие сильных передач. Если сигнал приемника слабый, и если ГУН слишком шумный, то сигнал ближайшего передатчика может смешаться и заглушить полезный сигнал (Рисунок 19). На рисунке 19 показано, как ближайший передатчик (на расстоянии 800 кГц), передающий на мощности –25 дБмВт, может, если ГУН приемника зашумлен, подавить полезный сигнал на уровне –101 дБмВт.Эти спецификации являются частью стандарта беспроводной связи. Спецификации блокировки напрямую влияют на требования к производительности VCO.

Рисунок 19. Шумоподавители VCO.

Генераторы, управляемые напряжением (ГУН)

Следующим элементом схемы ФАПЧ, который следует рассмотреть в нашей схеме, является генератор, управляемый напряжением. При использовании ГУН необходим фундаментальный компромисс между фазовым шумом, частотным покрытием и потребляемой мощностью. Чем выше добротность (Q) генератора, тем ниже фазовый шум ГУН.Однако схемы с более высокой добротностью имеют более узкие частотные диапазоны. Увеличение мощности питания также снизит фазовый шум. Если посмотреть на семейство ГУН компании Analog Devices, HMC507 охватывает диапазон от 6650 МГц до 7650 МГц, а шум ГУН на частоте 100 кГц составляет приблизительно –115 дБн / Гц. Напротив, HMC586 покрывает полную октаву от 4000 МГц до 8000 МГц, но имеет более высокий фазовый шум –100 дБн / Гц. Одна из стратегий минимизации фазового шума в таких ГУН — увеличить диапазон настройки напряжения V TUNE до ГУН (до 20 В или больше).Это увеличивает сложность схемы ФАПЧ, поскольку большинство зарядных насосов ФАПЧ могут настраиваться только на 5 В, поэтому активный фильтр, использующий операционные усилители, используется для увеличения напряжения настройки схемы ФАПЧ самостоятельно.

Многополосные интегрированные ФАПЧ и ГУН

Другой стратегией увеличения частотного охвата без ухудшения фазового шума ГУН является использование многополосного ГУН, в котором перекрывающиеся диапазоны частот используются для покрытия октавы частотного диапазона, а более низкие частоты могут быть сгенерированы с помощью делителей частоты на выходе ГУН. .Таким устройством является ADF4356, в котором используются четыре основных ядра VCO, каждое с 256 перекрывающимися частотными диапазонами. Внутренние делители эталонной частоты и обратной связи используются устройством для выбора соответствующего диапазона ГУН, этот процесс известен как выбор диапазона ГУН или автокалибровка.

Широкий диапазон настройки многополосных VCO делает их пригодными для использования в широкополосной аппаратуре, в которой они генерируют широкий диапазон частот. 39-битное разрешение дробного N также делает их идеальными кандидатами для приложений с точной частотой.В таких приборах, как векторные анализаторы цепей, очень важна сверхбыстрая скорость переключения. Этого можно достичь, используя очень широкую полосу пропускания фильтра нижних частот, который очень быстро настраивается на конечную частоту. В этих приложениях можно обойти процедуру автоматической калибровки частоты, используя справочную таблицу со значениями частот, непосредственно запрограммированными для каждой частоты. Настоящие одноядерные широкополосные ГУН, такие как HMC733, также могут использоваться с меньшей сложностью.

Для схем с фазовой автоподстройкой частоты ширина полосы фильтра нижних частот имеет прямое влияние на время установления системы.Фильтр нижних частот — последний элемент в нашей схеме. Если время установления критично, полосу пропускания контура следует увеличить до максимально допустимой для достижения стабильной синхронизации и соответствия целевым показателям фазового шума и паразитных частот. Узкополосные требования в линии связи означают, что оптимальная ширина полосы фильтра нижних частот для минимального интегрированного шума (от 30 кГц до 100 МГц) составляет около 207 кГц (рисунок 20) при использовании HMC507. Это обеспечивает приблизительно –51 дБн интегрального шума и обеспечивает синхронизацию частоты с погрешностью 1 кГц примерно за 51 мкс (рисунок 22).

В отличие от этого, широкополосный HMC586 (покрывающий от 4 ГГц до 8 ГГц) обеспечивает оптимальный среднеквадратичный фазовый шум с более широкой полосой частот ближе к полосе пропускания 300 кГц (рисунок 21), достигая –44 дБн интегрального шума. Однако он обеспечивает синхронизацию частоты с теми же характеристиками менее чем за 27 мкс (рисунок 23). Правильный выбор детали и схема окружения имеют решающее значение для достижения наилучшего результата для приложения.

Рисунок 20. Фазовый шум HMC704 плюс HMC507.

Рисунок 21. Фазовый шум HMC704 плюс HMC586.

Рисунок 22. Установка частоты: HMC704 плюс HMC507.

Рисунок 23. HMC704 плюс HMC586.

Тактовая частота с низким джиттером

Для высокоскоростных цифро-аналоговых преобразователей (ЦАП) и высокоскоростных аналого-цифровых преобразователей (АЦП) чистая тактовая частота дискретизации с низким уровнем джиттера является важным строительным блоком. Для минимизации внутриполосного шума желательно низкое значение N; но для минимизации паразитного шума предпочтительнее целое число N.Тактовая частота обычно имеет фиксированную частоту, поэтому частоты можно выбирать так, чтобы частота REF IN была точным целым числом, кратным входной частоте. Это обеспечивает наименьший внутриполосный шум ФАПЧ. ГУН (интегрированный или нет) необходимо выбирать так, чтобы он имел достаточно низкий уровень шума для приложения, уделяя особое внимание широкополосному шуму. Затем необходимо аккуратно разместить фильтр нижних частот, чтобы гарантировать, что внутриполосный шум ФАПЧ пересекается с шумом ГУН — это обеспечивает наименьшее среднеквадратичное дрожание.Фильтр нижних частот с запасом по фазе 60 ° обеспечивает самый низкий пиковый уровень фильтра, что минимизирует джиттер. Таким образом, синхронизация с низким джиттером находится между применением очистки тактовой частоты первой схемы, обсуждаемой в этой статье, и возможностью быстрого переключения последней обсуждаемой схемы.

Для схем синхронизации среднеквадратичное дрожание тактовой частоты является ключевым параметром производительности. Это можно оценить с помощью ADIsimPLL или измерить с помощью анализатора источника сигнала. Для высокопроизводительных компонентов системы ФАПЧ, таких как ADF5356, относительно широкая полоса пропускания фильтра нижних частот 132 кГц вместе с источником сверхнизкой частоты REF IN , таким как Wenxel OCXO, позволяет пользователю разрабатывать тактовые генераторы со среднеквадратичным джиттером ниже 90 фс (рис. ).Манипулирование размещением полосы пропускания фильтра контура ФАПЧ (LBW) показывает, как ее слишком сильное уменьшение приводит к тому, что шум ГУН начинает преобладать при малых смещениях (рис. это слишком много означает, что внутриполосный шум преобладает на смещениях, где вместо этого шум ГУН будет значительно ниже (рисунок 25).

Рисунок 24. LBW = 10 кГц, джиттер 331 фс.

Рисунок 25. LBW = 500 кГц, джиттер 111 фс.

Рисунок 26. LBW = 132 кГц, джиттер 83 фс.


использованная литература

Коллинз, Ян. «Интегрированные ФАПЧ и ГУН для беспроводных приложений». Радиоэлектроника , 2010.

Кертин, Майк и Пол О’Брайены. «Контуры фазовой автоподстройки частоты для высокочастотных приемников и передатчиков». Аналоговый диалог, Том. 33, 1999.

% PDF-1.3 % 993 0 объект > эндобдж xref 993 92 0000000016 00000 н. 0000002192 00000 н. 0000002345 00000 н. 0000003074 00000 н. 0000003552 00000 н. 0000003618 00000 н. 0000003945 00000 н. 0000004261 00000 н. 0000004426 00000 н. 0000004506 00000 н. 0000004647 00000 н. 0000004727 00000 н. 0000005178 00000 п. 0000005258 00000 н. 0000005679 00000 н. 0000005759 00000 н. 0000006185 00000 п. 0000006265 00000 н. 0000006603 00000 н. 0000006683 00000 н. 0000006763 00000 н. 0000007038 00000 н. 0000007395 00000 н. 0000007897 00000 п. 0000007977 00000 п. 0000008412 00000 н. 0000008492 00000 н. 0000008788 00000 н. 0000008868 00000 н. 0000008948 00000 н. 0000009028 00000 н. 0000009106 00000 н. 0000009380 00000 п. 0000009850 00000 н. 0000010274 00000 п. 0000010354 00000 п. 0000010434 00000 п. 0000010512 00000 п. 0000010709 00000 п. 0000010909 00000 п. 0000011106 00000 п. 0000011304 00000 п. 0000011503 00000 п. 0000011702 00000 п. 0000011901 00000 п. 0000012102 00000 п. 0000012304 00000 п. 0000012502 00000 п. 0000012705 00000 п. 0000012906 00000 п. 0000013113 00000 п. 0000013314 00000 п. 0000013513 00000 п. 0000013709 00000 п. 0000013918 00000 п. 0000014119 00000 п. 0000014316 00000 п. 0000014521 00000 п. 0000014718 00000 п. 0000014922 00000 п. 0000015131 00000 п. 0000015327 00000 п. 0000015521 00000 п. 0000015770 00000 п. 0000015953 00000 п. 0000015976 00000 п. 0000017039 00000 п. 0000017062 00000 п. 0000018022 00000 п. 0000018045 00000 п. 0000018880 00000 п. 0000018903 00000 п. 0000019688 00000 п. 0000019711 00000 п. 0000020543 00000 п. 0000020566 00000 п. 0000021464 00000 п. 0000021487 00000 п. 0000022383 00000 п. 0000022406 00000 п. 0000023352 00000 п. 0000024577 00000 п. 0000024787 00000 п. 0000024995 00000 п. 0000026223 00000 п. 0000026444 00000 п. 0000026519 00000 п. 0000027740 00000 п. 0000028971 00000 п. 0000029169 00000 п. 0000002496 00000 н. 0000003051 00000 н. трейлер ] >> startxref 0 %% EOF 994 0 объект > эндобдж 995 0 объект > / Кодировка> >> / DA (/ Helv 0 Tf 0 г) >> эндобдж 1083 0 объект > транслировать Hb`d`

(PDF) Новый метод фазовой автоподстройки частоты для трехфазной системы

Новый метод фазовой автоподстройки частоты

для трехфазной системы

Hongyan Zhao, Trillion Q.Чжэн, Ян Ли, Хун Ли

Школа электротехники

Пекинский университет Цзяотун

Пекин 100044 㸪 Китай

Электронная почта: [email protected], [email protected], [email protected], [email protected]

Аннотация. Стабильность и быстрота определения фазового угла в системе синхронизации сети

очень важны, особенно когда напряжение сети

находится в неблагоприятных условиях. В этой статье представлен метод

быстрого прямого вычисления с фазовой автоподстройкой частоты (FDC-PLL)

, который может определять фазовый угол непосредственно из соответствующего соотношения

между абсолютным значением напряжения сети и фазовым углом

.И преобразование d-q не требуется в FDC-PLL.

Кроме того, когда сетевое напряжение несимметрично или искажено, основная составляющая прямой последовательности

(PSFC) сетевого напряжения

извлекается с помощью двойного обобщенного интегратора второго порядка

(DSOGI), а фазовый угол вычисляется с помощью PSFC. . Как следствие

, эффективность и осуществимость представленного алгоритма

ФАПЧ подтверждается моделированием и экспериментами.

Ключевые слова: фазовая автоподстройка частоты (PLL), преобразование dq, фундаментальный компонент последовательности

(PSFC), двойной второй порядок

обобщенный интегратор (DSOGI)

I.

I

NTRODUCTION

В настоящее время, Поскольку системы распределенной генерации

(DPGS) широко применяются, подключение к сети DPGS, где обычно требуется преобразователь источника напряжения (VSC)

, становится все более и более важным.Таким образом, быстрый и точный метод определения угла фазы

является одной из ключевых задач DPGS. Традиционный метод синхронизации

, синхронный опорный кадр

с ФАПЧ (SRF-PLL) [1], может быстро определять фазовый угол

, когда напряжение в сети идеальное, благодаря своей высокой пропускной способности

[2]. Кроме того, уменьшая полосу пропускания элемента управления

, SRF-PLL может также обнаруживать фазовый угол, когда напряжение сетки

искажено или несбалансировано, в то время как динамический отклик

будет ухудшаться.Принимая во внимание это, чтобы улучшить характеристики

SRF-PLL в неблагоприятных условиях сети, [3] — [4]

представили различные передовые методы. И большинство из этих методов

в основном основаны на принципе добавления фильтра к

SRF-PLL.

Короче говоря, эти методы можно разделить на предварительные (до

вход SRF-PLL) и внутриконтурные (в рамках цикла управления фазой

SRF-PLL) в зависимости от их положения в

SRF. -ФАПЧ [5].Методика предварительной фильтрации заключается в том, чтобы

выполнить предварительную обработку искаженного или несбалансированного напряжения сети

для извлечения PSFC или устранения гармоник до того, как сигналы дискретизации

войдут в контур SRF-PLL. Например,

, двойной обобщенный интегратор ФАПЧ второго порядка (DSOGI-

PLL), пространственно-векторное дискретное преобразование Фурье (SV-DFT)

фильтр прямой последовательности (PSF) [6] и развязанный двойной

синхронный ФАПЧ опорного кадра (DDSRF-PLL) [7] — [10]

всегда используются в качестве ступеней предварительной фильтрации SRF-PLL.Методика петлевой фильтрации in-

заключается в обработке фильтрата по оси q-

(ось реактивной мощности) для устранения гармоник

в SRF-PLL. В частности, внутриконтурная фильтрация

обычно используется в ситуациях, когда основные компоненты последовательности

сетки не нужны. Например, режекторные фильтры

(NF) обычно используются в методах внутриконтурной фильтрации,

и включение одной или нескольких NF в контур управления SRF-PLL

является базовой реализацией [11] — [14] .Большинство упомянутых выше методов PLL

показывают хорошие характеристики.

Однако, учитывая случаи, когда необходимо, чтобы алгоритм управления

был кратким и время задержки короткое, многие ученые

продолжают сосредотачиваться на исследованиях технологий ФАПЧ [15].

В этой статье представлен метод быстрого прямого вычисления PLL (FDC-

PLL), который может мгновенно определять фазовый угол

без какой-либо задержки, за исключением времени выборки и времени цифровой обработки

.По сути, это метод без обратной связи, и

не требует преобразования d-q. По сравнению с SRF-PLL,

FDC-LL не имеет задержки двух интегральных звеньев, когда напряжение сети

является идеальным. Однако из-за функции разомкнутого контура

производительность FDC-PLL не очень хорошая, когда сетевое напряжение

находится в неблагоприятных условиях [16]. Поэтому для цели

решения этой проблемы блок DSOGI применяется к

, чтобы получить PSFC напряжения сети в этой статье.Как широко известно,

DSOGI имеет хорошие свойства полосовой фильтрации, в то время как

имеет хорошие установившиеся и динамические характеристики. Кроме того, DSOGI

имеет отличную самонастраивающуюся частоту. Таким образом, в этой статье представлен метод определения частоты

, относящийся к линейной модели

SRF-PLL для реализации адаптируемости DSOGI по частоте

. В заключение,

представленные FDC-PLL и блок DSOGI оба приспособлены для

обнаружения фазового угла, когда напряжение сети несимметрично или

искажено.

II. I

РЕАЛИЗАЦИЯ

P

RESENTED

FDC-PLL

И

C

OMPARISON

W

ITH

Внедрение SRF-PLL

Pre-PLL

SRF-PLL

9000 Реализация представленного FDC-PLL описана ниже как

. Сначала просуммируйте мгновенные абсолютные значения трех —

фазных напряжений сети, а затем вычислите отношения Zx (x = a, b, c)

трех фазных напряжений vx к сумме трехфазной сети

мгновенные абсолютные значения напряжений соответственно.Zx может быть

, рассчитывается по

978-1-5090-0737-0 / 16 / $ 31,00 © 2016 IEEE

% PDF-1.3 % 1 0 объект > эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 8 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 9 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 10 0 obj > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 11 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 12 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 13 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 14 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 15 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 16 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 17 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 18 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 19 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 20 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 21 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 22 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 23 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 24 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 25 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 26 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 27 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 28 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 29 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 30 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 31 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 32 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 33 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 34 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 35 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 36 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 37 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 38 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 39 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 40 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 41 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 42 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 43 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 44 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 45 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 46 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 47 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 48 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 49 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 50 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 51 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 52 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 53 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 54 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 55 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 56 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 57 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 58 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 59 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 60 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 61 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 62 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 63 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 64 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 65 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 66 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 67 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 68 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Тип / Страница >> эндобдж 69 0 объект > / MediaBox [0 0 612 792] / Родительский 6 0 R / Ресурсы > / ProcSet [/ PDF / Text / ImageC] >> / Тип / Страница >> эндобдж 70 0 объект > / Граница [0 0 0] / M (D: 20170612204958-08’00 ‘) / Rect [42.51966 34. 125.33733 53.64231] / Подтип / Ссылка / Тип / Аннотация >> эндобдж 71 0 объект > транслировать х \ s _݉ X ѷ% \ KeN ‘$. б ?: + 6š5F ж * GBRb $ µω7 xBR 4m5M # X ߬ d {YidAf ~ BVrJ?, 5 * 95YQ7F ߐ mlRh4 @ kh \ ŎZv˹q + {rC

Глава 2, Руководство по детекторам трафика: Третье издание — Том I

Этот отчет является заархивированной публикацией и может содержать техническую и контактную информацию с указанием даты, а также информацию по ссылкам.

Номер публикации: FHWA-HRT-06-108
Дата: май 2006 г.

ГЛАВА 2.СЕНСОРНАЯ ТЕХНОЛОГИЯ

В этой главе описывается работа датчиков проезжей части и проезжей части. Представленные технологии включают в себя индуктивные петлевые детекторы, магнитометры, процессоры видеоизображений, микроволновые радарные датчики (обнаружение присутствия и доплеровские), лазерные радарные датчики, пассивные инфракрасные датчики, ультразвуковые датчики, пассивные акустические датчики и устройства, в которых используется комбинация технологий. Информация предназначена для того, чтобы дать практикующему инженеру по дорожному движению и инженеру-электрику знания, необходимые для выбора подходящей сенсорной технологии для конкретных приложений.

ДЕТЕКТОРЫ ИНДУКТИВНОЙ ПЕТЛИ

С момента своего появления в начале 1960-х годов датчик с индукционной петлей стал наиболее часто используемым датчиком в системе управления дорожным движением. Основными компонентами системы индуктивного детектора являются:

  • Один или несколько витков изолированного контурного провода, намотанного в неглубокую прорезь, пропиленную в мостовой.
  • Подводящий кабель от тягового ящика к бордюру к шкафу управления перекрестками.
  • Электронный блок расположен в соседнем шкафу контроллера.

На рис. 2-1 показана условная схема системы обнаружения с индукционной петлей, а также транспортных средств и элементов стальной арматуры на проезжей части, с которыми она реагирует.

Рисунок 2-1. Индуктивно-петлевой детектор (условный).

Электронный блок передает энергию в проволочные петли на частотах от 10 кГц до 200 кГц, в зависимости от модели. Система индуктивного контура ведет себя как настроенная электрическая цепь, в которой провод контура и подводящий кабель являются индуктивными элементами.Когда транспортное средство проезжает по петле или останавливается внутри петли, транспортное средство наводит вихревые токи в проводных петлях, которые уменьшают их индуктивность. Пониженная индуктивность приводит в действие выходное реле электронного блока или твердотельный оптически изолированный выход, который посылает на контроллер импульс, указывающий на проезд или присутствие транспортного средства.

Транспортные средства, проезжающие или останавливающиеся в зоне обнаружения индуктивного детектора, уменьшают индуктивность контура.Блок электроники воспринимает это событие как уменьшение частоты и отправляет на контроллер импульс, указывающий на проезжание или присутствие транспортного средства.

В следующих разделах описывается теория индуктивной системы, характеристики контура и электронный блок.

ТЕОРИЯ РАБОТЫ

Принципы работы детекторной системы с индуктивным контуром, обсуждаемые ниже, являются общими для всех конструкций систем с индуктивным контуром, описанных в главе 4.Контурный провод и подводящий кабель содержат комбинацию сопротивления, индуктивности и емкости (как межпроводную, так и межпроводную связь с землей).

СОПРОТИВЛЕНИЕ ПЕТЛИ И КАБЕЛЯ
Для проводов с индуктивным контуром, подводящих проводов и вводных кабелей

обычно используется провод № 12, № 14 или № 16 американского калибра проводов (AWG) с сопротивлением низкой частоте или постоянному току, измеряемым в единицах Ом (). Сопротивление проволоки обратно пропорционально квадрату диаметра проволоки и увеличивается с уменьшением диаметра проволоки.Вольт-омметр (ВОМ) измеряет сопротивление постоянному току. Сопротивление провода протеканию переменного тока увеличивается с увеличением частоты, потому что проводящая площадь провода уменьшается из-за неоднородного потока внутри провода. Сопротивление на высоких частотах нельзя измерить с помощью VOM, но его можно получить путем измерения добротности, как это определено далее в этой главе.

Петля на проезжей части также содержит наведенное сопротивление (называемое сопротивлением заземления), вызванное трансформаторной связью между петлей и индуцированными токами, протекающими в дорожном полотне и материалах земляного полотна.В Приложении А приводится подробный вывод сопротивления заземления. Таблица 2-1 содержит значения сопротивления постоянному току или низкочастотного сопротивления для имеющихся в продаже контурных проводов и вводных кабелей.

Таблица 2-1. Сопротивление кабелей, которые обычно встречаются в детекторных системах с индуктивным контуром.
Тип провода или кабеля производителя Функция Калибр провода (AWG) Сопротивление постоянному току (/ фут)
9438 Контурный провод 14 0.0025
8718 Вводной кабель 12 0,0019
8720 Вводной кабель 14 0,0029
8719 Вводной кабель 16 0,0045
ИНДУКТИВНОСТЬ КОНТУРА

Все проводники, по которым проходит электрический ток, образуют линии магнитного потока, которые окружают формирующий их ток.Магнитный поток вызывает электрическое свойство, называемое индуктивностью, которое измеряется в генри (Гн). Индуктивность провода называется самоиндукцией. Если поток от тока, протекающего по одному проводу, переходит в другие провода, результирующая индуктивность называется взаимной индуктивностью.

На рис. 2-2 показан поток вокруг однооборотной проволочной петли. Плоскость, содержащая поток, перпендикулярна току в проводе, где направление потока определяется правилом правой руки. Это правило применяется следующим образом: поместите правую руку под провод с пальцами, загнутыми в направлении силовых линий.Большой палец указывает в направлении тока. Внутри контура все силовые линии имеют одинаковое направление.

На рис. 2-3 показаны линии магнитного потока для соленоида или катушки, длина которых больше диаметра. Магнитный поток внутри катушки однороден, за исключением концов. Магнитное поле для этой геометрии катушки равно

.

(2-1)

, где

H = Магнитное поле, ампер-витков на метр, не путать с единицами индуктивности в генри
Н = Число витков
I = Ток катушки, амперы
л = Длина змеевика, метры.


Рисунок 2-2. Магнитный поток вокруг петли. Черные стрелки представляют ток, протекающий в проводе, а белые стрелки — индуцированный поток, определяемый правилом правой руки.


Рисунок 2-3. Магнитный поток для соленоида (катушки). Черные стрелки представляют поток тока, в то время как круги с черным центром и центром «X» представляют индуцированный поток потока из и в плоскость рисунка, соответственно.

Поскольку магнитный поток внутри катушки однороден, он равен

.

(2-1)
, где

= Магнитный поток, сетка
B = Плотность магнитного потока, сетка на м 2
A = Площадь поперечного сечения катушки, м 2 .

Плотность магнитного потока выражается как

(2-3)
, где

r = относительная проницаемость материала (1 для воздуха)

0 = 4 x 10 -7 генри на метр.

Индуктивность катушки определяется как

(2-4)
, где

L = индуктивность, генри
Н = количество витков
I = ток катушки, амперы.

Индуктивность катушки, длина которой намного превышает площадь катушки для обеспечения равномерного магнитного потока внутри катушки, определяется как

(2-5)

Индуктивный контур проезжей части имеет неоднородное магнитное поле, которое создает значение индуктивности, заданное уравнением 2-6.

Это уравнение показывает, что индуктивность катушки прямо пропорциональна квадрату витков и площади катушки и обратно пропорциональна длине катушки.Хотя формула индуктивности в том виде, в каком она написана, не применима напрямую к индуктивной петле дороги, формула может быть изменена с коэффициентом F ‘для учета неоднородного потока в индуктивной петле дороги. Таким образом

(2-6)

Уравнение 2-6 применяется к вычислению индуктивности контура в Приложении B. В этом случае l упоминается как «длина токового листа». Уравнение 2-6 показывает, что железо с относительной проницаемостью больше единицы увеличивает индуктивность контура.Хотя наибольшее увеличение индуктивности происходит, когда железный сердечник проходит непосредственно через контур, железная масса двигателя транспортного средства, трансмиссии или дифференциала немного увеличивает индуктивность контура. Это состояние называется «ферромагнитным эффектом».

ФЕРРОМАГНИТНЫЙ ЭФФЕКТ И ОБНАРУЖЕНИЕ АВТОМОБИЛЯ

Однако ферромагнитный эффект, создаваемый железной массой двигателя, трансмиссии или дифференциала, не создает индикацию присутствия или прохождения контроллером.Когда тяжелый двигатель из черных металлов входит в зону обнаружения индуктивного контура, он увеличивает индуктивность проволочного контура. Этот эффект возникает из-за того, что введение любого железного сердечника в поле любого индуктора снижает сопротивление (то есть член, который соответствует сопротивлению магнитной цепи) пути потока и, следовательно, увеличивает полезную индуктивность. Однако периферийный металл транспортного средства оказывает противоположное влияние на индуктивность из-за возникающих вихревых токов. Уменьшение индуктивности из-за вихревых токов более чем компенсирует увеличение массы железа в двигателе, и в итоге получается общее снижение индуктивности проволочного контура.

Ферромагнитный эффект увеличивает индуктивность контура. Однако вихревые токи, вызванные транспортным средством, еще больше уменьшают индуктивность контура. Следовательно, результирующий эффект — уменьшение индуктивности контура, когда транспортное средство проходит через зону обнаружения индуктивного контура.

ХАРАКТЕРИСТИКИ ПЕТЛИ

Детектор с индуктивной петлей предоставляет инженерам по дорожному движению широкий диапазон геометрии для удовлетворения разнообразных приложений управления сигналами дорожного движения, как описано в главе 4.Размер и количество витков петли или комбинации петель вместе с длиной подводящего кабеля должны давать значение индуктивности, совместимое с диапазоном настройки электронного блока и другими требованиями, установленными транспортным потоком. инженер. Стандарты NEMA для индуктивных детекторов (см. Приложение J) определяют, что блок электроники должен обеспечивать удовлетворительную работу в диапазоне индуктивности от 50 до 700 микрогенри (мкГн). Некоторые блоки допускают гораздо большие значения индуктивности, например, от нескольких последовательно соединенных контуров.Хотя более высокие значения индуктивности технически возможны, NEMA установило консервативный верхний предел, чтобы продвигать методы, совместимые со всеми существующими блоки электроники.

ЕМКОСТЬ КОНТУРА

На рис. 2-4 показаны основные явления емкостной связи, которые существуют между (1) самими проводами контура и (2) проводами контура и боковыми стенками паза для распиловки. Емкость, относящаяся к пазу пилы, прямо пропорциональна диэлектрической проницаемости материала уплотнения паза.На рис. 2-5 представлена ​​эквивалентная электрическая схема, представляющая сопротивление провода индуктивной петли R s , индуктивность L s и емкость C p , которые образуются при установке петли на дорожном покрытии.


Рисунок 2-4. Емкостная связь между самими проводами контура и боковыми стенками паза.


Рисунок 2-5. Эквивалентная электрическая схема для индуктивного контура с емкостной связью с боковыми стенками паза пропила.

Данные измерений на рисунке 2-6 показывают влияние емкости C p на увеличение индуктивности на выводах контура при увеличении рабочей частоты. (1) Если материал уплотнения паза гигроскопичен (т.е. легко впитывает и удерживает воду) или неполный (т. е. не заполняет прорезь или не герметизирует провода, позволяя воде проникать в прорезь и проникать между витками контурного провода), изменение емкости и, следовательно, индуктивности будет большим из-за большой диэлектрической проницаемости воды .


Рисунок 2-6. Средние значения индуктивности контура в зависимости от частоты измерения для последовательного, параллельного и последовательно-параллельного соединения индуктивных контуров 6 x 6 футов (1,8 x 1,8 м). Графики представляют кривые, соответствующие измеренным данным.

Емкость системы контура должна быть минимизирована для правильной работы на частотах 10 килогерц (кГц) и выше.

Таким образом, изменение емкости из-за воды может привести к нестабильной работе детектора индуктивного контура.На частотах 1 килогерц (кГц) влияние емкости незначительно. На частотах 10 кГц и выше важен емкостной эффект. Когда индуктивность контура измеряется на частоте 20 кГц или выше, необходимо указать частоту измерения, поскольку измеренная индуктивность зависит от частоты. Большое количество витков на контурах большой площади дополнительно увеличивает емкость контура и снижает частоту собственного резонанса контура (т. Е. Индуктивность контура не измеряется на выводах контура, когда контур является саморезонансным).

На рис. 2-6 также показано, как различные последовательные, параллельные и последовательно-параллельные конфигурации проводных контуров влияют на результирующую индуктивность контура и скорость ее изменения с частотой. Влияние метода подключения на индуктивность системы обсуждается далее в разделе «Расчет индуктивности системы контура» далее в этой главе.

КОЭФФИЦИЕНТ КАЧЕСТВА ПЕТЛИ Q

Резонансный КПД контура выражается через безразмерную добротность Q .Если потери в катушке индуктивности велики, Q будет низким. Идеальный индуктор не имеет потерь; следовательно, в катушке индуктивности нет рассеивания энергии, и Q бесконечен.

Коэффициент качества контура Q — это мера потерь в системе детектора с индуктивным контуром.

Общие потери энергии в катушке индуктивности с потерями рассчитываются путем моделирования катушки индуктивности как эквивалентной катушки индуктивности без потерь, соединенной последовательно с резистором.Добротность равна отношению индуктивного реактивного сопротивления к резистивным потерям катушки индуктивности. Поскольку индуктивное реактивное сопротивление является величиной, зависящей от частоты, частота должна быть указана при измерении добротности. Формула для Q записывается как
(2-7)

где

Q = добротность
= 3,14159 (постоянная)
f = частота возбуждения системы индуктивного контура, Гц
L S = индуктивность последовательного контура, генри
R S = Сопротивление последовательного контура, Ом
= Радианная частота = 2 f .

Резонансная частота 0 эквивалентной индуктивной петле электрической цепи, представленной на Рисунке 2-5, равна
(2-8)

Из уравнения 2-7,

(2-9)

Следовательно, уравнение для коэффициента качества контура Q 0 резонансного контура принимает вид

(2-10)

Электронный блок добавляет сопротивление нагрузки R L параллельно конденсатору C P , показанному в эквивалентной индуктивной петле электрической цепи на Рисунке 2-5.Эффект R L заключается в снижении добротности. Результирующий коэффициент качества равен
(2-11)

или

(2-12)

, где R ‘ P — преобразованное последовательное сопротивление параллельно с R L .

Нагруженный коэффициент качества Q L схемы на Рисунке 2-5 с сопротивлением нагрузки R L параллельно конденсатору C P составляет

(2-13)

При установке индуктивных детекторов рекомендуются коэффициенты качества 5 и выше, поскольку генераторы в большинстве электронных блоков не будут работать с низким значением Q .Влага в дорожном покрытии и земляном полотне может увеличить сопротивление заземления контура, так что Q системы индуктивного контура упадет ниже 5, тем самым снизив чувствительность большинства электронных блоков индуктивного контура. Емкость контура также уменьшит Q .

Фактор качества под нагрузкой Q L , заданный уравнением 2-13, применяется к приложениям с низкими потерями, где коэффициент качества велик и может быть легко измерить.С другой стороны, индуктивные петлевые детекторы, используемые на дорогах, не так хорошо приспособлены к вышеупомянутому анализу, потому что индуктивность распределена по петле и подводящему кабелю и ее трудно измерить. Расчет добротности для дорожных петель еще больше усложняется из-за большего фактического сопротивления петлевого провода и подводящего кабеля по сравнению с последовательным значением, измеренным с помощью омметра. Дополнительные потери возникают из-за высокочастотного возбуждения и токов заземления в дорожном покрытии, связанных с конфигурацией петли и дорожной обстановкой вблизи провода.В результате, Q с идентичной конфигурацией проводов будет варьироваться от места к месту.

Потери, вызванные возбуждением высокочастотной петли и токами заземления в мостовой около провода, дополнительно снижают добротность. В результате, Q с идентичной конфигурацией проводов будет варьироваться от места к месту.

На рисунке 2-7 показано вычисление коэффициента качества индуктивной системы с использованием Q 0 и Q P .В таблицах с 2-2 по 2-4 перечислены рассчитанные коэффициенты качества для прямоугольных, квадрупольных и круглых индуктивных контуров соответственно на 1, 2, 3, 4 и 5 витков. В этих таблицах петли возбуждаются на частоте 20 кГц с поперечным расстоянием между проводниками и / или квадруполями 200 мил. Все индуктивность и добротность являются кажущимися значениями (т. Е. Включаются емкость и сопротивление контура).

Рисунок 2-7. Расчет выборки добротности замкнутой системы.

Таблица 2-2. Индуктивность прямоугольного контура и параметры добротности при f = 20 кГц.*

* Петля 6 x 6 футов (1,8 x 1,8 м). ** С вводным кабелем.

Петля диаметром 7 футов (2,1 м).

ПРОВОДКА ДЛЯ ВХОДА ПЕТЛИ

Таблица 2-5 содержит значения индуктивности, емкости и сопротивления подводящего провода коробки «петля-тяга» для двух распространенных типов проводов. Два подводящих провода от начала и конца витков петли должны быть скручены вместе, чтобы сформировать симметрично скрученную пару от петли к вытяжной коробке. Скручивание снижает перекрестные помехи и шум в подводящем проводе.Большинство производителей рекомендуют не менее пяти витков на фут (16,5 витков на метр). Скрутки проволоки образуют небольшие петли вдоль проволоки, чередующиеся по направлению намотки. Внешнее магнитное поле из-за шума или перекрестных помех индуцирует напряжения в небольших контурах, которые почти устраняются, тем самым уменьшая помехи. Важность скручивания подводящего провода обсуждается далее в главе 5.

Таблица 2-5. Характеристики подводящего провода витой петли.
Изготовитель и тип провода Тип изоляции провода Номер AWG Диаметр оболочки (мил) Число витков на фут Индуктивность (H / фут) Емкость (пФ / фут) Сопротивление (/ футов)
XHHW Сшитый полимер 14-ниточный 130 от 3 до 4 0.24 10 0,006
Belden 9438 Полиэтилен высокой плотности 14-ниточный 139 5,5 0,22 10 0,00252
ВВОДНЫЙ КАБЕЛЬ

Экранированные скрученные пары проводов используются для подводящего кабеля (кабеля домашней прокладки), который проходит от вытяжной коробки к клеммам электронного блока в шкафу контроллера. Проводящий экран снижает помехи от внешних электрических полей.Значения индуктивности, емкости и сопротивления подводящего кабеля для нескольких типов кабеля приведены в таблице 2-6.

Таблица 2-6. Технические характеристики вводного кабеля для коммерческого использования.
Производитель и тип кабеля Тип изоляции провода Номер AWG Диаметр изоляции (мил) Тип изоляции кабеля Индуктивность (H / фут) Емкость (пФ / фут) Сопротивление (/ фут)
Belden 8718 Полиэтилен 12 37 Винил 0.2 25 0,0019
8720 Полиэтилен 14 32 Винил 0,2 24 0,0029
8719 Полиэтилен 16 32 Винил 0,2 23 0,0045
Клиффорд IMSA Полиэтилен 12 30 Полиэтилен 0.2 25 0,0016
Спецификация Полиэтилен 14 30 Полиэтилен 0,2 24 0,0025
50-2-1984 Полиэтилен 16 30 Полиэтилен 0,2 ​​ 23 0.0040

Измерения коэффициента качества петлевой системы (при 100 футах (30 м) экранированного подводящего кабеля, подключенного к петле) в Приложении D показывают, что от использования проводов большего диаметра в экранированных выводах мало пользы. в кабеле. Например, коэффициент качества, связанный с экранированным вводным кабелем № 14 AWG, существенно не снижается при замене кабеля № 12. Основные потери связаны с типом экранирования, а не с диаметром проводника. В таблице 2-7 показано, как тип и длина подводящего кабеля влияют на коэффициент качества.

РАСЧЕТ ИНДУКТИВНОСТИ

Существует несколько упрощенных формул для расчета приблизительной индуктивности детектора с индуктивной петлей. Более точные значения индуктивности получаются с помощью метода взаимной связи, описанного в Приложении A.

Упрощенные формулы обеспечивают приемлемую точность самоиндукции многооборотных, прямоугольных, квадрупольных и круглых контуров, которые имеют большую площадь относительно расстояния между проводниками. Приближения выгодно отличаются от диапазона измеренных значений индуктивности индуктивного контура.

Приложение C содержит расчетные значения индуктивности контура для контуров различных размеров и форм (прямоугольных, квадрупольных и круглых). Индуктивность и добротность для нескольких витков провода были рассчитаны с использованием формулы взаимной связи, обсуждаемой далее в этой главе.

Размер контура 6 x 6 футов (1,8 x 1,8 м). Частота возбуждения 20 кГц.
* Измеренное последовательное сопротивление петли на высоте 3 фута (0,9 м) над полом лаборатории.
** Расчетное значение сопротивления 8719.
† Длина подводящего кабеля составляет 100 футов.

РАСЧЕТ ИНДУКТИВНОСТИ КОНТУРНОЙ СИСТЕМЫ

Индуктивность вводного кабеля добавляется к индуктивности контура провода из расчета 21 Гн на 100 футов (30 м) вводного кабеля # 14 AWG. Например, прямоугольная петля размером 6 x 6 футов (1,8 x 1,8 м) должна иметь три витка в соответствии с Приложением C и индуктивность 74 Н. Если длина подводящего кабеля составляет 200 футов (61 м). по длине общая индуктивность

(2-14)

Индуктивность L двух или более контуров, соединенных последовательно, является аддитивной, так что L = L 1 + L 2 ± 2M , где L 1 и L 2 представляют собой индуктивность каждого из отдельных последовательно соединенных контуров, M — взаимную индуктивность между двумя контурами, а знак M является положительным, если магнитный поток увеличивается током, текущим в том же направлении в ближайший к нему шлейф.

Взаимная индуктивность незначительна, когда контуры разделены большим расстоянием. В этом случае L = L 1 + L 2 , т. Е. Контуры соединены последовательно, обеспечивая максимальную индуктивность контура.

Если контуры соединены параллельно, то общая индуктивность рассчитывается как 1/ L = 1/ L 1 + 1/ L 2 . Например, объединенная индуктивность двух 6х6 футов (1.8 x 1,8 м) петель из трех витков, каждый из которых соединен параллельно, определяется как

(2-15)

Таким образом, 2L = 74 H и L = 37 H.

Таким образом, параллельное соединение шлейфов снижает индуктивность. Хорошая практика проектирования требует, чтобы индуктивность комбинированного контура была больше нижнего предела в 50 Н. Следовательно, описанное выше параллельное соединение не подходит в качестве датчика транспортного средства.

В некоторых случаях желательно как последовательное, так и параллельное соединение индуктивных контуров.Рассмотрим, например, четыре трехвитковых контура 6 x 6 футов (1,8 x 1,8 м), установленных на расстоянии 9 футов (2,7 м) друг от друга, чтобы обеспечить обнаружение на полосе левого поворота. На Рисунке 2-8 показаны три возможных типа подключений. Последовательное соединение дает индуктивность 4 x 74 = 296 Гн. Параллельное соединение дает только 18,5 Гн ( 4L = 74 Гн, L = 18,5 мкГн). Последовательно-параллельная конфигурация, при которой две верхние петли соединены последовательно, а две нижние петли соединены последовательно, образует две пары петель, которые затем соединяются параллельно, чтобы получить общую индуктивность 74 Гн.


Рисунок 2-8. Четыре трехвитковых контура размером 6 x 6 футов (1,8 x 1,8 м), соединенные последовательно, параллельно и последовательно-параллельно.

КОЛИЧЕСТВО НЕОБХОДИМЫХ ХОДОВ

Проволочные петли должны иметь достаточное количество витков, чтобы обеспечить номинальную минимальную индуктивность 100 Гн на петлю, чтобы гарантировать стабильную работу системы индуктивной петли. Эмпирическое правило для количества витков, необходимых для получения значения индуктивности в требуемом диапазоне:

  • Если периметр петли меньше 9 м (30 футов), используйте три витка провода.
  • Если периметр петли превышает 9 м (30 футов), используйте два витка провода.
ЧУВСТВИТЕЛЬНОСТЬ КОНТУРА К ЭЛЕКТРОПРОВОДЯЩЕМУ ОБЪЕКТУ

Ток, протекающий через контурный провод, создает магнитное поле вокруг провода, как это задается уравнениями 2-1, 2.1 и 2-3. Если транспортное средство (или любой другой электропроводящий объект) входит в это магнитное поле, и магнитное поле или составляющая магнитного поля перпендикулярны области объекта, в проводящем объекте индуцируются вихревые токи.Вихревые токи создают другое магнитное поле, которое противодействует магнитному полю петли, вызывая уменьшение общего магнитного поля вокруг петли. Поскольку индуктивность контура пропорциональна магнитному потоку, индуктивность контура уменьшается.

Вихревые токи индуцируются в электропроводящем объекте, таком как металлическое транспортное средство, магнитным полем, создаваемым током, протекающим через проволочную петлю. Затем вихревые токи создают магнитное поле, которое противодействует исходному магнитному полю, создаваемому индуктивной петлей.В результате уменьшается индуктивность контура.

Чувствительность контура к проводящему объекту можно проверить с помощью провода длиной 12 дюймов (30 см), сформированного в виде круга диаметром примерно 4 дюйма (10 см). Круговая петля образует разомкнутую электрическую цепь, когда концы проводов удерживаются так, чтобы они не касались друг друга. Не должно происходить срабатывания, когда разомкнутый круговой контур быстро перемещается горизонтально по индуктивному контуру проезжей части. Когда концы круговой петли соприкасаются, образуя замкнутую цепь, прежде чем они будут проталкиваться через дорожную петлю, произойдет срабатывание из-за протекания вихревых токов.Это демонстрирует, что для срабатывания важен именно закороченный виток, а не масса провода или транспортного средства.

МОДЕЛИ ОБНАРУЖЕНИЯ ВЕЛОСИПЕДОВ И МОТОРИЗОВАННЫХ АВТОМОБИЛЕЙ

На рис. 2-9 показано обнаружение велосипеда или мотоцикла с помощью индуктивной петли. Эти средства передвижения можно смоделировать как вертикальный проводящий объект относительно плоскости петли. Когда цикл проходит по контурному проводу, в проводящих ободах колес и раме индуцируются вихревые токи. Когда цикл проходит непосредственно над проводом контура, связь между индуктивным контуром и циклом максимальна.


Рисунок 2-9. Обнаружение велосипеда, показывающее индуцированные вихревые токи. Черные стрелки представляют ток в проводе контура, а белые стрелки — индуцированный поток.

Ходовая часть, напротив, является горизонтальной мишенью. Как показано на рис. 2-10, ходовая часть моделируется как проводящая прямоугольная пластина, ширина которой равна ширине транспортного средства, а длина равна длине транспортного средства при некоторой средней высоте шасси.

Проводящая сетка может использоваться для аппроксимации электрических характеристик непрерывной пластины. Когда сетка симметрично расположена над индуктивной петлей для обеспечения максимальной чувствительности, все индуцированные внутренние токи сетки нейтрализуются. Это приводит к протеканию одиночного индуцированного тока по периметру сетки, что эквивалентно однооборотной прямоугольной проволочной петле или закороченному витку. Трансформатор с воздушным сердечником справа на рис. 2-10 моделирует соединение между ходовой частью транспортного средства, представленное закороченным витком провода, и проводом индуктивного контура.

Максимальная чувствительность обнаружения автомобиля достигается за счет короткого замыкания на минимальном расстоянии от проводов контура. Следовательно, идеальный детектор с индукционной петлей имеет форму, которая приближается к периферии транспортного средства. То есть квадратная петля размером 6 x 6 футов (1,8 x 1,8 м) будет предпочтительнее петли размером с двигатель транспортного средства.

Из-за высоты ходовой части грузовики с высокой платформой трудно обнаружить. Обнаружение этих транспортных средств максимально, когда ширина петли равна ширине грузовика, если позволяет ширина полосы движения.Длина петли не должна быть меньше ее ширины, чтобы избежать потери чувствительности.


Рисунок 2-10. Модель ходовой части автомобиля. В верхней части рисунка изображены электрические модели ходовой части автомобиля, а в нижней — провод индукционной петли.

ВЗАИМНАЯ ИНДУКТИВНОСТЬ

Самоиндукция индуктивного контура определяется с помощью магнитного потока контура. Когда магнитный поток петли соединяется с транспортным средством, связанный поток используется для определения взаимной индуктивности.

На рис. 2-10 показана магнитная связь между контуром и закороченным витком, которая ведет себя как трансформатор с воздушным сердечником. Взаимная индуктивность между первичной цепью (т. Е. Индуктивной петлей) и вторичной цепью (т. Е. Закороченным витком) равна

.

(2–16)

, где

M 21 = взаимная индуктивность между контуром 1 (контур) и контуром 2 (закороченный виток), henrys
N 2 = количество витков (равно 1 для закороченного витка)
21 = Магнитный поток перпендикулярно области закороченного витка, перемычки
I 1 = Ток, протекающий в контуре, амперы.

ЧУВСТВИТЕЛЬНОСТЬ ПЕТЛИ

Чувствительность контура SL индуктивного детектора определяется как

(2-17)

Чувствительность контура равна изменению индуктивности системы контура, вызванному проводящим металлическим предметом, деленному на исходную индуктивность системы контура.

, где

L NV = индуктивность в отсутствие транспортного средства, henrys
L V = индуктивность при наличии транспортного средства, henrys.
Чувствительность S L для трансформатора с воздушным сердечником, показанного на рисунке 2-10, при условии, что коэффициент качества Q больше 10, определяется как

процентов (2-18)

, где

K = коэффициент связи
M 21 = взаимная связь между петлей и закороченным витком, генри
L 11 = собственная индуктивность петли, генри
L 22 = Самоиндукция закороченного витка, Генрис.
Упрощенные выражения для самоиндукции и взаимной связи могут быть получены, если предположить, что влияние железа транспортного средства незначительно. Тогда r = 1 и собственная индуктивность дорожной петли длиной l 1 находится из уравнения 2-6 как

(2-19)

Индуктивность замкнутого витка длиной l 2 определяется как

(2-20)

Взаимная индуктивность между закороченной витой петлей и дорожной петлей определяется по формуле

(2-21)

, где

A V = Площадь ходовой части автомобиля, (метры) 2
d 21 = Расстояние между петлей и коротким поворотом, метров.
Тогда чувствительность выражается как

(2-22)
, где A V A .

Уравнение 2-22 показывает, что чувствительность уменьшается для участков петель, превышающих площадь ходовой части транспортного средства. Чувствительность уменьшается по мере удаления шасси от петли в квадрате. Чувствительность не зависит от количества витков контура; однако разведение поворотов немного увеличивает чувствительность за счет увеличения l 1 за счет более глубокого паза в проезжей части.

Приложение E содержит более сложные формулы для расчета S L для двухвитковых и других многооборотных индуктивных контуров. В этом приложении также доступны сравнения измеренной и рассчитанной чувствительности.

На рисунке 2-11 показано изменение чувствительности контура в зависимости от высоты ходовой части автомобиля для 6 x 2 фута (1,8 x 0,6 м), 6 x 4 футов (1,8 x 1,2 м) и 6 x Трехвитковые индукционные петли длиной 6 футов (1,8 x 1,8 м). Чувствительность 6 x 2 фута (1,8 x 0.6-м) петля небольшая из-за малой длины л 1 .


Рисунок 2-11. Расчетная чувствительность трехвитковых индуктивных контуров в зависимости от высоты шасси автомобиля.

На рисунке 2-12 показано уменьшение чувствительности контура, которое происходит при добавлении вводного кабеля длиной 200 футов (60 м) к контурам, указанным на рисунке 2-11. Петля 6 x 2 фута (1,8 x 0,6 м), вероятно, будет вдвое больше для грузовика с высокой платформой в этих условиях.

На рис. 2-13 показано уменьшение чувствительности контура для транспортного средства, центрированного в длинных индуктивных контурах с двумя витками, по сравнению с чувствительностью трехвитковых контуров.Чувствительность контура еще больше уменьшается при добавлении вводного кабеля.

ВЛИЯНИЕ АРМАТИВНОЙ СТАЛИ

На рис. 2-14 показано снижение чувствительности контура, которое происходит при установке индуктивного детектора на стальную арматурную сетку. Эффект от армирующей стали моделируется как закороченный виток на двойном расстоянии между ячейками от петли. Армирующая сталь уменьшает магнитное поле вокруг проводников проводов контура, что вызывает уменьшение индуктивности контура и чувствительности контура.В таблице 2-8 показано влияние на индуктивность контура при добавлении арматурной стали в основание дорожного покрытия. Значения консервативны, поскольку предполагается, что сетка является идеальным проводником. Современные электронные блоки индуктивного детектора способны обнаруживать транспортные средства, даже если контурный провод проложен на арматуре перед заливкой бетона.

Рисунок 2-12. Расчетная чувствительность трехвитковых индуктивных контуров с подводящим кабелем 200 футов (60 м) в зависимости от высоты шасси автомобиля.


1 фут = 0,3 м

Рисунок 2-13. Расчетная чувствительность двухвитковых длинных индуктивных контуров в зависимости от высоты ходовой части.


1 фут = 0,3 м

Рисунок 2-14. Расчетная чувствительность индукционной петли размером 6 x 6 футов (1,8 x 1,8 м) к арматурной стали.

Индуктивные контуры не функционируют как автомобильные датчики при установке над стальной арматурой, части которой соединены таким образом, что ток течет через арматуру.Этот индуцированный ток полностью или частично нейтрализует индуцированный транспортным средством ток в индуктивном контуре. Если расстояние между арматурными стержнями достаточно велико, токи могут не подавляться. И наоборот, если арматурный стержень не закорочен при установке, он не будет поддерживать поток противотоков, которые ухудшают работу индуктивного контура.

Таблица 2-8. Влияние арматурной стали на индуктивность контура (H).
Число витков Без армирующей стали Сталь диаметром 1 дюйм Сталь диаметром 2 дюйма Сталь диаметром 4 дюйма
1 11 9 10 10
2 35 28 31 33
3 73 56 63 68
4 121 89 103 112
5 179 127 151 166
6 248 167 206 228
7 325 206 266 298

1 дюйм = 2.5 см

Эпоксидные покрытия, обычно наносимые на арматуру, по своей природе являются изоляционными. Однако характер процесса нанесения покрытия обычно оставляет в покрытии пустоты, через которые проходят токи. Количество допустимых пустот может быть указано в строительной документации. Противоток может увеличиваться в зимние месяцы в холодном климате, когда соли попадают на проезжую часть или настил моста.

ЧУВСТВИТЕЛЬНОСТЬ КОНТУРНОЙ СИСТЕМЫ

Чувствительность системы контура определяется как наименьшее изменение индуктивности на клеммах электронного блока, которое вызывает срабатывание контроллера.Эта чувствительность должна быть равна или превышать порог для электронного блока. Во многих штатах указано, что блок электроники должен реагировать на изменение индуктивности на 0,02 процента. Стандарты NEMA (см. Раздел 15.3.2 Приложения J), признающие различия в конструкции блока электроники ( L / L или L ), определяют порог чувствительности для трех классификаций тестовых автомобилей, когда они сосредоточены в одном 6 — x 6 футов (1,8 x 1,8 м) трехвитковая петля с длиной 100 футов (30.5 м) подводящего кабеля. Классы автомобилей:

Индуктивность, включенная последовательно или параллельно с индуктивно-петлевым детектором, снизит чувствительность петлевой системы на входных клеммах электронного блока.

Исследование, проведенное для проекта SCANDI в Детройте, показало, что на продолжительность вызова влияет высота магнитного поля, которое, в свою очередь, зависит от наличия и глубины арматурной стали и других факторов, специфичных для местоположения. (2) Исследование показало, что регулируемые ромбовидные петли компенсируют такие факторы в каждом месте, обеспечивая одинаковую продолжительность от петли к петле для данного транспортного средства на заданной скорости.

ЧУВСТВИТЕЛЬНОСТЬ ИНДУКТОРОВ ДВУХ СЕРИЙ

На рис. 2-15 показан расчет полной индуктивности для комбинации двух отдельных индуктивных контуров, соединенных последовательно, как один эквивалентный контур. (Рисунок 2-19 иллюстрирует соединение двух контуров таким образом.) Эквивалентная общая последовательная индуктивность L TS составляет

(2-23)
, где L A и L B — индивидуальные значения индуктивности контуров.

Рисунок 2-15. Эквивалентная общая индуктивность от двух последовательно включенных индуктивных контуров.

Эквивалентная общая последовательная чувствительность STS составляет

(2-24)

где Чувствительность контура при вхождении транспортного средства в контур A.

ЧУВСТВИТЕЛЬНОСТЬ ДВУХ ПАРАЛЛЕЛЬНЫХ ИНДУКТОРОВ

Рисунок 2-16 иллюстрирует расчет чувствительности для двух отдельных индуктивных контуров, соединенных параллельно как эквивалентный одиночный контур. (Рисунок 2-21 иллюстрирует соединение двух контуров таким образом.) Эквивалентная общая параллельная индуктивность L TP составляет

(2-25)

Эквивалентная общая параллельная чувствительность S TP составляет

(2-26)


Рисунок 2-16. Эквивалентная общая индуктивность от двух параллельных индуктивных контуров.

ПРИМЕР ОДНОГО КОНТУРА

1. Какова чувствительность контура на тяговом ящике для автомобиля с высокой платформой (4 фута (1.2-м) ходовая) переходит петлю? Рисунок 2-17 иллюстрирует этот случай и показывает длину подводящих проводов. Эквивалентная электрическая схема показана на Рисунке 2-18.

Рисунок 2-17. Одиночный индуктивный контур, подключенный к вытяжной коробке и электронному блоку.

Рисунок 2-18. Эквивалентная одноконтурная электрическая схема.

Чувствительность S L для ходовой части 4 фута (1,2 м) и трехвитковой ходовой части 6 x 6 футов (1.Петля 8 x 1,8 м) провода # 14 AWG составляет 0,1 процента от рисунка 2-11. Скрученные петли образуют подводящий провод длиной примерно 24 фута (7,3 м) к вытяжной коробке. Индуктивность на фут для контурного провода № 14 AWG с 5 витками на фут составляет 0,22 Гн / фут (0,7 Гн / м). Входная индуктивность L S составляет

(2-27)

Собственная индуктивность L L трехвитковой петли длиной 1,8-1,8 м (6 x 6 футов) из провода # 14 AWG на частоте 20 кГц из Приложения C составляет 74 Гн.Следовательно, чувствительность S P (в процентах) на вытяжной коробке составляет

(2-28)

2. Какова чувствительность системы индуктивного контура на входных клеммах электронного блока с экранированным подводящим кабелем типа 8720 длиной 200 футов (61 м) между вытяжной коробкой и электронным блоком?

Из таблицы 2-6 индуктивность кабеля типа 8720 составляет 0,22 Гн / фут. Общая последовательная индуктивность между контуром и входными клеммами блока электроники составляет

(2-29a)

(2-29b)

Тогда чувствительность S D на входных клеммах блока электроники будет

(2-30)

3.Какова чувствительность системы индуктивной петли на входных клеммах блока электроники с экранированным вводным кабелем типа 8720 длиной 200 футов (61 м) между вытяжной коробкой и блоком электроники, если четырехвитковый, 6 — x Используется петля длиной 6 футов (1,8 x 1,8 м) # 14 AWG?

Чувствительность S L для ходовой части 4 фута (1,2 м) и четырехвитковой петли 6 x 6 футов (1,8 x 1,8 м) составляет 0,1 процента. Согласно Приложению C, собственная индуктивность контура составляет 125 Гн при 20 кГц. Последовательная индуктивность такая же, как в предыдущем примере.

Следовательно

(2-31)

ДВЕ ПЕТЛИ ПОСЛЕДОВАТЕЛЬНО ПРИМЕР

1. Какова чувствительность системы индуктивного контура на входных клеммах электронного блока, когда второй идентичный контур включен последовательно с контуром, определяющим транспортное средство? На Рис. 2-19 показана конфигурация контура и показаны длины подводящих проводов. Последовательное соединение осуществляется в вытяжной коробке.

Рисунок 2-19. Две индуктивные петли, подключенные последовательно к вытяжной коробке и электронному блоку.

На рисунке 2-20 показана эквивалентная электрическая схема. Чувствительная петля представляет собой трехвитковую петлю размером 6 x 6 футов (1,8 x 1,8 м) из провода # 14 AWG. Собственная индуктивность второго контура (т. Е. Серии Loop B) составляет 74 Н. Индуктивность подводящего провода для контура B составляет

(2-32)

Общая последовательная индуктивность контура B и подводящего провода к вытяжной коробке составляет

(2-33)

, а общая последовательная индуктивность между двумя контурами и входными клеммами электронного блока составляет

(2-34a)

(2-34b)

Рисунок 2-20.Эквивалентная электрическая схема для двух контуров, последовательно подключенных к вытяжной коробке и электронному блоку.

Затем

(2-35)

ДВА ПЕТЛИ В ПАРАЛЛЕЛЬНОМ ПРИМЕРЕ

1. Какова чувствительность системы шлейфов на клеммах блока электроники при двух одинаковых шлейфах, соединенных параллельно? На Рис. 2-21 показана конфигурация контура и показаны длины подводящих проводов. Эквивалентная электрическая схема показана на Рисунке 2-22. Все параметры такие же, как в предыдущем примере цикла серии.Общая индуктивность и чувствительность на входе в блок электроники рассчитываются как

(2-36)
и

(2-37)

Рисунок 2-21. Две индуктивные петли, подключенные параллельно к вытяжной коробке и электронному блоку.

Рисунок 2-22. Эквивалентная электрическая схема для двух контуров, подключенных параллельно к вытяжной коробке и блоку электроники.

Пусть

(2-38)

и (2-39)

Затем

(2-40)

(2-41)

и

(2-42)
(2-43)

Следовательно

(2-44 )

РЕЗОНАНСНАЯ ЦЕПЬ

Многие самонастраивающиеся электронные блоки с индуктивным контуром используют сдвиг частоты или изменение периода генератора, чтобы указать прохождение или присутствие транспортного средства.Частота генератора регулируется параллельным резонансным контуром, иногда называемым резервуарным контуром, состоящим из эквивалентной индуктивности системы контура и настроечной емкости электронного блока. Эквивалентная емкость системы контура также включает емкостные эффекты из-за размещения проводов контура в пропиле. Соответствующий эквивалентный коэффициент качества учитывает влияние потерь сопротивления системы. Если эквивалентная индуктивность системы контура слишком мала, генератор не будет колебаться.Изготовитель блока электроники указывает допустимый диапазон индуктивности системы контура и минимальный коэффициент качества системы контура.

Частота генератора рассчитывается как

(2-45)

, где L D , C D , Q D — индуктивность, емкость и добротность соответственно. , контура резервуара.

Уравнение 2-45 показывает, что уменьшение индуктивности увеличивает резонансную частоту.Кроме того, коэффициент качества выше пяти будет иметь незначительное влияние на характеристики резонансного контура.

ВРЕМЕННЫЕ ПЕТЛИ

Несколько производителей и государственных агентств стремились разработать долговечную и экономичную временную петлю, которая удовлетворяет потребности в программах контроля скорости, подсчета транспортных средств, классификации транспортных средств и портативных программ взвешивания в движении (WIM). Ниже описаны два типа временных и переносных петлевых систем.

МАТОВЫЕ ПЕТЛИ

Временная петля типа мата состоит из прочного резинового мата, в который заделано несколько витков проволоки.Коврики обычно меньше по ширине, чем типичная индукционная петля длиной 1,8 м. Стандартные размеры варьируются от 4 x 6 футов (1,2 x 1,8 м) до 3 x 6 футов (0,9 x 1,8 м). Коврики располагаются в центре полосы движения, причем более длинный размер параллелен потоку движения, так что большинство транспортных средств преодолевают коврик, тем самым продлевая срок службы коврика. Типичная установка показана на Рисунке 2-23. Гвозди и шайбы обычно используются для крепления мата к поверхности дороги. Широкий 3-дюймовый (7.6 см) наклеивается прочная клейкая лента, чтобы края мата не поднимались. Подводящие провода от коврика к оборудованию для сбора данных на обочине дороги заключены между двумя слоями ленты.

Рисунок 2-23. Типовая установка временного индуктивного петлевого детектора матового типа.

Некоторые агентства производят этот тип датчика в собственном магазине. Однако изготовление этих матов вручную было слишком трудоемким, чтобы быть рентабельным. Коврики были надежными, но в условиях интенсивного движения грузовиков некоторые из них прослужили не более нескольких часов.

КОНФИГУРАЦИЯ ОТКРЫТОГО КОНТУРА

Один производитель производит предварительно отформованную временную переносную петлю размером 4 x 6 футов (1,2 x 1,8 м). Петля состоит из пяти слоев, как показано на рис. 2-24. Нижний слой представляет собой антиадгезионный бумажный лист шириной 4 дюйма (101,6 мм), который защищает полосу клейкой битумной резиновой смеси шириной 2 дюйма (50,8 мм). Его верхняя поверхность отделана полиэтиленовой пленкой высокой плотности. Эта прокладочная полоса является основой для трех витков контурного провода №22 AWG.Идентичная 2-дюймовая (50,8 мм) прокладка закрывает провода контура. Верхний слой представляет собой полосу клеевого битумного компаунда шириной 4 дюйма (101,6 мм), армированную тканой полипропиленовой сеткой.

Предварительно сформированная конфигурация с разомкнутым контуром может быть доставлена ​​в выбранное место и установлена ​​одним человеком за несколько минут. Установка состоит из снятия нижней подкладки, размещения петли на проезжей части и приложения давления, достаточного для обеспечения сцепления. Стандартно — пять футов защищенного подводящего провода.Доступны другие размеры петли и длины защищенных подводящих проводов.

Другой подход к конфигурации разомкнутого контура был разработан Отделом специальных исследований Министерства транспорта штата Невада (DOT). (3) В Nevada DOT ранее использовалась переносная петля размером 6 x 6 футов (1,8 x 1,8 м), состоящая из трех витков многожильного медного провода № 14 AWG, обмотанного черной изолентой. По мере увеличения использования переносных петель возрастали трудоемкие проблемы, связанные с долговечностью и обслуживанием.Это привело к тестированию различных лент, резиновых трубок и материала резинового мата в качестве замены клейкой ленты, покрывающей оригинальные петли.

Рисунок 2-24. Пятиуровневая временная конфигурация детектора разомкнутого контура.

Битумная лента производства Polyguard Products была в конечном итоге выбрана для ограждения проволочных петель. Это армированный тканью резиноподобный материал с одной клейкой стороной. Окончательная конфигурация состоит из четырех витков медного провода # 14 AWG, намотанных в цеху и скрепленных вместе для удобства использования.Петли заключены в две обертки из материала Polyguard и установлены, как показано на Рисунке 2-25.


1 фут = 0,3 м
1 дюйм = 2,5 см

Рисунок 2-25. Портативная установка с открытым контуром в Неваде.

Был проведен ряд испытаний для измерения прочности и точности петель по сравнению с обычными петлями, установленными в пазах для пиления. В других тестах сравнивали конфигурацию 4 x 6 футов (1,2 x 1,8 м) с конфигурацией 6 x 6 футов (1,8 x 1,8 м).Испытательные контуры были установлены на сельской двухполосной проезжей части ФАП с высоким процентом грузовиков, состоящих из нескольких единиц. В обеих сериях испытаний использовался один и тот же самописец счетчика / классификатора.

После почти 5000 срабатываний разница между количеством транспортных средств, подсчитанных с помощью переносной петли этого типа и петли, установленной пропилом, составила менее 1 процента. Также было обнаружено, что размер петли 4 x 6 футов (1,2 x 1,8 м) практически такой же, как размер петли 6 x 6 футов (1,8 x 1,8 м), независимо от того, была ли петля в пиле. в разрезе или в переносном виде.

Переносные петли все еще работали после более чем годичного испытания продукта на долговечность, состоящего из более миллиона активаций. Эта оценка, проведенная на шоссе US 395 между Рино и Карсон-Сити, штат Невада, показала, что петли являются чрезвычайно прочными и способны выдерживать широкий диапазон погодных условий. Дорога была покрыта асфальтом, и через несколько месяцев петли вросли в тротуар, что, возможно, способствовало их долговечности. Ожидается, что на бетонной поверхности эти петли прослужат более полумиллиона срабатываний.Петли также использовались с накладками и были способны выдерживать высокую температуру, связанную с этим процессом.

Испытания в полупостоянном месте увеличили долговечность петли, поскольку петли не подвергались повторному удалению и повторной установке. Однако другие петли того же типа неоднократно устанавливались без признаков чрезмерного износа. В результате этих тестов и опыта работы с этими петлями, Nevada DOT теперь использует петлю Polyguard во всех своих переносных установках петли.

ЭЛЕКТРОНИКА

Блок электроники, который генерирует частоту возбуждения индуктивного контура и контролирует работу системы индуктивного контура, значительно изменился с 1970-х годов. Ранние версии электронных блоков с индуктивным контуром работали на фиксированной резонансной частоте, используя кристалл для стабилизации частоты. Было много проблем с блоками кристаллической электроники, особенно при использовании с длинными подводящими кабелями.

Одним из них был дрейф резонансной частоты из-за изменений температуры и влажности окружающей среды.Эти устройства были сняты с эксплуатации в 1970-х годах и первоначально были заменены конструкциями, в которых использовались аналоговые фазовращатели, которые были способны компенсировать (или отслеживать) дрейф, вызванный изменениями окружающей среды. Современные электронные блоки стабилизируют частоту колебаний и обнаруживают транспортные средства с конфигурациями, которые включают цифровой сдвиг частоты, цифровой пропорциональный сдвиг частоты, цифровой сдвиг периода и цифровой пропорциональный сдвиг периода. Теория работы этих устройств описана ниже.Аналоговые блоки электроники с фазовым сдвигом все еще используются ограниченно для классификации транспортных средств.

АНАЛОГОВЫЙ БЛОК ЭЛЕКТРОНИКИ С ПЕРЕМЕЩЕНИЕМ ФАЗЫ

Это устройство было разработано для удовлетворения требований европейского рынка, где велосипеды должны быть обнаружены. Как и модель с кварцевым резонатором, он работает как датчик фазового сдвига, но использует два генератора переменной частоты, а не один генератор, управляемый кристаллом. Генератор контура работает на частоте от 25 до 170 кГц, что определяется контуром и подводящим проводом.Генератор контура соединен со вторым внутренним генератором, так что процедура начальной ручной настройки приводит два генератора в синхронизацию по частоте и фазе.

Ручка настройки перемещает ферритовый сердечник взад и вперед внутри индуктора, заставляя подключенный к нему генератор изменять свою частоту (и фазу) в соответствии с частотой генератора контура. Прибытие транспортного средства в контур уменьшает индуктивность контура, и генератор контура пытается выйти из синхронизации со своим сопутствующим генератором.Он не может изменять частоту из-за резистора перекрестной связи, но развивается фазовый сдвиг, который является основой для обнаружения транспортного средства.

Благодаря этой концепции конструкции электронный блок способен компенсировать (или отслеживать) дрейф окружающей среды. Когда температура внутри шкафа контроллера изменяется, два осциллятора смещаются одинаково. Выход двух генераторов подается на схему сравнения фаз, которая вырабатывает постоянное напряжение, пропорциональное величине сдвига; Таким образом, термин аналоговый, потому что он использует переменные напряжения, а не цифровые подсчеты для обозначения проезда или присутствия транспортного средства.

Когда в зоне обнаружения нет транспортных средств, постоянное напряжение сохраняется и запоминается конденсатором памяти. Когда автомобиль вызывает изменение выходного сигнала фазового компаратора, разница между ним и конденсатором памяти заставляет реле изменять состояние. За очень медленными изменениями постоянного напряжения следует конденсатор памяти, который позволяет схеме компенсировать дрейф из-за изменений окружающей среды. Схема памяти в конечном итоге забудет о транспортном средстве, припаркованном над петлей, и сбросит этот вызов.Подробная информация о компенсации дрейфа окружающей среды будет включена позже в разделе «Электронный блок цифрового сдвига частоты».

ОБЗОР ЦИФРОВОЙ ЭЛЕКТРОНИКИ

Стабильность и дополнительные функции, обеспечиваемые электронной цифровой обработкой, привели к тому, что большинство производителей электронных устройств с индуктивными детекторами стали производить цифровые устройства. Цифровые методы позволяют более надежные, точные и точные измерения, чем аналоговые методы.

При использовании блоков цифровой электроники необходимо учитывать взаимосвязь между повышенной чувствительностью и, как следствие, увеличением времени отклика.Большое время отклика может привести к значительной ошибке в измерениях скорости транспортного средства, когда в конфигурации устройства ограничения скорости используются два контура (т. Е. Разделенные известным и измеренным расстоянием). Время отклика зависит от производителя электронного блока.

Цифровые электронные блоки обнаруживают изменение частоты или периода формы сигнала. Сдвиг частоты или периода генератора вызван уменьшением индуктивности контура, возникающим, когда транспортное средство находится в зоне обнаружения контура.Частота генератора для коэффициента качества Q , равного 5 или выше, равна

(2-46)

.

, где

f D = частота генератора, Гц
L D = общая индуктивность (т. Е. Контур плюс вводный кабель) на входных клеммах электронного блока, henrys
C D = Общая емкость на входных клеммах электронного блока, Генри.

Нормализованное изменение частоты генератора из-за нормализованного изменения индуктивности на входных клеммах электронного блока, когда Q равно 5 или больше, определяется как

(2-47)

, где

f D = Изменение частоты генератора электронного блока, Гц
L D = Изменение индуктивности на входных клеммах электронного блока, henrys
S D = Чувствительность блока электроники к изменению индуктивности.

Обнаружение транспортного средства системой детектора индуктивной петли в первую очередь индуцируется приближением транспортного средства к скрытой индуктивной проволочной петле, что вызывает изменение индуктивности петли в цепи генератора индуктивности-емкости ( LC ), образованной петлей, вывод в кабеле, а входной конденсатор находится в блоке электроники. Некоторые производители обнаруживают автомобили по процентному изменению индуктивности контура L L / L L , в то время как другие просто используют изменение индуктивности контура L L .Ни одна из этих величин не может быть измерена непосредственно на входных клеммах электронного блока. Однако для определения чувствительности некоторые производители предоставляют частотомеры для измерения резонансной частоты и величины изменения частоты.

Опыт показывает, что процентное изменение индуктивности ( L L / L L ) от незанятого контура к занятому контуру чрезвычайно воспроизводимо для данного размера и геометрии контура, данного размера и геометрии транспортного средства, а также заданное расположение автомобиля относительно петли.Поскольку такие параметры, как фактическая индуктивность контура и рабочая частота контура, не влияют на L L / L L , но влияют на L L , следующие обсуждения и вычисления относятся к L L / L . L концепт. Термин «чувствительность электронного блока» в контексте этого обсуждения определяется как значение L L / L L , которое приводит в действие электронный блок с меньшими значениями, которые интерпретируются как обозначающие большую чувствительность.

Для коротких вводных кабелей с незначительной индуктивностью последовательного кабеля

(2-48)

, где

L L = Изменение индуктивности контура при обнаружении транспортного средства, Генри
L L = Индуктивность контура, Генри
S L = Чувствительность контура к транспортному средству в зоне обнаружения.

Период генератора T D определяется как инверсия частоты f D .Для Q из 5 или более T D задается как

(2-49)

Нормализованное изменение периода генератора, вызванное нормализованным изменением индуктивности на входном выводе электронного блока, когда Q равно 5 или больше, примерно равно

(2-50)

Отрицательный знак указывает, что изменение периода противоположно изменению индуктивности.

С появлением сложных цифровых микропроцессоров и доступностью информации о резонансной частоте контурной сети на входных клеммах электронного блока, можно относительно легко получить точные измерения следующих параметров:

  • Сдвиг частоты ( f D ).
  • Относительный сдвиг частоты ( f D / f D ).
  • Сдвиг периода ( T D ).
  • Относительный сдвиг периода ( T D / T D ).

Четыре типа блоков цифровой электроники, каждый из которых использует один из этих методов измерения, представлены ниже. Подробный анализ и блок-схемы каждого устройства представлены в Приложениях с F по I.

БЛОК ЦИФРОВОГО ПЕРЕМЕНА ЧАСТОТЫ

Агрегаты данного типа не производятся. Тем не менее, теория и рабочие характеристики, связанные с этой концепцией, включены, чтобы можно было лучше понять работу электронного блока цифрового пропорционального сдвига частоты.

Цифровой процессор в электронном блоке цифрового переключения передач будет сравнивать отсчеты, пропорциональные частоте генератора, когда транспортное средство присутствует, с контрольным отсчетом, проводимым периодически, когда транспортных средств нет.Счетчик ссылок хранится в памяти. Во время обнаружения транспортного средства, когда счетчик превышает контрольный счетчик на предварительно установленный счетчик порога чувствительности, инициируется вызов автомобиля.

Чувствительность электронного блока сдвига частоты рассчитывается по уравнению 2-47 как

(2-51)

Приложение F показывает, что

(2-52)

где

N футов = количество порогов фиксированной частоты, выбираемое переключателем чувствительности
N fc = количество циклов генератора, подсчитываемых переменной частотомер
K f = постоянная частотной чувствительности.

В методе цифрового частотного сдвига S D пропорционально квадратному корню из произведения L D C D . Поскольку большие значения S D представляют собой пониженную чувствительность, отсюда следует, что чувствительность уменьшается пропорционально квадратному корню из произведения L D C D с измерением f D . Следовательно, каждый раз, когда переключатель частоты изменяется в новое положение (например,g., чтобы избежать перекрестных помех), чувствительность изменится и, в случае критичности, потребует новой настройки переключателя чувствительности.

Увеличенная длина подводящего кабеля увеличивает индуктивность подводящего кабеля и, следовательно, вызывает некоторую потерю чувствительности. Увеличенный продукт L D C D вызовет еще большую потерю чувствительности. Следовательно, этот тип измерения не представляется практичным.

БЛОК ЦИФРОВОГО ПЕРЕКЛЮЧЕНИЯ ЧАСТОТЫ

Цифровой процессор в электронном блоке цифрового пропорционального сдвига частоты сравнивает отсчеты, пропорциональные частоте генератора, когда транспортное средство присутствует, с контрольным отсчетом, производимым периодически, когда транспортное средство отсутствует.Счетчик ссылок хранится в памяти. Когда счет во время обнаружения транспортного средства превышает счетчик ссылок на предварительно установленный счетчик порога чувствительности, инициируется вызов транспортного средства.

Электронный блок пропорционального сдвига частоты отличается от блока сдвига частоты тем, что счетчик частоты поддерживается приблизительно постоянным (как поясняется далее в Приложении G).

Чувствительность не зависит от индуктивности L D и емкости C D на клеммах электронного блока.Чувствительность рассчитывается как

(2-53)

, где

N футов = счетчик порога фиксированной частоты
N fc = счетчик, произведенный счетчиком фиксированной частоты.
Из Приложения G время отклика при измерении t f составляет
(2-54)
где м — умножитель частоты.

Преимущество независимости чувствительности от индуктивности и емкости на входных клеммах электронного блока показано на следующем примере.Этот пример также применим к электронному блоку цифрового пропорционального сдвига периода, обсуждаемому позже.

Предположим, четыре петли одинакового размера, скажем, 6 x 6 футов (1,8 x 1,8 м) с равным числом витков, скажем, тремя. Соедините петли, как показано на рисунке 2-8, а именно

.
  • Все серии (296 H).
  • Последовательно-параллельный (74 H).
  • Все параллельные (18,5 Н).

Для простоты длина подводящего кабеля не учитывается. Чувствительность электронного блока пропорциональной частоты или пропорционального сдвига периода идентична для трех вышеупомянутых конфигураций подключения контура.Соответственно, порог чувствительности, достаточный для обнаружения небольшого мотоцикла по одному из четырех контуров при последовательном подключении, не должен изменяться при повторном подключении последовательно-параллельно или полностью параллельно.

Хотя длина подводящего кабеля выше не рассматривалась, слишком длинный подводящий кабель будет вызывать различную величину изменения индуктивности из-за разделения индуктивности. Величина изменения зависит от длины подводящего кабеля и схемы подключения, используемой для нескольких петель. На рис. 2-26 представлена ​​оценка изменения индуктивности на входных клеммах электронного блока, возникающего при движении небольшого мотоцикла по одному из четырех контуров. (1)


1 фут = 0,3 м

Рисунок 2-26. Изменение индуктивности небольшого мотоцикла в зависимости от длины подводящего кабеля для последовательного, параллельного и последовательно-параллельного соединения четырех петель размером 6 x 6 футов.

БЛОК ЦИФРОВОГО ПЕРИОДА ПЕРЕКЛЮЧЕНИЯ

Концепция цифрового сдвига периода использует период частоты генератора контура, где период определяется как время, необходимое для одного полного цикла частоты генератора.Период рассчитывается путем деления единицы на частоту в Гц или эквивалентного деления единицы на частоту в циклах в секунду.

Цифровые электронные блоки

со сдвигом периода используют опорные часы, работающие на частотах мегагерц (МГц), то есть от 20 до 100 раз быстрее, чем частота колебаний индуктивного контура, для измерения периода колебаний контура, как показано на рисунке 2-27. Точность измерения повышается без потери большого количества времени между измерениями за счет определения времени для 32 циклов колебаний для чувствительности 1, 64 циклов для чувствительности 2 и т. Д.Период колебаний контура вычисляется с помощью количества n опорных тактовых циклов, содержащихся в этом периоде. Поскольку частота колебаний увеличивается, когда транспортное средство проезжает по петле, период колебаний уменьшается, поскольку он равен обратной частоте. Уменьшение периода колебаний приводит к меньшему количеству циклов опорных часов в течение периода колебаний. Когда количество эталонных циклов уменьшается больше, чем предварительно выбранный порог, инициируется вызов, чтобы указать присутствие транспортного средства.

Рисунок 2-27. Измерение периода колебаний индуктивного контура эталонными часами
(Источник: L.A. Klein, Sensor Technologies and Data Requirements for ITS (Artech House, Norwood, MA, 2001)).

Разумный выбор опорной тактовой частоты и порогового значения (4 счета ± 2 счета) делает конструкцию цифрового сдвига периода практичной на любой частоте, встречающейся на практике. Время обнаружения достаточно короткое, чтобы электроника могла последовательно сканировать или управлять четырьмя небольшими контурами, по одному, несколько раз в секунду.(Многоканальность обсуждается позже.)

Электронный блок смещения периода полностью самонастраивается при установке и, как и большинство других конструкций, может отслеживать дрейф окружающей среды. Подобно блоку цифрового сдвига частоты, большинство моделей прекращают отслеживание на некоторое время после того, как транспортное средство входит в петлю, чтобы гарантировать, что вызов, сделанный небольшим транспортным средством, удерживается достаточно долго, чтобы вызвать зеленый цвет к этому подходу.

Чувствительность электронного блока сдвига периода определяется из уравнения 2-50 как

(2-55)

Приложение H показывает, что

(2-56)

, где

N pt = счетчик порога фиксированной частоты, выбранный переключателем чувствительности
N шт. = счетчик, произведенный счетчиком переменной частоты
K p = константа частотной чувствительности.

Чувствительность обратно пропорциональна квадратному корню из продукта L C с измерением T. Когда принимает малые значения, чувствительность увеличивается. Следовательно, с увеличением длины подводящего кабеля часть потери чувствительности из-за добавленной индуктивности подводящего кабеля автоматически компенсируется увеличением продукта L C . К сожалению, компенсация не идеальна из-за отношения квадратного корня.

Время отклика блока электроники t p , как показано в Приложении H, составляет

(2-57)

В большинстве электронных блоков используется трансформатор для подключения клемм внешнего индуктивного контура к внутреннему генератору. Слабосвязанный трансформатор создает последовательную индуктивность рассеяния или затухания. Эта индуктивность снижает влияние вводного кабеля на чувствительность за счет общей чувствительности.

Если в блоке электроники используется индуктивность затухания L T , то

(2-58)

Например, пусть

N pt = 4
L T = 150 H
L D = 75 H
f D = 2.22 МГц
= 0,005%.

Затем

(2-59)

Процентная погрешность в скорости транспортного средства, полученная из датчика скорости с использованием двух индуктивных контуров на известном расстоянии друг от друга, определяется как

(2-60)

, где

S / S = Ошибка скорости автомобиля, проценты
T = Ошибка измеренного времени, секунды
X = Расстояние между передними кромками контура, единицы расстояния
S = Скорость автомобиля, единицы расстояния в секунду.

Максимальная измеренная временная ошибка в измерениях скорости автомобиля или присутствия людей связана с временем отклика электронного блока. Ошибка измерения скорости, вызванная конечным временем отклика, проиллюстрирована следующим примером.

Пусть

S / S = Неизвестная ошибка скорости автомобиля, в процентах
T = 2 x 216 миллисекунд (мс) = 432 мс (ошибка 0,432 секунды в измеренном времени)
X = 100 футов ( 30,5 м) расстояние между передними кромками контура
S = 60 миль в час (миль / ч) = 88 фут / с (96.6 километров в час (км / час) = 2,68 м / с) скорость автомобиля.

Затем

(2-61)

Этот пример показывает, что контурная система должна быть спроектирована так, чтобы ее чувствительность была как можно большей. Устанавливая электронный блок в менее чувствительный диапазон, время отклика уменьшается, обеспечивая более точное измерение скорости автомобиля.

Увеличение тактовой частоты электронного блока с 2,22 МГц до 22,2 МГц снижает процентную ошибку скорости с 38 процентов до 3.8 процентов. Многие из новых электронных блоков используют тактовые частоты от 20 до 25 МГц и, таким образом, способны снизить процентную ошибку скорости.

БЛОК ЦИФРОВОГО ПЕРИОДА ПЕРЕКЛЮЧЕНИЯ ПЕРИОДА

Цифровой процессор в этой конструкции сравнивает счетчики, пропорциональные периоду генератора, когда транспортное средство присутствует, с контрольным счетом, производимым периодически, когда транспортное средство отсутствует. Счетчик ссылок хранится в памяти. Когда счет во время обнаружения меньше, чем контрольный счет на предварительно установленный счетчик порога чувствительности, инициируется вызов транспортного средства.Электронный блок пропорционального сдвига периода отличается от электронного блока сдвига периода тем, что пороговое значение N pt не является фиксированным.

Пороговое значение (см. Приложение I) определяется по номеру

(2-62)

Поскольку чувствительность электронного блока не зависит от счетчика периода, чувствительность также не зависит от частоты. Время отклика такое же, как у электронного блока цифрового сдвига периода.

СРАВНЕНИЕ ЦИФРОВОЙ ЭЛЕКТРОНИКИ

В таблице 2-9 сравниваются различные концепции блоков цифровой электроники с индуктивным контуром с точки зрения чувствительности и времени отклика.

МНОГОКАНАЛЬНЫЕ ЦИФРОВЫЕ МОДЕЛИ

Пространство в шкафу контроллера можно сэкономить, если электронный блок может работать более чем с одним шлейфом. Большинство производителей блоков цифровой электроники предлагают изделия, которые могут работать с четырьмя и более контурами. Некоторые модели решают проблему перекрестных помех, предоставляя переключатель разделения частот, в то время как другие разделяют контуры с помощью процесса сканирования с временным разделением.

Блок сканирующей электроники одного производителя активирует и анализирует каждый из четырех или более каналов последовательно до 100 раз в секунду. Электронный блок цифрового сдвига периода по своей природе достаточно быстр, чтобы разрешить сканирование. Время для анализа канала зависит от желаемой чувствительности, поскольку высокая точность определения пороговых значений требует больше времени для подсчета опорных импульсов.

Например, если три контура по 150 Н были подключены и использовались с чувствительностью 1, 4 и 6, а четвертый канал был выключен, тогда для четырех каналов потребовалось бы 2.3, 9, 63 и 0,9 мс соответственно, всего 75 мс. Каждый канал будет включен и проанализирован 1000 ÷ 75 = 13 раз в секунду. Использование контуров с более высокими значениями индуктивности снижает скорость сканирования, как и выбор самых высоких настроек чувствительности на устройстве. Если задействовано более четырех одинаковых и близлежащих контуров, переключатель частоты или размер и / или количество витков в контурах могут быть изменены для обеспечения защиты от перекрестных помех. Уравнение 2-40 и таблицы 2-2, 2-3 и 2-4 могут использоваться для расчета частотного разноса 7 процентов или более.

Производители используют более высокие тактовые частоты, чтобы обеспечить более высокую скорость сканирования. Например, при более низких настройках чувствительности время выборки составляет 0,5 мс на канал. Таким образом, общее время сканирования всех четырех каналов составляет 2 мс. Когда канал выключен, время сканирования для этого канала равно нулю.

ДОБАВЛЕННЫЕ ФУНКЦИИ ДЛЯ ЦИФРОВОЙ ЭЛЕКТРОНИКИ

В 1980-х годах в блоки цифровой электроники индуктивного детектора было внесено несколько усовершенствований. Признавая высокую потребность в расходах на техническое обслуживание, некоторые производители добавили схемы, снижающие частоту вызовов неисправностей, для сброса блоков, подключенных к неисправным шлейфам.Эти функции, предназначенные для снижения затрат на обслуживание и максимизации производительности трафика, включают в себя тестирование разомкнутого контура, автоматический сброс и удаленный сброс, как описано ниже.

Тест с разомкнутым контуром

Эта функция позволяет электронному блоку продолжать работу в системе с периодически разомкнутым контуром. Кратковременное размыкание, вызванное обрывом провода, плохим соединением или ненадежным соединением, будет сохранено в памяти. Если соединение восстановится, устройство сразу же перенастроится и продолжит работать должным образом.Если открытие продолжается, это приведет к постоянному вызову.

При обращении в сервисный центр на перекрестке техник может заметить световой индикатор, который будет мигать отчетливо, если произошло обрыв. В случае блоков электроники других марок технический специалист нажимает кнопку «Тест открытого контура», чтобы определить, произошло ли размыкание с момента последнего обращения в сервисный центр. Память разомкнутого контура может запрашиваться повторно, поскольку ее можно сбросить только при отключении питания (например, при извлечении модуля из каркаса для карт и повторной установке) или путем нажатия общей кнопки сброса на электронном блоке.Это представляет собой сброс системы, который очищает память разомкнутого контура.

Автоматический сброс

Некоторые электронные блоки могут быть запрограммированы на генерацию внутреннего сброса, если вызов (т. Е. Выход электронного блока) превышает запрограммированное время. Сброс управляется завершением соответствующей фазы зеленого цвета. Одно агентство утверждает, что эта функция снизила затраты на техническое обслуживание электронного блока на 42 процента.

Удаленный сброс

Remote reset позволяет автоматически расследовать подозрительные вызовы, генерируемые компьютерными или программно-программными системами управления.Удаленный мастер, контролирующий срабатывание каждого датчика системы, может заподозрить неисправность электронного блока. Подтверждая команду сброса, устройство часто можно вернуть в нормальный режим работы. Сброс вызывает очистку вызовов присутствия, но не очищает память разомкнутого цикла и не предотвращает вызовы разомкнутого цикла.

Если после сброса не удается восстановить нормальную работу, неисправность можно распознать и распечатать для обслуживания. Разомкнутый контур, который постоянно вызывается, может быть отключен от сети, чтобы он не влиял ложным образом на рабочие параметры системы.

НЕЗАВИСИМЫЙ ВЫХОД ОТКАЗА КОНТУРА

В дополнение к обычному выходу блока электроники на некоторых моделях предусмотрен второй выход для состояния контура. Каждый раз, когда индуктивность контура изменяется ступенчато на ± 25 процентов или более, включается выход отказа контура. Если индуктивность возвращается к значению менее ± 25 процентов от задания, выход неисправности контура отключается. Это позволяет удаленно запрашивать статус петли.

Другие алгоритмы обнаружения неисправностей встроены в микропроцессоры современных контроллеров.Эти алгоритмы выводят цифровые коды, которые идентифицируют тип неисправности, в контроллер, который передает информацию в центральный пункт.

КЛАССИФИКАЦИЯ АВТОМОБИЛЯ

Более новые электронные блоки индуктивного детектора и конфигурации контуров позволяют классифицировать транспортные средства. Модуль электроники, показанный на рисунке 2-28, использует программное обеспечение искусственной нейронной сети для классификации потока трафика по 23 категориям, показанным на рисунке 2-29. Первые 13 — это стандартные классы FHWA, а остальные — автомобили с уникальными характеристиками. (4)


Рисунок 2-28. Индуктивный классификатор транспортных средств и датчик скорости модели S-1500 (фотография любезно предоставлена ​​Reno A&E, Рино, Невада).

Рисунок 2-29. Классы, доступные с помощью классифицирующего датчика с индуктивным контуром
(Источник: Руководство по установке и эксплуатации модели , модель IVS-2000, , ред. 1.53 (Intersection Development Corp, Дауни, Калифорния, сентябрь 1997 г.)).

Были разработаны специальные конфигурации индуктивных контуров для определения осей и их относительного положения в транспортном средстве.Такие системы используются на пунктах взимания платы за проезд для получения правильной оплаты в зависимости от класса транспортного средства. В приложении, показанном на рис. 2-30, массив контуров оси расположен между двумя основными контурами. Наличие оси определяется массивом петель оси. Взаимное положение осей в транспортном средстве определяется по сигнатурам основных контуров. Полученные данные включают длину транспортного средства, скорость, ускорение, тип транспортного средства, количество осей и расстояние между осями. Информация о профиле также может быть получена для уточнения и подтверждения классификации в неоднозначных случаях.Этот блок электроники, а также блок, показанный на рис. 2-28, можно использовать для идентификации транзитных автобусов и обеспечения приоритетной обработки сигналов светофора.

Рисунок 2-30. Расположение осей и классификация транспортных средств с использованием набора индуктивных контуров
(Рисунок любезно предоставлен компанией Peek Traffic, Inc. — Сарасота, Сарасота, Флорида).

Предыдущая | Содержание | Следующие

FHWA-HRT-06-108

% PDF-1.4 % 111 0 объект > эндобдж xref 111 303 0000000016 00000 н. 0000006430 00000 н. 0000006506 00000 н. 0000007843 00000 н. 0000008061 00000 н. 0000010773 00000 п. 0000010825 00000 п. 0000010877 00000 п. 0000010929 00000 п. 0000010981 00000 п. 0000011033 00000 п. 0000011085 00000 п. 0000011137 00000 п. 0000011189 00000 п. 0000011241 00000 п. 0000011293 00000 п. 0000011345 00000 п. 0000011397 00000 п. 0000011449 00000 п. 0000011501 00000 п. 0000011553 00000 п. 0000011605 00000 п. 0000011657 00000 п. 0000011709 00000 п. 0000011761 00000 п. 0000011813 00000 п. 0000011865 00000 п. 0000011917 00000 п. 0000011969 00000 п. 0000012021 00000 н. 0000012073 00000 п. 0000012125 00000 п. 0000012177 00000 п. 0000012229 00000 п. 0000012281 00000 п. 0000012333 00000 п. 0000012385 00000 п. 0000012437 00000 п. 0000012489 00000 п. 0000012541 00000 п. 0000012593 00000 п. 0000012645 00000 п. 0000012697 00000 п. 0000013264 00000 п. 0000013493 00000 п. 0000048193 00000 п. 0000048374 00000 п. 0000048426 00000 п. 0000048478 00000 п. 0000048530 00000 н. 0000048582 00000 п. 0000048634 00000 п. 0000048686 00000 п. 0000048738 00000 п. 0000048790 00000 н. 0000048842 00000 н. 0000048894 00000 п. 0000048946 00000 н. 0000048998 00000 н. 0000049050 00000 п. 0000049102 00000 п. 0000049154 00000 п. 0000049206 00000 п. 0000049258 00000 п. 0000049310 00000 п. 0000049362 00000 п. 0000049414 00000 п. 0000049466 00000 п. 0000049518 00000 п. 0000049570 00000 п. 0000049622 00000 н. 0000049674 00000 п. 0000049726 00000 п. 0000049778 00000 п. 0000049830 00000 п. 0000049882 00000 п. 0000049934 00000 н. 0000049986 00000 н. 0000050038 00000 п. 0000050090 00000 н. 0000050142 00000 п. 0000050194 00000 п. 0000050246 00000 п. 0000050298 00000 п. 0000050350 00000 п. 0000050402 00000 п. 0000050454 00000 п. 0000050506 00000 п. 0000050558 00000 п. 0000050610 00000 п. 0000050662 00000 п. 0000050714 00000 п. 0000050766 00000 п. 0000050818 00000 п. 0000050870 00000 п. 0000050922 00000 п. 0000050974 00000 п. 0000050996 00000 п. 0000051720 00000 п. 0000051742 00000 п. 0000067828 00000 п. 0000068245 00000 п. 0000068469 00000 п. 0000074725 00000 п. 0000075111 00000 п. 0000075317 00000 п. 0000075553 00000 п. 0000075966 00000 п. 00000

00000 п. 00000

    00000 п. 00000 00000 п. 0000118957 00000 н. 0000119482 00000 н. 0000119717 00000 н. 0000120294 00000 н. 0000120317 00000 н. 0000121493 00000 н. 0000121515 00000 н. 0000122577 00000 н. 0000122599 00000 н. 0000123641 00000 н. 0000123663 00000 н. 0000124694 00000 н. 0000124716 00000 н. 0000125034 00000 н. 0000125292 00000 н. 0000125615 00000 н. 0000125751 00000 н. 0000126077 00000 н. 0000126354 00000 н. 0000126486 00000 н. 0000126617 00000 н. 0000126858 00000 н. 0000127222 00000 н. 0000127464 00000 н. 0000127595 00000 н. 0000127863 00000 н. 0000127959 00000 н. 0000128208 00000 н. 0000128313 00000 н. 0000128422 00000 н. 0000128527 00000 н. 0000128606 00000 н. 0000128735 00000 н. 0000128863 00000 н. 0000128959 00000 н. 0000129281 00000 н. 0000129600 00000 н. 0000129731 00000 н. 0000129863 00000 н. 0000130176 00000 н. 0000130474 00000 н. 0000130689 00000 н. 0000131020 00000 н. 0000131146 00000 н. 0000131285 00000 н. 0000131617 00000 н. 0000131757 00000 н. 0000131892 00000 н. 0000132217 00000 н. 0000132353 00000 н. 0000132650 00000 н. 0000133005 00000 н. 0000133361 00000 н. 0000133711 00000 н. 0000133852 00000 н. 0000134195 00000 н. 0000134540 00000 н. 0000134676 00000 н. 0000135026 00000 н. 0000135407 00000 н. 0000135767 00000 н. 0000136112 00000 н. 0000136245 00000 н. 0000136587 00000 н. 0000136942 00000 н. 0000137088 00000 н. 0000137418 00000 н. 0000137777 00000 н. 0000137915 00000 н. 0000138054 00000 н. 0000138195 00000 н. 0000138542 00000 н. 0000138850 00000 н. 0000138985 00000 н. 0000139311 00000 п. 0000139450 00000 н. 0000139755 00000 н. 0000139887 00000 н. 0000140026 00000 н. 0000140376 00000 п. 0000140703 00000 н. 0000141041 00000 н. 0000141345 00000 н. 0000141685 00000 н. 0000141822 00000 н. 0000141956 00000 н. 0000142093 00000 н. 0000142458 00000 н. 0000142815 00000 н. 0000143133 00000 п. 0000143270 00000 н. 0000143630 00000 н. 0000143972 00000 н. 0000144270 00000 н. 0000144409 00000 н. 0000144758 00000 н. 0000145115 00000 н. 0000145256 00000 н. 0000145626 00000 н. 0000145767 00000 н. 0000146119 00000 н. 0000146870 00000 н. 0000147053 00000 п. 0000147244 00000 н. 0000147436 00000 н. 0000147625 00000 н. 0000147814 00000 н. 0000148005 00000 н. 0000148243 00000 н. 0000148484 00000 н. 0000148758 00000 н. 0000149056 00000 н. 0000149339 00000 н. 0000149597 00000 н. 0000149888 00000 н. 0000150150 00000 н. 0000150416 00000 н. 0000150658 00000 н. 0000150910 00000 н. 0000151167 00000 н. 0000151421 00000 н. 0000151702 00000 н. 0000151996 00000 н. 0000152294 00000 н. 0000152561 00000 н. 0000152824 00000 н. 0000153120 00000 н. 0000153416 00000 н. 0000153682 00000 н. 0000153974 00000 н. 0000154282 00000 н. 0000154594 00000 н. 0000154864 00000 н. 0000155144 00000 н. 0000155451 00000 н. 0000155750 00000 н. 0000156021 00000 н. 0000156324 00000 н. 0000156623 00000 н. 0000156924 00000 н. 0000157201 00000 н. 0000157504 00000 н. 0000157799 00000 н. 0000158072 00000 н. 0000158336 00000 н. 0000158635 00000 н. 0000158933 00000 н. 0000159190 00000 н. 0000159478 00000 н. 0000159780 00000 н. 0000160083 00000 н. 0000160356 00000 н. 0000160629 00000 н. 0000160932 00000 н. 0000161232 00000 н. 0000161502 00000 н. 0000161796 00000 н. 0000162094 00000 н. 0000162390 00000 н. 0000162670 00000 н. 0000162936 00000 н. 0000163226 00000 н. 0000163506 00000 н. 0000163768 00000 н. 0000164043 00000 н. 0000164335 00000 н. 0000164608 00000 н. 0000164877 00000 н. 0000165165 00000 н. 0000165440 00000 н. 0000165705 00000 н. 0000165968 00000 н. 0000166247 00000 н. 0000166531 00000 н. 0000166784 00000 н. 0000167061 00000 н. 0000167343 00000 п. 0000167620 00000 н. 0000167875 00000 н. 0000168131 00000 н. 0000168418 00000 н. 0000168715 00000 н. 0000168970 00000 н. 0000169253 00000 н. 0000169536 00000 н. 0000169812 00000 н. 0000170071 00000 н. 0000170331 00000 п. 0000170534 00000 н. 0000170776 00000 н. 0000006659 00000 н. 0000007820 00000 н. трейлер ] >> startxref 0 %% EOF 112 0 объект > эндобдж 113 0 объект `Dz — # _ m_} g) / U (8q Sv \ n ׯ lSA ҹk6) / П-28 / V 1 / Длина 40 >> эндобдж 412 0 объект > транслировать y \ 7; yκi | H $ ~ daT-j ڻ Ct: ̰P # 48dCh3R% \ XjfIT × *

    Как рассчитать график Боде? — MVOrganizing

    Как рассчитать график Боде?

    Ключевой принцип

    — Чтобы нарисовать диаграмму Боде, нужно выполнить четыре шага:

    1. Перепишите передаточную функцию в правильном виде.
    2. Разделите передаточную функцию на составные части.
    3. Нарисуйте диаграмму Боде для каждой части.
    4. Нарисуйте общую диаграмму Боде, сложив результаты из части 3.

    Что такое график Найквиста в системе управления?

    График Найквиста — это параметрический график частотной характеристики, используемый в автоматическом управлении и обработке сигналов. Чаще всего графики Найквиста используются для оценки стабильности системы с обратной связью. В декартовых координатах действительная часть передаточной функции откладывается по оси X.

    Как рассчитать заговор Найквиста?

    Следуйте этим правилам для построения графиков Найквиста.

    1. Найдите полюсы и нули передаточной функции разомкнутого контура G (s) H (s) в плоскости «s».
    2. Нарисуйте полярный график, изменяя ω от нуля до бесконечности.
    3. Нарисуйте зеркальное отображение полярного графика выше для значений ω в диапазоне от −∞ до нуля (0−, если какой-либо полюс или ноль присутствует при s = 0).

    В чем разница между сюжетом Боде и сюжетом Найквиста?

    Короче говоря, графики Боде (рифмуется с Roadie) показывают частотную характеристику системы.Есть два графика Боде: один для усиления (или величины), а другой — для фазы. Приведенные выше кривые амплитудной характеристики являются примерами графика усиления Боде. График Найквиста объединяет усиление и фазу в один график на комплексной плоскости.

    Что такое минимальная фазовая система в системе управления?

    Из Википедии, бесплатной энциклопедии. В теории управления и обработке сигналов линейная, инвариантная во времени система называется минимально-фазовой, если система и ее инверсия являются причинными и стабильными. Самая общая причинная передаточная функция LTI может быть однозначно разложена на ряд все-проходной и минимально-фазовой систем.

    Как узнать, является ли система минимальной фазой?

    Передаточная функция G (s) является минимальной фазой, если и G (s), и 1 / G (s) являются причинными и стабильными. Грубо говоря, это означает, что система не имеет нулей и полюсов в правой полуплоскости. Тем более, что у него нет задержки.

    Что вы подразумеваете под максимальной и минимальной фазовой системой?

    Причинно-устойчивая система LTI E с передаточной функцией H (z) со всеми нулями внутри единичной окружности называется минимальной фазой. Определение.Причинно-устойчивая система E с передаточной функцией H (z) со всеми нулями вне единичного круга называется максимальной фазой.

    Что такое все проходная система в системе управления?

    Многопроходная система — это система, амплитуда частотной характеристики которой постоянна для всех частот, т. Е. | H (ejω) | = c, ω ∈ [−π, π].

    Что делает универсальный фильтр?

    Временной сдвиг, выполняемый всепроходным фильтром, определяется его фазовой характеристикой. Allpass фильтры используются в схемотехнике для выполнения различных частотно-зависимых функций синхронизации или временного смещения.Аудио приложения включают банки фильтров, кроссоверы динамиков и ревербераторы.

    Что из перечисленного является универсальной системой?

    H (z) = z − 1 имеет полюс в начале координат и нуль в точке ∞, таким образом, это универсальная система. В общем, любая рациональная функция H (z) будет иметь одинаковое количество полюсов и нулей (некоторые из них находятся на ∞). Устойчивый и причинный ⇔ Все полюса H (z) находятся внутри единичной окружности.

    Что такое минимальный фазовый фильтр?

    Фильтр имеет минимальную фазу, если и числитель, и знаменатель его передаточной функции являются полиномами с минимальной фазой в: Случай исключается, потому что полином не может быть минимальной фазой в этом случае, потому что тогда он будет иметь ноль при, если только все его коэффициенты были нулевыми.2).

  • Рассчитайте IDFT (с коэффициентом масштабирования) результатов.
  • Поточечное умножение на гомоморфный фильтр lmin [n] = 2u [n] — d [n], где d [n] = дельта-функция Дирака.
  • Что такое фильтр нулевой фазы?

    Фильтр нулевой фазы — это частный случай линейно-фазового фильтра, в котором наклон фазы равен. Реальная импульсная характеристика фильтра нулевой фазы четная. 11.1 То есть удовлетворяет. Обратите внимание, что каждый четный сигнал является симметричным, но не каждый симметричный сигнал является четным.Чтобы быть четным, оно должно быть симметричным относительно времени 0.

    Что такое ноль фазы, отличной от минимальной?

    Не-минимум Фазовые системы — это причинные и стабильные системы, чьи инверсии причинны, но нестабильны [2]. Наличие задержки в нашей системе или нулевого уровня модели в правой половине s-плоскости (также известной как Right-Half Plane или RHP) может привести к системе с неминимальной фазой.

    Что такое лишняя фаза?

    Превышение фазы — это измерение в REW, которое вычисляет разность фаз между рассчитанной фазой системы с минимальной фазой на основе измеренной импульсной характеристики и фактической фазовой характеристики измеряемой системы.Избыточная фаза показывает, какие области являются «минимальной фазой» — плоские области указывают «минимальную фазу».

    Как модифицируются корневые локусы при добавлении нуля к разомкнутой системе?

    Корневой геометрический рисунок можно сдвинуть в плоскости «s» путем сложения полюсов разомкнутого контура и нулей разомкнутого контура. Если мы включим полюс в передаточную функцию разомкнутого контура, то некоторые ветви корневого годографа переместятся в правую половину плоскости «s». Из-за этого коэффициент демпфирования δ уменьшается.

    Почему используется корневой локус?

    В теории управления и теории устойчивости анализ корневого локуса — это графический метод изучения того, как корни системы меняются при изменении определенного параметра системы, обычно коэффициента усиления в системе обратной связи.

    Что из следующего является примером системы без обратной связи?

    Система управления без обратной связи: это системы, в которых управляющее воздействие не зависит от выхода. Пример: светофоры, тостер, разбрызгиватель, обычная стиральная машина, системы без датчика и т. Д.

    В чем важность метода корневого локуса?

    Метод корневого годографа Значение полюсов s-плоскости для динамического отклика системы было подчеркнуто в главе 6. Метод корневого годографа позволяет нам определять следы полюсов в s-плоскости как любой один коэффициент замкнутого контура.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *