Расчет дросселя для сварочного полуавтомата: Сварочный дроссель. Доводим до ума бюджетный полуавтомат Расчет дросселя для сварочника

Содержание

Расчет дросселя для сварочника. Доводим до ума бюджетный полуавтомат. Материалы для самостоятельной сборки дросселя

  • Варианты использования подручных материалов
  • Технология изготовления и установка

Большинство мастеров, занимающихся частным ремонтом техники, рано или поздно начинают задумываться над тем, как собрать сварочный аппарат своими руками. В наши дни для использования в условиях малых производств производители техники предлагают немалое количество таких аппаратов. Это может быть аппарат, работающий на переменном или постоянном токе, сварочный полуавтомат или устройство с использованием электродов. Однако любой хороший фирменный аппарат стоит больших денег, а его более дешевый аналог, как правило, ненадежен и быстро начинает отказывать в работе. Для сборки сварочного аппарата прежде всего нужно подобрать или изготовить необходимые детали, это касается и такого устройства, как дроссель.

При создании сварочного аппарата своими руками нужно обратить особое внимание на дроссели.

Преимущества, которые дает дроссель для сварочного аппарата

Сварочный дроссель является регулятором силы тока, применяемого для сварки. Непосредственной его задачей является компенсация недостающего сопротивления. Его можно подключить к вторичной обмотке трансформатора. Это позволяет сместить фазы между проходящим током и его напряжением, что облегчает зажигание электрической дуги в начале процесса. Она горит при этом намного более ровно, и это позволяет достичь достаточно высокого качества сварного шва. Без дросселя сила тока всегда будет максимальной, что может создать проблемы в процессе сварки.

Схема сварочного полуавтомата.

Дроссель может входить в конструкцию как сварочного аппарата, который использует в процессе сварки электроды, так и в состав полуавтомата. Сварочный полуавтомат, имеющий его, куда меньше разбрызгивает металл при работе, сам процесс сварки проходит намного мягче, чем при его отсутствии, а сварной шов при этом проваривается на большую глубину. Так что преимущества использования такой детали не вызывают сомнений, и ее можно установить не только на самодельный сварочный аппарат, но и на аналогичный аппарат заводского изготовления. Особенно это касается недорогих моделей, склонных к неполадкам. Это немало облегчит работу на нем и повысит качество сварки.

Вернуться к оглавлению

Чтобы изготовить сварочный дроссель самостоятельно, прежде всего необходимо найти подходящий материал. Для этого вполне подойдут многие электротехнические устройства, отработавшие свой срок службы и выброшенные за ненадобностью. Поскольку он представляет собой просто сердечник с намотанным на него проводом, выбор здесь довольно широк. Вполне может подойти для этой цели трансформатор, когда-то входивший в конструкцию такого аппарата, как ламповый телевизор. Всю обмотку с него придется снять, а освободившийся сердечник использовать для намотки нового провода, длину и сечение которого необходимо рассчитать заранее.

Для создания дросселя применяются уже использованные электротехнические устройства.

Можно также, если представилась возможность, использовать дроссели, которые стояли на перегоревших лампах уличных фонарей. Старые обмотки при этом придется снять, поскольку они пришли в негодность, но оставить картонные прокладки, которые создавали зазор между основной частью сердечника и замыкающей. При намотке нового провода их нужно будет поставить на прежнее место. В целом же надо отметить, что для намотки дросселя можно использовать любой магнитопроводящий сердечник, имеющий сечение от 10 до 15 см. При этом необходимо сделать между его частями немагнитный промежуток, для чего вставить изолирующую прокладку толщиной от 0,5 до 1 мм.

Вернуться к оглавлению

Алюминиевый или медный провод участвует в создании дросселя.

Для намотки дросселя используется алюминиевый или медный провод. В первом случае его сечение должно составить 35-40 мм, во втором достаточно будет и 25 мм. Можно в качестве замены провода использовать и шину, в частности медную, 4 на 6 мм, или более толстую алюминиевую. При этом провод наматывается в количестве от 25 до 40 витков, а шину надо будет намотать в 3 слоя. Если в качестве сердечника выступает вышеупомянутая деталь от лампы уличного фонаря, то намотка производится только на одну из боковых сторон по всей длине до полного заполнения окна. При этом направление намотки менять нельзя. Каждый слой нужно изолировать от предыдущего путем прокладки хлопчатобумажной ткани, стеклоткани или специального изолирующего картона, которые еще желательно пропитывать бакелитовым лаком.

Если для аппарата предусматривается не плавная, а ступенчатая регулировка, то в магнитопроводящем сердечнике дросселя никакого воздушного промежутка не делается, а при намотке через равное количество витков нужно делать отводы. Контакты на них нужно ставить при этом достаточно сильные, поскольку на них будет ложиться большая нагрузка. В целом нужно признать, что установление дросселя положительно влияет на работу любого аппарата для сварки, будь то сварочный полуавтомат или примитивная самоделка. Для аппарата, работающего на переменном токе, его оптимально будет использовать вместе с выпрямителем тока, что позволит тому применять практически всю номенклатуру электродов, да и работать он будет куда мягче.

Можно также ставить дроссель на аппарат вместе с понижающим трансформатором. Он подсоединяется на вторичную цепь сварочного трансформатора. Это повторяет конструкцию фирменного японского полуавтомата, стоящего больших денег. В этом случае дроссель нужно очень точно рассчитать по формуле, которая опубликована в специальной литературе, и преимущество это даст немалое. Такой аппарат будет иметь трансформатор с хорошим рассеиванием, а характеристики его будут четкими.

http://moiinstrumenty.ru/youtu.be/LvIyLUOzS64

Стоит сразу предупредить, что прежде, чем собрать сварочный аппарат, собранный своими силами, дроссель необходимо правильно настроить. Это можно сделать двумя основными способами: добавляя или отматывая количество витков провода, или меняя размеры воздушного промежутка в сердечнике.

После того как дроселя будут успешно настроены, самодельный аппарат вполне сможет работать не хуже, чем дорогой фирменный полуавтомат.

Он будет соответствовать именно тем требованиям, которые нужны владельцу.

moiinstrumenty.ru

Дроссель для сварочного аппарата своими руками

Дроссель — промышленное название такого электротехнического элемента, как катушка индуктивности. Это приспособление имеет широкий спектр применения, в частности, мощный дроссель можно использовать для улучшения рабочих характеристик полуавтомата или инвертора для сварки.

Принцип работы

Основное свойство катушки индуктивности, представляющей собой магнитопровод, намотанный с соблюдением определенных условий вокруг ферромагнитного сердечника, – это стабилизация силы тока по времени. Проще говоря, напряжение, приложенное к катушке, вызывает плавное нарастание силы тока на выходе. Изменение полярности приводит к такому же плавному уменьшению силы тока.

Главным фактором является то условие, что ток, проходящий по дросселю, не может резко возрастать или снижаться. Именно это и определяет ценность использования дросселя для сварки — компенсация сопротивления позволяет избежать резких скачков по амперажу. Это позволяет подстраховаться от случайного прожига свариваемых заготовок, уменьшить разбрызгивание плавящегося металла и точно подобрать параметры тока для сварки по заданной толщине металла. Шансы получить хороший шов с применением дросселя для сварки значительно выше.

Параметр, определяющий коэффициент изменения по току — индуктивность. Измеряется она в Гн (генри) — за 1 секунду при напряжении в 1 В через дроссель с индуктивностью в 1 Гн может пройти только 1 А.

Число витков на катушке напрямую влияет на величину индуктивности. Она прямо пропорциональна количеству витков, возведенному в квадрат. Но если надо изготовить сварочный дроссель своими руками, то высчитывать точное число витков не обязательно. Так как параметры сварочных аппаратов бытового назначения в большинстве своем стандартны и общеизвестны, сварщику для изготовления дросселя собственноручно достаточно будет воспользоваться приведенной ниже инструкцией.

Предназначение

В инверторе для сварки дроссель необходим, чтобы создать на электроде электрическую дугу. Поджиг происходит при достижении определенного уровня напряжения. Сварочный дроссель увеличивает сопротивление, что смещает фазы между током и напряжением и позволяет производить более плавный поджиг. Сам по себе этот факт часто позволяет избежать прожигания заготовки, особенно если сварке подвергаются детали из тонкого листового металла.

Плавное изменение силы тока позволяет не испортить заготовку резкой подачей завышенной мощности, оптимально установить температуру дуги и, соответственно, не допустить разбрызгивания металла при сохранении нужной глубины обработки.

Другое ценное его свойство — это частичная защита от нестабильного напряжения в сети.

Дроссель для сварочного инвертора существенно облегчает поджиг электрода, который должен загораться при более высоком напряжении, чем выдает инвертор.

Примером может служить электрод MP-3, вольтаж для возгорания которого должен составлять 70 В. Выходной дроссель для сварки может существенно облегчить работу с этим электродом для инвертора, который выдает всего 48 В в режиме холостого хода. Это происходит благодаря явлению самоиндукции. Устройство индуцирует ЭДС (электродвижущую силу), которая вызывает пробой воздуха и вспыхивание сварочной дуги, стоит только поднести присадку на расстояние в несколько миллиметров от поверхности металла.

Дроссель для сварки подключается ко вторичной обмотке трансформатора в аппарате. Его можно использовать в аппаратах любого типа — как в самодельных, так и заводского изготовления, работающих по любому принципу — инверторных, с понижающим трансформатором и тому подобное.

Материалы для изготовления

Дроссель для дооборудования полуавтомата либо инвертора можно собрать своими руками, используя конструктивные элементы из старой техники — ламповых телевизоров, уличных фонарей старой конструкции и других устройств, в которых имеется трансформатор.

Конструктивно он представляет собой сердечник из материала, проводящего магнитное поле, но не проводящего электрический ток либо надежно заизолированного, и трех слоев обмоток, разделенных диэлектриком. В качестве основы для сердечника подойдет либо специальный материал — феррит, обладающий данными свойствами, либо ярмо (подкова) от старого трансформатора. Намотка устройства ля сварки делается алюминиевым или медным проводом сечением 20-40 мм. Если используется алюминий, то сечение провода должно быть не менее 36 мм, медный провод может быть тоньше. Подойдет плоская медная шина сечением 8 мм.

Габариты сердечника должны позволять намотку примерно 30 витков шины данного сечения, с учетом прокладок-диэлектриков. Рекомендуется сердечник от повышающего трансформатора советского телевизора ТСА 270-1.

Последовательность действий

Когда необходимые инструменты и материалы подготовлены, можно приступать к изготовлению дросселя для сварки. Алгоритм действий такой:

  1. разобрать трансформатор, очистить катушки от следов старых обмоток;
  2. изготовить из стеклоткани, картона, пропитанного бакелитовым лаком, либо иных подходящих диэлектриков прокладки, которые в дальнейшем будут играть роль индуктивного (воздушного) зазора. Их можно просто приклеить к соответствующим поверхностям катушек. Толщина прокладки должна составлять 0,8-1,0 мм;
  3. произвести намотку на каждую катушку толстого медного или алюминиевого провода. Ориентироваться стоит на круглый провод из алюминия с сечением 36 мм либо медный с аналогичным омическим сопротивлением. На каждую «подковку» наносится 3 слоя по 24 витка в каждом;
  4. между слоями проложить диэлектрический материал — стеклоткань, пропитанный бакелитовым лаком картон или другой диэлектрик. Прокладки должны быть надежными, так как дроссель такой конструкции склонен к самопробою между намотками. Если сопротивление между намотками будет ниже, чем сопротивление воздуха между электродом и присадкой, то пробой произойдет именно между намотками, и устройство ля сварки будет необратимо повреждено.

Намотку надо производить равномерно, без перехлестов, строго в одну и ту же сторону, чтобы «мостик» между катушками был с одной стороны будущего дросселя, а контакты входа и выхода с другой. В случае ошибки перемычку можно установить и косо. Важно, чтобы ее установка превращала катушки с разным направлением обмотки в катушки с одинаковым направлением по факту.

Включение и проверка

Дроссель для сварки подключается к системе между диодным мостом и массой — контактом, который идет на соединение со свариваемым материалом. Выход диодного моста соединяется со входом дросселя, к выходу собранной катушки индуктивности — соответственно контакт массы.

Всю конструкцию для сварки в сборе необходимо протестировать на кусочке металла того же химического состава и толщины, с каким в дальнейшем планируется вести большую часть сварочных работ. Показателями качества являются:

  • легкий электроподжиг;
  • стабильность дуги;
  • относительно слабый треск;
  • плавное горение без сильных брызг расплава.

Учтите, что введение этого элемента в конструкцию сварочного аппарата приводит не только к стабилизации работы, но и к некоторому падению силы тока. Если инвертор или полуавтомат начал варить хуже, то значит — упала сила тока. Дроссель нужно отсоединить и снять несколько витков с каждой катушки. Точное количество витков в каждом конкретном случае подбирается эмпирическим путем.

svaring.com

Использование сварочного дросселя

Сварочный аппарат есть, практически у каждого мало-мальски уважающего себя хозяина. Как правило, в последнее время приобретаются аппараты относительно невысокого качества, которые, после небольшой и недорогой доработки, совершенно не уступают лучшим фирменным образцам. Одной из таких доработок является установка дросселя для сварки.

Что это дает? Во-первых стабилизируется сварочный ток. При использовании сварочного аппарата переменного тока поджиг электрода возможен только при достижении уровня напряжения, необходимого для поджига и соответствующей синусоиды электрического тока. Включение в конструкцию дросселя позволяет сместить фазы между током и напряжением, что приводит к более легкому началу сварочных работ и более ровному горению и, соответственно, более качественному сварному шву.

Сварочные дроссели применяются как в сварочных аппаратах, использующих электроды, так и в полуавтоматах. В случае применения в полуавтомате, значительно уменьшается разбрызгивание металла, а работа становится более мягкой, причем шов проваривается более глубоко.

Для изготовления сварочного дросселя своими руками умельцы используют трансформаторы от старых, желательно ламповых, телевизоров. Для начала снимается полностью вся намотка, а на «железо» наматывается провод, исходя из предварительных расчетов.

Стоит отметить, что весьма неплохое качество при изготовлении сварочного дросселя своими руками можно получить, если использовать в качестве заготовки дроссели от сгоревших ламп уличного освещения. Как правило, обмотка содержит от 25 до 40 витков провода, сечением 35-40 мм2, если используется алюминиевый провод и от 25 мм2, в том случае, если удалось раздобыть медный. Неплохо подходит для намотки дросселя шинка — как алюминиевая, так и медная.

Итак, можно ставить дроссель на, практически, любой сварочный аппарат, но специалисты все-таки советуют использовать его совместно с выпрямительным блоком — это относится только к сварочным аппаратам, работающим с переменным током. В этом случае достигается двойная цель. Получается более мягкая работа и возможность варить любыми электродами.

Существуют конструкции, в которых дроссель работает в паре с понижающим трансформатором. В этом случае расчет дросселя должен быть более точным и производится по формулам, которые можно найти в специализированной литературе.

При такой реализации конструкции предпочтительное место установки дросселя — вторичная цепь сварочного трансформатора. Стоит заметить, что именно таким образом располагается дроссель в некоторых дорогих сварочных полуавтоматах импортного производства. Преимущества здесь налицо. При таком расположении трансформатор обладает нормальным рассеиванием и весьма жесткой внешней характеристикой.

Регулировка работы дросселя — весьма ответственное дело. Несмотря на все расчеты, добиться устойчивой и безупречной работы с первого раза, практически невозможно. Обычно количество витков подбирают опытным путем отматывая или, наоборот, добавляя витки. Еще один способ регулировки заключается в изменении воздушного зазора в магнитопроводе — в этом случае регулировка более плавная.

nanolife.info

Изготовление сварочного дросселя Подскажите пожалуйста, с чего можно намотать сварочный дроссель?) сколько витков и как? для домашней сварки на 200 А

Вот в этой схеме есть дроссель.. такой бы мне)

Прикрепленные изображения
Изготовление сварочного дросселя Его параметры жеско не закрепляются. Сердечника см на 50-70 достаточно, а провода витков 40-60 примерно, только чтоб ток выдерживали. Можно использовать обмотки дополнительного транса. Если будет очень мало витков, эффекта не будет, если много — дугу гасить замучитесь. Зы.Правда у меня кондёр не используется — и так всё работает.

Изготовление сварочного дросселя

Изготовление сварочного дросселя

Берём железо от двигателя 2-4 квт, и разрезаем болгаркой камнем 2- 2,5 мм поперёк одну сторону, это будет магнитный зазор в который на эпоксидку вклеить текстолит,все пазы под предыдущую обмотку надо аырубить железом, если есть металические скобы то удалить, обматать изоляцией и двадцать метров провода 30 кв мм вам в помощ.

Изготовление сварочного дросселя

FOREvERz (Apr 7 2010, 17:33) писал:

а с чего использовать сердечник?)

Чтоб индуктивность высокая была! Изготовление сварочного дросселя

По отзывам двигатель не катит тоесть работать конечно будет но лучше ТОР. А так поищи разборный транс киловата на 2 и намотать медную шину. У нас на сварочном в аргоне дроссель был равен по габарита ссиловому трансу.

Изготовление сварочного дросселя а можно без дросселя использовать сглаживающий фильтр, состоящий из конденсатора и сопротивления? если да, то какие должны быть параметры конденсатора и сопротивления? Вместо сопротивления можно ли использовать что-то типа реостата? если да, то какой реостат?

Изготовление сварочного дросселя

Может начнем всетаки с лошади……Для какой сварки требуется дроссель? Я делал для сварки в аргоне как потом оказалось вполне можно обойтись и без него..

Изготовление сварочного дросселя для обычной дуговой сварки, поддерживает электроды от 2 до 4 мм. Есть выпрямитель, нету фильтра, нету дросселя. а Хотим варить нержавейкой и т.д. Изготовление сварочного дросселя А в своё время вот такую улитку ставил…

http://www.uralelekt…0bf/rtt_038.jpg

Изготовление сварочного дросселя

Есть выпрямитель, нету фильтра, нету дросселя. а Хотим варить нержавейкой и т.д.

Так всё-таки? Изготовление сварочного дросселя

а можно без дросселя использовать сглаживающий фильтр, состоящий из конденсатора и сопротивления?

Этот фильтр сглаживает не то что нужно, от того при сварке бесполезен. Изготовление сварочного дросселя Дроссель тут не сглаживает! Он поддерживает непрерывность тока, если грубо. Сие есть разные вещи. Вернее те же но, по другому работает.

Изготовление сварочного дросселя 🙁

Прикрепленные изображения
Изготовление сварочного дросселя резистором будет сварочная дуга…, а конденсаторов чем больше тем лучше, напряжение конденсаторов не менее 100в, а ёмкость сколько позволит корпус сварочника и Ваш кошелёк… При обвязке конденсаторов учитывайте второй закон Киргофа, либо обвязывайте все толстым проводом… Примерная суммарная ёмкость 200 000 — 500 000 Мкф., хотя резистор воткнуть тоже можно, чтоб конденсаторы заряженные не оставались после отключения, 1кОм.

Изготовление сварочного дросселя

А по этой схеме можно будет собрать выпрямитель для сварки? электроды 3 мм примерно. если да, то какие параметры конденсатора и резистора, никто не в курсе?

Собрать можно, но толку, нержавеющим электродом без дросселя варить не получится. Изготовление сварочного дросселя

cimon (Apr 12 2010, 22:10) писал:

Собрать можно, но толку, нержавеющим электродом без дросселя варить не получится.

Я конечно не пробовал, но с осциллятором наверно будет гореть как милый. Четверка УОНИ на переменном токе горела как сумасшедшая, и вроде как 80А стояло. Изготовление сварочного дросселя

Я конечно не пробовал, но с осциллятором наверно будет гореть как милый. Четверка УОНИ на переменном токе горела как сумасшедшая, и вроде как 80А стояло.

Вот чего не пробовал, так это варить нержавеющим электродом с осциллятором, переменкой, и даже не слышал, возможно и будет, почему нет. Только мучает один вопрос, почему все варят постоянкой, а не переменкой с осциллятором? Осциллятор сделать значительно легче и дешевле, чем постоянку. Напрашиваются два варианта ответа: 1. либо варить с осциллятором, ММА сваркой, шипко опасно, не будешь ведь бегать каждый раз отключать осцилятор, при смене электрода. 2. либо качество шва страдает. Изготовление сварочного дросселя

А по этой схеме можно будет собрать выпрямитель для сварки? электроды 3 мм примерно. если да, то какие параметры конденсатора и резистора, никто не в курсе?

Примерная суммарная ёмкость 200 000 — 500 000 Мкф

Только не удивляйтесь если после первого чирка электродом по детали в ней образуется кратер, а сам электрод ровным слоем брызг осядет на маске… Изготовление сварочного дросселя Был задан конкретный вопрос, как самому изготовить сварочный дроссель. Думаю, вопрос представляет интерес для многих, в тч и для меня. По форуму читал, что дроссель можно изготовить из старого ЛАТРа, мотора от стиральной машины, старого транса, а может и еще из чего подручного… Хотелось бы не разводить флейм и не уходить от темы куда-то в бездны Галактики, а все-таки узнать, как и кто делал самодельный дроссель (с эскизами чертежей, фото, а не просто-сделай пропил и вклей текстолит…где пропил, куда клеить?). Также поточнее привести моточные данные — чем и как мотать, как изолировать. Все-таки 30 квадратов, это не 0.75мм. Как внешне оформить дроссель? Чтобы можно было тем, кто захочет собрать дроссель своими силами, выбрать подходящий материал и повторить. Если жалко делиться своими нау-хау, то лучше ничего вообще не писать. А желающим обсудить чего в голову клюнет, но не по данной теме, просьба перейти в другие соответствующие подразделы.

Те мастера, которые увлекаются сварочными работами, не раз задумывались над тем, как соорудить установку для проведения сопряжения элементов и деталей. Описанный ниже самодельный сварочный полуавтомат будет иметь следующие технические характеристики: напряжение электросети, равное 220 В; уровень потребляемой мощности, не превышающий 3 кВа; работает в повторно-кратковременном режиме; корректируемое
рабочего напряжения является ступенчатым и варьируется в пределах 19-26 В. Сварочная проволока подается со скоростью в пределах от 0 до 7 м/мин, тогда как ее диаметр равен 0,8 мм. Уровень сварочного тока: ПВ 40% — 160 А, ПВ 100% — 80 А.
Практика показывает, что подобный полуавтомат сварочный способен демонстрировать отличную работоспособность и длительный срок жизнедеятельности.

Подготовка элементов перед началом работ

В роли сварочной проволоки следует применять обычную, ту, что имеет диаметр в пределах 0,8 мм, она реализуется в катушке по 5 кг. Такой сварочный полуавтомат невозможно будет изготовить без наличия сварочной горелки на 180 А, которая имеет евроразъем. Приобрести ее можно в отделе, специализирующемся на продаже сварочного оборудования. На рис. 1 можно увидеть схему сварочного полуавтомата. Для установки понадобится выключатель питания и защиты, для него можно использовать однофазный автомат АЕ (16А). При работе аппарата возникнет необходимость перехода между режимами, для этого можно применить ПКУ-3-12-2037.

От наличия резисторов можно отказаться. Их цель состоит в скорой разрядке конденсаторов дросселя.
Что касается конденсатора С7, то в тандеме с дросселем он способен стабилизировать горение и поддерживать дугу. В качестве наименьшей его емкости может выступить 20000 мкф, тогда как наиболее подходящий уровень равен 30000 мкф. Если попытаться внедрить другие разновидности конденсаторов, которые обладают не столь внушительными размерами и более значительной емкостью, то они станут проявлять себя не в достаточной степени надежно, так как будут довольно скоро выгорать. Для изготовления сварочного полуавтомата предпочтительнее использовать конденсаторы старого типа, расположить их нужно в количестве 3-х штук в параллель.
Силовые тиристоры на 200 А имеют достаточный запас, допустимо установить и на 160 А, однако функционировать они станут на пределе, в последнем случае возникнет необходимость использовать довольно мощные вентиляторы при работе. Используемые В200 следует устанавливать на поверхности негабаритной алюминиевой основы.

Намотка трансформатора

Изготавливая сварочный полуавтомат своими руками, процесс нужно начинать с намотки трансформатора ОСМ-1 (1кВт).

Его первоначально предстоит полностью разобрать, железо следует на время отложить. Предстоит изготовить каркас катушки, применив для этого текстолит толщиной равной 2 мм, такая необходимость возникает по той причине, что свой каркас не имеет достаточного запаса прочности. Габариты щеки должны быть равны 147х106 мм. В щеках нужно подготовить окно, габариты которого равны 87х51,5 мм. На этом можно считать, что каркас полностью готов.
Теперь нужно отыскать обмоточный провод Ø1,8 мм, предпочтительнее использовать тот, что имеет усиленную стекловолоконную защиту.

Изготавливая сварочный полуавтомат своими руками, нужно создать на первичной обмотке следующее количество витков: 164 + 15 + 15 + 15 + 15. В промежутке между слоями нужно проложить изоляцию, применив тонкую стеклоткань. Провод предстоит наматывать с максимальной плотностью, в противном случае он может не влезть.

Для подготовки вторичной обмотки нужно использовать алюминиевую шину, которая имеет стеклянную изоляцию с габаритами, равными 2,8х4,75 мм, приобрести ее можно у обмотчиков. Понадобится около 8 м, однако приобрести материал нужно с некоторым запасом. Намотку следует начинать с образования 19 витков, после предстоит обеспечить петлю, направленную под болт М6, затем необходимо сделать еще 19 оборотов. Концы должны иметь длину по 30 см, что понадобится для проведения дальнейших работ.
При изготовлении полуавтомата сварочного следует учесть, что если для работы с габаритными элементами вам может быть недостаточно тока при подобном напряжении, то на этапе монтажа или уже в процессе дальнейшего использования аппарата можно переделать вторичную обмотку, дополнив ее еще тремя витками на плечо, в конечном результате это позволит получить 22+22.

Сварочный полуавтомат должен обладать обмоткой, которая укладывается впритык, по этой причине следует мотать очень аккуратно, это позволит расположить все верно.
При использовании для образования первичной обмотки эмальпровода затем в обязательном порядке нужно произвести обработку посредством лака, минимальное время удержания катушки в нем ограничено 6 часами.

Теперь можно смонтировать трансформатор и подсоединить его к электросети, что позволит определить ток холостого хода, который должен быть равен примерно 0,5 А, уровень напряжения на вторичной обмотке должен быть эквивалентен 19-26 В. При совпадении условий можно на время отложить трансформатор и приступить к выполнению следующего этапа.

Делая сварочный полуавтомат своими руками, взамен ОСМ-1 для силового трансформатора допустимо использовать 4 единицы ТС-270, однако они обладают несколько иными габаритами, при необходимости для этого случая можно самостоятельно рассчитать данные для осуществления намотки.

Намотка дросселя

Для проведения намотки дросселя следует использовать трансформатор на 400 Вт эмальпровод Ø1,5 мм или больше. Намотку нужно произвести в 2 слоя, укладывая изоляцию между слоями, при этом нужно соблюдать требование, которое заключается в необходимости как можно более плотной укладки провода. Теперь предстоит использовать алюминиевую шину с размерами в 2,8х4,75 мм, при намотке нужно осуществить 24 витка, остаток шины должен быть равен 30 см. Сердечник следует монтировать с обеспечением зазора в 1 мм, параллельно с этим предстоит уложить заготовки текстолита.
При самостоятельном изготовлении сварочного полуавтомата дроссель допустимо намотать на железе, позаимствованном от лампового старого телевизора.
Для питания схемы можно использовать готовый трансформатор. Его выдача должна составить 24 В при 6 А.

Сборка корпуса

На следующем этапе можно приступать к сборке корпуса установки. Для этого можно использовать железо, толщина которого равна 1,5 мм, углы предстоит соединить методом сварки. В качестве основания механизма рекомендуется использовать нержавеющую сталь.

В роли мотора может выступить та модель, которая применяется в стеклоочистителе машины марки ВАЗ-2101. Необходимо избавиться от концевика, который работает на возврат в крайнее положение.
В подкатушечнике для получения тормозного усилия используется пружина, можно для этого применить совершенно любую, которая есть в наличии. Тормозной эффект будет более внушительным, если на это станет влиять воздействие сжатой пружины, для этого предстоит закрутить гайку.

Для того чтобы сделать полуавтомат своими руками, нужно подготовить следующие материалы и инструменты:

  • эмальпровод;
  • проволоку;
  • однофазный автомат;
  • трансформатор;
  • сварочную горелку;
  • железо;
  • текстолит.

Изготовление такой установки окажется посильной задачей для мастера, который заблаговременно ознакомился с представленными выше рекомендациями. Этот автомат окажется намного более выгодным в плане стоимости по сравнению с той моделью, что была произведена в условиях завода, а ее качество не окажется ниже.

Практически каждый мастер хотя бы раз задумывался над тем, как сделать дроссель для сварочного аппарата своими руками. Сегодня продается достаточно большое количество различных устройств, которые можно использовать в условиях малого производства. Это может быть приспособление, которое работает на временном или непрерывном токе, полуавтомат для сварки или изделие с использованием электродов. Однако качественное устройство стоит очень дорого, а бюджетные аналоги быстро приходят в негодность.

Схема сварочного аппарата переменного тока с отдельным дросселем: 1 – первичная обмотка, 2 – сердечник, 3 – вторичная обмотка, 4 – обмотка дросселя, 5 – неподвижная часть сердечника дросселя, 6 – подвижная часть сердечника дросселя, 7 – винтовая пара, Др – регулятор тока.

Для сборки самодельного приспособления для сварки понадобится подобрать и соорудить все нужные элементы, в том числе и дроссель.

Преимущества использования дросселя

Однофазная мостовая схема выпрямления (а). Графики напряжений и тока в трансформаторе (б), напряжения и тока в нагрузке (в).

Дроссель для сварки — это устройство для регулировки силы тока, используемого для выполнения сварочных работ. Элемент нужен для компенсации сопротивления, которого может не хватать. Его можно подсоединить к повторной обмотке трансформаторной конструкции. Это дает возможность смещать фазы между проходящим током и его напряжением, в результате чего облегчается зажигание электродуги в начале работы. Она будет гореть ровно, в связи с чем есть возможность получить сварочный шов хорошего качества. Если не использовать дроссель, то могут появиться проблемы во время сварки.

Дроссель может состоять в конструкции полуавтомата или устройства для сварки, которое предусматривает использование электродов. Полуавтомат с дросселем практически не разбрызгивает металл во время работы. Процесс сварки будет проходить гораздо мягче, чем при отсутствии дросселя. Шов сварки сможет провариваться на существенную глубину. Достоинства подобного элемента не вызывают сомнений. Его можно смонтировать не только на самодельное устройство, но и на приспособление заводского производства. Особенно это касается бюджетных вариантов, склонных к неисправностям. Это сможет существенно облегчить работу на подобных конструкциях и повысить качество сварочного шва.

Какие подручные средства можно использовать

Чтобы соорудить дроссель для сварки своими руками, первым делом нужно подготовить материал. В данном случае можно применить практически любые неиспользуемые электротехнические приспособления. Конструкция являет собой обыкновенный сердечник с намотанным проводом. Для данной цели можно использовать трансформаторную конструкцию, которая ранее была смонтирована в старом телевизоре. Всю обмотку понадобится демонтировать. Сердечник можно будет использовать для намотки провода, длина которого рассчитывается заранее.

Если есть возможность, можно применить детали, которые были установлены в лампочках фонарей. Старые обмотки следует демонтировать, так как они часто неисправны. В процессе намотки провода их понадобится установить на прежнее место.

Для намотки дросселя можно применить любой сердечник сечением приблизительно 12-15 см. Между его элементами понадобится сделать немагнитную часть. Для этого следует закрепить прокладку для изоляции толщиной примерно 0,6-1 мм.

Плавной регулировки тока можно достичь благодаря монтажу подвижных обмоток трансформаторной конструкции. Путем смены расстояния между обмотками можно изменять величину магнитного потока и сопротивление в повторной обмотке.

Для сварки на непрерывном токе к обмотке на выходе трансформаторной конструкции нужно подключить элемент для преобразования временного тока в непрерывный. Такое приспособление называется выпрямителем. Ток может быть не непрерывным, а пульсирующим. Уменьшить пульсацию возможно исключительно путем увеличения емкости конденсаторного устройства.

Чтобы была возможность выполнять регулировку тока дуги с помощью дросселя, между выходом трансформаторной конструкции и точкой нужно включить 3 выпрямителя.

Элементы, которые будут нужны для сооружения дросселя:

  • электротехническая конструкция;
  • провода;
  • трансформатор;
  • лампа фонаря;
  • картон для изоляции.

Как изготовить дроссель для сварочного устройства

Перед выполнением намотки провода понадобится изолировать ярмо.Для намотки дросселя можно использовать провод из алюминия или меди. В первом случае его сечение должно быть примерно 36-40 мм, во втором рекомендуемое сечение составляет 25 мм. Вместо провода можно использовать шину из меди толщиной 4-5 мм. Если планируется использовать алюминиевую деталь, то она должна иметь большую толщину. Провод нужно наматывать в количестве 30-35 витков, шина наматывается в 3 слоя. Если в качестве сердечника будет использоваться элемент от лампочки фонаря, то намотку следует выполнять только на одну боковую часть по всей длине до тех пор, пока окно не заполнится. Направление намотки изменять не допускается. Каждый слой должен быть изолирован от предыдущего. Элементы рекомендуется пропитать бакелитовым лаком.

В процессе намотки через одинаковое количество витков следует делать отводы. Контакты должны быть сильными, так как на них будет ложиться существенная нагрузка.

Установка дросселя оказывает положительное влияние на работу полуавтоматического устройства или обыкновенной самоделки. Для устройства, которое работает на временном токе, рекомендуется использовать приспособление вместе с конструкцией для выпрямления тока. В таком случае будет можно применять практически все возможные электроды.

Дроссель для сварки своими руками можно устанавливать и на устройство с понижающей трансформаторной конструкцией. Элемент нужно подключать на вторичную цепочку трансформатора для сварки. Это даст возможность соорудить устройство фирменного сварочного полуавтомата, который стоит очень дорого. Дроссель следует точно рассчитать по формуле, которая есть в документации, поставляемой вместе с приспособлением. Данное изделие будет иметь трансформаторную конструкцию с хорошим рассеиванием и отличными характеристиками.

Дроссель для инверторного или любого другого аппарата важно правильно настроить.

Ступенчатая регулировка тока дуги сварки может быть достигнута путем включения на выходе омического сопротивления, являющего собой нихромовую спираль, через одинаковое количество витков которой следует сделать отводы с контактами, выдерживающими любые нагрузки. Недостаток данного способа заключается в том, что в этом случае будет сильно нагреваться нить.

Когда настройка дросселя для сварки будет выполнена успешно, можно приступать к выполнению сварочных работ.

Существующие методы регулировки тока дуги сварки

Выполнять регулировку тока дуги можно с помощью изменения воздушной щели. Трансформаторное устройство может быть в таких режимах:

  1. Холостой ход. Временное напряжение подается на вход трансформаторного устройства. В повторной обмотке инициируется ЭДС, однако ток в выходной цепочке отсутствует.
  2. Нагрузочный режим. В процессе зажигания дуги она замкнет выходную цепочку, которая состоит из повторной обмотки трансформаторного устройства и обмотки дросселя. Будет протекать ток, значение которого может быть определено сопротивлением данных обмоток. Степень воздействия будет зависеть исключительно от размера щели в стержне.
  3. Режим короткого замыкания. Электрод касается соединяемых деталей. В сердечнике трансформаторной конструкции должен быть создан временный магнитный поток. В повторной обмотке следует инициировать ЭДС. Ток в цепочке будет определяться значением сопротивления дросселя и обмотки трансформаторного устройства.

Сопротивление будет возрастать в случае увеличения щели. Это должно привести к уменьшению магнитного потока. В конечном итоге ток дуги возрастет. Подобный метод позволяет выполнять плавную регулировку тока, поэтому его рекомендуется использовать.

Недостаток подвижной системы заключается в том, что в случае вибрации металла катушка станет ненадежной во время прохождения временного тока. В этом случае регулировку можно сделать ступенчатой. Для этого дроссель следует изготавливать так, чтобы в проводе не было щели.

Соорудить сварочный дроссель своими руками несложно. Чтобы все сделать правильно, понадобится следовать технологии, подготовить все нужные элементы и соблюдать последовательность действий.

На рынке очень много недорогих сварочных полуавтоматов, которые никогда не будут работать нормально, потому что сделаны изначально неправильно. Попробуем это исправить на уже пришедшим в негодность сварочном аппарате.

Попал мне в руки китайский сварочный полуавтомат Vita (в дальнейшем буду называть просто ПА), в котором сгорел силовой трансформатор, просто знакомые попросили отремонтировать.

Жаловались на то, что когда ещё работал, то им невозможно было что-то сварить, сильные брызги, треск и т.д. Вот решил я его довести до толку, и заодно поделится опытом, может, кому то пригодится. При первом осмотре я понял, что трансформатор для ПА был намотан не правильно, поскольку первичная и вторичная обмотки были намотаны отдельно, на фото видно, что осталась только вторичка, а первичка была намотана рядом, (так мне трансформатор принесли).

А это значит, что такой трансформатор имеет круто падающую ВАХ (вольт амперная характеристика) и подходит для дуговой сварки, но не для ПА. Для Па нужен трансформатор с жёсткой ВАХ, а для этого вторичная обмотка трансформатора должна быть намотана поверх первичной обмотки.

Для того чтобы начать перемотку трансформатора нужно аккуратно отмотать вторичную обмотку, не повредив изоляцию, и спилить перегородку разделяющую две обмотки.

Для первичной обмотки я буду использовать медный эмалевый провод толщиной 2 мм, для полной перемотки нам хватит 3,1 кг медного провода, или 115 метров. Мотаем виток к витку от одной стороны к другой и обратно. Нам нужно намотать 234 витка — это 7 слоёв, после намотки делаем отвод.

Первичную обмотку и отводы изолируем матерчатой изолентой. Дальше мотаем вторичную обмотку тем проводом, что мы отмотали раньше. Наматываем плотно 36 витков, шинкой 20 мм2, приблизительно 17 метров.

Трансформатор готов, теперь займемся дросселем. Дроссель не менее важная часть в ПА без которой он не будет нормально работать. Сделан он неправильно, потому что не имеет зазора между двумя частями магнитопровода. Дроссель я намотаю на железе от трансформатора ТС-270. Трансформатор разбираем и берём с него только магнитопровод. Провод того же сечения, что и на вторичной обмотке трансформатора мотаем на один крен магнитопровода, или на два последовательно соединив концы, как вам нравится. Самое главное в дросселе это немагнитный зазор, который должен быть между двух половинок магнитопровода, достигается это вставками из текстолита. Толщина прокладки колеблется от 1,5 до 2 мм, и определяется экспериментальным путём для каждого случая отдельно.

Сварочный аппарат есть, практически у каждого мало-мальски уважающего себя хозяина. Как правило, в последнее время приобретаются аппараты относительно невысокого качества, которые, после небольшой и недорогой доработки, совершенно не уступают лучшим фирменным образцам. Одной из таких доработок является установка дросселя для сварки .

Что это дает? Во-первых стабилизируется сварочный ток. При использовании сварочного аппарата переменного тока поджиг электрода возможен только при достижении уровня напряжения, необходимого для поджига и соответствующей синусоиды электрического тока. Включение в конструкцию дросселя позволяет сместить фазы между током и напряжением, что приводит к более легкому началу сварочных работ и более ровному горению и, соответственно, более качественному сварному шву.

При современном строительстве одну из ключевых ролей играет пол, особенно если он должен обладать не только внешними показателями, но и сохранять тепло. Паркетный пол считается оптимальным решением. Паркет Киев есть разных видов, цветовых решений и в его выборе есть определенные нюансы.

Сварочные дроссели применяются как в сварочных аппаратах, использующих электроды, так и в полуавтоматах. В случае применения в полуавтомате, значительно уменьшается разбрызгивание металла, а работа становится более мягкой, причем шов проваривается более глубоко.

Для изготовления сварочного дросселя своими руками умельцы используют трансформаторы от старых, желательно ламповых, телевизоров. Для начала снимается полностью вся намотка, а на «железо» наматывается провод, исходя из предварительных расчетов.

Стоит отметить, что весьма неплохое качество при изготовлении сварочного дросселя своими руками можно получить, если использовать в качестве заготовки дроссели от сгоревших ламп уличного освещения. Как правило, обмотка содержит от 25 до 40 витков провода, сечением 35-40 мм2, если используется алюминиевый провод и от 25 мм2, в том случае, если удалось раздобыть медный. Неплохо подходит для намотки дросселя шинка — как алюминиевая, так и медная.

Итак, можно ставить дроссель на, практически, любой сварочный аппарат, но специалисты все-таки советуют использовать его совместно с выпрямительным блоком — это относится только к сварочным аппаратам, работающим с переменным током. В этом случае достигается двойная цель. Получается более мягкая работа и возможность варить любыми электродами.

Существуют конструкции, в которых дроссель работает в паре с понижающим трансформатором. В этом случае расчет дросселя должен быть более точным и производится по формулам, которые можно найти в специализированной литературе.

При такой реализации конструкции предпочтительное место установки дросселя — вторичная цепь сварочного трансформатора. Стоит заметить, что именно таким образом располагается дроссель в некоторых дорогих сварочных полуавтоматах импортного производства. Преимущества здесь налицо. При таком расположении трансформатор обладает нормальным рассеиванием и весьма жесткой внешней характеристикой.

Регулировка работы дросселя — весьма ответственное дело. Несмотря на все расчеты, добиться устойчивой и безупречной работы с первого раза, практически невозможно. Обычно количество витков подбирают опытным путем отматывая или, наоборот, добавляя витки. Еще один способ регулировки заключается в изменении воздушного зазора в магнитопроводе — в этом случае регулировка более плавная.

Дроссель для сварки своими руками


Варианты изготовления дросселя для сварочного аппарата своими руками

Оглавление: [скрыть]

  • Преимущества, которые дает дроссель для сварочного аппарата
  • Варианты использования подручных материалов
  • Технология изготовления и установка

Большинство мастеров, занимающихся частным ремонтом техники, рано или поздно начинают задумываться над тем, как собрать сварочный аппарат своими руками. В наши дни для использования в условиях малых производств производители техники предлагают немалое количество таких аппаратов. Это может быть аппарат, работающий на переменном или постоянном токе, сварочный полуавтомат или устройство с использованием электродов. Однако любой хороший фирменный аппарат стоит больших денег, а его более дешевый аналог, как правило, ненадежен и быстро начинает отказывать в работе. Для сборки сварочного аппарата прежде всего нужно подобрать или изготовить необходимые детали, это касается и такого устройства, как дроссель.

При создании сварочного аппарата своими руками нужно обратить особое внимание на дроссели.

Преимущества, которые дает дроссель для сварочного аппарата

Сварочный дроссель является регулятором силы тока, применяемого для сварки. Непосредственной его задачей является компенсация недостающего сопротивления. Его можно подключить к вторичной обмотке трансформатора. Это позволяет сместить фазы между проходящим током и его напряжением, что облегчает зажигание электрической дуги в начале процесса. Она горит при этом намного более ровно, и это позволяет достичь достаточно высокого качества сварного шва. Без дросселя сила тока всегда будет максимальной, что может создать проблемы в процессе сварки.

Схема сварочного полуавтомата.

Дроссель может входить в конструкцию как сварочного аппарата, который использует в процессе сварки электроды, так и в состав полуавтомата. Сварочный полуавтомат, имеющий его, куда меньше разбрызгивает металл при работе, сам процесс сварки проходит намного мягче, чем при его отсутствии, а сварной шов при этом проваривается на большую глубину. Так что преимущества использования такой детали не вызывают сомнений, и ее можно установить не только на самодельный сварочный аппарат, но и на аналогичный аппарат заводского изготовления. Особенно это касается недорогих моделей, склонных к неполадкам. Это немало облегчит работу на нем и повысит качество сварки.

Вернуться к оглавлению

Чтобы изготовить сварочный дроссель самостоятельно, прежде всего необходимо найти подходящий материал. Для этого вполне подойдут многие электротехнические устройства, отработавшие свой срок службы и выброшенные за ненадобностью. Поскольку он представляет собой просто сердечник с намотанным на него проводом, выбор здесь довольно широк. Вполне может подойти для этой цели трансформатор, когда-то входивший в конструкцию такого аппарата, как ламповый телевизор. Всю обмотку с него придется снять, а освободившийся сердечник использовать для намотки нового провода, длину и сечение которого необходимо рассчитать заранее.

Для создания дросселя применяются уже использованные электротехнические устройства.

Можно также, если представилась возможность, использовать дроссели, которые стояли на перегоревших лампах уличных фонарей. Старые обмотки при этом придется снять, поскольку они пришли в негодность, но оставить картонные прокладки, которые создавали зазор между основной частью сердечника и замыкающей. При намотке нового провода их нужно будет поставить на прежнее место. В целом же надо отметить, что для намотки дросселя можно использовать любой магнитопроводящий сердечник, имеющий сечение от 10 до 15 см. При этом необходимо сделать между его частями немагнитный промежуток, для чего вставить изолирующую прокладку толщиной от 0,5 до 1 мм.

Вернуться к оглавлению

Алюминиевый или медный провод участвует в создании дросселя.

Для намотки дросселя используется алюминиевый или медный провод. В первом случае его сечение должно составить 35-40 мм, во втором достаточно будет и 25 мм. Можно в качестве замены провода использовать и шину, в частности медную, 4 на 6 мм, или более толстую алюминиевую. При этом провод наматывается в количестве от 25 до 40 витков, а шину надо будет намотать в 3 слоя. Если в качестве сердечника выступает вышеупомянутая деталь от лампы уличного фонаря, то намотка производится только на одну из боковых сторон по всей длине до полного заполнения окна. При этом направление намотки менять нельзя. Каждый слой нужно изолировать от предыдущего путем прокладки хлопчатобумажной ткани, стеклоткани или специального изолирующего картона, которые еще желательно пропитывать бакелитовым лаком.

Если для аппарата предусматривается не плавная, а ступенчатая регулировка, то в магнитопроводящем сердечнике дросселя никакого воздушного промежутка не делается, а при намотке через равное количество витков нужно делать отводы. Контакты на них нужно ставить при этом достаточно сильные, поскольку на них будет ложиться большая нагрузка. В целом нужно признать, что установление дросселя положительно влияет на работу любого аппарата для сварки, будь то сварочный полуавтомат или примитивная самоделка. Для аппарата, работающего на переменном токе, его оптимально будет использовать вместе с выпрямителем тока, что позволит тому применять практически всю номенклатуру электродов, да и работать он будет куда мягче.

Можно также ставить дроссель на аппарат вместе с понижающим трансформатором. Он подсоединяется на вторичную цепь сварочного трансформатора. Это повторяет конструкцию фирменного японского полуавтомата, стоящего больших денег. В этом случае дроссель нужно очень точно рассчитать по формуле, которая опубликована в специальной литературе, и преимущество это даст немалое. Такой аппарат будет иметь трансформатор с хорошим рассеиванием, а характеристики его будут четкими.

https://moiinstrumenty.ru/youtu.be/LvIyLUOzS64

Стоит сразу предупредить, что прежде, чем собрать сварочный аппарат, собранный своими силами, дроссель необходимо правильно настроить. Это можно сделать двумя основными способами: добавляя или отматывая количество витков провода, или меняя размеры воздушного промежутка в сердечнике.

После того как дроселя будут успешно настроены, самодельный аппарат вполне сможет работать не хуже, чем дорогой фирменный полуавтомат.

Он будет соответствовать именно тем требованиям, которые нужны владельцу.

moiinstrumenty.ru

Дроссель для сварочного аппарата своими руками

Дроссель — промышленное название такого электротехнического элемента, как катушка индуктивности. Это приспособление имеет широкий спектр применения, в частности, мощный дроссель можно использовать для улучшения рабочих характеристик полуавтомата или инвертора для сварки.

Принцип работы

Основное свойство катушки индуктивности, представляющей собой магнитопровод, намотанный с соблюдением определенных условий вокруг ферромагнитного сердечника, – это стабилизация силы тока по времени. Проще говоря, напряжение, приложенное к катушке, вызывает плавное нарастание силы тока на выходе. Изменение полярности приводит к такому же плавному уменьшению силы тока.

Главным фактором является то условие, что ток, проходящий по дросселю, не может резко возрастать или снижаться. Именно это и определяет ценность использования дросселя для сварки — компенсация сопротивления позволяет избежать резких скачков по амперажу. Это позволяет подстраховаться от случайного прожига свариваемых заготовок, уменьшить разбрызгивание плавящегося металла и точно подобрать параметры тока для сварки по заданной толщине металла. Шансы получить хороший шов с применением дросселя для сварки значительно выше.

Параметр, определяющий коэффициент изменения по току — индуктивность. Измеряется она в Гн (генри) — за 1 секунду при напряжении в 1 В через дроссель с индуктивностью в 1 Гн может пройти только 1 А.

Число витков на катушке напрямую влияет на величину индуктивности. Она прямо пропорциональна количеству витков, возведенному в квадрат. Но если надо изготовить сварочный дроссель своими руками, то высчитывать точное число витков не обязательно. Так как параметры сварочных аппаратов бытового назначения в большинстве своем стандартны и общеизвестны, сварщику для изготовления дросселя собственноручно достаточно будет воспользоваться приведенной ниже инструкцией.

Предназначение

В инверторе для сварки дроссель необходим, чтобы создать на электроде электрическую дугу. Поджиг происходит при достижении определенного уровня напряжения. Сварочный дроссель увеличивает сопротивление, что смещает фазы между током и напряжением и позволяет производить более плавный поджиг. Сам по себе этот факт часто позволяет избежать прожигания заготовки, особенно если сварке подвергаются детали из тонкого листового металла.

Плавное изменение силы тока позволяет не испортить заготовку резкой подачей завышенной мощности, оптимально установить температуру дуги и, соответственно, не допустить разбрызгивания металла при сохранении нужной глубины обработки.

Другое ценное его свойство — это частичная защита от нестабильного напряжения в сети.

Дроссель для сварочного инвертора существенно облегчает поджиг электрода, который должен загораться при более высоком напряжении, чем выдает инвертор.

Примером может служить электрод MP-3, вольтаж для возгорания которого должен составлять 70 В. Выходной дроссель для сварки может существенно облегчить работу с этим электродом для инвертора, который выдает всего 48 В в режиме холостого хода. Это происходит благодаря явлению самоиндукции. Устройство индуцирует ЭДС (электродвижущую силу), которая вызывает пробой воздуха и вспыхивание сварочной дуги, стоит только поднести присадку на расстояние в несколько миллиметров от поверхности металла.

Дроссель для сварки подключается ко вторичной обмотке трансформатора в аппарате. Его можно использовать в аппаратах любого типа — как в самодельных, так и заводского изготовления, работающих по любому принципу — инверторных, с понижающим трансформатором и тому подобное.

Материалы для изготовления

Дроссель для дооборудования полуавтомата либо инвертора можно собрать своими руками, используя конструктивные элементы из старой техники — ламповых телевизоров, уличных фонарей старой конструкции и других устройств, в которых имеется трансформатор.

Конструктивно он представляет собой сердечник из материала, проводящего магнитное поле, но не проводящего электрический ток либо надежно заизолированного, и трех слоев обмоток, разделенных диэлектриком. В качестве основы для сердечника подойдет либо специальный материал — феррит, обладающий данными свойствами, либо ярмо (подкова) от старого трансформатора. Намотка устройства ля сварки делается алюминиевым или медным проводом сечением 20-40 мм. Если используется алюминий, то сечение провода должно быть не менее 36 мм, медный провод может быть тоньше. Подойдет плоская медная шина сечением 8 мм.

Габариты сердечника должны позволять намотку примерно 30 витков шины данного сечения, с учетом прокладок-диэлектриков. Рекомендуется сердечник от повышающего трансформатора советского телевизора ТСА 270-1.

Последовательность действий

Когда необходимые инструменты и материалы подготовлены, можно приступать к изготовлению дросселя для сварки. Алгоритм действий такой:

  1. разобрать трансформатор, очистить катушки от следов старых обмоток;
  2. изготовить из стеклоткани, картона, пропитанного бакелитовым лаком, либо иных подходящих диэлектриков прокладки, которые в дальнейшем будут играть роль индуктивного (воздушного) зазора. Их можно просто приклеить к соответствующим поверхностям катушек. Толщина прокладки должна составлять 0,8-1,0 мм;
  3. произвести намотку на каждую катушку толстого медного или алюминиевого провода. Ориентироваться стоит на круглый провод из алюминия с сечением 36 мм либо медный с аналогичным омическим сопротивлением. На каждую «подковку» наносится 3 слоя по 24 витка в каждом;
  4. между слоями проложить диэлектрический материал — стеклоткань, пропитанный бакелитовым лаком картон или другой диэлектрик. Прокладки должны быть надежными, так как дроссель такой конструкции склонен к самопробою между намотками. Если сопротивление между намотками будет ниже, чем сопротивление воздуха между электродом и присадкой, то пробой произойдет именно между намотками, и устройство ля сварки будет необратимо повреждено.

Намотку надо производить равномерно, без перехлестов, строго в одну и ту же сторону, чтобы «мостик» между катушками был с одной стороны будущего дросселя, а контакты входа и выхода с другой. В случае ошибки перемычку можно установить и косо. Важно, чтобы ее установка превращала катушки с разным направлением обмотки в катушки с одинаковым направлением по факту.

Включение и проверка

Дроссель для сварки подключается к системе между диодным мостом и массой — контактом, который идет на соединение со свариваемым материалом. Выход диодного моста соединяется со входом дросселя, к выходу собранной катушки индуктивности — соответственно контакт массы.

Всю конструкцию для сварки в сборе необходимо протестировать на кусочке металла того же химического состава и толщины, с каким в дальнейшем планируется вести большую часть сварочных работ. Показателями качества являются:

  • легкий электроподжиг;
  • стабильность дуги;
  • относительно слабый треск;
  • плавное горение без сильных брызг расплава.

Учтите, что введение этого элемента в конструкцию сварочного аппарата приводит не только к стабилизации работы, но и к некоторому падению силы тока. Если инвертор или полуавтомат начал варить хуже, то значит — упала сила тока. Дроссель нужно отсоединить и снять несколько витков с каждой катушки. Точное количество витков в каждом конкретном случае подбирается эмпирическим путем.

Похожие статьи

svaring.com

Использование сварочного дросселя

Сварочный аппарат есть, практически у каждого мало-мальски уважающего себя хозяина. Как правило, в последнее время приобретаются аппараты относительно невысокого качества, которые, после небольшой и недорогой доработки, совершенно не уступают лучшим фирменным образцам. Одной из таких доработок является установка дросселя для сварки.

Что это дает? Во-первых стабилизируется сварочный ток. При использовании сварочного аппарата переменного тока поджиг электрода возможен только при достижении уровня напряжения, необходимого для поджига и соответствующей синусоиды электрического тока. Включение в конструкцию дросселя позволяет сместить фазы между током и напряжением, что приводит к более легкому началу сварочных работ и более ровному горению и, соответственно, более качественному сварному шву.

Сварочные дроссели применяются как в сварочных аппаратах, использующих электроды, так и в полуавтоматах. В случае применения в полуавтомате, значительно уменьшается разбрызгивание металла, а работа становится более мягкой, причем шов проваривается более глубоко.

Для изготовления сварочного дросселя своими руками умельцы используют трансформаторы от старых, желательно ламповых, телевизоров. Для начала снимается полностью вся намотка, а на «железо» наматывается провод, исходя из предварительных расчетов.

Стоит отметить, что весьма неплохое качество при изготовлении сварочного дросселя своими руками можно получить, если использовать в качестве заготовки дроссели от сгоревших ламп уличного освещения. Как правило, обмотка содержит от 25 до 40 витков провода, сечением 35-40 мм2, если используется алюминиевый провод и от 25 мм2, в том случае, если удалось раздобыть медный. Неплохо подходит для намотки дросселя шинка — как алюминиевая, так и медная.

Итак, можно ставить дроссель на, практически, любой сварочный аппарат, но специалисты все-таки советуют использовать его совместно с выпрямительным блоком — это относится только к сварочным аппаратам, работающим с переменным током. В этом случае достигается двойная цель. Получается более мягкая работа и возможность варить любыми электродами.

Существуют конструкции, в которых дроссель работает в паре с понижающим трансформатором. В этом случае расчет дросселя должен быть более точным и производится по формулам, которые можно найти в специализированной литературе.

При такой реализации конструкции предпочтительное место установки дросселя — вторичная цепь сварочного трансформатора. Стоит заметить, что именно таким образом располагается дроссель в некоторых дорогих сварочных полуавтоматах импортного производства. Преимущества здесь налицо. При таком расположении трансформатор обладает нормальным рассеиванием и весьма жесткой внешней характеристикой.

Регулировка работы дросселя — весьма ответственное дело. Несмотря на все расчеты, добиться устойчивой и безупречной работы с первого раза, практически невозможно. Обычно количество витков подбирают опытным путем отматывая или, наоборот, добавляя витки. Еще один способ регулировки заключается в изменении воздушного зазора в магнитопроводе — в этом случае регулировка более плавная.

nanolife.info

Изготовление сварочного дросселя

Изготовление сварочного дросселя Подскажите пожалуйста, с чего можно намотать сварочный дроссель?) сколько витков и как? для домашней сварки на 200 А

Вот в этой схеме есть дроссель.. такой бы мне)

Прикрепленные изображения
Изготовление сварочного дросселя Его параметры жеско не закрепляются. Сердечника см на 50-70 достаточно, а провода витков 40-60 примерно, только чтоб ток выдерживали. Можно использовать обмотки дополнительного транса. Если будет очень мало витков, эффекта не будет, если много — дугу гасить замучитесь. Зы.Правда у меня кондёр не используется — и так всё работает.

Сообщение отредактировал Acetylenum: 07 April 2010 — 17:26

Изготовление сварочного дросселя

а с чего использовать сердечник?)

Изготовление сварочного дросселя

Берём железо от двигателя 2-4 квт , и разрезаем болгаркой камнем 2- 2,5 мм поперёк одну сторону, это будет магнитный зазор в который на эпоксидку вклеить текстолит,все пазы под предыдущую обмотку надо аырубить железом, если есть металические скобы то удалить, обматать изоляцией и двадцать метров провода 30 кв мм вам в помощ.

Изготовление сварочного дросселя

FOREvERz (Apr 7 2010, 17:33) писал:

а с чего использовать сердечник?)

чтоб индуктивность высокая была! Изготовление сварочного дросселя

По отзывам двигатель не катит тоесть работать конечно будет но лучше ТОР. А так поищи разборный транс киловата на 2 и намотать медную шину. У нас на сварочном в аргоне дроссель был равен по габарита ссиловому трансу.

Изготовление сварочного дросселя а можно без дросселя использовать сглаживающий фильтр, состоящий из конденсатора и сопротивления? если да, то какие должны быть параметры конденсатора и сопротивления? Вместо сопротивления можно ли использовать что-то типа реостата? если да, то какой реостат?

Сообщение отредактировал FOREvERz: 08 April 2010 — 15:00

Изготовление сварочного дросселя

Может начнем всетаки с лошади……Для какой сварки требуется дроссель? Я делал для сварки в аргоне как потом оказалось вполне можно обойтись и без него..

Изготовление сварочного дросселя для обычной дуговой сварки, поддерживает электроды от 2 до 4 мм. Есть выпрямитель, нету фильтра, нету дросселя. а Хотим варить нержавейкой и т.д. Изготовление сварочного дросселя А в своё время вот такую улитку ставил…

https://www.uralelekt…0bf/rtt_038.jpg

Изготовление сварочного дросселя

Цитата

Есть выпрямитель, нету фильтра, нету дросселя. а Хотим варить нержавейкой и т.д.

так всё-таки? Изготовление сварочного дросселя

FOREvERz (8th April 2010 — 14:59) писал:

а можно без дросселя использовать сглаживающий фильтр, состоящий из конденсатора и сопротивления?

Этот фильтр сглаживает не то что нужно, от того при сварке бесполезен. Изготовление сварочного дросселя Дроссель тут не сглаживает! Он поддерживает непрерывность тока, если грубо. Сие есть разные вещи. Вернее те же но, по другому работает.

Сообщение отредактировал TomaTLAB: 10 April 2010 — 19:10

Изготовление сварочного дросселя А по этой схеме можно будет собрать выпрямитель для сварки? электроды 3 мм примерно. если да, то какие параметры конденсатора и резистора, никто не в курсе? 🙁
Прикрепленные изображения
Изготовление сварочного дросселя резистором будет сварочная дуга…, а конденсаторов чем больше тем лучше, напряжение конденсаторов не менее 100в, а ёмкость сколько позволит корпус сварочника и Ваш кошелёк… При обвязке конденсаторов учитывайте второй закон Киргофа, либо обвязывайте все толстым проводом… Примерная суммарная ёмкость 200 000 — 500 000 Мкф., хотя резистор воткнуть тоже можно, чтоб конденсаторы заряженные не оставались после отключения, 1кОм.

Сообщение отредактировал n306mv55: 11 April 2010 — 19:19

Изготовление сварочного дросселя

FOREvERz (11th April 2010 — 02:47) писал:

А по этой схеме можно будет собрать выпрямитель для сварки? электроды 3 мм примерно. если да, то какие параметры конденсатора и резистора, никто не в курсе?

Собрать можно, но толку, нержавеющим электродом без дросселя варить не получится. Изготовление сварочного дросселя

cimon (Apr 12 2010, 22:10) писал:

Собрать можно, но толку, нержавеющим электродом без дросселя варить не получится.

Я конечно не пробовал, но с осциллятором наверно будет гореть как милый. Четверка УОНИ на переменном токе горела как сумасшедшая, и вроде как 80А стояло. Изготовление сварочного дросселя

Lamo (13th April 2010 — 22:36) писал:

Я конечно не пробовал, но с осциллятором наверно будет гореть как милый. Четверка УОНИ на переменном токе горела как сумасшедшая, и вроде как 80А стояло.

Вот чего не пробовал, так это варить нержавеющим электродом с осциллятором, переменкой, и даже не слышал, возможно и будет, почему нет. Только мучает один вопрос, почему все варят постоянкой, а не переменкой с осциллятором? Осциллятор сделать значительно легче и дешевле, чем постоянку. Напрашиваются два варианта ответа: 1. либо варить с осциллятором, ММА сваркой, шипко опасно, не будешь ведь бегать каждый раз отключать осцилятор, при смене электрода. 2. либо качество шва страдает. Изготовление сварочного дросселя

FOREvERz (10th April 2010 — 23:47) писал:

А по этой схеме можно будет собрать выпрямитель для сварки? электроды 3 мм примерно. если да, то какие параметры конденсатора и резистора, никто не в курсе?

n306mv55 (11th April 2010 — 19:11) писал:

Примерная суммарная ёмкость 200 000 — 500 000 Мкф

Только не удивляйтесь если после первого чирка электродом по детали в ней образуется кратер, а сам электрод ровным слоем брызг осядет на маске… Изготовление сварочного дросселя Был задан конкретный вопрос, как самому изготовить сварочный дроссель. Думаю, вопрос представляет интерес для многих, в тч и для меня. По форуму читал, что дроссель можно изготовить из старого ЛАТРа, мотора от стиральной машины, старого транса, а может и еще из чего подручного… Хотелось бы не разводить флейм и не уходить от темы куда-то в бездны Галактики, а все-таки узнать, как и кто делал самодельный дроссель (с эскизами чертежей, фото, а не просто-сделай пропил и вклей текстолит…где пропил, куда клеить?). Также поточнее привести моточные данные — чем и как мотать, как изолировать. Все-таки 30 квадратов, это не 0.75мм. Как внешне оформить дроссель? Чтобы можно было тем, кто захочет собрать дроссель своими силами, выбрать подходящий материал и повторить. Если жалко делиться своими нау-хау, то лучше ничего вообще не писать. А желающим обсудить чего в голову клюнет, но не по данной теме, просьба перейти в другие соответствующие подразделы.

www.chipmaker.ru

Особенности применения порошковых Е-образных сердечников Magnetics в сварочном оборудовании

Автор: Васильева К.Л.

В статье анализируются перспективы применения сердечников из порошковых материалов конфигурации Е с распределенным зазором в источниках питания сварочных инверторов и др. устройств. Рассмотрена методика расчета типовых дросселей, изготовленных из сердечников на основе пермаллоев Magnetics.

Как известно, практически ни один силовой модуль не обходится без моточных изделий. В поисках решений для повышения

надежности, уменьшения габаритных размеров и улучшения характеристик разрабатываемого оборудования независимо от его назначения ведущие инженеры и конструкторы компаний-лидеров силовой и радиоэлектроники всегда уделяли особое внимание выбору материалов.

Так, например, при проектировании дросселей и трансформаторов современных устройств подавления помех, сварочных инверторов, а также радиоэлектронных устройств, работающих в диапазоне высоких частот, особый интерес представляют магнитодиэлектрики (пермаллои, распыленное железо и др.). Эти материалы получают прессованием порошка ферромагнитного материала и связующего. Готовая смесь формуется и подвергается термообработке при высоких температурах, сопровождающейся спеканием частиц порошка. Фазовый состав ферромагнитной составляющей может быть охарактеризован как:

  • Kool Mμ Magnetics (Fe-Si-Al), ~ 10% Si, ~7% Al. Данный состав материала выпускается другими производителями под названиями Sendust (Сендаст), альсифер
  • карбонильное железо
  • пермаллой (с введением молибдена)

Каждую частицу ферромагнитного материала покрывает пленка из диэлектрика, благодаря которой сердечники не насыщаются, и значения магнитной проницаемости варьируются от нескольких единиц до нескольких десятков [1]. Основные характеристики таких магнитодиэлектриков регулируются размером исходных зерен порошка, введением добавок (Mo, Cr, Mn и др.) в химический состав сплавов и свойствами связующего и выбором температурных режимов, при которых происходит спекание частиц [2]. Особенности получения порошковых материалов позволяют им достичь достаточно высоких значений удельного электрического сопротивления (ρ = 10 ÷ 108 Ом·м), что, в свою очередь, обеспечивает низкие динамические потери энергии в переменных электромагнитных полях.

Среди компаний, ведущих разработку пермаллоев и выпуск магнитопроводов на основе пермаллоев и распыленного железа, можно выделить такие известные зарубежные предприятия как Micrometals, Magnetics, Arnold и др.

Компаниями выпускается широкая номенклатура кольцевых сердечников на основе пермаллоев (MPP, Kool Mμ, HighFlux и др.), поскольку именно тороидальная конструкция позволяет обеспечить высокую устойчивость к внешним воздействиям электромагнитных полей и наименьшую величину индуктивности рассеяния. Тем не менее, некоторые компании уделяют пристальное внимание выпуску сердечников конфигурации E. Ввиду высокой себестоимости многих сплавов интерес представляют магнитопроводы из менее дорогостоящего материала Kool Mμ (альсифер) и распыленного железа (Iron Powder) (рисунок 1), что является недорогой альтернативой пермаллоям.

Рисунок 1 – Е-образные сердечники из материала Kool Mμ (Magnetics) [3]

Так, один из лидеров в области разработки и производства магнитопроводов из пермаллоев, компания Magnetics, выпускает ряд Е-образных сердечников из материала Kool Mμ с проницаемостью 26μ, 40μ, 60μ и 90μ.

Преимуществом Е-образной конструкции магнитопровода является возможность его применения в сварочном оборудовании, например, в источниках сварочного тока инверторного типа (ИИСТ). Как известно, многие современные модели сварочных инверторов оснащены выходными дросселями [4,5]. При этом дроссель может быть как ключевым звеном сварочного аппарата, использующего в процессе сварки электроды, так и найти применение в составе сварочного полуавтомата. Применение в схемах ИИСТ моточных изделий позволяет не только стабилизировать ток, но и сгладить за счет их магнитного поля пульсирующее напряжение. Кроме того, дроссель можно использовать как в самодельных сварочных аппаратах, так и аналогичном оборудовании, изготавливаемом на заводе.

При создании ИИСТ также учитывают, что дроссель, изготовленный на Е-образном сердечнике, имеет немагнитный зазор 0,5 — 1,0 мм, позволяющий избежать насыщения и более эффективно управлять индуктивностью. Как показано на рисунке 1 зазор можно создавать одним из трех способов. Первый метод заключается в формировании воздушного зазора на центральном стержне сердечника конфигурации Е за счет уменьшения его высоты. Зазор можно также создавать одновременно в центральном и боковых кернах магнитопровода. Сердечники с дискретным зазором сохраняют высокую индуктивность вплоть до точки перегиба на кривой, что приводит к резкому насыщению. В этой связи, интерес представляет формирование распределенного зазора в Е-образных магнитопроводах из порошковых материалов, который состоит из большого количества малых воздушных зазоров, появляющихся в результате того, что частицы порошка магнитомягкого материала полностью не спекаются в единый состав. В результате, насыщение достигается плавно, что способствует повышению внутренней устойчивости изделия к выходу из строя. В таких сердечниках сохраняется оптимальное значение Bmax и обеспечивается смещение по постоянному току при высоких температурах [6]. Намотка может осуществляться медным проводом до заполнения каркаса.

Рисунок 2 — Сердечник конфигурации Е: а) Ферритовый сердечник Magnetics материал P с начальной проницаемостью 2500 с дискретным зазором по центральному керну б) Ферритовый сердечник Magnetics из материала P с начальной проницаемостью 2500 с дискретным зазором по центральному и боковым кернам в) сердечник из материала Kool Mμ с распределенным зазором [6]

Поскольку дроссели для ИИСТ, изготовленные на основе порошковых материалов, позволяют повысить не только технологичность готового изделия, уменьшить габаритные размеры и снизить интенсивность полей рассеивания [7], актуальным является сравнить характеристики пермаллоя и распыленного железа, представляющие наибольший интерес для применения в таких схемах.

Сравнительные характеристики некоторых сплавов, таких как пермаллой Kool Mμ (Magnetics) и распыленное железо (Iron Powder) приведены на рисунках 3, 4 и таблице 1. Таблица 1. Сравнительные характеристики сплавов.
Материал Kool Мμ® (Magnetics) Порошковое железо
Состав сплава Fe Si Al Fe
Потери тока Низкие Высокие
Начальная магнитная проницаемость 26…125 10…100
Температура Кюри, °С 500 770
Рабочие температуры, °С -55…200 -30…75
Индукция насыщения, Тл 1 -1,2…-1,5
Как видно из представленных данных (рисунок 3) основным преимуществом Kool Мμ являются более низкие потери в сравнении с распыленным железом. Сердечники на основе материала Kool Мμ® обладают практически нулевой магнитострикцией и могут эксплуатироваться при температурах вплоть до 500°C, что соответствует температуре Кюри (таблица 1). Кроме того, сплав на основе Al, Si, Fe изготавливается без использования органических вяжущих компонентов, вследствие чего он не подвержен эффекту термического старения.


Рисунок 3 — Зависимость потерь в сердечнике от плотности магнитного потока для порошковых материалов (Kool Мμ® и распыленное железо)

Согласно данным, представленным на рисунке 4, можно отметить сравнительно близкие зависимости магнитной проницаемости материалов Kool Мμ® и распыленного железа от подмагничивания постоянным током. Наряду с подмагничиванием, вызванным постоянной составляющей тока, в дросселях импульсных регуляторов также протекает переменный ток. В диапазоне 10кГц-300кГц переменная составляющая может вызывать потери в сердечнике и его нагрев до температуры выше температуры Кюри. Выбор в качестве материала сердечника пермаллоя Kool Мμ® позволяет снизить влияние переменной составляющей и повысить эффективность работы дросселя.

Рисунок 4 — Зависимость магнитной проницаемости материалов Kool Мμ® (Magnetics) и распыленного железа от подмагничивания постоянным током

Как известно, для большинства моточных изделий характерно создание паразитных излучений, представляющих собой поля рассеивания [8]. В материалах с низким значением магнитной проницаемости этот эффект проявляется таким образом, что измеренная индукция — выше величины, рассчитанной по формуле 1, согласно заданным параметрами сердечника.
где L – индукция, мГн
μ – магнитная проницаемость сердечника
N – число витков
Ae – площадь эффективного сечения, мм2
Ie – длина магнитного пути, мм.

Кроме того, на эффект рассеяния также оказывают влияние количество витков, конструкция дросселя, размер и конфигурация сердечника. Так, например, в случае Е-образного магнитопровода с увеличением длины намотки магнитное рассеяние полей будет проявляться в меньшей степени в отличие от других технических исполнений. При определении необходимого количества витков, размера и конфигурации сердечника в ходе проектирования источников питания и других устройств часто возникает необходимость проведения соответствующих расчетов. Некоторые подходы определения параметров дросселя инверторного сварочного источника подробно описаны в литературе [9, 10].

Многие компании, выпускающие сердечники из порошковых материалов, наряду с технической документацией предлагают пользователям бесплатное программное обеспечение [9]. В качестве примера можно привести бесплатные программы, разработанные компанией Magnetics, позволяющие по известным параметрам осуществлять расчет дросселей источников питания. При определении размеров сердечника и количества витков также может быть использована следующая упрощенная методика [11]:

1)Расчет LI2,
где L — индуктивность при подмагничивании, вызванном постоянной составляющей тока (мГн),
I – постоянный ток (А)
2) Поиск соответствия расчетного значения LI2 коду сердечника в таблице 2.

Таблица 2 – Соответствие расчетных данных коду сердечников из материала Kool Мμ® Magnetics [11]

Сердечники конфигурации Е LI2
E5528 50-150
E5530 75-150
E6527 150-350
E8020 300-500
LE114 500-1600
LE114HT26 350-1300
LE130 1150-3500
LE160 1500-4500

3) После определения размера сердечника рассчитывается количество витков в следующей последовательности:
— Определение номинального значения коэффициента индуктивности (AL, нГн/виток2) из данных таблицы 3
— Определение отклонения в меньшую сторону от номинального значения коэффициента индуктивности (-8%) ALmin
— Расчет количества витков по формуле:

где L – минимальная индуктивность, мкГн;
ALmin – минимальное значение коэффициента индуктивности, нГн/виток2.
— Расчет силы намагничивания (H) согласно выражению [3]:

где N – число витков;
I – сила тока, А;
Le – длина линии магнитной индукции, см.
— Определение падения µ относительно начальной магнитной проницаемости для рассчитанного подмагничивания постоянным током (рисунок 5).
— Увеличение числа витков путем деления определенного ранее количества витков (формула 2) на долю смещения в меньшую сторону магнитной проницаемости позволит получить величину магнитной индукции, близкой к требуемым значениям. При необходимости расчеты повторяются.


Рисунок 5 — Функциональная зависимость магнитной проницаемости от подмагничивания постоянным током для материала Kool Mμ®[11]

Таким образом, были рассмотрены основные характеристики пермаллоя Kool Мμ® фирмы Magnetics и особенности применения конфигурации Е в инверторных источниках тока сварочных аппаратов. Представлены сопоставительные данные по свойствам порошковых материалов, таких как Kool Мμ® и распыленное железо. Отмечено, что магнитопроводы на основе пермаллоя Kool Мμ® обладают меньшими потерями в сравнении с распыленным железом (Iron Powder). Применение сердечников конфигурации Е с распределенным зазором в выходных дросселях ИИСТ позволяет не только снизить габаритные размеры и повысить надежность готового изделия, но и снизить интенсивность полей рассеивания.

Таблица 3 – Характеристика Е-образных сердечников фирмы Magnetics [11]

Литература
1. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. – 10-е изд., перераб. и доп. – – М.: Гардарики, 2002. – 638 с.
2. Мишин Д.Д. Магнитные материалы, Учеб. пособие для вузов. 2-е изд., перераб. и доп. М.: Высш. шк., 1991. 384 с.
3. http://www.mag-inc.com/products/powder-cores/kool-mu/large-kool-mu-core-shapes
4. С. Петров. Сварочный инвертор начального уровня: пример разработки/ Силовая Электроника.2010 — №5 – С. 82-89
5. С. Петров. Схемотехника промышленных сварочных инверторов/ Современная электроника. 2007 — №8 – С.42-47.
6. Michael W. Leakage flux considerations on kool mμ “E” cores. Bulletin No. KMC-E2
7.Володин В.Я. Моделирование индуктивностей с порошковыми сердечниками при помощи симулятора LTspice. Журнал Силовая электроника — 2010 г. — №2. — С.84-90.
8. В.В. Шкоркин, Ю.М. Казанцев. Cнижение помехоэмиссии силовых дросселей тороидальной конструкции/ Известия Томского политехнического университета. 2010. — Т. 316. № 4. – C.107-110.
9. Володин В.Я. Бесплатные версии программ расчета дросселя с порошковым сердечником/Силовая электроника. 2010 — №3. – С.92-99.
10. Володин В.Я. Инверторный источник сварочного тока. Опыт ремонта и расчёт электромагнитных элементов. Журнал Радио №8, 9, 10 за 2003 год.
11. http://www.mag-inc.com/products/powder-cores/kool-mu/large-kool-mu-core-shapes

Схема установки дросселя в первичной обмотке сварочного. Использование сварочного дросселя. Материалы для изготовления

Приобретение сварочного аппарата (инвертора) – это всегда сопряжено с дилеммой: качество или цена. И, как часто это бывает, побеждает цена. Приобретая недорогой сварочный инвертор, его хозяин получает некоторое снижение качества работы с агрегатом. А точнее: сложность с розжигом электрода и жесткостью сварочного процесса. Но небольшая доработка (и недорогая) дает возможность изменить характеристики аппарата. Самый простой вариант – это установить дроссель. Что это такое, и для чего нужен дроссель.

Основное его назначение – стабилизация тока. Все дело в том, что в аппарате переменного тока поджиг расходника должен производиться при определенном напряжении, которое должно соответствовать синусоиде электрического тока. Сварочный дроссель, включенный в схему инвертора, позволяет сместить фазы между напряжением и электрическим током. А это в свою очередь влияет на легкость розжига электрода, плюс более ровному горению электрической дуги. В купе в конечном результате получается ровный и качественный сварной шов. Что и требуется для подтверждения качества конечного результата.

Дроссели можно устанавливать и в сварочных трансформаторах, и в инверторах, и в полуавтоматах. При использовании устройства в полуавтоматах для сварки можно констатировать уменьшение разбрызгивания металла, шов проваривается глубже, сварочный процесс проходит мягче.

Способы регулировки тока с помощью дросселя

Достоинства устройства несомненны. Практика это подтверждает полностью. Но есть три режима трансформатора, в которых он может находиться. При этом с помощью дросселя в некоторых из них можно регулировать силу сварочного тока. Кстати, дроссель подключается к вторичной обмотке трансформатора, при этом регулируется воздушный зазор в сердечнике.

  1. Холостой ход. Это режим, когда аппарат включен, а работа на нем не производится. Напряжение на трансформатор подано, электродвижущая сила во вторичной обмотке присутствует, а на выходе сварочного тока нет.
  2. Нагрузка. Зажигается дуга, которая замыкает электрическую входную цепочку. В нее входят обмотка дросселя и вторичная обмотка трансформатора. По цепи движется ток, значение которого определяется сопротивлениями двух обмоток. Если в цепь не установить дроссель, то на выходе получился бы ток максимального значения. А это большая вероятность получить прожог свариваемых металлов, залипание электрода. Степень настройки тока будет зависеть от воздушного зазора в стержне, на который наматывается обмотка дросселя.
  3. Короткое замыкание. КЗ образуется в тот момент, когда кончик электрода касается свариваемых металлических заготовок. При этом на сердечнике трансформатора образуется магнитный поток переменного типа, а на вторичной обмотке индуктируется электродвижущая сила. При этом сила тока будет зависеть от общего сопротивления обмотки дросселя и вторичной обмотки трансформатора.

Что касается воздушного зазора, то его увеличение приводит к тому, что сопротивление цепочки увеличивается. А это в свою очередь приводит к уменьшению магнитного потока, соответственно уменьшается индуктивное сопротивление обмоток трансформатора и дросселя. Уменьшилось сопротивление, увеличился ток на выходе. Все по закону Ома. Поэтому ток дуги увеличивается. Именно таким образом с помощью дросселя можно регулировать ток сварочной дуги.

В этой системе с дросселем есть один недостаток. Любой аппарат для сварки в процессе работы вибрирует. Это негативно сказывается на прохождении тока по катушке дросселя. Поэтому можно отказаться от плавной настройки и регулирования тока, а перейти на ступенчатую настройку. Для этого в сердечнике дросселя не надо устанавливать воздушный зазор. Для этого обмотка прибора делается с отводами (через определенное количество витков), к которым припаиваются контакты. Правда, необходимо учитывать тот момент, что через эти контакты будет проходить ток в несколько сот ампер. Поэтому нужно подобрать такие, которые ток такой силы смогут выдерживать.

И еще одна причина, по которой дроссель для сварочного аппарата нужно включить, чтобы процесс сварки проходил в «мягких» условиях. Есть такая характеристика зависимости напряжения сварочной дуги от силы тока на конце электрода, которая носит название падающая. Это очень полезная зависимость, особенно в тех случаях, когда сложно или трудно выдержать расстояние между электродом и свариваемыми металлическими заготовками.

Обеспечить падающую характеристику одним трансформатором практически невозможно, потому что сопротивление его обмоток здесь недостаточно. Обмотка дросселя практически в два раза увеличивает общее сопротивления электрической цепи, что позволяет обеспечить падающую зависимость напряжения от тока. То есть, это еще один плюс в копилку дросселя. Теперь становится понятным, зачем нужен этот прибор.

Как сделать дроссель своими руками

Для катушки дросселя лучше использовать магнитопровод серии UI . Намотка провода на катушку – процесс непростой и трудоемкий, требующий терпения и аккуратности. Есть в этом деле несколько моментов, которые определяют качество конечного результата.

  • Обязательно перед началом намотки производится изоляция ярма UI .
  • Наматывать медный или алюминиевый провод можно только в одном направлении.
  • Каждый намотанный на сердечник слой необходимо изолировать от последующего. Для чего может быть использована стеклоткань, специальная хлопчатобумажная изоляция или картон.
  • Изоляционный слой необходимо обрабатывать бакелитовым лаком.
  • Если устраивается ступенчатая регулировка тока, то выводы обмотки нужно обязательно маркировать. Это упростит в последующем подключение дросселя к сварочному аппарату, то есть, нужный вывод будет легко найти.

Ступенчатую регулировку тока можно организовать и при помощи нагрузочного омического сопротивления. По сути, это обычная спираль из нихромовой проволоки, которая подключается к выходу дросселя. Правда, необходимо отметить, что этот вариант не самый лучший. Нихромовая проволока сильно нагревается, иногда даже докрасна, так что это большая опасность.

В сварочных трансформаторах плавная регулировка тока обеспечивается смещением первичной обмотки относительно вторичной. Уменьшая между ними расстояние, производится уменьшение магнитного поля. А соответственно и снижение сопротивления в цепи. Обычно трансформаторные аппараты снабжаются рукояткой, которая расположена сверху агрегата. Вращая ручку в ту или другу сторону, уменьшается или увеличивается сила тока дуги.

Но для инверторного сварочного аппарата, который применяется в быту, лучше использовать для улучшения работы дроссель. Проще, удобнее, недорого. Тем более, сделать его своими руками – не проблема.

  • Варианты использования подручных материалов
  • Технология изготовления и установка

Большинство мастеров, занимающихся частным ремонтом техники, рано или поздно начинают задумываться над тем, как собрать сварочный аппарат своими руками. В наши дни для использования в условиях малых производств производители техники предлагают немалое количество таких аппаратов. Это может быть аппарат, работающий на переменном или постоянном токе, сварочный полуавтомат или устройство с использованием электродов. Однако любой хороший фирменный аппарат стоит больших денег, а его более дешевый аналог, как правило, ненадежен и быстро начинает отказывать в работе. Для сборки сварочного аппарата прежде всего нужно подобрать или изготовить необходимые детали, это касается и такого устройства, как дроссель.

При создании сварочного аппарата своими руками нужно обратить особое внимание на дроссели.

Преимущества, которые дает дроссель для сварочного аппарата

Сварочный дроссель является регулятором силы тока, применяемого для сварки. Непосредственной его задачей является компенсация недостающего сопротивления. Его можно подключить к вторичной обмотке трансформатора. Это позволяет сместить фазы между проходящим током и его напряжением, что облегчает зажигание электрической дуги в начале процесса. Она горит при этом намного более ровно, и это позволяет достичь достаточно высокого качества сварного шва. Без дросселя сила тока всегда будет максимальной, что может создать проблемы в процессе сварки.

Схема сварочного полуавтомата.

Дроссель может входить в конструкцию как сварочного аппарата, который использует в процессе сварки электроды, так и в состав полуавтомата. Сварочный полуавтомат, имеющий его, куда меньше разбрызгивает металл при работе, сам процесс сварки проходит намного мягче, чем при его отсутствии, а сварной шов при этом проваривается на большую глубину. Так что преимущества использования такой детали не вызывают сомнений, и ее можно установить не только на самодельный сварочный аппарат, но и на аналогичный аппарат заводского изготовления. Особенно это касается недорогих моделей, склонных к неполадкам. Это немало облегчит работу на нем и повысит качество сварки.

Вернуться к оглавлению

Чтобы изготовить сварочный дроссель самостоятельно, прежде всего необходимо найти подходящий материал. Для этого вполне подойдут многие электротехнические устройства, отработавшие свой срок службы и выброшенные за ненадобностью. Поскольку он представляет собой просто сердечник с намотанным на него проводом, выбор здесь довольно широк. Вполне может подойти для этой цели трансформатор, когда-то входивший в конструкцию такого аппарата, как ламповый телевизор. Всю обмотку с него придется снять, а освободившийся сердечник использовать для намотки нового провода, длину и сечение которого необходимо рассчитать заранее.

Для создания дросселя применяются уже использованные электротехнические устройства.

Можно также, если представилась возможность, использовать дроссели, которые стояли на перегоревших лампах уличных фонарей. Старые обмотки при этом придется снять, поскольку они пришли в негодность, но оставить картонные прокладки, которые создавали зазор между основной частью сердечника и замыкающей. При намотке нового провода их нужно будет поставить на прежнее место. В целом же надо отметить, что для намотки дросселя можно использовать любой магнитопроводящий сердечник, имеющий сечение от 10 до 15 см. При этом необходимо сделать между его частями немагнитный промежуток, для чего вставить изолирующую прокладку толщиной от 0,5 до 1 мм.

Вернуться к оглавлению

Алюминиевый или медный провод участвует в создании дросселя.

Для намотки дросселя используется алюминиевый или медный провод. В первом случае его сечение должно составить 35-40 мм, во втором достаточно будет и 25 мм. Можно в качестве замены провода использовать и шину, в частности медную, 4 на 6 мм, или более толстую алюминиевую. При этом провод наматывается в количестве от 25 до 40 витков, а шину надо будет намотать в 3 слоя. Если в качестве сердечника выступает вышеупомянутая деталь от лампы уличного фонаря, то намотка производится только на одну из боковых сторон по всей длине до полного заполнения окна. При этом направление намотки менять нельзя. Каждый слой нужно изолировать от предыдущего путем прокладки хлопчатобумажной ткани, стеклоткани или специального изолирующего картона, которые еще желательно пропитывать бакелитовым лаком.

Если для аппарата предусматривается не плавная, а ступенчатая регулировка, то в магнитопроводящем сердечнике дросселя никакого воздушного промежутка не делается, а при намотке через равное количество витков нужно делать отводы. Контакты на них нужно ставить при этом достаточно сильные, поскольку на них будет ложиться большая нагрузка. В целом нужно признать, что установление дросселя положительно влияет на работу любого аппарата для сварки, будь то сварочный полуавтомат или примитивная самоделка. Для аппарата, работающего на переменном токе, его оптимально будет использовать вместе с выпрямителем тока, что позволит тому применять практически всю номенклатуру электродов, да и работать он будет куда мягче.

Можно также ставить дроссель на аппарат вместе с понижающим трансформатором. Он подсоединяется на вторичную цепь сварочного трансформатора. Это повторяет конструкцию фирменного японского полуавтомата, стоящего больших денег. В этом случае дроссель нужно очень точно рассчитать по формуле, которая опубликована в специальной литературе, и преимущество это даст немалое. Такой аппарат будет иметь трансформатор с хорошим рассеиванием, а характеристики его будут четкими.

http://moiinstrumenty.ru/youtu.be/LvIyLUOzS64

Стоит сразу предупредить, что прежде, чем собрать сварочный аппарат, собранный своими силами, дроссель необходимо правильно настроить. Это можно сделать двумя основными способами: добавляя или отматывая количество витков провода, или меняя размеры воздушного промежутка в сердечнике.

После того как дроселя будут успешно настроены, самодельный аппарат вполне сможет работать не хуже, чем дорогой фирменный полуавтомат.

Он будет соответствовать именно тем требованиям, которые нужны владельцу.

moiinstrumenty.ru

Дроссель для сварочного аппарата своими руками

Дроссель — промышленное название такого электротехнического элемента, как катушка индуктивности. Это приспособление имеет широкий спектр применения, в частности, мощный дроссель можно использовать для улучшения рабочих характеристик полуавтомата или инвертора для сварки.

Принцип работы

Основное свойство катушки индуктивности, представляющей собой магнитопровод, намотанный с соблюдением определенных условий вокруг ферромагнитного сердечника, – это стабилизация силы тока по времени. Проще говоря, напряжение, приложенное к катушке, вызывает плавное нарастание силы тока на выходе. Изменение полярности приводит к такому же плавному уменьшению силы тока.

Главным фактором является то условие, что ток, проходящий по дросселю, не может резко возрастать или снижаться. Именно это и определяет ценность использования дросселя для сварки — компенсация сопротивления позволяет избежать резких скачков по амперажу. Это позволяет подстраховаться от случайного прожига свариваемых заготовок, уменьшить разбрызгивание плавящегося металла и точно подобрать параметры тока для сварки по заданной толщине металла. Шансы получить хороший шов с применением дросселя для сварки значительно выше.

Параметр, определяющий коэффициент изменения по току — индуктивность. Измеряется она в Гн (генри) — за 1 секунду при напряжении в 1 В через дроссель с индуктивностью в 1 Гн может пройти только 1 А.

Число витков на катушке напрямую влияет на величину индуктивности. Она прямо пропорциональна количеству витков, возведенному в квадрат. Но если надо изготовить сварочный дроссель своими руками, то высчитывать точное число витков не обязательно. Так как параметры сварочных аппаратов бытового назначения в большинстве своем стандартны и общеизвестны, сварщику для изготовления дросселя собственноручно достаточно будет воспользоваться приведенной ниже инструкцией.

Предназначение

В инверторе для сварки дроссель необходим, чтобы создать на электроде электрическую дугу. Поджиг происходит при достижении определенного уровня напряжения. Сварочный дроссель увеличивает сопротивление, что смещает фазы между током и напряжением и позволяет производить более плавный поджиг. Сам по себе этот факт часто позволяет избежать прожигания заготовки, особенно если сварке подвергаются детали из тонкого листового металла.

Плавное изменение силы тока позволяет не испортить заготовку резкой подачей завышенной мощности, оптимально установить температуру дуги и, соответственно, не допустить разбрызгивания металла при сохранении нужной глубины обработки.

Другое ценное его свойство — это частичная защита от нестабильного напряжения в сети.

Дроссель для сварочного инвертора существенно облегчает поджиг электрода, который должен загораться при более высоком напряжении, чем выдает инвертор.

Примером может служить электрод MP-3, вольтаж для возгорания которого должен составлять 70 В. Выходной дроссель для сварки может существенно облегчить работу с этим электродом для инвертора, который выдает всего 48 В в режиме холостого хода. Это происходит благодаря явлению самоиндукции. Устройство индуцирует ЭДС (электродвижущую силу), которая вызывает пробой воздуха и вспыхивание сварочной дуги, стоит только поднести присадку на расстояние в несколько миллиметров от поверхности металла.

Дроссель для сварки подключается ко вторичной обмотке трансформатора в аппарате. Его можно использовать в аппаратах любого типа — как в самодельных, так и заводского изготовления, работающих по любому принципу — инверторных, с понижающим трансформатором и тому подобное.

Материалы для изготовления

Дроссель для дооборудования полуавтомата либо инвертора можно собрать своими руками, используя конструктивные элементы из старой техники — ламповых телевизоров, уличных фонарей старой конструкции и других устройств, в которых имеется трансформатор.

Конструктивно он представляет собой сердечник из материала, проводящего магнитное поле, но не проводящего электрический ток либо надежно заизолированного, и трех слоев обмоток, разделенных диэлектриком. В качестве основы для сердечника подойдет либо специальный материал — феррит, обладающий данными свойствами, либо ярмо (подкова) от старого трансформатора. Намотка устройства ля сварки делается алюминиевым или медным проводом сечением 20-40 мм. Если используется алюминий, то сечение провода должно быть не менее 36 мм, медный провод может быть тоньше. Подойдет плоская медная шина сечением 8 мм.

Габариты сердечника должны позволять намотку примерно 30 витков шины данного сечения, с учетом прокладок-диэлектриков. Рекомендуется сердечник от повышающего трансформатора советского телевизора ТСА 270-1.

Последовательность действий

Когда необходимые инструменты и материалы подготовлены, можно приступать к изготовлению дросселя для сварки. Алгоритм действий такой:

  1. разобрать трансформатор, очистить катушки от следов старых обмоток;
  2. изготовить из стеклоткани, картона, пропитанного бакелитовым лаком, либо иных подходящих диэлектриков прокладки, которые в дальнейшем будут играть роль индуктивного (воздушного) зазора. Их можно просто приклеить к соответствующим поверхностям катушек. Толщина прокладки должна составлять 0,8-1,0 мм;
  3. произвести намотку на каждую катушку толстого медного или алюминиевого провода. Ориентироваться стоит на круглый провод из алюминия с сечением 36 мм либо медный с аналогичным омическим сопротивлением. На каждую «подковку» наносится 3 слоя по 24 витка в каждом;
  4. между слоями проложить диэлектрический материал — стеклоткань, пропитанный бакелитовым лаком картон или другой диэлектрик. Прокладки должны быть надежными, так как дроссель такой конструкции склонен к самопробою между намотками. Если сопротивление между намотками будет ниже, чем сопротивление воздуха между электродом и присадкой, то пробой произойдет именно между намотками, и устройство ля сварки будет необратимо повреждено.

Намотку надо производить равномерно, без перехлестов, строго в одну и ту же сторону, чтобы «мостик» между катушками был с одной стороны будущего дросселя, а контакты входа и выхода с другой. В случае ошибки перемычку можно установить и косо. Важно, чтобы ее установка превращала катушки с разным направлением обмотки в катушки с одинаковым направлением по факту.

Включение и проверка

Дроссель для сварки подключается к системе между диодным мостом и массой — контактом, который идет на соединение со свариваемым материалом. Выход диодного моста соединяется со входом дросселя, к выходу собранной катушки индуктивности — соответственно контакт массы.

Всю конструкцию для сварки в сборе необходимо протестировать на кусочке металла того же химического состава и толщины, с каким в дальнейшем планируется вести большую часть сварочных работ. Показателями качества являются:

  • легкий электроподжиг;
  • стабильность дуги;
  • относительно слабый треск;
  • плавное горение без сильных брызг расплава.

Учтите, что введение этого элемента в конструкцию сварочного аппарата приводит не только к стабилизации работы, но и к некоторому падению силы тока. Если инвертор или полуавтомат начал варить хуже, то значит — упала сила тока. Дроссель нужно отсоединить и снять несколько витков с каждой катушки. Точное количество витков в каждом конкретном случае подбирается эмпирическим путем.

svaring.com

Использование сварочного дросселя

Сварочный аппарат есть, практически у каждого мало-мальски уважающего себя хозяина. Как правило, в последнее время приобретаются аппараты относительно невысокого качества, которые, после небольшой и недорогой доработки, совершенно не уступают лучшим фирменным образцам. Одной из таких доработок является установка дросселя для сварки.

Что это дает? Во-первых стабилизируется сварочный ток. При использовании сварочного аппарата переменного тока поджиг электрода возможен только при достижении уровня напряжения, необходимого для поджига и соответствующей синусоиды электрического тока. Включение в конструкцию дросселя позволяет сместить фазы между током и напряжением, что приводит к более легкому началу сварочных работ и более ровному горению и, соответственно, более качественному сварному шву.

Сварочные дроссели применяются как в сварочных аппаратах, использующих электроды, так и в полуавтоматах. В случае применения в полуавтомате, значительно уменьшается разбрызгивание металла, а работа становится более мягкой, причем шов проваривается более глубоко.

Для изготовления сварочного дросселя своими руками умельцы используют трансформаторы от старых, желательно ламповых, телевизоров. Для начала снимается полностью вся намотка, а на «железо» наматывается провод, исходя из предварительных расчетов.

Стоит отметить, что весьма неплохое качество при изготовлении сварочного дросселя своими руками можно получить, если использовать в качестве заготовки дроссели от сгоревших ламп уличного освещения. Как правило, обмотка содержит от 25 до 40 витков провода, сечением 35-40 мм2, если используется алюминиевый провод и от 25 мм2, в том случае, если удалось раздобыть медный. Неплохо подходит для намотки дросселя шинка — как алюминиевая, так и медная.

Итак, можно ставить дроссель на, практически, любой сварочный аппарат, но специалисты все-таки советуют использовать его совместно с выпрямительным блоком — это относится только к сварочным аппаратам, работающим с переменным током. В этом случае достигается двойная цель. Получается более мягкая работа и возможность варить любыми электродами.

Существуют конструкции, в которых дроссель работает в паре с понижающим трансформатором. В этом случае расчет дросселя должен быть более точным и производится по формулам, которые можно найти в специализированной литературе.

При такой реализации конструкции предпочтительное место установки дросселя — вторичная цепь сварочного трансформатора. Стоит заметить, что именно таким образом располагается дроссель в некоторых дорогих сварочных полуавтоматах импортного производства. Преимущества здесь налицо. При таком расположении трансформатор обладает нормальным рассеиванием и весьма жесткой внешней характеристикой.

Регулировка работы дросселя — весьма ответственное дело. Несмотря на все расчеты, добиться устойчивой и безупречной работы с первого раза, практически невозможно. Обычно количество витков подбирают опытным путем отматывая или, наоборот, добавляя витки. Еще один способ регулировки заключается в изменении воздушного зазора в магнитопроводе — в этом случае регулировка более плавная.

nanolife.info

Изготовление сварочного дросселя Подскажите пожалуйста, с чего можно намотать сварочный дроссель?) сколько витков и как? для домашней сварки на 200 А

Вот в этой схеме есть дроссель.. такой бы мне)

Прикрепленные изображения
Изготовление сварочного дросселя Его параметры жеско не закрепляются. Сердечника см на 50-70 достаточно, а провода витков 40-60 примерно, только чтоб ток выдерживали. Можно использовать обмотки дополнительного транса. Если будет очень мало витков, эффекта не будет, если много — дугу гасить замучитесь. Зы.Правда у меня кондёр не используется — и так всё работает.

Изготовление сварочного дросселя

Изготовление сварочного дросселя

Берём железо от двигателя 2-4 квт, и разрезаем болгаркой камнем 2- 2,5 мм поперёк одну сторону, это будет магнитный зазор в который на эпоксидку вклеить текстолит,все пазы под предыдущую обмотку надо аырубить железом, если есть металические скобы то удалить, обматать изоляцией и двадцать метров провода 30 кв мм вам в помощ.

Изготовление сварочного дросселя

FOREvERz (Apr 7 2010, 17:33) писал:

а с чего использовать сердечник?)

Чтоб индуктивность высокая была! Изготовление сварочного дросселя

По отзывам двигатель не катит тоесть работать конечно будет но лучше ТОР. А так поищи разборный транс киловата на 2 и намотать медную шину. У нас на сварочном в аргоне дроссель был равен по габарита ссиловому трансу.

Изготовление сварочного дросселя а можно без дросселя использовать сглаживающий фильтр, состоящий из конденсатора и сопротивления? если да, то какие должны быть параметры конденсатора и сопротивления? Вместо сопротивления можно ли использовать что-то типа реостата? если да, то какой реостат?

Изготовление сварочного дросселя

Может начнем всетаки с лошади……Для какой сварки требуется дроссель? Я делал для сварки в аргоне как потом оказалось вполне можно обойтись и без него..

Изготовление сварочного дросселя для обычной дуговой сварки, поддерживает электроды от 2 до 4 мм. Есть выпрямитель, нету фильтра, нету дросселя. а Хотим варить нержавейкой и т.д. Изготовление сварочного дросселя А в своё время вот такую улитку ставил…

http://www.uralelekt…0bf/rtt_038.jpg

Изготовление сварочного дросселя

Есть выпрямитель, нету фильтра, нету дросселя. а Хотим варить нержавейкой и т.д.

Так всё-таки? Изготовление сварочного дросселя

а можно без дросселя использовать сглаживающий фильтр, состоящий из конденсатора и сопротивления?

Этот фильтр сглаживает не то что нужно, от того при сварке бесполезен. Изготовление сварочного дросселя Дроссель тут не сглаживает! Он поддерживает непрерывность тока, если грубо. Сие есть разные вещи. Вернее те же но, по другому работает.

Изготовление сварочного дросселя 🙁

Прикрепленные изображения
Изготовление сварочного дросселя резистором будет сварочная дуга…, а конденсаторов чем больше тем лучше, напряжение конденсаторов не менее 100в, а ёмкость сколько позволит корпус сварочника и Ваш кошелёк… При обвязке конденсаторов учитывайте второй закон Киргофа, либо обвязывайте все толстым проводом… Примерная суммарная ёмкость 200 000 — 500 000 Мкф., хотя резистор воткнуть тоже можно, чтоб конденсаторы заряженные не оставались после отключения, 1кОм.

Изготовление сварочного дросселя

А по этой схеме можно будет собрать выпрямитель для сварки? электроды 3 мм примерно. если да, то какие параметры конденсатора и резистора, никто не в курсе?

Собрать можно, но толку, нержавеющим электродом без дросселя варить не получится. Изготовление сварочного дросселя

cimon (Apr 12 2010, 22:10) писал:

Собрать можно, но толку, нержавеющим электродом без дросселя варить не получится.

Я конечно не пробовал, но с осциллятором наверно будет гореть как милый. Четверка УОНИ на переменном токе горела как сумасшедшая, и вроде как 80А стояло. Изготовление сварочного дросселя

Я конечно не пробовал, но с осциллятором наверно будет гореть как милый. Четверка УОНИ на переменном токе горела как сумасшедшая, и вроде как 80А стояло.

Вот чего не пробовал, так это варить нержавеющим электродом с осциллятором, переменкой, и даже не слышал, возможно и будет, почему нет. Только мучает один вопрос, почему все варят постоянкой, а не переменкой с осциллятором? Осциллятор сделать значительно легче и дешевле, чем постоянку. Напрашиваются два варианта ответа: 1. либо варить с осциллятором, ММА сваркой, шипко опасно, не будешь ведь бегать каждый раз отключать осцилятор, при смене электрода. 2. либо качество шва страдает. Изготовление сварочного дросселя

А по этой схеме можно будет собрать выпрямитель для сварки? электроды 3 мм примерно. если да, то какие параметры конденсатора и резистора, никто не в курсе?

Примерная суммарная ёмкость 200 000 — 500 000 Мкф

Только не удивляйтесь если после первого чирка электродом по детали в ней образуется кратер, а сам электрод ровным слоем брызг осядет на маске… Изготовление сварочного дросселя Был задан конкретный вопрос, как самому изготовить сварочный дроссель. Думаю, вопрос представляет интерес для многих, в тч и для меня. По форуму читал, что дроссель можно изготовить из старого ЛАТРа, мотора от стиральной машины, старого транса, а может и еще из чего подручного… Хотелось бы не разводить флейм и не уходить от темы куда-то в бездны Галактики, а все-таки узнать, как и кто делал самодельный дроссель (с эскизами чертежей, фото, а не просто-сделай пропил и вклей текстолит…где пропил, куда клеить?). Также поточнее привести моточные данные — чем и как мотать, как изолировать. Все-таки 30 квадратов, это не 0.75мм. Как внешне оформить дроссель? Чтобы можно было тем, кто захочет собрать дроссель своими силами, выбрать подходящий материал и повторить. Если жалко делиться своими нау-хау, то лучше ничего вообще не писать. А желающим обсудить чего в голову клюнет, но не по данной теме, просьба перейти в другие соответствующие подразделы.


Технические данные нашего сварочного аппарата — полуавтомата:
Напряжение питающей сети: 220 В
Потребляемая мощность: не более 3 кВа
Режим работы: повторно-кратковременный
Регулирование рабочего напряжения: ступенчатое от 19 В до 26 В
Скорость подачи сварочной проволоки: 0-7 м/мин
Диаметр проволоки: 0.8 мм
Величина сварочного тока: ПВ 40% — 160 А, ПВ 100% — 80 А
Предел регулирования сварочного тока: 30 А — 160 А

Всего с 2003 года было сделано шесть подобных аппаратов. Аппарат, представленный далее на фото, работает с 2003 года в автосервисе и ни разу не подвергался ремонту.

Внешний вид сварочного полуавтомата


Вообще


Вид спереди


Вид сзади


Вид слева


В качестве сварочной проволоки используется стандартная
5кг катушка проволоки диаметром 0,8мм


Сварочная горелка 180 А вместе с евроразъемом
была куплена в магазине сварочного оборудования.

Схема и детали сварочника

Ввиду того что схема полуавтомата анализировалась с таких аппаратов как ПДГ-125, ПДГ-160, ПДГ-201 и MIG-180, принципиальная схема отличается от монтажной платы, т. к. схема вырисовывалась на лету в процессе сборки. Поэтому лучше придерживаться монтажной схемы. На печатной плате все точки и детали промаркированы (откройте в Спринте и наведите мышку).


Вид на монтаж


Плата управления

В качестве выключателя питания и защиты применен однофазный автомат типа АЕ на 16А. SA1 — переключатель режимов сварки типа ПКУ-3-12-2037 на 5 положений.

Резисторы R3, R4 — ПЭВ-25, но их можно не ставить (у меня не стоят). Они предназначены для быстрой разрядки конденсаторов дросселя.

Теперь по конденсатору С7. В паре с дросселем он обеспечивает стабилизацию горения и поддержания дуги. Минимальная емкость его должна быть не менее 20000 мкф, оптимальная 30000 мкф. Были испробованы несколько типов конденсаторов с меньшими габаритами и большей емкостью, например CapXon, Misuda, но они себя проявили не надежно, выгорали.


В итоге были применены советские конденсаторы, которые работают по сей день, К50-18 на 10000 мкф х 50В в количестве трёх штук в параллель.

Силовые тиристоры на 200А взяты с хорошим запасом. Можно поставить и на 160 А, но они будут работать на пределе, потребуется применение хороших радиаторов и вентиляторов. Примененные В200 стоят на не большой алюминиевой пластине.

Реле К1 типа РП21 на 24В, переменный резистор R10 проволочный типа ППБ.

При нажатии на горелке кнопки SB1 подается напряжение на схему управления. Срабатывает реле К1, тем самым через контакты К1-1 подается напряжение на электромагнитный клапан ЭМ1 подачи кислоты, и К1-2 — на схему питания двигателя протяжки проволоки, и К1-3 — на открытие силовых тиристоров.

Переключателем SA1 выставляют рабочее напряжение в диапазоне от 19 до 26 Вольт (с учетом добавки 3 витков на плечо до 30 Вольт). Резистором R10 регулируют подачу сварочной проволоки, меняют ток сварки от 30А до 160 А.

При настройке резистор R12 подбирают таким образом, чтобы при выкрученном R10 на минимум скорости двигатель все же продолжал вращаться, а не стоял.

При отпускании кнопки SB1 на горелке — реле отпускает, останавливается мотор и закрываются тиристоры, электромагнитный клапан за счет заряда конденсатора С2 еще продолжает оставаться открытым подавая кислоту в зону сварки.

При закрытии тиристоров исчезает напряжение дуги, но за счет дросселя и конденсаторов С7 напряжение снимается плавно, не давая сварочной проволоке прилипнуть в зоне сварки.

Мотаем сварочный трансформатор


Берем трансформатор ОСМ-1 (1кВт), разбираем его, железо откладываем в сторону, предварительно пометив его. Делаем новый каркас катушки из текстолита толщиной 2 мм, (родной каркас слишком слабый). Размер щеки 147×106мм. Размер остальных частей: 2 шт. 130×70мм и 2 шт. 87×89мм. В щеках вырезаем окно размером 87×51,5 мм.
Каркас катушки готов.
Ищем обмоточный провод диаметром 1,8 мм, желательно в усиленной, стекловолоконной изоляции. Я взял такой провод со статорных катушек дизель-генератора). Можно применить и обычный эмальпровод типа ПЭТВ, ПЭВ и т. п.


Стеклоткань — на мой взгляд, самая лучшая изоляция получается


Начинаем намотку — первичка. Первичка содержит 164 + 15 + 15 + 15 + 15 витков. Между слоями делаем изоляцию из тонкой стеклоткани. Провод укладывать как можно плотнее, иначе не влезет, но у меня обычно с этим проблем не было. Я брал стеклоткань с останков всё того же дизель-генератора. Все, первичка готова.

Продолжаем мотать — вторичка. Берем алюминиевую шину в стеклянной изоляции размером 2,8×4,75 мм, (можно купить у обмотчиков). Нужно примерно 8 м, но лучше иметь небольшой запас. Начинаем мотать, укладывая как можно плотнее, мотаем 19 витков, далее делаем петлю под болт М6, и снова 19 витков, Начала и концы делаем по 30 см, для дальнейшего монтажа.
Тут небольшое отступление, лично мне для сварки крупных деталей при таком напряжении было маловато току, в процессе эксплуатации я перемотал вторичную обмотку, прибавив по 3 витка на плечо, итого у меня получилось 22+22.
Обмотка влезает впритык, поэтому если мотать аккуратно, все должно получиться.
Если на первичку брать эмальпровод, то потом обязательно пропитка лаком, я держал катушку в лаке 6 часов.

Собираем трансформатор, включаем в розетку и замеряем ток холостого хода около 0,5 А, напряжение на вторичке от 19 до 26 Вольт. Если все так, то трансформатор можно отложить в сторону, он пока нам больше не нужен.

Вместо ОСМ-1 для силового трансформатора можно взять 4шт ТС-270, правда там немного другие размеры, и я делал на нем только 1 сварочный аппарат, то данные для намотки уже не помню, но это можно посчитать.

Будем мотать дроссель

Берем трансформатор ОСМ-0,4 (400Вт), берем эмальпровод диаметром не менее 1,5 мм (у меня 1,8). Мотаем 2 слоя с изоляцией между слоями, укладываем плотненько. Дальше берем алюминиевую шину 2,8×4,75 мм. и мотаем 24 витка, свободные концы шины делаем по 30 см. Собираем сердечник с зазором 1 мм (проложить кусочки текстолита).
Дроссель также можно намотать на железе от цветного лампового телевизора типа ТС-270. На него ставится только одна катушка.

У нас остался еще один трансформатор для питания схемы управления (я брал готовый). Он должен выдавать 24 вольта при токе около 6А.

Корпус и механика

С трансами разобрались, приступаем к корпусу. На чертежах не показаны отбортовки по 20 мм. Углы свариваем, все железо 1,5 мм. Основание механизма сделано из нержавейки.




Мотор М применен от стеклоочистителя ВАЗ-2101.
Убран концевик возврата в крайнее положение.

В подкатушечнике для создания тормозного усилия применена пружина, первая попавшаяся под руку. Тормозной эффект увеличивается сжиманием пружины (т. е. закручиванием гайки).



Дроссель — промышленное название такого электротехнического элемента, как катушка индуктивности. Это приспособление имеет широкий спектр применения, в частности, мощный дроссель можно использовать для улучшения рабочих характеристик полуавтомата или инвертора для сварки.

Основное свойство катушки индуктивности, представляющей собой магнитопровод, намотанный с соблюдением определенных условий вокруг ферромагнитного сердечника, – это стабилизация силы тока по времени.

Проще говоря, напряжение, приложенное к катушке, вызывает плавное нарастание силы тока на выходе. Изменение полярности приводит к такому же плавному уменьшению силы тока.

Главным фактором является то условие, что ток, проходящий по дросселю, не может резко возрастать или снижаться. Именно это и определяет ценность использования дросселя для сварки — компенсация сопротивления позволяет избежать резких скачков по амперажу.

Это позволяет подстраховаться от случайного прожига свариваемых заготовок, уменьшить разбрызгивание плавящегося металла и точно подобрать параметры тока для сварки по заданной толщине металла. Шансы получить хороший шов с применением дросселя для сварки значительно выше.

Параметр, определяющий коэффициент изменения по току — индуктивность. Измеряется она в Гн (генри) — за 1 секунду при напряжении в 1 В через дроссель с индуктивностью в 1 Гн может пройти только 1 А.

Число витков на катушке напрямую влияет на величину индуктивности. Она прямо пропорциональна количеству витков, возведенному в квадрат. Но если надо изготовить сварочный дроссель своими руками, то высчитывать точное число витков не обязательно.

Так как параметры сварочных аппаратов бытового назначения в большинстве своем стандартны и общеизвестны, сварщику для изготовления дросселя собственноручно достаточно будет воспользоваться приведенной ниже инструкцией.

Предназначение

В инверторе для сварки дроссель необходим, чтобы создать на электроде электрическую дугу. Поджиг происходит при достижении определенного уровня напряжения.

Сварочный дроссель увеличивает сопротивление, что смещает фазы между током и напряжением и позволяет производить более плавный поджиг. Сам по себе этот факт часто позволяет избежать прожигания заготовки, особенно если сварке подвергаются детали из тонкого листового металла.

Плавное изменение силы тока позволяет не испортить заготовку резкой подачей завышенной мощности, оптимально установить температуру дуги и, соответственно, не допустить разбрызгивания металла при сохранении нужной глубины обработки.

Другое ценное его свойство — это частичная защита от нестабильного напряжения в сети.

Дроссель для сварочного инвертора существенно облегчает поджиг электрода, который должен загораться при более высоком напряжении, чем выдает инвертор.

Примером может служить электрод MP-3, вольтаж для возгорания которого должен составлять 70 В. Выходной дроссель для сварки может существенно облегчить работу с этим , который выдает всего 48 В в режиме холостого хода.

Это происходит благодаря явлению самоиндукции. Устройство индуцирует ЭДС (электродвижущую силу), которая вызывает пробой воздуха и вспыхивание сварочной дуги, стоит только поднести присадку на расстояние в несколько миллиметров от поверхности металла.

Дроссель для сварки подключается ко вторичной обмотке трансформатора в аппарате. Его можно использовать в аппаратах любого типа — как в самодельных, так и заводского изготовления, работающих по любому принципу — инверторных, с понижающим трансформатором и тому подобное.

Материалы для изготовления

Дроссель для дооборудования полуавтомата либо инвертора можно собрать своими руками, используя конструктивные элементы из старой техники — ламповых телевизоров, уличных фонарей старой конструкции и других устройств, в которых имеется трансформатор.

Конструктивно он представляет собой сердечник из материала, проводящего магнитное поле, но не проводящего электрический ток либо надежно заизолированного, и трех слоев обмоток, разделенных диэлектриком.

В качестве основы для сердечника подойдет либо специальный материал — феррит, обладающий данными свойствами, либо ярмо (подкова) от старого трансформатора. Намотка устройства ля сварки делается алюминиевым или медным проводом сечением 20-40 мм.

Если используется алюминий, то сечение провода должно быть не менее 36 мм, медный провод может быть тоньше. Подойдет плоская медная шина сечением 8 мм.

Габариты сердечника должны позволять намотку примерно 30 витков шины данного сечения, с учетом прокладок-диэлектриков. Рекомендуется сердечник от повышающего трансформатора советского телевизора ТСА 270-1.

Последовательность действий

Когда необходимые инструменты и материалы подготовлены, можно приступать к изготовлению дросселя для сварки. Алгоритм действий такой:

  1. разобрать трансформатор, очистить катушки от следов старых обмоток;
  2. изготовить из стеклоткани, картона, пропитанного бакелитовым лаком, либо иных подходящих диэлектриков прокладки, которые в дальнейшем будут играть роль индуктивного (воздушного) зазора. Их можно просто приклеить к соответствующим поверхностям катушек. Толщина прокладки должна составлять 0,8-1,0 мм;
  3. произвести намотку на каждую катушку толстого медного или алюминиевого провода. Ориентироваться стоит на круглый провод из алюминия с сечением 36 мм либо медный с аналогичным омическим сопротивлением. На каждую «подковку» наносится 3 слоя по 24 витка в каждом;
  4. между слоями проложить диэлектрический материал — стеклоткань, пропитанный бакелитовым лаком картон или другой диэлектрик. Прокладки должны быть надежными, так как дроссель такой конструкции склонен к самопробою между намотками. Если сопротивление между намотками будет ниже, чем сопротивление воздуха между электродом и присадкой, то пробой произойдет именно между намотками, и устройство ля сварки будет необратимо повреждено.

Намотку надо производить равномерно, без перехлестов, строго в одну и ту же сторону, чтобы «мостик» между катушками был с одной стороны будущего дросселя, а контакты входа и выхода с другой.

В случае ошибки перемычку можно установить и косо. Важно, чтобы ее установка превращала катушки с разным направлением обмотки в катушки с одинаковым направлением по факту.

Включение и проверка

Дроссель для сварки подключается к системе между диодным мостом и массой — контактом, который идет на соединение со свариваемым материалом. Выход диодного моста соединяется со входом дросселя, к выходу собранной катушки индуктивности — соответственно контакт массы.

Всю конструкцию для сварки в сборе необходимо протестировать на кусочке металла того же химического состава и толщины, с каким в дальнейшем планируется вести большую часть сварочных работ. Показателями качества являются:

  • легкий электроподжиг;
  • стабильность дуги;
  • относительно слабый треск;
  • плавное горение без сильных брызг расплава.

Учтите, что введение этого элемента в конструкцию сварочного аппарата приводит не только к стабилизации работы, но и к некоторому падению силы тока . Если инвертор или полуавтомат начал варить хуже, то значит — упала сила тока.

Дроссель нужно отсоединить и снять несколько витков с каждой катушки. Точное количество витков в каждом конкретном случае подбирается эмпирическим путем.

Большинство мастеров, занимающихся частным ремонтом техники, рано или поздно начинают задумываться над тем, как собрать . В наши дни для использования в условиях малых производств производители техники предлагают немалое количество таких аппаратов. Это может быть аппарат, работающий на переменном или постоянном токе, сварочный полуавтомат или устройство с использованием электродов. Однако любой хороший фирменный аппарат стоит больших денег, а его более дешевый аналог, как правило, ненадежен и быстро начинает отказывать в работе. Для сборки сварочного аппарата прежде всего нужно подобрать или изготовить необходимые детали, это касается и такого устройства, как дроссель.

При создании сварочного аппарата своими руками нужно обратить особое внимание на дроссели.

Преимущества, которые дает дроссель для сварочного аппарата

Сварочный дроссель является регулятором силы тока, применяемого для сварки. Непосредственной его задачей является компенсация недостающего сопротивления. Его можно подключить к вторичной обмотке трансформатора. Это позволяет сместить фазы между проходящим током и его напряжением, что облегчает зажигание электрической дуги в начале процесса. Она горит при этом намного более ровно, и это позволяет достичь достаточно высокого качества сварного шва. Без дросселя сила тока всегда будет максимальной, что может создать проблемы в процессе сварки.

Схема сварочного полуавтомата.

Дроссель может входить в конструкцию как сварочного аппарата, который использует в процессе сварки электроды, так и в состав полуавтомата. Сварочный полуавтомат, имеющий его, куда меньше разбрызгивает металл при работе, сам процесс сварки проходит намного мягче, чем при его отсутствии, а сварной шов при этом проваривается на большую глубину. Так что преимущества использования такой детали не вызывают сомнений, и ее можно установить не только на , но и на аналогичный аппарат заводского изготовления. Особенно это касается недорогих моделей, склонных к неполадкам. Это немало облегчит работу на нем и повысит качество сварки.

Вернуться к оглавлению

Варианты использования подручных материалов

Чтобы изготовить сварочный дроссель самостоятельно, прежде всего необходимо найти подходящий материал. Для этого вполне подойдут многие электротехнические устройства, отработавшие свой срок службы и выброшенные за ненадобностью. Поскольку он представляет собой просто сердечник с намотанным на него проводом, выбор здесь довольно широк. Вполне может подойти для этой цели трансформатор, когда-то входивший в конструкцию такого аппарата, как ламповый телевизор. Всю обмотку с него придется снять, а освободившийся сердечник использовать для намотки нового провода, длину и сечение которого необходимо рассчитать заранее.

Для создания дросселя применяются уже использованные электротехнические устройства.

Можно также, если представилась возможность, использовать дроссели, которые стояли на перегоревших лампах уличных фонарей. Старые обмотки при этом придется снять, поскольку они пришли в негодность, но оставить картонные прокладки, которые создавали зазор между основной частью сердечника и замыкающей. При намотке нового провода их нужно будет поставить на прежнее место. В целом же надо отметить, что для намотки дросселя можно использовать любой магнитопроводящий сердечник, имеющий сечение от 10 до 15 см. При этом необходимо сделать между его частями немагнитный промежуток, для чего вставить изолирующую прокладку толщиной от 0,5 до 1 мм.

Вернуться к оглавлению

Технология изготовления и установка

Алюминиевый или медный провод участвует в создании дросселя.

Для намотки дросселя используется алюминиевый или медный провод. В первом случае его сечение должно составить 35-40 мм, во втором достаточно будет и 25 мм. Можно в качестве замены провода использовать и шину, в частности медную, 4 на 6 мм, или более толстую алюминиевую. При этом провод наматывается в количестве от 25 до 40 витков, а шину надо будет намотать в 3 слоя. Если в качестве сердечника выступает вышеупомянутая деталь от лампы уличного фонаря, то намотка производится только на одну из боковых сторон по всей длине до полного заполнения окна. При этом направление намотки менять нельзя. Каждый слой нужно изолировать от предыдущего путем прокладки хлопчатобумажной ткани, стеклоткани или специального изолирующего картона, которые еще желательно пропитывать бакелитовым лаком.

Если для аппарата предусматривается не плавная, а ступенчатая регулировка, то в магнитопроводящем сердечнике дросселя никакого воздушного промежутка не делается, а при намотке через равное количество витков нужно делать отводы. Контакты на них нужно ставить при этом достаточно сильные, поскольку на них будет ложиться большая нагрузка. В целом нужно признать, что установление дросселя положительно влияет на работу любого аппарата для сварки, будь то сварочный полуавтомат или примитивная самоделка. Для аппарата, работающего на переменном токе, его оптимально будет использовать вместе с выпрямителем тока, что позволит тому применять практически всю номенклатуру электродов, да и работать он будет куда мягче.

Можно также ставить дроссель на аппарат вместе с понижающим трансформатором. Он подсоединяется на вторичную цепь сварочного трансформатора. Это повторяет конструкцию фирменного японского полуавтомата, стоящего больших денег. В этом случае дроссель нужно очень точно рассчитать по формуле, которая опубликована в специальной литературе, и преимущество это даст немалое. Такой аппарат будет иметь трансформатор с хорошим рассеиванием, а характеристики его будут четкими.

Стоит сразу предупредить, что прежде, чем собрать сварочный аппарат, собранный своими силами, дроссель необходимо правильно настроить. Это можно сделать двумя основными способами: добавляя или отматывая количество витков провода, или меняя размеры воздушного промежутка в сердечнике.

После того как дроселя будут успешно настроены, самодельный аппарат вполне сможет работать не хуже, чем дорогой фирменный полуавтомат.

Он будет соответствовать именно тем требованиям, которые нужны владельцу.


В.Я. Володин

Появившись более ста лет назад, электродуговая сварка произвела технологическую революцию. К настоящему времени она практически вытеснила все остальные технологии сварки металла. В книге приводятся необходимые сведения по ручной и полуавтоматической электродуговой сварке, а также, в порядке усложнения, — описания различных сварочных источников, пригодных для повторения.

Повествование сопровождается необходимыми методиками расчета, схемами и чертежами. Большое внимание уделяется моделированию с помощью популярной программы SwCAD 111.Следуя авторским рекомендациям, читатели смогут самостоятельно рассчитать и изготовить источники для ручной и полуавтоматической сварки, а желающие приобрести готовое устройство — сделать правильный выбор. Книга предназначена для широкого круга домашних мастеров, радиолюбителей, интересующихся вопросами электросварки.

Глава 1. Немного истории
1.1. Изобретение электросварки
1.2. Развитие электросварки в 20 веке

Глава 2. Основы дуговой сварки
2.1. Электрическая дуга
Физическая сущность
Вольтамперная характеристика
Ручная сварка на постоянном токе
Полуавтоматическая сварка на постоянном токе
Сварка на переменном токе
2.2. Процесс сварки
Сварка неплавящимся электродом
Сварка плавящимся электродом
Перенос металла
2.3. Основные характеристики источников питания сварочной дуги

Глава 3. Симулятор SwCAD III
3.1. Моделирование работы источника питания
Возможности моделирования
Программы моделирования электронных схем
Возможности программы LTspice/SwitcherCAD III
3.2. Работа программы SwCAD III
Запуск программы
Рисуем на ПК схему простейшего мультивибратора
Определение числовых параметров и типов компонентов схемы
Моделирование работы мультивибратора
3.3. Моделирование простейшего источника питания
Низковольтный источник постоянного тока
Тестовый узел

Глава 4. Сварочный источник переменного тока
4.1. Ручная сварка штучными электродами
Условия для обеспечения высокого качества сварки
Модель электрической дуги переменного тока
Сварочный источник с балластным реостатом (активным сопротивлением)
Сварочный источник с линейным дросселем (индуктивным сопротивлением)
Сварочный источник с дросселем и конденсатором
4.2. Сварочный трансформатор
Особенности специализированных сварочных трансформаторов
Как рассчитать индуктивность рассеяния?
Требования к сварочному трансформатору
Расчет сварочного трансформатора
Уточнение конфигурации окна сердечника трансформатора
Конструкция сварочного источника переменного тока

Глава 5. Сварочный источник для полуавтоматической сварки
5.1. Основы полуавтоматической сварки
5.2. Расчеты элементов схемы
Определение параметров и расчет силового трансформатора источника
Процедура настройки модели
Расчет омического сопротивления обмоток
Расчет индуктивности и сопротивления обмоток трансформатора
Расчет габаритных размеров трансформатора
Завершение расчета трансформатора
Расчет дросселя источника подпиточного тока
5.3. Описание конструкции простого источникадля полуавтоматической сварки
Схема простого источника для полуавтоматической сварки
Детали для сварочного полуавтомата
Конструкция и изготовление сварочного трансформатора
Конструкция дросселя
Подключение источника

Глава 6. Сварочный источник для полуавтоматической сварки с тиристорным регулятором
6.1. Регулировка сварочного тока
6.2. Обеспечение непрерывности сварочного тока
6.3. Расчет сварочного трансформатора
6.4. Блок управления
6.5. Описание конструкции сварочного источника с тиристорным регулятором
Принципиальная электрическая схема
Детали
Конструкция сварочного трансформатора
Конструкция дросселя
Подключение источника

Глава 7. Электронный регулятор сварочного тока
7.1. Многопостовая сварка
Многопостовая сварка с подключением через индивидуальный балластный реостат
Электронный аналог балластного реостата ЭРСТ
7.2. Расчет основных узлов ЭРСТ
7.3.Описание ЭРСТ
Основные варианты защиты
Назначение основных узлов ЭРСТ
Принцип действия
Принцип работы и настройка блока А1
Принцип работы и настройка блока А2
Принцип действия стабилизатора
Настройка
Формирование внешних характеристик ЭРСТ
Принцип работы блока управления ЭРСТ
Принцип работы блока драйвера ключевого транзистора
Завершающая настройка ЭРСТ

Глава 8. Инверторный сварочный источник
8.1. Предистория
8.2. Общее описание источника
8.3. Рекомендации для самостоятельного изготовления ИСИ
8.4. Расчет трансформатора прямоходового преобразователя
8.5. Изготовление трансформатора
8.6. Расчет мощности потерь на транзисторах преобразователя
8.7. Расчет дросселя фильтра сварочного тока
8.8. Моделирование работы преобразователя
8.9. Расчет трансформатора тока
8.10. Расчет трансформатора гальванической развязки
8.11. ШИМ-контроллер TDA4718A
Блок управления(БУ)
Генератор, управляемый напряжением (ГУН)
Генератор пилообразного напряжения (ГПН)
Фазовый компаратор (ФК)
Счетный триггер
Компаратор К2
Отключающий триггер
Компаратор КЗ
Компаратор К4
Мягкий старт
Триггер ошибки
Компараторы К5, К6, К8 и перегрузка по току VRF
Компаратор К7
Выходы
Опорное напряжение
8.12. Блок управления инверторного сварочного источника «RytmArc»
Принципиальная схема
Узлы блока управления
8.13. Формирование нагрузочной характеристики источника
Основные участки ВАХ
Средства формирования ВАХ
Методика настройки БУ
8.14. Использование альтернативного ШИМ-контроллера
Замены устаревшего ШИМ-контроллера TDA4718A
Особенности микросхемы TDA4718A
8.15. Трансформаторный драйвер

Глава 9. Полезная информация
9.1. Как испытать неизвестное железо?
9.2. Как рассчитать трансформатор?
9.3. Как рассчитать дроссель с сердечником?
Особенности расчета
Пример расчета № 1
Пример расчета № 2
Пример расчета № 3
9.4. Как рассчитать радиатор?
9.5. Как изготовить сварочные электроды?

Список использованной литературы и ресурсов Интернет

Глава 1. Немного истории
1.1. Изобретение электросварки
1.2. Развитие электросварки в 20 веке
Глава 2. Основы дуговой сварки
2.1. Электрическая дуга
Физическая сущность
Вольтамперная характеристика
Ручная сварка на постоянном токе
Полуавтоматическая сварка на постоянном токе
Сварка на переменном токе
2.2. Процесс сварки
Сварка неплавящимся электродом
Сварка плавящимся электродом
Перенос металла
2.3. Основные характеристики источников питания сварочной дуги
Глава 3. Симулятор SwCAD III
3.1. Моделирование работы источника питания
Возможности моделирования
Программы моделирования электронных схем
Возможности программы LTspice/SwitcherCAD III
3.2. Работа программы SwCAD III
Запуск программы
Рисуем на ПК схему простейшего мультивибратора
Определение числовых параметров и типов компонентов схемы
Моделирование работы мультивибратора
3.3. Моделирование простейшего источника питания
Низковольтный источник постоянного тока
Тестовый узел
Глава 4. Сварочный источник переменного тока
4.1. Ручная сварка штучными электродами
Условия для обеспечения высокого качества сварки
Модель электрической дуги переменного тока
Сварочный источник с балластным реостатом (активным сопротивлением)
Сварочный источник с линейным дросселем (индуктивным сопротивлением)
Сварочный источник с дросселем и конденсатором
4.2. Сварочный трансформатор
Особенности специализированных сварочных трансформаторов
Как рассчитать индуктивность рассеяния?
Требования к сварочному трансформатору
Расчет сварочного трансформатора
Уточнение конфигурации окна сердечника трансформатора
Конструкция сварочного источника переменного тока
Глава 5. Сварочный источник для полуавтоматической сварки
5.1. Основы полуавтоматической сварки
5.2. Расчеты элементов схемы
Определение параметров и расчет силового трансформатора источника
Процедура настройки модели
Расчет омического сопротивления обмоток
Расчет индуктивности и сопротивления обмоток трансформатора
Расчет габаритных размеров трансформатора
Завершение расчета трансформатора
Расчет дросселя источника подпиточного тока
5.3. Описание конструкции простого источника для полуавтоматической сварки
Схема простого источника для полуавтоматической сварки
Детали для сварочного полуавтомата
Конструкция и изготовление сварочного трансформатора
Конструкция дросселя
Подключение источника
Глава 6. Сварочный источник для полуавтоматической сварки с тиристорным регулятором
6.1. Регулировка сварочного тока
6.2. Обеспечение непрерывности сварочного тока
6.3. Расчет сварочного трансформатора
6.4. Блок управления
6.5. Описание конструкции сварочного источника с тиристорным регулятором
Принципиальная электрическая схема
Детали
Конструкция сварочного трансформатора
Конструкция дросселя
Подключение источника
Глава 7. Электронный регулятор сварочного тока
7.1. Многопостовая сварка
Многопостовая сварка с подключением через индивидуальный балластный реостат
Электронный аналог балластного реостата ЭРСТ
7.2. Расчет основных узлов ЭРСТ
7.3. Описание ЭРСТ
Основные варианты защиты.
Назначение основных узлов ЭРСТ
Принцип действия
Принцип работы и настройка блока А1
Принцип работы и настройка блока А2
Принцип действия стабилизатора
Настройка
Формирование внешних характеристик ЭРСТ
Принцип работы блока управления ЭРСТ
Принцип работы блока драйвера ключевого транзистора
Завершающая настройка ЭРСТ
Глава 8. Инверторный сварочный источник
8.1. Предистория
8.2. Общее описание источника
8.3. Рекомендации для самостоятельного изготовления ИСИ
8.4. Расчет трансформатора прямоходового преобразователя
8.5. Изготовление трансформатора
8.6. Расчет мощности потерь на транзисторах преобразователя
8.7. Расчет дросселя фильтра сварочного тока
8.8. Моделирование работы преобразователя
8.9. Расчет трансформатора тока
8.10. Расчет трансформатора гальванической развязки
8.11. ШИМ-контроллер TDA4718A
Блок управления (БУ)
Генератор, управляемый напряжением (ГУН)
Генератор пилообразного напряжения (ГПН)
Фазовый компаратор (ФК)
Счетный триггер
Компаратор К2
Отключающий триггер
Компаратор К3
Компаратор К4
Мягкий старт
Тригер ошибки
Компараторы К5, К6, К8 и перегрузка по току VRF
Компаратор К7
Выходы
Опорное напряжение
8.12. Блок управления инверторного сварочного источника «RytmArc»
Принципиальная схема
Узлы блока управления
8.13. Формирование нагрузочной характеристики источника
Основные участки ВАХ
Средства формирования ВАХ
8.14. Методика настройки БУ
8.15. Использование альтернативного ШИМ-контроллера
Замены устаревшего ШИМ-контроллера TDA4718A
Особенности микросхемы TDA4718A
8.16. Трансформаторный драйвер
Глава 9. Полезная информация
9.1. Как испытать неизвестное железо?
9.2. Как рассчитать трансформатор?
9.3. Как рассчитать дроссель с сердечником?
Особенности расчета
Пример расчета №1
Пример расчета №2
Пример расчета №3
9.4. Как рассчитать радиатор?
9.5. Как изготовить сварочные электроды?
Список использованной литературы и ресурсов Интернет

На рынке очень много недорогих сварочных полуавтоматов, которые никогда не будут работать нормально, потому что сделаны изначально неправильно. Попробуем это исправить на уже пришедшим в негодность сварочном аппарате.

Попал мне в руки китайский сварочный полуавтомат Vita (в дальнейшем буду называть просто ПА), в котором сгорел силовой трансформатор, просто знакомые попросили отремонтировать.

Жаловались на то, что когда ещё работал, то им невозможно было что-то сварить, сильные брызги, треск и т.д. Вот решил я его довести до толку, и заодно поделится опытом, может, кому то пригодится. При первом осмотре я понял, что трансформатор для ПА был намотан не правильно, поскольку первичная и вторичная обмотки были намотаны отдельно, на фото видно, что осталась только вторичка, а первичка была намотана рядом, (так мне трансформатор принесли).

А это значит, что такой трансформатор имеет круто падающую ВАХ (вольт амперная характеристика) и подходит для дуговой сварки, но не для ПА. Для Па нужен трансформатор с жёсткой ВАХ, а для этого вторичная обмотка трансформатора должна быть намотана поверх первичной обмотки.

Для того чтобы начать перемотку трансформатора нужно аккуратно отмотать вторичную обмотку, не повредив изоляцию, и спилить перегородку разделяющую две обмотки.

Для первичной обмотки я буду использовать медный эмалевый провод толщиной 2 мм, для полной перемотки нам хватит 3,1 кг медного провода, или 115 метров. Мотаем виток к витку от одной стороны к другой и обратно. Нам нужно намотать 234 витка — это 7 слоёв, после намотки делаем отвод.

Первичную обмотку и отводы изолируем матерчатой изолентой. Дальше мотаем вторичную обмотку тем проводом, что мы отмотали раньше. Наматываем плотно 36 витков, шинкой 20 мм2, приблизительно 17 метров.

Трансформатор готов, теперь займемся дросселем. Дроссель не менее важная часть в ПА без которой он не будет нормально работать. Сделан он неправильно, потому что не имеет зазора между двумя частями магнитопровода. Дроссель я намотаю на железе от трансформатора ТС-270. Трансформатор разбираем и берём с него только магнитопровод. Провод того же сечения, что и на вторичной обмотке трансформатора мотаем на один крен магнитопровода, или на два последовательно соединив концы, как вам нравится. Самое главное в дросселе это немагнитный зазор, который должен быть между двух половинок магнитопровода, достигается это вставками из текстолита. Толщина прокладки колеблется от 1,5 до 2 мм, и определяется экспериментальным путём для каждого случая отдельно.

Глава 1
Немного истории
1.1. Изобретение электросварки
1.2. Развитие электросварки в 20 веке

Глава 2
Основы дуговой сварки
2.1. Электрическая дуга
Физическая сущность
Вольтамперная характеристика
Ручная сварка на постоянном токе
Полуавтоматическая сварка на постоянном токе
Сварка на переменном токе
2.2. Процесс сварки
Сварка неплавящимся электродом
Сварка плавящимся электродом
Перенос металла
2.3. Основные характеристики источников питания сварочной дуги

Глава 3
Симулятор LTspice IV
3.1. Моделирование работы источника питания
Возможности моделирования
Программы моделирования электронных схем
Возможности программы LTspice IV
3.2. Работа программы LTspice IV
Запуск программы
Рисуем на ПК схему простейшего мультивибратора
Определение числовых параметров и типов компонентов схемы
Моделирование работы мультивибратора
3.3. Моделирование простейшего источника питания
Низковольтный источник постоянного тока
Тестовый узел

Глава 4
Сварочные источники переменного тока
4.1. Особенности терминологии
4.2. Основные требования к сварочному источнику
4.3. Модель электрической дуги переменного тока
4.4. Сварочный источник с балластным реостатом (активным сопротивлением)
4.5. Сварочный источник с линейным дросселем (индуктивным сопротивлением)
4.6. Сварочный трансформатор
4.7. Как рассчитать индуктивность рассеяния?
Индуктивность рассеяния трансформатора с цилиндрическими обмотками
Индуктивность рассеяния трансформатора с разнесенными обмотками
Индуктивность рассеяния трансформатора с дисковыми обмотками
4.8. Требования к сварочному трансформатору
4.9. Классический источник переменного тока
Расчет сварочного трансформатора с развитым магнитным рассеянием

Конструкция сварочного источника переменного тока
4.10. Сварочный источник Буденного
Пути уменьшения величины потребляемого тока
Конструктивно-электрическая схема сварочного источника Буденного
Общие принципы проектирования сварочного источника
Модель сварочного источника Буденного
Преодоление конструктивных ограничений сварочного источника Буденного
Определение габаритной мощности трансформатора
Выбор сердечника
Расчет обмоток
Расчет магнитного шунта
Расчет индуктивности рассеяния
Моделирование результатов расчета
Конструкция сварочного источника с альтернативной конструкцией трансформатора
4.11. Сварочный источник с резонансным конденсатором
Расчет сварочного источника с резонансным конденсатором
Расчет сварочного трансформатора
Проверка размещения обмоток в окне сварочного трансформатора
Расчет индуктивности рассеяния
Моделирование сварочного источника
4.12. Стабилизаторы дуги переменного тока
Особенности сварочной дуги переменного тока
Принцип действия стабилизатора дуги
Первая версия стабилизатора дуги
Детали
Вторая версия стабилизатора дуги
Детали

Глава 5
Сварочный источник для полуавтоматической сварки
5.1. Основы полуавтоматической сварки
5.2. Расчеты элементов схемы
Определение параметров и расчет силового трансформатора источника
Процедура настройки модели
Расчет омического сопротивления обмоток
Расчет индуктивности и сопротивления обмоток трансформатора
Расчет габаритных размеров трансформатора
Завершение расчета трансформатора
Расчет дросселя источника подпиточного тока
5.3. Описание конструкции простого источника для полуавтоматической сварки
Схема простого источника для полуавтоматической сварки
Детали для сварочного полуавтомата
Конструкция и изготовление сварочного трансформатора
Конструкция дросселя
Подключение источника

Глава 6
Сварочный источник для полуавтоматической сварки с тиристорным регулятором
6.1. Регулировка сварочного тока
6.2. Обеспечение непрерывности сварочного тока
6.3. Расчет сварочного трансформатора
6.4. Блок управления
6.5. Описание конструкции сварочного источника с тиристорным регулятором
Принципиальная электрическая схема
Детали
Конструкция сварочного трансформатора
Конструкция дросселя
Подключение источника

Глава 7
Электронный регулятор сварочного тока
7.1. Многопостовая сварка
Многопостовая сварка с подключением
через индивидуальный балластный реостат
Электронный аналог балластного реостата ЭРСТ
7.2. Расчет основных узлов ЭРСТ
7.3. Описание ЭРСТ
Основные варианты защиты
Назначение основных узлов ЭРСТ
Принцип действия
Принцип работы и настройка блока А1
Детали
Принцип работы и настройка блока А2
Принцип действия стабилизатора
Детали
Настройка
Формирование внешних характеристик ЭРСТ
Принцип работы блока управления ЭРСТ
Принцип работы блока драйвера ключевого транзистора
Завершающая настройка ЭРСТ

Глава 8
Инверторный сварочный источник
8.1. Немного истории
8.2. Общее описание источника
8.3. Рекомендации для самостоятельного изготовления ИСИ
8.4. Расчет трансформатора прямоходового преобразователя
8.5. Изготовление трансформатора
8.6. Расчет мощности потерь на транзисторах преобразователя
8.7. Расчет дросселя фильтра сварочного тока
8.8. Моделирование работы преобразователя
8.9. Расчет трансформатора тока
8.10. Расчет трансформатора гальванической развязки
8.11. ШИМ-контроллер TDA4718A
8.12. Принципиальная схема блока управления инверторного сварочного источника «RytmArc»
8.13. Формирование нагрузочной характеристики источника
8.14. Методика настройки БУ
8.15. Выносной пульт управления (модулятор)
8.16. Использование альтернативного ШИМ-контроллера
8.17. Трансформаторный драйвер
8.18. Демпфирующая цепь, не рассеивающая энергию

Глава 9
Инверторный сварочный источник COLT-1300
9.1. Общее описание
О чем эта глава
Назначение
Основные характеристики
9.2. Силовая часть
Данные моточных узлов
9.3. Блок управления
Функциональная схема
Принцип действия
Принципиальная схема
Реализация функции Anty-Stick
Реализация функции Arc Force
9.4. Настройка

Глава 10
Полезная информация
10.1. Как испытать неизвестное железо?
10.2. Как рассчитать трансформатор?
10.3. Как рассчитать дроссель с сердечником?
Особенности расчета
Пример расчета дросселя № 1
Пример расчета дросселя № 2
Пример расчета дросселя № 3
10.4. Расчет дросселей с порошковым сердечником
Преимущества порошковых сердечников
Адрес программы Inductor Design Software и ее установка
Функции автоматического расчета программы Inductor Design Software
Дополнительные функции программы Inductor Design Software
Панель меню программы Inductor Design Software
Пример расчета дросселя в программе Inductor Design Software
Программа Magnetics Inductor Design Using Powder Cores
Пример расчета дросселя в программе Magnetics Inductor Design Using Powder Cores
10.5. Как рассчитать радиатор?
10.6. Гистерезисная модель нелинейной индуктивности симулятора LTspice
Краткое описание гистерезисной модели нелинейной индуктивности
Подбор параметров гистерезисной модели нелинейной индуктивности
10.7. Моделирование сложных электромагнитных компонентов при помощи LTspice
Проблема моделирования
Принцип подобия электрических и магнитных цепей
Двойственность физических цепей
Модель неразветвленной магнитной цепи
Моделирование разветвленной магнитной цепи
Моделирование сложной магнитной цепи
Адаптация модели для магнитных цепей, работающих с частичным или полным подмагничиванием
Создание модели интегрированного магнитного компонента
10.8. Как изготовить сварочные электроды?

Каталог радиолюбительских схем. «Вольтодобавка» в сварочном аппарате

Каталог радиолюбительских схем. «Вольтодобавка» в сварочном аппарате

«Вольтодобавка» в сварочном аппарате

Л. СТЕПАНОВ, г. Истра Московской обл.

Самодельные малогабаритные сварочные аппараты с переменным сварочным током и питанием от бытовой электросети просты в изготовлении и недороги, однако работать с ними трудно — устойчивость дуги недостаточна. Улучшить работу аппарата можно, если перевести его на постоянный сварочный ток [1].

Как показывает практика, при постоянном сварочном токе для горения дуги вполне достаточно напряжения 30…40 В. Но зажечь ее по-прежнему не просто. Для маломощного сварочного аппарата — это самый тяжелый режим, так как происходит замыкание вторичной обмотки на короткое время до момента отведения электрода от детали.

Облегчить процесс зажигания дуги можно повышением напряжения холостого хода сварочного аппарата. Однако повышение этого напряжения ограничено требованиями электробезопасности — оно не должно превышать 80 В согласно ГОСТ95-77Е [2]. К тому же, как уже было сказано, оптимум по условиям горения дуги находится, наоборот, в зоне меньших значений напряжения.

Поэтому я поставил себе задачу разработать сварочный аппарат, у которого напряжение холостого хода повышено «вольтдобавкой», а после зажигания дуги уменьшается до оптимальных 30…40 В. Схема такого аппарата показана на рис. 1.

Сварочный трансформатор Т1 с диодным выпрямителем VD1—VD4 дополнен еще одной обмоткой III, выпрямителем VD5—VD8, дросселем L1 и переключательным диодом VD9. Обмотка III намотана на отдельном каркасе и рас-

положена рядом с катушкой, содержащей сетевую и основную обмотки I и II соответственно.

Основная вторичная обмотка II рассчитана на напряжение 30…40 В и ток 100… 120 А. Она обеспечивает рабочий сварочный ток в дуге. Дополнительная вторичная обмотка III рассчитана на напряжение 12… 14 В при токе 10 А. Она формирует напряжение «вольтдобавки».

До момента касания электродом свариваемых деталей напряжение на нем равно сумме значений выпрямленного напряжения обеих обмоток, поскольку переключательный диод VD9 оказывается закрытым выходным напряжением моста VD5—VD8, а оба моста — включенными последовательно. Напряжение на электроде равно 42…54 В.

При касании электродом детали диод VD9 открывается, напряжение на нем уменьшается до 1,5 В, обеспечивая сварочный ток через зажженную дугу. Поскольку через диоды VD5—VD8 и дроссель L1 сварочный ток не протекает, для этого моста достаточно десятиам-перных диодов, а дроссель можно намотать на любом магнитопроводе сечением 10… 12 см2. Обмотку выполняют проводом ПЭВ-2 диаметром 1,6… 1,8 мм до заполнения окна. При сборке магнито-провода необходимо предусмотреть немагнитный зазор между его частями, вложив прокладку из прессшпана толщиной 0,5… 1 мм.

Вместо КД242Б можно использовать диоды Д305, Д214, КД213А, КД213В, КД2999А—КД2999В. Их надо установить на пластинчатые теплоотводы размерами 100x100x5 мм. Вместо ВК2-200 подойдут диоды Д161-250, Д161-320.

Эти диоды лучше всего смонтировать на теплоотводы заводского изготовления. Здесь могут быть полезны рекомендации, данные в [2].

Конструктивно устройство «вольтдобавки» может быть выполнено и в виде приставки к бытовому сварочному аппарату, переведенному на постоянный сварочный ток. Схема такой приставки показана на рис. 2. Магнитопровод трансформатора Т1 и его сетевая обмотка — от сетевого трансформатора ТС-270, используемого в старых ламповых телевизорах цветного изображения. Вторичную обмотку на 12 В при токе до 15 А надо намотать самостоятельно. Целесообразно предусмотреть у этой обмотки выводы на 13, 14и 15Вс тем, чтобы приставку можно было использовать и для других целей, в частности для зарядки аккумуляторных батарей.

Переключательный диод VD5 входит в состав приставки. Дроссель L1 такой же, как указано выше.

Если немного изменить схему на рис. 2, можно уменьшить число необходимых диодов, а значит, и громоздких теплоотводов для них, как показано на рис. 3. Работа этого узла аналогична описанному выше, разница лишь в том, что роль переключательных выполняют два диода VD1, VD3 выпрямительного моста аппарата. Они открываются поочередно на половину периода сетевого напряжения, когда дуга еще не зажжена, и закрыты, когда дуга горит.

В заключение следует заметить, что при изготовлении сварочного аппарата целесообразно воспользоваться информацией, изложенной в [2].

ЛИТЕРАТУРА

1.  Клабуков А., Бабинцев С. Доработка сварочного аппарата. — Радио, 2002, № 4, с. 42.

2.   Володин В. Сварочный трансформатор: расчет и изготовление. — Радио, 2002, № 11, с. 35, 36; №12, с. 38, 39.

РАДИО № 6, 2004, с.40





Сварочный полуавтомат

СВАРОЧНЫЙ ПОЛУАВТОМАТ СВОИМИ РУКАМИ

        Прежде всего хочу сразу озвучить один момент — эта страница будет дополняться по мере готовности проделанных работ, так что кому интересна тема не забывайте добавить страницу в закладки, а при следующем посещении нажать кнопочку ОБНОВИТЬ СТРАНИЦУ.
   
    Насмотревшись Американского кина по сварке алюминия решил, что мне такая горелка тоже нужна. В местных магазинах я такое даже искать не стал, а посетив пару Ростовских пришел в выводу, что опять выручит Китай.

   Разумеется, что горелка с Али гораздо меньше и наверняка менее надежна, чем показанная в видео, но пока руки крюки можно потренироваться и на подобной игрушке, тем более цена не очень то и кусачая.
   Покопавшись вечерок сделал заказ. При выборе прежде всего исходил из рейтинга магазина, но и на цену не забывал поглядывать. Здесь и рейтинг высокий и отправка из России, правда видел на пару сотен дешевле у кого то, но отправка из Китая.

   Непосредственно перед заказом я изучил отзывы об этой штуке не только у этого продавца, но и у других торгашей, у кого были продажи этой горелки.
   Положительных отзывов по работе довольно много, а вот по доставке есть косяки – держатель катушки довольно часто отламывается во время транспортировки.

   Моя горелка с доставкой из России транспортной компанией и я, дурачек, надеялся, что за неделю пути ее не успеют сломать.
   Успели…
   Врать не буду – в данном случае я даже не много обрадовался. Судя по отзывам продавец довольно адекватный, а в подобных ситуациях я предпочитаю сначала пообщаться с продавцом. В моих планах было выморозить из продавца долларов 7-8 и на эти деньги купить токосъемников для этой горелки.
   Токосъемники, ну или наконечники для подобных горелок называются на Али как MIG наконечник горелки Push Pull , поэтому обращайте внимание на тип наконечника, чтобы не купить что то не нужное. РЕЗУЛЬТАТЫ ПОИСКА НАКОНЕЧНИКОВ.
   Но вернемся к моей беде. Пишу продавцу, что я расстроен, что горелка сломана и у меня есть и фотографии и видео на этот счет.
   Ютуба у них нет, поэтому подобные сюжеты я выгружаю у себя на сайте и даю ссылку. У кого нет сайта могут выгрузить на Гуглодиск, не забыв открыть доступ.
   Но меня попросили выслать видео и фото по электронке. Надо? Выслал…
   Дальше случилось две неожиданности.
   Со следующим ответом продавец согласился, что товар действительно сломан, а через минуту отправил трекномер отправки – он отправил новую горелку.
   Это была первая неожиданность. Мне как бы две горелки не нужно, опять же не факт, что горелка не придет в таком же состоянии.
   Переварив полученную информацию, не много поехидничав, что теперь у меня горелка и для левой руки и для правой пишу Китайцу, что мол спасибо.
   Дальше пришла пора второй неожиданности – спустя две недели статус посылки не изменился – ожидает отправки из Китая.
   Пишу продавцу – мол фигня какая то. Тот отвечает, что это нормально, нужно ждать.
   Ладно, ждем. Сам себе думаю – в принципе полученную горелку можно отремонтировать и как останется пару часов до закрытия защиты покупателя открою спор и тупо верну все деньги, а этому продавану влеплю одну звезду по рейтингу.
   Кстати, о продавце. Подобные горелки для полуавтоматической сварки на Али продаются двух основных видов — под катушку 0,5 кг и под катушку 1 кг проволоки. Под килограмовую катушку горелки чуток дороже, но катушка имеет чехол, предохраняющий от пыли, а это существенный плюс. Да и килограмовые катушки купить легче, по крайнймере у нас.
   Повторюсь — я выбирал исходя из рейтинга продавца и точки отправки, покупал НА ЭТОЙ СТРАНИЦЕ. Однако это не самый дешевый вариант, поэтому можете воспользоваться РЕЗУЛЬТАТАМИ ПОИСКА горелки для сварки MIG.
  
   Дальше ожидание, потом еще ожидание и еще ожидание…
   Ну а пока новая горелка лежит на границе решил озадачится ремонтом уже присланного чуда. Для этого вплавливаю в место слома проволоку – огрызки застрявшей в Овермане проволоки не выкидываю – она бывают частенько нужны для подобного рода ремонтов.
   Дальше, для усиления накладываются заплатки из ткани и все это пропитывается эпоксидкой и приглаживается паяльником.
   Теперь можно не переживать, что этот хвост отломится, однако заплатки видно и согласно феншую – если не можешь спрятать – сделай чтобы было видно. Однако получилось спрятать – не много поразмышляв я выдул на горелку остатки автомобильного антигравия и в принципе получилось довольно не плохо и на ощупь эта штука стала поприятней.

   УХ ТЫ! Посылка сдвинулась с места!
   И вот тут до меня начинает потихоньку доходить как все происходит в реальности.
   У них там в Шанхае огромнейший дирижабль и они целый месяц его грузили вручную. Загрузив под завязку дирижабль тронулся в путь.
   Почему дирижабль? Да потому что самолет не может лететь 7 суток.
   Дальше прибыв в Екатеринбург его два дня разгружали. Тут явно носили не по одному пакетику, ну или все таки использовали погрузчики.
   После растаможки уже все пошло как обычно – Подольск – Ростов – Новошахтинск – Вручение.
В этот раз упаковано в картонную коробку, помятую, но изгибов нет и надежы, что все в порядке усиливаются.
   Ну да – все отлично. Подаем на двигатель напряжение для проверки вращения – все работает.
Теперь осталось доделать блок питания для этого моторчика и клапана, ну и решить вопрос с силовым питанием.
   Ну и послесловие. Механизм данного аппарата рассчитан на использования алюминиевой сварочной проволоки, однако и стальную проволоку эта машинка тянет вполне уверенно, правда пришлось клеить пористую резину на стопорную планку – стальная проволока более пружинная и спокойно лежать на катушке ей не захотелось.

Для тех, кто ни чего не понял кинушка:

      С гореклой разобрались, теперь будем разбираться от чего запитать ее двигатель.
    Прежде всего нужен блок питания с регулируемым выходным напряжением и поскольку силовой части для самой сварки пока нет, то было решено попробовать запитать двигатель горелки от однотактного прямоходового преобразователя без обмотки размагничивания — так называемый кососй мост.
    Во первых можно проверить схемотехнику — если что то пойдет не так, то сгорят дешевые транзисторы, а не дорогие. Если все пойдет так, то можно будет проверить принципы построения данной игрушки, наступить на грабли, не переживая, что придется перематывать большие трансформаторы. В общем в качестве блока питания протяжного механизма для данной горелки было решено попробовать использовать модель, т.е. уменьшенную копию.
    Не много порыскав по интернету было выяснено, что именно того, что надо мне нет. Есть довольно много схем, которые можно адаптировать под регулятор оборотов двигателя протяжного механизма, поэтому не много поразмышляв новый велосипед изобретать не стал.
    Перед тем как пойдет речь о предлагаемой схеме лучше ПОЧИТАТЬ СТАТЬЮ об используемом контроллере, ну или хотя бы кино посмотреть:

    Это все для того, чтобы по десять раз не писать одно и то же, а сразу перейти к принципиальной схеме, ведь данный блок питания ну очень сильно похож на простейший сварочный инвертор и все процессы в нем происходят точно так, как и в его могучих собратьях. Хотя есть некоторое, довольно существенное отличие — сварочные инветоры MMA это стабилизаторы тока, а для управления двигателем нужен стабизатор напряжения. Впрочем для полуавтоматической сварки MIG / MAG тоже нужен стабилизатор напряжения. Так что данная модель — выстрел по двум зайцам.

НАЖМИТЕ НА КАРТИНКУ — СХЕМА ОТКРОЕТСЯ В НОВОМ ОКНЕ И ХОРОШЕМ КАЧЕСТВЕ.

    Для начала о деталях.
    L1 — фильтр от какого то компьютерного блока питания, взят на кольце потому что гибкие выводы дают несколько больше свободы при установке.На плате размеры под телевизионый фильтр питания.
    VD3 — диодный мост на 4…10 ампер.
    С6 — обязательно пленочный конденсатор на 0,47…2,2 мкФ на 400 вольт.
    С7 — электролит на 220…330 мкФ
    TV1 — управляющий трансформатор с компьютерного блока питания. Первичка — две обмотки по 40 витков, вторичка — две обмотки по 50 витков. На моем экземпляре все обмотки по 40 витков — на вторичке напряжение чуточку маловато. Между вторичками ОБЯЗАТЕЛЬНО изоляция. НЕ МОТАТЬ ВТОРИЧКУ В ДВА ПРОВОДА!!!
    TV2 — управляющий трансформатор от другого компьютерного блока питания. Вторичка 200 витков проводом 0,015 мм, первичка — один ПОЛНЫЙ виток проводом… Я мотанул монтажным проводом сечением 0,15 мм.
    TV3 — в моем случае это сердечник от ТПИ. Витки считались по программе Денисенко. Отвод сделан на 5 витке от верхнего вывода.
    Резисторы R3 и R10 на 5 кОм, ЛИНЕЙНЫЕ.
    VD14 — Шотки на 30А 100 Вольт.
    Пара слов о С8 — этот конденсатор призван подавлять выбросы в момент открытия и закрытия управляющего транзистора. Однако было замечено, что в некоторых случаях выбросы наоборот начинали увеличиваться. В этом случае необходимо заменить С8 на резистор от 750 до 1000 Ом.
    Этот блок питания затачивался под определенную задачу, а именно для работы с электродвигателем определенной мощности, поэтому в нем есть некоторые недоработки. Хотя недоработками я бы это не стал называть, скорей это специфика.
    Дело в том, что по определнию максимальные обороты двигателя использоваться не будут, поскольку это уже для сварщиков которые с горелкой родились. Отсутствие максимальной длительности управляющего сигнала позволило выкинуть несколько деталей, но сделало данный БП довольно специализированным. В частности цепи затворов силовых транзисторов были упрощены до максимума.
    Если же данная схемотехника будет использоваться в качестве универсального источника питания, то необходимо внести некоторые поправки в принципиальную схему, о которых будет сказано чуть позже, а пока разбираемся с питанием для этого питателя.
    В качестве источника питания 15 вольт использовался первоначально блок питания от DVD плеера, но пока все это обдумывалось, разрабатывалась плата из Китая пришел малыш на 12 вольт 0,45 А:

    В реальности этот блок питания крохотный, однако его мощности хватило и для питания контроллера UC3845 и релюшки с обмоткой на 12 вольт, причем релюшку он отработал и с контактами на 30 ампер. Блок питания покупал ЗДЕСЬ, шло ровно два месяца, трек не отслеживался.

НАЖМИТЕ НА КАРТИНКУ — СХЕМА ОТКРОЕТСЯ В НОВОМ ОКНЕ И ХОРОШЕМ КАЧЕСТВЕ.

    В схеме приведены номиналы резисторов, R8 это тот, который возле трансформатора, а не тот, который возле светодиода.

    Кстати сказать, диапазон минимального сетевого при замене резистора обнаружен не был — или ЛАТРа не хватает.
        Зачем реле? Ну как зачем? В данном случае нужно еще клапан открывать, который газ подает в область сварки. Это как бы раз. Опять же как не верти, а при проведении сварочных работ полуавтоматом необходимо подачу проволоки включать и выключать. Понятно, что UC3845 можно остановить подав ноль на первый вывод микросхемы — исчезнет питание, исчезнет вращение. Однако я просмотрел довольно много схем сварочных аппаратов и обнаружился один, довольно интересный момент.
    На полуавтоматах среднего и высокого класса управление двигателем осуществляется при помощи реле, причем контакт переключателя подключается к электродвигателю. Если нужно, чтобы двигатель вращался контакт замыкается на напряжение питание двигателя. Если же нужно остановить двигатель, то этот контакт переключается на второй вывод двигателя.

    Тем, кто не понял зачем так делается напоминаю, что электродвигатель с постояннми магнитами обращаемый, т.е. если на него подать напряжение, то будет вращаться вал двигателя, а если вращать вал, то он будет выдавать напряжение. Однако если на этом генераторе будет нагрузка вал будет вращать труднее и чем больше нагрузка, тем придется прилагать больше усилий.
    После снятия напряжения питания вал двигателя будет вращаться еще какое то время — инерция. Однако если нагрузить это генератор, то энергия энерции ирасходуется очень быстро. Если выводы электродвигателя замкнуть между собой, что и происходит во время выключения, то вал двигателя остановится практически мгновенно не выдав ни милиметра лишней сварочной проволоки.
    Но тут есть не большое НО… Чем мощнее двигатель, тем более мощные нужны контакты на переключающем реле. Именно поэтому для проверки и использовалось реле с контактами на 30 А.

    Подобные реле довольно часто используются для софтстарта сварочных аппаратов, поэтому я и взял их несколько штук. Покупал ЗДЕСЬ.
    Нет, нет, я не забыл про клапан. Клапан будет на 220 вольт, а включать его собираюсь при помощи твердотельного реле на 2 ампера, так что светодиодик этого реле я бы и нагрузкой не назвал. Покупал еще года два назад, но проверив ссылку обнаружил, что у моего продавца они еще есть. Брал ЗДЕСЬ.
    Но вернемся к блокам питания:
    На удивление оба блока питания нормально отработали при нижнем напряжении в 160 вольт и верхнем 270. Это я округлил диапазон. Впрочем по поводу большого у меня особых сомнений не было, а вот малыш действительно удивил.
    Ну по комплектухе вроде разобрались,чуток принципа работы:
    В момент подачи питания на контроллер он начинает формировать управляющие импульсы, которые ключуют управляющий транзистор. Управляющий транзистор нагружен на управляющий трансформатор, ну или трансформатор гальванической развязки (видел и такое название). Принцип работы этого трансофрматора — прямоходовой с размагничивающей обмоткой. Есть варианты схем без таковой, но я решил ее использовать — диодик нужен по любому, а намотать обмотку двойным проводом нужно столько же времени, что и одинарным.
    Вторичных обмоток у управляющего трансофрматора две, они то и формируют импульсны на затворы силовых транзисторов. После обмоток стоят диоды VD6, VD7, отсекающие отрицательное напряжение после обмоток. Дальше нагрузочные резисторы R17 и R18. Нагрузочные, потому что в данном блоке питания используются транзисторы с довольно низкой емкостью затвора и если увеличивать сопротивление этих резисторов, то напряжение с трансформатора начинает модулироваться ударными процессами в момент открытия и закрытия управляющего транзистора VT2. Для подавления этого звона дополнительно установлен конденсатор C9 (150…330 пкФ).
    Стабилитроны VD8 и VD9 служат для ограничения напряжения на затворах силовых транзисторов, причем для открывающего напряжения это 18 вольт — напряжение стабилизации стабилитрона. А для закрывающего напряжения это 0,6…0,7 вольта — напряжение падения на кристалле стабилитрона в прямом включении. Закрывающее отрицательное напряжение проходит через резисторы R15 и R16.
    Для ускорение закрытия силовых транзисторов и подавления звона используются снаберы на R21-VD10-C9 для верхнего плеча и R22-VD11-C10 для нижнего. Мощность данного блока питания не большая, следовательно и снаберные цепи не сильно мощные.
    Для размагничивания первичной обмотки используются диоды VD12 и VD13. В этой цепочке стоят HER508, хотя лучше поставить SF56 — они гораздо быстрее.
    Выходной снабер R23 и С11 я ставить не стал — звон в итоге получился не большой, поэтому я решил не использовать его.
    VD14 в моем случае 30CPQ100, поскольку из компьютерных блоков питания аналогичные сборки по вольтажу не подходят.
    L2 конечно же лучше использовать исходя из расчетов, однако я впаял уже готовую индуктивность выдранную из какого то блока питания. Подобную вольность я себе позволил потому что данный блок питания ни когда не будет работать на ту мощность, которую он способен выдать, следовательно вероятные потери в дросселе не критичны.
    Возвращаемся к моменту подачи питания — контроллер начинает стартовать, т.е. появляется первый управляющий импульс. Пройдя управляющий трансформатор этот импульс открывает сразу оба силовых транзистора и ток первичного питания начинает течь через первичные обмотки силового трансформатора и трансформатора тока.
    Разумеется, что С13 сейчас разряжен и по логичке вроде бы короткое замыкание, однако это не совсем так — ток не может достичь максимального значения мгновенно — мешает дроссель L2 и напряжение на С13 начинает увеличиваться плавно, таким образом исключая мгновенное значение тока заряда.
    Если же на выходе блока питания присутствует нагрузка, то все таки возникает вероятность достижения критического значения, однако этого не произойдет — если ток превысит определенное значение напряжения на выходе трансформатора тока станет достаточно для того, чтобы выключить управляющий импульс по входу регулировки тока — вывод 3.
    Таким образом на первом такте полностью исключается перегрузка силовых транзисторов — мало того, что ток ограничивается индуктивностью L2, так ток еще и контролируется трансформатором тока.
    Как только управляющий импульс заканчивается на выходе управляющего трансформатора формируется отрицательное наряжение закрытия силовых транзисторов и они разумеется закрываются.
    Напряжение на выходе силового трансформатора исчезает, остатки магнитного поля в сердечнике силового трансформатора вызывают появление напряжения самоиндукции и это напряжение тупо сливается обратно в шину первичного питания через диоды VD12 и VD13.
    Накопленная электромагнитная энергия в дросселе L2 скидывается в нагрузку через через нижний диод диодной сборки и таким образом во время отсутстивия напряжения на выходе трансформатора в нагрузку продолжает поступать напряжение.
    Вот теперь довольно важный момент — если необходимо получить высокий КПД, то выходной дроссель L2 не должен насыщаться при максимальной нагрузке и максимальной длительности импульсов напряжения с выходного трансформатора. Таким образом дроссель сможет накопить достаточно энергии, чтобы во время паузы не возникал провал напряжения на выходе источника питания.
    Вот по этой причине выходное напряжение силового странсформатора значительно превышает напряжение, которое должно быть на выходе источника питания. Для примера можно воспользоваться программой Денисенко и из расчета явно видно, что при необходимости получить на выходе 24 вольта амплитуда выходного напряжения силового трансформатора достигает семидесяти вольт:

НАЖМИТЕ НА КАРТИНКУ — СХЕМА ОТКРОЕТСЯ В НОВОМ ОКНЕ И ХОРОШЕМ КАЧЕСТВЕ.

    И указанная индуктивность выходного дросселя ни как не должна быть меньше, чем показал расчет, иначе дроссель будет насыщаться и во время паузы Вы получите провал напряжения. Ну и конечно же можно использовать в качестве середечника для дросселя желтые колечки от компьютерных блоков питания, но если Вы готовы к их усиленному нагреву.
    Я не буду вдаваться в большие подробности почему дроссель будет греться, я просто еще раз напомню, что мой вариант блока питания НИ КОГДА не будет работать на мощностях близких к максимальным, следовательно нагрев до пятидесяти градусов за три часа непрерывной работы на номинальную нагрузку можно считать приемлемым. Тем, что хочет более детально ознакомиться с выходными дросселями я предлагаю статью Сергея Бирюкова, главного редактора журнала «Схемотехника». ЧИТАТЬ СТАТЬЮ.
    Кстати сказать, у Бирюкова довольно много интересных статей по импульсным блокам питания, так что можете поискать и ознакомится — время будет потрачено не зря.
    Опять отвлекся, поэтому возвращаемся к работе преобразователя и как раз приходит время второго такта. Напряжение на выходе еще подрастает, ну и допустим на третьем такте достигает значения, когда уже начинает работать обратная связь — через резистор R3 выходное напряжение подается на усилитель ошибки и в случае превышения напряжения на выводе 2 2,5 вольта усилитель ошибки начинает уменьшать длительность управляющих импульсов, что влечет уменьшение выходного напряжения.
    Регулировка тока в данном блоке питания организована формированием напряжения смещения на выводе 3. На транзисторе VT1 формируется пилообразное напряжение, это чисто из даташита, однако величина этой пилы подается на вывод 3 через переменный резистор R10 с движка которого эта пила подается на вход ограничения тока. Но эта пила подается не в чистом виде, а к ней суммируется напряжение, идущее с трансформатора тока.
    Если движок резистора R10 находится влевом крайнем положении, то величина пилы с транзистора VT1 имеет довольно приличную амплитуду и даже не большое изменение напряжения на трансформаторе тока уже спровоцирует контроллер на отключения управляющего импульса.
    Если движок резистора R10 находится в крайнем правом положении, то влияние пилы с транзистора VT1 уже очень не значительное и напряжение с трансформатора тока должно достич довольно большого значения, чтобы выключить управляющий импульс, а для этого как раз нужен приличный ток. Величиной резистора R11 ну и конечно же R13 как раз и определяется максимальное значения протекающего через силовые транзисторы тока. Основной особенностью данного источника питания является контроль протекающего через силовые транзисторы тока на каждом такте преобразования, т.е. контроль производится мгновенного значения, а не среднего.
    А ЧТО ДАЕТ КОНТРОЛЬ ТОКА НА КАЖДОМ ТАКТЕ? При правильной настройке ограничения тока данный блок питания не возможно перегрузить. Другими словами абсолютно не важно по каким законам изменяется нагрузка и каких величин она достигает — как только ток через силовые транзисторы достигает установленного значения управляющий импульс закрывает силовые транзисторы. Остается только выдувать тепло из данного блока питания и он по сути не убиваемый.
    Регулировка напряжения производится усилителем ошибки — на его вход подается напряжение с выхода преобразователя через регулируемый делитель напряжения R3.
    Стабилитроны VD1 и VD2 ограничивают напряжение на входах контроллера и не дадут отгореть входам, если что то ВДРУГ пойдет не так.
    После сборки разумеется нужно проверить что собственно было напаяно, а для этого понадобятся два блока питания. Один так и останется в этом устройстве — им будет запитан контроолер UC3845. Второй — временный, он будет имитировать сетевое напряжение. Величина напряжения имитатора сетевого напряжение от 20 до 50 вольт, оптимально — 30 вольт, это в 10 раз меньше первичного напряжения и уже можно делать выводы о коэффициенте трансформации. Эта имитация необходимо для проверки моточных узлов данного преобразователя — отсутствие межвиткового и правильность фазировки обомоток.
    На плате есть одина спотыкачка, поэтому лучше с материалом ознакомиться до конца — будет меньше вопросов.
    Конечно же использование двух канального осциллографа для данных тестов предпочтительней — гораздо меньше переключений.

    Однако двухлучевой осциллограф есть далеко не у всех. Поэтому проверку будем производить одним лучем.
    Перед тем как заняться проверкой необходимо бросить перемычку между минусовым питанием UC3845 и минусом первичнного напряжения питания — нижний вывод С7.
    Вот тут небольшая пояснялка. Намотать две вторички в одном направлении на управляющем трансформаторе как бы проблем нет — открыл глазоньки и намотал. А вот с фазировкой первички могут возникнуть проблемы — вроде и правильно все делал, а в итоге получилось в противофазе.
    Выпаивать трансформатор и менять выводы обмотки местами конечно же можно, но лениво. Поэтому на плате первичная обмотка управляющего трансформатора имеет не совсем традиционную разводку. Точка соединения полуобмоток выведена на второй сверху вывод каркаса, а крайние вывода В ЛЮБОЙ очередности подключаются к третьему и четвертому выводам.
    Шансы на правильность попадания фазы 50/50, однако теперь есть возможноть оперативно менять фазировку первичной обомотки поменяв перемычки местами:

    Итак, подаем питание на контроллер и проверяем наличие управляющих импульсов — земляной щум осциллографа на GND UC3845, измерительный щуп на вывод 6. Частота импульсов должна быть равна частоте для которой производился расчет силового трансформатора.
    Следующий замер — измерительный щуп на затвор нижнего силового транзистора VT4. Если управляющие импульсы имеются и их форма близка к прямоугольной, а амплитуда чуть больше, чем напряжение питания UC3845, то управляющий трансформатор намотан правильно, исправен и осталось проверить фазировку.
    Для этого земляным щупом осцилографа становимся на затвор VT4, а измерительным на затвор VT2.
    Если Вы удачливы и с фазировкой все получилось правильно на экране будет что то похожее на это:

    Если же Вам не повезло и перемычки под управляющим трансформатором запаяны не верно, то картинка будет такая:

    По такому же принципу проверяется фазировка трансформатора тока — R13 на время проверки не запаивать, на выход повесить нагрузку не превышающую мощность блока питания, имитирующего сетевое напряжение. Однако на чертеже печатной платы направление намотки прорисовано, следовательно проявив чуток внимательности проблем с фазировкой можно избежать. Тоже самое касается намотки силового трансформатора.
    Перед тем, как перейти к печатной плате есть не большое пожелание, реально совсем маленькое:
    Не разгоняйте частоту преобразования выше 60 кГц — уже довольно сильно начнут сказываться коммутационные потери, на больших токах уже начнут сильно вылезать электромагнитные наводки. Бороться с этим довольно затруднительно и если Вы готовы порвать на себе тельняшку, что Вам 100 кГц это семечки, то будьте морально готовы, что между ягодицами может образоваться разрыв в виде флага Великобритании.
    И не надо расказывать, что мол Вы делали и у Вас все получилось и работало. Я на полном серьезе говорю — случайность это не закономерность. Я лично диагностировал компьютер, который вручили жителям Новошахтинска в передаче САМ СЕБЕ РЕЖИСЕР. Они его выиграли, следовательно это возможно, но это не закономерность.
    Печатная плата в архиве ZIP, СКАЧАТЬ.Файл двухстраничный. Страница PRIVOD это то, что показано на фотографиях и то, чему нужен отдельный блок питания. Страница UNIVER — универсальная версия, которая может использоваться и как блок питания для привода, так и как обычный блок питания, поскольку имеет цепи самозапита. Но на минимальных значениях выходного напряжения вариант UNIVER может выключится, поскольку не хватит питания для самого контроллера.

    Кроме этого на варианте UNIVER имеются отверстия под несколько типоразмеров ТПИ, так что с установкой ТПИ на плату проблем возникнуть не должно — использовал самые популярные типоразмеры.
    Так же на плате универсального варианта есть дополнительный разрез дорожки — это и есть спотыкачка, о которой я упоминал раньше. Этот зазро необходим для проверки протекающего через транзисторы тока — со стороны печатных проводников на разрезанную дорожку устанавливается резистор на 1 Ом мощностью 2 Вт. По напряжению падения на этом резисторе можно судить о протекающем через силовыет ранзисторы току, ну и конечно же он пригодится для наблюдения изменения самого тока. Смотреть конечно же нужно осциллографом — мультиметр будет показывать цену на дрова.

    После настройки диапазона регулировки выходного тока этот резистор удаляется и дорожка восстанавливается каплей припоя.
    На какой ток нужно производить настройку? Да я же откуда знаю какой сердечник Вы будете использовать, какая частота преобразования и какие силовые транзисторы. Это уже на Вашей совести. Единственно, что могу порекомендовать — делайте хотя бы двухкратный запас по току для транзисторов, т.е. если транзисторы на 10 ампер не нужно превышать максимальный ток выше 5 ампер, а еще лучше 3,3 ампера — с прогревом кристалла максимальный ток у полевиков падает, а температура кристалла и температура корпуса это совсем не одно и тоже.
    Вроде с приводом разобрались. Пара слов об универсальном блоке питания и пойдем колхозить управление для остальной сварки.
    Универсальный вариант данного блока питания работает с использованием самозапита — старт производится с использованием резистора R10, затем питание контроллера осуществляется от дополнительной обмотки силового трансформатора.

НАЖМИТЕ НА КАРТИНКУ — СХЕМА ОТКРОЕТСЯ В НОВОМ ОКНЕ И ХОРОШЕМ КАЧЕСТВЕ.

    Теперь внимательно смотрим на схему и пытаемся кое что понять. Взор направляем на цепочки управления силовыми транзисторами. Первое, что бросается в глаза — диоды VD5 и VD6 развернуты в другую сторону. Разумеется возникает вопрос: НА ФИГА?
    Все до безобразия просто — используются разные транзисторы. У STP10NM60 энергия затвора порядка 19 nC, это значительно меньше, чем даже у популярных IRF740, у которых минимальная энергия затвора 43 nC только у транзисторов от STMicroelectronics. У остальных производителей это параметр на уровне 60nC. Использование легких транзисторов позволяет получить очень легкое управление ими и в варинте для привода двигателя протяжного механизма используется ускоренное открытия силовых транзисторов через VD6 и VD7. Закрытие тут более затянуто, поскольку производится через резисторы R15 и R16. уменьшение тока закрытия-открытия силовых транзисторов в итоге на прямую влияет на потребление модуля управления и в этом варианте сводится к минимуму, чтобы не нагружать сыкунчика, который питает контроллер и управляющий трансформатор.
    В универсальном варианте используются транзисторы с более «тяжелыми» затворами SPA20N60, у которых энергия затвора может достигать 114 nC, что в 6 раз больше от превоначального варианта. Естественно, что затягивать с открытием и закрытием уже не стоит — токи то протекать будут тоже большего значения. Поэтому на универсальном варианте R16 и R17 уменьшены до 33 Ом, а диоды развернуты, чтобы обеспечивать ускоренное закрытие.
    Так же в управление вместо стабилитронов установлены супрессоры, ограничивающи напряжение затвора до ±15 вольт. В принципе можно использовать ии встречно включенные стабилитроны на 15…18 вольт. Эти элементы необходимы для защиты затворов от повышенного напряжение — далеко у всех транзисторов напряжение на затворе достигает ±30 В. У тех же SPA20N60 на затвор можно подавать не более ±20 вольт.
    Кстати сказать в серии транзисторов на 20 ампер в корпусе ТО-220 есть и «легковесы» с энергией затвора не более 74 nC. Это FQPF20N60.
    ВНИМАНИЕ! Информация для маньяков, которые покупают IRF740 от International Rectifier ( IR ), а потом по всем местам, где только можно оставляют свои метки: «Мол не работает БП, а транзисторы новые, а почему то греются» и т.д.
    Ответ до безобразия прост — International Rectifier НЕ ВЫПУСКАЕТ УЖЕ ОЧЕНЬ ДАВНО IR740.
    Вы купили не известно что, вот оно и работает не известно как.

    Это скрин результа запроса на сайте http://www.alldatasheet.com/ — среди производителей этих транзисторов International Rectifier не значится.
   
    Но вернемся к блоку питания. Чтобы было понятно почему я так усердствую вокруг энергии затвора придется почитать статью о РАСЧЕТАХ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ В EXECEL. Там упоминается на что влияет энегрия затвора и почему при проектировании она приоритетней перед емкостью затвора.
            ВАЖНО!!!
    Рекомендованное значение напряжения питания для UC3845 составляет 12…28 вольт. Разбег больше чем в 2 раза. Я специально обращаю на это внимание. Этот факт дает некоторую вольность и в тоже время накладывает некоторую ответственность при выборе элементной базы.
    Это касается элементов управления силовыми транзисторами. Прежде всего количества витков траннсформатора управления. Если по Вашей задумке питание контроллера будет осуществляться от 12 вольт, то трансформатор лучше сделать повышающим — первичка 40 витков, вторичка — 45-50 витков. Тут же следует обратить внимание на ограничители напряжения в затворах (стабилитроны или супрессоры — кому как больше нравится). Если напряжение с трансформатора управления будет больше напряжения стабилизации этого ограничителя, то ограничитель однозначно начнет греться, а Вы получите повышенное потребление модуля управления в целом.
    Если это произошло, то следует либо уменьшать количество витков во вторичке управляющего трансформатора, либо заменить ограничители напряжения на более высковольтные. Перед заменой стабилитронов (супрессоров) необходимо посмотреть даташник на используемые силовые транзисторы — там указано какое максимальное напряжение на затворы можно подавать и это значение не стоит превышать. В большинстве случаев это ±30 вольт, но есть экземпляры с максимальным напряжением на затворах и ±20 вольт.
    Если же напряжение контроллера планируется в пределах 20…25 вольт, то управляющий трансформатор необходимо сделать понижающим, но не убавлять витки во вторичке, а добавить витков в первичке.
    Подводя итоги сказанному выше сведем наиболее важные моменты, которые нужно учитывать.

    ПИТАНИЕ КОНТРОЛЛЕРА МОЖЕТ СОСТАВЛЯТЬ 12…28 В. Обращайте внимание на напряжение устанавливаемых по питанию электролитов.
    ОПТИМАЛЬНЫМ ЗНАЧЕНИЕМ НАПРЯЖЕНИЯ УПРАВЛЕНИЯ НА ЗАТВОРАХ СИЛОВЫХ ТРАНЗИСТОРОВ ЯВЛЯЕТСЯ 12…18 В. При меньших значениях при очень коротком управляющем импульсе (холостой ход) силовым транзисторам на затворы должно приходить не менее 6 вольт. При больших — можно ушатать транзисторы.
    ОГРАНИЧЕНИЕ НАПРЯЖЕНИЯ НА ЗАТВОРАХ ДОЛЖНО БЫТЬ БОЛЬШЕ НА ПАРУ ВОЛЬТ, ЧЕМ ФАКТИЧЕСКОЕ НАПРЯЖЕНИЕ С УПРАВЛЯЮЩЕГО ТРАНСФОРМАТОРА. В качестве ограничителей можно использовать встречно включенные стабилитроны или двунаправленные супрессоры.

    Кстати сказать тут предоставляется возможность поиграться с управляющими импульсами и посмотреть в каком положении диода и при каком номинале резистора будут наименьшие ударные процессы на первичной обмотке трансформатора и наименьший нагрев силовых транзисторов.
   
   
   
   
   
   
   
   
   
   


Адрес администрации сайта: [email protected]
   

 

Справочник

— Расчеты Справочник

— Расчеты 2 0,5 дюйма 0,5 дюйма (А) ВЫСОТА (В) ОСНОВАНИЕ Объем сварного шва   = .5B х А х 12 Вес стали    = 0,283 фунта на куб. в. Вес сварного шва = (0,5 х 0,5) х 0,5 х 12 х 0,283 = 0,424 фунта. ВЕС НА ФУТ УГЛОВОГО СВАРНОГО ШВА В показанный ниже угловой шов, площадь поперечного сечения (треугольник) равна до половины основания, умноженного на высота, объем шва равен площади, умноженной на длину, а тогда вес сварного шва объем, умноженный на вес материала (стали) на кубический дюйм.Этот пример относится к угловому шву с нет армирования. Аналогичные расчеты можно произвести для стыковых и нахлесточных соединений. Эффективность осаждения Эффективность осаждения электрода или сварочная проволока указывает на часть этого продукта, которую вы можете ожидается отложение в виде металла сварного шва. Потери из-за шлака, брызг, дыма и в случае полуавтоматического или процессы автоматической сварки, концы обрезаются перед каждым сварным швом, а проволока, оставленная в питающем кабеле, не процесс эффективен на 100%.Для оценки электрода или расход проволоки, следующий средний можно использовать значения эффективности осаждения. Процесс осаждения Эффективность под водой Арка 99% Газометаллическая дуга (98%A, 2%O 2 ) 98% газ Металлическая дуга (75%A, 25%CO 2 ) 96% газ Металлическая дуга (C0 2 ) 93% Металлопорошковая проволока 93% газ Экранированная порошковая проволока 86% Самозащитные порошковые проволоки 78% * Экранированная металлическая дуга (длина стержня 12 дюймов) 59% * Экранированная металлическая дуга (длина стержня 14 дюймов) 62% * Экранированная металлическая дуга (длина стержня 18 дюймов) 66% * Включает 2-дюймовую потерю заглушки.

 

Володин В.Я. Создание современных сварочных аппаратов

На рынке много недорогих сварочных полуавтоматов, которые никогда не будут нормально работать, потому что изначально сделаны неправильно.Попробуем починить на незаведенном сварочном аппарате.

Попался мне в руки китайский сварочный полуавтомат Vita (в дальнейшем буду называть просто ПА), у которого сгорел силовой трансформатор, просто знакомые попросили починить.

Пожаловался, что когда она еще и работала, невозможно что-то приготовить, сильные брызги, хруст и т.д. Вот и решил привести в чувство, а заодно и опытом поделится, может кому пригодится.При первом же осмотре понял, что трансформатор для УМ намотан не правильно, так как первичная и вторичная обмотки были намотаны отдельно, на фото видно, что остались секунды, а первичка там намотана, (так что трансформатор мне привезли).

Это означает, что такой трансформатор имеет крутопадающий поток (вольтамперная характеристика) и подходит для дуговой сварки, но не для ПА. Для УМ нужен трансформатор с жесткой заподлицо, а для этого вторичная обмотка трансформатора должна быть намотана поверх первичной обмотки.

Для того, чтобы начать перемотку трансформатора, необходимо аккуратно очистить вторичную обмотку, не повредив изоляцию, и разрезать перегородку, разделяющую две обмотки.

Для первичной обмотки я буду использовать медный эмалевый провод толщиной 2 мм, для полной перемотки нам хватит 3,1 кг медного провода, или 115 метров. Мотать поворот за поворотом с одного бока на другой и обратно. Нам нужно спрятать 234 витка — это 7 слоев, после намотки делаем снятие.

Первичная обмотка и отводы изолирующие материальная лента. Далее наматываем вторичную обмотку тем проводом, о котором мы писали ранее. Наматываем плотно 36 витков, шина 20 мм2, примерно 17 метров.

Трансформатор готов, теперь займемся дросселем. Дроссель не менее важная деталь в УМ, без которой он нормально работать не будет. Он сделан неправильно, так как не имеет зазора между двумя частями магнитного трубопровода.Дроссель я намотал на метизах от трансформатора ТС-270. Трансформатор разобрать и взять от него только магнитопровод. Провод того же сечения, что и на вторичной обмотке трансформатора с одним витком магнитопровода, или двумя последовательно соединяющими концы как угодно. Самое главное в дросселе немагнитный зазор, который должен быть между двумя половинками магнитного трубопровода, достигается за счет вставок из текстолита. Толщина прокладки варьируется от 1.от 5 до 2 мм, и определяется опытным путем для каждого случая отдельно.

Глава 1. Немного истории
1.1. Изобретение электросварки
1.2. Развитие электросварки в ХХ веке
Глава 2. Основы дуговой сварки
2.1. Электрическая дуга
Физическая сущность
Вольт-амперные характеристики
Сварка ручная на доке
Сварка полуавтоматическая на постоянном токе
Сварка переменным током
2.2. Сварочный процесс
Сварка бескомпромиссным электродом
Сварка плавящимся электродом
Перенос металла
2.3. Основные характеристики источников питания сварочной дуги
Глава 3. Симулятор SWCAD III
3.1. Моделирование блока питания
Возможности моделирования
Программы моделирования электронных схем
LTSPICE/SWITCHERCAD III Возможности программы
3.2. Программа SWCAD III
Запуск программы
Рисуем на ПК простейшую схему мультивибратора
Определение числовых параметров и типов элементов схемы
Моделирование работы мультивибратора
3.3. Моделирование простейшего источника питания
Низковольтный источник постоянного тока
Испытательный узел
Глава 4. Сварочный источник переменного тока
4.1. Ручная сварка штучными электродами
Условия обеспечения качественной сварки
Электрическая дуга переменного тока модель
Сварочный источник с балластным реостатом (активное сопротивление)
Сварочный источник с линейным дросселем (индуктивное сопротивление)
Сварочный источник с дросселем и конденсатором
4.2. Сварочный трансформатор
Особенности специализированных сварочных трансформаторов
Как рассчитать индуктивность рассеяния?
Требования к сварочному трансформатору
Расчет сварочного трансформатора
Уточнение конфигурации окна сердечника трансформатора
Проектирование сварочного источника переменного тока
Глава 5.Сварочный источник для полуавтоматической сварки
5.1. Основы полуавтоматической сварки
5.2. Расчеты элементов схемы
Определение параметров и расчет исходного силового трансформатора
Порядок настройки модели
Расчет активного сопротивления обмоток
Расчет индуктивности и сопротивления обмоток трансформатора
Расчет габаритных размеров трансформатора
Комплектация расчета трансформатора
Расчет дросселя источника питающего тока
5.3. Описание конструкции простого источника для сварочного полуавтомата
Схема простого источника для сварочного полуавтомата
Детали для сварочного полуавтомата
Конструкция и изготовление сварочного трансформатора
Конструкция дросселя
Подключение источника
Глава 6. Сварочный источник для полуавтоматической сварки с тиристорным регулятором
6.1. Регулировка сварочного тока
6.2. Обеспечение непрерывности сварочного тока
6.3. Расчет сварочного трансформатора
6.4. Блок управления
6.5. Описание конструкции сварочного источника с тиристорным регулятором
Принципиальная электрическая схема
Детали
Конструкция сварочного трансформатора
Конструкция дросселя
Подключение источника
Глава 7. Электронный регулятор сварочного тока
7.1. Многопластовая сварка
Многопластовая сварка с подключением через индивидуальный балластный реостат
Электронный балластный резостат Erstal
7.2. Расчет основных первых узлов
7.3. Описание Erst
Основные варианты защиты.
Назначение основных первичных узлов
Принцип работы
Принцип работы и регулировки блока А1
Принцип работы и регулировки блока А2
Принцип действия стабилизатора
Настройка
Формирование внешних характеристик Эрста
Принцип работы Эрст-блока управления
Принцип работы драйвера ключевого транзистора
Окончательная настройка ERST
Глава 8.Инверторный сварочный источник
8.1. Предыстория
8.2. Общее описание источника
8.3. Рекомендации по самостоятельному изготовлению ICI
8.4. Расчет трансформатора Speaker Transmitter
8.5. Изготовление трансформатора
8.6. Расчет потерь мощности в транзисторах транзисторов
8.7. Расчет дросселя фильтра сварочного тока
8.8. Моделирование работы преобразователя
8.9. Расчет трансформатора тока
8.10. Расчет гальванического трансформатора
8.11. Контроллер шиммов TDA4718A
Блок управления (БУ)
Генератор напряжения (ГН)
Генератор пилообразного напряжения (ГПН)
Компаратор фаз (ФЧ)
Счетный триггер
Компаратор К2.
Поворотный курок
Компаратор К3.
Компаратор К4.
Плавный пуск
Ошибки триггера
Перегрузка по току компараторов К5, К6, К8 и ВРФ
Компаратор К7.
Выходы
Поддерживающее напряжение
8.12. Блок управления инверторным сварочным источником «RYTMARC»
Схема принципиальная
Блок управления узлами
8.13. Формирование нагрузочной характеристики источника
Основные районы Вах
Средства формирования Вах.
8.14. Методика настройки БУ
8.15. Использование альтернативного ШИМ-регулятора
Замена устаревшего ШИМ-регулятора TDA4718A
Особенности микросхемы TDA4718A.
8.16. Драйвер трансформатора
Глава 9. Полезная информация
9.1. Как испытать неизвестное железо?
9.2. Как рассчитать трансформатор?
9.3. Как рассчитать дроссель с сердечником?
Особенности расчета
Пример расчета №1
Пример расчета №2.
Пример расчета № 3.
9.4. Как рассчитать радиатор?
9.5. Как сделать сварочные электроды?
Список использованной литературы и ресурсов Интернет

Глава 1
Немного истории
1.1. Изобретение электросварки
1.2. Развитие электросварки в ХХ веке

Глава 2.
Основы дуговой сварки
2.1. Электрическая дуга
Физическая сущность
Вольт-амперные характеристики
Ручная сварка на доке
Полуавтоматическая сварка на постоянном токе
Сварка переменным током
2.2. Процесс сварки
Сварка бескомпромиссным электродом
Сварка плавящимся электродом
Перенос металла
2.3. Основные характеристики источников питания сварочной дуги

Глава 3.
Ltspice IV тренажер
3.1. Моделирование блока питания
Возможности моделирования
Программы моделирования электронных схем
LTSpice IV Возможности программы
3.2. LTSPICE IV работа
Запуск программы
Рисуем на ПК простейшую схему мультивибратора
Определение числовых параметров и типов элементов схемы
Моделирование работы мультивибратора
3.3. Моделирование простейшего источника питания
Низковольтный источник постоянного тока
Испытательный узел

Глава 4.
Источники переменного тока для сварки
4.1. Особенности терминологии
4.2. Основные требования к сварочному источнику
4.3. Электрическая дуга переменного тока модель
4.4. Источник сварочный с балластным реостатом (активное сопротивление)
4.5. Источник сварочный с линейным дросселем (индуктивное сопротивление)
4.6. Сварочный трансформатор
4.7. Как рассчитать индуктивность рассеяния?
Индуктивность трансформатора рассеяния с цилиндрическими обмотками
Индуктивность трансформатора рассеяния с рассредоточенными обмотками
Индуктивность рассеяния трансформатора с дисковыми обмотками
4.8. Требования к сварочному трансформатору
4.9. Классический источник переменного тока
Расчет сварочного трансформатора с развитым магнитным рассеянием

Расчет сварочного источника переменного тока
4.10. Сварочный источник Буденного
Пути снижения величины потребляемого тока
Конструктивно-электрическая схема сварочного источника Буденного
Общие принципы устройства сварочного источника
Модель сварочного источника Буденного
Преодоление конструктивных ограничений сварочного источника Буденного
Определение габаритной мощности трансформатора
Выбор сердечника
Расчет обмоток
Расчет магнитного шунта
Расчет индуктивности рассеяния
Моделирование результатов расчета
Конструкция сварочного источника с альтернативной конструкцией трансформатора
4.11. Сварочный источник с резонансным конденсатором
Расчет сварочного источника с резонансным конденсатором
Расчет сварочного трансформатора
Проверка обмотки в окне сварочного трансформатора
Расчет индуктивности рассеяния
Моделирование сварочного источника
4.12. Стабилизаторы армейские переменного тока
Особенности сварочной дуги переменного тока
Принцип действия стабилизатора дуги
Первый вариант стабилизатора дуги
Детали
Второй вариант стабилизатора дуги
Детали

Глава 5.
Сварочный источник для полуавтоматической сварки
5.1. Основы полуавтоматической сварки
5.2. Расчеты элементов схемы
Определение параметров и расчет исходного силового трансформатора
Порядок настройки модели
Расчет активного сопротивления обмоток
Расчет индуктивности и сопротивления обмоток трансформатора
Расчет габаритных размеров трансформатора
Комплектация расчета трансформатора
Расчет дросселя источника питающего тока
5.3. Описание конструкции простого источника для сварочного полуавтомата
Схема простого источника для сварочного полуавтомата
Детали для сварочного полуавтомата
Конструкция и изготовление сварочного трансформатора
Конструкция дросселя
Подключение источника

Глава 6.
Сварочный источник для полуавтоматической сварки с тиристорным регулятором
6.1. Регулировка сварочного тока
6.2. Обеспечение непрерывности сварочного тока
6.3. Расчет сварочного трансформатора
6.4. Блок управления
6.5. Описание конструкции сварочного источника с тиристорным регулятором
Принципиальная электрическая схема
Детали
Конструкция сварочного трансформатора
Конструкция дросселя
Подключение источника

Глава 7.
Электронный регулятор сварочного тока
7.1. Многопластинчатая сварка
Многопластинчатая сварка с соединениями
через индивидуальный балластный реостат
Электронный балластный резостат Erstal
7.2. Расчет основных первых узлов
7.3. Описание Erst
Основные параметры безопасности
Назначение основных узлов erst
Принцип работы
Принцип работы и регулировки блока А1
Детали
Принцип работы и регулировки блока А2
Принцип действия стабилизатора
Детали
Настройка
Формирование внешних характеристики Erst
Принцип работы Блока управления Erst
Принцип работы драйвера ключевого транзистора
Окончательная настройка ERST

Глава 8.
Инверторный сварочный источник
8.1. Немного истории
8.2. Общее описание источника
8.3. Рекомендации по самостоятельному изготовлению ICI
8.4. Расчет трансформатора Speaker Transmitter
8.5. Изготовление трансформатора
8.6. Расчет потерь мощности в транзисторах транзисторов
8.7. Расчет дросселя фильтра сварочного тока
8.8. Моделирование работы преобразователя
8.9. Расчет трансформатора тока
8.10. Расчет гальванического трансформатора
8.11. TDA4718A Контроллер прокладки
8.12. Принципиальная схема блока управления инверторным сварочным источником «Ритмарк»
8.13. Формирование нагрузочной характеристики источника
8.14. Методика настройки БУ
8.15. Пульт дистанционного управления (модулятор)
8.16. Использование альтернативного ШИМ-контроллера
8.17. Драйвер трансформатора
8.18. Демпфирующая цепь без дисперсии

Глава 9.
Инверторный сварочный источник COLT-1300
9.1. общее описание
Что это за глава
Назначение
Основные характеристики
9.2. Силовая часть
Данные блока двигателя
9.3. Блок управления
Функциональная схема
Принцип работы
Принципиальная схема
Реализация функции Anti-Stick
Реализация функции Arc Force
9.4. Настройка

Глава 10.
Полезная информация
10.1. Как испытать неизвестное железо?
10.2. Как рассчитать трансформатор?
10.3. Как рассчитать дроссель с сердечником?
Особенности расчета
Пример расчета дросселя №1
Пример расчета дросселя №2
Пример расчета дросселя №3
10.4. Расчет дросселей с порошковым сердечником
Преимущества порошковых сердечников
Адрес Inductor Design Software и установка
Функции автоматического расчета программы Inductor Design Software
Дополнительные функции программы Inductor Design Software
InDuctor Design Software
Пример расчета дросселя in Inductor Design Software
Magnetics Inductor Design Using Powder Cores
Пример расчета дросселя в программе Magnetics Inductor Design Using Powder Cores
10.5. Как рассчитать радиатор?
10.6. Гистерезисная модель нелинейной индуктивности Симулятор LTSpice
Краткое описание гистерезисной модели нелинейной индуктивности
Подбор параметров гистерезисной модели нелинейной индуктивности
10.7. Моделирование сложных электромагнитных компонентов с помощью LTSpice
Задача моделирования
Принцип подобия электрической и магнитной цепей
Двойственность физических цепей
Модель неразветвленной магнитной цепи
Моделирование разветвленной магнитной цепи
Моделирование сложной магнитной цепи
Адаптация модели для магнитной схемы, работающие с частичной или полной совместимостью
Создание интегральной модели магнитного компонента
10.8. Как сделать сварочные электроды?

Появившись более ста лет назад, электродуговая сварка произвела технологическую революцию. На сегодняшний день она практически вытеснила все остальные технологии сварки металлов. В книге приведены необходимые сведения о ручной и полуавтоматической электродуговой сварке, а также в порядке усложнения описания различных источников сварки, пригодных для повторения.

Повествование сопровождается необходимыми методиками расчета, схемами и чертежами.Большое внимание уделяется моделированию с помощью популярной программы SWCAD 111. Оставив авторские рекомендации, читатели смогут самостоятельно рассчитать и изготовить источники для ручной и полуавтоматической сварки, а желающим приобрести готовый аппарат — сделать правильный выбор. Книга рассчитана на широкий круг самодельщиков, радиолюбителей, интересующихся вопросами электросварки.

Глава 1. Немного истории
1.1. Изобретение электросварки
1.2. Развитие электросварки в ХХ веке

Глава 2. Основы дуговой сварки
2.1. Электрическая дуга
Физическая сущность
Вольт-амперные характеристики
Сварка ручная на доке
Сварка полуавтоматическая на постоянном токе
Сварка переменным током
2.2. Сварочный процесс
Сварка бескомпромиссным электродом
Сварка плавящимся электродом
Перенос металла
2.3. Основные характеристики источников питания сварочной дуги

Глава 3.Симулятор SWCAD III
3.1. Моделирование блока питания
Возможности моделирования
Программы моделирования электронных схем
LTSPICE/SWITCHERCAD III Возможности программы
3.2. Программа SWCAD III
Запуск программы
Рисуем на ПК простейшую схему мультивибратора
Определение числовых параметров и типов элементов схемы
Моделирование работы мультивибратора
3.3. Моделирование простейшего источника питания
Низковольтный источник постоянного тока
Испытательный узел

Глава 4.Сварочный источник переменного тока
4.1. Ручная сварка штучными электродами
Условия обеспечения качественной сварки
Электрическая дуга переменного тока модель
Сварочный источник с балластным реостатом (активное сопротивление)
Сварочный источник с линейным дросселем (индуктивное сопротивление)
Сварочный источник с дросселем и конденсатором
4.2. Сварочный трансформатор
Особенности специализированных сварочных трансформаторов
Как рассчитать индуктивность рассеяния?
Требования к сварочному трансформатору
Расчет сварочного трансформатора
Уточнение конфигурации окна сердечника трансформатора
Проект источника сварки переменного тока

Глава 5.Сварочный источник для полуавтоматической сварки
5.1. Основы полуавтоматической сварки
5.2. Расчеты элементов схемы
Определение параметров и расчет исходного силового трансформатора
Порядок настройки модели
Расчет активного сопротивления обмоток
Расчет индуктивности и сопротивления обмоток трансформатора
Расчет габаритных размеров трансформатора
Комплектация расчета трансформатора
Расчет дросселя источника питающего тока
5.3. Описание конструкции простого источника сварочного полуавтомата
Схема простого источника сварочного полуавтомата
Детали сварочного полуавтомата
Проектирование и изготовление сварочного трансформатора
Конструкция дросселя
Подключение источника

Глава 6. Сварочный источник для полуавтоматической сварки с тиристорным регулятором
6.1. Регулировка сварочного тока
6.2. Обеспечение непрерывности сварочного тока
6.3. Расчет сварочного трансформатора
6.4. Блок управления
6.5. Описание конструкции сварочного источника с тиристорным регулятором
Принципиальная электрическая схема
Детали
Конструкция сварочного трансформатора
Конструкция дросселя
Подключение источника

Глава 7. Электронный регулятор сварочного тока
7.1. Многопластовая сварка
Многопластовая сварка с подключением через индивидуальный балластный реостат
Электронный балластный резостат Erstal
7.2. Расчет основных первых узлов
7.3.Описание Erst
Основные параметры безопасности
Назначение основных узлов erst
Принцип работы
Принцип работы и регулировки блока А1
Принцип работы и регулировки блока А2
Принцип действия стабилизатора
Настройка
Формирование внешней характеристики Erst
Принцип работы блока управления Erst
Принцип работы драйвера ключевого транзистора
Завершающая настройка ERST

Глава 8.Инверторный сварочный источник
8.1. Предыстория
8.2. Общее описание источника
8.3. Рекомендации по самостоятельному изготовлению ICI
8.4. Расчет трансформатора Speaker Transmitter
8.5. Изготовление трансформатора
8.6. Расчет потерь мощности в транзисторах транзисторов
8.7. Расчет дросселя фильтра сварочного тока
8.8. Моделирование работы преобразователя
8.9. Расчет трансформатора тока
8.10. Расчет гальванического трансформатора
8.11. Контроллер шиммов TDA4718A
Блок управления (БУ)
Генератор напряжения (ГН)
Генератор пилообразного напряжения (ГПН)
Компаратор фаз (ФЧ)
Счетный триггер
Компаратор К2.
Курок поворотный
Компаратор КЗ.
Компаратор К4.
Плавный пуск
Ошибки триггера
Перегрузка по току компараторов К5, К6, К8 и ВРФ
Компаратор К7.
Выходы
Поддерживающее напряжение
8.12. Блок управления инверторным сварочным источником «RYTMARC»
Схема принципиальная
Блок управления узлами
8.13. Формирование нагрузочной характеристики источника
Основные районы Вах
Средства формирования Вах.
Техника настройки БУ
8.14. Использование альтернативного ШИМ-регулятора
Замена устаревшего ШИМ-регулятора TDA4718A
Особенности микросхемы TDA4718A.
8.15. Драйвер трансформатора

Глава 9. Полезная информация
9.1. Как испытать неизвестное железо?
9.2. Как рассчитать трансформатор?
9.3. Как рассчитать дроссель с сердечником?
Особенности расчета
Пример расчета №1
Пример расчета №2
Пример расчета №3
9.4. Как рассчитать радиатор?
9.5. Как сделать сварочные электроды?

Список использованной литературы и ресурсов Интернет

Основные сведения о датчиках положения дроссельной заслонки двигателя

Большинство автомобилей и грузовиков последних моделей не имеют троса дроссельной заслонки. Небольшой электродвигатель используется для управления дроссельной заслонкой с использованием сигналов от датчиков положения на педали газа. При нажатии на педаль газа электрическое сопротивление потенциометров внутри датчиков педали изменяется. Модуль управления отмечает изменение положения и дает команду открыть дроссельную заслонку.Пара датчиков положения дроссельной заслонки на валу дроссельной заслонки регистрирует изменение положения дроссельной заслонки и передает сигналы обратной связи в модуль управления, чтобы модуль знал точное положение дроссельной заслонки и все работало правильно.

ПРИЗНАКИ УПРАВЛЯЕМОСТИ ДАТЧИКА TPS

Классическим признаком неисправного или неправильно отрегулированного TPS является колебание или спотыкание при ускорении (другими словами, те же симптомы, что и неисправный ускорительный насос). Топливная смесь обедняется, потому что компьютер не получает правильного сигнала о добавлении топлива при открытии дроссельной заслонки.Цепь обратной связи кислородного датчика в конечном итоге предоставит необходимую информацию, но недостаточно быстро, чтобы предотвратить спотыкание двигателя.

Датчики положения дроссельной заслонки обычно подвергаются наибольшему износу в положении чуть выше холостого хода, так как это датчик положения дроссельной заслонки. положение для большинства вождения. Изношенный датчик может привести к пропуску или падению показаний при открытии дроссельной заслонки. мгновенная потеря входа в PCM. Результатом обычно является колебание или спотыкание, потому что PCM не может обеспечить необходимое обогащение топлива.

Если крепление TPS ослаблено, он выдает неустойчивый сигнал, заставляющий ECM полагать, что дроссельная заслонка открывается и закрывается. Результатом может быть нестабильный холостой ход и периодические колебания.

Если TPS замкнут, компьютер все время будет получать сигнал, эквивалентный широко открытому дросселю. Это приведет к обогащению топливной смеси и установке кода неисправности, соответствующего слишком высокому сигналу напряжения.

Если TPS открыт, компьютер будет думать, что дроссельная заслонка все время закрыта.Полученная топливная смесь будет слишком бедной, и будет установлен код неисправности, соответствующий слишком низкому сигналу напряжения.

КОДЫ ДАТЧИКА TPS

Сначала проверьте наличие кодов неисправностей. Коды OBD II, которые могут указывать на проблемы с TPS, включают:

P0120….Датчик положения дроссельной заслонки/педали/переключатель цепи A

P0121….Датчик положения дроссельной заслонки/педали/переключатель A цепи Диапазон/проблема работы

P0122. …Датчик положения дроссельной заслонки/педали/переключатель A, низкий уровень входного сигнала

P0123….Датчик положения дроссельной заслонки/педали/переключатель A, высокий входной сигнал

P0124….Датчик положения дроссельной заслонки/педали/переключатель A, цепь Прерывистый

P0220….Датчик положения дроссельной заслонки/педали/переключатель B, цепь

P0221….Датчик положения дроссельной заслонки/педали/переключатель «B» Диапазон/проблема в работе

P0222….Датчик положения дроссельной заслонки/переключатель «B» педали Низкий уровень входного сигнала

P0223….Дроссель/ Цепь датчика положения педали/переключателя B, высокий входной сигнал

P0224….Датчик положения дроссельной заслонки/педали/переключатель «B» Прерывистый

P0225….Датчик положения дроссельной заслонки/педали/переключатель «C» Цепь

P0226….Диапазон цепи датчика положения дроссельной заслонки/педали/переключателя «C» /Performance Problem

P0227….Датчик положения дроссельной заслонки/переключатель «C» Низкий входной сигнал

P0228….Датчик положения дроссельной заслонки/переключатель «C» педали, высокий входной сигнал

P0229…. Прерывистый сигнал цепи датчика положения дроссельной заслонки/педали/переключателя «C»

На старых автомобилях до OBD II коды датчика положения дроссельной заслонки включают:

* General Motors Pre-OBD II: 21, 22

* Ford (EEC -IV) Pre-OBD II: 23, 53, 63, 73

* Chrysler Pre-OBD II: 24

Если вы нашли код, обратитесь к соответствующей диагностической таблице и выполните пошаговые проверки для изолировать причину.Если вы не найдете никаких кодов, вы все равно можете выполнить следующие проверки сканера и напряжения.


При просмотре данных датчика на диагностическом приборе
вы должны найти значение открытия дроссельной заслонки.
Число должно быть низким на холостом ходу, а затем увеличиваться при открытии дроссельной заслонки.

ПРОВЕРКА ПРИБОРА СКАНИРОВАНИЯ

Диагностический прибор, который может отображать данные датчиков, обычно показывает положение дроссельной заслонки в процентах от открытия. Инструменты сканирования профессионального уровня также могут отображать фактическое напряжение датчика TPS, в зависимости от программного обеспечения.Подключите диагностический прибор к диагностическому разъему автомобиля, включите зажигание и обратите внимание на показания открытия дроссельной заслонки. На холостых должно быть ноль или пара градусов. Нажмите на педаль газа очень сильно S-L-O-W-L-Y, пока дроссельная заслонка не откроется полностью. Вы должны увидеть, как процент открытия дроссельной заслонки постепенно увеличивается до 100 процентов при полностью открытой дроссельной заслонке.

Отсутствие изменений в показаниях диагностического прибора будет означать отсутствие сигнала от датчика положения дроссельной заслонки. Или, если вы видите более 5 процентов открытия на холостом ходу или менее 90 процентов открытия в WOT, это может указывать на проблему с датчиком.

Примечание. Большинство инструментов сканирования не обновляют свои показания достаточно быстро, чтобы обнаружить мгновенный сбой в показаниях TPS во время развертки TPS от простоя до WOT. Если у TPS есть изношенное место, скорее всего, это будет от 0 до 20 процентов открытия дроссельной заслонки. Попробуйте удерживать дроссельную заслонку в диапазоне от 0 до 20 процентов, чтобы убедиться, что показания стабильны. Если показания внезапно падают при удерживании педали газа или рычага дроссельной заслонки неподвижно, это может указывать на неисправность датчика.


ПРОВЕРКА НАПРЯЖЕНИЯ ДАТЧИКА TPS

Если ваш диагностический прибор не может отображать значение напряжения для датчика TPS, вы можете измерить выходное напряжение датчика, проверив разъем датчика вольтметром.Сначала проверьте наличие напряжения на ДПДЗ при включенном ключе. TPS не может передать надлежащий сигнал, если он не получает опорное напряжение от компьютера. Обратитесь к электрической схеме для эталонного соединения и найдите 5 вольт.

Вторая проверка — измерение базового напряжения. Сравните показания напряжения со спецификациями, указанными в руководстве. Значения напряжения TPS часто указываются с точностью до сотых долей вольта, поэтому, если базовое показание напряжения TPS не находится в пределах 0,05 вольт от указанного значения, может потребоваться регулировка (если она регулируется).Если он не регулируется и показания не соответствуют техническим характеристикам, замените датчик.

Третья проверка – правильное изменение напряжения при открытии и закрытии дроссельной заслонки. Напряжение должно плавно повышаться примерно с 1 вольта до максимум 5 вольт при полностью открытой дроссельной заслонке. Отсутствие повышения напряжения или пропусков показаний означает, что датчик необходимо заменить. Наблюдение за выходным сигналом датчика в виде кривой на осциллографе может реально сэкономить время, поскольку легко увидеть любые отклонения на кривой напряжения.


РЕГУЛИРОВКА ДАТЧИКА TPS

В нормальных условиях регулировка датчика TPS не требуется. Но если ваша диагностика выявит проблему с настройкой напряжения TPS, если TPS неисправен и должен быть заменен, или если карбюратор или корпус дроссельной заслонки заменены, то может потребоваться регулировка. Примечание: это относится только к старым автомобилям. На большинстве автомобилей последних моделей TPS выполняет самокалибровку. Компьютер двигателя использует показание базового напряжения на холостом ходу как представляющее 0% открытия дроссельной заслонки.

ПРИМЕЧАНИЕ: TPS на большинстве восстановленных карбюраторов настроен на заводе на «среднее» значение для большинства применений, для которых подходит карбюратор. Даже в этом случае TPS следует сбросить для конкретного приложения, в котором оно установлено.

До 1982 года все датчики положения дроссельной заслонки GM были регулируемыми. Но в более новых приложениях многие датчики не регулируются. Например, начиная с 1984 года GM перешла на нерегулируемый TPS на двигателях Pontiac объемом 1,8 и 2,5 л. Точно так же Chevy перешел на нерегулируемый TPS, начиная с 1985 года на модели 2.двигатель 0л. В двигателях с нерегулируемым TPS ECM использует любое значение холостого хода, которое он получает от TPS, в качестве опорной точки базового напряжения.

При использовании регулируемых датчиков TPS процедура регулировки зависит от области применения. На карбюраторах Rochester с внутренним TPS необходимо снять заглушку для защиты от несанкционированного доступа в верхней части карбюратора. В некоторых системах с впрыском топлива необходимо снять корпус дроссельной заслонки, чтобы просверлить сварные швы, удерживающие винты TPS. Для датчиков положения дроссельной заслонки, установленных снаружи, датчик регулируется путем ослабления крепежных винтов (или высверливания крепежных заклепок) и небольшого вращения датчика в ту или иную сторону до тех пор, пока не будет получено желаемое значение напряжения.

Основные процедуры регулировки следующие:

1. Снимите заглушку для защиты от несанкционированного доступа (если применимо), или ослабьте крепежные винты, или удалите заклепки, удерживающие TPS.

2. См. электрическую схему в руководстве, чтобы определить, какие разъемы используются для считывания показаний TPS. Например, на карбюраторах Rochester используйте центральную клемму TPS «B» и нижнюю клемму «C». Если транспортное средство предоставляет доступ к потоку данных TPS, используйте сканирующий прибор для считывания выходных данных датчика, подключив его к диагностическому разъему.

  1. Включите зажигание. Отрегулируйте TPS, когда дроссельная заслонка находится в указанном положении (холостой ход, высокий шаг кулачка быстрого холостого хода или упирается в стопорный винт дроссельной заслонки с полностью втянутым плунжером ISC) до тех пор, пока не будет получено правильное показание напряжения.


Некоторые исторические сноски о датчиках TPS:

Июнь 2011 г.

Новые бесконтактные датчики TPS для замены изношенных датчиков оригинального оборудования которые устраняют преждевременный износ и распространенные проблемы с управляемостью, возникающие при использовании обычных датчиков положения дроссельной заслонки.Новые датчики положения дроссельной заслонки Airtex теперь доступны для многих автомобилей Dodge, Ford, General Motors и Mazda с середины 1980-х по 2007 год.

Обычное оригинальное оборудование и датчики положения дроссельной заслонки на замену имеют металлические контактные пальцы, которые перемещаются по печатной плате резисторов, указывая положение дроссельной заслонки. Повторяющиеся движения и вибрация автомобиля могут привести к тому, что эти пальцы изнашивают отверстия в доске, создавая мертвые зоны, которые приводят к колебаниям двигателя и другим проблемам с управляемостью.

В новых датчиках Airtex используется усовершенствованная интегральная схема на эффекте Холла, которая исключает изнашивающий контакт с печатной платой. Эта технология до сих пор не была широко доступна на вторичном рынке, несмотря на ее значительные преимущества по сравнению с обычными конструкциями датчиков положения дроссельной заслонки.

Для получения дополнительной информации посетите страницу Airtex Engine Management.




B>
Щелкните здесь, чтобы узнать больше о руководстве для датчиков
Краткое справочное руководство по эксплуатации и тестированию датчиков Контроль

Создание чувства датчиков двигателя

Датчики температуры воздуха

Датчики охлаждающей жидкости

Датчики охлаждающей жидкости

Датчики CKP

Массовые датчики MAP MAF

Vane Airflow Датчики VAF

STAF VAF

Широкое отношение воздушного топлива. WRAF) Датчики

Понимание систем управления двигателем

Модули управления силовым агрегатом (PCM)

Перепрограммирование флэш-памяти PCM

Все о бортовой диагностике II (OBD II)

Обнуление диагностики OBD II

Диагностика локальной сети (CAN)

Щелкните здесь, чтобы просмотреть дополнительные технические статьи Carley Automotive 900 09


Обязательно посетите другие наши сайты:

Авторемонт самостоятельно

CarleySoftware

OBD2HELP.com

Random-Misfire.com

Scan Tool Help

TROUBLE-CODES.com

Калькулятор размеров клапанов | Tameson.com

Значение Kv является мерой скорости потока через клапан для данной среды и перепада давления. Чем больше это значение, тем выше будет скорость потока через клапан при данном перепаде давления. Обычно значение Kv указывается в описании продукта или в техническом паспорте. Он обеспечивает более точную индикацию, чем, например, размер соединения трубы или диаметр отверстия.Значение Kv измеряется как расход воды в м3/ч при перепаде давления 1 бар при 20°C.

Если известны характеристики среды , перепад давления и желаемый расход , можно рассчитать минимальное требуемое значение Kv для клапана . Для жидкостей и газов применяются разные формулы.

 

Жидкости для расчета значения Kv

Введите значения давления на входе, давления на выходе и минимального требуемого расхода.Нажмите «Рассчитать», и значения Kv и Cv будут рассчитаны. Выберите клапан со значением Kv, равным или превышающим расчетное значение.

Жидкость:

водаглицеринбензинэтиловый спиртопределяется пользователем

Удельный вес:

Давление на входе:

кПа абс. МПа абс. psi абс. бар абс. кг/см² абс. мм рт. ст. абс. рт. ст. абс. Па манометр кПа абс. МПа абс. фунт/кв. дюйм абс. бар абс. кг/см² абс. мм рт. ст. абс. рт. ст. м³/чм³/мин/гл/мингал/ч (США)гал/мин (США)гал/ч (Великобритания)гал/мин (Великобритания)

Значение Kv клапана:

Значение Cv клапана:

Вычислитель значения Kv для газов

Выберите тип газа и температуру на входе.Выберите давление на входе, давление на выходе, требуемый расход и нажмите «Рассчитать». Выберите клапан с равным или более высоким значением Kv для достижения желаемого расхода. N в расходе обозначает нормальные условия (атмосферное давление и 0 градусов Цельсия).

Газ:

ВоздухБутанУглекислый газМетанАзотКислородПропанопределяется пользователем

Удельный вес:

Температура воздуха:

°C°FK

Давление на входе:

кПа абс МПа абс psi абс бар абс кг/см² абс мм рт. кПа абс. МПа абс. фунт/кв. дюйм абс. бар абс. кг/см² абс. мм рт. ст. абс. рт. ст. Нм³/чНм³/минНл/чНл/мингал/ч (США)гал/мин (США)гал/ч (Великобритания)гал/мин (Великобритания)

Значение Kv клапана:


Ежемесячный информационный бюллетень Tameson

  • Для кого: Вы! Существующие клиенты, новые клиенты и все, кто ищет информацию о контроле жидкости.
  • Почему Ежемесячный информационный бюллетень Tameson: Он четкий, без чепухи и раз в месяц содержит актуальную информацию об отрасли управления жидкостями.
  • Что в нем: Объявления о новых продуктах, технические статьи, видеоролики, специальные цены, отраслевая информация и многое другое, на что вам нужно подписаться, чтобы увидеть!
Подписаться на рассылку

Из-за чего выходит из строя дроссельная заслонка?

Корпус дроссельной заслонки является важной частью системы впуска воздуха, которая регулирует подачу воздуха в двигатель.Он расположен между воздухозаборником и коллектором двигателя, где свежий воздух втягивается в двигатель для процесса сгорания. Количество воздуха, поступающего в двигатель во время этого процесса, контролируется дроссельной заслонкой. Дроссельная заслонка представляет собой поворотный плоский клапан, управляемый педалью газа через кабель или провод, если он управляется электронным способом. При нажатии на педаль дроссельная заслонка открывается, позволяя большему потоку воздуха попасть в коллектор. Компьютер в вашем автомобиле работает с датчиками, чтобы гарантировать, что ваш двигатель получает идеальный баланс топлива и воздуха.Итак, что заставляет эту идеальную гармонию идти наперекосяк? Давайте рассмотрим некоторые распространенные проблемы.

Грязь, нагар и грязь могут накапливаться в корпусе, создавая проблемы с потоком воздуха. Известный как закоксовывание, обычно гладкое обслуживание воздушных перевозок становится полным мусора и создает дисбаланс. Это прерывает идеальную смесь воздуха и топлива, которая может привести к заклиниванию дроссельной заслонки. Заклинивший клапан может вызвать помпаж или даже остановку. Вот почему важно иметь хороший воздушный фильтр для вашего автомобиля.Свежий фильтр помогает предотвратить скопление грязи на поверхности дроссельной заслонки. Плохой холостой ход или остановка при остановке — еще один признак того, что у вас может быть проблема с дроссельной заслонкой. На противоположном конце спектра чрезвычайно высокие холостые обороты могут быть результатом слишком большого количества воздуха, попадающего во впускную систему. В некоторых современных автомобилях с впрыском топлива электронное управление дроссельной заслонкой отслеживает работу дроссельной заслонки. Любые проблемы с этой системой вызовут лампочку проверки двигателя. Последнее, что вам нужно, это снизить производительность вашего двигателя.

Чтобы предотвратить образование отложений и как можно лучше поддерживать корпус дроссельной заслонки, рекомендуется выполнить обслуживание впуска воздуха и промывку впрыска топлива. Это очистит от углеродистых отложений и накопления грязи. Принесите свой автомобиль в сертифицированный автосервис ASE, такой как Ferber’s Tyre and Auto, чтобы отремонтировать его уже сегодня!

Страница не найдена — Региональный транзитный округ Сан-Хоакин

перейти к содержанию