Расчет автомата: Онлайн выбор автомата по сечению кабеля

Содержание

Расчет УЗО по мощности и току для дома, какое время отключения должно быть

Для расчета устройства защитного отключения (УЗО) необходимо учитывать условия его эксплуатации. В однофазной электрической сети применяются двухполюсные устройства, а в трехфазной – четырехполюсные. Так как УЗО реагирует на токи утечки (Iут), то его выбор будет зависеть от длины проводников, качества изоляции, количества подключенных приборов, устройств, их характеристик. Кроме этого, надо помнить, что Iут величиной 30 mA может быть опасным для жизни человека. Поэтому во влажных помещениях надо обязательно ставить УЗО.

Ток утечки

Чтобы обеспечить безопасность от поражения электричеством, часто приходится увеличивать количество устройств защитного отключения, разбивать сеть на несколько групп. В то же время использование очень чувствительных приборов УЗО приводит к ложным срабатываниям. Задача специалиста сделать правильный расчет и выбор с учетом всех факторов.

Согласно правилам устройства электроустановок, при неизвестном Iут, он принимается равным произведению 0,4 mA на число соответствующее расчетному нагрузочному току в амперах.

Утечка цепи принимается равной произведению 0,01 mA на длину L фазного проводника в метрах.

Согласно этим же правилам, суммарные потери сети должны быть меньше одной трети номинального отключающего дифференциального тока УЗО. Сюда же входят все утечки включенных постоянно и подключаемых периодически электроприборов. Произведем расчет.

Суммарный Iут= 0,4* IΣ +0,01*L

Отсюда следует, что предельный ток УЗО должен быть больше суммарного Iут сети в 3 раза.

Соответственно, номинальный отключающий ток равен:

IΔn= 3*(0,4* IΣ +0,01*L), где

IΣ – суммарный ток утечки всех электроустановок сети,

L – длина фазного провода в метрах.

Выбор для квартиры

Для примера расчета возьмем квартиру в многоэтажном доме. В этажном щитке на вводе стоит автоматический выключатель. Пусть автомат будет на 40 Ампер. Он защищает от коротких замыканий и перегрузок. Сразу за ним монтируется противопожарное УЗО, расчет его номинала произведем позднее.

Оно нужно для защиты от пожара при нарушении изоляции кабеля или ее пробое. Дальше, для обеспечения большей безопасности и бесперебойности снабжения электричеством, на каждую или несколько групп устанавливаются УЗО с определенным Iут от 10 до 30 mA. Зависит от токов утечки.

Есть даже розетки со своими устройствами УЗО. На каждую группу потребителей устанавливается свой автоматический выключатель перегрузок.

В ванной комнате стоит стиральная машинка мощностью 1,8 кВт. Так как она расположена во влажном помещении, то для безопасности предусмотрим автомат защиты на 16 A и произведем расчет УЗО по мощности.

Рабочий ток для стиральной машинки равен:

Iр=Р/U=1600/220=7,3 А.

Длина фазного провода до нее составляет 20 м.

Отсюда
IΔn= 3*(0,4* IΣ +0,01*L)=3(0,4х7,3+0,01х20)=9,36 mA.

Ближайший в ряду УЗО на 16 A, ток утечки 10 mA.

Несколько групп

Допустим, в квартире предусмотрены еще две группы освещения с автоматами защиты на 16 A, две розеточные с автоматами на 20 A и 25 А.

В группах освещения длина проводников по 50 м, а нагрузка составляет 0,3 и 0,6 кВт. В розеточных длина фазных проводов 40 и 60 м соответственно, а общая (переменная и постоянная) нагрузка 17 и 22 A соответственно.

Произведем расчеты по группам.

Расчет для первой осветительной:

Ip=P/U=300/220=1,4 A,

P – мощность осветительных приборов,

U – напряжение сети.

IΔn= 3*(0,4* IΣ +0,01*L)=3(0,4х1,4+0,01х50)=3,18 mA.

Расчет для второй осветительной:

Ip=P/U=600/220=2,8 A,

IΔn= 3*(0,4* IΣ +0,01*L)=3(0,4х2,8+0,01х50)=9,9 mA.

Расчет для первой розеточной:

IΔn= 3*(0,4* IΣ +0,01*L)=3(0,4х17+0,01х40)=21,6 mA.

Расчет для второй розеточной:

IΔn= 3*(0,4* IΣ +0,01*L)=3(0,4х22+0,01х60)=28,2 mA.

Так как УЗО по IΔn имеют номиналы 10, 30, 100, 300, 500 миллиампер, то некоторые группы электроснабжения можно объединить. При этом нужно помнить, что прибор срабатывает при достижении 50-100% IΔn.

По расчетам первая осветительная и розеточная группы в сумме по IΔn составляют 24,78 мА. Их можно подключить к устройству с отключающим током 30 миллиампер. Вторая розеточная подсоединяется к такому же 30 миллиамперному устройству. Вторая осветительная – к УЗО с током отключения 10 мА. Суммарный рассчитанный отключающий ток получился равным:

IΔn Σ=9,36+3,18+9,9+21,6+28,2=72,24 mA.

Приступаем к подбору УЗО. Ближайшее по отключающему току – на 100 мА. Его и нужно установить в качестве противопожарного.

Номинальный ток

УЗО имеет еще один важный параметр – номинальный ток, который необходимо учитывать при расчетах. При работе в пределах номинала, прибор гарантированно будет выполнять свои функции как угодно долго.

Автоматы защиты от перегрузок, которые устанавливаются на каждую группу электроснабжения, имеют номинал: 16, 20, 25, 32 ампера и так далее. Но при достижении этих значений прибор не отключится.

Его характеристики таковы, что он начинает отключаться при значениях превышающих номинал в 1,13-1,45 раза, только благодаря тепловому расцепителю. Происходит выключение через один-два часа. А для быстрого отключения ему нужно превышение номинала от трех до пятнадцати раз. Данную особенность автомата защиты от перегрузок и короткого замыкания нужно учитывать.

Прибор отключения устанавливается с номинальным током всегда на уровень выше. Например, если от перегрузок и короткого замыкания стоит 32 амперный автомат, то устройство защитного отключения должно быть 40 ампер.

Поэтому в квартире, для которой производился расчет, противопожарный прибор УЗО будет иметь ток отключения и номинальный 100 mA и 63 A соответственно. У стиральной машинки будет устройство 10 mA/16 A. Для второй группы освещения – устройство с пределом 10 mA/25 А. Остальные приборы УЗО имеют пределы 30 mA/32 А.

Дополнительные характеристики

Кроме этих основных характеристик, для которых проводятся расчеты, есть еще величины, требующие внимания при выборе. Это предельный ток короткого замыкания, для дома принимают 4500 A, многоквартирного 6000 A, для производств 10000 A. На корпусе изделия он изображается числом обведенным рамкой. Вид отключающего тока утечки обозначается буквами:

  • АС означает, что он переменный;
  • А – IΔn переменный и пульсирующий постоянный;
  • В – IΔn переменный и постоянный;
  • S – селективный, отключается с задержкой.

УЗО типа АС используют в квартирах. Потребители обычные – освещение, холодильники, теплые полы. Максимальное время отключения этого типа УЗО – 0,04-0,3 секунды, зависит от величины тока утечки.

Тип A применяется там, где много приборов с выпрямителями и импульсными блоками питания: компьютеры, стиральные машинки, телевизоры, посудомоечные машины, СВЧ-печи. Иногда производители прямо указывают, что должен стоять прибор УЗО А, а далее выполняется расчет по току.

Тип B применяют главным образом в промышленности, проводя перед установкой подробные расчеты.

Тип S (селективный). Время срабатывания у такого УЗО составляет 0,2-0,5 сек, поэтому для человека оно не является защитным. Устройство устанавливается в начале линии после основного автоматического выключателя и является второй ступенью дифференциальной защиты всего объекта от пожара.

Кроме этого, нужно определить, какое устройство защитного отключения выбрать: электромеханическое или электронное. Первое более надежное, но и более дорогое. Второй вид дешевле, чем электромеханическое, но его электронные компоненты чаще перегорают при всевозможных перегрузках.

При организации системы защиты электросети необходимо учитывать, что на один УЗО нельзя подключать больше 5 автоматов. Это может привести к ложным срабатываниям. К тому же, при правильном отключении нельзя понять, где произошла утечка.

Примеры расчета автоматических выключателей в электрической цепи

Вводная часть

Любая электрическая цепь в квартире и доме, должна защищаться автоматом защиты от перегрузок и сверхтоков короткого замыкания. Эту нехитрую истину можно наглядно продемонстрировать в любом электрическом щите квартиры, этажном щите, вводно-распределительном щите дома и т.п. электрическим шкафам и боксам.

Вопрос не в том, ставить автомат защиты или нет, вопрос, как рассчитать автомат защиты, чтобы он правильно выполнял свои задачи, срабатывал, когда нужно и не мешал стабильной работе электроприборов.

Примеры расчета автоматических выключателей

Теорию расчетов автоматических выключателей вы можете почитать в статье: Расчет автоматов защиты. Здесь несколько практических примеров расчета автоматических выключателей в электрической цепи дома и квартиры.

Пример 1. Расчет вводного автомата дома

Примеры расчета автоматических выключателей начнем с частного дома, а именно рассчитаем вводной автомат. Исходные данные:

  • Напряжение сети Uн = 0,4 кВ;
  • Расчетная мощность Рр = 80 кВт;
  • Коэффициент мощности COSφ = 0,84;

1-й расчет:

Чтобы выбрать номинал автоматического выключателя считаем номинал тока нагрузки данной электросети:

Iр = Рр / (√3 × Uн × COSφ) Iр = 80 / (√3 × 0,4 × 0,84) = 137 А

2-й расчет

Чтобы избежать, ложное  срабатывание автомата защиты, номинальный ток автомата защиты (ток срабатывания теплового расцепителя) следует выбрать на 10% больше планируемого тока нагрузки:

  • Iток. расцепителя = Iр × 1,1
  • Iт.р = 137 × 1,1 = 150 А

Итог расчета: По сделанному расчету выбираем автомат защиты (по ПУЭ-85 п. 3.1.10) с током расцепителя ближайшим к расчетному значению:

  • I ном.ав = 150 Ампер (150 А).

Такой выбор автомата защиты позволит стабильно работать электрической цепи дома в рабочем режиме и срабатывать, только в аварийных ситуациях.

Пример 2. Расчет автоматического выключателя групповой цепи кухни

примеры расчета автоматических выключателей

Во втором примере посчитаем, какой автоматический выключатель нужно выбрать для кухонной электропроводки, которую правильно называть розеточная групповая цепь электропроводки кухни. Это может быть кухня квартиры или дома, разницы нет.

Аналогично первому примеру расчет состоит из двух расчетов: расчет тока нагрузки электрической цепи кухни и расчет тока теплового расцепителя.

Расчет тока нагрузки

Исходные данные:

  • Напряжение сети Uн = 220 В;
  • Расчетная мощность Рр = 6 кВт;
  • Коэффициент мощности COSφ = 1;

1. Расчетную мощность считаем, как сумму мощностей всех бытовых приборов кухни, умноженной на коэффициент использования, он же коэффициент использования бытовой техники.

2. Коэффициент использования бытовой техники это поправочный коэффициент, уменьшающий расчетную (полную) потребляемую мощность электроцепи и учитывающий количество одновременно работающих электроприборов.

То есть, если на кухне установлено 10 розеток для 10 бытовых приборов (стационарных и переносных), нужно учесть, что все 10 приборов одновременно работать не будут.

Коэффициент использования

Рассчитать коэффициент использования для простой группы можно самостоятельно.

  • Выпишите на листок планируемые бытовые приборы.
  • Рядом с прибором поставьте его мощность по паспорту.
  • Просуммируйте все мощности приборов по паспорту. Это Pрасчет.
  • Подумайте, какие приборы могут работать одновременно: чайник+ тостер, микроволновка+блендер, чайник+микроволновка+тостер, и т.
    д.
  • Посчитайте суммарные мощности этих групп. Рассчитайте среднюю суммарную мощность групп одновременно включаемых приборов. Это будет Pноминал (номинальная мощность).
  • Разделите  Pрасчет на Pноминал, получите коэффициент использования кухни.

На самом деле, в теории расчетов коэффициент использования внутри дома (без инженерных сетей) и квартиры принимается равным, единице, если количество розеток не больше 10. Это так, но на практике, именно коэффициент использования позволяет работать современным бытовым приборам кухни на старой электропроводке.

Примечание:

В теории расчетов 1 бытовая розетка планируется на 6 кв. метров квартиры (дома). При этом:

  • коэффициент использования=0,7 –для розеток от 50 шт.;
  • коэффициент использования=0,8 –розеток 20-49 шт.;
  • коэффициент использования=0,9 –розеток от 9 до 19шт.;
  • коэффициент использования=1,0 –розеток ≤10шт.

Вернемся к автоматическому выключателю кухни.  Считаем номинал тока нагрузки кухни:

  • Iр = Рр / 220В;
  • Iр = 6000 / 220= 27,3 А.

Ток расцепителя:

  • Iрасчет.= Iр×1,1=27,3×1,1=30А

По сделанному расчету выбираем номинал автомата защиты для кухни в 32 Ампер.

Вывод

Приведенный пример расчета кухни получился несколько завышенным, обычно для электропроводки кухни хватает 16 ампер если учесть, что плиту, стиральную машину, посудомоечную машину выводят в отдельные группы.

Эти примеры расчета автоматических выключателей для групповых цепей, лишь показывают общий принцип расчетов, причем не включают расчет инженерных цепей включающий работу насосов, станков и других двигателей частного дома.

Фотогалерея автоматов защиты

©Ehto.ru

Статьи по теме

Похожие посты:

Как рассчитать на сколько ампер нужен автомат: расчет автомата по мощности

Для чего нужны защитные автоматы и как они работают?

Современные АВ имеют две степени защиты: тепловую и электромагнитную. Это позволяет обезопасить линию от повреждения в результате длительного превышения протекающим током номинальной величины, а также короткого замыкания.

Основным элементом теплового расцепителя является пластина из двух металлов, которая так и называется – биметаллической. Если на нее в течение достаточно длительного времени воздействует ток повышенной мощности, она становится гибкой и, воздействуя на отключающий элемент, вызывает срабатывание автомата.

Наличием электромагнитного расцепителя обусловлена отключающая способность автоматического выключателя при воздействии на цепь сверхтоков короткого замыкания, выдержать которые она не сможет.

Расцепитель электромагнитного типа представляет собой соленоид с сердечником, который при прохождении сквозь него тока высокой мощности моментально сдвигается в сторону отключающего элемента, выключая защитное устройство и обесточивая сеть.

Это позволяет обеспечить защиту провода и приборов от потока электронов, величина которого намного выше расчетной для кабеля конкретного сечения.

Для чего служит автомат

В цепи электропитания автомат ставят для предупреждения перегрева проводки. Любая проводка рассчитана на прохождение какого-то определенного тока. Если пропускаемый ток превышает это значение, проводник начинает слишком сильно греться. Если такая ситуация сохраняется достаточный промежуток времени, начинает плавиться проводка, что приводит к короткому замыканию. Автомат защиты ставят чтобы предотвратить эту ситуацию.

Пакетник или автомат защиты необходим для предотвращения перегрева проводников и отключения в случае КЗ

Вторая задача автомата защиты — при возникновении тока короткого замыкания (КЗ) отключить питание. При замыкании токи в цепи возрастают многократно и могут достигать тысяч ампер. Чтобы они не разрушили проводку и не повредили аппаратуру, включенную в линию, автомат защиты должен отключить питание как можно быстрее — как только ток превысит определенный предел.

Чтобы защитный автоматический выключатель исправно выполнял свои функции, необходимо правильно сделать выбор автомата по всем параметрам. Их не так много — всего три, но с каждой надо разбираться.

Чем опасно короткое замыкание

Такая ситуация может возникнуть во время ремонта, если электромонтёр случайно замыкает между собой нулевой и фазный провода, а так же из-за разрушения изоляции в переходной коробке или каком-нибудь электроприборе.

В этом случае ток, протекающий в проводах, может вырасти до очень большой величины, ограниченной только сопротивлением проводов и возможностями линии. Токоведущие жилы при этом нагреваются до температуры возгорания изоляции, что может привести к пожару, поэтому необходимо немедленно отключить питание линии.

Зачем отключать сеть при перегрузке

Не менее опасна перегрузка линии. При протекании по проводам тока, больше номинального, они нагреваются. Это приводит к разрушению изолирующей оболочки кабеля и последующему короткому замыканию.

Процесс нагрева проводов занимает какое-то время, поэтому для защиты линии от перегрузки используется защита, отключающая питание электроприборов через время после возникновения проблемы.

Информация! Повышенный ток при пуске электродвигателя является нормой и длится меньше, чем задержка срабатывания автомата.

Причиной перегрузки может быть одновременное включение электроприборов большой мощности, неисправность электрооборудования или запуск электродвигателя, например, в пылесосе или кондиционере.

Если от короткого замыкания отключит практически любой автоматический выключатель, то неправильно выбранное устройство отключит питание при номинальном токе линии или не сможет защитить проводку от перегрева, поэтому перед установкой необходимо произвести расчет автомата по мощности.

Ручное отключение

Кроме защитных функций автоматические выключатели могут использоваться для отключения линии. Необходимость в этом может возникнуть для ремонта или замены розеток и выключателей, а так же для отключения неиспользуемых объектов, например электроотопления в летний период.

Автоматические выключатели для бытовых сетей

Электроснабжающие организации осуществляют подключение домов и квартир, выполняя работы по подведению кабеля к распредщиту. Все мероприятия по монтажу разводки в помещении выполняют его владельцы, либо нанятые специалисты.

Чтобы подобрать автомат для защиты каждой отдельной цепи необходимо знать его номинал, класс и некоторые другие характеристики.

Основные параметры и классификация

Бытовые автоматы устанавливают на входе в низковольтную электрическую цепь и предназначены они для решения следующих задач:

  • ручное или электронное включение или обесточивание электрической цепи;
  • защита цепи: отключение тока при незначительной длительной перегрузке;
  • защита цепи: мгновенное отключение тока при коротком замыкании.

Каждый выключатель имеет характеристику, выраженную в амперах, которую называют номинальная сила тока (In) или “номинал”.

Суть этого значения проще понять, используя коэффициент превышения номинала:

K = I / In,

где I – реальная сила тока.

  • K < 1.13: отключение (расцепление) не произойдет в течение 1 часа;
  • K > 1. 45: отключение произойдет в течение 1 часа.

Эти параметры зафиксированы в п. 8.6.2. ГОСТ Р 50345-2010. Чтобы узнать за какое время произойдет отключение при K>1.45 нужно воспользоваться графиком, отражающим времятоковую характеристику конкретной модели автомата.


При длительном превышении током значения номинала выключателя в 2 раза, размыкание произойдет за период от 8 секунд до 4-х минут. Скорость срабатывания зависит от настройки модели и температуры среды

Также у каждого типа автоматического выключателя определен диапазон тока (Ia), при котором срабатывает механизм мгновенного расцепления:

  • класс “B”: Ia = (3 * In ... 5 * In];
  • класс “C”: Ia = (5 * In ... 10 * In];
  • класс “D”: Ia = (10 * In ... 20 * In].

Устройства типа “B” применяют в основном для линий, которые имеют значительную длину. В жилых и офисных помещениях используют автоматы класса “С”, а приборы с маркировкой “D” защищают цепи, где есть оборудование с большим пусковым коэффициентом тока.

Стандартная линейка бытовых автоматов включает в себя устройства с номиналами в 6, 8, 10, 16, 20, 25, 32, 40, 50 и 63 A.

Конструктивное устройство расцепителей

В современном автоматическом выключателе присутствуют два вида расцепителей: тепловой и электромагнитный.

Биметаллический расцепитель имеет форму пластины, созданной из двух токопроводящих металлов с различным тепловым расширением. Такая конструкция при длительном превышении номинала приводит к нагреву детали, ее изгибу и срабатыванию механизма размыкания цепи.

У некоторых автоматов с помощью регулировочного винта можно изменить параметры тока, при котором происходит отключение. Раньше этот прием часто применяли для “точной” настройки устройства, однако эта процедура требует углубленных специализированных знаний и проведения нескольких тестов.


Вращением регулировочного винта (выделен красным прямоугольником) против часовой стрелки можно добиться большего времени срабатывания теплового расцепителя

Сейчас на рынке можно найти множество моделей стандартных номиналов от разных производителей, у которых времятоковые характеристики немного отличаются (но при этом соответствуют нормативным требованиям). Поэтому есть возможность подобрать автомат с нужными “заводскими” настройками, что исключает риск неправильной калибровки.

Электромагнитный расцепитель предотвращает перегрев линии в результате короткого замыкания. Он реагирует практически мгновенно, но при этом значение силы тока должно в разы превышать номинал. Конструктивно эта деталь представляет собой соленоид. Сверхток генерирует магнитное поле, которое сдвигает сердечник, размыкающий цепь.

Соблюдение принципов селективности

При наличии разветвленной электрической цепи можно организовать защиту таким образом, чтобы при коротком замыкании произошло отключение только той ветви, на которой возникла аварийная ситуация. Для этого применяют принцип селективности выключателей.


Наглядная схема, показывающая принцип работы системы автоматических выключателей с реализованной функцией селективности (выборочности) срабатывания при возникновении короткого замыкания

Для обеспечения выборочного отключения на нижних ступенях устанавливают автоматы с мгновенной отсечкой, размыкающие цепь за 0. 02 – 0.2 секунды. Выключатель, размещенный на вышестоящей ступени, или имеет выдержку по срабатыванию в 0.25 – 0.6 с или выполнен по специальной “селективной” схеме в соответствии со стандартом DIN VDE 0641-21.

Для гарантированного обеспечения селективной работы автоматов лучше использовать автоматы от одного производителя. Для выключателей единого модельного ряда существуют таблицы селективности, которые указывают возможные комбинации.

Простейшие правила установки

Участок цепи, который необходимо защитить выключателем может быть одно- или трехфазным, иметь нейтраль, а также провод PE (“земля”). Поэтому автоматы имеют от 1 до 4 полюсов, к которым подводят токопроводящую жилу. При создании условий для расцепления происходит одновременное отключение всех контактов.


Автоматы в щитке крепят на специально отведенную для этого DIN-рейку. Она обеспечивает компактность и безопасность подключения, а также удобный доступ к выключателю

Автоматы устанавливают следующим образом:

  • однополюсные на фазу;
  • двухполюсные на фазу и нейтраль;
  • трехполюсные на 3 фазы;
  • четырехполюсные на 3 фазы и нейтраль.

При этом запрещено делать следующее:

  • устанавливать однополюсные автоматы на нейтраль;
  • заводить в автомат провод PE;
  • устанавливать вместо одного трехполюсного автомата три однополюсных, если в цепь подключен хотя бы один трехфазный потребитель.

Все эти требования прописаны в ПУЭ и их необходимо соблюдать.

В каждом доме или помещении, к которому подведено электричество, устанавливают вводной автомат. Его номинал определяет поставщик и это значение прописано в договоре на подключение электроэнергии. Предназначение такого выключателя – защита участка от трансформатора до потребителя.

После вводного автомата к линии подключают счетчик (одно- или трехфазный) и устройство защитного отключения, функции которого отличаются от работы автоматического и дифференциального выключателя.

Если в помещении выполнена разводка на несколько контуров, то каждый из них защищают отдельным автоматом, мощность которого указана в маркировке. Их номиналы и классы определяет владелец помещения с учетом существующей проводки или мощности подключаемых приборов.


Счетчик электроэнергии и автоматические выключатели устанавливают в распределительном щите, который отвечает всем требованиям безопасности и легко может быть вписан в интерьер помещения

При выборе места для размещения распределительного щита необходимо помнить, что на свойства теплового расцепителя влияет температура воздуха. Поэтому желательно располагать рейку с автоматами внутри самого помещения.

Что важно знать при подключении электроприборов

Итак, рассчитав примерный номинал требуемого автомата нужно дать разъяснения касательно мощностей. Многие задаются вопросом о том, а можно ли включать сильно мощные электроприборы в обычную розетку, например, такие, как электрокотел.

 

Согласно правилам ПУЭ , подключение электрокотла мощностью более 3 кВт в обычную розетку недопустимо. Да и каждая розетка обладает своими определёнными характеристиками. Чаще всего домашние розетки идут на 16 ампер, а, следовательно, подключать к ним электроприборы допускается мощностью не более чем в 3,5 кВт.

Поэтому любой, мало-мальски мощный электроприбор, необходимо подсоединять только через отдельный автомат. Причём к автоматическому выключателю подводится именно фазный провод, а не рабочий ноль. Таким образом, зная примерную мощность оборудования, можно легко рассчитать номинал автоматического выключателя.

Таблица выключателей автоматических

Устройства для отключения электричества при перегрузках и коротких замыканиях устанавливают на входе в любую домашнюю сеть.

Необходимо правильно рассчитать номиналы автоматических выключателей по току, иначе их работа будет неэффективной: либо они не защитят линии и бытовые приборы, либо будет часто происходить ложное срабатывание.

Критерии выбора

Осуществлять выбор автоматического выключателя по мощности для долгой и продолжительной службы своему владельцу необходимо, исходя не только от него. Также нужно отталкиваться от бренда, цены, сечения кабеля, тока, длительно допустимого проводникового заряда, суммарной мощности бытовой аппаратуры, ампеража. Обязательно следует учесть в расчет номинальное токовое значение с селективностью, заводом изготовителем. Как правило, вся необходимая информация представлена на самом агрегате маркировкой.


Бренд и цена как критерий выбора автоматического отключателя

По мощности нагрузки

Мощность нагрузки — количество потребляемой энергии всеми электроприборами, которые подключены к одной линии. Чтобы определить это число, нужно рассчитать токовую нагрузку и выбрать больший токовый номинал или равный получившемуся значению.

Следует отметить, что значение электротока однофазной сети выше в 5 раз, а в трехфазной сети в 2 раза. То есть каждый электроприбор в киловаттах нужно умножить на 5 или 2, а затем перевести в амперы. В итоге получится правильное значение. Также для этого можно воспользоваться формулой I=P/U*cos φ или специальными онлайн-софтами, которые работают как калькулятор. Нередко подобные коэффициенты представлены в таблицах в сети.


Мощность нагрузки как критерий выбора

По сечению кабеля

Сечением электрокабеля называется та площадь кабельного сечения, которая способна без нагревания выдерживать конкретную нагрузочную мощность. Это очень важный параметр, поскольку при неправильном подсчете сечения, может выйти вся силовая линия. Чтобы это подсчитать, достаточно воспользоваться специальной таблицей, где указано сечение и мощность для подключения в сеть с одной, двух и тремя фазами. Определить сечение можно также по закону Ома и суммированием максимальной мощности всего оборудования.

Обратите внимание! Как правило, для дома выбирается сечение 3*4. Важно суммировать все электроприборы, даже те, которые включаются на короткое время.


Таблица сечения кабели и мощности

По току короткого замыкания (КЗ)

Для подбора автомата по электротоку короткого замыкания, важно четко следовать правилам ПУЭ. На данный момент использовать устройство с 6 килоампер запрещено. Поэтому сегодня особенно распространены системы с 10 килоампер.


Ток короткого замыкания как критерий выбора

По длительно допустимому току проводника

Ток неотключения — важный параметр при выборе автоматического выключателя, поскольку именно от этого параметра будет зависеть безопасная работа электросети. Важно отметить, что он может работать и не отключаться в момент превышения номинального токового значения на определенное число, указанное в его технических характеристиках. То есть подбирая аппарат, нужно рассчитывать силовую линию и брать значение с запасом.

Вам это будет интересно  Пускатель звезда треугольник

Для работы автоматического выключателя в момент превышения нагрузки, нужно определенное время. Оно регулируется существующим гостом от 2010 года. К примеру, среднее время реагирования — 50 секунд.


Таблица допустимого тока для проводов с алюминиевыми жилами

В целом, автоматический выключатель — оборудование, основная задача которого заключается в обеспечении безопасности электросети от сверхтока с коротким замыканием и перегрузкой. Выбрать его нужно по критерию мощности, сечению кабеля, минимально и максимально допустимому проводниковому току.

Подбор номинала

Выбор номинала автоматического выключателя должен соответствовать определённым требованиям. А конкретнее, автомат обязан сработать прежде, чем токи смогут превысить допустимые значения проводки. Из этого следует, что номинал автомата должен быть чуть меньше, нежели сила тока, которую способна выдержать проводка.

Выбрать нужный АВ довольно просто. Тем более что существует таблица номиналов автоматов по току, а это значительно упрощает задачу.

Исходя из всего этого, можно составить алгоритм, по которому проще всего подобрать автомат нужного номинала:

  • Для отдельно взятого участка вычисляется сечение и материал провода.
  • Из таблицы берётся значение максимального тока, который способен выдержать кабель.
  • Остаётся с помощью таблицы лишь выбрать автомат со значением чуть меньшим длительно допустимого тока.

Таблица содержит пять номиналов АВ 16 А, 25 А, 32 А, 40 А, 63 А, из которых и будет выбираться защитное устройство. Автоматы же меньших значений практически не используются, так как нагрузки современных потребителей просто не позволят этого сделать. Таким образом, имея необходимы значения, очень легко выбрать автомат, соответствующий конкретно взятому случаю.

Как перевести номинальные амперы автоматического выключателя в мощность?

Данный прием необходим в том случае, когда вам известна мощность всех бытовых приборов, которые будут включаться в сеть под автоматический выключатель. Производители указывают ее в ваттах (Вт), поэтому рабочие характеристики автоматического выключателя и параметры сети приводятся к единой системе измерений. Для этого используется формула:

P = U*I , где

  • P – значение мощности;
  • U – номинал питающего напряжения;
  • I – величина тока.

В случае, если расчет производится для автоматического выключателя трехфазной сети, где присутствует сразу три фазы, то значение  мощности рассчитывается по измененной формуле, так как величина возрастет на константу:

Ошибки при выборе автоматических выключателей

Есть распространённые ошибки, которые допускают неопытные электромонтёры, не знающие, как рассчитать мощность автомата по нагрузке:

  • Выбор уставки производится только по мощности нагрузки, без учёта сечения кабеля. Например, произвести подключение приборов общим током 14А через автомат 16А кабелем 1мм². Несмотря на то, что оба элемента допускают питание этой нагрузки, при повышении тока электроприборов до 16А изоляция провода выйдет из строя, а автомат останется включенным до момента короткого замыкания.
  • Заниженный номинальный ток автомата. Это устройство защищает подключённый к нему кабель, поэтому установка на провод сечением 2,5мм² автоматический выключатель с уставкой 10А нецелесообразна, лучше выбрать автомат 16А. Это позволит при необходимости, включить дополнительные электроприборы.
  • Установка автомата с завышенным номиналом для кабеля, который на это не рассчитан. Например: автоматический выключатель на 25 Ампер и кабель 2,5мм²
  • Использование автомата серии «С» для защиты электродвигателя. В этом случае защита сработает во время запуска электромашины.

Стоит ли брать автомат с запасом

Здесь вопрос спорный. С одной стороны автоматический выключатель должен соответствовать мощности электроприбора, с другой стороны он должен иметь небольшой запас, чтобы не отключаться в процессе работы.

 

Как пример можно привести все тот же электрокотел, мощностью в 6 кВт. Разделим 6 кВт на 220 вольт (напряжение в сети) и получим значение в 27. Это амперы. То есть, для подключения котла мощностью в 6 кВт нужен автоматический выключатель на 27 Ампер. Однако таких автоматов не существует в природе.

 

Поэтому здесь приходится выбирать между автоматом на 25 и 32 Ампера. В идеале, конечно же, чтобы котел не выключался, нужно ставить автомат на 32 Ампера. Но это еще не значит, что автомат на 25 Ампер не проработает, как это положено. Просто, учитывая несколько заниженную мощность, он может время от времени выключаться, когда котел подолгу будет работать в полную силу.

Каким производителям стоит доверять

И напоследок уделим внимание производителям. Выбор автомата нельзя считать завершенным, если вы не подумали о том, какой фирмы автоматические выключатели вы будете покупать. Точно не стоит брать неизвестные фирмы — электрика не та область, где можно ставить эксперименты. Подробно о выборе производителя в видео.

Выводы и полезное видео по теме

Устройство выключателя. Выбор вводного автомата в зависимости от подключаемой мощности. Правила распределения питания:

Выбор выключателя по пропускной способности кабеля:

Расчет номинального тока выключателя – сложная задача, для решения которой необходимо учесть множество условий. От установленного автомата зависит удобство обслуживания и безопасность работы локальной электросети.

В случае возникновения сомнений в возможности сделать правильный выбор необходимо обратиться к опытным электрикам.

Источники

  • https://YaElectrik.ru/jelektroshhitok/podbor-avtomata-po-moshhnosti
  • https://stroychik. ru/elektrika/vybor-avtomata
  • https://electricvdome.ru/avtomaticheskie-vikluchateli/na-skolko-amper-nuzhen-avtomat.html
  • https://master-houses.ru/vybor-avtomata-po-moshhnosti-nagruzki-raschet-potreblyaemoj-moshhnosti-220v-i-380v-tablitsa/
  • https://sovet-ingenera.com/elektrika/uzo-schet/vybor-avtomata-po-moshhnosti-nagruzki.html
  • https://elektriksam.ru/raschet-moshhnosti-avtomatov.html
  • https://orenburgelectro.ru/podklyuchenie/nominaly-avtomaticheskih-vyklyuchatelej-tablitsa-sovety-elektrika.html
  • https://rusenergetics.ru/oborudovanie/vybor-avtomata-po-moschnosti-nagruzki
  • https://220v.guru/elementy-elektriki/avtomaty/raschet-avtomata-po-moschnosti-i-drugim-parametram.html
  • https://www.asutpp.ru/nominaly-avtomaticheskix-vyklyuchatelej.html
  • https://sovet-ingenera.com/elektrika/uzo-schet/nominaly-avtomaticheskix-vyklyuchatelej-po-toku.html

Как правильно подобрать и рассчитать автоматический выключатель (простой расчет автомата).

Автоматический выключатель - это устройство, обеспечивающее защиту электропроводки и потребителей (электрических приборов) от коротких замыканий и перенагрузки электросети. Бытует ошибочное мнение, что автоматический выключатель обеспечивает защиту электроприборов от неполадок в сети. Это чушь, тут скорее наоборот, автоматический выключатель защищает проводку от самих потребителей, ведь перенагрузку электросети создают сами потребители.

У каждого автоматического выключателя есть свои технические характеристики, но чтобы сделать правильный выбор автоматического выключателя, нужно понимать и учитывать всего три: это номинальный ток, класс автомата и отключающая способность.

Разберем их по порядку.

Номинальный ток In - это сила тока, которую может пропустить через себя автомат. При превышении номинального тока, происходит размыкание контактов автоматического выключателя, вследствие чего обесточивается участок цепи. По стандартам, отключение автоматического выключателя должно происходить при силе тока в 145% от номинального. Самые распространенные автоматы с номинальным током в 6; 10; 16; 20; 25; 32; 40; 50; 63 А.

Класс автомата - это кратковременное значение силы тока, при котором автомат не срабатывает. Что это значит? Существует такое понятие как пусковой ток. Пусковой ток - это ток, который кратковременно потребляет электроприбор при запуске. Пусковой ток может во много раз превосходить номинальный ток прибора. Например, при включении лампочки в 60 Вт, создается пусковой ток в 10-12 раз больше от рабочего. Это значит, что на протяжении нескольких секунд, лампочка будет потреблять не 0.27 А, а 2.7-3.3 А. Для того чтобы компенсировать пусковые токи и используются классы автоматов.

Существуют 3 класса автоматических выключателей:

  1. класс B (превышение пускового тока в 3-5 раз от номинального)
  2. класс C (превышение пускового тока в 5-10 раз от номинального)
  3. класс D (превышение пускового тока в 10-50 раз от номинального)

Самый оптимальный класс для жилых и коммерческих помещений - это C класс.

Отключающая способность - это предельное значение тока короткого замыкания, которое может выдержать автоматический выключатель без потери работоспособности. На нашем рынке распространенны автоматические выключатели с отключающей способностью в 4,5 кА (килоампер). Но в Европе такие автоматы к установке запрещены, там они должны быть минимум в 6 кА. Если посмотреть на практике, то вполне хватает и 4,5 кА, так как в быту ток короткого замыкания редко превышает 1 кА. Если хотите соответствия стандартам, то выбирайте автомат на 6 кА и больше, если хотите по экономней, то автомат на 4,5 кА самое то.

Расчет автоматического выключателя.

Автоматический выключатель можно рассчитывать двумя методами: по силе тока потребителей или по сечению используемой проводки.

Рассмотрим первый способ - расчет автомата по силе тока.

Первым шагом, нужно подсчитать общую мощность, которую нужно повесить на автомат. Для этого суммируем мощность каждого электроприбора. Например, нужно рассчитать автомат на жилую комнату в квартире. В комнате находится компьютер (300 Вт), телевизор (50 Вт), обогреватель (2000 Вт), 3 лампочки (180 Вт) и еще периодически будет включаться пылесос (1500 Вт). Плюсуем все эти мощности и получаем 4030 Вт.

Вторым шагом рассчитываем силу тока по формуле I=P/U
P - общая мощность
U - напряжение в сети

Рассчитываем I=4030/220=18,31 А

Выбираем автомат, округляя значение силы тока в большую сторону. В нашем расчете это автоматический выключатель на 20 А. 

Рассмотрим второй метод - подбор автомата по сечению проводки.

Этот метод намного проще предыдущего, так как не нужно производить никаких расчетов, а значения силы тока брать из таблицы (ПУЭ табл.1.3.4 и 1.3.5.)

Допустимый длительный ток для проводов и кабелей с медными жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух одножильных

трех одножильных

четырех одножильных

одного двухжильного

одного трехжильного

0,5

11

-

-

-

-

-

0,75

15

-

-

-

-

-

1

17

16

15

14

15

14

1,5

23

19

17

16

18

15

2

26

24

22

20

23

19

2,5

30

27

25

25

25

21

3

34

32

28

26

28

24

4

41

38

35

30

32

27

5

46

42

39

34

37

31

6

50

46

42

40

40

34

8

62

54

51

46

48

43

10

80

70

60

50

55

50


Допустимый длительный ток для проводов и кабелей с алюминиевыми жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух одножильных

трех одножильных

четырех одножильных

одного двухжильного

одного трехжильного

2

21

19

18

15

17

14

2,5

24

20

19

19

19

16

3

27

24

22

21

22

18

4

32

28

28

23

25

21

5

36

32

30

27

28

24

6

39

36

32

30

31

26

8

46

43

40

37

38

32

10

60

50

47

39

42

38

Допустим, у нас двухжильный медный провод с сечением 4 мм. кв. уложенный в стену, смотрим по первой таблице силу тока, она равна 32 А. Но при выборе автоматического выключателя эту силу тока нужно уменьшать до ближайшего нижнего значения, для того чтобы провод не работал на пределе. Получается, что нам нужен автомат на 25 А.

Так же нужно помнить, если нужен автомат на розеточную группу, то брать выше 16 А нет смысла, так как розетки больше 16 А выдержать не могут, они просто начинают гореть. На освещение самый оптимальный на 10 А.

Какой поставить автоматический вводной автомат в дом: расчёт необходимого количества ампер

Применение защитного оборудования очень важно при использовании электрических сетей. Вводной автомат является частью защитной системы. При возникновении короткого замыкания или отклонениях в работе электроприборов, а также нарушении изоляционного слоя проводов может возникнуть опасность возгорания или вероятность поражения живого организма электрическим током.

Принцип работы и типы автоматов

Для защиты проводов применяется автоматический выключатель, а для защиты от поражения электрическим током — устройство защитного отключения (УЗО). В качестве вводного автомата УЗО не применяется, а вместо него используется дифференциальный автомат — устройство, объединяющее в себе функции обычного автоматического выключателя и УЗО. Применение вводного автомата в квартире позволит обесточить всю электросеть при возникновении аварийного режима автоматически или одним нажатием вручную.

Вводной автоматический выключатель может быть разного типа. Для того чтобы правильно выбрать какой тип и вид нужен для защиты линии в квартире или частном доме, потребуется понимать принцип его работы и знать основные характеристики. Характер работы вводного устройства заключается в автоматическом одновременном разрыве как фазовых, так и нулевых проводов при возникновении аварийной ситуации на линии электросети. Устанавливается он последовательно электрической цепи в после подключения электросчётчика.

Это обусловлено тем, что вся линия до счётчика, как и он сам, принадлежит энергоснабжающей компании, и любого вида вмешательство в неё запрещены. Вводные автоматы до счётчика ставятся, в первую очередь, энергопоставляющими компаниями для того, чтобы ограничить потребление электроэнергии пользователями. Их опечатывают так же, как и счётчик.

Автоматический выключатель

Работа устройства основана на способности разрывать электрическую цепь при достижении пропускаемой через него мощности критической величины. В качестве основных элементов конструкции выделяют:

  • соленоид;
  • биметаллическую пластину.

Элементы конструкции подключены последовательно и составляют блок расцепителя. Ток, проходя через катушку соленоида, попадает на пластинку, а далее на выходные клеммы. Пластинка изготавливается из металлов с различным тепловым сопротивлением, и при нагреве изгибается.

Увеличение потребляемой мощности цепи в случае возникновения неисправностей электроприборов или при подключении особо мощного устройства приводит к её нагреву. Пластина изгибается и разрывает контакт. Величина тока, при котором разрывается контакт, настраивается в заводских условиях. В режиме короткого замыкания сила тока возрастает стремительно, в катушке соленоида возникает мощное магнитное поле, благодаря которому сердечник втягивается внутрь соленоида, разрывая контакт.

Дифференциальный выключатель

Объединяет функции автоматического выключателя и УЗО. Дополнительно к расцепителю в его конструкции устанавливается трансформатор тороидального типа. Работа устройства основана на способности электродвижущей силы (ЭДС) наводить ток в проводнике. При прохождении тока по обмоткам трансформатора в каждой из них появляется магнитный поток. Он равен по величине, но разный по направлению, поэтому результирующая сила в сердечнике равна нулю.

При утечках тока равенство в магнитных потоках нарушается. Во вторичной обмотке возникает ЭДС, появляется ток. Контакты вторичной обмотки трансформатора подключены к управляющим выводам реле. При появлении напряжения происходит срабатывание реле и электрическая цепь разрывается.

Характеристики вводного устройства

Характеристики во многом помогают определить, какие автоматы ставить в частном доме или квартире. Основные параметры, на которые обращают внимание, следующие:

  1. Количество полюсов. Различия зависят от вида используемой линии электропередачи. Для квартир это однофазная цепь, двухпроводная, с номинальным напряжением 220 вольт. Для частного дома может использоваться и трёхфазная сеть на 380 вольт, состоящая из трёх проводов. Каждый полюс означает возможность подключения одного провода, поэтому вводное устройство бывает двухполюсный и трёхполюсный. Существует и четырёхполюсный, но он применяется только на промышленных объектах.
  2. Времятоковая характеристика. Определяет чувствительность устройства и характеризует число ложных срабатываний. Этот параметр обозначает соотношение действительной силы тока, пропускаемого через автомат, к номинальному значению. Существуют выключатели различных видов, обозначаются они буквами латинского алфавита. Наибольшее распространение получили приборы класса B, C и D. Класс B применяется, когда на линии используются маломощные приборы, при этом величина тока может превышать значение номинального в пять раз. Класс C, используют для среднемощных приборов, превышение составляет 6— 5 раз. Класса D, ставятся устройства при подключении оборудования высокой мощности, при этом превышение составляет более 20 раз.
  3. Номинальный ток. Превышение этого значения приводит к срабатыванию автомата. Требуемое значение определяется сечением провода и материалом, из которого он изготовлен. Выпускается только в стандартных значениях, наиболее популярные величины на 25A и 32A.
  4. Номинальный ток утечки. Характеристика используется только для дифференциального вводного автомата.

Критерии выбора устройства для дома

В первую очередь необходимо рассчитать мощность требуемого устройства, т. е. номинальную силу тока. На сколько ампер ставить автомат в доме, вычисляется путём суммирования мощности всей планируемой нагрузки, которая может быть включена одновременно в цепь. Например, в доме имеется нагревательный бойлер на 2200 ватт, стиральная машинка — 600 ватт, пылесос — 250 ватт, компьютер — 350 ватт, телевизор — 100 ватт, утюг — 400 ватт, освещение с потреблением энергии на 800 ватт, и всё это может быть включено одновременно.

Вычисляется общая мощность, P = 2200+600+250+350+100+400+800 = 4700 ватт. Пусть сеть используется однофазная, с величиной напряжения 220 вольт. Максимальная сила тока будет равна Imax = 4500/220 = 21 ампер. Таким образом, нужен автомат с величиной номинального тока 25 A. Когда выбирается трёхфазный вводной автомат для частного дома, сколько ампер понадобится при использовании сети 380 вольт вычисляется аналогично. Для примера выше Imax = 4500/380 = 11 ампер. Автомат выбирается на 13 А.

Вводный автомат выбирается больше, чем полученное значение, так как если выбрать c меньшей величиной, то при включении дополнительного устройства выключатель разорвёт электрическую цепь. Следует учитывать, что оборудование, использующее в своей работе двигатели, в момент включения потребляет пиковую мощность.

При подборе автомата надо учитывать не только планируемую суммарную мощность подключаемых приборов, но и качество, а в первую очередь сечение, проложенной электропроводки. Сечение используемого провода характеризует величину тока, которую может пропустить через себя проводник без ухудшения своих электрофизических свойств. Например, медный провод сечением 2,5 мм/2 выдерживает продолжительную токовую нагрузку в 27 ампер. Поэтому применять автомат на 32 A при таком сечении нельзя.

Если в качестве вводного выключателя используется дифференциальный автомат, то потребуется ещё выбрать значение номинального тока утечки. Оно выбирается в диапазоне 100—300 mA. Если выбрать меньше, возможны ложные срабатывания.

Следующим этапом будет выбор количества полюсов и токовой характеристики. С количеством полюсов всё просто: если линия двухпроводная на 220 вольт, ставится двухполюсный, а когда электрическая линия имеет два фазовых провода и её значение 380 вольт, то трёхполюсный. На токовую характеристику влияет длина линии, т. е. расстояние от выключателя до максимально удалённой розетки или осветительного прибора. Сам расчёт сложный, но учитывая, что в квартирах и частных домах длина линии не превышает 300 метров, выбирается вводное устройство всегда с характеристикой C.

Наиболее популярными производителями, зарекомендовавшими себя по всему миру и выпускающие качественные устройства, являются ABB, Legrand, Schneider Electric, Siemens, Moeller.

принципы и формулы для расчетов

Выбор автомата по мощности нагрузки, сечению кабеля и по току: как рассчитать автоматический выключатель

Для организации внутридомового электроснабжения необходимо выделить отдельные цепи, для каждой сделать выбор автомата по мощности нагрузки подключенных потребителей и рассчитать сечение жил проводки.

Правильное определение номинала и класса выключателей обезопасит всю систему от большинства опасных последствий использования электрических приборов.

Автоматические выключатели для бытовых сетей

Электроснабжающие организации осуществляют подключение домов и квартир, выполняя работы по подведению кабеля к распредщиту. Все мероприятия по монтажу разводки в помещении выполняют его владельцы, либо нанятые специалисты. Чтобы подобрать автомат для защиты каждой отдельной цепи необходимо знать его номинал, класс и некоторые другие характеристики.

Основные параметры и классификация

Бытовые автоматы устанавливают на входе в низковольтную электрическую цепь и предназначены они для решения следующих задач:

  • ручное или электронное включение или обесточивание электрической цепи;
  • защита цепи: отключение тока при незначительной длительной перегрузке;
  • защита цепи: мгновенное отключение тока при коротком замыкании.

Каждый выключатель имеет характеристику, выраженную в амперах, которую называют номинальная сила тока (In) или «номинал».

Суть этого значения проще понять, используя коэффициент превышения номинала K = I / In, где I – реальная сила тока:

  • K
  • K > 1.45: отключение произойдет в течение 1 часа.

Эти параметры зафиксированы в п. 8.6.2. ГОСТ Р 50345-2010. Чтобы узнать за какое время произойдет отключение при K>1.45 нужно воспользоваться графиком, отражающим времятоковую характеристику конкретной модели автомата.

При длительном превышении током значения номинала выключателя в 2 раза, размыкание произойдет за период от 8 секунд до 4-х минут. Скорость срабатывания зависит от настройки модели и температуры среды

Также у каждого типа автоматического выключателя определен диапазон тока (Ia), при котором срабатывает механизм мгновенного расцепления:

  • класс «B»: Ia = (3 * In .. 5 * In];
  • класс «C»: Ia = (5 * In .. 10 * In];
  • класс «D»: Ia = (10 * In .. 20 * In].

Устройства типа «B» применяют в основном для линий, которые имеют значительную длину. В жилых и офисных помещениях используют автоматы класса «С», а приборы с маркировкой «D» защищают цепи, где есть оборудование с большим пусковым коэффициентом тока.

Стандартная линейка бытовых автоматов включает в себя устройства с номиналами в 6, 8, 10, 16, 20, 25, 32, 40, 50 и 63 A.

Конструктивное устройство расцепителей

В современном автоматическом выключателе присутствуют два вида расцепителей: тепловой и электромагнитный.

Биметаллический расцепитель имеет форму пластины, созданной из двух токопроводящих металлов с различным тепловым расширением. Такая конструкция при длительном превышении номинала приводит к нагреву детали, ее изгибу и срабатыванию механизма размыкания цепи.

У некоторых автоматов с помощью регулировочного винта можно изменить параметры тока, при котором происходит отключение. Раньше этот прием часто применяли для «точной» настройки устройства, однако эта процедура требует углубленных специализированных знаний и проведения нескольких тестов.

Обратите внимание

Вращением регулировочного винта (выделен красным прямоугольником) против часовой стрелки можно добиться большего времени срабатывания теплового расцепителя

Сейчас на рынке можно найти множество моделей стандартных номиналов от разных производителей, у которых времятоковые характеристики немного отличаются (но при этом соответствуют нормативным требованиям). Поэтому есть возможность подобрать автомат с нужными «заводскими» настройками, что исключает риск неправильной калибровки.

Электромагнитный расцепитель предотвращает перегрев линии в результате короткого замыкания. Он реагирует практически мгновенно, но при этом значение силы тока должно в разы превышать номинал. Конструктивно эта деталь представляет собой соленоид. Сверхток генерирует магнитное поле, которое сдвигает сердечник, размыкающий цепь.

Соблюдение принципов селективности

При наличии разветвленной электрической цепи можно организовать защиту таким образом, чтобы при коротком замыкании произошло отключение только той ветви, на которой возникла аварийная ситуация. Для этого применяют принцип селективности выключателей.

Наглядная схема, показывающая принцип работы системы автоматических выключателей с реализованной функцией селективности (выборочности) срабатывания при возникновении короткого замыкания

Для обеспечения выборочного отключения на нижних ступенях устанавливают автоматы с мгновенной отсечкой, размыкающие цепь за 0.02 – 0.2 секунды. Выключатель, размещенный на вышестоящей ступени, или имеет выдержку по срабатыванию в 0.25 – 0.6 с или выполнен по специальной «селективной» схеме в соответствии со стандартом DIN VDE 0641-21.

Для гарантированного обеспечения выборочного отключения лучше использовать автоматы от одного производителя. Для выключателей единого модельного ряда существуют таблицы селективности, которые указывают возможные комбинации.

Простейшие правила установки

Участок цепи, который необходимо защитить выключателем может быть одно- или трехфазным, иметь нейтраль, а также провод PE («земля»). Поэтому автоматы имеют от 1 до 4 полюсов, к которым подводят токопроводящую жилу. При создании условий для расцепления происходит одновременное отключение всех контактов.

Автоматы в щитке крепят на специально отведенную для этого DIN-рейку. Она обеспечивает компактность и безопасность подключения, а также удобный доступ к выключателю

Автоматы устанавливают следующим образом:

  • однополюсные на фазу;
  • двухполюсные на фазу и нейтраль;
  • трехполюсные на 3 фазы;
  • четырехполюсные на 3 фазы и нейтраль.

При этом запрещено делать следующее:

  • устанавливать однополюсные автоматы на нейтраль;
  • заводить в автомат провод PE;
  • устанавливать вместо одного трехполюсного автомата три однополюсных, если в цепь подключен хотя бы один трехфазный потребитель.

Все эти требования прописаны в ПУЭ и их необходимо соблюдать.

В каждом доме или помещении, к которому подведено электричество, устанавливают вводной автомат. Его номинал определяет поставщик и это значение прописано в договоре на подключение электроэнергии. Предназначение такого выключателя – защита участка от трансформатора до потребителя.

После вводного автомата к линии подключают счетчик (одно- или трехфазный). Если в помещении выполнена разводка на несколько контуров, то каждый из них защищают отдельным выключателем. Их номиналы и классы определяет владелец помещения с учетом существующей проводки или мощности подключаемых приборов.

Счетчик электроэнергии и автоматические выключатели устанавливают в распределительном щите, который отвечает всем требованиям безопасности и легко может быть вписан в интерьер помещения

При выборе места для размещения распределительного щита необходимо помнить, что на свойства теплового расцепителя влияет температура воздуха. Поэтому желательно располагать рейку с автоматами внутри самого помещения.

Расчет необходимого номинала

Основная защитная функция автоматического выключателя распространяется на проводку, поэтому подбор номинала осуществляют по сечению кабеля. При этом вся цепь должна обеспечить штатную работу подключенных к ней приборов. Расчет параметров системы не сложен, но надо учесть много нюансов, чтобы избежать ошибок и возникновения в связи с этим проблем.

Определение суммарной мощности потребителей

Один из главных параметров электрического контура – максимально возможная мощность подключенных к ней потребителей электроэнергии. При расчете этого показателя нельзя просто суммировать паспортные данные устройств.

Активная и номинальная компонента

Для любого прибора, работающего от электричества, производитель обязан указать активную мощность (P). Эта величина определяет количество энергии, которая будет безвозвратно преобразована в результате работы аппарата и за которую пользователь будет платить по счетчику.

Но для приборов с наличием конденсаторов или катушки индуктивности есть еще одна мощность с ненулевым значением, которую называют реактивной (Q). Она доходит до устройства и практически мгновенно возвращается обратно.

Реактивная компонента не участвует при подсчете использованной электроэнергии, но совместно с активной формирует так называемую «полную» или «номинальную» мощность (S), которая дает нагрузку на цепь.

cos(f) – параметр, с помощью которого можно определить полную (номинальную мощность) по активной (потребляемой). Если он не равен единице, то его указывают в технической документации к электроприбору

Считать вклад отдельного устройства в общую нагрузку на токопроводящие жилы и автомат необходимо по его полной мощности S = P / cos(f).

Повышенные стартовые токи

Следующей особенностью некоторых типов бытовой техники является наличие трансформаторов, электродвигателей или компрессоров. Такие устройства при начале работы потребляют пусковой (стартовый) ток. Его значение может в несколько раз превышать стандартные показатели, но время работы на повышенной мощности невелико и обычно составляет от 0.1 до 3 секунд.

Такой кратковременный всплеск не приведет к срабатыванию теплового расцепителя, но вот электромагнитный компонент выключателя, отвечающий за сверхток короткого замыкания, может среагировать.

Важно

Особенно эта ситуация актуальна для выделенных линий, к которым подключают оборудование типа деревообрабатывающих станков.

В этом случае нужно посчитать ампераж и, возможно, имеет смысл использовать автомат класса «D».

Учет коэффициента спроса

Для цепей, к которым подключено большое количество оборудования и отсутствует устройство, которое потребляет наибольшую часть тока, используют коэффициент спроса (ks). Смысл его применения заключается в том, что все приборы не будут работать одновременно, поэтому суммирование номинальных мощностей приведет к завышенному показателю.

Коэффициент спроса на группы электропотребителей установлен в п. 7 СП 256.1325800.2016. На эти показатели можно опираться и при самостоятельном расчете максимальной мощности

Этот коэффициент может принимать значение равное или меньшее единице. Вычисления расчетной мощности (Pr) каждого прибора происходит по формуле:

Pr = ks * S

Суммарную расчетную мощность всех приборов применяют для вычисления параметров цепи. Использование коэффициента спроса целесообразно для офисных и небольших торговых помещений с большим числом компьютеров, оргтехники и другой аппаратуры, запитанной от одного контура.

Для линий с незначительным количеством потребителей этот коэффициент не применяют в чистом виде.

Из подсчета мощности убирают те устройства, чье включение одновременно с более энергозатратными приборами маловероятно. Так, например, мало шансов на единовременную работу в жилой комнате с утюгом и пылесосом.

А для мастерских с небольшим числом персонала в расчет берут только 2-4 наиболее мощных электроинструмента.

Вычисление силы тока

Выбор автомата производят по максимальному значению силы тока, допустимому на участке цепи. Необходимо получить этот показатель, зная суммарную мощность электропотребителей и напряжение в сети.

Согласно ГОСТ 29322-2014 с октября 2015 года значение напряжения должно быть равным 230 В для обыкновенной сети и 400 В – для трехфазной. Однако, в большинстве случаев, до сих пор действуют старые параметры: 220 и 380 В соответственно. Поэтому для точности расчетов необходимо провести замеры с применением вольтметра.

Измерить напряжение в домашней сети можно с помощью вольтметра или мультиметра.

Для этого достаточно воткнуть его контакты в розетку

Еще одной проблемой, особенно актуальной в частном секторе, является предоставление электроснабжения с недостаточным напряжением.

Замеры на таких проблемных объектах могут показывать значения, выходящие за определенный ГОСТом диапазон. Более того, в зависимости от уровня потребления соседями электричества, значение напряжения может сильно меняться в течение короткого времени.

Это создает проблему не только для функционирования приборов, но и для расчета силы тока. При падении напряжения некоторые устройства просто теряют в мощности, а некоторые, у которых присутствует входной стабилизатор, увеличивают потребление электричества.

Качественно провести расчеты необходимых параметров цепи в таких условиях сложно. Поэтому либо придется прокладывать кабеля с заведомо большим сечением (что дорого), либо решать проблему через установку входного стабилизатора или подключение дома к другой линии.

Стабилизатор устанавливают рядом с распределительным щитом. Часто бывает, что это единственный способ получить нормативные значения напряжения в доме

После того как была найдена общая мощность электроприборов (S) и выяснено значение напряжения (U), расчет силы тока (I) проводят по формулам, являющихся следствием закона Ома:

If = S / Uf  для однофазной сети

Il = S / (1. 73 * Ul) для трехфазной сети

Здесь индекс «f» означает фазные параметры, а «l» – линейные.

Большинство трехфазных устройств используют тип подключения «звезда», а также именно по этой схеме функционирует трансформатор, выдающий ток для потребителя. При симметричной нагрузке линейная и фазная сила будут идентичны (Il = If), а напряжение рассчитывают по формуле:

Ul = 1.73 * Uf

Нюансы подбора сечения кабеля

Качество и параметры проводов и кабелей регулирует ГОСТ 31996-2012. По этому документу для выпускаемой продукции разрабатывают ТУ, где допускается некоторый диапазон значений базовых характеристик. Изготовитель обязан предоставить таблицу соответствия сечения жил и максимальной безопасной силы тока.

Максимально допустимая сила тока зависит от сечения жил проводов и способа монтажа.

Они могут быть проложены скрытым (в стене) или открытым (в трубе или коробе) способом

Выбирать кабель необходимо так, чтобы обеспечить безопасное протекание тока, соответствующего расчетной суммарной мощности электроприборов.

Совет

Согласно ПУЭ (правила устройства электроустановок) минимальное сечение проводов, используемых в жилых помещениях, должно быть не менее 1,5 мм2. Стандартные размеры имеют следующие значения: 1,5; 2,5; 4; 6 и 10 мм2.

Иногда есть резон использовать провода с сечением на шаг больше, чем минимально допустимое. В этом случае существует возможность подключения дополнительных приборов или замена уже существующих на более мощные без дорогостоящих и длительных работ по прокладке новых кабелей.

Расчет параметров автомата

Для любой цепи должно быть выполнено следующее неравенство:

In

Расчёт автомата по мощности: предназначение устройства, принцип работы, подбор номинала по таблице

При проведении электромонтажных работ основным критерием всегда должна выступать безопасность. Ведь от этого зависит очень многое, вплоть до жизни и здоровья человека.

И совершенно не имеет значения причина подобного мероприятия. В любом случае необходимо правильно подобрать защитные устройства.

Именно в связи с этим придётся провести расчёт автомата по мощности, учитывая некоторые важные нюансы.

Каждому, кто сталкивался с электропроводкой, приходилось слышать об автоматических выключателях или автоматах. В первую очередь грамотный электрик всегда посоветует отнестись к выбору столь важной части электросети с особой щепетильностью. Так как впоследствии именно этот нехитрый прибор может избавить от многих неприятностей.

Совершенно неважно, какого рода проводятся электромонтажные работы — ложится ли новая проводка в только что построенном доме, заменяется старая, модернизируется щиток или прокладывается отдельная ветка для слишком энергоёмких приборов — в любом случае особое внимание необходимо уделить подбору автомата по мощности и прочим параметрам.

Предназначение устройства

Любой современный автомат имеет две степени защиты. Это означает, что помочь он сможет в двух, наиболее распространённых ситуациях.

  1. Первая, подразумевает перегрев проводки в результате прохождения по ней токов, больше номинальных. К чему это может привести, догадаться несложно: перегорание кабеля, а в итоге короткое замыкание или вообще возгорание.
  2. Вторая ситуация, предотвратить которую способен автоматический выключатель, это короткое замыкание, вследствие которого сила тока в цепи может увеличиваться на огромные значения, а это чревато в лучшем случае выходом из строя всего электрооборудования. В худшем — возгоранием электротехники, а от неё и всего помещения. Говорить же о целостности проводки и вовсе не приходится.

Таким образом, автомат способен защитить не только личное имущество, но в некоторых случаях и жизнь. Хотя для этого необходимо провести грамотный расчёт автоматического выключателя по мощности и ряду других параметров. А также не стоит брать автомат «с запасом», так как при критических значениях токов в сети он банально может не сработать, что равнозначно его отсутствию.

Принцип работы

Основной задачей защитного выключателя является отсечение подачи электрического тока от подающего кабеля в сеть потребителя. Происходит это благодаря расцепителям, находящимся в теле автомата. Причём существуют два вида таких частей:

  1. Электромагнитные, представляющие собой катушку, пружину и сердечник, который при превышении номинальных токов втягивается и через пружину разъединяет контакты. Происходит это практически мгновенно — от 0,01 до 0,001 секунды, что способно обеспечить надёжную защиту.
  2. Биметаллические тепловые — срабатывают при прохождении токов, превышающих предельные значения. При этом биметаллическая пластина, являющаяся основой такого расцепителя, изгибается и происходит разрыв контактов.

Виды АВ и их особенности

Учитывая разнообразие электросетей и определённых ситуаций, автоматы могут быть разных видов. Принцип их работы ничем существенным не отличается — срабатывают всё те же расцепители, но в зависимости от ситуации и ряда других нюансов используют разные их вариации.

Так, для стандартной однофазной сети напряжением 220 вольт выпускаются однополюсные и двухполюсные АВ. Первые способны разрывать лишь один провод — фазу. Вторые могут работать и с фазой, и с нулём. Безусловно, предпочтительнее использовать второй вариант.

Особенно, если дело касается помещений с повышенной влажностью. Конечно, и однополюсный автомат вполне справится со своей задачей, но могут возникнуть ситуации, когда перегоревшие провода замкнут между собой.

Обратите внимание

В таком случае, естественно, фаза будет отсечена, но вот нулевой провод окажется под напряжением, что может быть крайне опасно.

Для трёхфазных сетей напряжением 380 вольт используются трёх- или четерёхполюсные автоматы. Устанавливать их необходимо и на входе, и непосредственно перед потребителем. Как понятно, такие автоматы отсекают все три фазы, подключённые к ним. В редких случаях возможно использование одно- или двухполюсных защитных устройства для отсекания, соответственно, одной или двух фаз.

Выбор защитного устройства

Конечно, любой автомат превосходно справится с возложенными на него задачами — это не вызывает сомнения, если он исправен. Но дело в том, что подбирать АВ необходимо с учётом нескольких параметров.

Если выбранный автомат слишком «слабый», то будут происходить постоянные ложные срабатывания. И наоборот, слишком «сильная» модель, будет иметь довольно сомнительную полезность.

Мощность нагрузки

Одной из возможностей подобрать защитное устройство является выбор автомата по мощности нагрузки. Для этого необходимо узнать значение тока нагрузки. И уже из этих данных выбирать соответствующий номинал. Проще всего (да и точнее) это сделать с помощью закона Ома по формуле:

I=P/U,

где P — мощность потребителя (холодильник, микроволновая печь, стиральная машина и т. п. ), а U — напряжение сети.

Для примера потребитель будет взят 1,5 кВт, а напряжение сети обычное 220 В. Имея эти данные, подставив их в формулу, получится:

I = 1500/220 = 6,8 А.

В случае с трёхфазной сетью 380 вольт, напряжение будет 380 В.

Существует и ещё одна формула для выбора автоматического выключателя по току, но она немного сложнее, но и конечный результат будет куда более точен. На практике это не принципиально, но в ознакомительных целях всё же стоит её привести:

I=P/U*cos φ.

Значения I, P, U будут теми же, что и в законе Ома, а вот cos φ — это коэффициент мощности, который учитывает в нагрузке реактивную составляющую. Это значение помогает определить таблица 6.12 нормативного документа СП 31−110−2003 «Проектирование и монтаж электроустановок жилых и общественных зданий».

Для примера данные будут использованы те же, т. е. потребитель 1,5 кВт, а напряжение всё те же 220 В. Согласно таблице, cos φ будет равен 0,65, как для вычислительных машин. Следовательно:

I = 1500 Вт/220 В * 0,65 = 4,43 А.

Сечение кабеля

Выбирать автомат лишь по мощности нагрузки будет непростительной ошибкой, которая может дорого стоить. Ведь если не учесть при этом сечение кабеля, то теряется всякий смысл в подборе автомата. Однако полученные значения нагрузки и номинал АВ смогут помочь в подборе необходимого кабеля.

Для этого не понадобится делать никаких расчётов, так как достаточно воспользоваться таблицей № 1.3.6 и 1.3.7 ПУЭ, где понятие длительно допустимый ток означает проходящее длительное время по проводнику напряжение, не вызывающее чрезмерного его нагрева. Проще говоря, за это значение можно принять рассчитанную мощность нагрузки. И получить требуемое сечение медного или алюминиевого провода.

По току короткого замыкания

Чтобы выбрать автоматический выключатель по мощности хотя и понадобились некоторые расчёты, но они были крайне просты. Этого совсем нельзя сказать о расчётах при выборе автомата по токам короткого замыкания.

Но при подборе номинала АВ для дома, коттеджа, квартиры или офиса, подобные расчёты будут излишни, так как основной показатель, особенно влияющий на данные, это длинна проводника. Но в подобных ситуациях она крайне мала, чтобы существенно повлиять на результат. Поэтому такие расчёты проводят лишь при проектировании подстанций и других подобных сооружений, где длина кабелей значительная.

Подбор номинала

Выбор номинала автоматического выключателя должен соответствовать определённым требованиям. А конкретнее, автомат обязан сработать прежде, чем токи смогут превысить допустимые значения проводки. Из этого следует, что номинал автомата должен быть чуть меньше, нежели сила тока, которую способна выдержать проводка.

Выбрать нужный АВ довольно просто. Тем более что существует таблица номиналов автоматов по току, а это значительно упрощает задачу.

Исходя из всего этого, можно составить алгоритм, по которому проще всего подобрать автомат нужного номинала:

  • Для отдельно взятого участка вычисляется сечение и материал провода.
  • Из таблицы берётся значение максимального тока, который способен выдержать кабель.
  • Остаётся с помощью таблицы лишь выбрать автомат со значением чуть меньшим длительно допустимого тока.

Таблица содержит пять номиналов АВ 16 А, 25 А, 32 А, 40 А, 63 А, из которых и будет выбираться защитное устройство. Автоматы же меньших значений практически не используются, так как нагрузки современных потребителей просто не позволят этого сделать. Таким образом, имея необходимы значения, очень легко выбрать автомат, соответствующий конкретно взятому случаю.

Расчет автомата по мощности 380

Расчет сечения кабеля, автоматов защиты

Расчет электрических сетей

Вступление

В электрике любого помещения важное значение имеет правильный расчет сечения кабеля, автоматов защиты.

Зависит расчет от электропотребителей, которые будут работать в электросети и как следствие от планируемой нагрузки в сети.

Как правильно рассчитать нагрузку и номинальные значения тока нагрузки в электрической сети и по результатам выбрать сечение кабеля и автоматы защиты пойдет речь в этой статье.

Нагрузка электросети

Любая электропроводка разделена на так называемые группы. Электропроводка каждой группы выполняется электрическим кабелем определенного сечения и защищается автоматом защиты с заранее рассчитанным номиналом. Для того чтобы выбрать сечение кабеля и номинал автомата защиты необходимо рассчитать предполагаемую нагрузку этой электросети.

При расчете нагрузки электросети нужно помнить, что расчет токовой нагрузки (величина силы тока в сети, при работе электроприбора) отдельного бытового прибора (потребителя) и группы из нескольких потребителей отличаются друг от друга.

Кроме этого расчет нагрузки при однофазном электропитании (220 вольт) отличается от расчета трехфазного электропитания (380 вольт). Начнем разбирать расчет нагрузки электросети в однофазной сети с рабочим напряжением 220 Вольт.

Расчет токовой нагрузки и выбор автомата защиты в однофазной электросети,220 вольт для одиночного потребителя

Расчет электросети для одного бытового прибора достаточно прост. Для этого нужно вспомнить основной закон электротехники (закон Ома), посмотреть в паспорте на прибор его потребляемую мощность и рассчитать токовую нагрузку.

Приведу пример:

  • Бытовая электроплита на 220 вольт. Потребляемая мощность 5000 ватт (5 КВатт).
  • Ток нагрузки можно рассчитать по закону Ома.
  • Iнагрузки=5000Вт÷220 вольт=22,7 Ампера.

Вывод: На линию для электропитания этой электроплиты нужно установить автомат защиты не менее 23 Ампер. Таких автоматов в продаже нет, поэтому выбираем автомат с большим ближайшим номиналом в 25 Ампер.

Расчет токовой нагрузки и выбор автомата защиты в однофазной электросети,220 вольт для группы электропроводки

Под группой электропроводки понимается несколько потребителей подключенных параллельно к одному питающему кабелю от электрощитка. Для группы электропроводки устанавливается общий автомат защиты. Автомат защиты устанавливается в квартирном электрощитке или этажном щитке. Расчет сети группы потребителей отличается от расчета сети одиночного потребителя.

Для расчета токовой нагрузки группы потребителей вводится так называемый коэффициент спроса. Коэффициент спроса (Кс) определяет вероятность одновременного включения всех потребителей в группе в течение длительного промежутка времени. Кс=1 соответствует одновременной работе всех электроприборов группы.

Понятно, что включение и работа всех электроприборов в квартире практически не бывает. Есть целые системы расчета коэффициента спроса для домов, подьездов. Для каждой квартиры коэффициент спроса различается для отдельных комнат, отдельных потребителей и даже для различного стиля жизни жильцов.

Например, коэффициент спроса для телевизора обычно равен 1,а коэффициент спроса пылесоса равен 0,1.

Поэтому для расчета токовой нагрузки и выбора автомата защиты в группе электропроводки коэффициент спроса влияет на результат. Расчетная мощность группы электропроводки рассчитывается по формуле:

  • P(расчетная)=К(спроса)×P(мощность установочная).
  • I (ток нагрузки)=Р (мощность расчетная)÷220 вольт.

Пример: В таблице ниже рассмотрим электроприборы, входящие в одну группу. Рассчитаем токовую нагрузку для этой группы и выберем автомат защиты с учетом коэффициента спроса.Коэффицмент спроса в примере выбирается индивидуально:

Содержание:

Расчеты электропроводки выполняются еще на стадии проектирования. Прежде всего рассчитывается сила тока в цепях, исходя из этого подбираются автоматические защитные устройства, сечение проводов и кабелей. Особое значение имеет расчет автомата по мощности 380, защищающий от перегрузок и коротких замыканий.

Слишком большой номинал может привести к выходу из строя оборудования, поскольку устройство не успеет сработать. Низкий номинальный ток автомата приведет к тому, что защита будет срабатывать даже при незначительных перегрузках в часы пик. Правильно выполненные расчеты помогут выбрать наиболее оптимальный вариант для конкретных условий эксплуатации.

Как рассчитать мощность электротока

В соответствии с законом Ома, сила тока (I) находится в прямой пропорции с напряжением (U) и в обратной пропорции с сопротивлением (R). Расчет мощности (Р) осуществляется путем умножения силы тока на напряжение. Таким образом, для участка цепи образуется следующая формула, по которой рассчитывается ток: I = P/U.

С учетом реальных условий, к данной формуле прибавляется еще один компонент и при расчетах однофазной сети получается следующий вид: I = P/(U х cos φ).

Трехфазная сеть рассчитывается немного по-другому. Для этого используется следующая формула: I = P/(1,73 х U х cos φ), в которой напряжение U условно составляет 380 вольт, cos φ является коэффициентом мощности, посредством которого активная и реактивная составляющие сопротивления нагрузки соотносятся между собой.

Важно

Современные блоки питания обладают незначительной реактивной компонентой, поэтому значение cos φ принимается за 0,95. Это не касается трансформаторов и электродвигателей с высокой мощностью, обладающих большим индуктивным сопротивлением.

Расчет сетей, где могут подключаться такие устройства, выполняется с коэффициентом cos φ, эквивалентным 0,8.

В других случаях используется стандартная методика расчетов с последующим применением повышающего коэффициента 1,19, получающегося из соотношения 0,95/0,8.

При использовании в формулах известных параметров напряжения 220 и 380 В, а также коэффициента мощности 0,95, в результате получается сила тока для однофазной сети – I = P/209, а для трехфазной – I = P/624.

Таким образом, при наличии одной и той же нагрузки, сила тока в трехфазной сети будет в три раза ниже. Это связано с наличием трех проводов отдельных фаз, на каждую из которых равномерно распределяется общая нагрузка.

Напряжение между каждой фазой и рабочим нулем составляет 220 вольт, поэтому известная формула может выглядеть следующим образом: I = P/(3 х 220 х cos φ).

Выбор автомата по номинальному току

Рассмотренные формулы широко применяются в расчетах вводного автоматического выключателя. Применяя одну из них – I = P/209 при нагрузке Р в 1 кВт, получается сила тока для однофазной сети 1000 Вт/209 = 4,78 А. Результат можно округлить в большую сторону до 5 А, поскольку реальное напряжение в сети не всегда соответствует 220 В.

Таким образом, получилась сила тока в 5 А на 1 кВт нагрузки. То есть, устройство мощностью более 1 кВт нельзя подключать, например, в удлинитель с маркировкой 5 А, поскольку он не рассчитан на более высокие токи.

Автоматические выключатели обладают собственным номиналом по току. Исходя из этого, легко определить нагрузку, которую они способны выдержать. Для упрощения вычислений существует таблица.

Автомат номиналом 6 А соответствует мощности 1,2 кВт, 8 А – 1,6 кВт, 10 А – 2 кВт, 16 А – 3,2 кВт, 20 А – 4 кВт, 25 А – 5 кВт, 32 А – 6,4 кВт, 40 А – 8 кВт, 50 А – 10 кВт, 63 А – 12,6 кВт, 80 А – 16 кВт, 100 А – 20 кВт.

Исходя из этих же номиналов проводятся расчеты автомата по мощности на 380в.

Совет

Метод 5 А на 1 кВт может использоваться и для определения силы тока, возникающей в сети, когда в нее подключаются какие-либо бытовые приборы и оборудование.

В расчетах нужно пользоваться максимальной потребляемой мощностью во время пиковых нагрузок. Для этого применяются технические характеристики оборудования, взятые из паспортных данных.

При их отсутствии можно взять ориентировочные параметры стандартных электроприборов.

Отдельно рассчитывается группа освещения. Как правило, мощность приборов освещения оценивается в пределах 1,5-2 кВт, поэтому для них будет достаточно отдельного автомата номиналом 10 А.

Если сложить все имеющиеся мощности, получается довольно высокий суммарный показатель.

Однако на практике полная мощность никогда не используется, поскольку существуют ограничения на выделяемую электрическую мощность для каждой квартиры.

В современном жилом доме, при наличии электроплит, она составляет от 10 до 12 кВт. Поэтому на вводе устанавливается автомат с номинальным током 50 А. Точно так же выполняется расчет мощности трехфазных автоматов.

Полученные 12 кВт распределяются по всей квартире с учетом размещения мощных и обычных потребителей.

Обратите внимание

Особое внимание следует обратить на кухню и ванную комнату, где устанавливаются электроплиты, водонагреватели, стиральные машины и другое энергоемкое оборудование.

Как правило, они подводятся к отдельным автоматическим выключателям соответствующего номинала, а сечение кабелей для подключения также рассчитывается в индивидуальном порядке.

Мощные бытовые агрегаты подключаются не только к автоматам, но и к устройствам защитного отключения. Часть общей мощности следует оставить для освещения и розеток, установленных в помещениях. Правильно выполненные расчеты позволят качественно смонтировать проводку и выбрать нужный выключатель. В этом случае эксплуатация оборудования будет безопасной и долговечной.

Расчет мощности онлайн-калькулятором

В первую очередь необходимо ввести исходные данные в соответствующие графы. На калькуляторе эти показатели включают количество фаз, напряжение сети и мощность нагрузки. Первые два пункта известны заранее, а вычисления мощности приборов и оборудования осуществляются вручную.

Напряжение для однофазной сети выставляется 220 вольт, для трехфазной – 380 В и выше. После ввода параметров остается лишь нажать на кнопку «Рассчитать» и получить требуемый результат. В соответствующем окне появятся данные о номинальном токе автоматического выключателя, наиболее подходящего для данной сети.

Электроприборы МощностьР, Вт Коэффициент спросаКс
Освещение 480 0,7
Радиоприемник 75
Телевизор 160 1
Холодильник 150 1
Стиральная машина 380
Утюг 1000
Пылесос 400
Другие 700 0,3
Итого: 3345, Вт
  • Расчетная Мощность в сети расчитавается следующим образом:
  • 480×0,7+75+160+150+380+1000+400+700×0,3=2711,ВТ
  • К(спроса) квартиры=2711÷3345=0,8
  • Ток нагрузки:
  • 3345÷220×0,8=12Ампер.
  • Соответственно выбираем автомат защиты на шаг больше:16Ампер.

В общих, а не индивидуальных расчетах, для жилых помещений, коэффициент спроса принимается в зависимости от количества потребителей, таблица ниже: 

Количество приемников в помещении 2 3 5-200
К(коэффициент спроса)помещения 0,8 0,75 0,7

Теперь опредилемся,как выбрать сечения кабеля для электропроводки

По приведенным выше формулам можно рассчитать мощность электросети и значение рабочего тока в сети. Остаяется по полученным значениям выбрать сечение электрического кабеля, который можно использовать для рассчитываемой проводки в квартире.

Это совсем просто. В настольной книги электрика, ПУЭ-правила устройства электрустановок, все сделано за нас.

По таблице ниже ищете значение расчитаного тока нагрузки или расчетную мощность сети и выбираете сечение электрического кабеля.

Важно

Таблица приводится для медных жил кабелей или проще, медного кабеля ,потому что использование аллюминевых кабелей в электропроводке жилых помещений запрещено.(читайте ПУЭ изд.7) 

Проложенные открыто
Сечение жил кабеля Медные жилы
мм2 Ток нагрузки Мощн.кВт
А 220 В 380 В
0,5 11 2,4
0,75 15 3,3
1 17 3,7 6,4
1,5 23 5 8,7
2 26 5,7 9,8
2,5 30 6,6 11
4 41 9 15
5 50 11 19
10 80 17 30
16 100 22 38
25 140 30 53
35 170 37 64
Проложенные в трубе
Сечение жил кабеля Медные жилы
мм2 Ток накрузки Мощн.кВт
А 220 В 380 В
0,5
0,75
1 14 3 5,3
1,5 15 3,3 5,7
2 19 4,1 7,2
2,5 21 4,6 7,9
4 27 5,9 10
5 34 7,4 12
10 50 11 19
16 80 17 30
25 100 22 38
35 135 29 51

Две расчетные таблицы для расчета и правильного выбора сечения кабеля и автоматов защиты 

Номенклатура мощностей электробытовых приборов и машин для расчета в электросетях жилых помещений

из нормативов для определения расчетных электрических нагрузок зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети

NN пп Наименование Установленная мощность, Вт
1 Осветительные приборы 1800-3700
2 Телевизоры 120-140
3 Радио и пр. аппаратура 70-100
4 Холодильники 165-300
5 Морозильники 140
6 Стиральные машины без подогрева воды 600
с подогревом воды 2000-2500
7 Джакузи 2000-2500
8 Электропылесосы 650-1400
9 Электроутюги 900-1700
10 Электрочайники 1850-2000
11 Посудомоечная машина с подогревом воды 2200-2500
12 Электрокофеварки 650-1000
13 Электромясорубки 1100
14 Соковыжималки 200-300
15 Тостеры 650-1050
16 Миксеры 250-400
17 Электрофены 400-1600
18 СВЧ 900-1300
19 Надплитные фильтры 250
20 Вентиляторы 1000-2000
21 Печи-гриль 650-1350
22 Стационарные электрические плиты 8500-10500
23 Электрические сауны 12000

ТАБЛИЦА2.

2. ИСХОДНЫЕ ДАННЫЕ для расчетов электрических нагрузок жилых зданий (квартир) и коттеджей на перспективу 

1. Средняя площадь квартиры (общая), м:
– типовых зданий массовой застройки – 70
– здания с квартирами повышенной комфортности (элитные) по индивидуальным проектам – 150
2. Площадь (общая) коттеджа, м – 150-600
3. Средняя семья – 3,1 чел.
4. Установленная мощность, кВт:
– квартир с газовыми плитами – 21,4
– квартир с электрическими плитами в типовых зданиях – 32,6
– квартир с электрическими плитами в элитных зданиях – 39,6
– коттеджей с газовыми плитами -35,7
– коттеджей с газовыми плитами и электрическими саунами -48,7
– коттеджей с электрическими плитами – 47,9
– коттеджей с электрическими плитами и электрическими саунами – 59,9

©Elesant.ru

Еще статьи

  • Назад на главную

Расчет мощности автомата с учетом нагрузки на проводку

Во многих жилых домах, построенных более 20 лет назад, имеются проблемы с электрической проводкой, так как добавляется все новая и новая бытовая техника, с высокими требованиями к качеству сети и с иными показателями мощности. Одна из проблем – несоответствие силы тока сечению проводки.

Всем знакомо короткое замыкание или прострел витка. Дабы избежать подобного, одной замены кабелей вовсе не достаточно, нужно устанавливать защитные автоматы, позволяющие избежать утечки напряжения.

Полезно будет узнать, как подобрать дифференциальный автомат или обычный автомат (автоматический выключатель) в свою квартиру в зависимости от нагрузки.

Отличия защитных устройств

Следует различать аппарат в виде дифавтомата и устройство защитного отключения. На первый взгляд особой видимой разницы в нет, но это не так.

УЗО служит для обесточивания сети при выявлении малейшей утечки в цепи. Например, при повреждении электрического кабеля, чтобы не травмировать человека, цепь будет отключена.

Дифавтомат, помимо УЗО, оснащен встроенным выключателем автоматического типа. Он служит для обесточивания системы, предотвращения короткого замыкания, перегрузки цепи, в общем. Одним словом, это два в одном.

Обычный автоматический выключатель (автомат) защищает цепь от перегрузки, но он не может создать безопасные условия для человека. Поэтому в современных строениях устанавливают либо дифавтоматы, либо УЗО и автоматы совместно.

Подбор любого защитного устройства зависит от характеристик сети. В первую очередь от нагрузки, подключенной к ней. Поэтому важно знать, как рассчитать мощность автомата по нагрузке.

Плюсы и минусы

Преимуществом дифавтомата в его компактности, многофункциональности, 100% защита цепи от внезапных перегрузок или иной опасности.

Ну а главный «козырь» — стоимость, которая ниже, нежели суммарная стоимость УЗО и выключателя автоматического типа. Если учитывать единичный случай, то разница не слишком ощутима, но при покупке на весь дом выгода существенная.

Впрочем, многое зависит от марки изделия. Монтаж занимает мало времени, на рейке дифавтомат также помещается довольно компактно.

Совет

Есть и свои недостатки у дифавтоматов. При выходе со строя придётся приобретать изделие в комплекте, а не по отдельности. Возникновение короткого замыкания приведёт к трудностям в поиске его причины. При разделенной установке идентификация намного проще: выключился УЗО – утечка, автомат – короткое замыкание.

Какой выбрать вид защитного устройства, вопрос не из лёгких. Как делают многие электрики: если речь идёт о небольшой квартире, тогда используйте дифавтомат.

Каковы критерии отбора оборудования

Если всё-таки отдали предпочтение дифавтомату, как продукту современных технологий, внимательно выбирайте изделие. Тщательным образом ознакомьтесь с его техническими данными. При выборе автомата по мощности нагрузки, обращают внимание на следующее:

  • напряжение и фазы: изделия по номинальному однофазному и трёхфазному типу, 220В и 360 В, соответственно. В первом вариант одна клемма, во втором – три для подключения. Все показатели указываются в паспорте на оборудование и маркируются на внешней стороне корпуса;
  • сила тока утечки: обозначается греческим символом «дельта» и исчисляется в миллиамперах. Корректно подобрать можно, основываясь на такие данные: на дом в целом – до 350 мА, на конкретную группу – 30 мА, точки и освещение – 30мА, одиночные точки – 15мА, бойлер – 10мА;
  • класс оборудования: А – сработка в результате утечки постоянного напряжения. АС – при утечке переменного тока;
  • защита от порыва «ноля»: при обнаружении подобного, система идентифицирует это как порыв и отключает оборудование;
  • время отключения: обозначается символом Tn и не должно превышать 0,3 секунды.

Для бытовых нужд наиболее распространёнными являются приборы с маркировкой «C» и диапазоном 25А. Монтаж вводных конструкций требует более мощных в виде C50, 65, 85, 95. Розетки и прочие точки – C15, 25.

Приборы освещения – C7, 12, электрическая плита – C40. Можно сказать, что это временная характеристика максимальной кратковременной мощности тока, которую может выдержать автомат и не сработать.

«C» означает, что автомат срабатывает при превышении номинального тока в 5-10 раз.

Вычисление показателей

Расчет мощности при выборе автомата проводится так. Например, все монтажные работы выполнены электрическим кабелем с сечением 3,0 и максимальной силой 25А. Общая мощность приборов равна: микроволновая печь 1,5 kW, электрочайник 2,1 kW, холодильник 0.7 kW, телевизор 0.5 kW. Суммарная мощность получается равной 4,7 kW или же 4.7 * 1000 W.

Чтобы мощность в каждой цепи было проще рассчитать, нагрузку разделяют на группы. Оборудование наибольшей мощности подключают отдельно. Не стоит пренебрегать нагрузкой малой мощности, поскольку при расчетах в сумме может получиться существенный результат.

Для вычисления используем формулу: мощность / напряжение. Итого 21,3 А. Потребуется УЗО или дифавтомат с граничным потреблением 25А, не более. Если количество потребителей более двух, то суммарную мощность следует умножать на 0,7, для корректировки данных. При нагрузке три и более – на 1,0.

Понижающие коэффициенты для некоторых приборов:

  • холодильное оборудование от 0,7 до 0,9, в зависимости от характеристик мотора;
  • подъёмные устройства и лифты 0,7;
  • оргтехника 0,6;
  • люминесцентные лампы 0,95;
  • лампы накаливания 1,1;
  • тип ламп ДРЛ 0,95;
  • неоновые газовые установки 0,4.

Понижение мощности обусловлено тем, что не все приборы могут быть включены одновременно.

По значению рабочего тока нагрузки подбирается автомат. Номинал автомата должен быть чуть меньше рассчитанного значения тока, но допускается выбирать и немного большие значения.

Значение тока при выборе сечения кабеля

Соответствие тока сечению жил кабеля можно проверить по таблице

Сводные характеристики для однофазного автомата:

  • сила 17А – показатель мощности до 3,0 кВт – ток 1,6 – сечение 2,4;
  • 26А – до 5,0 – 25,0 – 2,6;
  • 33А – 5,9 – 32,0 – 4,1;
  • 42А – 7,4 – 40,0 – 6,2;
  • 51А – 9,2– 48,4 – 9,8;
  • 64А – 12,1 – 62,0 – 16,2;
  • 81А – 14,4 – 79,0 – 25,4;
  • 101А – 18,3 – 97,0 – 35,2;
  • 127А – 22,4 – 120,0 – 50,2;
  • 165А – 30,0 – 154,0 – 70,1;
  • 202А – 35,4 – 185,0 – 79,2;
  • 255А – 45,7 – 240,0 – 120,0;
  • 310А – 55,4 – 296,0 – 186,2.

Можно также воспользоваться специальным графиком, по которому определяется номинальный ток автомата в зависимости от мощности нагрузки.

Нужное сечение кабеля подбирается исходя из суммарной мощности тока, проходящего через провод, рассчитать её поможет формула, схема расчета такова:

I = P/U,

где сила тока = суммарный показатель мощности разделён на напряжение в цепи. В большинстве случаев электрики используют именно эту формулу.

Более точная формула расчета мощности P=I*U*cos φ, где φ – угол между векторами тока, проходящего через автомат, и напряжения (не стоит забывать, что они могут быть переменными). Но поскольку в бытовых устройствах, работающих от однофазной сети, сдвига фазы между током и напряжением практически нет, то применяют упрощенную формулу мощности.

Если сеть трехфазная, то может наблюдаться существенный сдвиг фаз. В этом случае при расчетах мощность уменьшается, а получившийся ток надо делить на 3.

Так, для прибора мощность 6,5 кВт:

I = 6500/380/0,6=28,5

28,5/3=9,5 А

На электроприборах часто делают маркировку или прикрепляют табличку, с указанием этого параметра и значения мощности. Это позволяет быстро произвести расчеты. В трехфазной сети для нагрузки большой мощности применяют автоматы типа D.

Предыдущая новость Следующая новость

Расчет часового времени машины

| Бухгалтерское образование

Сегодня я изучил еще два примера, относящихся к расчету нормы машинного часа , и пришел к этой табличке, чтобы более четко объяснить норму машинного часа.

Говоря простыми словами, ставка машино-часов является базой для более быстрого расчета накладных расходов без потери времени. Мы связываем все накладные расходы с использованием станка, и бухгалтеру по затратам очень легко рассчитать общую стоимость, если мы знаем количество часов станка и общее количество часов использованного станка.Это также полезно для расчета стоимости машинного часа для каждой работы.

Например,

Предприятия Gemini выполняют три различных задания A, B и C. Все они требуют использования специальной машины, а также использования компьютера. Компьютер арендован, и плата за аренду составляет рупий. 420000 в год. Расходы на машину оцениваются следующим образом:

Аренда за квартал рупий. 17500

Амортизация в год руп. 2,00,000

Косвенные сборы в год руп.1,50,000

В течение первого месяца работы из реестра вакансий были взяты следующие данные.

Количество часов, в течение которых машина использовалась: A → B → C

a) Без использования компьютера 600 → 900

b) с использованием компьютера 400 → 600 → 1000

Вы должны вычислить ставка машино-часа:

a) Для фирмы в целом за месяц, когда компьютер использовался и когда компьютер не использовался.

b) Для отдельных работ A, B и C.

Решение:

Рабочие заметки:

Ist Расчет общего количества машинных часов в различных случаях

i) Общее количество использованных машинных часов

600 + 900 + 400 +600 +1000 = 3500

ii) Общее количество машинных часов без использование компьютеров

600 +900 = 1500

iii) Общее количество машинных часов с использованием компьютера

400 + 600 +1000 = 2000

2-й подсчет общих накладных расходов

Общие накладные расходы станка в месяц

а) Аренда 17500/3 = 5833.33
b) Амортизация 200000/12 = 16666,67
c) Косвенные расходы 150000/12 = 12500

---------------------------- -------------------
Итого = 35000
-------------------------- ----------------------

3-я Расчетная часовая нагрузка машины

= Общие накладные расходы / Общее количество часов, использованных машиной

В a) Ситуация - Накладные расходы для с использованием машин без компьютера

рупий. 35000/3500 часов = рупий. 10 в час

В б) Ситуация - накладные расходы на использование машин с компьютером

рупий.35000/2000 = РТС. 27,50 в час

4-я Расчетная часовая нагрузка станка для каждого задания

Если вы изучаете учет затрат, вы знаете, что такое работа, работа - это конкретная работа в производственном процессе, которую мы можем легко идентифицировать. В приведенном выше примере есть задания A, B и C. таким образом, мы можем рассчитать машинно-час для каждой работы после расчета общей продолжительности машинного часа с компьютером и без него

расчет моментов расчет крутящего усилия решение проблемы механического преимущества приложения равновесные шестерни рычаги уравновешивающие силы igcse / gcse 9-1 Physics revision notes

СИЛЫ 5.Расчет крутящих сил и моментов

от гаечных ключей до тачек и равновесных ситуаций

Док Брауна примечания к редакции школьной физики: физика GCSE, физика IGCSE, O level физика, ~ 8, 9 и 10 школьные курсы в США или эквивалентные для ~ 14-16 лет студенты-физики

Эта страница поможет вам ответить на такие вопросы, как как:

Что такое момент? Что такое механический преимущество? Как вы рассчитываете эффект поворота силы? Почему поворачивающие эффекты силы так важно? Где мы применяем преимущества поворачивающий эффект силы?

Субиндекс этой страницы

(а) An введение моментам и механическим силам вращения

(б) Несколько простых расчетов моментов

(в) Расчет моментов и балансирующая ситуация (равновесие)

(г) Более сложные вычисления моментов и равновесия

(д) Некоторые простые приложения поворачивающего воздействия сил с рычагами

(ж) Шестерни и винтик колеса - средство передачи вращательных воздействий

Смотрите также Масса - действие на нее силы тяжести - вес, (упоминание о проделанной работе, ГПД и круговом движении)


а) An i nпроизводство моментам и механическим силам вращения

Силы могут вызвать вращение объекта и эффект поворота силы называется момент .

Если на объект действует равнодействующая сила около фиксированной точки поворота (точка поворота ) это приведет к тому, что объект будет повернуть например поворот гайки гаечным ключом, использование отвертки, открытие двери фиксируется на петлях. Поворот можно также назвать точка опоры .

Эффект вращения или поворота, момент, легко имеет величину рассчитывается по формуле:

M = F x d , где M = момент силы ( Нм ), F = приложенная сила ( Н )

и d ( м ) - это перпендикулярное расстояние от точки поворота до линии действия сила.

Вы получить максимальный момент, нажав / потянув ключ под прямым углом (при 90 o ) к линии (d) между точкой поворота и линией действия, где приложена сила.

Закручивание или откручивание гайки на болте

Это проиллюстрировано простой схемой гаечного ключа выше. Поворот усилие F x d .

Точка поворота - центральная ось болт, на котором гайка поворачивается гаечным ключом.

Чтобы затянуть или ослабить гайку, используйте усилие, в лучшем случае, на 90 o на сам гаечный ключ.

Приложение силы под любым другим углом менее 90 o уменьшает d и тем самым уменьшает эффективный момент сила.

Вы определяете силу F по тому, насколько сильно вы толкать / тянуть конец гаечного ключа, но d - фиксированное расстояние для гаечный ключ.

Это одна из многих ситуаций, когда вы прилагают силу для усиления воздействия мышц руки .

Размер момента увеличивается с увеличение расстояния d или приложенной силы F.

Чем длиннее гаечный ключ, тем больше d, следовательно, чем больше создаваемое усилие поворота - чем больше механическое преимущество рычажная система.

Еще по физике откручивания туго орех!

Гаечный ключ "ситуации" от A до D

Относительные комментарии к трем «моментным» ситуациям от A до C

Ситуация A

С более длинным гаечным ключом и сила, перпендикулярная (под углом 90 o ) к линии от точки приложения силы (конец «ручки») к точке поворота (центр гайки или болта), вы создаете максимальный момент (F x d).

Перпендикулярное расстояние d - это кратчайшее расстояние между шарнирами. и линия действия силы

Ситуация B

Если применить силу к любому другому угол, чем под углом 90 o к перпендикулярной линии расстояния (d), d всегда будет короче и, следовательно, меньший момент генерируется применяя ту же силу, что и в ситуации А.

Обратите внимание, что когда линия действия сила приложена к «спине» гаечного ключа, d равно нулю, а момент равно нулю.

Это показано синей силой стрелка в положении D .

Ситуации A и B и верховая езда велосипед

Вы получаете ситуацию B, крутите педали а велосипед, когда ваша нога и педаль находятся в верхней или нижней части цикл кривошипа - точка поворота - ось кривошипа.Если вы нажмете вниз вы создаете минимальный момент - минимальную движущую силу вперед.

В верхней части «педального цикла», если направление силы вниз через кривошип, вращающая сила, момент, очень мал.

НО, наверху педаль цикл ', вы скоро научитесь толкать вперед , чтобы использовать максимальный момент и генерировать максимальную силы, чтобы вы имитировали ситуацию A, в которой вы генерируете силу под углом 90 o к поворотной оси и линии действия сила - максимальный момент = F x d на диаграмме выше .

Вы получаете максимальную силу передается, когда кривошип и педаль параллельны земле и вы прикладываете максимальную направленную вниз силу под углом 90 o к точка поворота (ось) и линия действия силы.

Ситуация C

С более коротким ключом, несмотря на приложение силы под углом 90 o (перпендикулярно), d меньше и вы не можете создать такой большой момент, как в ситуации А.

Итак, при той же приложенной силе, момент меньше для гаечного ключа меньшей длины.

Центр масс и устойчивость отдельно стоящего объекта

Центр масс - единственная точка в объекте, через который считается, что весь вес объекта действовать.

Достаточно легко представить, где это для правильной формы e.г. прямоугольный блок - показан в профиль в диаграмму ниже. Это совпадает с тем, что называют центром . тяжести 'объекта.

Стоящий объект становится неустойчивым когда вертикальная линия, проходящая через его центр масс, выходит за пределы его база, которая эффективно действует как база - это происходит, если она наклоняется на одну кромку, создавая тем самым момент - усилие поворота .

В этих условиях вес объекта вызывает эффект поворота вокруг стержневой базы.

Идея иллюстрируется приведенная ниже диаграмма блока правильной формы, показанного в профиль и наклоненного под разными углами (но это может быть автобус за углом!).

1. Вертикальная линия от центра массы проходит прямо через центр основания блока.

Объект полностью устойчива - момент (вращающее усилие) не создается.

2. Вертикальная линия от центра массы все еще проходит через основание, но не через его центр, а блок неустойчив, поэтому он будет немного покачиваться из стороны в сторону и в конечном итоге устойчивое вертикальное положение как в 1.

Край блока, касающийся поверхность действует как точка поворота.

Вес блока создает момент против часовой стрелки (сила поворота), заставляющий блок снова упасть против часовой стрелки, но этого недостаточно, чтобы опрокинуть блок на его длинной стороне.

3. Вертикальная линия от центра массы проходит за пределы основания блока. Блок даже не колебаться, он очень нестабилен и может просто опрокинуться длинной стороной (чтобы стать стабильным!).

Опять край блока прикосновение к поверхности действует как точка поворота.

Опять же вес блока создает момент по часовой стрелке (вращающее усилие), заставляющий блок упасть по часовой стрелке и достаточно, чтобы опрокинуть блок на его более длинную сторону.

Испытания на устойчивость по центр масс важны, например дорожные транспортные средства, такие как автобусы, безопасны проверено, чтобы увидеть максимально допустимый угол при наклоне без перевернуться в результате аварии.


НАЧАЛО СТРАНИЦЫ и субиндекс


(б) Несколько простых расчетов моментов

1 квартал

Рассчитайте момент, если сила 5.0 с.ш. прилагается к гаечному ключу длиной 15 см.

F = 5, d = 15/100 = 0,15 м

момент M = F x d = 5 x 0,15 = 0,75 Нм

2 квартал К двери прилагается сила 20 Н, создающая момент 5 Нм.

Рассчитайте расстояние в см от ось петли до точки на двери, к которой прикладывалась сила.

момент M = F x d, поэтому d = M / F = 5/20 = 0.25 м, следовательно, d = 0,25 x 100 = 25 см

3 квартал Какое усилие необходимо приложить к гаечному ключу длиной 30 см, чтобы создать момент 6,0 Нм?

момент M = F x d, поэтому F = M / d , d = 30 см = 30/100 = 0,30 м

F = M / d = 6,0 / 0,30 = 20 Н

Q4 -


НАЧАЛО СТРАНИЦЫ и субиндекс


(c) Расчет моментов и балансирующая ситуация (равновесие)

Левая диаграмма иллюстрирует сбалансированную ситуацию (равновесие), когда линейка повернуты посередине, а два груза w1 и w2 расположены на расстояниях d1 и d2 от точки поворота.Помните, что вес = сила в ньютонах.

Гири висят вертикально, поэтому сила тяжести действует перпендикулярно (под углом 90 o ) к линейке

Чтобы линейка находилась в идеальном горизонтальном положении две вращающие силы должны быть равны.

Здесь мы используем термины , момент по часовой стрелке и момент против часовой стрелки для двух вращающих воздействий задействованных сил.

момент против часовой стрелки = w1 x d1 (левая сторона оси), Момент по часовой стрелке = w2 x d2 (правая сторона оси)

так, когда w1d1 = w2d2

линейка сбалансирована горизонтально , при равновесие, когда поворачивающие эффекты сил равны.

Эта ситуация соответствует принципу моментов которые заявляет, что когда общая сумма против часовой стрелки моменты это равна общей сумме поворотов по часовой стрелке моменты система находится в равновесии и объект (система) НЕ повернет . Когда система стабильна (нет движения) или сбалансирована, говорят, что она равновесие, поскольку все силы, действующие на систему, нейтрализуют друг друга.

Вы это можно увидеть, когда вы проведете простой эксперимент, балансируя правило на карандаше и поставив по обе стороны небольшие гири, пока они не будут сбалансированы.

Точно так же, когда гайка болта затягивается, наступает момент, когда момент, когда вы применяете, уравновешивается противодействующим моментом болта и гайку, и гайку больше нельзя затянуть.

В середина качелей - это точка поворота.Если два человека равного веса сидите по обе стороны, качели сбалансированы по горизонтали - моменты по часовой стрелке и против часовой стрелки равны. Если два человека отличаются вес, качели упадут на сторону самого тяжелого человека, потому что моменты по часовой стрелке и против часовой стрелки не равны.

Направление вращения, то есть по часовой стрелке или против часовой стрелки, будет определились с относительными весами (силами) на каждом конце качелей.Один конец будет падать в направлении наибольшего момента

Пример использования принципа моменты - старинные кухонные весы

Луч весов должен быть горизонтальным. когда чаша и тарелка с грузами пусты (d1 = d2, w1 = w2).

Когда взвешиваемый объект помещается в блюдо, весы наклоняются против часовой стрелки вниз слева.

Затем вы добавляете веса, пока балка не станет снова горизонтально сбалансировать, таким образом давая вес материала, например, мука в миске.

Примеры простых вычислений с использованием описанных выше ситуаций

Предскажите, что произойдет в следующих ситуациях с Q1 (a) по (c)

1 кг = 1000 г и 100 см = 1 м и для простота предположим г = 10 Н / кг (вес = масса x сила тяжести)

Q1 (a) Предположим, что d1 = 20 см, w1 = масса 25 г, d2 = 10 см, w2 = масса 50 г

но сбалансировано ли это?

момент против часовой стрелки = d1w1 = (20/100) x (10 х 25/1000) = 0.05 Нм

момент по часовой стрелке = d2w2 = (10/100) x (10 x 50/1000) = 0,05 Нм

В данном случае момент против часовой стрелки = момент по часовой стрелке, поэтому линейка сбалансирована по горизонтали.

однояйцевые близнецы на качелях уравновесятся !!

НО, применяя дополнительную попеременную силу поворота мышц, вы можете получить отличный веселье !!!

Q1 (b) Предположим, что d1 равно 14 см, w1 = масса 52 г, d2 = 12 см, w2 = масса 60 г

но сбалансировано ли это?

момент против часовой стрелки = d1w1 = (14/100) x (10 х 52/1000) = 0.073 Нм

момент по часовой стрелке = d2w2 = (12/100) x (10 x 60/1000) = 0,072 Нм

В данном случае момент против часовой стрелки > момент по часовой стрелке, поэтому линейка будет вращаться против часовой стрелки на .

Q1 (c) Предположим, что d1 составляет 2,5 м, w1 = масса 55 кг, d2 = 3,0 m, w2 = масса 50 кг

но сбалансировано ли это?

момент против часовой стрелки = d1w1 = 2,5 x (10 x 55) = 1375 Нм

момент по часовой стрелке = d2w2 = 3.0 х (10 х 50) = 1500 Нм

В данном случае момент по часовой стрелке> по часовой стрелке, поэтому линейка будет вращаться по часовой стрелке.


НАЧАЛО СТРАНИЦЫ и субиндекс


(г) Более сложные расчеты моментов и равновесия

2 квартал

Если w1 составляет 12,5 Н и 3,5 м от оси поворота точка, какой вес w2 требуется, если поставить на 2.5 м от оси до баланса луч?

момент против часовой стрелки = 12,5 x 3,5 = 43,75 Нм

момент по часовой стрелке = w2 x 2,5

Для баланса моменты должны быть равны так:

w2 x 2,5 = 43,75, поэтому w2 = 43,75 / 2,5 = 17,5 N


3 квартал

Балка равномерно размещена на точке поворота (точка опоры).

С одной стороны груз 10 Н размещается на расстоянии 2 м от точку поворота и груз 40 Н на расстоянии 4 м от точки поворота.

На каком расстоянии от точки поворота должен находиться центр силы тяжести 80 Н для идеальной балансировки балки по горизонтали?

Принцип моментов гласит, что сумма моментов по часовой стрелке должны равняться сумме моментов против часовой стрелки достичь равновесия. Момент (Нм) = F (Н) x d (м)

Сумма моментов по часовой стрелке = (10 x 2) + (40 x {2 + 4}) = 20 + 240 = 260 Нм

Чтобы уравновесить это, момент против часовой стрелки должен = 240 Нм, 240 = 80 x d, d = 260/80 = 3.25

Следовательно, необходимо разместить груз 80 Н слева 3,25 м от точки поворота.


4 квартал Этот расчет - это то, что должны делать инженеры-строители и архитекторы. учитывать при строительстве «современных» зданий.

Алюминиевая балка 5,0 м подвешена на стальной трос от бетонной балки и длиной 3,0 м опирается на стальную опору.

Предполагая, что сила гравитационного поля равна 9.8 Н / кг, вычисляют Т , напряжение в ньютонах на опорной стальной трос.

Вес алюминиевой балки = 9,8 х 200 = 1960 Н.

момент = сила x перпендикулярное расстояние от поворотный момент.

Вы учитываете вес алюминиевой балки действовать через его центр масс на расстоянии 2,5 м с обоих концов, но на расстоянии 0,5 м от стальной стержень, который фактически является точкой поворота, на которой вы основываете свой момент расчеты.

Фактически такая же ситуация, как и тачка описана дальше вниз по странице!

Момент против часовой стрелки = вес балки x расстояние от стальной опоры до центра масс алюминиевой балки = 1960 x 0,5 = 980 Нм

Момент по часовой стрелке = натяжение стального троса x расстояние от стального троса до стальной опоры = T x 3,0

в состоянии равновесия, т.е.е. сбалансированный, по часовой стрелке момент = момент против часовой стрелки

поэтому: T x 3,0 = 980, поэтому T = 980/3 = 327 N (3 SF)


Q5 На диаграмме справа показаны направленные вниз силы (4000 Н и 6000 Н), действующие на бетонная балка, удерживаемая стеной на P - эффективно действовать в качестве точки поворота.

Другая вторая несущая стена должна быть возведен в X.

Рассчитайте усилие F , которое 2-я стена должна выдерживать, чтобы обеспечить конструктивную устойчивость. состояние сбалансированного равновесия.

Момент по часовой стрелке = 6000 x (40 + 20) = 360 000 Н

Моменты против часовой стрелки = (4000 x 32) + (40 х F)

360 000 = 128 000 + (40 x F)

232 000 = 40F

F = 232 000/40 = 5800 Н


НАЧАЛО СТРАНИЦЫ и субиндекс


(е) Некоторые простые применения поворачивающих воздействий сил, включая рычаги

Многие из описанных ниже примеров включают рычаг , который является средством увеличения вращательного действия силы.

Вы нажимаете на один конец рычага, и вращение вокруг точки поворота может привести к тому, что другой конец поднимется с большей сила.

На схеме ниже показан принцип рычага, чтобы получить механическое преимущество - все дело в соотношении d1 / d2.

F - задействованная сила (Н) и d (м) - (кратчайшее) перпендикулярное расстояние от точки поворота до точки, в которой сила прикладывается ИЛИ генерируется.

F1 = приложенная входная сила, d1 = расстояние от оси до перпендикулярного приложения силы F1

F2 = выходное усилие, d2 = расстояние от оси до места, где перпендикулярно создается сила F2

Когда сбалансировано, т.е. непосредственно перед тем, как что-то 'рычаг' и заставил двигаться

входной момент = F1 x d1 = выходной момент = F2 x d2

Из F1 x d1 = F2 x d2 перестановка дает F2 = F1 x d1 / d2

Следовательно, сделав d1 намного больше, чем d2 вы можете произвести гораздо большую выходную силу по сравнению с исходным входом сила.

Вообще говоря, вы делаете расстояние d1 намного больше, чем расстояние d2 - вы можете увидеть это с помощью ножниц, подняв крышку с банки, и это очень похожая ситуация при использовании вилки для подъема на глубину извлечение твердых корней из почвы или перемещение тяжелого камня шестом.

Итак, рычаги очень полезны, потому что они значительно упростить подъем и перемещение предметов за счет уменьшения входной силы необходимо для выполнения задачи.

Пример рычага вопрос

Предположим, для тяжелой крышки люка требуется усилие 160Н, чтобы открыть его.Представьте, что у вас повернут стальной стержень длиной 1 метр. на расстоянии 0,1 м (10 см) от конца, чтобы рычагом открыть тяжелую крышку люка.

Если надавить с силой 20 Н, Достаточно ли создаваемой вами восходящей силы, чтобы поднять крышку люка?

ссылаясь снова на диаграмму

входной момент = F1 x d1 = 20 x 0,9 = 18 Нм

выходной момент = F2 x d2 = F2 x 0,1 Нм

Поскольку F1 x d1 = F2 x d2

F2 = (F1 x d1) / d2 = 18/0.1 = 180 Н

В выходное усилие 180 Н превышает требуемое усилие 160 Н, поэтому крышка люка можно поднять.

Дырокол некоторого описания

Этот станок может пробивать отверстия в материале. Точка поворота (точка поворота) находится слева.

Мы можем проанализировать эту ситуацию с точки зрения поворачивающие силы.

Применение принципа моментов: F1 x d1 = F2 x d2

Перестановка уравнений дает: F1 = F2 x d2 / d1

Следовательно, сделав d2 "длинным" и d1 "коротким" вы значительно увеличиваете силу F1 по сравнению с F2.

Таким образом, вы можете легко пробивать отверстия в прочный материал, например лист металла.

Например, предположим, что d2 составляет 0,5 м (50 см). и d1 0,05 м (5 см)

F1 = F2 x 0.5 / 0,05, поэтому F1 = 10 x F2

Итак, сила, которую вы прикладываете вручную, умножается на 10 раз десять, неплохо за небольшое усилие!

Другими словами, чтобы получить в тот же момент.

Ножницы

Когда вы сжимаете руки-ножницы вместе, вы создаете мощное вращающее усилие. эффект близко к точке поворота.

F1 x d1 = F2 x d2, перестановка дает F2 = F1 х d1 / d2

Итак, сделав d1 >> d2, вы создадите много большее усилие F2, достаточное для резкого прорезания бумаги или карты.

Вот почему вы применяете лезвия ко всему вы режете как можно ближе к точке поворота.

Нельзя резать ножницами лезвия, где вы получаете небольшое механическое преимущество, т. е. без значительного увеличения силы вы подаете заявку.Это тот же принцип, что и для всей дыропробивной машины описано в пункте (а) выше.

Крышка банки откидная

Вы можете использовать отвертку с широким лезвием, чтобы крышка от банки с краской. Точка поворота - это край банки.

Длина отвертки до шкворня острие (d2) намного больше, чем конец отвертки за обод (d1).

F1 x d1 = F2 x d2, F1 = F2 x d2 / d1, поэтому если d2 намного больше, чем d1, вы получаете большое увеличение силы, которую вы прилагаете (F2), чтобы придать гораздо большую поднимающую силу (F1), чтобы оторвать крышку.

Еще один пример того, что для получения в тот же момент, чтобы открыть банку.

Относительно длинная ручка гаечного ключа

Гаечные ключи

имеют длинные ручки для надежного эффект силы поворота.

Вообще говоря, чем крупнее должна быть гайка затянут, тем длиннее гаечный ключ.

Гаечные ключи

подробно обсуждались на начало страницы.

Винт пробковый

Радиус ручки намного больше чем буровой стержень. Большая разница в радиусе дает гораздо больший крутящий момент (эффект поворачивающей силы), чтобы просверлить пробку винной бутылки.

Отвертка

Аргумент для отвертки такой же, как и для штопора выше. Чем больше диаметр ручки отвертки по сравнению с диаметр головки винта, тем больше сила (крутящий момент) вы может применяться для вбивания шурупа в дерево.

Тачка

Ручки тачки расположены намного дальше от оси колеса, чем центр тяжести полной тачки. (показано желтая капля!).Ось колеса - это точка поворота, относительно которой вы рассчитываете вовлечены два момента.

F1 - масса загруженной тачки, действующей от его центр масс (центр тяжести).

F2 - сила, которую вы прикладываете для подъема загруженного тачка.

Два момента следующие:

«Весовой» момент F1 x d1 - небольшой момент для управлять весом тачки.

(F1 действует вниз от центра масс / тяжести)

Однако «подъемный» момент равен F2 x d2, и поэтому требуется меньшая сила F2, действующая на большем перпендикулярном расстоянии d2, чтобы поднять тачку и ее груз.

F1 x d1 = F2 x d2, поэтому F2 = F1 x d1 / d2

Итак, F2 равно << F1

Величина подъемной силы F2 очень велика. меньше веса груза, поэтому вы можете поднимать тачку и перемещать ее вместе. Еще один пример того, что нужно меньше сил, чтобы получить тот же момент для выполнения работа по подъему колесной тележки для ее перемещения.

Обратите внимание, что, поскольку Работа = сила x расстояние, вы можете думать об этом как о выполняющем работу против Гравитационное поле Земли.

В случае моментов подъема объектов по вертикали , каждый по момент = прирост в GPE = mgh ,

GPE = гравитационная потенциальная энергия (Дж), m = масса (кг), g = 9,8 Н / кг, h = высота подъема в м, и больше по GPE

см. Масса и влияние на него силы тяжести - вес, (упоминание о проделанной работе и GPE)

Решающий экспериментальный результат - шестилетняя внучка Ниам едва ли может поднимать тачка оторвалась от земли (всего несколько сантиметров), но у бабушки Молли нет проблемы с подъемом тележки, чтобы ее переместить!

Загар в более раннем возрасте Ниам не так интересовался наукой!


НАЧАЛО СТРАНИЦЫ и субиндекс


(f) Шестерни и шестерни колеса - средство передачи силы вращения

Некоторые простые вычисления включены в конец раздела (f)

Зубчатые колеса круглые диски с зубьями и компоненты многих машин на транспорте и промышленность.

Они являются средством передачи вращательного эффекта сила от одной части к другой части механического устройства, например промышленный машина, автомобиль или велосипед.

Когда несколько из них соединены вместе (связаны в контакте через зубьев ) вращательное усилие может передаваться при установке в контакте друг с другом. Зубчатые колеса / шестерни при прямом контакте будут вращаться противоположные направления.

Благодаря блокировке одно зубчатое колесо может вращать другое в противоположное направление т.е. если одна шестерня идет по часовой стрелке, шестерня колесо в контакте с ним будет вращаться против часовой стрелки, независимо от того, сколько передач колеса соединены между собой.

При использовании зубчатых колес разного размера, различающихся количеством зубьев, вы можете увеличить или уменьшить силу, создаваемую эффектом поворота шестерен.

От передаточного числа можно работать обороты одной шестерни относительно соседнего колеса e.г.

на схеме шестерня 1 имеет 12 зубья и шестерня 2 имеет 18 зубьев.

Если меньшее колесо 1 один оборот, колесо 2 оборота 2/3 трети оборота, соотношение зубьев 12/18 = 2/3 (0,66).

Если большее колесо делает два оборота один раз, колесо 1 оборачивается 1,5 оборота, передаточное число зубьев 18/12 = 3/2 = 1,5.

Соотношение зубьев дает вам передаточное число.

Сила, приложенная к меньшей шестерне создает небольшой момент

- меньшее расстояние от зубьев до оси цапфы точка.

Сила, приложенная к шестерне большего размера создает больший момент

- большее расстояние от зубьев до оси цапфы точка.

Поскольку момент = сила x расстояние, соотношение двух моментов ушей равно отношению радиусов шестерни что равняется соотношению зубьев.

Если вы передаете усилие от большего зубчатого колеса (шестерни с большим количеством зубьев) на меньшее зубчатое колесо (шестерня с меньшим количеством зубьев) вы уменьшаете момент 2-го , поскольку вы уменьшили расстояние от приложенная сила к точке поворота оси.

Никакого механического преимущества не достигается - вы не увеличили выходное усилие меньшего зубчатого колеса.

Меньшее зубчатое колесо будет сделано для поворачивается быстрее, чем зубчатое колесо большего размера.

Это способ увеличения вращательного скорости в машинах.

Если у первого зубчатого колеса 20 зубьев и второе зубчатое колесо 5 зубьев, один оборот первого колеса вызывает колесо меньшего размера должно вращаться в 20/5 раз = в 4 раза больше - передаточное число 1: 4.

Если бы было наоборот, и вы сначала повернул 2-е меньшее зубчатое колесо, один его оборот поверните большее зубчатое колесо на 1/4 (5/20) оборота - передаточное число 4 : 1, уменьшая скорость вращения.

Если вы передаете усилие от меньшего зубчатого колеса (шестерня колесо с меньшим количеством зубьев) на зубчатое колесо большего размера (зубчатое колесо с большим количеством зубьев) вы увеличить момент по мере увеличения расстояния от применяемого усилие на точку поворота оси.

Получено механическое преимущество - вы увеличили выходное усилие большего зубчатого колеса.

Используя набор блокирующих шестерен, становиться все больше и больше можно умножить момент первой малой передачи.

Чем больше зубчатое колесо, тем больше крутится медленнее, чем меньший.

Это способ относительно маломощного Машину можно заставить поднимать тяжелые грузы.

Если у первого зубчатого колеса 8 зубьев и второе колесо 56 зубьев, первое колесо нужно повернуть 56/8 = 7 раз чтобы полностью повернуть второе колесо.

Примеры зубчатого колеса (зубчатого колеса) приложения

Старинная ручная дрель

Большое зубчатое колесо поворачивает меньшее зубчатое колесо с гораздо большей скорость со старомодной силой мускулов!

Усилие передается от одного зубчатого колеса к другому.

Так как большее зубчатое колесо с большим количеством зубьев приводит в движение меньшее зубчатое колесо колесо с меньшим количеством зубьев, на выходе получается высокая скорость вращения дрели.

Зубчатая передача в системах мельничных колес

Сложные машины, такие как старые мукомольные и текстильные фабрики, использование шестерни, чтобы использовать мощность, например, водяное колесо, чтобы передать силу для движения техника с необходимой скоростью и мощностью.

Медленно вращающееся водяное колесо, приводящее в движение систему зубчатых колес ( зубчатая передача ) может обеспечивать высокую скорость вращения для привода прядильной машины - важный механическая особенность в промышленной революции с 18 по 19 гг. век.

Часы

Часы используют шестерни для передачи потенциальную энергию пружины и двигайте руками в правильная скорость, чтобы указать правильное время.

Шестерни разных размеров необходимо управлять минутной и часовой стрелками.

Минутная стрелка должна идти в 60 раз быстрее, чем часовая стрелка, поэтому передаточные числа будут принимать это в учетную запись.

Шестерни на велосипеды

Шестерни (зубчатые колеса) используются в велосипеды для передачи усилия от педалирования передних передач на шестерни на задних колесах.

Шестерни не контактируют с друг друга, но винтики соединены непрерывным цепным механизмом.

Сила вашей стопы, приложенная к педаль вращает первую передачу (переднюю шестерню) и через цепь заднюю шестерня (задняя шестерня) вращается в том же направлении по часовой стрелке.

Если винтики одинакового размера (одинаковые количество зубьев), они оба вращаются с одинаковой скоростью.

Велосипеды часто имеют сложные зубчатые передачи. для эффективной передачи усилия, создаваемого педалью, на вождение заднее колесо.

Следующие две «упрощенные» диаграммы и примечания объясняют «физические» принципы, лежащие в основе переключения передач на велосипеде.

"Ускорение" - особенно под гору !!!

Помимо большего физического напряжения, чтобы ускориться при езде на велосипеде, вы переходите на более высокую передача.

Вы делаете это, переключившись на меньшая задняя шестерня на заднем колесе, меньшая шестерня вращается быстрее, но с меньшей силой, например

Передняя шестерня имеет 12 зубьев (или cogs) и заднее зубчатое колесо 8 на схеме выше.

Соотношение 12/8 = 1,5, поэтому каждые когда вы крутите переднюю шестерню один раз, задняя шестерня и колесо повернули 1,5 раза - это предполагает зубья шестерен обоих зубчатые колеса одинакового размера, поэтому отношение радиусов зубчатых колес составляет 3: 2.

Изменение передаточного числа может достигать Соотношение 53 к 11 для быстрой езды, поэтому за один цикл педали заднее колесо почти вращается. в пять раз, но с таким передаточным числом можно потрудиться!

С тройной звездочкой на передняя передача и 10 передач на заднем колесе, у вас есть выбор 30 передаточных чисел для максимальной скорости на ровной или скоростной дороге или восхождение на самые крутые холмы.

'Переход к крутому склону'

Помимо большего физического напряжения, чтобы подняться на крутой холм при езде на велосипеде, вы меняете на пониженную передачу.

Вы делаете это, переключившись на большая задняя шестерня на заднем колесе, большая шестерня вращается медленнее, но с большей силой, например

Передняя шестерня имеет 8 зубьев (или шестерни) и заднее зубчатое колесо 12 (соотношение 2/3) на диаграмме выше, поэтому один оборот передней передачи педалями дает только 2/3 поворот задней шестерни и заднего колеса.

Если соотношение передняя шестерня: задняя винтик был 1: 3, механическое преимущество - 3 - это предполагает передачу зубья обоих зубчатых колес одинакового размера, поэтому отношение радиусов зубчатые колеса - 1: 3.

Это означает входное усилие производит выходную силу в 3 раза больше, но вы делаете много вращение педалей для создания непрерывной отдачи с силой, достаточной подняться на крутой холм.

Вопросы о шестерне

Q1 Зубчатая шестерня 25 в контакт со 2-й шестерней с 5 зубьями.

При повороте первого колеса дважды по часовой стрелке, в каком направлении вращается 2-е колесо и на сколько раз?

2-я шестерня должна вращаться против часовой стрелки - он должен вращаться в обратном направлении направление.

2-я шестерня повернется на 25/5 х 2 = 1 0 оборотов

Аргумент: 25 зубов первая шестерня переместит 25 зубьев меньшей шестерни. поскольку 2-е меньшее колесо имеет только 5 зубьев, 25 зубьев большего шестерня будет перемещать его 5 раз за оборот, и это удваивается за два оборота 1-го большего колеса. Передаточное число 5: 1.

2 квартал -


НАЧАЛО СТРАНИЦЫ и субиндекс


Примечания к редакции Forces индекс

СИЛЫ 1. Что такое контактные силы и бесконтактные силы?, скалярные и векторные величины, диаграммы сил в свободном теле

СИЛЫ 2. Масса и действие на нее силы тяжести - вес (упоминание о проделанной работе и GPE)

СИЛЫ 3.Расчет равнодействующих сил с использованием вектора схемы и проделанная работа

СИЛЫ 4. Эластичность и энергия пружины

СИЛЫ 5. Поворачивающие силы и моменты - от гаечных ключей. тачкам и равновесным ситуациям

СИЛЫ 6. Давление в жидких и гидравлических средах. системы

СИЛЫ 7. Давление и подъем в жидкостях, почему объекты плавают или тонут в жидкости? изменение атмосферного давления с высота



Версия IGCSE заметки момент расчеты использование силы вращения KS4 физика научные заметки на расчет момента использование вращающих сил Руководство по физике GCSE заметки по расчетам моментов использования вращающих сил для школ, колледжей, академий, учебных курсов, репетиторов изображений рисунки, диаграммы для расчета моментов, использование вращающих сил, научная редакция, примечания к моментные расчеты использование вращающих сил для проверки модулей физики примечания по темам физики моментные расчеты использование вращающих сил университетские курсы физики карьера в науке и физике вакансии в машиностроении технический лаборант стажировка инженер стажировка по физике США 8 класс 9 класс 10 AQA Заметки о пересмотре GCSE 9-1 по физике и расчетам моментов использование силы поворота GCSE примечания к расчетам моментов использования вращающих сил Edexcel GCSE 9-1 физика наука пересмотр примечания к расчет момента использование вращающих сил для OCR GCSE 9-1 21 век физика научные заметки о расчетах моментов использования токарной обработки заставляет OCR GCSE 9-1 Шлюз физики примечания к пересмотру расчетов моментов использования вращающих усилий WJEC gcse science CCEA / CEA gcse science

НАЧАЛО СТРАНИЦЫ и субиндекс

Объем транспортных ящиков и контейнера

Это удобный счетчик кубических метров для расчета объема транспортировки картонных коробок в метрических единицах измерения см и кг.

Как рассчитать кубические метры (куб. М) при отгрузке

Определение кубических метров (кубометров) - это первый шаг, который вы должны предпринять при определении способа перевозки груза.

  • Формула расчета кубических метров:
    длина (сантиметр) x ширина (сантиметр) x высота (сантиметр) / 1000000 = Длина (метр) x ширина (метр) x высота (метр) = кубический метр (м³). например 35 см x 35 см x 45 см = 0,055 куб. М (рассчитать кубический метр)
  • Формула CFT: длина x ширина x высота =? Деленное 1728 = кубические футы (CFT) (вычислить кубические футы)
  • 1 куб.м = 35.3146 кубических футов (конвертер куб. М и куб. Футов)
  • 1 фунт = 0,45359237 кг, 1 кг = 2,20462262 фунта (конвертировать килограммы в фунты)

Как пользоваться калькулятором

  1. С помощью линейки измерьте действительный размер внешней коробки.
  2. Заполните пропуски размеров (длина, ширина, высота)
  3. Заполните бланк картонной массы брутто
  4. Заполните бланк картонной коробки
  5. Общий объем груза рассчитывается автоматически
  6. Если вы предпочитаете использовать британские единицы измерения, дюймы и фунты, попробуйте этот калькулятор кубических футов для доставки (рассчитайте объем кубических футов из дюймов и фунтов).

Рассчитайте объемный вес вашего груза

Иногда за большие предметы с небольшим общим весом взимается плата. в зависимости от места, которое они занимают в самолете, например. карнавальная повязка на голову, багаж. В этих случаях, объемный вес или объемный вес используется для расчета Стоимость доставки. Рекомендуется рассчитать объемный вес каждой отправляемой вами посылки, затем сравните это его фактический вес. Больший из двух используется для Определите цену, которую будет взимать с вас авиакомпания.

Международные объемные веса рассчитываются по формуле внизу:
(длина x ширина x высота в сантиметрах) / 5000 = объемный Масса в килограммах

Например:
Если у нас есть картонная упаковка размером 40 x 50 x 60 см, а общий вес (с продуктами) - 20 кг.

40 x 50 x 60 = 120000
120000/5000 = 24

так объемный вес 24 кг. а фактический вес 20 кг.
эта стоимость доставки будет взиматься с цены 24 кг.

Расчет CBM

Рассчитайте кубический метр (или кубический фут), объем и количество за транспортный контейнер.
Хотите быстро и легко подсчитать, сколько ваших продукт (ы) поместится в транспортную тару?
Вот простой и быстрый способ сделать это, чтобы получить приблизительную количество.

Мобильное приложение для Android

У нас есть новые приложения калькулятора CBM для устройства Android, если вам нравится наш калькулятор CBM и у вас есть мобильный / планшет Android, попробуйте наши удобные мобильные приложения на мобильном телефоне.Загрузите приложения калькулятора CBM в Google Play.

Грузоподъемность морских контейнеров

  • 20-футовый контейнер примерно 26-28 куб. М
  • 40-футовый контейнер примерно 55-58 куб. М
  • 40-футовый контейнер HQ примерно 60-68 куб.м
  • 45-футовый контейнер HQ примерно 78 куб. М

Обратите внимание, что этот калькулятор предназначен только в качестве краткого руководства. На практике фактическая загрузка будет зависеть от точных расчетов, основанных на том, как предметы загружаются в контейнер и оставляют ли размеры картонных коробок непригодное для использования пространство.Коэффициенты нагрузки зависят от размера коробки и от того, как она размещается внутри контейнеров.

Что вы думаете об этом инструменте?


Вот еще несколько калькуляторов и конвертеров объема, используемых в различных ситуациях, Эти онлайн-инструменты расчета бесплатны и просты в использовании, вы можете поделиться ими или попробовать их.

Калькулятор объема

Преобразователи объема

Пример расчета объема отгрузки

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *