Простые схемы на транзисторах для начинающих: Простые схемы для начинающих

Содержание

Восемь простых схем на транзисторах для начинающих радиолюбителей

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик - он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В - четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора - он достигнет первоначального значения.

Нагрузка усилительного каскада - головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации - резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более "чувствительный” по сравнению с однокаскадным - коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 - в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока - коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 - если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем - около 2 мА.

Двухтактный усилитель мощности ЗЧ на транзисторах

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй - на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй - усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ - при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), - оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада - резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем - HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Трехуровневый индикатор напряжения

Он выдает световые сигналы по принципу меньше нормы - норма - больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один - зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение - вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.

Простые электросхемы. Восемь простых схем на транзисторах для начинающих радиолюбителей

Недавно ко мне, узнав что я радиолюбитель, на форуме нашего города, в ветке Радио обратились за помощью два человека. Оба по разным причинам, и оба разного возраста, уже взрослые, как выяснилось при встрече, одному было 45 лет, другому 27. Что доказывает, что начать изучение электроники, можно в любом возрасте. Объединяло их одно, оба были так или иначе знакомы с техникой, и хотели бы самостоятельно освоить радиодело, но не знали с чего начать. Мы продолжили общение в В_Контакте , на мой ответ, что в инете море информации на эту тему, занимайся - не хочу, я услышал от обоих примерно одинаковое, - что оба не знают с чего начать. Одним из первых вопросов было: что входит в необходимый минимум знаний радиолюбителя. Перечисление им необходимых умений, заняло довольно приличное время, и я решил написать на эту тему обзор. Думаю, он будет полезен таким же начинающим, как и мои знакомые, всем кто не может определиться, с чего начать свое обучение.

Сразу скажу, что при обучении, нужно равномерно сочетать теорию с практикой. Как бы ни хотелось, побыстрее начать паять и собирать конкретные устройства, нужно помнить о том, что без необходимой теоретической базы в голове, вы в лучшем случае, сможете безошибочно копировать чужие устройства. Тогда как если будете знать теорию, хотя бы в минимальном объеме, то сможете изменить схему, и подогнать её под свои потребности. Есть такая фраза, думаю известная каждому радиолюбителю: “Нет ничего практичнее хорошей теории”.

В первую очередь, необходимо научиться читать принципиальные схемы. Без умения читать схемы невозможно собрать даже самое простое электронное устройство. Также впоследствии, не лишним будет освоить и самостоятельное составление принципиальных схем, в специальной .

Пайка деталей

Необходимо уметь опознавать по внешнему виду, любую радиодеталь, и знать, как она обозначается на схеме. Разумеется, для того чтобы собрать, спаять любую схему, нужно иметь паяльник, желательно мощностью не выше 25 ватт, и уметь им хорошо пользоваться. Все полупроводниковые детали не любят перегрева, если вы паяете, к примеру, транзистор на плату, и не удалось припаять вывод за 5 - 7 секунд, прервитесь на 10 секунд, или припаяйте в это время другую деталь, иначе высока вероятность сжечь радиодеталь от перегрева.

Также важно паять аккуратно, особенно расположенные близко выводы радиодеталей, и не навесить “соплей”, случайных замыканий. Всегда если есть сомнение, прозвоните мультиметром в режиме звуковой прозвонки подозрительное место.

Не менее важно, удалять остатки флюса с платы, особенно если вы паяете цифровую схему, либо флюсом содержащим активные добавки. Смывать нужно специальной жидкостью, либо 97 % этиловым спиртом.

Начинающие часто собирают схемы навесным монтажом, прямо на выводах деталей. Я согласен, если выводы надежно скручены между собой, а после еще и пропаяны, такое устройство прослужит долго. Но таким способом собирать устройства, содержащие больше 5 - 8 деталей, уже не стоит. В таком случае, нужно собирать устройство на печатной плате. Собранное на плате устройство, отличается повышенной надежностью, схему соединений можно легко отследить по дорожкам, и при необходимости вызвонить мультиметром все соединения.

Минусом печатного монтажа, является трудность изменения схемы готового устройства. Поэтому перед разводкой и травлением печатной платы, всегда, сначала нужно собирать устройство на макетной плате. Делать устройства на печатных платах, можно разными способами, здесь главное соблюдать одно важное правило: дорожки медной фольги на текстолите, не должны иметь контакта с другими дорожками, там, где это не предусмотрено по схеме.

Вообще есть разные способы сделать печатную плату, например, разъединив участки фольги - дорожки, бороздкой, прорезаемой резаком в фольге, сделанным из ножовочного полотна. Либо нанеся защитный рисунок защищающий фольгу под ним, (будущие дорожки) от стравливания с помощью перманентного маркера.

Либо с помощью технологии ЛУТ (лазерно - утюжной технологии), где дорожки от стравливания защищаются припекшимся тонером. В любом случае, каким-бы способом мы не делали печатную плату, нам необходимо, сперва её развести в программе трассировщике. Для начинающих рекомендую , это ручной трассировщик с большими возможностями.

Также при самостоятельной разводке печатных плат, либо если распечатали готовую плату, необходимо умение работать с документацией на радиодеталь, с так называемыми Даташитами (Datasheet ), страничками в PDF формате. В интернете есть Даташиты практически на все импортные радиодетали, исключение составляют некоторые Китайские.

На отечественные радиодетали, можно найти информацию в отсканированных справочниках, специализированных сайтах, размещающих страницы с характеристиками радиодеталей, и информационных страничках различных интернет магазинов типа Чип и Дип . Обязательно умение определять цоколевку радиодетали, также встречается название распиновка, потому что очень многие, даже двух выводные детали имеют полярность. Также необходимы практические навыки работы с мультиметром.

Мультиметр, это универсальный прибор, с помощью только его одного, можно провести диагностику, определить выводы детали, их работоспособность, наличие или отсутствие замыкания на плате. Думаю не лишним, будет напомнить, особенно молодым начинающим радиолюбителям, и о соблюдении мер электробезопасности, при отладке работы устройства.

После сборки устройства, необходимо оформить его в красивый корпус, чтобы не стыдно было показать друзьям, а это значит, необходимы навыки слесарного, если корпус из металла или пластмассы, либо столярного дела, если корпус из дерева. Рано или поздно, любой радиолюбитель приходит к тому, что ему приходится заниматься мелким ремонтом техники, сначала своей, а потом с приобретением опыта, и по знакомым. А это означает, что необходимо умение проводить диагностику неисправности, определение причины поломки, и её последующее устранение.

Часто даже опытным радиолюбителям, без наличия инструментов, трудно выпаять многовыводные детали из платы. Хорошо если детали идут под замену, тогда откусываем выводы у самого корпуса, и выпаиваем ножки по одной. Хуже и труднее, когда эта деталь нужна для сборки какого-либо другого устройства, или производится ремонт, и деталь, возможно, потребуется после впаять назад, например, при поиске короткого замыкания на плате. В таком случае нужны инструменты для демонтажа, и умение ими пользоваться, это оплетка и оловоотсос.

Использование паяльного фена не упоминаю, ввиду частого отсутствия у начинающих доступа к нему.

Вывод

Все перечисленное, это только часть того необходимого минимума, что должен знать начинающий радиолюбитель при конструировании устройств, но имея эти навыки, вы уже сможете собрать, с приобретением небольшого опыта, практически любое устройство. Специально для сайта - AKV .

Обсудить статью С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ

Подборка простых и интересных схем для начинающих радиолюбителей. Основной акцент предлагаемых конструкций сделан именно на простоту и понимание работы основ электроники. Кроме того рассмотрены различные методы по проверки основных радиоэлектронных компонентов таких как диоды, транзисторы и оптопары, рассмотрена и работа последних.

В этой статье в простой и удобной форме вы овладеете навыками использования мультиметра. Узнаете о способах проверки основных радиокомпонентов из которых будем собирать наши первые электронные самоделки. Вы узнаете как прозвонить мультиметром собранную схему, проверить на работоспособность диод, транзистор и конденсатор.

В это статье начинающие радиолюбители смогут познакомится с принятым в мировой радиолюбительской практике условно-графическим обозначением различиных типов радиодеталей в принципиальных схемах

Простые схемы начинающих Ардуинщиков

Цикл статей и обучающих схем с радиолюбительскими экспериментами на плате Arduino для начинающих. Ардуино - радиолюбительская игрушка-конструктор, из которой без паяльника, травления печатных плат и тому подобного любой начинающий в электронике может собрать полноценное работающее устройство, подходящее для профессионального прототипирования так и для любительских опытов при изучении электроники. А кроме того Arduino полезная электронная штучка в умном домашнем хозяйстве.

Как устроен и работает полупроводниковый прибор называемый транзистором, почему он так часто встречается в радиаппаратуре и почему без него почти никогда нельзя обойтись.

Индикатор намагниченности - Обычный школьный компас чутко реагирует на магнитное поле. Достаточно, скажем, пронести перед его стрелкой намагниченный конец отвертки и стрелка отклонится. Но, к сожалению, после этого стрелка будет некоторое время по инерции раскачиваться. Поэтому пользоваться таким простейшим прибором определения намагниченности предметов неудобно. Необходимость же в таком измерительном устройстве возникает нередко. Собранный из нескольких деталей индикатор оказывается совершенно неинерционным и сравнительно чувствительным, чтобы, к примеру, определить намагниченность лезвия бритвы или часовой отвертки. Кроме того, подобный прибор пригодится в школе во время демонстрации явления индукции и самоиндукции
Индикатор переменного электромагнитного поля Вокруг проводника с током образуется магнитное поле. Если включить, скажем, настольную лампу, то такое поле будет вокруг проводов, подводящих к лампе сетевое напряжение. Причем поле будет переменным, изменяющимся с частотой сети 50 Гц. Правда, напряженность поля невелика, и обнаружить его можно лишь чувствительным индикатором
Искатель скрытой проводки . Переменное электромагнитное поле можно обнаружить с помощью электронных устройств, познакомимся с более чувствительным индикатором, способным уловить слабое поле сетевых проводов, по которым течет переменный ток. Речь пойдет об искателе скрытой проводки в вашей квартире. Такой индикатор предупредит о повреждении сетевых проводов при сверлении отверстий в стене
Индикатор потребляемой мощности «Показания» предыдущих индикаторов зависят от напряженности магнитного. либо электрического (как в последнем индикаторе) поля, создаваемого протекающим по проводам током. Чем больше ток, тем сильнее поле. А ведь ток - не что иное, как характеристика мощности, потребляемой нагрузкой от сети переменного тока. Поэтому нетрудно догадаться, что индикатор, к примеру с индуктивным датчиком, можно приспособить в схемах контроля и измерения потребляемой мощности. Кроме того, такая схема индикатора, установленная вблизи входной двери, будет сигнализировать перед уходом из квартиры об оставленных включенными приборах. Лучшее место установки датчика - у ввода проводов в квартиру, вблизи разветвительной коробки. Потому здесь протекает общий ток всех потребителей, включенных в любую розетку квартиры. Правда, переменное напряжение на выводах катушки датчика будет небольшим, и понадобится усилитель

Световой сигнализатор телефонных звонков Если в комнате громко работает телевизор телефонный звонок можно и не услышать. Вот здесь и нужен световой сигнализатор, который включит схему индикатора, как только будет телефонный звонок.

Основой схемы автомата-сигнализатора служит датчик, реагирующий на телефонные звонки, выполненный на катушке индуктивности. Она расположена рядом с телефонным аппаратом, поэтому ее витки находятся в магнитном поле электромагнита звонка вызова. Сигнал вызова индуцирует в катушке датчика переменную ЭДС.

«Бесшумный» звук схема начинающих Иногда хочется послушать радиоприемник, посмотреть телевизор, не мешая окружающим? Конечно, включить в дополнительные гнезда наушники - скажете вы. Все верно, однако подобная система связи неудобна - соединительный провод наушников не позволяет удаляться на значительное расстояние, а тем более ходить по комнате. Всего этого можно избежать, если воспользоваться «беспроводной» схемой связи, состоящей из передатчика и приемника.

Электронная «мина» Воспользовавшись принципом индуктивной связи, можно собрать своими руками интересную схему используемую в организации соревнований по поиску «мин»- замаскированных в земле или в помещении миниатюрных передатчиков, работающих на звуковой частоте.

Каждая такая «мина» представляет собой схему мультивибратора, работающего на частоте примерно 1000 Гц. В эмиттерную цепь транзистора схемы мультивибратора включен усилитель мощности с катушкой индуктивности в качестве нагрузки. Вокруг нее образуется электромагнитное поле звуковой частоты

    Прерывистая сирена Начнем с самой простой конструкции, имитирующей звук сирены. Встречаются сирены однотональные, издающие звук одной тональности, прерывистые, когда звук плавно нарастает и спадает, а затем прерывается либо становится однотональным, и двухтональные, в которых тональность звука периодически изменяется скачком.

    Схема прерывистой электронной сирены собрана на транзисторах VT 1 и VT 2 по схеме несимметричного мультивибратора. Простота схемы генератора объясняется использованием транзисторов разной структуры, что позволило обойтись без многих деталей, необходимых в схеме постройки мультивибратора на транзисторах одинаковой структуры.

    Двухтональная сирена. Взглянув на схему этого имитатора, нетрудно заметить уже знакомый узел - генератор, собранный на транзисторах VT 3 и VT 4. По такой схеме был собран предыдущий имитатор. Только в данном случае мультивибратор работает не в ждущем, а в обычном режиме. Для этого на базу первого транзистора (VT 3) подано напряжение смещения с делителя R 6 R 7. Заметьте, что транзисторы VT 3 и VT 4 поменялись местами по сравнению с предыдущей схемой из-за изменения полярности напряжения питания.

    Двигатель внутреннего сгорания. Так можно сказать про следующий имитатор послушав его звучание. И действительно, издаваемые динамической головкой звуки напоминают выхлопы, характерные во время работы двигателя автомобиля, трактора или тепловоза.

    Под звуки капели Кап... кап... кап... - доносятся звуки с улицы, когда идет дождь, весной падают с крыши капли тающего снега. Эти звуки на многих людей действуют успокаивающе, а по отзывам некоторых, даже помогают засыпать. Ну что ж, возможно, вам понадобится такой имитатор. На постройку схемы уйдет лишь с десяток деталей

    Имитатор звука подскакивающего шарика Хотите послушать, подскакивающий стальной шарик от шарикоподшипника на стальной и чугунной плите? Тогда соберите имитатор по этой схеме начинающих электронщиков.

    Морской прибой... в комнате Подключив небольшую приставку к усилителю радиоприемника, магнитофона или телевизора, вы сможете получить звуки, напоминающие шум морского прибоя. Схема такой приставки-имитатора состоит из нескольких узлов, но главный из них - генератор шума

    Костер... без пламени Почти в каждом пионерском лагере устраивают пионерский костер. Правда, не всегда удается собрать столько дров, чтобы пламя было высоким, а костер громко потрескивал.

    А если дров поблизости вообще нет? Или вы хотите соорудить незабываемый пионерский костер в школе? В этом случае поможет предлагаемый электронный имитатор, создающий характерный звук потрескивания горящего костра. Останется лишь изобразить«пламя» из красных лоскутов ткани, развеваемых скрытым на полу вентилятором.

    Как поет канарейка? Эта схема начинающего радиолюбителя сравнительно простого имитатора звуков канарейки. Это уже известная вам схема мультивибратор, но несимметричный ее вариант (сравните емкости конденсаторов С1 и СЗ частотозадающих цепей - 50 мкФ и 0,005 мкФ!). Кроме того, между базами транзисторов установлена цепочка связи из конденсатора С2 и резистора R3. Элементы мультивибратора подобраны так, что он генерирует сигналы, которые, поступая на головной телефон BF 1, преобразуются им в звуковые колебания, похожие на трели канарейки

    Трели соловья На разные голоса Использовав часть предыдущей конструкции, можно собрать новый имитатор - трелей соловья. В нем всего один транзистор, на котором выполнен блокинг-генератор с двумя цепями положительной обратной связи. Одна из них, состоящая из дросселя и конденсатора, определяет тональность звука, а вторая, составленная из резисторов и конденсатора, - период повторения трелей.

    Как стрекочет сверчок? Имитатор стрекота сверчка отличная схема начинающего электронщика состоит из мультивибратора и RC -генератора. Схема мультивибратора собрана на транзисторах. Отрицательные импульсы мультивибратора (когда закрывается один из транзисторов) поступают через диод VD1 на конденсатор С4, являющийся «аккумулятором» напряжения смещения транзистора генератора.

    Кто сказал «мяу»? Этот звук донесся из небольшой шкатулки, внутри которой разместился электронный имитатор. Схема его немного напоминает схему предыдущего имитатора, не считая усилительной части - здесь применена аналоговая интегральная микросхема.

    Звуколокатор Эта простая игрушка - всего лишь демонстрация «работы» звука. Названа она так потому, как и настоящий локатор излучает сигнал, а затем принимает его уже отраженным от каких-либо препятствий. Как только до какого-нибудь препятствия останется определенное расстояние, принятый звуковой сигнал возрастет до уровня, при котором сработает автоматика и выключит электродвигатель

    Автомат «Тише» Шум мешает любым занятиям - это ясно каждому. Но порою мы слишком поздно спохватываемся, когда в классе или другом помещении, где идет работа, уже давно громкость нашего разговора или спора превышает допустимую. Надо бы говорить тише, а мы увлеклись и не замечаем, что мешаем окружающим.

    Если же установить в помещении автомат, следящий за громкостью звука, то при достижении определенного, заранее заданного, уровня громкости автомат сработает и зажжет настенное табло «Тише» либо подаст звуковой сигнал.

    «Дрессированная змея» Акустический автомат, реагирующий на звуковой сигнал, может срабатывать не только при определенной громкости звука, но и при соответствующей частоте. Таким избирательным свойством обладает предлагаемая ниже схема игрушки.

    Одно, 2-х, 3-х, и 4-х канальный акустический выключатель А теперь поговорим об схемах автоматов, которые по звуковым сигналам способны включать и отключать нагрузку. Скажем, при одном сравнительно громком сигнале (хлопок в ладоши) автомат включает нагрузку в сеть, при другом выключает. Перерывы между хлопками могут быть сколь угодно большими, и все это время нагрузка будет либо включена, либо выключена. Подобный автомат и получил название акустический выключатель.

    Если автомат управляет только одной нагрузкой, его можно считать одноканальным, например схема одноканального акустического выключателя

Схема простого электромузыкального инструмента . Любой генератор звуковой частоты вырабатывает электрические колебания, которые, будучи поданными на усилитель ЗЧ, преобразуются его динамической головкой в звук. Тональность последнего зависит от частоты колебаний генератора. Когда в схеме генератора использован набор резисторов разных сопротивлений и их включают в частотозадающую схему обратной связи, получится простой электромузыкальный инструмент, на котором можно исполнять несложные мелодии.

Схема Терменвокс для начинающих Это первый инструмент, положивший начало новому направлению в радиоэлектронике - электронной музыке (сокращенно электромузыке). Разработал его в 1921 г. молодой петроградский физик Лев Термен. По имени изобретателя и был назван необычный электромузыкальный инструмент. Необычен же он тем, что не имеет клавиатуры, струн или труб, с помощью которых получают звуки нужной тональности. Игра на терменвоксе напоминает выступление фокусника-иллюзиониста - самые разнообразные мелодии звучат из динамической головки при едва заметных манипуляциях одной и двумя руками вблизи металлического прутка-антенны, торчащего на корпусе инструмента.

Электронный барабан схема начинающего электронщика Барабан - один из популярных, но в то же время громоздких музыкальных инструментов. Уменьшить его габариты и сделать более удобным в транспортировке - желание едва ли не каждого ансамбля. Если воспользоваться услугами электроники и собрать приставку к мощному усилителю (а он сегодня - неотъемлемая часть аппаратуры ансамбля), можно получить имитацию звучания барабана.

Если с помощью микрофона, усилителя и осциллографа «просмотреть» звук барабана, то удастся обнаружить следующее. Сигнал на экране осциллографа промелькнет в виде всплеска, напоминающего падающую каплю воды. Правда, падать она будет справа налево. Это значит, что левая часть «капли» имеет крутой фронт, обусловленный ударом по барабану, а затем следует затухающий спад - он определяется резонансными свойствами барабана. Внутри же «капля» заполнена колебаниями почти синусоидальной формы частотой 100...400 Гц - это зависит от размеров и конструктивных особенностей данного инструмента.

Приставки к электрогитаре Популярность электрогитары сегодня во многом объясняется возможностью подключать к ней электронные приставки, позволяющие получать самые разнообразные звуковые эффекты. Среди музыкантов-электрогитаристов можно услышать незнакомые для непосвященных слова «вау», «бустер», «дистошн», «тремоло» и другие. Все это - названия эффектов, получаемых во время исполнения мелодий на электрогитаре.

О некоторых приставках с подобным эффектом и пойдет рассказ. Все они рассчитаны на работу как с промышленными звукоснимателями, устанавливаемыми на обычную гитару, так и с самодельными, изготовленными по описаниям в популярной радиолюбительской литературе.

«Бустер»-приставка. Если ударить медиатором по одной из струн гитары и посмотреть на осциллографе форму электрических колебаний, снимаемых с выводов звукоснимателя, то она напомнит импульс с заполнением. Фронт «импульса» более крутой по сравнению со спадом, а «заполнение» - не что иное, как почти синусоидальные колебания, промодулированные по амплитуде. Это значит, что громкость звука при ударе по струне нарастает быстрее, чем спадает. Время нарастания звука музыканты называют атакой.

Динамика исполнения на гитаре возрастет, если ускорить атаку, т. е. увеличить скорость нарастания звука. Получающийся при этом эффект звучания получил название «бустер». Схема приставки для получения такого эффекта рассмотрена в этой статье. Она рассчитана на работу с бас-гитарой, которой обычно отводится важная роль в вокально-инструментальных ансамблях. Выполняя ритмический рисунок музыкальной композиции, бас-гитара нередко становится и солирующим инструментом.

    Цветомузыкальная приставка-индикатор Если встроить схему такой приставки в радиоприемник, то в такт с музыкой будет освещаться разноцветными огнями шкала настройки либо вспыхивать три цветовых сигнала на лицевой панели - приставка станет цветовым индикатором настройки. Как и в подавляющем большинстве цветомузыкальных приставок и установок, в предлагаемом устройстве применено частотное разделение сигналов звуковой частоты, воспроизводимых радиоприемником, по трем каналам.

    Приставка с малогабаритными лампами Предлагаемая схема приставки более серьезная конструкция, способная управлять разноцветным освещением небольшого экрана. Сигнал на вход приставки по-прежнему поступает с выводов динамической головки усилителя звуковой частоты радиоприемника или другого радиоустройства. Переменным резистором R1 устанавливают общую яркость экрана, особенно по каналу высших частот, собранному на транзисторе VT1. Яркость же свечения ламп других каналов можно устанавливать «своими» переменными резисторами - R2 и R3.

    Приставка с автомобильными лампами Многие из вас после изготовления простой цветомузыкальной приставки захотят сделать конструкцию, обладающую большей яркостью свечения ламп, достаточной освещения экрана внушительных размеров. Задача выполнимая, если воспользоваться автомобильными лампами мощностью 4...6 Вт. С такими лампами работает схема с автомобильнми лампами

    Приставка на тринисторах Увеличение числа ламп накаливания требует применения в выходных каскадах схемы транзисторов, рассчитанных на допустимую мощность в несколько десятков и даже сотен ватт. В широкую продажу подобные транзисторы не поступают, поэтому на помощь приходят тринисторы. В каждом канале достаточно использовать один тринистор - он обеспечит работу лампы (или ламп) накаливания мощностью от сотни до тысячи ватт! Маломощные нагрузки совершенно безопасны для тринистора, а для управления мощными его укрепляют на радиаторе, позволяющем отвести от корпуса тринистора излишнее тепло.

    Четырехканальная цветомузыкальная приставка Эту схему начинающего можно считать более совершенной (но и более сложной) по сравнению с предыдущей. Т.к она содержит не три, а четыре цветовых канала и в каждом канале установлены мощные осветители. Кроме того, вместо пассивных фильтров используются активные, обладающие большей избирательностью и возможностью изменять полосу пропускания (а это нужно в случае более четкого разделения сигналов по частоте).

Подборка несложных схем юных электронщиков от популярного журнала моделист-конструктор из старых выпусков.

На нашем сайте опубликованы материалы, которые вы найдете для себя не только интересными, но и очень полезными. Этот раздел посвящен «Практическим схемам разных устройств», в нем много справочных материалов, информации для начинающих радиолюбителей и не только, профессионалы также найдут для себя что-нибудь полезное. Ведь люди, которые хотят развиваться, учатся на протяжении всей жизни. Говорят, что невозможно знать все, эту гипотезу подтверждаем и мы, выкладывая все новые и новые материалы, которые освещают науку, электронику и дают постоянно новые знания.

Опытным радиолюбителям предлагаем сотрудничество, они могут делиться своим опытом на страницах нашего сайта с начинающими, то есть еще совсем любителями. Наш сайт будет полезен тем, что участники могут писать комментарии к статьям, обсуждать свои проблемы на форуме, тем самым делиться опытом друг с другом.

В случае, если вы хотите развиваться, но у вас просто мало опыта наш сайт даст вам большую пользу, подача информации не на самом сложном уровне, но, чтобы разобраться в электросхемах разных устройств, познакомиться с описанием принципов их работы, нужно немного и поработать. Поэтому, если вы ленивы и неусидчивы, не хотите поработать, чтобы чего-либо достичь, то проходите мимо, наш сайт не для вас. Кнопки «Хочу все знать» на нашем сайте нет.

Изначальной и первостепенной нашей задачей стоит цель — оправдать надежды наших пользователей. Мы хотим, чтобы вы расширили свои технические знания или укрепили имеющиеся. Они вам обязательно понадобятся, так как для многих хобби — радиолюбительство часто перерастает в вид активного заработка.

Статья обновлена:25.03.2019

В данной статье мы рассмотрим дифференциальный манометр, что это такое, какова его функция, и для чего используется. Дифференциальный манометр — это устройство, которое измеряет разницу давления между двумя местами. Дифференциальные манометры могут варьироваться от устройств, достаточно простых для создания дома, до сложного цифрового оборудования. Функция Стандартные манометры используются для измерения давления в контейнере путем сравнения его …

Статья обновлена:18.02.2019

Статья обновлена:17.02.2019

Статья обновлена:14.02.2019

Статья обновлена:10.02.2019

Статья обновлена:31.01.2019

Статья обновлена:30.01.2019

Статья обновлена:13.11.2018

Навигация по записям

    • Практические схемы разных устройств

Радиолюбительская технология. В книге рассказывается о технологии работ радиолюбителя. Даются реко-мендации по обработке материалов, намотке катушек и трансформаторов, монтажу и пайке деталей. Описывается изготовление самодельных деталей элементов конструкций, простейших станков, приспособлений и инструмента.


Цифровая электроника для начинающих. Основы цифровой электроники изложены простым и доступным для начинающих способом - путем создания на макетной плате забавных и познавательных устройств на транзисторах и микросхемах, которые сразу после сборки начинают работать, не требуя пайки, наладки и программирования. Набор необходимых деталей сведен к минимуму как по количеству наименований, так и по стоимости.

По ходу изложения даются вопросы для самопроверки и закрепления материала, а также творческие задания на самостоятельную разработку схем.


Осциллографы. Основные принципы измерений. Осциллографы – незаменимый инструмент для тех, кто проектирует, производит или ремонтирует электронное оборудование. В современном быстро изменяющемся мире специалистам необходимо иметь самое лучшее оборудование для быстрого и точного решения своих насущных, связанных с измерениями задач. Будучи “глазами” инженеров в мир электроники, осциллографы являются ключевым инструментарием при изучении внутренних процессов в электронных схемах.


Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.


Самоделки юного радиолюбителя. В книге описываются имитаторы звуков, искатели скрытой электропроводки, акустические выключатели, автоматы звукового управления моделями, электромузыкальные инструменты, приставки к электрогитарам, цветомузыкальные приставки и другие конструкции, собранные из доступных деталей


Школьная радиостанция ШК-2 - Алексеев С.М. В брошюре описаны два передатчика и два приемника, работающие на диапазонах 28 и 144 М гц, модулятор для анодно-экранной модуляции, блок питания и простые антенны. В ней рассказывается также об организации работы учащихся на коллективной радиостанции, о подготовке операторов, содержании их работы, об исследовательской работе школьников в области распространения КВ и УКВ.


Electronics For Dummies
Build your electronics workbench - and begin creating fun electronics projects right away
Packed with hundreds of colorful diagrams and photographs, this book provides step-by-step instructions for experiments that show you how electronic components work, advice on choosing and using essential tools, and exciting projects you can build in 30 minutes or less. You"ll get charged up as you transform theory into action in chapter after chapter!


Книга состоит из описаний простых конструкций, содержащих электронные компоненты, и экспериментов с ними. Кроме традиционных конструкций, чья логика работы определяется их схемотехникой, добавлены описания изделий, функционально реализующихся с помощью программирования. Тематика изделий - электронные игрушки и сувениры.


Как освоить радиоэлектронику с нуля. Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, - воспользуйтесь этим самоучителем. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы , узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно.


Паять просто - пошаговое руководство для начинающих. Комикс, несмотря на свой формат и объем, в мелких деталях объясняет основные принципы этого процесса, которые совсем не очевидны для людей, ни разу не державших в руках паяльник (как показывает практика, для многих державших тоже). Если вы давно хотели научиться паять сами, или планируете научить этому своих детей, то этот комикс для вас.


Электроника для любознательных. Эта книга написана специально для вас, начинающих увлекательное восхождение к вершинам электроники. Помогает освоению диалог автора книги с новичком. А еще помощниками в овладении знаниями становятся измерительные приборы, макетная плата, книги и ПК.


Энциклопедия юного радиолюбителя. Здесь Вы найдете множество практических схем как отдельных узлов и блоков, так и целых устройств. В разрешении многих вопросов поможет специальный справочник. Пользуясь удобной системой поиска, отыщешь нужный раздел, а к нему как наглядные примеры великолепно выполненные рисунки.


Книга создана специально для начинающих радиолюбителей, или, как еще у нас любят говорить, - «чайников». Она рассказывает об азах электроники и электротехники, необходимых радиолюбителю. Теоретические вопросы рассказываются в очень доступной форме и в объеме, необходимом для практической работы. Книга учит правильно паять, проводить измерения, анализ схем. Но, скорее, это книга о занимательной электронике. Ведь основа книги - радиолюбительские самоделки, доступные начинающему радиолюбителю и полезные в быту.


Это вторая книга из серии изданий, адресованных начинающему радиолюбителю в качестве учебно-практического пособия. В этой книге на более серьезном уровне продолжено знакомство с различными схемами на полупроводниковой и радиовакуумной базе, основами звукотехники, электро и радиоизмерениями. Изложение сопровождается большим количеством иллюстраций и практических схем.

Азбука радиолюбителя. Основное и единственное назначение этой книги - приобщить к радиолюбительскому творчеству ребят, не имеющих об этом ни малейшего представления. Книга построена по принципу `от азов - через знакомство - к пониманию` и может быть рекомендована школьникам средних и старших классов как путеводитель по началам радиотехники.

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик - он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В - четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора - он достигнет первоначального значения.

Нагрузка усилительного каскада - головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации - резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более "чувствительный” по сравнению с однокаскадным - коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 - в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока - коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 - если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем - около 2 мА.

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй - на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй - усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ - при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), - оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада - резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем - HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Он выдает световые сигналы по принципу меньше нормы - норма - больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один - зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение - вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.

Описание схем простых блоков питания для начинающих радиолюбителей | ASUTPP

Каждый, кто решает заняться радиолюбительством, начинает, как правило, с источника питания для своих будущих схем. В этой статье приведены самые простые варианты стабилизированных боков питания.

Схемы не сложны и собрать их не представит особого труда даже радиолюбителю без опыта. Все детали - широкого потребления, дёшевы и и найти их не составит никакой сложности. Параметры этих блоков питания вполне удовлетворяют требованиям большинства практических электронных «самоделок».

Схема N1

Первая схема собрана на транзисторах. Она широко известна с давних времён и приведена здесь в том виде, в котором изначально публиковалась в различной литературе по радиоэлектронике. Поскольку в то время широкое применение имели германиевые транзисторы, то и делали её, как правило, используя транзисторы структуры p-n-p.

В этой схеме, например, в качестве транзистора VT1 использовали МП39 - МП42, а в качестве VT2 - П213-П217. Поэтому у такого блока питания (БП) выходным является минусовой провод, а «плюс» схемы будет «общим». Но можно поменять полярность выхода БП, просто заменив транзисторы на аналогичные, но структуры n-p-n. При этом, также, необходимо изменить полярность включения всех диодов и электролитических конденсаторов.

Выходное напряжение этого БП определяется напряжением стабилизации применённого стабилитрона D1. Если, например, поставить Д814 с буквами Г или Д, то на выходе получим напряжение 12...14 вольт. Максимальный выходной ток этого БП зависит от типа применённых транзисторов («мощного» VT2) и от диодов выпрямителя. Транзистор VT2 обязательно устанавливается на теплоотводе.

Переменное напряжение на входе БП должно быть равно значению выходного постоянного, или чуть больше. Переменный резистор R2 может быть сопротивлением от 10 до 50 кОм, лучше группы «А» (в этом случае регулировка выходного напряжения будет более равномерной). Все другие резисторы должны быть мощностью не ниже 0,25 ватт. Транзисторы можно ставить любые, подходящие по мощности. Коэффициент усиления у них должен быть не ниже 15.

Настройка заключается лишь в подборе резистора R1. С его помощью устанавливается ток через стабилитрон на уровне 15 мА. Для уменьшения уровня пульсаций на выходе схемы можно установить дополнительный «сглаживающий» конденсатор, ёмкостью от 100 мкФ. Следует учесть, что эта схема БП не имеет защиты от короткого замыкания на выходе (КЗ) и перегрузки.

Схема N2.

Вторая схема собрана на специализированной микросхеме- стабилизаторе напряжения. Это может быть наша КРЕН12 или импортная LM317. Эта схема проще первой, однако микросхема обеспечивает лучшие характеристики, а также защиту от КЗ, перегрева и перегрузки. Здесь показан вариант со «ступенчатой» регулировкой выходного напряжения. Путём подбора сопротивлений R2-R6 можно устанавливать любое значение напряжения на выходе БП.

Данная микросхема способна выдать от 1,2 до 37 вольт, поэтому диапазон выходных напряжений может быть расширен, в отличие от указанных на схеме значений. Переменное напряжение на входе тоже выбирается в зависимости от необходимого максимального выходного напряжения. Микросхему необходимо установить на теплоотвод.

Уровень пульсаций такой схемы будет на уровне 10 мВ. На выходе БП можно установить дополнительный конденсатор ёмкостью от 100 мкФ, для уменьшения уровня пульсаций.

Рабочие напряжения всех конденсаторов должны быть выше входного напряжения после выпрямителя. Все резисторы могут быть типа МЛТ-0,125.

Этот БП можно сделать и с плавной регулировкой напряжения на выходе. В этом случае схема предельно упрощается, что видно из третьего рисунка.

Рисунок 3

Здесь не потребуется производить вообще никаких настроек. Для этого варианта верны все рекомендации, которые были даны для предыдущей схемы со ступенчатой регулировкой.

Спасибо, что дочитали до конца! И я был бы вам благодарен, если бы вы поделились статьёй с друзьями в соцсетях. Отдельное спасибо за лайк и подписку - оставайтесь и далее на канале "ASUTPP"!

Начинаем со схемы - Строительный журнал Palitrabazar.ru

Простые схемы для начинающих

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Универсальный имитатор звуков

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Наушники для телевизора без элементов питания

Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Для начинающих электронщиков важно понимать, как работают детали, как их рисуют на схеме и как разобраться в схеме электрической принципиальной. Для этого нужно сперва ознакомиться с принципом работы элементов, а как читать схемы электроники я расскажу в этой статье на примерах популярных устройств для начинающих.

Схема настольной лампы и фонарика на светодиоде

Схема – это рисунок на которых с помощью определенных символов изображаются детали схемы, линиями – их соединения. При этом, если линии пересекаются – то контакта между этими проводниками нет, а если в месте пересечения присутствует точка – это узел соединения нескольких проводников.

Кроме значков и линий на схеме изображены буквенные обозначения. Все обозначения стандартизированы, в каждой стране свои стандарты, например в России придерживаются стандарта ГОСТ 2.710-81.

Начнем изучение с простейшего – схемы настольной лампы.

Схемы не всегда читают слева направо и сверху вниз, лучше идти от источника питания. Что мы можем узнать из схемы, посмотрите в правую её часть.

— значит питание переменным током.

Рядом написано «220» — напряжением в 220 В. X1 и X2 – предполагается подключение в розетку с помощью вилки. SW1 – так изображается ключ, тумблер или кнопка в разомкнутом состоянии. L – условное изображение лампочки накаливания.

Краткие выводы:

На схеме изображено устройство, которое подключается к сети 220 В переменного тока с помощью вилки в розетку или других разъёмных соединений. Есть возможность отключения с помощью переключателя или кнопки. Нужно для питания лампы накаливания.

С первого взгляда кажется очевидным, но специалист должен уметь сделать такие выводы глядя на схему без пояснений, это умение даст возможность выносить диагноз неисправности и устранять её или же собирать устройства с нуля.

Перейдем к следующей схеме. Это фонарик с питанием от батарейки, в качестве излучателя в нём установлен светодиод.

Взгляните на схему, возможно, вы увидите новые для себя изображения. Справа изображен источник питания, так выглядит батарейка или аккумулятор, длинный вывод это плюс другое название – Катод, короткий – минус или Анод. У светодиода к аноду (треугольная часть обозначения) подключается плюс, а к катоду (на УГО выглядит как полоска) – минус.

Это нужно запомнить, что у источников питания и потребителей названия электродов наоборот. Две исходящие от светодиода стрелки дают вам понять, что этот прибор ИЗЛУЧАЕТ свет, если бы стрелки наоборот указывали на него – это был бы фотоприемник. Диоды имеют буквенное обозначение VDx, где х- порядковый номер.

Важно:

Нумерация деталей на схемах идет столбцами сверху вниз, слева направо.

Резистор – это сопротивление. Преобразует электрический ток в тепло, препятствую его движению, выглядит как прямоугольник, обычно на схемах имеет буквенное обозначение «R».

Как читать электронные схемы: увеличиваем уровень сложности

Когда вы уже разобрались с базовым набором элементов, пора ознакомится с более сложными схемами, давайте рассмотрим схему трансформаторного блока питания.

Главным средством преобразователя на схеме является трансформатор TV1, это новый для вас элемент. Предлагаю рассмотреть ряд подобных изделий.

Трансформаторы используются повсеместно, либо в сетевом (50 гц), либо в импульсном (десятки кГц) исполнении. Катушки индуктивности используются в генераторах, радиопередающих устройствах, фильтрах частот, сглаживающих и стабилизирующих приборах. Она выглядит следующим образом.

Второй незнакомый элемент на схеме – это конденсатор, здесь используется для сглаживания пульсаций выпрямленного напряжения. Вообще основная его функция – это накапливать энергию в качестве заряда на его обкладках. Изображается следующим образом.

Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора, напряжение блока питания будет стабилизировано. При этом только от повышения питающего напряжения, при просадках ниже, чем Uстабилизации напряжение будет пульсирующем в такт с просадками. VD1 – это стабилитрон, они включаются в обратном смещении (катодом к точке с положительным потенциалом). Различаются по величине тока стабилизации (Iстаб) и напряжения стабилизации (Uстаб).

Краткие итоги:

Что мы можем понять из этой схемы? То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе. Подключается первичной стороной (входом) к сети переменного тока с напряжением 220 Вольт. На его выходе имеет два разъёмных соединения – «+» и «-» и напряжение 12 В, нестабилизорванное.

Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей.

Как читать схемы с транзисторами?

Транзисторы – это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Данные свойства позволяют их применять, как в ключевом, так и линейном режимах, что позволяет их использовать в огромном спектре схемных решений.

Давайте рассмотрим популярную среди новичков схему – симметричный мультивибратор. Это по сути генератор, который на своих выходах выдаёт симметричные импульсы. Может применяться, как основа для простых мигалок, в качестве источника частоты для пищалки, в качестве генератора для импульсного преобразователя и во многих других цепях.

Пройдемся по знакомым деталям сверху вниз. Вверху мы видим 4 резистора, средние два – времязадающие, а крайние – задают ток резистора, также влияют на характер выходных импульсов.

Далее HL – это светодиоды, а ниже два электролита – это полярные конденсаторы, когда будете их монтировать оставайтесь внимательны – неправильное подключение электролитического конденсатора чревато выходом его из строя вплоть до взрыва с выделением тепла.

Интересно:

На графическом обозначении электролитического конденсатора всегда помечается «положительная» обкладка конденсатора, а на настоящих элементах – чаще всего есть пометка отрицательной ножки, не перепутайте!

VT1-VT2 – это новые для вас элементы, таким образом обознаются биполярные транзисторы обратной проводимости (NPN), ниже указана модель транзистора – «КТ315». У них обычно 3 ножки:

При этом на корпусе их назначение не указывается. Чтобы определить назначение выводов, нужно воспользоваться одним из поисковых запросов:

1. «Название элемента» — цоколевка.

2. «Название элемента» — распиновка.

3. «Название элемента» datsheet.

Это справедливо, как для радиоламп, так и для современных микросхем. Запросы имеют почти одинаковый смысл. Вот таким образом я нашел цоколевку транзистора КТ315.

На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод.

Интересно:

У биполярных транзисторов стрелка на эмиттере обозначается направление протекания тока (от плюса к минусу), если стрелка ОТ базы – это транзистор обратной проводимости (NPN), а если К базе то прямой проводимости (PNP), часто вы можете заменить все NPN транзисторы на PNP, как в схеме мультивибратора, тогда нужно будет и поменять полярность источника питания (плюс и минус местами) ведь, повторюсь, стрелка на эмиттере указывает направление протекания тока.

На приведенной схеме положительный контакт источника питания подключен к верхней части схемы, а отрицательный к нижней. Так и на транзисторе стрелка указывает сверх-вниз – по направлению протекания тока!

В элементах с большим количеством ног имеет значение куда подключать, так же, как и в диодах и светодиодах, если вы перепутаете ножки – в лучшем случае схема не заработает, а в худшем – убьете детали.

Что мы смогли узнать, прочитав схему мультивибратора:

В этой схеме используются транзисторы и электролитические конденсаторы, питается она напряжением в 9 В (хотя может и больше, и меньше, например 12 В не повредят схеме, как и 5 В).

Стало ясно о способе соединения деталей и включения транзисторов. А также о том, что схема представляет собой прибор, работающий на принципе автогенератора основанного на процессе перезаряда транзисторов, которое вызвано попеременным открытием и закрытием транзисторов каждого по очереди, когда первый открыт, второй закрыт.

Проследив пути протекания тока (от плюса к минусу) и использовав знания о том, как работает биполярный транзистор мы делаем выводы о характере работы.

Тиристоры – полууправляемые ключи, учимся читать схемы

Давайте рассмотрим схему с не менее важным и распространенным элементом – тиристором. Я выбрал слово «полууправляемый» потому что, в отличие от транзистора, вы можете только открыть его, ток в нем прервется либо при прерывании питания, либо при смене полярности приложенного к нему напряжения. Открывается с помощью подачи на управляющий электрод напряжения.

Симисторы – содержат два тиристора соединённых встречно-параллельно. Таким образом, одним компонентом можно коммутировать переменный ток, при прохождении верхней части (положительной) полуволны синусоиды, при условии наличия сигнала на управляющем, электроде откроется один из внутренних тиристоров. Когда полуволна сменит свой знак на отрицательный – он закроется и в работу вступит второй тиристор.

Динисторы – разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения. Часто используются в импульсных блоках питания, как пороговый элемент для запуска автогенераторов и в устройствах для регулировки напряжения.

Вот так, собственно это выглядит на схеме.

Внимательно смотрим на подключение. Схема предназначена для подключения к сети переменного тока, например 220 В, в разрыв одного из питающих проводов, например фазного (L). Симистор VS1 – основной силовой элемент цепи, справа внизу дана его распиновка из даташита, 3 вывод – управляющий. На него через двунаправленный динистор VD1 модели DB3 рассчитанный на напряжение включения порядка 30 вольт, подаётся управляющий сигнал.

Так как все полупроводниковые приборы в этой конкретной схеме двунаправленные, регулировка осуществляется по обеим полуволнам синусоиды. Динистор открывается, когда на конденсаторе C1 появляется необходимой величины потенциал (напряжение), а скорость его заряда, следовательно, момент открытия ключей, задаётся RC цепью, состоящей из R1, переменного резистора (потенциометра) R2 и С1.

Эта простая схем имеет огромное значение и прикладное применение.

Выводы

Благодаря умению читать схемы электрические принципиальные, вы можете определить:

1. Что делает это устройство, для чего оно предназначено.

2. При ремонте – номинал вышедшей из строя детали.

3. Чем питать это устройство, каким напряжением и родом тока.

4. Примерную мощность электронного устройства, исходя из номиналов компонентов силовых цепей.

Важно не только знать условные графические обозначения элементов, но и принцип их работы. Дело в том, то не всегда те или иные детали могут использоваться в привычной роли. Но в пределах сегодняшней статьи рассмотреть все распространенные элементы довольно сложно, так как это займет очень большой объем.

Как читать электрические схемы

Каждая электрическая схема состоит из множества элементов, которые, в свою очередь, также включают в свою конструкцию различные детали. Наиболее ярким примером служат бытовые приборы. Даже обычный утюг состоит из нагревательного элемента, температурного регулятора, контрольной лампочки, предохранителя, провода и штепсельной вилки. Другие электроприборы имеют еще более сложную конструкцию, дополненную различными реле, автоматическими выключателями, электродвигателями, трансформаторами и многими другими деталями. Между ними создается электрическое соединение, обеспечивающее полное взаимодействие всех элементов и выполнение каждым устройством своего предназначения.

В связи с этим очень часто возникает вопрос, как научится читать электрические схемы, где все составляющие отображаются в виде условных графических обозначений. Данная проблема имеет большое значение для тех, кто регулярно сталкивается с электромонтажом. Правильное чтение схем дает возможность понять, каким образом элементы взаимодействуют между собой и как протекают все рабочие процессы.

Виды электрических схем

Для того чтобы правильно пользоваться электрическими схемами, нужно заранее ознакомиться с основными понятиями и определениями, затрагивающими эту область.

Любая схема выполняется в виде графического изображения или чертежа, на котором вместе с оборудованием отображаются все связующие звенья электрической цепи. Существуют различные виды электрических схем, различающиеся по своему целевому назначению. В их перечень входят первичные и вторичные цепи, системы сигнализации, защиты, управления и прочие. Кроме того, существуют и широко используются принципиальные и монтажные электрические схемы, однолинейные, полнолинейные и развернутые. Каждая из них имеет свои специфические особенности.

К первичным относятся цепи, по которым подаются основные технологические напряжения непосредственно от источников к потребителям или приемникам электроэнергии. Первичные цепи вырабатывают, преобразовывают, передают и распределяют электрическую энергию. Они состоят из главной схемы и цепей, обеспечивающих собственные нужды. Цепи главной схемы вырабатывают, преобразуют и распределяют основной поток электроэнергии. Цепи для собственных нужд обеспечивают работу основного электрического оборудования. Через них напряжение поступает на электродвигатели установок, в систему освещения и на другие участки.

Вторичными считаются те цепи, в которых подаваемое напряжение не превышает 1 киловатта. Они обеспечивают выполнение функций автоматики, управления, защиты, диспетчерской службы. Через вторичные цепи осуществляется контроль, измерения и учет электроэнергии. Знание этих свойств поможет научиться читать электрические схемы.

Полнолинейные схемы используются в трехфазных цепях. Они отображают электрооборудование, подключенное ко всем трем фазам. На однолинейных схемах показывается оборудование, размещенное лишь на одной средней фазе. Данное отличие обязательно указывается на схеме.

На принципиальных схемах не указываются второстепенные элементы, которые не выполняют основных функций. За счет этого изображение становится проще, позволяя лучше понять принцип действия всего оборудования. Монтажные схемы, наоборот, выполняются более подробно, поскольку они применяются для практической установки всех элементов электрической сети. К ним относятся однолинейные схемы, отображаемые непосредственно на строительном плане объекта, а также схемы кабельных трасс вместе с трансформаторными подстанциями и распределительными пунктами, нанесенными на упрощенный генеральный план.

В процессе монтажа и наладки широкое распространение получили развернутые схемы с вторичными цепями. На них выделяются дополнительные функциональные подгруппы цепей, связанных с включением и выключением, индивидуальной защитой какого-либо участка и другие.

Обозначения в электрических схемах

В каждой электрической цепи имеются устройства, элементы и детали, которые все вместе образуют путь для электрического тока. Они отличаются наличием электромагнитных процессов, связанных с электродвижущей силой, током и напряжением, и описанных в физических законах.

В электрических цепях все составные части можно условно разделить на несколько групп:

  1. В первую группу входят устройства, вырабатывающие электроэнергию или источники питания.
  2. Вторая группа элементов преобразует электричество в другие виды энергии. Они выполняют функцию приемников или потребителей.
  3. Составляющие третьей группы обеспечивают передачу электричества от одних элементов к другим, то есть, от источника питания – к электроприемникам. Сюда же входят трансформаторы, стабилизаторы и другие устройства, обеспечивающие необходимое качество и уровень напряжения.

Каждому устройству, элементу или детали соответствует условное обозначение, применяющееся в графических изображениях электрических цепей, называемых электрическими схемами. Кроме основных обозначений, в них отображаются линии электропередачи, соединяющие все эти элементы. Участки цепи, вдоль которых протекают одни и те же токи, называются ветвями. Места их соединений представляют собой узлы, обозначаемые на электрических схемах в виде точек. Существуют замкнутые пути движения тока, охватывающие сразу несколько ветвей и называемые контурами электрических цепей. Самая простая схема электрической цепи является одноконтурной, а сложные цепи состоят из нескольких контуров.

Большинство цепей состоят из различных электротехнических устройств, отличающихся различными режимами работы, в зависимости от значения тока и напряжения. В режиме холостого хода ток в цепи вообще отсутствует. Иногда такие ситуации возникают при разрыве соединений. В номинальном режиме все элементы работают с тем током, напряжением и мощностью, которые указаны в паспорте устройства.

Все составные части и условные обозначения элементов электрической цепи отображаются графически. На рисунках видно, что каждому элементу или прибору соответствует свой условный значок. Например, электрические машины могут изображаться упрощенным или развернутым способом. В зависимости от этого строятся и условные графические схемы. Для показа выводов обмоток используются однолинейные и многолинейные изображения. Количество линий зависит от количества выводов, которые будут разными у различных типов машин. В некоторых случаях для удобства чтения схем могут использоваться смешанные изображения, когда обмотка статора показывается в развернутом виде, а обмотка ротора – в упрощенном. Таким же образом выполняются и другие условные обозначения электрических схем.

Изображения трансформаторов также осуществляются упрощенным и развернутым, однолинейным и многолинейным способами. От этого зависит способ отображения самих устройств, их выводов, соединений обмоток и других составных элементов. Например, в трансформаторах тока для изображения первичной обмотки применяется утолщенная линия, выделенная точками. Для вторичной обмотки может использоваться окружность при упрощенном способе или две полуокружности при развернутом способе изображения.

Графические изображения других элементов:

  • Контакты. Применяются в коммутационных устройствах и контактных соединениях, преимущественно в выключателях, контакторах и реле. Они разделяются на замыкающие, размыкающие и переключающие, каждому из которых соответствует свой графический рисунок. В случае необходимости допускается изображение контактов в зеркально-перевернутом виде. Основание подвижной части отмечается специальной незаштрихованной точкой.
  • Выключатели. Могут быть однополюсными и многополюсными. Основание подвижного контакта отмечается точкой. У автоматических выключателей на изображении указывается тип расцепителя. Выключатели различаются по типу воздействия, они могут быть кнопочными или путевыми, с размыкающими и замыкающими контактами.
  • Плавкие предохранители, резисторы, конденсаторы. Каждому из них соответствуют определенные значки. Плавкие предохранители изображаются в виде прямоугольника с отводами. У постоянных резисторов значок может быть с отводами или без отводов. Подвижный контакт переменного резистора обозначается в виде стрелки. На рисунках конденсаторов отображается постоянная и переменная емкость. Существуют отдельные изображения для полярных и неполярных электролитических конденсаторов.
  • Полупроводниковые приборы. Простейшими из них являются диоды с р-п-переходом и односторонней проводимостью. Поэтому они изображаются в виде треугольника и пересекающей его линии электрической связи. Треугольник является анодом, а черточка – катодом. Для других видов полупроводников существуют собственные обозначения, определяемые стандартом. Знание этих графических рисунков существенно облегчает чтение электрических схем для чайников.
  • Источники света. Имеются практически на всех электрических схемах. В зависимости от назначения, они отображаются как осветительные и сигнальные лампы с помощью соответствующих значков. При изображении сигнальных ламп возможна заштриховка определенного сектора, соответствующего невысокой мощности и небольшому световому потоку. В системах сигнализации вместе с лампочками применяются акустические устройства – электросирены, электрозвонки, электрогудки и другие аналогичные приборы.

Как правильно читать электрические схемы

Принципиальная схема представляет собой графическое изображение всех элементов, частей и компонентов, между которыми выполнено электронное соединение с помощью токоведущих проводников. Она является основой разработок любых электронных устройств и электрических цепей. Поэтому каждый начинающий электрик должен в первую очередь овладеть способностями чтения разнообразных принципиальных схем.

Именно правильное чтение электрических схем для новичков, позволяет хорошо усвоить, каким образом необходимо выполнять соединение всех деталей, чтобы получился ожидаемый конечный результат. То есть устройство или цепь должны в полном объеме выполнять назначенные им функции. Для правильного чтения принципиальной схемы необходимо, прежде всего, ознакомиться с условными обозначениями всех ее составных частей. Каждая деталь отмечена собственным условно-графическим обозначением – УГО. Обычно такие условные знаки отображают общую конструкцию, характерные особенности и назначение того или иного элемента. Наиболее ярким примером служат конденсаторы, резисторы, динамики и другие простейшие детали.

Гораздо сложнее работать с полупроводниковыми электронными компонентами, представленными транзисторами, симисторами, микросхемами и т.д. Сложная конструкция таких элементов предполагает и более сложное отображение их на электрических схемах.

Например, в каждом биполярном транзисторе имеется минимум три вывода – база, коллектор и эмиттер. Поэтому для их условного изображения требуются особые графические условные знаки. Это помогает различить между собой детали с индивидуальными базовыми свойствами и характеристиками. Каждое условное обозначение несет в себе определенную зашифрованную информацию. Например, у биполярных транзисторов может быть совершенно разная структура – п-р-п или р-п-р, поэтому изображения на схемах также будут заметно отличаться. Рекомендуется перед тем как читать принципиальные электрические схемы, внимательно ознакомиться со всеми элементами.

Условные изображения очень часто дополняются уточняющей информацией. При внимательном рассмотрении, можно увидеть возле каждого значка латинские буквенные символы. Таким образом обозначается та или иная деталь. Это важно знать, особенно, когда мы только учимся читать электрические схемы. Возле буквенных обозначений расположены еще и цифры. Они указывают на соответствующую нумерацию или технические характеристики элементов.

Радиоэлектроника для новичка

Первый шаг — он самый сложный.

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел «Старт«.

На страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Если Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Ну, а для начала, рекомендуем научиться паять.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Обзор характеристик и особенностей выбора мультиметра для начинающего радиолюбителя.

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Омметр – прибор для измерения сопротивления. Здесь вы узнаете о том, как омметр можно использовать в своей радиолюбительской практике.

Здесь вы познакомитесь с тем, как устроен и работает осциллограф. Научитесь разбираться в органах управления осциллографа. Осциллограф является одним из самых мощных инструментов для изучения процессов, происходящих в электронной технике.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Как проверить ИК-приёмник? Методика проверки исправности инфракрасного приёмника с помощью мультиметра и пульта ДУ.

Как узнать мощность трансформатора, не производя сложных расчётов? Здесь вы узнаете о простой методике определения мощности силового трансформатора.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

Несколько рекомендаций и советов начинающим радиолюбителям по правильному измерению сопротивления цифровым мультиметром. Общие правила по проверке работоспособности цифрового мультитестера и подготовки его к работе.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) — это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Таблица значений ESR конденсаторов разной ёмкости поможет вам определить качество электролитического конденсатора.

Здесь вы узнаете, как правильно соединять конденсаторы и рассчитывать общую ёмкость при их последовательном и параллельном включении.

Узнайте, как правильно соединять резисторы и рассчитывать их общее сопротивление при последовательном и параллельном включении.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Простой апгрейд мультиметра DT — 830B. Встраиваем светодиодный фонарик в цифровой мультиметр.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Вторая часть рассказа о чтении принципиальных схем. Соединения и разъёмы, повторяющиеся элементы, механически связанные элементы, экранированные детали и проводники. Обо всём этом читайте здесь.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя — это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2. 32V на базе готового модуля DC-DC преобразователя.

Собираем радиоуправляемое реле на базе готового радиомодуля.

Здесь я расскажу об универсальном зарядном устройстве, которым можно заряжать/разряжать практически любые аккумуляторы (Pb, Ni-Cd, Ni-Mh, Li-Po, Li-ion, LiFe).

Портативные USB-колонки для ноутбука являются достаточно востребованным атрибутом компьютерной периферии. Из каких электронных компонентов состоят данные устройства? В статье приводится принципиальная схема усилителя портативных компьютерных колонок с питанием от USB-порта.

Модернизация USB-колонок SVEN PS-30 на базе микросхемы-декодера CM6120-S.

Что такое мультивибратор и зачем он нужен? Здесь вы узнаете, как собрать мультивибратор на транзисторах. Познакомитесь с формулой расчёта его колебаний.

Для преобразования переменного тока в постоянный применяется так называемый выпрямитель. Здесь вы узнаете о типах диодных выпрямителей, а также об их особенностях и сферах применения. Материал будет интересен начинающим радиолюбителям и тем, кто хочет больше узнать о том, какие схемы выпрямителей применяются в электронике и электротехнике.

Здесь вы узнаете, как собрать мигалку на светодиодах из доступных радиодеталей. Много фоток и пояснений гарантируется.

Здесь показана схема маячка на микросхеме к155ла3. Подробно рассказано о подборе деталей для светодиодного маячка на микросхеме.

Как собрать мультивибратор на микросхеме? Здесь вы узнаете, как собрать мультивибратор на логических микросхемах серии К561, К176 и др.

Организуем рабочее место радиолюбителя-новичка. Собираем многофункциональную розетку.

Непременным атрибутом современного музыкального устройства служит вход внешнего сигнала AUX IN. Как использовать столь полезную функцию? Музыка налету.

Узнайте как можно переделать проводную гарнитуру мобильного телефона и максимально использовать возможности сотового телефона Sony Ericsson. В статье приводиться принципиальная схема проводной гарнитуры сотового телефона и методика её доработки.

Трёхцветную светодиодную ленту можно использовать по-разному: фоновая и декоративная подсветка, световое оформление, мягкое освещение и пр. Но после приобретения RGB-ленты возникает вопрос: «А как управлять этой лентой?». Здесь я расскажу о личном опыте применения RGB контроллера с радиоуправлением. Кроме того, разберёмся в том, как подобрать блок питания для светодиодной ленты.

Как научиться электронике? Конечно, на самых простых вещах! Например, на обычном аккумуляторном фонарике. Показана схема аккумуляторного фонаря, а также даны пояснения о назначении радиоэлементов.

Усилитель для начинающих

   На заре радиоэлектронной практики, начинающие радиолюбители как правило повторяют простые схемы и конструкции. Особой популярностью у них пользуется усилитель низкой частоты. Схем усилителей мощности много, каждая имеет свои особенности и характеристики, и сегодня мы рассмотрим один из неплохих вариантов схемы УНЧ.  

   Рассматриваемый усилитель собран на транзисторах, имеет простую конструкцию и собран всего на 4-х транзисторах. Мощность УНЧ достигает 4-х ватт при указанном напряжении питания. Выходной каскад работает в классе В, построен на паре транзисторов одинаковой структуры. В данном варианте использованы отечественные транзисторы прямой проводимости, которые можно заменить на другие, например КТ816 или на более мощные - КТ818 с любой буквой и индексом. Маломощные транзисторы тоже можно заменить на любые другие, подходящие по структуре и параметрам. Весь усилитель можно выполнить на импортных компонентах, это даже к лучшему. Диод КД213 можно заменить на любой другой диод с рабочей частотой порядка 70 килогерц и выше, диод желательно с током от 3-х ампер, можно также использовать диоды Шоттки из выпрямительной части компьютерных блоков питания. 

   Питать усилитель можно от любого блока питания, который рассчитанный на напряжения 12 вольт, ток потребления схемы может достигать 1,5 ампера, поэтому нужен соответствующий источник питания, советуется питать усилитель от аккумуляторов напряжения. Хочу заранее предупредить, что качество звучания не совсем чистое, на максимальной громкости будут наблюдаться некоторые искажения, причина кроется в режиме работы усилителя - класс В. С целью улучшения качества звука можно попробовать заменить транзисторы на другие.


Понравилась схема - лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

Интересные схемы радиолюбителей для дома. Простые схемы для начинающих. Автомат выключения освещения

Итак. Жизнь сложилась так, что у меня есть домик в деревне с газовым отоплением. Жить там постоянно не получается. Домик используется как дача. Пару зим тупо оставлял включенным котел с минимальной температурой теплоносителя.
Но тут два минуса.
1. Счета за газ просто астрономические.
2. Если возникает необходимость приехать в дом среди зимы, температура в доме в районе 12 град.
Поэтому надо было что-то выдумывать.
Сразу уточню. Наличие точки доступа WI-FI в зоне действия реле обязательно. Но, думаю, если заморочиться, можно положить рядом с датчиком подключенный мобильник, и раздавать сигнал с телефона.

Подключение датчика движения 4 контакта своими руками схема

Схема подключение датчика движения своими руками

Бывает что нужно установить на даче,или в доме освещение которое будет срабатывать при движение или человека или еще кого либо.

С этой функцией хорошо справиться датчик движения, который и был заказан мной с Aliexpress. Ссылка на который будет внизу. Подключив свет через датчик движения, при прохождении человека через его поле видения, свет включается, горит 1 минуту. и снова выключается.

В данной статье рассказываю, как же подключить такой датчик, если у него не 3 контакта, а 4 как у этого.

Блок питания из энергосберегающей лампочки своими руками

Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.

Данный регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .

Схема регулятора скорости напольного вентилятора вышла простейшей. Чтобы влезть в корпус от старой зарядки телефона Nokia. Туда же влезли клеммы от обычной электро розетки.

Монтаж довольно плотный, но это было обусловлено размерами корпуса..

Освещение для растений своими руками

Освещение для растений своими руками

Бывает проблема в недостатке освещения растений , цветов или рассады,и возникает необходимость в искусственном свете для них,и вот такой свет мы сможем обеспечить на светодиодах своими руками .

Регулятор яркости своими руками

Всё началось с того,что после того как я установил дома галогенные лампы на освещение. При включении которые не редко перегорали. Иногда даже 1 лампочка в день. Поэтому и решил сделать плавное включение освещения на основе регулятора яркости своими руками,и прилагаю схему регулятора яркости.

Термостат для холодильника своими руками

Термостат для холодильника своими руками

Всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог - холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода - они сигнализируют что агрегат включен или температура выше верхнего порога.

Датчик влажности почвы своими руками

Датчик влажности почвы своими руками

Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками. При высыхании почвы,подается напряжение,силой тока до 90мА,чего вполне хватит,включить реле.

Так же подойдет,для автоматического включения капельного полива,что бы избежать избытка влаги.

Схема питания люминесцентной лампы

Схема питания люминесцентной лампы.

Часто при выхода из строя энергосберегающих ламп,в ней сгорает схема питания,а не сама лампа. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов. В данной статье мы рассмотрим пуск лдс лампы своими руками .

USB клавиатура для планшета

Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно - чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.

С каждым днем становится все больше и больше, появляется много новых статей, то новым посетителям довольно сложно сразу сориентироваться и пересмотреть за раз все уже написанное и ранее размещенное.

Мне же очень хочется обратить внимание всех посетителей на отдельные статьи, которые были размещены на сайте ранее. Для того что бы не пришлось долго искать нужную информацию я сделаю несколько "входных страниц" со ссылками на наиболее интересные и полезные статьи по отдельным темам.

Первую такую страничку назовем "Полезные электронные самоделки". Здесь рассматриваются простые электронные схемы, которые доступны для реализации людям любого уровня подготовки. Схемы построены с использованием современной электронной базы.

Вся информация в статьях изложена в очень доступной форме и в объеме, необходимом для практической работы. Естественно, что для реализации таких схем нужно разбираться хотя бы в азах электроники.

Итак, подборка наиболее интересных статей сайта по тематике "Полезные электронные самоделки" . Автор статей - Борис Аладышкин.

Современная элементная база электроники значительно упрощает схемотехнику. Даже обычный сумеречный выключатель теперь можно собрать всего из трех детелей.

В статье описывается простая и надежная схема управления электронасосом. Несмотря на предельную простоту схемы устройство может работать в двух режимах: водоподъем и дренаж.

В статье приведены несколько схем аппаратов для точечной сварки.

С помощью описываемой конструкции можно определить работает или нет механизм, расположенный в другом помещении или здании. Информацией о работе является вибрация самого механизма.

Рассказ о том, что такое трансформатор безопасности, для чего он нужен и как его можно изготовить самостоятельно.

Описание простого устройства, отключающего нагрузку в случае выхода сетевого напряжения за допустимые пределы.

В статье рассмотрена схема простого терморегулятора с использованием регулируемого стабилитрона TL431.

Статья о том, как сделать устройство плавного включения ламп с помощью микросхемы КР1182ПМ1.

Иногда при пониженном напряжении в сети или пайке массивных деталей пользоваться паяльником становится просто невозможно. Вот тут на помощь и может придти повышающий регулятор мощности для паяльника.

Статья о том, чем можно заменить механический терморегулятор масляного отопительного радиатора.

Описание простой и надежной схемы терморегулятора для системы отопления.

В статье дается описание схемы преобразователя выполненного на современной элементной базе, содержащего минимальное количество деталей и позволяющего получить в нагрузке значительную мощность.

Статья о различных способах подключения нагрузки к блоку управления на микросхемах с помощью реле и тиристоров.

Описание простой схемы управления светодиодными гирляндами.

Конструкция простого таймера, позволяющего включать и выключать нагрузку, через заданные интервалы времени. Время работы и время паузы друг от друга не зависят.

Описание схемы и принципа действия простого аварийного светильника на основе энергосберегающей лампы.

Подробный рассказ о популярной "лазерно-утюжной" технологии изготовления печатных плат, её особенностях и нюансах.

Электрические схемы для начинающих, для любителей и профессионалов

Добро пожаловать в раздел Радиосхемы ! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.

Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями , так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.

Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.

Специально для работников сферы ремонта, у нас на сайте имеется раздел "Даташиты ", где вы сможете найти справочную информацию на различные радиоэлементы.

А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов

Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ , подумаем вместе!!

Для облегчения поиска необходимой информации раздел разбит по категориям

Схемы для начинающих

В этом разделе собраны простые схемы для начинающих радиолюбителей .
Все схемы чрезвычайно просты, имеют описание и предназначены для самостоятельной сборки.
материалы в категории

Свет и музыка

устройства световы х эффектов : мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно

материалы в категории

Схемы источников питания

Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория

материалы в категории

Электроника в быту

В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее. ..
В общем все что может быть полезно для дома

Антенны и Радиоприемники

Антенны (в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки

Шпионские штучки

В этом разделе находятся схемы различных "шпионских" устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков

Авто- Мото- Вело электроника

Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворотов, управление светом фар и так далее

Измерительные приборы

Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства

материалы в категории

Отечественная техника 20 Века

Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР

материалы в категории

Схемы телевизоров LCD (ЖК)

Электрические принципиальные схемы телевизоров LCD (ЖК)

материалы в категории

Схемы программаторов


Схемы различных программаторов

материалы в категории

Аудиотехника

Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука

материалы в категории

Схемы мониторов

Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК

материалы в категории

Схемы автомагнитол и прочей авто-аудиотехники


Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ - передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Электронная утка
VT1, VT2 Биполярный транзистор

КТ361Б

2 МП39-МП42, КТ209, КТ502, КТ814 В блокнот
HL1, HL2 Светодиод

АЛ307Б

2 В блокнот
C1 100мкФ 10В 1 В блокнот
C2 Конденсатор 0.1 мкФ 1 В блокнот
R1, R2 Резистор

100 кОм

2 В блокнот
R3 Резистор

620 Ом

1 В блокнот
BF1 Акустический излучатель ТМ2 1 В блокнот
SA1 Геркон 1 В блокнот
GB1 Элемент питания 4.5-9В 1 В блокнот
Имитатор звука подскакивающего металлического шарика
Биполярный транзистор

КТ361Б

1 В блокнот
Биполярный транзистор

КТ315Б

1 В блокнот
C1 Электролитический конденсатор 100мкФ 12В 1 В блокнот
C2 Конденсатор 0.22 мкФ 1 В блокнот
Динамическая головка ГД 0.5...1Ватт 8 Ом 1 В блокнот
GB1 Элемент питания 9 Вольт 1 В блокнот
Имитатор звука мотора
Биполярный транзистор

КТ315Б

1 В блокнот
Биполярный транзистор

КТ361Б

1 В блокнот
C1 Электролитический конденсатор 15мкФ 6В 1 В блокнот
R1 Переменный резистор 470 кОм 1 В блокнот
R2 Резистор

24 кОм

1 В блокнот
T1 Трансформатор 1 От любого малогабаритного радиоприемника В блокнот
Универсальный имитатор звуков
DD1 Микросхема К176ЛА7 1 К561ЛА7, 564ЛА7 В блокнот
Биполярный транзистор

КТ3107К

1 КТ3107Л, КТ361Г В блокнот
C1 Конденсатор 1 мкФ 1 В блокнот
C2 Конденсатор 1000 пФ 1 В блокнот
R1-R3 Резистор

330 кОм

1 В блокнот
R4 Резистор

10 кОм

1 В блокнот
Динамическая головка ГД 0.1...0.5Ватт 8 Ом 1 В блокнот
GB1 Элемент питания 4.5-9В 1 В блокнот
Фонарь-мигалка
VT1, VT2 Биполярный транзистор

Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.

Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:

Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.

На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.

Самоделки для автомобилей

Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.

Первое, во что можно вмешаться, не боясь навредить авто, - это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:

Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.

На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.

Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную - 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.

Простые обогреватели

В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:

  • асбестовая труба;
  • нихромовая проволока;
  • вентилятор;
  • выключатель.

Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы - предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.

Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.

От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.

Весь обогреватель подключается к сети через шнур с вилкой, но он сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант более предпочтителен, он позволяет защищать общую сеть. Для этого ток срабатывания автомата должен быть меньше тока срабатывания автомата помещения. Выключатель еще нужен для быстрого отключения обогревателя в случае неполадок, например, если вентилятор не будет работать. У такого обогревателя есть свои минусы:

  • вредность для организма от асбестовой трубы;
  • шум от работающего вентилятора;
  • запах от пыли, попадающей на нагретую спираль;
  • пожароопасность.

Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство - небольшой выпрямитель.

Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.

Самый простой способ создать задающий время элемент - это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:

  • электролитический конденсатор большой емкости;
  • транзистор типа p-n-p;
  • электромагнитное реле;
  • диод;
  • переменный резистор;
  • постоянные резисторы;
  • источник постоянного тока.

Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.

База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.

Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.

Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.

Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.

Урок 2.5 - Транзисторы и микросхемы

Транзистор

Я очень долго думал, как объяснить простыми человеческими словами, что же такое транзистор. Даже если рассказывать о транзисторе очень-очень поверхностно, мне придётся написать не менее пяти листов, используя заумные термины.

Потом меня осенило: ведь главная цель моего обзора – не дать академические знания (за ними пожалуйте в университет или хотя бы в Википедию), а научить начинающего радиолюбителя хотя бы отличать транзистор от конденсатора и резистора, чтобы успешно собрать свои первые конструкции (например, наборы Мастер Кит).

Поэтому лучше всего сказать так: транзисторы – это радиодетальки с тремя выводами, предназначенные для усиления и преобразования сигналов. Так они могут выглядеть в жизни:

 

 

Так обозначается транзистор на схеме:

У транзистора, как мы уже поняли, три вывода: база (B), коллектор (C), эмиттер (E).
На базу обычно подаётся входной сигнал, с коллектора - снимается усиленный сигнал, а эмиттер является общим проводом схемы. Конечно, это очень примитивное описание принципов работы транзистора, и вообще есть очень много нюансов, но мы уже договорились, что я не буду мучить вас чтением многостраничного труда.


На самой радиодетали выводы никак не маркированы. Какого-либо стандарта расположения выводов тоже нет. Так как же определить, где какой вывод?
Придётся воспользоваться справочной информацией: на каждый транзистор имеется так называемый даташит, или, иными словами, паспорт радиодетали. В даташите приводится вся информация по транзистору: максимально допустимые ток и напряжение, коэффициент усиления, расположение выводов и многое-многое другое. Даташиты проще всего искать в сети Интернет, также основные параметры транзисторов можно найти в радиолюбительской литературе.

 

Взаимозаменяемость транзисторов

Так как транзистор имеет гораздо более сложное устройство и больше значащих параметров, чем резистор, конденсатор или диод, подобрать допустимую замену отсутствующему компоненту непросто. Как минимум, у заменяемого транзистора должен быть такой же тип корпуса и цоколёвка (расположение выводов). Новый транзистор должен иметь такую же структуру: NPN или PNP. Кроме того, необходимо учитывать электрические параметры: допустимые токи, напряжения, в некоторых случаях – граничную частоту и т.п.
Иногда разработчик схемы делает этот труд за вас, предлагая возможные аналоги транзистора. В сети Интернет и в радиолюбительской литературе также имеются справочные таблицы с информацией о возможных аналогах транзисторов.
В наборы Мастер Кит также иногда вкладываются вместо оригинальных (временно отсутствующих на складе) транзисторов их аналоги, и такая замена не ухудшает качества работы готовой конструкции.

 

Установка транзистора на печатную плату

 Вообще же, для успешной сборки набора Мастер Кит необязательно знать, где какой вывод у транзистора. Достаточно совместить «ключи» на транзисторе и на печатной плате – и выводы транзистора «автоматически» установятся так, как положено.

Посмотрите на рисунок. У транзистора есть «ключ» - при взгляде на него сверху явно видно, что корпус полукруглый. Такой же «ключ» имеется на печатной плате. Для корректной установки транзистора достаточно совместить «ключи» на транзисторе и на печатной плате:

 

Микросхема


Микросхема – это уже почти готовое устройство, или, образно говоря, электронный полуфабрикат.

Микросхема содержит в себе электронную схему, выполняющую определённую функцию: это может быть логическое устройство, преобразователь уровней, стабилизатор, усилитель. Внутри микросхемы размером с ноготь могут содержаться десятки (а иногда и сотни, миллионы и миллиарды) резисторов, диодов, транзисторов и конденсаторов.

Микросхемы выпускаются в различных корпусах и имеют разное количество выводов. Вот некоторые примеры микросхем, с которыми может работать начинающий радиолюбитель:

 


Цоколёвка микросхемы

Выводы нумеруются против часовой стрелки начиная с левого верхнего. Первый вывод определяется с помощью «ключа» — выемки на краю корпуса или точки в виде углубления.


Взаимозаменяемость микросхем

Микросхема – это узкоспецифическая готовая электронная схема, содержащая в себе огромное количество элементов, и в общем случае каждая микросхема уникальна.
Но всё же в некоторых случаях можно подобрать замену. Разные производители могут выпускать одинаковые микросхемы. Проблема только в том, что не существует никакой унификации в названии (иногда, но не обязательно, могут совпадать цифры наименований). Например, MA709CH, MC1709G, LM 1709L SN72710L, К153УД1А/Б - это одна и та же микросхема разных фирм-производителей.

В некоторых случаях в наборы Мастер Кит также могут входить аналоги микросхем. Это нормально, и не ухудшает характеристик готовой схемы.


Микросхемы - стабилизаторы напряжения

Микросхемы стабилизаторов напряжения имеют три вывода, поэтому их легко можно перепутать с транзистором. Но в корпусе этого маленького компонента могут содержаться десятки транзисторов, резисторов и диодов. Например, на рисунке ниже представлена микросхема 78L05. Вы можете подавать на её вход напряжение от 5 до 30В, на выходе же микросхемы будет присутствовать неизменное напряжение 5В, при этом нагрузочная способность микросхемы – 100 мА. Подобный стабилизатор выпускается и в более мощной версии – до 1А нагрузочной способности, называется он 7805 и имеет более крупный корпус.

 

 

 

Установка микросхемы на печатную плату

На микросхеме и на печатной плате имеются «ключи», и при установке микросхемы на плату обязательно требуется их совмещать, как показано на рисунке ниже:

 

Скачать урок в формате PDF

Build Simple Transistor Circuits | Проекты самодельных схем

Сюда включен сборник важных для сборки различных транзисторных простых схем.

Простые схемы транзисторов для начинающих любителей

В этой статье обсуждались многие простые конфигурации транзисторов, такие как сигнализация о дожде, таймер задержки, защелка сброса, тестер кристалла, светочувствительный переключатель и многое другое.

В этом сборнике простых транзисторных схем (схем) вы встретите множество небольших очень важных конфигураций транзисторов, специально разработанных и скомпилированных для начинающих энтузиастов электроники.

Простые схемы (схемы), показанные ниже, имеют очень полезные приложения и, тем не менее, их легко построить даже для начинающих энтузиастов электроники. Давайте начнем их обсуждение:

Регулируемый источник питания постоянного тока:

Очень хороший регулируемый блок питания можно построить, используя всего пару транзисторов и несколько других пассивных компонентов.

Схема обеспечивает хорошее регулирование нагрузки, максимальный ток не превышает 500 мА, что достаточно для большинства приложений.

Rain Alarm

Эта схема построена всего на двух транзисторах в качестве основных активных компонентов.

Конфигурация представляет собой стандартную пару Дарлингтона, что значительно увеличивает ее способность усиления тока.

Капли дождя или капель воды, падающих и перекрывающих основание положительным питанием, достаточно для срабатывания сигнализации.

Источник питания без гудения:

Для многих схем аудиоусилителей гудение может стать большой помехой, даже правильное заземление иногда не может решить эту проблему.

Однако мощный транзистор и несколько конденсаторов при их подключении, как показано, могут определенно решить эту проблему и обеспечить необходимую мощность без шума и пульсаций для всей схемы.

Защелка установки-сброса:

Эта схема также использует очень мало компонентов и точно устанавливает и сбрасывает реле и выходную нагрузку в соответствии с входными командами.

Нажатие верхнего кнопочного переключателя активирует цепь и нагрузку, тогда как оно отключается нажатием нижней кнопки.

Простой таймер задержки

Очень простая, но очень эффективная схема таймера может быть спроектирована путем включения всего двух транзисторов и других компонентов.

Нажатие кнопки включения мгновенно заряжает конденсатор емкостью 1000 мкФ и включает транзисторы и реле.
Даже после отпускания переключателя цепь остается в положении до полного разряда C1. Время задержки определяется значениями R1 и C1. В нынешнем дизайне это около 1 минуты.

Crystal Tester:

Кристаллы могут быть довольно незнакомыми компонентами, особенно для новичков в области электроники.

Показанная схема в основном представляет собой стандартный генератор Колпитца, включающий кристалл для инициирования его колебаний.

Если подключенный кристалл исправен, это будет обозначено светящейся лампочкой, неисправный кристалл будет держать лампу закрытой.

Предупреждающий индикатор уровня воды:

Больше никаких подглядываний и нервных опасений при переполненных резервуарах для воды.

Эта схема будет издавать приятный небольшой жужжащий звук задолго до того, как ваш танк разольется.

Нет ничего проще этого. Продолжайте следить за появлением других этих маленьких гигантов, я имею в виду простые схемы, которые можно построить с огромным потенциалом.

Тестер устойчивости руки:

Довольно уверены в ловкости руки? Настоящая схема определенно может бросить вам вызов.

Создайте эту схему и просто попробуйте надеть суженное металлическое кольцо на положительный вывод питания, не касаясь его.
Жужжащий звук из динамика вызовет у вас «беспокойные руки».

Светочувствительный переключатель:

Список деталей приведен здесь

Если вы заинтересованы в создании недорогого светочувствительного переключателя, эта схема как раз для вас.

Идея проста, наличие света выключает реле и подключенную нагрузку, отсутствие света делает с точностью до наоборот.

Нужны дополнительные объяснения или помощь? Просто продолжайте публиковать свои ценные комментарии (комментарии требуют модерации, для их появления может потребоваться время).

Простая схема тестера

Пассивное тестирование электронной схемы кажется довольно простой задачей. Все, что вам нужно, это действительно омметр.

К сожалению, работать с этим типом полупроводниковых устройств нецелесообразно. Выходные токи, вероятно, повредят полупроводниковые переходы.

Тестер, описанный в этой статье, прост в сборке и обладает преимуществом, заключающимся в том, что максимум около 50 мкА может подаваться только в тестируемой цепи.

Следовательно, он может использоваться для большинства стандартных ИС и полупроводников, которые включают элементы на основе МОП. Индикация реализована через небольшой громкоговоритель, чтобы гарантировать, что в ходе тестирования не требуется постоянно обращаться к тестирующему устройству, а не концентрироваться на тестовых точках.

Транзисторы T1 и T2 составляют основной НЧ-генератор, управляемый напряжением, с громкоговорителем, работающим как нагрузка. Частота генератора формируется C1, R1, R4 и внешним сопротивлением между измерительными проводами.Резистор R3 - сопротивление коллектора Т2; C2 ведет себя как низкочастотная развязка именно этого резистора.

Как упоминалось ранее, тестер никогда не причинит вреда проверяемой цепи; в качестве альтернативы, лучше всего включить диоды D1 и D2, чтобы тестируемая цепь не могла противодействовать повреждению частей тестера. До тех пор, пока у вас нет электрического соединения между тестирующими стержнями, схема не потребляет никакого тока. В этом случае срок службы батареи может быть примерно таким же, как срок службы батареи.

Индикатор задних фонарей с предохранителем для автомобиля

Для тех, кто хотел бы быть уверенным, что лампы на их автомобиле находятся в отличном состоянии, эта схема, вероятно, является выходом. Он довольно простой и дает точную индикацию в любое время, когда какой-либо конкретный светильник перегорает или перестает работать. По отношению к току, потребляемому лампой L, вокруг сопротивления Rx возникает падение напряжения.

Это падение напряжения должно составить около 400 мВ, что может помочь определить значение R .. Например, если это задние фонари, где пара ламп 10 Вт 12 В может быть параллельна, Rx может быть рассчитано, как указано ниже:

Ток может быть выражен как P / V = ​​20/12 = 1.7 ампер

Тогда Rx можно рассчитать как V / I = 0,4 / 1,67 = 0,24 Ом

T2 может быть BC557

Из-за того, что на RX возникает падение 400 мВ, T1 обычно включается, что приводит к отключению T2 . В случае перегорания одного из задних фонарей ток через Rx уменьшается наполовину, что составляет 0,84 А. Падение напряжения на Rx в этот момент составляет 0,84 x 0,24 = 0,2 В.

Это напряжение выглядит существенно минимальным для активации T1, что означает, что этот T2 теперь получает базовый ток через R1, и загорается светодиод.Чтобы получить надежную индикацию отказа ламп, рекомендуется использовать одну схему детектора, поскольку может быть только пара ламп.

Тем не менее, использование одного светодиода для нескольких детекторов вполне допустимо: D1 и R3 работают совместно со всеми датчиками, а коллекторы всех транзисторов T2 могут быть соединены друг с другом. R3 должен быть 470 Ом для схемы 12 В и 220 Ом для схемы 6 В.

Простой регулируемый источник переменного тока

Очень простой регулируемый источник питания со стабилизированным выходом может быть построен с использованием всего лишь пары транзисторов, как показано ниже:

Транзисторы T1 и T2 образуют пару Дарлингтона с высоким коэффициентом усиления по току для управления выходным напряжением.Поскольку конструкция в основном представляет собой эмиттерный повторитель, выход эмиттера следует за базовым напряжением, что означает, что изменение базового напряжения пропорционально изменяет выходное напряжение эмиттера.

R1 вместе со стабилитроном определяет базовое напряжение Дарлингтона, которое, в свою очередь, обеспечивает эквивалентное выходное напряжение эмиттера.

R1 и стабилитрон можно отрегулировать по желанию, выбрав значения в соответствии со следующей датой:

Дизайн печатной платы для вышеуказанного транзисторного стабилизированного источника питания можно увидеть на следующем рисунке.

Простая схема усилителя мощности 30 Вт

Эту простую схему полностью транзисторного усилителя мощностью 30 Вт можно использовать для питания небольших акустических систем от USB или от мобильных музыкальных источников iPod. Устройство обеспечит отличное звучание усиленной музыки, достаточное для любой небольшой комнаты.

Уровень искажений для этой схемы 30-ваттного транзисторного усилителя значительно снижен, а стабильность потрясающая.

Конденсатор C7 предназначен для компенсации фазового сдвига выходных транзисторов.Значение R1 уменьшено до 56 кОм, и дополнительная развязка с помощью резистора 47 кОм и конденсатора I0 мкФ включены последовательно со стороной с высоким потенциалом R1 и положительным полюсом источника питания.

Выходной импеданс довольно минимален, так как T5 / T7 и T6 / T8 работают как мощные дарлингтоны. Каскад управляющего усилителя эффективно обеспечивает входное среднеквадратичное напряжение 1 В.

Из-за пониженной входной чувствительности усилитель обеспечивает отличную стабильность, а его уровень чувствительности к фоновому шуму минимален.Значительная отрицательная обратная связь через R4 и R5 гарантирует снижение искажений. Оптимально допустимое напряжение питания - 42 В.

Схема питания должна быть выполнена в виде стабилизированного блока питания усилителя. Помимо представленных радиаторов, транзисторы 3nos 2N3055 необходимо охладить, закрепив их на металлическом корпусе с помощью слюдяных изолирующих шайб. Стол БП рассчитан на стерео.

Электрические характеристики схемы усилителя мощностью 30 Вт приведены ниже:

Полный список деталей для указанной схемы усилителя

Задержка выключения освещения салона автомобиля

Когда поездка на автомобиле начинается после захода солнца, полезно создать систему, которая может держать внутреннее освещение включенным через некоторое время после того, как двери были заперты, что позволяет водителям легко пристегнуть ремни безопасности и повернуть ключ зажигания.Для идеальной реализации этой функции можно использовать простую схему задержки выключения, показанную ниже.

Когда двери закрываются, контакт двери размыкается, отсоединяя базу транзистора от линии заземления vi D3. Это нарушит заземление pnp-транзистора. Тем не менее, реле все еще работает некоторое время из-за C1, что позволяет току базы BC557 проходить через C1 и катушку реле, пока в конечном итоге C1 не зарядится полностью и не отключит транзисторы и реле.

7-сегментный дисплей Контроллер подсветки Схема

Типичный 7-сегментный дисплейный ток должен быть ограничен приблизительно до 25 мА, что обычно осуществляется через последовательные резисторы.При наличии резисторов яркость дисплея не может быть изменена. В качестве альтернативы продемонстрированная здесь схема питает дисплей от регулируемого источника напряжения со схемой эмиттерного повторителя.

Светодиодная подсветка дисплея изменяется в зависимости от настроек регуляторов напряжения P1 (грубая) и P2 (точная), примерно в пределах от 0 до 43 вольт, причем точная настройка имеет решающее значение из-за диодной характеристики светодиода.

При регулировке подсветки дисплея выходное напряжение сначала фиксируется на минимальной точке, после чего постепенно увеличивается для достижения надлежащей яркости.

Общий ток для любого 7-значного дисплея не должен превышать 1 ампер, чтобы получить безопасный и надежный сегментный ток 25 мА (7 сегментов по 25 мА для 6 цифр). Выбор последовательного транзистора (T1) определяется его рекомендованными характеристиками рассеяния.

Рабочее реле с более низким напряжением питания

Когда реле работает с номинальным напряжением, оно фактически может удерживать активацию, даже если управляющее напряжение значительно снижается. При пониженном напряжении это позволяет реле работать оптимально, но при этом экономить электроэнергию.

Однако начальное напряжение должно быть близко к указанному для реле, в противном случае реле может не сработать.

Схема, описанная ниже, позволяет реле включаться от источника питания ниже номинального, гарантируя, что при включении напряжение повышается через сеть удвоителя напряжения на диоде / конденсаторе. Это повышенное напряжение обеспечивает реле требуемым более высоким начальным питанием. Когда активация завершена, напряжение падает до более низкого значения, позволяя реле удерживаться и работать с пониженной экономичной мощностью.

Простой двухтранзисторный генератор

Эта небольшая экспериментальная схема двухтранзисторного генератора может легко создавать слышимые частоты в диапазоне от 100 Гц до 2 кГц, используя небольшой громкоговоритель. Схема может управляться 4-мя батареями AA или постоянным источником питания 6 В. Текущие характеристики этой схемы определяются напряжением источника питания и импедансом используемого громкоговорителя, а диапазон обычно может составлять от 10 до 300 мА.

Потенциометр P1 устанавливает рабочий частотный спектр, который устанавливается в широком диапазоне значений.Можно попробовать потенциометры до 1 МОм, преобразуя нижний регулятор частотного диапазона примерно до 10 Гц. C1 также может быть изменен, и значения от 0,01 мкФ до 0,22 мкФ могут соответствовать требованиям тестирования.

Большие значения C1 будут генерировать частоты в нижнем спектре диапазона. Схема очень хорошо работает в таких приложениях, как сигнализация, видеоигры, игрушки и для получения дополнительной информации о транзисторных генераторах

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Как работают транзисторы (NPN и MOSFET)

Транзистор - полезный и практичный компонент, который можно использовать для создания множества интересных проектов. В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своей следующей схеме.

На самом деле это довольно просто, если вы изучите основы. Мы сосредоточимся на двух наиболее распространенных транзисторах; NPN и MOSFET .

Транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей. Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.

Но транзистор также можно частично включить, что полезно для создания усилителей.

Как работают транзисторы (тип NPN)

Начнем с классического транзистора NPN. Имеет три ножки:

  • База (b)
  • Коллектор (c)
  • Излучатель (e)

Если вы включите его, через него может течь ток от коллектора к эмиттеру. Когда он выключен, ток не может течь.

В приведенном ниже примере схемы транзистор выключен. Это означает, что через него не может протекать ток, поэтому светоизлучающий диод (LED) также выключен.

Чтобы включить транзистор, необходимо напряжение около 0,7 В между базой и эмиттером.

Если бы у вас была батарея 0,7 В, вы могли бы подключить ее между базой и эмиттером, и транзистор включился бы.

Поскольку у большинства из нас нет батареи 0,7 В, как нам включить транзистор?

Легко! Часть транзистора база-эмиттер работает как диод. Диод имеет прямое напряжение , которое он «берет» из имеющегося напряжения.Если вы добавите резистор последовательно, остальная часть напряжения упадет на резисторе.

Таким образом, вы автоматически получите около 0,7 В, добавив резистор.

Это тот же принцип, который вы используете для ограничения тока через светодиод, чтобы он не взорвался.

Если вы также добавите кнопку, вы можете управлять транзистором и, следовательно, светодиодом, включаться и выключаться с помощью кнопки:

Выбор значений компонентов

Чтобы выбрать значения компонентов, вам нужно знать еще одну вещь о том, как работают транзисторы:

Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.

Существует связь между величинами двух токов. Это называется коэффициентом усиления транзистора .

Для транзистора общего назначения, такого как BC547 или 2N3904, это может быть около 100.

Это означает, что если у вас есть ток 0,1 мА от базы к эмиттеру, у вас может быть 10 мА (в 100 раз больше), протекающее от коллектора к эмиттеру.

Какое сопротивление резистора необходимо для R1, чтобы ток протекал 0,1 мА?

Если батарея 9В, а база-эмиттер транзистора захватывает 0.7 В, на резисторе осталось 8,3 В.

Вы можете использовать закон Ома, чтобы найти номинал резистора:

Треугольник закона Ома

Значит нужен резистор на 83 кОм. Это не стандартное значение, но 82 кОм, и это достаточно близко.

R2 предназначен для ограничения тока светодиода. Вы можете выбрать значение, которое вы выбрали бы, если бы вы подключили светодиод и резистор непосредственно к батарее 9 В, без транзистора. Например, 1 кОм должен работать нормально.

Посмотрите видеообъяснение транзистора, которое я сделал несколько лет назад (простите за олдскульное качество):

Как выбрать транзистор

NPN-транзистор является наиболее распространенным из биполярных переходных транзисторов (BJT) .Но есть еще один, называемый PNP-транзистором, который работает точно так же, только все токи имеют противоположное направление.

При выборе транзистора важно помнить, какой ток транзистор может выдерживать. Это называется током коллектора (I C ).

БЕСПЛАТНО Бонус: Загрузите основные электронные компоненты [PDF] - мини-книгу с примерами, которая научит вас, как работают основные компоненты электроники.

Как работает МОП-транзистор

MOSFET-транзистор - еще один очень распространенный тип транзисторов. Он также имеет три контакта:

  • Затвор (g)
  • Источник (и)
  • Сток (d)
Символ MOSFET (N-канал)

MOSFET работает аналогично NPN-транзистору, но с одним важным отличием:

В NPN-транзисторе , ток от базы к эмиттеру определяет, сколько тока может протекать от коллектора к эмиттеру.

В полевой МОП-транзистор , напряжение между затвором и истоком определяет, сколько тока может протекать от стока к истоку.

Пример: как включить полевой МОП-транзистор

Ниже приведен пример схемы включения полевого МОП-транзистора.

Значение R1 не критично, но около 10 кОм должно работать нормально. R2 устанавливает яркость светодиода. 1 кОм подойдет для большинства светодиодов. Q1 может быть практически любым n-канальным MOSFET, например BS170.

Чтобы включить MOSFET-транзистор, вам необходимо напряжение между затвором и истоком, которое выше порогового напряжения вашего транзистора.Например, BS170 имеет пороговое напряжение затвор-исток , равное 2,1 В. (Вы найдете эту информацию в таблице).

Пороговое напряжение полевого МОП-транзистора - это фактически напряжение, при котором он отключается. Итак, чтобы правильно включить транзистор, вам нужно напряжение немного выше этого.

Насколько выше, зависит от того, какой ток вы хотите иметь (и вы найдете эту информацию в таблице данных). Если вы поднимете на пару вольт выше порогового значения, этого обычно более чем достаточно для слаботочных вещей, таких как включение светодиода.

Обратите внимание, что даже если вы используете достаточно высокое напряжение для протекания тока 1 А, это не означает, что вы получите 1 А. Это просто означает, что у может быть ток с током 1А, если вы захотите. Но то, что вы к нему подключаете, определяет фактический ток.

Таким образом, вы можете подниматься настолько высоко, насколько хотите, при условии, что вы не превышаете максимально допустимое напряжение затвор-исток (которое составляет 20 В для BS170).

В приведенном выше примере ворота подключаются к напряжению 9 В, когда вы нажимаете кнопку.Это включает транзистор.

Как выключить полевой МОП-транзистор?

Одна важная вещь, которую нужно знать о MOSFET, заключается в том, что он также действует как конденсатор. То есть часть затвор-исток. Когда вы прикладываете напряжение между затвором и истоком, это напряжение остается там, пока не разрядится.

Без резистора (R1) в приведенном выше примере транзистор не выключился бы. С резистором есть путь для разряда конденсатора затвор-исток, чтобы транзистор снова отключился.

Как выбрать МОП-транзистор

В приведенном выше примере используется полевой МОП-транзистор с N-каналом . P-channel МОП-транзисторы работают точно так же, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным, чтобы включить его.

Существуют тысячи различных полевых МОП-транзисторов на выбор. Но если вы хотите построить схему, приведенную выше, и получить конкретную рекомендацию, BS170 и IRF510 - два обычных.

При выборе полевого МОП-транзистора следует учитывать две вещи:

  • Пороговое напряжение затвор-исток .Для включения транзистора требуется более высокое напряжение.
  • Непрерывный ток утечки . Это максимальное количество тока, которое может протекать через транзистор.

В зависимости от того, что вы делаете, следует помнить о других важных параметрах. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.

Зачем вам транзистор?

Мне часто задают вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к аккумулятору?

Преимущество транзистора в том, что вы можете использовать небольшой ток или напряжение для управления гораздо более высокими током и напряжением.

Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое с Raspberry Pi / Arduino / микроконтроллера. Выходные контакты этих плат обычно могут обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять уличным освещением 110 В для патио, вы не можете сделать это напрямую с помощью булавки.

Вместо этого вы можете сделать это через реле. Но даже реле обычно требует большего тока, чем может обеспечить вывод. Итак, вам понадобится транзистор для управления реле:

Подключите левую сторону резистора к выходному контакту (например, от Arduino) для управления реле.

Но транзисторы также полезны для более простых схем датчиков, таких как эта схема светового датчика, схема сенсорного датчика или схема H-моста.

Транзисторы используются практически во всех схемах. Это действительно самый важный компонент в электронике.

Транзистор как усилитель

Транзистор - это еще и то, что заставляет работать усилители. Вместо двух состояний (ВКЛ. / ВЫКЛ.) Он также может находиться в любом месте между «полностью включено» и «полностью выключено».

Это означает, что слабый сигнал почти без энергии может управлять транзистором, чтобы создать гораздо более сильную копию этого сигнала в части коллектор-эмиттер (или сток-исток) транзистора.Таким образом, транзистор может усиливать слабые сигналы.

Ниже представлен простой усилитель для управления динамиком. Чем выше входное напряжение, тем выше ток от базы к эмиттеру и тем выше ток через динамик.

Изменяющееся входное напряжение приводит к изменению тока в динамике, что создает звук.

Усилитель с общим эмиттером

Обычно вы добавляете еще пару резисторов к смещению транзистора. В противном случае вы получите много искажений.Но это уже для другой статьи.

Если вы хотите узнать больше об использовании транзистора в качестве усилителя, на сайте electronics-lab.com есть несколько хороших руководств по трем основным настройкам усилителя BJT.

Вопросы?

Вы понимаете, как сейчас работают транзисторы? Или вы все еще в замешательстве? Позвольте мне знать в комментариях ниже.

Транзисторы 101

Транзисторы 101 Изучение транзисторов
(через простую схему драйвера светодиода)

Светодиод

Светодиод - это устройство, показанное выше.Кроме красные, они также могут быть желтыми, зелеными и синими. Буквы LED означают свет Излучающий диод. Что важно помнить о диодах (включая светодиоды) заключается в том, что ток может течь только в одном направлении.

Чтобы светодиод заработал, нужен источник питания и резистор. Если вы попытаетесь использовать светодиод без резистора, вы, вероятно, перегорите светодиод. Светодиод имеет очень маленькое сопротивление поэтому через него будет протекать большое количество тока, если вы не ограничите ток с резистором.Если вы попытаетесь использовать светодиод без источника питания, вы можете быть очень разочарованы.

Итак, в первую очередь сделаем наш Светодиод загорается при настройке схемы ниже.

Шаг 1.) Сначала вам нужно найти положительная ножка светодиода. Самый простой способ сделать это - поискать нога, которая длиннее.

Шаг 2.) Как только вы узнаете, с какой стороны положительный, включите светодиод макет таким образом, положительный отрезок находится в одном ряду, а отрицательный - в другом. (На картинке ниже ряды вертикальные.)

Шаг 3.) Поместите одну ногу 220 резистор Ом (неважно, на какой ноге) в том же ряду, что и отрицательный ножка светодиода. Затем поместите другую ножку резистора в пустой ряд.

Шаг 4.) Отключите блок питания. адаптер от блока питания. Затем поместите заземляющий (черный провод) конец адаптер питания в боковом ряду с синей полосой рядом Это. Затем вставьте положительный (красный провод) конец адаптера источника питания в боковой ряд с красной полосой рядом.

Шаг 5.) Используйте короткую перемычку. (используйте красный цвет, поскольку он будет подключен к положительному напряжению), чтобы перейти от положительный ряд мощности (тот, рядом с которым есть красная полоса) к положительному ножка светодиода (не в том же отверстии, а в том же ряду). Использовать другой короткая перемычка (используйте черный цвет) для перехода от заземляющего ряда к резистору (нога, не подключенная к светодиоду). См. Картинку ниже если необходимо.

Макетная плата должна выглядеть как на картинке ниже.

Теперь подключите блок питания к стену, а затем подключите другой конец к адаптеру питания и Светодиод должен загореться.Ток течет от положительной ножки светодиода. через светодиод к отрицательной ножке. Попробуйте повернуть светодиод. Должно не загорается. Ток не может течь от отрицательного полюса светодиода к положительная нога.

Люди часто думают, что резистор должен быть первым на пути от положительного к отрицательному, чтобы ограничить количество тока, протекающего через светодиод. Но ток ограничен резистор независимо от того, где находится резистор. Даже когда вы впервые включаете мощность, ток будет ограничен определенной величиной, и его можно найти используя закон Ома.

Вездесущая полезность закона Ома:
[Напряжение (вольт) = ток (амперы) X сопротивление (Ом)]

Закон Ома может использоваться с резисторами найти ток, протекающий по цепи. Закон I = V / R (где I = ток, V = напряжение на резисторе и R = сопротивление). Для В приведенной выше схеме мы можем использовать только закон Ома для резистора, поэтому мы должны использовать то что при горит светодиоде на нем падение напряжения 1,9 (Кстати: падение напряжения зависит от типа светодиода).Это означает, что если положительный вывод подключен к 5 вольт, отрицательный нога будет на 3,1 вольта (т. е. 5,0–1,9 = 3,1). Теперь, когда мы знаем напряжение на обеих сторонах резистор и может использовать закон Ома для расчета тока. Текущий (5,0-1,9) / 220 = 3,6 / 2000 = 0,0014 Ампер = 14 мА

Это ток, протекающий через путь от 5В к GND. Это означает, что через оба канала проходит 14 мА. Светодиод и резистор (так как они включены последовательно). Если мы хотим изменить ток, протекающий через светодиода (таким образом, изменяя яркость) мы можем поменять резистор.Меньший резистор пропускает больше тока, а резистор большего размера пропускает меньше текущий поток. Будьте осторожны при использовании резисторов меньшего размера, потому что они будут раздражаться. Кроме того, некоторые светодиоды будут повреждены, если вы ими воспользуетесь. за пределами их максимального номинального тока ... так что не используйте резистор, который настолько мал что вы будете генерировать чрезвычайно высокий ток (примечание: наш светодиод имеет максимум рабочий ток 20 мА).

Далее мы хотим иметь возможность превратить светодиод включается и выключается без изменения схемы.Для этого мы научимся использовать другой электронный компонент, транзистор.

Транзистор

Транзисторы - основные компоненты во всей современной электронике. Это просто переключатели, которые мы можем использовать для включения и выключения. Несмотря на то, что они просты, они самый важный электрический компонент. Например, транзисторы почти единственные компоненты, используемые для построения процессора Pentium. Один Pentium 4 имеет около 55 миллионов транзисторов (именно поэтому эти чипы так чертовски горячий).Те, что в Pentium, меньше чем те, которые мы будем использовать, но они работают одинаково.

Транзисторы (2N2222), которые мы будем использовать в наших проектах, выглядят так:

Транзистор имеет три ножки, Коллектор (C), база (B) и эмиттер (E). Иногда они помечены на плоская сторона транзистора. Транзисторы обычно имеют одну круглую сторону и одна плоская сторона. Если плоская сторона обращена к вам, ножка эмиттера Слева опорная ножка находится посередине, а коллекторная ножка находится на справа (примечание: некоторые специальные транзисторы имеют другую конфигурацию контактов, чем пакет ТО-92, описанный выше).

Обозначение транзистора

В электрические схемы (схемы) для представления NPN транзистора

Базовая схема

База (B) - переключатель включения / выключения для транзистора. Если к базе идет ток, будет путь от коллектора (C) к эмиттеру (E), где может течь ток (Переключатель включен.) Если к базе не течет ток, значит, нет ток может течь от коллектора к эмиттеру.(Переключатель выключен.)

Ниже приведена базовая схема, которую мы будем использовать для всех наших транзисторов.

Чтобы построить эту схему, нам нужно только добавить транзистор и еще один резистор к схеме, которую мы построили выше для светодиода. Перед внесением любых изменений отключите блок питания от адаптера блока питания. на макете. Чтобы вставить транзистор в макет, разъедините ножки немного и поместите его на макет так, чтобы каждая ножка находилась в отдельном ряду. В ножка коллектора должна быть в том же ряду, что и ножка резистора, который подключен к земле (с помощью черной перемычки).Затем переместите перемычку переход от земли к резистору 220 Ом к эмиттеру транзистора.

Затем поместите одну ногу 100 кОм резистор в ряду с базой транзистора и другой ножкой в пустая строка, и ваша макетная плата должна выглядеть, как на картинке ниже.

Теперь наденьте один конец желтой перемычки. провод в положительном ряду (рядом с красной линией), а другой конец - в ряд с ножкой резистора 100 кОм (конец не подключен к База).Снова подключите источник питания, транзистор включится и Загорится светодиод. Теперь переместите один конец желтой перемычки из положительный ряд к основному ряду (рядом с синей линией). Как только ты снимите желтую перемычку с плюса питания, есть ток не течет к базе. Это заставляет транзистор выключиться и ток не может течь через светодиод. Как мы увидим позже, очень через резистор 100 кОм протекает небольшой ток. Это очень важно потому что это означает, что мы можем контролировать большой ток в одной части цепи (ток, протекающий через светодиод) только с небольшим током от Вход.

Вернуться к закону Ома

Мы хотим использовать закон Ома, чтобы найти ток на пути от входа к базе транзистора и ток, протекающий через светодиод. Для этого нам нужно использовать два основных факты о конкретных транзисторах, которые мы используем:

1.) Если транзистор включен, тогда базовое напряжение на 0,7 вольт выше, чем напряжение эмиттера.

2.) Если транзистор включен, напряжение коллектора на 1,6 вольт выше, чем напряжение эмиттера.

Итак, когда резистор 100 кОм подключен к 5 В постоянного тока, схема будет выглядеть так:

Таким образом, ток, протекающий через резистор 100 кОм, равен (5 - 0,7) / 100000 = 0,000043 A = 0,043 мА.

Ток, протекающий через резистор 220 Ом, равен (3,1 - 1,6) / 220 = 0,0068 А = 6,8 мА.

Если мы хотим протекать больше тока через светодиод мы можем использовать меньший резистор (вместо 220) и мы будет получать больше тока через светодиод без изменения величины тока который идет от входной линии к базовому резистору 100 кОм.Это означает, что мы можем контролировать вещи, которые используют большая мощность (например, электродвигатели) с дешевыми транзисторными схемами малой мощности. Скоро вы узнаете, как использовать компьютер для управления событиями в реальном мире. Несмотря на то Выходы стандартного компьютера под управлением Windows не могут обеспечить достаточный ток для включения света и двигателей включения и выключения, компьютер может включать и выключать транзисторы (поскольку для этого требуется слабый ток) и Транзисторы могут управлять большим током для ламп и двигателей. Эта концепция называется усилением и представляет собой фундаментальную концепцию компьютерного интерфейса для эксперименты в реальном мире.

Примечание :
Это руководство во многом основано на том, что изначально появилось на несуществующем веб-сайте www.iguanalabs.com (Посмертное спасибо ребятам из лаборатории игуаны).

index-of.co.uk/

 Название Размер
 ASP / -
 AdSense / -
 Эддисон-Уэсли / -
 Adobe / -
 Гибкий/                          -
 Алгоритмы / -
 Android / -
 Анимация / -
 Арт-Фальсификаторы / -
 Искусственный интеллект/        -
 Сборка/                       -
 Астрономия / -
 Астрономия / -
 Аудио / -
 Big-Data-Technologies / -
 Биоинформатика / -
 Black-Hole-Exploit-Kit / -
 Черная шляпа/                       -
 C ++ / -
 Casa / -
 Шпаргалка / -
 CheatSheets-QuickRefs / -
 Cisco / -
 Кликджекинг / -
 Книги по облачным вычислениям / -
 Облачные технологии / -
 Компилятор / -
 Компьютерная лингвистика / -
 Компьютерная безопасность/              -
 Компьютерные технологии/            -
 Параллельное программирование / -
 Печенье-начинка / -
 Криптография / -
 Криптология / -
 DG-LIBRE / -
 DLink-маршрутизатор / -
 DSP-Коллекция / -
 Сбор данных/                    -
 Структуры данных / -
 База данных/                       -
 Диджитал-Дизайн / -
 Цифровое ТВ/                     -
 Обнаружение-Статистика / -
 Дистрос-GNU-LINUX / -
 Документы / -
 Dominios-expirados / -
 DotNET / -
 Электронные книги / -
 Египетология / -
 Электроника / -
 Инжиниринг / -
 Английский/                        -
 Так далее/                            -
 Ес-правда / -
 Эксплойт / -
 Фейк-Фарма / -
 Судебная экспертиза / -
 Электронные книги о свободной энергии / -
 Галерея / -
 Разработка игр / -
 Ганар-динеро / -
 Google/                         -
 Графический дизайн/                 -
 Графика / -
 Гиды / -
 HTML-CSS-AJAX-Javascript / -
 Hack_X_Crack / -
 Хакеры / -
 Взлом-Coleccion / -
 Взлом / -
 Хаки / -
 Аппаратное обеспечение/                       -
 INFOSEC / -
 IT-менеджмент / -
 ЭТО/                             -
 Поиск информации/          -
 Информация-Теория / -
 Интервью/                      -
 JBoss / -
 Ява/                           -
 JavaScript / -
 Joomla / -
 Лаборатория / -
 Лекции / -
 Уроки для жизни / -
 Linux / -
 Журналы / -
 Вредоносное ПО / -
 Математика/                    -
 МакГроу-Хилл / -
 Медицинский / -
 Микропроцессоры / -
 Microsoft-Compiled-HTML-Help / -
 Microsoft-Windows-Электронные книги / -
 Разное / -
 Блок управления двигателем/                  -
 Msca / -
 Музеи / -
 MySQL / -
 Сеть / -
 OFIMATICA / -
 OReilly / -
 Операционные системы/              -
 PHP / -
 Пентестинг / -
 Фишинг / -
 Телефоны / -
 Photoshop / -
 Физика / -
 Пингоматика / -
 Библиотека программирования / -
 Программирование / -
 Управление проектом/             -
 Психология-общение / -
 Публичное выступление/                -
 Python / -
 КРАСНЫЕ / -
 Разобрать механизм с целью понять, как это работает/            -
 Обращение-Эксплуатация / -
 Riparazione-Siemens / -
 Руткит / -
 SE / -
 SEO / -
 СЕН / -
 СЕРВИДОРЫ / -
 СИСТЕМАС-ОПЕРАТИВЫ / -
 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ / -
 SQL / -
 SWE / -
 Наука/                        -
 Безопасность/                       -
 Segreteria-Digitale / -
 Смартфон / -
 Социальные взаимодействия/            -
 Программная инженерия / -
 Программное обеспечение-тестирование / -
 Som_pdf / -
 Спам/                           -
 Sslstrip / -
 Стегосплоит / -
 Выживание / -
 Syngress / -
 TDS / -
 Tghy / -
 Теория вычислений / -
 Tmp / -
 Учебники / -
 UPS/                            -
 USB/                            -
 Uml / -
 Разные/                        -
 Видеообучение / -
 WCAG 2.0 / -
 Акварели / -
 Веб приложение/                -
 Обнаружение веб-спама / -
 Webshell / -
 Winasm-studio-tutorial / -
 Окна / -
 Беспроводная сеть/                   -
 WordPress / -
 XML / -
 презентация / -
 чтения / -
 

Общие сведения о конструкции схем транзисторов »Электроника

Проектирование электронной схемы с использованием биполярных транзисторов довольно просто с использованием простых принципов проектирования и нескольких уравнений.


Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов Конфигурации схемы Общий эмиттер Общая схема эмиттера Эмиттерный повторитель Общая база

См. Также: Типы транзисторных схем


Транзисторные схемы лежат в самом центре современных технологий проектирования электронных схем. Хотя в наши дни интегральные схемы используются во многих схемах, базовая конструкция транзисторной схемы часто требуется в самых разных областях.

Хотя использование дискретных электронных компонентов с транзисторами требует большего количества компонентов, можно адаптировать схему для обеспечения именно той функциональности, которая требуется. Соответственно, схемы, использующие дискретные транзисторы и несколько дополнительных электронных компонентов, до сих пор остаются в основе конструкции электронных схем.

Это означает, что понимание конструкции транзисторных схем по-прежнему важно, поскольку оно не только позволяет проектировать базовые транзисторные схемы, но также обеспечивает лучшее понимание работы интегральных схем, основанных на технологии биполярных транзисторов.

BC547 Транзистор с пластиковыми выводами

Основы биполярных транзисторов

Очевидно, что ключевым электронным компонентом в любой транзисторной схеме является сам транзистор. Эти электронные компоненты могут быть получены в дискретной форме или могут быть внутри интегральной схемы.

Транзисторы производятся в различных форматах, и их можно получить для выполнения различных функций - от слабого сигнала до высокой мощности, от аудио до ВЧ и коммутации.

Они также бывают как PNP-транзисторы и NPN-транзисторы - из этих NPN-транзисторов используются более широко, поскольку они подходят для широко используемой системы отрицательного заземления, а также их характеристики лучше с точки зрения скорости.

Хотя транзисторы NPN более широко используются, это не означает, что транзисторы PNP не используются. Они часто находят применение в качестве дополнения к транзисторам NPN и некоторым другим схемам.

Базовая структура транзистора и условные обозначения схем
Примечание о биполярном транзисторе:

Биполярный транзистор представляет собой устройство с тремя выводами, которое обеспечивает усиление по току, когда ток коллектора в раз больше тока базы. Биполярный транзистор широко доступен, и его характеристики оптимизируются в течение многих лет.

Подробнее о Устройство на биполярных транзисторах и принцип его работы

Биполярный транзистор доступен уже более семидесяти лет - его технология очень хорошо отработана, и хотя технология полевых транзисторов, вероятно, более широко используется в интегральных схемах, биполярные транзисторы все еще используются в огромных количествах в различных аналоговых и цифровых схемах, как в интегральных схемах и в виде дискретных электронных компонентов.

Биполярный транзистор был впервые изобретен в 1949 году группой ученых, работающих в Bell Labs в США. Его открытие делает интересным чтение.

Примечание к истории транзисторов:

Биполярный транзистор был изобретен тремя исследователями, работающими в Bell Labroratories: Джоном Бардином, Уолтером Браттейном и Уильямом Шокли. Они работали над идеей, в которой для управления током в полупроводнике использовался эффект поля, но они не смогли реализовать эту идею.Они обратили свое внимание на другую возможность и создали трехконтактное устройство, используя два близко расположенных точечных контакта на пластине из германия. Эта идея сработала, и они смогли продемонстрировать, что она принесла прибыль в конце 1949 года.

Подробнее о История биполярных транзисторов

Расчетные параметры схемы транзистора

Перед тем, как приступить к проектированию электронной схемы для транзисторной схемы, необходимо определить требования к схемам: некоторые из основных параметров, связанных с транзисторными схемами.

В требованиях к конструкции транзисторной схемы может быть ряд параметров:

  • Коэффициент усиления по напряжению: Коэффициент усиления по напряжению часто является ключевым требованием для проектирования электронных схем. Коэффициент усиления схемы - это увеличение напряжения от входа к выходу схемы. С математической точки зрения, коэффициент усиления по напряжению A v - это выходное напряжение, деленное на входное.

    Коэффициент усиления по напряжению - одна из ключевых целей многих схем, поскольку она обеспечивает «размер»

  • Коэффициент усиления по току: Коэффициент усиления по току схемы часто важен при проектировании электронных схем, особенно там, где схема управляет нагрузкой с низким сопротивлением.Часто требуется схема без усиления по напряжению, и требуется только усиление по току, чтобы схема с относительно высоким выходным импедансом могла управлять другой схемой с более низким импедансом.

    Есть много примеров этого: генератору RF часто требуется буферный каскад, чтобы гарантировать, что сам контур генератора не загружен чрезмерно, но выход необходим для управления другими цепями. Текущая прибыль также используется в схемах питания, где ряд проходящего элемента нужд регулятора напряжения, чтобы обеспечить значительные уровни тока, но при использовании опорного тока низкого напряжения.Есть много других примеров того, где требуется усиление тока.

    Как и шкала напряжения, коэффициент усиления схемы по току сравнивает входной и выходной уровни, но с точки зрения тока. Коэффициент усиления по току равен выходному току, деленному на входной ток.

  • Входное сопротивление: Входное сопротивление транзисторной схемы всегда важно. Он определяет нагрузку на предыдущем этапе, а также важен в ВЧ схемах, где согласование импеданса является важным параметром.

    Во многих конструкциях электронных схем желателен высокий входной импеданс, потому что это означает, что предыдущий каскад не нагружен чрезмерно. Если входной импеданс транзисторной схемы слишком низок, она будет загружать предыдущую, уменьшая уровень сигнала и, возможно, вызывая искажения в некоторых случаях. Настройка транзисторного каскада для обеспечения правильного входного импеданса является ключевым элементом процесса проектирования электронной схемы.

  • Выходное сопротивление: Выходное сопротивление также важно.Если транзисторная схема управляет схемой с низким импедансом, то ее выход должен иметь низкий импеданс, в противном случае на выходном каскаде транзистора произойдет большое падение напряжения и в некоторых случаях может возникнуть искажение сигнала.

    Если полное сопротивление нагрузки низкое, то обычно требуется схема с высоким коэффициентом усиления по току, и подходящий формат схемы может быть выбран в процессе проектирования электронной схемы. Если допустимо более высокое выходное сопротивление, то часто более подходящей является схема с более высоким коэффициентом усиления по напряжению.

  • Частотная характеристика: Частотная характеристика - еще один важный фактор, который влияет на конструкцию схемы транзистора. Конструкции низкочастотных или аудиотранзисторных схем сильно отличаются от схем, используемых в ВЧ-приложениях. Также выбор электронных компонентов в схеме определяет отклик: транзисторы, а также номиналы конденсаторов и резисторов в конструкции электронной схемы - все влияют на частотную характеристику.

    На ранней стадии проектирования схемы необходимо иметь определенные требования к необходимой частотной характеристике, а затем схема может быть спроектирована в соответствии с требованиями.

  • Напряжение и ток питания: Одним из ключевых параметров любой схемы является требуемая мощность с точки зрения требуемого напряжения и тока. Таким образом, на этапе проектирования электронных схем можно гарантировать, что правильное напряжение будет обеспечено с требуемой допустимой токовой нагрузкой.

  • Рассеиваемая мощность: Еще одним параметром, во многом связанным с напряжением и током, подаваемым в схему, является рассеиваемая мощность.Если рассеиваемая мощность высока, то может потребоваться устройство для охлаждения и общего отвода тепла от цепи, и в частности любых электронных компонентов, которые могут рассеивать большое количество тепла. Обычно это транзистор, но другие компоненты тоже могут рассеивать тепло.

Функция цепи транзистора

Транзисторные схемы могут выполнять множество различных функций. Обычно существуют стандартные блоки для общих функций, таких как усилитель, генератор, фильтр, источник тока, дифференциальный усилитель и множество других.

Эти стандартные форматы схем широко используются и могут быть приняты, а значения электронных компонентов определены в процессе проектирования электронных схем.

Схемы часто соответствуют проверенным схемам, которые использовались в течение многих лет. Эти схемы часто использовались со старой технологией вакуумных ламп или термоэмиссионных клапанов и одинаково хорошо работают с биполярными транзисторами, а также с полевыми транзисторами, полевыми транзисторами и иногда даже с операционными усилителями.

Принимается основной формат и определяются значения для электронных компонентов, обеспечивающие требуемую производительность.

Часто для этого требуются небольшие эксперименты, но в наши дни программное обеспечение для моделирования схем способно точно воспроизвести работу схемы, так что значения электронных компонентов могут быть оптимизированы для достижения требуемых характеристик и функциональности.

Конфигурация или топология транзисторной схемы

Каким бы ни была общая функция схемы, необходимо также учитывать топологию в начале процесса проектирования электронной схемы.

Цепи транзисторов

могут быть спроектированы с использованием различных топологий, каждая из которых имеет разные характеристики, особенно с точки зрения входного и выходного сопротивления.

Эти топологии конфигураций выбираются в соответствии с требованиями проектирования электронных схем и включают общий эмиттер, общий коллектор или эмиттерный повторитель и общую базу.


Процесс проектирования схемы транзистора

Процесс проектирования транзистора состоит из нескольких этапов. Обычно они выполняются в логическом порядке, но часто необходимо пересмотреть различные этапы, чтобы оптимизировать значения различных электронных компонентов для обеспечения требуемой общей производительности.

  • Определите требования: Определение реальных требований - важный этап, и его правильное понимание будет означать, что концепция схемы не изменится в будущем.

  • Определите функцию и топологию схемы: После того, как общие требования для всего электронного устройства определены, необходимо выбрать фактическую схему транзистора. Например, существует множество схем генераторов, фильтров, усилителей и т. Д.для транзисторов и оптимальный тип может быть выбран для конкретных требований. Это часто также определяет фактическую топологию схемы, то есть использование общего эмиттера, общего коллектора, общей базы, но в противном случае это может быть частью общего процесса принятия решения в настоящее время, потому что нагрузка на генераторы, усиление, выходное сопротивление и т. можно рассматривать в это время.

  • Установите условия смещения: В любой схеме одной из ключевых особенностей конструкции электронной схемы является обеспечение уровней смещения для активных устройств: в этом случае биполярные транзисторы настроены правильно.Если смещение неправильное, схема транзистора не будет работать. Определение значений электронных компонентов (в основном резисторов), задающих смещение, является одним из ключевых этапов проектирования.

  • Определите функциональные значения электронных компонентов: Наряду с установкой условий смещения, необходимо определить значения для других электронных компонентов, чтобы обеспечить функциональность схемы. Эта часть процесса проектирования электронной схемы продолжается вместе с установкой условий смещения, поскольку значения для одного будут влиять на другое, и наоборот.

  • Пересмотрите значения электронного компонента для смещения и функции: После установки значений схемы всегда требуется небольшая итерация, чтобы сбалансировать требования к смещению и общей функциональности схемы. Скорее всего, этот процесс будет повторяться.

  • Тестовая цепь: Тестирование цепи - ключевой элемент любой конструкции. Часто во многих лабораториях есть программное обеспечение для моделирования схем, и поэтому схема может быть смоделирована до того, как она будет построена для устранения большинства проблем.Однако заключительным испытанием является создание и запуск схемы в условиях, максимально приближенных к рабочим условиям.

  • Доработка и модификация: Часто бывает необходимо изменить электронную схему. Если это необходимо, то он переделывается и испытывается с новыми значениями электронных компонентов, компоновкой и т. Д.

Представляют собой некоторые из основных параметров схемы, требуемых для конструкции транзисторной схемы. Знание этих параметров может повлиять на выбор конфигурации схемы и, безусловно, будет определять параметры компонентов и многие другие факторы.

Соответственно, необходимо знать параметры, управляющие работой транзисторной схемы, прежде чем можно будет приступить к проектированию.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .

Топ-10 простых проектов в области электроники для начинающих

Эта статья будет охватывать список простых проектов для начинающих высшего уровня, которые мы рассмотрели на этой платформе.Эти проекты удовлетворят все ваши потребности новичков, но мы не рекомендуем вам выбирать эти проекты в качестве проектов последнего года. Этот список содержит комбинацию наших проверенных проектов DIY, которые созданы специально для новичков в области электроники. Итак, давайте сразу же посмотрим на 10 лучших проектов простой электроники для начинающих.

[спонсор_1]

Выбирая проекты для этой статьи из множества других, мы позаботились о том, чтобы предложить вам самые популярные схемы на нашем веб-сайте, которые очень легко реализовать.Итак, ниже представлены наши 10 лучших простых проектов в области электроники для начинающих.

Схема USB-лампы - это электронная схема, которая служит для обеспечения аварийного освещения. Это относительно дешевая и доступная схема. Вы можете легко собрать этот проект с минимальным количеством компонентов.

Аппаратные компоненты

Для сборки этого проекта вам потребуются следующие детали.

267 907
S.No Компонент Значение Кол-во
1) USB-штекер Тип 'A' (вилка) 1
47 Ом 1
3) LED 5 мм, белый 1
4) Макетная плата - 1 907 907) 907 - По необходимости
[inaritcle_1] Принципиальная схема

Работа схемы

Резистор на 47 Ом ограничивает ток до 25 мА и идеально подходит для работы с ярким белым светодиодом.Вы можете легко подключить эту схему к любому дополнительному или утилизированному USB-кабелю, который у вас есть.

Предполагаемый режим работы - через портативный компьютер в случае внезапного отключения электроэнергии.

На втором месте нашего Топ-10 проектов простой электроники находится проект простого индикатора уровня воды. Индикаторы уровня воды - это простые электронные схемы, используемые для определения текущего уровня любой наблюдаемой жидкости. Они являются важной частью различных процессов, таких как системы раннего предупреждения градирни, управление орошением, измерение уровня топлива в баке и отстойные насосы.

Аппаратные компоненты

Для сборки этого проекта вам потребуются следующие детали

907 при необходимости 907 907 907 907 907 1
S.No Компонент Значение Кол-во
1) PNP транзисторы A1015 3
3) Зонды (алюминиевые / медные провода) - 3
4) светодиоды 5 мм (красный, зеленый.Синий) 3
5) Резисторы 470Ω 3
6) Аккумулятор 9V 1
8) Макетная плата - 1
9) Соединительные провода - По необходимости

12 Принципиальная схема

Работа схемы

Когда резервуар наполняется, мы получаем оповещения об определенных уровнях.Здесь мы создали 3 уровня (низкий, средний и полный) относительно емкости бака. Мы добавили 3 светодиода для обозначения трех уровней (низкий, средний, полный).

База каждого транзистора соединяется с алюминиевым или медным проводом с удаленной изоляцией на концах, действуя как пробник. Когда вода поднимается, база каждого транзистора получает электрическое соединение с напряжением 9 В постоянного тока через воду и соответствующий зонд. Это, в свою очередь, заставляет транзисторы светиться светодиодом и показывать уровень воды.

Занимает 3-е место в нашем списке 10 лучших проектов в области простой электроники. Лазерная сигнализация с натяжной проволокой - очень полезная функция безопасности, которую можно использовать в своем доме для защиты от грабителей и злоумышленников. Он может обнаруживать движение людей или объектов, когда они проходят через лазерный луч, и выдавать триггерные сигналы тревоги в качестве сигналов тревоги для соответствующих властей.

Аппаратные компоненты

Для сборки этого проекта вам потребуются следующие детали

Принципиальная схема

Работа схемы

Когда какой-либо объект попадает между лазерным лучом и LDR, секция таймера схемы активируется на заданный период времени и впоследствии включает схему зуммера, построенную на микросхеме таймера NE556.Заданный период времени можно увеличить или уменьшить, изменив емкость конденсатора 470 мкФ. Период времени для секции таймера можно отрегулировать с помощью потенциометра 1 МОм.

Цепь звукового сигнала - это простое электронное устройство, издающее монотонный звуковой сигнал, который можно использовать для сигнализации чрезвычайной ситуации в таких местах, как больницы, полицейские участки или участки пожарной охраны. Типичные применения звуковых сигналов включают устройства, такие как сигнальные устройства, таймеры и т. Д.

Аппаратные компоненты

Для сборки этого проекта вам потребуются следующие детали

Принципиальная схема

Работа схемы

Здесь 2 логических элемента И-НЕ подключены как нестабильный мультивибратор, из-за чего выходной сигнал на выводе 4 ИС постоянно меняется на высокий и низкий.Это постоянно переключает транзистор 2N4401 (ВКЛ и ВЫКЛ), который обеспечивает питание пьезоэлектрического зуммера. Следовательно, пьезозуммер издает звуковые сигналы, а светодиодный индикатор постоянно мигает.

Цепи металлоискателя - это простые электронные устройства, которые обнаруживают присутствие любого металла в пределах своего диапазона. Эти инструменты работают, обнаруживая изменения магнитного поля, вызванные нахождением на близком расстоянии от металлических предметов. Они служат для ряда целей, таких как проверка безопасности, проверка случайного присутствия нежелательных металлических предметов в пищевых продуктах и ​​т. Д.

Компоненты оборудования

Для сборки этого проекта вам потребуются следующие детали.

Принципиальная схема

Работа схемы

Эта схема представляет собой недорогой металлоискатель, использующий единственный транзистор BC548 и старый радиоприемник. Когда вы поместите эту схему металлоискателя рядом с любым металлическим объектом, вы услышите шипящий звук от вашего AM-радио, сигнализирующий об обнаружении металлического объекта. L1 равен 60 виткам эмалированного медного провода, намотанного на трубку из ПВХ толщиной 1 см.Источник питания схемы должен быть от батареи 9 В или 6 В.

Под номером 6 в нашем списке 10 лучших проектов простой электроники находится схема диммера светодиода. Простая схема с функцией управления яркостью светильника. Это достигается путем изменения формы волны напряжения, подаваемого на лампу или светодиод, что позволяет снизить интенсивность светового потока. они используются в таких устройствах, как подсветка настроения, ночник и мягкий свет.

Аппаратные компоненты

Для сборки этого проекта вам потребуются следующие детали

Принципиальная схема

Работа схемы

Здесь мы настраиваем яркость 10 сверхъярких белых светодиодов, но количество светодиодов можно увеличить.Pot 200 Ом регулирует ток / яркость светодиодов. Общий выходной ток LM317 составляет 1,5 А, поэтому мы используем отдельный резистор для ограничения тока с каждым светодиодом, который защищает их от максимального выходного тока ИС.

Эта схема может использоваться для управления нагрузками переменного тока, такими как освещение, вентиляторы и т. Д., Через звук. При правильном включении звукового переключателя динамическое управление звуком становится очень полезным не только для роботизированных систем, но и для домашней автоматизации.

Аппаратные компоненты

Для сборки этого проекта вам потребуются следующие детали

Принципиальная схема

Работа схемы

Здесь аудиовход снимается с электретного микрофона.Здесь конденсатор емкостью 120 нФ блокирует постоянную составляющую звука, позволяя пропускать только переменный ток к транзистору (2N4401). Теперь этот сигнал действует как управляющий сигнал на базу транзистора 2N4401

.

Транзистор 2N4401 усиливает звуковой сигнал, принимаемый электретным микрофоном. Затем усиленный сигнал поступает на микросхему компаратора напряжения LM393N, а дополнительный усиленный сигнал поступает на выходной вывод 8 микросхемы. Транзистор 2N4403 PNP используется на выходе ИС для управления переключателем реле SPDT.

На восьмом месте в нашем списке 10 лучших проектов простой электроники стоит знаменитая схема LED Chaser. Схема поиска светодиода - это повторяющийся секвенсор, обычно состоящий из комбинации простой схемы синхронизации со схемой счетчика. Он широко используется в таких местах, как рекламные дисплеи и "веревочные" дисплеи для беговых огней на небольших дискотеках и т. Д.

Аппаратные компоненты

Для сборки этого проекта вам потребуются следующие детали.

Принципиальная схема

Работа схемы

Кнопка подключена к тактовому входу микросхемы декадного счетчика CD4017.CD4017 имеет 10 выходных контактов, и каждый контакт подключен к светодиоду. По умолчанию первый выходной контакт включен или высокий, а остальные выключены. Каждый раз, когда входной вывод синхронизации 4017 IC обнаруживает повышение напряжения (от низкого до высокого), он выключает токовый выход и включает следующий последовательный выход. Такая перестановка выходов создает впечатление, что светодиоды преследуют друг друга, цикл продолжается до последнего светодиода, а затем выход сбрасывается обратно на первый светодиод.

Паника - это простая электронная схема, которая позволяет человеку, находящемуся в состоянии стресса, быстро вызвать помощь в случае возникновения чрезвычайной ситуации.Они являются важной функцией безопасности на важных рабочих местах, таких как банковские хранилища и военные комплексы, и обычно используются в зонах повышенного риска, таких как станции безопасности, тюрьмы и контрольно-пропускные пункты.

Аппаратные компоненты

Для сборки этого проекта вам потребуются следующие детали.

Принципиальная схема

Работа схемы

Резисторы R1 и R2 подтягиваются. TRIG , контакт 2 и RESET, контакт 4. При нажатии кнопки SET спусковой штифт на 2 поворачивается на низкий уровень.Следовательно, на выходе нижнего компаратора внутри микросхемы таймера 555 повышается на мгновение высокий уровень. Это устанавливает триггер и вывод OUT переходит в высокий уровень и остается в этом состоянии до тех пор, пока не будет подан внешний сигнал сброса. Процесс сброса микросхемы таймера 555 выполняется нажатием кнопки RESET . Это приводит к тому, что на выводе RESET на мгновение устанавливается низкий уровень (менее Vcc / 3), который напрямую подключается к триггеру через транзистор. Выходной сигнал достигает клеммы базы Q1 (BC547), и транзистор включается.Также включите зуммер и светодиод, подключенный к транзистору.

Последним в нашем списке 10 лучших проектов в области простой электроники находится источник переменного тока постоянного тока. Регулируемый источник питания постоянного тока служит интерфейсом между настенной розеткой и обычным силовым электронным оборудованием. Источник переменного тока можно использовать для тестирования и устранения неполадок небольших электронных проектов, что делает его очень универсальным и полезным проектом. Это делает его подходящим кандидатом в список 10 лучших проектов в области простой электроники.

Аппаратные компоненты

Для сборки этого проекта вам потребуются следующие детали.

Принципиальная схема

Работа цепи

Сигнал 230 В переменного тока подается на первичную обмотку трансформатора без трансформатора тока, который понижает его до 28 В 3 А за счет взаимной индукции первичной и вторичной обмоток при поддержании частоты на уровне 50 Гц. После этого сигнал 28 В переменного тока проходит через мостовой выпрямитель, который преобразует сигнал переменного тока в пульсирующий сигнал постоянного тока.

Выпрямленное напряжение затем подается на вход регулируемого регулятора напряжения LM317. Диоды D1 и D2 используются для защиты регулятора от избыточного протекания через него. Диапазон выходного напряжения регулируется подключением потенциометра 5,1 кОм к выводу ADJ регулятора.

Итак, выше представлен наш список из 10 лучших проектов простой электроники для новичков в области электроники. Чтобы узнать о других интересных проектах, связанных с Arduino, Raspberry pi и NodeMcu, щелкните здесь.

Изучение основ работы с транзисторами [Краткое простое пошаговое руководство]

Эй! надеюсь, вы отлично проводите время.

Вы пользуетесь мобильным телефоном, ноутбуком и другими замечательными электронными устройствами почти каждый день.

Эти устройства стали возможны благодаря замене большой вакуумной лампы размером с крошечный электронный компонент, транзистор.

Транзистор - это основной строительный блок любого портативного устройства, доступного на рынке. Электроника - ничто с этим парнем.

Итак, в этом посте мы пытаемся узнать все об основах работы с транзисторами и собираемся отлично провести время вместе.

Надеюсь, вы узнаете что-то новое. Наслаждайтесь основами транзистора!

Что такое транзистор?

Этот тип, транзистор, представляет собой трехполюсное полупроводниковое устройство, используемое в качестве усилителя или электронного переключателя.

В качестве усилителя он преобразует очень слабый сигнал в гораздо больший сигнал. Простым примером является громкоговоритель, который издает очень громкий звук.

Один громкоговоритель может воспроизводить звук, который будет слышен во всем зале или на стадионе.

Как выключатель, очевидно, он используется для включения / выключения устройства. Такая коммутационная способность сделала транзистор идеальным для многих приложений, таких как аналого-цифровой преобразователь, импульсный источник питания, микропроцессоры и многое другое.

Транзистор представляет собой полупроводниковое устройство с тремя выводами, используемое для усиления слабых сигналов или в качестве электронного переключателя

Мы не можем представить без этого современную электронику. Почти в каждом электронном устройстве есть несколько таких небольших устройств, от нескольких до миллионов.

Вы будете шокированы, если узнаете, сколько транзисторов находится в схемах вашего мобильного, портативного или персонального компьютера! Их миллионы.

Значение транзисторов в электронике

Чтобы понять важность и востребованность транзисторов, возьмем для примера компьютер.

Если бы не были изобретены транзисторы, возможно, мы до сих пор использовали бы громоздкие электронные лампы.

Наши компьютеры были бы сделаны из таких громоздких трубок, что делали компьютер размером с комнату.У кого в доме будет такой большой компьютер?

Конечно никто, кроме больших компаний.

Таким образом, не было бы персонального компьютера без транзистора. Персональный компьютер - лишь один из примеров, вы также можете вспомнить революцию в области радио, мобильной связи и телевидения.

У нас не было бы таких развлечений и современного связанного мира без этих небольших устройств, транзисторов.

Согласно Википедии, в 1956 году Джон Бардин, Уолтер Хаузер Браттейн и Уильям Брэдфорд Шокли были удостоены Нобелевской премии по физике «за свои исследования полупроводников и открытие эффекта транзистора ».

Двенадцать человек упоминаются как непосредственное участие в изобретении транзистора в лаборатории Белла.

Электрическое обозначение транзистора

Электрический символ упрощает идентификацию определенного элемента в сложной цепи. Как и у других электронных компонентов, транзистор имеет свой символ. Обозначение транзистора:

.

Как я уже сказал, это трехконечное устройство. Три клеммы - это база (B), эмиттер (E) и коллектор (C).Базовая клемма действует как вентиль, контролируя величину тока, протекающего между клеммами эмиттера и коллектора. О транзисторе BJT очень важно знать следующее:

  • Он называется транзистором с биполярным переходом, потому что он имеет как дырки, так и электроны в качестве носителей заряда.
  • Это устройство, управляемое током, т.е. величина базового тока контролирует величину выходного тока.
  • Сопротивление между базой и эмиттером ниже, чем сопротивление между базой и коллектором.
  • Для транзистора i-e Active существует три области работы: насыщение и область отсечки.

Кривая VI транзистора

Как и диод, описанный в предыдущем посте, транзистор имеет характеристическую кривую (называемую характеристической кривой).

Когда вы понимаете основную концепцию любого устройства. Еще одна важная вещь, которую вам нужно знать: каково соотношение между напряжением на устройстве и током, протекающим через него. Эта информация представлена ​​в таблице данных транзистора в виде графика VI.

В случае транзистора напряжение на транзисторе составляет V CE , а ток - ток коллектора (I C ). Но что интересно, базовый ток контролирует ток коллектора.

Для каждого значения базового тока у нас есть разные значения тока коллектора. В результате вместо одной кривой VI (как в случае диода) мы получили семейство кривых VI. Ниже приведены кривые семейства VI;

Видите ли, для каждого базового тока у вас своя кривая VI.Кривую VI можно разделить на следующие три объясненных области.

Транзисторные регионы эксплуатации

1. Активная область

В активной области транзистор будет включен. Кроме того, в активной области переход база-эмиттер смещен в прямом направлении, а переход база-коллектор смещен в обратном направлении.

Напряжение между коллектором и эмиттером (V CE ) будет между областями отсечки и насыщения.

На графике VI вы можете четко видеть постоянный ток коллектора в этой области. Итак, в активной области транзисторы могут использоваться как источник постоянного тока и как усилитель.

2. Зона отсечения

В этой области области база-эмиттер и база-коллектор имеют обратное смещение.

Условия эксплуатации транзистора: (a) нулевой входной базовый ток (I B ), (b) нулевой выходной ток коллектора (I C ), (c) и максимальное напряжение коллектора (В CE ) что приводит к образованию большого обедненного слоя и отсутствию тока, протекающего через устройство.

Эта область в основном используется в условиях переключения.

3. Область насыщенности

Когда обе области база-эмиттер и база-коллектор смещены в прямом направлении, говорят, что транзистор находится в области насыщения.

В этой области транзистор используется как резистор или как активная нагрузка в интегральных схемах.

Внешний вид транзистора

Мы поняли основное определение транзистора. Пора увидеть настоящие транзисторы.Ниже приводится изображение реальных транзисторов:

Понимаете, все они разных форм и размеров. Некоторые покрыты белыми материалами, на самом деле этот белый материал является теплоотводом. Это одиночные, т. Е. Они еще не используются в схеме.

Транзистор NPN и PNP

Биполярные транзисторы бывают двух типов: один называется NPN, а другой - PNP. Оба типа выполняют одинаковые операции, но по-разному:

  • PNP-транзистор состоит из двух слоев материала P-типа со слоем между слоями N-типа.Где NPN-транзистор состоит из двух слоев материала N-типа со слоем прослоенного P-типа.
  • В транзисторе PNP основными носителями заряда являются дырки, а в транзисторе NPN основными носителями заряда являются электроны.
  • Транзистор PNP включается при подаче некоторого отрицательного напряжения или при отсутствии напряжения. В то время как транзистор NPN включается, когда на базе присутствует некоторое напряжение, а на клемму базы протекает некоторый ток.
  • В транзисторе PNP поток тока проходит от вывода эмиттера к выводу коллектора, в то время как NPN поток тока проходит от вывода коллектора к выводу эмиттера.

Меня лично больше интересует проектирование электронных схем.

Итак, с точки зрения дизайна очень важно знать, как определить, какой транзистор какой. Как разработчик, ваша задача - практически различать транзисторы NPN и PNP.

Как я уже говорил вам ранее, транзистору PNP требуется отрицательное напряжение или его отсутствие на базе, а для NPN требуется положительное напряжение на клемме базы. Помните об этом и посмотрите следующее видео.

Я уверен, что после просмотра этого видео вы сможете различать два типа NPN и PNP.

Идентификация клемм транзистора

Мы научились различать NPN и PNP.

Следующее, что нужно сделать в изучении основ транзисторов, - это как идентифицировать выводы транзистора. Идентификация правильных выводов очень важна, потому что, если вы подключите источник питания к неправильным выводам транзистора, он может сгореть.

У меня есть два способа поделиться с вами.

Первый способ: с помощью таблицы

Из таблицы вы можете сказать, какой терминал какой. В таблице данных вам всегда будет показано изображение, подобное приведенному ниже.

Просто сравните свой реальный транзистор с ним, удерживая транзистор так, как показано в таблице данных.

Я лично применял этот метод, когда был студентом.

Это было так просто, как будто мне не пришлось брать мультиметр в университетской лаборатории или использовать свой собственный позже, когда я его купил.

Я просто гуглил транзистор, скачал даташит. И сравните транзистор в моей руке с изображением в даташите.

Это отлично сработало для меня, но позже мне понравилось делать это с помощью мультиметра.

Второй метод: с помощью мультиметра

Если честно, очень много можно определить терминал транзистора с помощью мультиметра.

Но лично меня устраивает следующий. Имейте в виду, что средняя клемма транзистора всегда является базой, поэтому не тратьте время на поиск клеммы базы.

Ключевые моменты, на которые следует обратить внимание для идентификации выводов транзистора

  • Установите мультиметр в диодный режим.
  • Помните, что сопротивление база-эмиттер ниже, чем сопротивление база-коллектор.
  • Поместите положительный щуп (красный) мультиметра на базу транзистора (NPN). Но если ваш транзистор - PNP, тогда поместите отрицательный (черный) щуп мультиметра на базу.
  • Поместите другой щуп мультиметра на другой вывод транзистора и запишите значения сопротивления.
  • Низкое сопротивление - вывод эмиттера.
  • Высокое сопротивление - вывод коллектора.

Тестирование транзисторов

Тестирование транзисторов является наиболее важным моментом для изучения основ транзисторов. Потому что очень важно различать хороший и плохой транзистор.

У вас есть транзистор, и вы хотите знать, исправен он или нет. Или вы просто вытащили транзистор из другой печатной платы и хотите проверить, нормально ли он работает.

Вам нужно это протестировать.

Есть несколько способов сделать это. Но новичку лучше всего сделать это с помощью мультиметра. Вы можете использовать любой мультиметр, он не должен быть дорогим, если он проверяет целостность цепи.

  • Установите мультиметр на контрольную точку.
  • Соедините щупы вместе, если мультиметр издает звуковой сигнал, значит, с вашим мультиметром все в порядке. С ним вы можете проверить транзистор.
  • Затем поместите щупы мультиметра на выводы проверяемого транзистора и послушайте звуковой сигнал.
  • Если мультиметр издает звуковой сигнал при любом расположении, это означает, что у вас плохой транзистор.

Транзистор как усилитель

Часто мы имеем дело со слабым сигналом в природе. Как будто наш голос можно услышать в ограниченном пространстве.

Его нельзя услышать, когда мы говорим публично. Всегда существует потребность в сторонних приложениях, чтобы увеличить наш голос настолько, чтобы его можно было услышать в громкоговорителях.

Громкоговоритель делает это с помощью процесса усиления.В процессе усиления сила слабого сигнала увеличивается без изменения его характеристик.

Входным сигналом может быть что угодно, ток или напряжение, транзистор, поскольку усилитель усиливает сигнал без изменения его уникальных характеристик.

Если мы хотим, чтобы транзистор работал как усилитель, мы должны заставить транзистор работать в активной области, которая находится между областью насыщения и областью отсечки.

Чтобы транзистор работал в активной области, нам нужна особая конфигурация схемы.Ниже приведены три основные конфигурации таких схем.

  1. Конфигурация с общей базой (CB): в конфигурации CB мы подключим базу транзистора к земле, которая имеет очень низкий входной импеданс, что даст очень низкий выходной импеданс с очень низким усилением. Прирост для этой конфигурации будет очень низким.
  2. Конфигурация общего коллектора
  3. (CC): в этой конфигурации коллектор подключен к земле, у нас низкий выходной импеданс для высокого входного сопротивления, а коэффициент усиления для этой конфигурации очень хороший по сравнению с конфигурацией CB.
  4. Конфигурация общего эмиттера
  5. (CE): в этой конфигурации эмиттер подключен к земле, и у нас будет высокое входное сопротивление, среднее выходное сопротивление и высокое усиление.

Параметр усилителя транзистора

Перед выбором транзисторного усилителя необходимо учитывать следующие характеристики. Технические характеристики: входной импеданс, эффективность, полоса пропускания, усиление, скорость нарастания, линейность, стабильность и т. Д.

  • Входное сопротивление : оно должно быть в 10 раз выше, чем полное сопротивление источника для хорошего усиления.
  • КПД : КПД - это не что иное, как то, сколько входной мощности эффективно используется для получения выходной мощности усилителя. Другими словами, эффективность - это не что иное, как мощность, потребляемая от источника питания, и какая мощность эффективно используется для получения выходной мощности усилителем.
  • Полоса пропускания: Частотный диапазон, в котором усилитель может обеспечить хорошее усиление сигнала, называется полосой пропускания этого усилителя.
  • Усиление : усиление усилителя измеряется путем вычисления отношения выходной мощности к входной.Цепи с более высоким коэффициентом усиления будут очень чувствительными и давать хороший выходной сигнал даже при небольшом входном сигнале.
  • Стабильность: Способность усилителя избегать автоколебаний. Из-за этих колебаний сигнал может перекрываться или маскироваться полезным сигналом. Стабильности можно достичь, добавив на выходе зональную сеть, которая будет давать отрицательную обратную связь.
  • Линейность: Если вход усилителя увеличивается, выход усилителя также должен линейно увеличиваться, этот эффект называется линейностью.Этот эффект будет на 100% достигнут идеальным усилителем, когда мы возьмем практический случай, усилитель будет производить линейный выходной сигнал для своего входа до определенного предела, после этого, если входная частота увеличивается, выходное усиление будет уменьшено из-за внутреннего паразитная емкость сигнала. Эту нелинейность можно уменьшить за счет отрицательной обратной связи.
  • Шум: Шум определяется как нежелательные частоты в сигнале из-за интерфейса компонентов, внешних помех, отказов компонентов, сигналов той же частоты в той же цепи и т. Д.

Транзистор как переключатель:

В транзисторе ток не может течь в цепи коллектора, если ток не течет в цепи базы. Это свойство позволяет использовать транзистор в качестве переключателя.

Транзистор работает как «однополюсный однопозиционный» (SPST) твердотельный переключатель. Когда нулевой сигнал подается на базу транзистора, он выключается, действуя как разомкнутый переключатель, и течет нулевой ток коллектора.

При подаче положительного сигнала на базу транзистора он включается, действуя как замкнутый переключатель, и через устройство протекает максимальный ток цепи.

Самый простой способ переключения мощности от умеренной до высокой - использовать транзистор с выходом с открытым коллектором и вывод эмиттера транзистора, подключенный непосредственно к земле. При таком использовании выход с открытым коллектором транзистора может, таким образом, «сливать» подаваемое извне напряжение на землю, тем самым контролируя любую подключенную нагрузку.

Типы транзисторов

Помимо транзисторов типа BJT, есть еще много других. Следующая диаграмма обобщает всю концепцию.

Классификацию транзисторов можно понять, просмотрев приведенную выше древовидную диаграмму. Транзисторы в основном делятся на два типа; это биполярные переходные транзисторы (BJT) и полевые транзисторы (FET).

BJT снова подразделяются на транзисторы NPN и PNP.

Полевые транзисторы подразделяются на JFET и MOSFET. Переходные полевые транзисторы подразделяются на N-канальный JFET и P-канальный JFET в зависимости от их функции.MOSFET-транзисторы подразделяются на режим истощения и режим улучшения.

Опять же, транзисторы режима обеднения и улучшения подразделяются на N-канальный JFET и P-канал.

Применение транзистора

Что касается приложений, то альтернативы транзистору нет. Почти все цифровые устройства состоят из него.

Современные мировые технологии умны. Старые электронные схемы большого размера заменяются интегральными схемами (ИС).

Эти интегральные схемы содержат миллионы транзисторов.Ваш мобильный телефон и ноутбуки работают на интеллектуальных процессорах, которые представляют собой интегральные схемы и содержат миллиарды транзисторов. Ниже приведены некоторые применения транзистора:

1- Транзистор можно использовать для усиления тока. Это связано с тем, что небольшое изменение тока базы вызывает большое изменение тока коллектора.

Пример: микрофон
Звуковые волны, подаваемые в микрофон, вызывают вибрацию диафрагмы микрофона. Электрическая мощность микрофона изменяется в зависимости от звуковых волн.

В результате ток базы изменяется из-за небольшого переменного напряжения, создаваемого микрофоном. Небольшое изменение тока базы вызывает большое изменение тока коллектора.

В громкоговоритель течет переменный ток коллектора. Там он превращается в звуковые волны, соответствующие исходным звуковым волнам.

Частоты обеих волн эквивалентны, но амплитуда звуковой волны из громкоговорителя выше, чем звуковые волны, подаваемые в микрофон.

2-Транзистор как выключатель
Первый пример: выключатель со светом
Схема предназначена для зажигания лампы при ярком освещении и выключения в темноте.

Одним из компонентов делителя потенциала является светозависимый резистор (LDR). Когда он помещен в ТЁМНОСТЬ, его сопротивление велико. Транзистор выключен.

Когда LDR освещается ярким светом, его сопротивление падает до небольшого значения, что приводит к увеличению напряжения питания и увеличению тока базы.Транзистор включается, коллекторный ток течет, лампочка загорается.

Второй пример: термовыключатель
Одним из важных компонентов цепи термовыключателя является термистор.

Термистор - это тип резистора, который реагирует на окружающую температуру. Его сопротивление увеличивается при низкой температуре и наоборот.

Когда термистор нагревается, его сопротивление падает, и большая часть напряжения питания падает на резистор R.Базовый ток увеличивается с последующим большим увеличением тока коллектора. Т

Лампочка загорится и включится сирена. Эта конкретная схема подходит как система пожарной сигнализации.

Заключение

Таким образом, транзистор представляет собой трехконтактное полупроводниковое устройство, используемое в качестве усилителя или электронного переключателя.

  • Имеет три рабочих региона: активный, отключенный и насыщенный.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *