Принцип работы частотник: Принцип работы преобразователя частоты для электродвигателя

Содержание

Принцип работы преобразователя частоты для электродвигателя

Главной технологической задачей является повышение скорости любого производственного процесса.

Сначала в промышленности для форсирования использовались коробки передач, редукторы, вариаторы. Однако эти механизмы не обеспечивали плавный пуск оборудования и требуемое убыстрение. Используя электромашины постоянного тока, которые уже позволяли гибко регулировать вращение. Но они имели недостатки: высокая стоимость и эксплуатационная сложность.

Потом, для передачи движения большинству механизмов и машин начали применять асинхронные двигатели. Простые по конструкции, надёжные в управлении и низкой стоимости. Это определило их преимущество в электрорегулируемых приводах.

Однако, для его использования в технологических процессах необходимо было создать дополнительное устройство, позволяющее исполнять плавный пуск, остановку, то есть, управление скоростью двигателя. Эта функцию выполняет преобразователь частоты ПЧ, решающий главную задачу — регулирование скоростью привода.

Внедрение полупроводниковых материалов, использование тиристорных преобразователей началось в середине двадцатого века. Потом появились транзисторные устройства, отличающиеся надёжностью, компактностью, простыми в эксплуатации и недорогой ценой.

Их применение в конструкциях преобразователей частоты обеспечивает приводам выполнять многие технологических задач в промышленности, перерабатывающей отрасли, объектов ЖКХ, в автоматизации технологических процессов.

Состав частотника

Компоновка частотно-управляемого привода включает в себя: двигатель синхронного или асинхронного типа и преобразователя частоты ПЧ. Первые, превращают энергию в механическое движение технологического узла. А функции управления осуществляет электронное статическое устройство, которое на своём выходе формирует напряжение с варьируемой амплитудой и частотой.

Назначение

Преобразователь частоты преобразует переменное напряжение (ток) одной частоты в другую, отличающуюся от источника питания более широким диапазоном. Эти характеристики устройства регулируют вращение двигателя, выполняют плавный пуск и остановку. Они обладают электромагнитной совместимостью с источником питания от сети.

Есть два вида управления преобразователя частоты. Векторный и скалярный. Первый работает так, чтобы момент вращения двигателя был постоянен к нагрузке и не изменялся на всём диапазоне управления скоростью. Контролируется не только напряжение и частота, но и ток (момент).

Второй — более простой. Особенность работы заключается в сохранении и контроле постоянства отношения напряжения и частоты.

Характеристики, понятия, глоссарий ПЧ

Диапазон величин наладки

Его расширение позволяет гибко подстраивать устройство под требуемые цели и задачи.

Выходная частота

Это границы или линейка её изменений. Можно продемонстрировать на таком примере. Двигатель, подключённый к сети 50 Гц, показывает скорость вращения 1,5 тыс. об/мин, то при подаче 100 Гц он повысит её в два раза до 3 тыс.

Векторное управление

Метод регулировки электродвигателя, превосходящий точность простого частотного корректирования.

Области применения

Там, где необходимо поддерживать неизменную скорость при импульсной загрузке: станки, транспортёры, лифты, мельницы. А также при необходимости на малых оборотах электродвигателя поддерживать момент.

Напряжение источника питания

Некоторые модели преобразователей частоты предназначены для однофазной энергии переменного тока 200—240 вольт (2,2 кВт). Более мощные типы преобразователей обеспечиваются трёхфазным током 380—480 В. Колебание величин от номинального, стандартного напряжения составляет от — 15 + 10 процентов.

ПИД-регулятор

Прибор, работающий по алгоритму, поддерживающий величины производственного процесса в пределах, установленных датчиком. Это температура, скорость, давление. Он упрощает систему, и не требует комплектации дополнительными устройствами.Наличие сигнальных входов/выходов, аналоговых/дискретных, необходимые для связи преобразователя частоты с системой управления. Достаточное их количество упрощает соединение с другими средствами регулирования.

Юстировка скорости

Такая подгонка необходима при подключении к работающему двигателю преобразователя частоты, который, как правило, свой запуск начинает со стартовой частоты и за время разгона достигает номинального режима. Во вращающимся двигателе может произойти недопустимый рывок. Оснащённый преобразователь функцией юстировки учитывает данные машины и согласовывает с частотой, на которой она находилась в текущий момент. Это необходимо для подхвата работающего электродвигателя при отключении или смене сетевого питания.

Динамическое торможение

Этот процесс выполняется подачей постоянного тока на одну фазу электродвигателя. Взаимодействие её магнитного поля и ротора останавливает вращение быстрее, чем это можно сделать другими способами. Например, понижением напряжения (управляемый выбег) или механическим торможением.

Режим использования многих скоростей

Возможность их установки, выбирают путём подключения сигнальных входов частотного преобразователя, что соответствует значительному числу потребителей. Которым заранее определены фиксированные скорости. В производственных процессах эту функцию используют повсеместно.

Опции

В конструкцию преобразователя включены добавочные модули, расширяющие его возможности управления электроприводом.

Пример: линейка преобразователей частоты Веспер

  1. EI-7011.  Используется для общепромышленных процессов.
  2. EI-P 7012.  Устанавливается в приводах насосного оборудования.
  3. EI-9011 векторного исполнения. Гибкий выбор требуемой скорости до 0,02% с диапазоном 1:1000.Регулируемый максимальный момент. Монтируется в производственных линиях, кранах, лифтах. В них увеличен изменяемый диапазон нагрузки начиная от запуска и до остановки.
  4. E3—9100. Является многофункциональным, векторным преобразователем. Компактный, недорогой заменяет ПЧ марки EI-7011, 9011. Точность регулировки 0,2%. При частоте в один Гц стартовый момент достигает 150%. Применяют в подъемных кранах, транспортёрах экструдерах, насосах, вентиляторах.
  5. EI — 7011, P 7012, 9011 в исполнении IP 54. Устанавливают во влажной среде, запылённости. Брызгозащитная конструкция предохраняет от влияния неблагоприятных внешних условий.
  6. E2—8300. Векторный малогабаритный с логическим контроллером. Применяют в приводах с быстро меняющейся или постоянной (вентиляторной) нагрузкой. В транспортёрах, конвейерах, мельницах, компрессорах, насосах.
  7. E3—8100. Общепромышленного назначения. Используется в маломощных приводах. Компактный, небольшие габариты.
  8. E2 — mini Корпус IP 20. Оборудован пультом управления, фильтром для уменьшения электромагнитных помех и рядом других функций. Применяется в регулировании вентиляторов, швейных машин, насосов, транспортёров.
  9. E2 — mini выполненный IP 65 Повышенная защита. Герметическая конструкция ограждает от попадания воды, пыли. Естественная система охлаждения. На лицевой панели расположены дополнительные ручки управления. Применяется в металлургической, химической, пищевой и перерабатывающей отрасли.


Устройство плавного запуска Софт-стартер Отличается снижением на машину и источник питания предельных колебаний нагрузок. Исключено повреждение ходовых узлов, продлевающих сроки службы оборудования.

Преимущества частотного преобразователя

  1. Расширенный диапазон регулировки оборотов.
  2. Удержание необходимой скорости с минимальными отклонениями от номинальной.
  3. Пуск и остановка привода без перегрузок.
  4. Управляемый момент вращения двигателя.
  5. Вероятность дистанционного регулирования.
  6. Доступ подключения с другим контроллером.
  7. Простота монтажа электропривода с АСУ.
  8. Понижение шума работающих двигателей.
  9. Исключение пиковой нагрузки на электросеть.
  10. Защита двигателя от короткого замыкания при скачках напряжения.
  11. Эффективность применения преобразователя частоты как фактор оптимизации затрат
  12. Экономия энергоресурсов за счёт исключения непроизводительных потерь может составить до 50%. В системе теплоснабжения она достигает 10%. Водопотребление снижается на 20 процентов.
  13. Ограничение пусковых токов, исключение, динамических нагрузок повышает эксплуатационный срок оборудования.
  14. Снижение себестоимости продукта изготовителя за счёт внедрения энергосберегающей технологии.
  15. Уменьшение вероятности аварийных обстоятельств.

Рекомендуемый выбор частотного преобразователя

Учитывают задачи, стоящие перед использованием электропривода. Для их решения определяют:

  • Мощность и тип двигателя, который может быть стандартным, асинхронным или специальным.
  • Электрическая совместимость с нагрузкой.
  • Применение преобразователя частоты с одной машиной или с несколькими.
  • Границы регулируемой скорости.
  • Точность выполнения команд по удержанию момента вращения.

Особенности конструкции преобразователя частоты:

  • Габариты устройства.
  • Внешний вид.
  •  Вероятность подключения дополнительного пульта регулирования.

Преобразователь частоты подходящей мощности должен соответствовать данным асинхронного двигателя. Для большого пускового момента, укороченного разгона или быстрой остановки преобразователя частоты заказывают уровнем выше стандартного. Используя синхронные, высокоскоростные, и другие типы электромашин, руководствуются номинальным током ПЧ. Его величина должна быть выше потребляемого уровня. А также учитывают тонкости наладки данных электропривода.

Полезно знать покупателю

С особенностями выбора можно ознакомиться в поставщика. Там же квалифицированно обсуждают специальные требования заказчика в том числе:

Предпродажная оценка состояния объекта покупателя, обеспечивающая правильный подбор преобразователя частоты. В него входит уточнение технических условий для внедрения решения. Выявление рисков и их минимизации. Составление оптимальной схемы монтажа оборудования в производственный процесс.

Выделение отдельного консультанта, обеспечивающего сотрудничество с продавцом начиная с подбора преобразователя частоты, оформление заказа, до отгрузки со склада на площадку монтажа. Он поможет решить вопрос по обслуживанию и в дальнейшем устранять возникающие проблемы эксплуатации.

Замена ПЧ устаревшего образца или импортного производства.

Компания может оказать услугу по передаче персоналу покупателя навыков и опыт использования частотных преобразователей.

Частотные преобразователи - структура, принцип работы

Внимание! Приведенная ниже информация носит теоретический характер. Если Вам необходимо решить конкретную задачу или разобраться как и какое оборудование следует применить в Вашем случае, воспользуйтесь бесплатной консультацией связавшись с нами одним из указанных вверху данной страницы или на странице "Контакты" способов, либо заполните опросный лист. Инженер службы технической поддержки направит Вам рекомендации на указанный Вами адрес электронной почты. 

 

Частотные преобразователи – это устройства, предназначенные для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

 

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

 

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

 

Частотные преобразователи, применяемые в регулируемом электроприводе, в зависимости от структуры и принципа работы силовой части разделяются на два класса:

    1. С явно выраженным промежуточным звеном постоянного тока.
    2. С с непосредственной связью (без промежуточного звена постоянного тока).
      • Практически самый высокий КПД относительно других преобразователей (98,5% и выше).
      • Способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах, относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

 

Каждый из существующих классов имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

 

Исторически первыми появились преобразователи с непосредственной связью (рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристоров и подключает статорные обмотки двигателя к питающей сети.

 

 

 

 

  

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. На рис.5. показан пример формирования выходного напряжения для одной из фаз нагрузки. На входе выигрывают у тиристорных действует трехфазное синусоидальное напряжение uа, uв, uс. Выходное напряжение uвых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1: 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

 

Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

 

«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.

 

Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

 

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

 

Наиболее широкое применение в современных частотно регулируемых приводах находят частотники с явно выраженным звеном постоянного тока (рис. 6.)

 

В частотных преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

 

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

 

В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

 

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.

 

Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 – 98%).

 

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 — 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

 

До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

 

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

 

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая не энергоемкая система управления, самая высокая рабочая частота.

 

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

 

Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

 

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в частотных преобразователях снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя, уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

 

Частотные преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

 

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

 

На настоящий момент низковольтные преобразователи на IGBT имеют более высокую цену на единицу выходной мощности, вследствие относительной сложности производства транзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

 

Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 – 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а также требует более эффективного отвода тепла от кремниевого кристалла.

 

Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность применения IGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких единичных модулей.

 

Структура и принцип работы низковольтного преобразователя частоты на IGBT транзисторах

Типовая схема низковольтного преобразователя частоты представлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента инвертора.

 

Переменное напряжение питающей сети (uвх.)с постоянной амплитудой и частотой (U вх = const, f вх = const) поступает на управляемый или неуправляемый выпрямитель (1).

 

Для сглаживания пульсаций выпрямленного напряжения (uвыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

 

С выхода фильтра постоянное напряжение u d поступает на вход автономного импульсного инвертора (3).

 

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

 

 

В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (или однофазное) импульсное напряжение u и изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока. Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряжения определяются параметрами модулирующей синусоидальной функции.

 

При высокой несущей частоте ШИМ (2 … 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

 

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения uи может достигаться регулированием величины постоянного напряжения ud, а изменение частоты – режимом работы инвертора.

 

При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

 

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (вых = var, f вых = var).

 


Сделать заказ на частотный преобразователь

принцип работы, особенности и применение в асинхронных электродвигателях

Чаще всего преобразователи частоты используются для асинхронного двигателя, но встречаются они и в бытовой технике. Несмотря на распространённость, они обладают не только преимуществами, но и недостатками, устранять которые приходится, используя дополнительные приборы. Все преобразователи выполняют важную функцию, и представить хоть одно производство без частотника для асинхронных двигателей невозможно.

Сферы применения устройства

Преобразователь частоты – это специальное устройства, которое устанавливается на мощные электродвигатели. Их главное предназначение - изменение частоты поступающего тока. Как известно, ток, который поступает из розетки имеет частоту, она равна 50 Гц. Для того чтобы ускорить или наоборот замедлить двигатель, эту частоту можно изменять. Роль, которую играет частотник – изменение частоты тока.

Самый яркий пример - это стиральные машины, они имеются у каждого в доме, для ускорения частоты вращения барабана частотник электродвигателя увеличивает частоту тока, чтобы уменьшить количество оборотов, производится обратное действие. Также их используют для плавного запуска мощных двигателей: современные частотники, могут изменять колебание тока от 1-800 Герц.

Принцип работы частотника

В основе работы частотника лежит инвертор с двойным преобразованием. Преобразователь работает по следующей схеме:

  • Вначале переменный синусоидальный ток (220-380 В), поступающий в инвертор выпрямляется. Для выпрямления используется диодный мост.
  • После ток поступает на группу конденсаторов, где он фильтруется и сглаживается.
  • Далее, мостовые ключи из биполярных транзисторов (IGBT, БТИЗ) и управляющие микросхемы принимают отфильтрованный ток и формируют из него трёх или однофазную широтно-импульсную модуляцию с требуемыми параметрами.
  • На выходе получается синусоидальный ток с уже изменёнными характеристиками, синусоидальность обеспечивается индуктивностью обмоток.

Более подробно весь процесс изображён на следующей схеме:

Применение в асинхронных двигателях

Асинхронные двигатели превосходят по мощности и производительности обычные электродвигатели, но при этом они обладают рядом недостатков. Основным из них является необходимость увеличения номинальной мощности при запуске в 5-7 раз, а также то, что для регулирования скорости вращения ротора необходимо использовать специальные устройства. Увеличение потребляемой мощности при запуске порождает скачки внутри сети и ударные импульсы, в свою очередь, это негативно влияет на срок службы любого асинхронного двигателя.

Для решения всех проблем сразу был разработан асинхронный преобразователь частоты. Их использование удобно тем, что работа частотника происходит в автоматическом режиме, и поэтому контроль за токами происходит постоянно. Это устройство уменьшает пусковые токи, тем самым не создавая перегрузок в сети и не нанося вред двигателю, также он позволяет регулировать частоту вращения ротора. Отпадает необходимость в использовании магнитного пускателя. Главные плюсы частотника:

  • экономия электроэнергии;
  • увеличение долговечности двигателя;
  • возможность регулирования работы двигателя;
  • обеспечивает обратную связь смежных приводов.

В действительности, это настоящий генератор трехфазного напряжения, при помощи которого можно добиться нужной величины и частоты.

Основные составляющие прибора

В состав любого частотника входит четыре главных модуля:

  • выпрямитель;
  • блок фильтрации напряжения;
  • инверторный узел;
  • система управления на базе микропроцессора.

Все эти модули соединены блоком управления, он контролирует системы и отвечает за работу выходного каскада, выдаваемого инвертором. Современные устройства подобного типа также обладают определёнными защитными узлами, которые защищают его от превышения тока и коротких замыканий. Также они оборудованы датчиками слежения за температурой и прочими системами, позволяющими отслеживать отклонения от нормы при его работе.

Несмотря на то что частотник должен выпрямлять ток и держать постоянную его частоту, полностью сгладить пульсации он не может, это связано с переменной составляющей и непостоянством тока в самой сети. Для того чтобы полностью убрать эти колебания, используются катушки индуктивности и конденсаторы. Их подключение и настройка происходит, как правило, в системе частотного преобразователя. Катушка сглаживает ток, благодаря своему реактивному сопротивлению, в свою очередь, конденсатор, пропуская через себя ток, выдаёт не переменное, а постоянное напряжение.

Встречаются частотные преобразователи как для однофазных сетей, так и для трехфазных. Также они могут отличаться по типу управления, существуют векторные и скалярные модели. Векторные применяются в тех случаях, когда необходимо жёстко регулировать частоту вращения ротора, второй тип частотников используется на объектах, где нет особой необходимости в жёстком регулировании подаваемой частоты, их можно встретить в вентиляционных системах. Скалярный тип управления используется для однофазных систем, в свою очередь, векторная для трехфазных. Принцип регулирования частоты в обоих случаях остаётся одинаковым.

Работа частотного преобразователя

Для начала расскажу небольшую сказку.

Жил-был двигатель постоянного тока. И все было хорошо. Но однажды родился Никола Тесла и доказал всему миру, что использовать переменное напряжение вместо постоянного лучше. И тогда появился на свет асинхронный двигатель переменного тока. И стало все ещё лучше. Он был и проще в изготовлении, и дешевле в обслуживании, и долговечнее двигателя постоянного тока, и на нем не надо было менять щетки. Но две у него было беды, не получалось на нем регулировать обороты (вернее, это можно было сделать, но для этого нужно было бы изменить частоту сети, которая составляет 50 (в некоторых странах 60) Гц) и большие пусковые токи. И тогда один умный человек (а, может, и несколько) придумал преобразователь частоты.

Как можно понять из этой сказки, частотный преобразователь, в большинстве своем, призван регулировать обороты асинхронных двигателей переменного тока. Конструктивно преобразователь можно разделить на три части:

  • Выпрямитель
  • Схема управления.
  • Инвертор.

Не будем сильно углубляться в схемы, нам важен принцип.

Частотный преобразователь – принцип работы

Преобразователь питается от сети переменного тока 220/380 вольт. Первым в схеме стоит выпрямитель, который преобразует переменное напряжение в постоянное. Постоянный ток поступает на инвертор (устройство, позволяющее получить из постоянного тока переменный) и с помощью схемы управления преобразуется в переменное напряжение заданной величины и частоты. Происходит это обычно при использовании метода ШИМ (широтно-импульсной модуляции). Принцип ШИМ довольно прост. Устройством формируются сигналы с определенной частотой и напряжением, которые с учетом индуктивности двигателя становятся похожими на синусоидальное напряжение, за счет которого двигатель и начинает получать вращательный момент.

Есть еще один момент: скалярное или векторное управление. Предпочтительней использовать скалярное управление, хотя при этом повышается цена устройства. Векторное управление, как можно понять из названия, задает вектор – то есть используется схема, при которой задаются значения величины напряжения и частоты импульсов. То есть, получается более примитивная схема управления. Хотя все зависит от того, что вы собираетесь использовать. Если вам не требуется особо точных значений количества оборотов, то можно присмотреться к преобразователям частоты с векторным управлением.

Еще одна интересная особенность в том, что КПД преобразователя частоты гораздо выше при минимальных нагрузках.

Есть и ещё одна интересная особенность — что однофазное, что трехфазное напряжение получается путем преобразования постоянного напряжения, соответственно, чисто теоретически, преобразователь частоты можно использовать в однофазных сетях, но питать при этом трехфазного потребителя. На практике такую возможность, конечно же, нужно узнавать у производителя.

Продолжение сказки.

И пропало восхищение людей двигателем постоянного тока, и пришла всенародная любовь и слава к двигателю переменного тока. Ибо теперь не стало у него недостатков (ну или они стали очень незначительными).

Таким образом, появилась возможность регулировать обороты асинхронного двигателя переменного тока в довольно широких пределах.

Частотный преобразователь при обрыве фазы питания

Как я уже упоминал, частотные преобразователи бывают однофазными (220 В) и трехфазными (380 В). Предпочтительнее использовать трехфазные, потому что у них более высокий КПД. При обрыве фазы у однофазного преобразователя он попросту перестанет работать. В случае с трехфазным, как правило, сработает защита. Но давайте предположим, что она не сработала. Как и любое устройство, данный прибор рассчитан на определенные характеристики, одной из них является протекающий через устройство ток. Выпрямитель в данном случае представляет собой три однофазных диодных моста.

Согласно закону Кирхгофа (сумма токов входящих в узел, равна сумме токов исходящих), каждый из этих мостов будет пропускать через себя одну треть общего тока.

При обрыве фазы общий ток остается неизменным, но оставшиеся два диодных моста будут пропускать через себя уже половину, что уже само по себе, не является для них нормальным режимом. Ситуацию усугубляет и то, что при выпрямлении переменного тока одной фазы вместо трех идет потеря мощности примерно в 40%, а иногда и больше. Эти потери сокращаются за счет выпрямления трехфазного. То есть, при обрыве одной фазы, общий ток потребляемый преобразователем частоты из сети при обрыве одной из фаз еще более возрастает (примерно на 40%), чтобы обеспечить конечного потребителя заданной мощностью (двигателю очень не нравится, когда ему не дают кушать электричество в нужном количестве).

Получается, что если в устройстве не будет защиты от обрыва одной из фаз – оно будет работать, но очень недолго (особенно в режимах близких к максимальным), потому что в выпрямителе сгорят диодные мосты как минимум, как максимум последствия этим не ограничатся. Хотя, при условии, что защита не сработает, на минимальных и средних значениях мощности преобразователь будет прекрасно работать, правда при этом значительно уменьшится его КПД.

Частотный преобразователь - работа, виды + инструкция подключения для управления электродвигателями

Электрические двигатели, в том числе трехфазные асинхронного типа, получили широкое распространение в разнообразных сферах деятельности. Рабочий цикл агрегатов связан с плавным их запуском и аналогичным способом остановки. Для решения проблемы управления частотой тока и скоростью двигателя применяются частотные преобразователи.

Краткое содержимое статьи:

Назначение и достоинства

Электромагнитные силы, образующиеся под влиянием магнитного поля, создаваемого якорной обмоткой, приводят ротор в движение. Его вращение происходит с числом оборотов, которое задается частотой сетевого тока. При частоте в 50 Гц происходит 50 колебаний в течение 1 с. Следовательно, скорость вращения ротора составит 3000 об./мин.


Назначение частотных преобразователей состоит в том, чтобы посредством изменения параметров частоты тока обеспечить эффективное управление двигателем.

Достоинствами этих приспособлений являются:

  • обеспечение плавности работы мотора в момент пуска и торможения;
  • регулирование работой двигателей, собранных в группу;
  • отсутствие необходимости применения редукторов и иных механических устройств для управления скоростью движка;
  • обеспечение работы систем управления приводами на многофункциональной основе;
  • возможность корректировок в настойках без прерывания работы агрегата.

Разновидности устройств

В зависимости от конструктивных особенностей выделяют основные типы частотных преобразователей 220/380 – индукционные и электронные. К первому варианту относят асинхронные разновидности электрических двигателей, особенностью которых является применение схемы с фазным ротором.

При этом они имеют возможность работать в режиме генератора. Однако они не сильно распространены в практике, поскольку у них невысокий КПД и низкая эффективность.


А вот электронный вариант может быть использован как при функционировании асинхронных движков, так и модификаций синхронного вида. Управление двигателями производится несколькими принципиально различающимися способами:

Посредством скалярного управления, исходя из линейных закономерностей. В этом случае учитывается пропорциональная зависимость амплитуды от частоты. Если частота меняется, то амплитуда входного напряжения также будет изменяться. В результате это влияет на крутящий момент, КПД, и уровень мощности.

Задание равномерности момента нагрузки обеспечивается постоянством соотношения амплитуды с выходной частотой. Преобразующее устройство и формирует указанное равновесие.

При векторном подходе момент нагрузки постоянен при любых пределах частотных изменений. Это позволяет получить большую точность регулирования. Возрастает и гибкость реагирования электропривода на скачки в выходной нагрузке. Частотный преобразователь для асинхронного двигателя обеспечивает постоянный контроль над моментом вращения.

Важно помнить, что фаза тока статора, которая меняется под действием магнитного поля, и представляет собой вектор тока. Он управляет моментом вращения. Таким образом, в этом случае используется амплитудная или широтно-импульсная система регулировки сигнала.


Конструктивное исполнение

Существуют разные виды частотных преобразователей для двигателя. Но при этом конструктивно можно выделить отдельные типичные блоки. Данные компоненты тесно связаны между собой. Блок управления определяет работу выходного каскада.

При этом определяющую роль играет возможность изменения параметров тока переменного типа. Дополнительно в устройстве предусматриваются системы защиты, находящиеся под контролем микроконтроллера.

Выпрямитель представляет собой первый модуль. Через него происходит движение тока. Здесь происходит изменение переменного тока. При помощи диодов он преобразуется в постоянный. Можно подобрать модели для однофазной сети или для трехфазного питания. В них будет отличаться число диодов.

Постоянное напряжение с высокими пульсациями выходит из выпрямителя. Чтобы сгладить пульсации применяются конденсатор и индуктивная катушка. А вот процесс преобразования параметров выходящего тока происходит в инверторе.


Конструктивно в нем содержатся транзисторы. Их 6 штук – по паре для каждой фазы. А микропроцессорная система гарантирует управление скоростными показателями роторного вращения. Все это можно увидеть на фото частотного преобразователя.

Особенности подключения

Устройства, предназначенные для управления частотой, могут функционировать в условиях подключении однофазного типа или за счет трехфазного электропитания. При эксплуатации источников постоянного тока, которые имеют напряжение в 220 В, то они могут также использоваться для подключения инверторов.

Модификации трехфазного типа ориентированы на сетевое напряжение 380 В. Они направляют его на двигатель. Питание однофазных инверторов ведется от сети 220 В. На выходе они создают три фазы, которые распределены по временному параметру.

Если вас интересует вопрос, как подключить частотный преобразователь, то можно выделить две принципиальные схемы. По принципу «звезда» обустраиваются обмотки под преобразователь, который подпитывается от сети с напряжением 380 В. Если же подключение идет к однофазной сети 220 В, то применяется схема «треугольник».

При этом следует учитывать параметр соответствия мощности двигателя с возможностями инвертора. Перегружать преобразователь нельзя. Наоборот, целесообразно иметь некоторый запас по мощности.

На первом этапе подключения перед устройством монтируется автоматический выключатель с номиналом, который совпадает с рабочими характеристиками тока, потребляемого двигателем. Если инструкция как настроить частотный преобразователь, была соблюдена полностью, то фазные проводники подведены к заданным контактам двигателя.

Преобразующее приспособление должно подсоединяться к контроллеру. Также требуется подключение и к пульту. Вначале проверьте положение рукоятки – нейтральное. Затем надо запустить автомат. При соответствии процесса нормативам наблюдается световая индикация.

Небольшой поворот рукоятки приведет к активизации вращения двигателя. Кнопка реверса позволяет задать обратное направление вращения. Чтобы настроить нужную частоту, следует произвести регулировку ручкой. В последующем работа преобразователя позволит более эффективно эксплуатировать оборудование с электродвигателем.

Фото частотных преобразователей


Принцип работы частотного преобразователя - Электро-Актив

Частотный преобразователь — сложное электронное устройство, принцип работы которого основан на множестве взаимосвязанных механизмов. Попробуем разобрать всё по полочкам.

Каждый преобразователь — уникальный механизм с определённым расположением механизмов и предназначением. Но некоторынее части основные части остаются неизменными.

Входной неуправляемый выпрямитель.
Благодаря ему напряжение сети (220 или 380 V) выпрямляется диодным мостом.
Конденсаторы.
Совершают второй шаг после выпрямителя — фильтруют и сглаживают напряжение.
СУИ ШИМ.
Функция ШИМ состоит в формировании заданной последовательности импульсов определённой частоты (заданной пользователем или производителем). Это происходит за счёт управляемых микросхем и IGBT ключей.

Заданная цель каждого частотного преобразователя — интеграция и преобразование напряжения в график, близкий к синусоиде, достигается в самом конце. Прямоугольные пачки импульсов, выходящие из частотного преобразователя, превращаются в синусоидальное напряжение за счёт самого асинхронного двигателя — механизма, к которому он подключается, а именно способности его обмоток к индуктивности.
На схеме вы можете увидеть правильное подключение преобразователя по требованиям ЭМС. Не забывайте об основных требованиях эксплуатации: влажности менее 90%, недопустимости проникновения воды, воздействия электромагнитных импульсов вблизи устройства. Важно обеспечить хорошую вентиляцию в помещении с установленным преобразователем.
Таким образом, частотный преобразователь даёт массу преимуществ пользователям асинхронных двигателей. Особенно полезны они станут владельцам заводов и фабрик, которые уже давно используют преобразователи и получают массу плюсов, окупающих приобретение.

При правильном подключении и использовании, пусковые токи можно уменьшить в 4-5 раз. Экономия электроэнергии даже для трёхфазных и более систем может составлять 50% и более. Самостоятельная настройка оборудования становится намного легче, появляется возможность установки обратных связей между смежными проводами.

PPT - ПРИНЦИП РАБОТЫ СИНХРОННОГО ДВИГАТЕЛЯ И МАТЕМАТИЧЕСКАЯ МОДЕЛЬ PowerPoint Presentation

  • ПРИНЦИП РАБОТЫ СИНХРОННОГО ДВИГАТЕЛЯ И МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЯЙКРИШ. V Под редакцией Sarath S Nair www.technologyfuturae.com www.technologyfuturae.com

  • ОБЗОР • Введение • Принцип работы • Математическая модель синхронного реактивного двигателя • Преимущества и недостатки • Сравнение с другими двигателями • Резюме • Ссылки www .technologyfuturae.com

  • ВВЕДЕНИЕ • Синхронный реактивный двигатель - это настоящий двигатель переменного тока • Синхронные реактивные двигатели были разработаны для обеспечения эффективной машины с постоянной скоростью. • Отсутствуют щетки, контактные кольца и т. Д. • Принцип его работы почти аналогичен принципу работы синхронного двигателя с явнополюсным двигателем. www.technologyfuturae.com

  • ПРИНЦИП ДЕЙСТВИЯ • В принципе, синхронный реактивный двигатель аналогичен традиционному явнополюсному синхронному двигателю, но не имеет обмотки возбуждения в роторе.• Ротор сконструирован с выступающими полюсами. • SynRM включает в себя беличью клетку на роторе для обеспечения пускового момента для линейного пуска. • Беличья клетка также была необходима в качестве демпферной обмотки, чтобы поддерживать синхронизм при резких моментах нагрузки. • Когда на статор подается трехфазное питание, создается вращающийся магнитный поток. Первоначально в демпферной обмотке индуцируется ЭДС, и двигатель запускается как асинхронная машина. Когда он приближается к синхронной скорости, начинает действовать реактивный момент, и двигатель блокируется на синхронной скорости.www.technologyfuturae.com

  • МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДВИГАТЕЛЯ СИНХРОННОГО РЕЛЕКТИВНОГО ДВИГАТЕЛЯ • уравнение d-q синхронного реактивного электродвигателя www.technologyfuturae.com

  • ПРОДОЛЖЕНИЕ… • Возбуждение синхронного двигателя отсутствует. • Основа для уравнений d - q для синхронной машины сопротивления может быть получена из уравнения Парка vd = rs ids + dλds / dt - wrλqs vq = rs iqs + dλqs / dt + wrλds (1) Где λds = Lls ids + Lmd ids = Lds ids λqs = Lls iqs + Lmq iqs = Lqs iqs (2) www.technologyfuturae.com

  • где Lls - индуктивность рассеяния статора Lmd - индуктивность намагничивания по прямой оси Lmq - индуктивность намагничивания по квадратурной оси Te = (3/2) * (P / 2) * (λds iqs - λqs ids) (3 ) www.technologyfuturae.com

  • 2) Уравнения установившегося состояния www.technologyfuturae.com

  • Переменная в уравнении (1) станет постоянной в установившемся состоянии . Т.е., члены d / dt могут быть исключено Ids = we Lqs Vqs + rs Vds rs² + we² Lds Lqs (5) Iqs = -we Lds Vds + rs Vqs rs² + we² Lds Lqs Пренебрегая сопротивлением статора, мы получаем Ids = Vqs, Iqs = - Vds (6) we Lds мы Lqs www.technologyfuturae.com

  • 3) Уравнения фазора для синхронного реактивного двигателя Однофазное уравнение из стационарной версии уравнения (1) может быть получено путем умножения первой строки (1), т.е. vds на –j и добавив ко второй строке, т.е. vqs vqs - jvds = rs (Iqs - jIds) + we (λds + jλqs) (7) или используя (2) и (7) vqs - jvds = rs (Iqs - jIds) + we (Lds Ids + jLqs Iqs) ( 8) Его можно изменить на Vqs - jVds = rs (Iqs - jIds) + jweLds (-jIds) + jweLqs Iqs (9) В векторной нотации (10) www.technologyfuturae.com

  • (4) Выражение крутящего момента для постоянного вольт / герц и постоянного тока (11) За исключением частот, близких к нулю, во всех частотах без учета сопротивления статора (12) Подставляя Vds и Vqs, полученные из векторной диаграммы, получаем www.technologyfuturae.com

  • Крутящий момент изменяется как квадрат вольт на герц и как синус двойного угла ∂. Когда вольт / герц фиксировано, максимальный крутящий момент явно достигается при ∂ = 45˚.Следовательно, Максимальный крутящий момент (13) (14) www.technologyfuturae.com

  • ` Если λds и λqs подставить непосредственно в уравнение крутящего момента, Te можно также записать в терминах статора dq тока как: Подставьте значение Ids и Iqs (15) (16) www.technologyfuturae.com

  • Электромагнитный момент может быть выражен через амплитуду тока статора и угол ε в ммс как (17) www.technologyfuturae.com

  • ПРЕИМУЩЕСТВА ДВИГАТЕЛЬ С СИНХРОННЫМ РЕДУКТОРОМ • Отсутствие постоянных магнитов • Широкий диапазон скоростей при постоянной мощности • Синхронная работа, обеспечивающая высокий КПД • Возможность поддерживать полный крутящий момент при нулевой скорости www.technologyfuturae.com

  • НЕДОСТАТКИ • В небольших двигателях крутящий момент / ампер и крутящий момент / объем ниже, чем в двигателях с постоянными магнитами • Воздушный зазор небольшой по сравнению с асинхронными двигателями www.technologyfuturae.com

  • СРАВНЕНИЕ С ДРУГИМИ ДВИГАТЕЛЯМИ • Асинхронный двигатель • Потери в роторе ниже, чем у асинхронной машины • Высокий коэффициент мощности и более высокий постоянный крутящий момент • Эффективность полной нагрузки при номинальной скорости и диапазоне скоростей при постоянной мощности также превышает значения, достигаемые при индукции моторы.www.technologyfuturae.com

  • Продолжение… • Импульсные реактивные двигатели • не подвержены сильной пульсации крутящего момента. • Плотность мощности ниже, чем у реактивного реактивного двигателя. Www.technologyfuturae.com

  • РЕЗЮМЕ • Обсуждается принцип работы синхронного реактивного двигателя. • Также обсуждалась математическая модель синхронного реактивного двигателя. • Проведено сравнение с различными двигателями. Www.technologyfuturae.com

  • ССЫЛКИ [1] Сержант Эдвард Лышевски, Александр Назаров, Ахмед Эль-Антабли, Чарльз Йокомото, А.С.К. Синха, Махер Ризкалла и Мохамед Эль-Шаркави, «Проектирование и оптимизация, установившийся и динамический анализ синхронных электродвигателей, управляемых преобразователями напряжения с нелинейными регуляторами», IEEE Trans. Промышленные приложения, сентябрь 1999 г. [2] Пейман Ниази, «Конструкция и улучшение характеристик синхронного электродвигателя с постоянным магнитом», Техасский университет A&M. [3] Р. Э. Бец, Р. Лагерквист, М. Йованович, Т. Дж. Э. Миллер и Р. Х. Миддлтон, «Управление машинами с синхронным сопротивлением», IEEE Пер.Промышленные приложения, т. 29, нет. 6, pp. 11 10-1 122, 1993. www.technologyfuturae.com

  • Технические презентации, исследования, новые разработки и разработки Войдите на сайт www.technologyfuturae.com TechnologyFuturae

  • СПАСИБО… www.technologyfuturae.com

  • Что такое аккумулятор? Принцип действия.

    Аккумулятор - важный компонент электромобиля. Он служит для обеспечения запуска двигателя.Кроме того, аккумулятор является поставщиком электроэнергии в бортовую сеть автомобиля.

    Обычно аккумулятор состоит из контейнера, который разделен перегородками на элементы. В этих ячейках, называемых банками, расположено несколько связанных между собой специальных единиц. 12-вольтовый автомобильный аккумулятор имеет 6 таких ячеек. Каждый из этих блоков содержит набор положительных и отрицательных электродов. Между разнополюсными электродами, состоящими из свинцовых сеток, смазанных активным веществом, установлены сепараторы из непроводящего материала.

    При отливке аккумулятора в рабочем состоянии внутрь канистр заливают электролит (смесь серной кислоты и воды), после чего заряжают с помощью специального зарядного устройства. В процессе увеличения плотности заряда электролита внутри аккумулятора происходят определенные химические реакции, в результате которых происходит накопление энергии.

    Принцип работы АКБ

    Принцип действия свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислой среде.

    Энергия образуется в результате окисления свинца серной кислотой до сульфата. Электродом из оксида свинца может быть графит с выделением водорода. Оксид свинца нужен только для предотвращения выделения водорода на электроде. Водород реагирует с кислородом оксида и образует воду, восстанавливая оксид металла и, возможно, обеспечивает дополнительный выход энергии от окисления водорода.

    Во время разряда происходит восстановление диоксида свинца на катоде и окисление на анодном свинце.При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода - на отрицательном. В результате получается, что при разряде аккумулятора серная кислота с одновременным образованием воды (и плотность электролита падает) расходуется, а при заряде наоборот вода «расходуется» на образование серной кислоты (плотность электролит растет). По окончании заряда при некоторых критических значениях концентрации сульфата свинца на электродах начинает преобладать процесс электролиза воды.При этом на катоде выделяется водород, на аноде - кислород. При зарядке нельзя допускать электролиза воды, иначе ее необходимо добавить.

    Принципы работы - Большая химическая энциклопедия

    Основные принципы работы системы AEBIL можно перевести в последовательность элементарных шагов обработки и резюмировать следующим образом (рис. 1). [Pg.68]
    Рис. 1. Принципы работы автоматизированной лампы ASTM...
    Выбор принципа работы и конструкции калориметра зависит от характера исследуемого процесса и от требуемых экспериментальных процедур. Однако тип калориметра, необходимый для изучения конкретного процесса, не является уникальным и может зависеть от субъективных факторов, таких как технологические ограничения, ресурсы, традиции лаборатории и склонности исследователя.[Стр.1903]
    Рис. 13. Принцип работы двухступенчатого электрофильтра. Из исх. 205, ...
    Рис. 10. Принцип работы стандартной конструкции гранулятора A, сыпучий материал подается в камеру гранулирования B, вращение матрицы и давление ролика заставляют материал проходить через матрицу, сжимая его в гранулы и C, регулируемые ножи режут гранулы желаемой длины. Предоставлено California Pellet Mill Co.
    Альфа-счетчик выполняется с помощью внутреннего пропорционального счетчика или сцинцирующего счетчика. Бета-подсчет проводится с помощью внутренней или внешней камеры пропорционального потока газа или трубки Гейгера-Муэйера с торцевым окном. Доступны принципы работы и описания различных счетных приборов, а также методы определения различных радиоэлементов в водном растворе (20,44). Составлено лабораторное руководство радиохимических процедур для анализа конкретных радионуклидов в питьевой воде (45).Эффективность детектора следует определять с помощью имеющихся в продаже источников известной активности. [Стр.233]

    Сепараторы проходного типа более эффективны для крупных муниципальных и промышленных очистных сооружений. Принципы работы те же, но поток идет через желоб, а не через колонну. [Pg.293]

    Существует большое количество различных процессов, которые используются в приложениях для совместной работы. Большинство этих методов аналогичны методам, используемым в других отраслях промышленности, и к этим применениям применимы те же основные принципы работы, что и для нанесения покрытия на фотопленку или рулон металла для холодильника.[Стр.126]

    РИС. 18-124 Принципы работы роликово-разгрузочного механизма. (Швейцер, Справочник по методам разделения для инженеров-химиков, стр. 4-40, Copyiight 1979 hy McGraw-Hill, Inc, используется с разрешения McGraw-Hill Book Co,) ... [Pg.1716]

    Другой тип Классификатор направляет воздушный поток через поток частиц, подлежащих классификации. Примером может служить классификатор радиального потока Kennedy Van Saun Corp.), который имеет регулируемые элементы для управления потоком и классификацией.Дальнейшим развитием этого принципа является классификатор Vari-Mesh Kennedy Van Saun Corp.), который управляет классификацией с помощью регулируемых перегородок. Изменение направления воздушного потока - принцип работы классификатора сверхтонкого обратного потока Hosokawa Mineral Processing Systems). [Pg.1857]

    Электромагнитные. Они быстро устарели, но мы кратко обсудим эти реле ниже, чтобы дать представление об основных принципах работы таких реле. Затем тот же принцип применения преобразуется в статическое или микропроцессорное реле... [Стр.294]

    Недостаточный NPSHa вызывает напряжение, вибрацию и обслуживание насосов, поскольку в жидкостном трубопроводе недостаточно энергии для того, чтобы насос мог выполнять свою работу. Как видно из предыдущих страниц, проблемы заключаются в конструкции системы и правильных принципах работы. Когда NPSHa ниже NPSHr насоса, условия благоприятны для перехода насоса в состояние кавитации. Кавитация - это следующая глава. [Стр.23]

    Принципы работы и конструктивные особенности Радиальные подшипники... [Pg.335]

    Этот тип технологии является частью группы средств контроля загрязнения воздуха, которые собирательно именуются «мокрые скрубберы. Скрубберы с отверстиями также известны как самонаводящиеся скрубберы с распылением, скрубберы с газовым распылением и скрубберы-улавливатели. Принцип работы основан на удалении загрязнителей воздуха путем инерционного и диффузионного улавливания. [Pg.440]

    Дисковые фильтры Дисковые фильтры состоят из ряда концентрических дисков, установленных на горизонтальном вращающемся валу. Принцип действия заключается в следующем. такой же, как у вакуумных фильтров с вращающимся барабаном.Базовая конструкция показана на рисунке 22.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *