Принцип действия импульсного блока питания
Принцип работы импульсного блока питания
Один из самых важных блоков персонального компьютера – это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.
Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.
Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:
Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).
Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.
Узел управления. Является "мозгом" блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).
Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).
Выходные выпрямители. С помощью выпрямителя происходит выпрямление – преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.
Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.
Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.
О всех этих частях схемы будет рассказано в дальнейшем.
Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.
Сетевой фильтр и выпрямитель.
Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.
Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.
Как говорится: "No comment ".
Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.
Стоит особо рассказать о выключателе S1 ("230/115"). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110. 127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.
Если необходимо, чтобы блок питания работал от сети 220. 230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.
В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.
Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.
Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.
Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180. 220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.
Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.
Возможные неисправности сетевого выпрямителя и фильтра.
Характерные неисправности выпрямителя, это выход из строя одного из диодов "моста" (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.
При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!
Среди всех блоков питания можно выделить два основных типа:
- линейные;
- импульсные (инверторные) источники.
В подавляющем большинстве случаев линейный источник питания состоит из трансформатора, преобразующего переменное напряжение, силового выпрямителя, сглаживающего фильтра и стабилизатора. Линейные блоки питания наиболее просты в схемотехническом плане и имеют низкий уровень помех.
Самый крупный недостаток — большие габариты и вес понижающего трансформатора и низкий КПД, особенно в случае большой нестабильности входного напряжения. Массивный силовой трансформатор с большой тепловой инерционностью затрудняет даже принудительное охлаждение при больших нагрузках.
Основные отличия импульсных стабилизаторов.
Импульсные источники питания тоже имеют в составе понижающий трансформатор. Только в данном случае он работает на высокой частоте и имеет несравненно меньшие габариты и массу. Малые габариты элементов облегчают отвод тепла пассивными (применение радиаторов) и активными (вентиляторы) методами.
При фильтрации и стабилизации высокочастотного напряжения с выхода импульсного трансформатора упрощается построение выходных фильтров, поскольку для фильтрации пульсаций напряжения высокой частоты нужна меньшая емкость конденсаторов. Инверторным блокам питания присущи несколько существенных недостатков — сложное устройство, высокий уровень электромагнитных помех и, в некоторых случаях, гальваническая связь выходных и входных цепей.
Впрочем, отработанная схемотехника подобных устройств в настоящее время уже не считается сложной, а помехи снижаются путем грамотного расчета узлов и дополнительной экранировкой.
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ
Импульсный блок питания состоит из следующих элементов:
- входной выпрямитель;
- блок конденсаторов;
- схема управления;
- выходные ключи;
- импульсный трансформатор;
- вторичные (выходные) стабилизаторы и фильтры.
За счет того, что входное напряжение сначала преобразуется в постоянное, а затем обратно в переменное, точнее, в импульсы высокой частоты, импульсный высокочастотный трансформатор имеет очень малые габариты. Трансформатор преобразует высокочастотное переменное напряжение, поступающее от мощных транзисторных выходных ключей, которые, в свою очередь управляются широтно-импульсным (ШИМ) контроллером.
Такое название схема управления получила из-за того, что изменяя частоту и ширину (длительность) импульсов, можно регулировать время открытия ключевых транзисторов, изменяя, таким образом, значение выходного напряжения.
На ШИМ – контроллер (обычно это одна специализированная микросхема), поступает напряжение обратной связи с выхода блока питания или иные управляющие сигналы. Таким образом можно получить любые алгоритмы стабилизации выходного напряжения.
Стоит отметить, что наибольшей сложностью обладают устройства, которые предназначены для формирования нескольких значений напряжения на выходе с высокими требованиями к стабильности каждого из них. Как пример можно назвать блоки питания персональных компьютеров, телевизоров и других сложных устройств.
Такие блоки питания, как зарядные устройства для мобильных телефонов или иных маломощных гаджетов содержат малогабаритные специализированные микросхемы, в которых уже интегрированы все необходимые элементы. Такие блоки содержат минимум деталей и ремонтируются только энтузиастами, поскольку стоимость отдельных элементов порой сравнима со стоимостью нового зарядного устройства.
Высокий уровень помех импульсных устройств обусловлен тем, что управляющие импульсы высокой частоты имеют практически прямоугольную форму и поэтому имеют высокий уровень гармонических составляющих в большом диапазоне частот. Мощные транзисторы в момент переключения также становятся сильными источниками электромагнитного излучения. Для снижения помех схемы обычно дополняются помехоподавляющими цепями и заключаются в экранирующий корпус.
Малые габариты устройства и наличие схемы управления позволяют дополнить схемотехнику самыми различными схемами контроля как входного, так и любых выходных цепей, включая программное управление характеристиками.
ОБЛАСТИ ПРИМЕНЕНИЯ
Импульсные блоки питания в настоящее время используются в подавляющем большинстве устройств мощностью от долей ватта до единиц киловатт. Верхний предел ограничен параметрами выпускаемых на текущий момент транзисторов. Это ограничение можно обойти довольно просто, соединяя несколько идентичных маломощных блоков питания параллельно.
Для одинаковой и равномерной нагрузки отдельных составляющих, они объединяются по сигналам обратной связи. Постоянное совершенствование технологии разработки и конструирования полупроводниковых приборов, создание новых классов транзисторов (IGBT, MOSFET) стимулирует создание все более мощных импульсных устройств.
Даже большое число параллельно включенных устройств по массе и габаритам значительно меньше аналогичного по мощности понижающего трансформатора стандартной частоты 50 Гц, поэтому очень часто делают некоторый избыток блоков для того, чтобы при выходе одного из них он автоматически выключался и работа устройств не нарушалась.
Сам принцип работы обеспечивает широкий диапазон допустимого входного напряжения. Например импульсные блоки питания бытовых устройств при нормальном напряжении сети 220 В, способны работать вплоть до диапазона 80 — 250 В, то есть при таких напряжениях, когда обычный линейный стабилизатор выходит из границ стабильной работы.
ТИПОВЫЕ НЕИСПРАВНОСТИ И РЕМОНТ
Как ни странно будет звучать, но импульсным блокам питания гораздо страшнее низкое входное напряжения, чем высокое. Верхний предел обычно ограничен номинальным напряжением электролитических конденсаторов фильтра и допустимым обратным напряжением выпрямительных диодов.
Многие импульсные блоки питания нестабильно работают, когда нагрузка выхода имеет малое значение или вообще отсутствует. Отсутствие обратной связи на входе ШИМ контроллера приводит к тому, что транзисторные ключи полностью открываются и блок выходит из строя буквально через несколько минут. Соответствующие схемные решения позволяют избавиться от такого недостатка.
Наиболее часто неисправности импульсных блоков питания вызываются:
- выходом из строя диодов выпрямительного моста;
- электролитических конденсаторов сглаживающего фильтра;
- ключевых транзисторов.
Такое обычно происходит в случае сильно завышенного входного напряжения или длительной работы при пониженном. В подавляющем большинстве случаев даже нет необходимости в измерительных приборах — повреждения видны невооруженным глазом по разрушенным и вздувшимся элементам.
Гораздо реже выходят из строя элементы управляющей схемы (ШИМ-контроллера) и обратной связи. В данном случае без измерений не обойтись.
Крайне редки случаи повреждения импульсного трансформатора. Обычно их габариты позволяют выполнять сборку с большими запасами по току и мощности. Поэтому неисправности случаются только при некачественном выполнении.
Практика ремонтов показывает, что львиная доля неисправностей происходит по причине крайне низкого качества некоторых типов электролитических конденсаторов. Падение емкости или большое внутреннее сопротивление конденсаторов выходных цепей может приводить к неправильной работе обратной связи, в результате чего выходное напряжение перестает соответствовать норме.
Обычно ремонт серьезных импульсных блоков питания требует несколько большей квалификации специалистов, чем ремонт традиционных схем и требует таких измерительных приборов, как осциллограф.
Часть элементов схемы блока питания находится под напряжением сети. Это выпрямительные диоды, конденсаторы, ключевые транзисторы и первичная обмотка импульсного трансформатора.
Ремонт таких устройств можно выполнять только при отключенном блоке с разряженными конденсаторами фильтра. В крайнем случае можно производить некоторые работы и под напряжением, но только с обязательной гальванической развязкой блока от питающей сети через разделительный трансформатор.
При прикосновении к корпусу прибора можно получить удар электрическим током, опасным для жизни. Для обеспечения безопасности, все импульсные блоки питания должны быть в обязательном порядке заземлены или иметь корпус из изоляционного материала.
Современное бытовое оборудование и часть промышленного позволяют производить заземление непосредственно через шнур питания. Для этого в паре розетка — вилка предусмотрены отдельные контакты для подключения заземления.
© 2012-2019 г. Все права защищены.
Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Давно прошли времена, когда блоки питания на различное оборудование были трансформаторными. Многие молодые люди даже и не знают, как они выглядели. На сегодняшний день очень широкое распространение получил импульсный источник питания (или ИБП), и это не удивительно. Меньшая стоимость, отсутствие посторонних шумов при работе, более компактный размер и в то же время меньшее потребление электроэнергии вследствие более высокого коэффициента полезного действия — все эти преимущества в сумме и решили судьбу трансформаторных блоков, конечно, не в их пользу.
А все-таки, что такое импульсный блок питания? И каким же образом разработчикам удалось добиться подобного результата? Сейчас попробуем найти ответ на этот вопрос, разобраться в достоинствах (а может быть и недостатках) импульсного источника питания, а также понять схему и принцип работы подобного устройства.
Как работает импульсный блок питания
Принцип работы импульсного блока питания в корне отличается от действия обычного, трансформаторного блока питания. Изначально напряжение в 220 В проходит через диодный мост, после чего прямой ток поступает в инвертор, т.е. преобразователь напряжения в токи высокой частоты. Это действие может выполняться либо посредством гальванического отделения питающей сети от входной цепи, либо без такового.
Если гальваническая развязка присутствует, то высокочастотный ток подвергается ей при помощи трансформатора. Причем, чем выше будет частота импульсов, тем эффективнее будет работать трансформатор.
Само действие такого БП основывается на применении трех элементов, которые содержит схема импульсного блока. Они четко взаимодействуют между собой в процессе работы. Элементы эти следующие:
- контроллер широтно-импульсного модулятора;
- транзисторный блок, который может быть включены по одной из схем — мостовой, полумостовой или же по схеме со средней точкой;
- импульсный трансформатор, у которого имеется первичная и вторичная обмотки, смонтированные на магнитопроводе.
При условии отсутствия гальванической развязки высокочастотного трансформатора тока в схеме нет, а сигнал подается сразу на фильтры НЧ. По сути, все схемы импульсных источников питания идентичны.
Далее попробуем более детально разобрать, как работает каждый из этих трех элементов.
Контроллер широтно-импульсной модуляции
Наверное, не нужно объяснять, что контроллер — это управляющее чем-либо устройство. Если разбирать именно ШИМ в импульсном блоке, то тут закладывается задача создания токов с одной частотой, но с различной длительностью включения. Логической единицей выступает, естественно, сам импульс, ну а нулем — его отсутствие.
Импульсы обусловлены одинаковым периодом колебания, т.е. амплитуда их величин равна. А вот работой электронной схемы позволяет управлять именно отношение продолжительности к самому периоду.
Для того чтобы проще было понять изложенное, можно обратиться к схематическому изображению.
Принимая во внимание, что частота тока в сети 220 В равна 50 Гц, можно себе представить, насколько сложна работа, выполняемая контроллером и модулятором ШИМ. Обычно на его выходе образуется ток, с частотой порядка 30-60 кГц.
Вообще, широтно-импульсная модуляция в наше время применяется во многих устройствах. И самый яркий тому пример — инверторные сварочные аппараты, где как раз при помощи ШИМ удалось снизить габариты и массу устройства в десятки раз по сравнению с обычными трансформаторными агрегатами.
Транзисторный блок, или каскад силовых ключей
Мощные полевые или IGBT-транзисторы образуют каскад, который также может управляться и менее мощными элементами либо интегральными драйверами. Собраны эти транзисторы могут быть в одну из трех схем: мостовую, полумостовую либо со средней точкой.
Вот, собственно, и все, что можно сказать о силовых ключах импульсного блока питания.
Импульсник, или блок без гальваники
Импульсник, т.е. высокочастотный трансформатор, может быть собран на основе ферритового или альсиферового кольца, на котором и размещены первичная и вторичная обмотки. Они могут выдавать высокочастотный ток с импульсом до 100 кГц. Их работу дополняют различные фильтрующие элементы и диоды.
Если же гальваническая развязка в подобном БП отсутствует, то сигнал напрямую будет поступать на низкочастотный фильтр без какой-либо трансформации. Наглядно это показано на схематическом изображении.
Преимущества и недостатки ИБП
Конечно, как и любое другое электронное устройство, подобный блок питания имеет как свои достоинства, так и недостатки. Конечно, т.к. этот БП является более высокотехнологичным прибором, положительных качеств в нем намного больше, чем отрицательных, но все же есть необходимость объективного рассмотрения, а потому умалчивать о минусах тоже не стоит. Но все же, для начала перечислим плюсы, а после будем разбирать их подробнее.
Основными и несомненными достоинствами импульсного блока питания являются:
- более легкий вес;
- высокий коэффициент полезного действия;
- низкая цена;
- широкий диапазон токов;
- присутствие защиты от различных факторов.
Ну а теперь остановимся на каждом из пунктов подробнее.
Преимущества
- Малый вес и габариты достигаются за счет импульсной технологии, повышения частоты тока, а значит и уменьшения трансформаторных установок. В ИИП не требуется крупногабаритных радиаторов и обмоток. Также сокращена и емкость конденсаторов. К тому же схема выпрямления упрощается до элементарной — однополупериодной.
- Естественно, что у трансформаторных блоков питания большая часть энергии уходит на прогрев, в результате чего падает КПД. У импульсных БП незначительная часть этой энергии теряется на каскадах силовых ключей. После уже все транзисторы стабильны, а потому коэффициент полезного действия у таких БП может достигать 97%.
- Стоимость этих устройств снижается за счет расширения производства элементов для сборки подобной схемы. Они и непосредственно после появления на рынке стоили немного, а сейчас, когда ими насыщены все области продаж, их стоимость падает все ниже. Можно добавить, что и полупроводники возможно использовать менее мощные благодаря управляемым ключам.
- Широкий диапазон достигается как раз благодаря импульсным технологиям. Допускается питание разной частоты и амплитуды, что не может не сказаться и на расширении областей их применения.
- На основании того, что модули полупроводников достаточно малы, появляется возможность встраивания дополнительных блоков защиты (от короткого замыкания, перегрева, перегрузки и т.п.).
Недостатки
Если разговор зашел о плюсах, то не стоит оставлять без внимания и минусы, хотя их и ничтожно мало. Основным недочетом в работе импульсных блоков питания можно назвать высокочастотные помехи. Они естественны, т.к. само устройство работает именно на них. Как раз по этой причине используется различное шумоподавление, которое, впрочем, до конца проблему не решает.
А потому подобные ИБП не используются на некоторых высокоточных измерительных приборах.
Еще одним недостатком можно назвать некорректную работу на сверхнизких и сверхвысоких частотах — такие «стрессовые» токи могут либо вывести прибор из строя, либо на выходе он будет выдавать искаженное напряжение, не соответствующее заявленным техническим характеристикам.
Подведем итог
Очень хотелось объяснить, что означает импульсный блок питания для чайников, но вопрос этот сложен, а потому получилось ближе к научному пояснению. Если обобщить изложенную информацию, то импульсные блоки питания действительно стали прорывом в своей области электроники. По сравнению с трансформаторными блоками, такие ИБП намного экономичнее, производительнее, меньше и легче. И что самое интересное — при всех своих преимуществах они еще и дешевле аналоговых.
Конечно, технологии не стоят на месте, прогрессируя с каждым годом. Возможно, что скоро появятся еще более высокотехнологичные зарядные устройства или блоки питания. Но на сегодняшний день ИБП являются верхом инженерной мысли, а потому они стоят нашего внимания.
схема. Замена адаптера. Принцип работы импульсного блока питания. Почему сетевой адаптер сгорел? Его устройство
Одна из самых распространенных проблем с телевизорами связана с неисправностью блока питания. Обычно его ремонт требуется в том случае, если любой из элементов платы выходит из строя, и, как правило, это отнюдь не самый трудоемкий и дорогой вид работ. Однако заниматься им могут только специалисты, поскольку любые некорректные действия с БП могут привести к серьезным поломкам в самых разных частях аппарата.
О том, что такое блок питания, для чего нужен, и как понять, что он неисправен, пойдет речь в нашей статье.
Что это такое?
В самом общем смысле блок питания представляет из себя источник электричества, который снабжает телевизор необходимым током. Этот модуль позволяет преобразовывать сетевое напряжение до значений, необходимых для полноценного функционирования техники. Как правило, БП включен в комплектацию антенн с усилителем для того, чтобы улучшать прием сигнала.
Блоки питания – универсальные приборы, они могут устанавливаться в других приспособлениях: для улучшения качества сигнала сотовой, спутниковой связи и даже интернета. БП незаменим в ситуации, когда используется Wi-Fi-адаптер, кстати, он также представляет из себя одну из разновидностей антенн. Проще говоря, везде, где используются радиоволны и имеется принимающая антенна, нужен блок питания.
Но мы рассмотрим только те его разновидности, которые требуются для бесперебойной работы телевизионной техники.
Обращаем внимание: актуальность установки и поддержания работоспособности БП прямо связана с тем, что в его отсутствие и починить его бывает очень затратно или даже невозможно.
Телевизионный блок питания выполняет три основные функции:
- преобразование энергии подачи тока в аппаратуру;
- защита от помех подпитывающего напряжения;
- поддержание необходимого уровня напряжения внутри самого телевизора.
Наибольшее распространение получили современные системы, работающие от стандартных сетей в 220 Вт. Такие элементы бывают встроенными в единую конструкцию антенны либо располагающимися отдельно, когда подключение осуществляется через порт.
Если речь идет о встроенных моделях, то обычно применяется бестрансформаторная схема. В этом случае преобразование энергии осуществляется за счёт широтно-импульсной модуляции. Такие блоки питания включаются в самую обычную розетку, их рассчитанная мощность составляет 10 Вт. Этого параметра вполне достаточно для того, чтобы обеспечить питание антенны. Подобные элементы довольно компактны и не занимают много места, но в случае неисправности незамедлительно приводят к выводу из строя всей системы приема сигнала.
Поэтому бывает более практичным приобрести внешние устройства. Они ориентированы на то, что в случае выхода из строя БП некоторый сигнал всё же будет сохранён, хотя, безусловно, хорошим он не будет. В любом случае еще одно достоинство наружных блоков питания сводится к тому, что их можно быстро и просто заменить при необходимости.
Схема работы базируется на трансформаторе. При этом выходное напряжение БП стабилизируется параболическим образом, типовыми параметрами для выходного напряжения стали значения 24, а также 18, 12 и 5 Вт. Более точные цифры определяются в зависимости от технико-эксплуатационных параметров антенны.
Устройство и принцип работы
Чаще всего плата блока питания представляет собой отдельный электронный модуль. Это является отличительной чертой любого телевизора с небольшой диагональю экрана, а в более крупных моделях она встроена.
Любая плата блока питания имеет следующие составляющие:
- трансформатор;
- сетевой фильтр;
- узлы рабочего и дежурного режима;
- модуль предохранения от перегрузки;
- радиаторы, то есть элементы охлаждения.
Принцип работы блока питания сводится к приведению подаваемого сетевого напряжения к тому виду, который будет удовлетворять требованиям энергоснабжения базовых электронных узлов телевизионной техники, в том числе и его матрицы.
Важно: величина и параметры питающих потенциалов должны в точности соответствовать как самим рабочим напряжениям, так и их эпюрам.
В большинстве случаев они указываются непосредственно на каждое предлагаемое устройство.
Как подключить?
Рассмотрим подробнее, как подсоединить БП. В большинстве случаев в активную антенну усилитель уже вмонтирован. А вот в пассивной – его нет. Чтобы его подключить, в первую очередь необходимо собрать антенный кабель со штекером, который будет предназначен для данных целей. Рассмотрим, как это сделать.
Сначала следует подготовить сам кабель, то есть зачистить его. Для этого острым канцелярским ножом либо скальпелем выполняют тонкий разрез по окружности на удалении 1,5 см от края кабеля. При выполнении этой работы очень важно быть аккуратным и постараться не повредить волоски экранированной оплётки, расположенной сразу под изоляционным слоем.
После того как эти действия будут выполнены, упомянутые волоски нужно осторожно отогнуть, а расположенный около них кусок фольги убрать.
Отступив от загнутого края оплетки примерно 5 мм, необходимо сделать ещё один срез по окружности. Он необходим для того, чтобы удалить внутренний изоляционный слой. После этого кабель, подготовленный к монтажу, следует просунуть под соответствующие крепежи в коробке БП и затянуть винтами.
Обращаем особое внимание на то, что когда подключается провод, его металлизированная оплетка непременно должна иметь контакт с залуженной площадкой, которая является обязательным элементом конструкции любого корпуса БП. Если этого не сделать, то питание на антенну попросту не будет поступать. Нужно учесть и тот факт, что кабельная оплетка ни в коем случае не должна соприкасаться с центральной жилой самого провода. Если это случится, то произойдет короткое замыкание, и индикатор работы модуля не будет функционировать.
Для сведения: при корректном подсоединении блока питания с самим антенным кабелем после выполнения всех необходимых настроек телевизор обычно показывает намного больше каналов, чем прежде.
Как проверить на исправность?
В общем виде наружная диагностика возможных неисправностей и поломок блока питания выглядит следующим образом.
Если внешний вид конденсаторов вызывает у вас хоть какие-то подозрения, то их необходимо сразу же снять и заменить.
Вы заметили перебои с работой дежурного режима – нужно сразу же проверить напряжение на управляемом стабилитроне. Если на выходе данного узла напряжение будет отсутствовать либо иметь слишком низкие значения, следовательно, режим работы нарушен.
Для того чтобы восстановить функциональность элемента, необходимо удостовериться в работоспособности всех остальных деталей схемы. Для этого следует выпаять один контакт подозрительного конденсатора либо резистора, все сгоревшие элементы удалить полностью и сразу же заменить новыми. Если вы увидите участок некачественной пайки – это место нужно залудить с флюсом, а после удостовериться в том, что контакты прочно зафиксированы в зоне крепления.
О восстановлении работоспособности схемы БП и возвращении дежурного режима укажут появление напряжение в 5 В, а также мигание красного светового индикатора на лицевой панели телевизора.
Обращаем внимание на то, что при каждой замене остальных подозрительных элементов необходимо сразу же выполнять проверку – произошли ли изменения на выходе блока питания.
О том, что функциональность оборудования возвращена, можно судить по нормальному включению телевизора и поступлению качественного аудио- и видеоряда.
Возможные неисправности и их причины
О том, что блоку управления телевизором необходим ремонт, могут указать следующие признаки:
- телевизор не включается при нажатии кнопки, при этом светодиодная индикация-лампочка на корпусе не загорается;
- лампочка загорается, но техника не запускается;
- изображение идёт с большим отрывом от звука;
- возникают значительные помехи – возможны изломы и полосы на экране;
- искажение звука – телевизор пищит, тарахтит, издает другие шумы.
Все перечисленные неисправности БП могут быть вызваны несколькими причинами, среди которых выделяют:
- устройство уходит в защиту вследствие короткого замыкания, которое привело к перегоранию БП или отдельных его компонентов;
- нестабильная подача напряжения в сети;
- перегорание предохранителя;
- полный или частичный износ конденсаторов.
Чтобы запустить телевизор и получить полноценное качественное изображение, попробуйте несколько раз повторить включение и выключение агрегата.
Обращаем особое внимание на то, что любые самостоятельные попытки починки телевизора, как правило, приводят только к усугублению проблем с электронными элементами системы или даже полному выходу их из строя. Любые неправильные действия влекут за собой необходимость замены телевизионной материнской платы, стоимость которой доходит до 70% стоимости всего агрегата.
Все элементы сложного электронного оборудования необходимо ремонтировать с точным соблюдением всех правил техники безопасности, в частности, следует предварительно разрядить входные конденсаторы. Не имея специального опыта подобных работ и знаний, вы можете причинить вред не только самому телевизору, но и своему здоровью.
О том, каков принцип работы у блока питания для телевизора, смотрите в следующем видео.
импульсный, диммируемый, схема своими руками
На чтение 9 мин. Просмотров 17 Опубликовано Обновлено
Применяя в помещениях светодиодную ленту немаловажно, чтобы её функционирование было стабильным, долговечным и не оказывало негативного воздействия на зрение людей. Корректную работу таких осветительных приборов гарантирует блок питания для светодиодной ленты, который выбирается в соответствии с определёнными расчётами. Правильно подобранный преобразователь защитит светодиоды от скачков напряжения и преждевременной утраты качества светового потока.
Принцип действия импульсного блока питания
Блок питания для светодиодной лентыИмпульсный блок питания на сегодняшний день наиболее часто применяется для светодиодных лент. Принцип его действия состоит в трансформации длительности рабочей части периода для импульсного тока прямоугольного типа, а также в продолжительности его подачи на прибор. Такие параметры устанавливаются в соответствии с нулевым уровнем. Имеется в виду часть периода, когда можно наблюдать предельно допустимое напряжение. Такую характеристику именуют широтой. Её трансформации осуществляются в диапазоне 0-100% и вызывают специфические модификации в показателе имеющегося напряжения светового источника.
В подобных случаях ток на выходе сберегает собственную стабильность на самом оптимальном уровне. Изменения при этом не касаются спектрального состава светопотока, а мощность рассеивания держится в пределах номинальных показателей.
Сам блок питания при функционировании в импульсном режиме несёт минимальные потери. Регуляторы данного класса наиболее оптимальны для того, чтобы реализовать компьютерный или цифровой способ управления степенью освещённости.
Основной недостаток таких моделей – повышенный уровень мерцания. Но оно свойственно исключительно дешёвым блокам питания. Подобный эффект вреден для человеческих глаз и может возникнуть даже при небольших уровнях яркости. Долгое слежение за таким световым явлением может вызвать:
- формирование неприятных зрительных ощущений;
- развитие головной боли;
- рост усталости;
- упадок внимательности и остроты зрения.
Чтобы избежать негативного воздействия, лучше отдать предпочтение брендовым блокам питания. Они несколько дороже, но лишены подобного эффекта.
Основные критерии выбора
Чтобы подобрать блок питания светодиодной ленты, нужно обратить внимание на такие ключевые характеристики данного устройства:
- значение выходного напряжения – оно в обязательном порядке должно соответствовать по показателю осветительному прибору;
- показатель мощности устройства – рассчитывается по специальной формуле;
- уровень защиты;
- наличие дополнительных функций.
Выбирая источник питания, также нужно учесть его стоимость. Защищённые от влаги модели будут стоить дороже. На ценообразование влияет метод преобразования устройства и его мощностные показатели.
Метод преобразования
Принцип работы импульсного блока питанияПо способу преобразования блоки питания можно разделить на 3 основных типа:
- линейные;
- бестрансформаторные;
- импульсные.
Источники питания линейного типа изобрели ещё в прошлом столетии. Они активно использовались до начала 2000-х годов, до появления на рынке импульсных устройств. Сейчас практически не применяются.
Бестрансформаторные модели малопригодны для питания светодиодных светильников. Они обладают сложной конструкцией – напряжение 220В в них уменьшается посредством RC-цепи с последующей стабилизацией.
Наибольшую популярность обрёл преобразователь импульсного типа. Его выгодно отличают повышенное значение КПД, небольшая масса и компактные габариты.
Основной серьёзный минус – блок нельзя включать без нагрузки. В противном случае может выйти из строя силовой транзистор. На современных моделях эту проблему решили при помощи обратной связи. В итоге на холостом ходу напряжение на выходе не выходит за пределы допустимого показателя.
Охлаждение
В зависимости от применённой системы охлаждения блоки питания разделяются на 2 типа:
- Активное охлаждение – устройство оснащается внутрикорпусным вентилятором, отвечающим за эффективность охлаждения. Такая конструкция даёт возможность взаимодействовать с достаточно высокими мощностями. При этом вентилятор может гудеть и его периодически нужно чистить, так как с воздушным потоком внутрь корпуса попадает пыль.
- Охлаждение пассивного типа – устройство не оборудуется вентилятором (естественное охлаждение). Такие источники питания очень компактны, но при этом подходят исключительно для использования в быту, так как рассчитаны на малые нагрузки.
Исполнение
Компактный блок питания для светодиодной лентыПо типу исполнения блоки питания разделяются на такие конструкции:
- Малогабаритный пластиковый корпус. Такое устройство внешне схоже с блоками питания от ноутбуков и обладает разборным корпусом из пластика. Модели данного класса функционируют стабильно и будут оптимальным вариантом для использования в сухих помещениях.
- Герметичный корпус из алюминия. Конструкционные особенности, герметичность и прочность используемого материала, позволяют применять такой светодиодный блок в помещениях с повышенной влажностью. Он устойчив к воздействию влаги и выделяется длительным эксплуатационным сроком.
- Корпус из металла с вентиляционными отверстиями. Такие устройства не защищены от внешних воздействий, поэтому монтируются в специальные закрытые коробки. Корпус открытого типа даёт возможность быстро перенастроить блок.
При выборе блока питания нужно обращать внимание не только на его конструктивные особенности, но также на функциональность. Не стоит переплачивать, ведь некоторые дополнительные функции владельцу могут просто не понадобиться.
Выходное напряжение
Данная характеристика устанавливает, в какой номинал напряжения преобразует источник питания исходное сетевое напряжение 220В. Обычно это 12В и 24В постоянного или переменного типа. Наиболее распространёнными являются светодиодные ленты на 12В с напряжением постоянного типа. Соответственно, для них нужен блок питания маркировки DC12V.
Мощность
Потребление светодиодовВ отдельных ситуациях в расчёте мощности источника питания просто нет надобности. Например, если нужно подсоединить 1 метр ленты на светодиодах класса SMD с питанием 12В, подойдёт любой блок с неизменным напряжением на выходе 12В. Если же предполагается более мощная нагрузка, нужно будет воспользоваться формулой расчёта.
Подобрать мощность источника питания можно исходя из максимальной длины светодиодной ленты и от показателя потребления 1 метра изделия. Для облегчения такой задачи производители прописывают требования к источнику питания в инструкции к LED-ленте.
Дополнительные функции
Блок питания с пультом управленияКроме основных характеристик, при выборе блоков питания внимание нужно обращать на наличие в них дополнительных функций:
- могут быть тривиальными и исключительно обеспечивать питание;
- более функциональные модели обладают встроенным диммером;
- отдельные устройства оснащаются инфракрасным датчиком или радиоканалом для управления при помощи пульта ДУ.
Наиболее дорогостоящие источники питания оборудуются сразу диммером и ДУ, что позволяет не загромождать пространство помещения отдельными блоками.
Как рассчитать мощность блока питания для светодиодной ленты
Характеристика светодиодовДля определения требуемой мощности блока питания, нужной в конкретной ситуации, можно прибегнуть к помощи простой схемы расчёта.
Для примера будет рассмотрена популярная лента модели SMD5050 с показателем длины 3 метра, мощностью 14,4В и с плотностью расположения светодиодов 60 шт. на метр длины.
Вначале нужно высчитать потребление энергии лентой: 14,4В х 3м = 43В.
Для учёта потери мощности на проводниках требуется приплюсовать к высчитанной мощности 20% для резерва: 43В х 1,2 = 52В.
Обретённая цифра гласит о том, что наименьшая мощность источника питания для этой ленты должна равняться 52В. Блоки с такими показателями не выпускаются, поэтому цифру нужно округлять в большую сторону – подойдёт устройство на 60В.
Подключение светодиодной ленты
Подключение светодиодной ленты к БППеред установкой на штатное место ленту необходимо подсоединить к блоку питания. Данный процесс несложен и может быть выполнен самостоятельно. Для примера будет рассмотрен блок с корпусом из металла с вентиляционными отверстиями. Такие устройства пользуются наибольшим спросом. Внутри корпуса находится выпрямитель с клеммным модулем, куда собственно и подключают источник освещения.
Полярность подключения
Все блоки питания обладают маркировкой с указанием основного предназначения и его ключевыми характеристиками. Возле всех клеммных винтов находится обозначение для гарантирования правильности подсоединения проводов:
- L – фаза, N – ноль: это вход источника питания. Посредством этих клемм блок подсоединяется к общей сети.
- G – для подсоединения заземления. Если заземление в квартире отсутствует, данная клемма не задействуется.
- +V и -V – это выходные клеммы с преобразованным в 12В напряжением.
Источники питания данного класса оборудуются индикатором работы – лампа зелёного цвета. Также есть специальный механизм поворотного типа, который обозначен как «V adj». Он позволяет немного подкорректировать напряжение – в пределах 12-13В.
Выбор сечения провода
Таблица сечений медных проводов в цепи освещения 12 В длиной до 2 метровВыбор сечения провода крайне важен, ведь от него зависит возможность потери мощности при нагреве осветительного прибора. Если при подсоединении расстояние между источником питания и светодиодной лентой получилось большое, нужно не только элиминировать упадок напряжения на кабеле соединения, но и нивелировать потери мощности, создающиеся этим кабелем.
Чем большим является сечение кабеля, тем меньше утрат мощности при этом наблюдается.
Для подключения светодиодных лент к блоку питания нужен кабель с сечением не меньше 1,5 мм2. Если общая длина кабеля составляет более 10 метров, лучше взять провода большего сечения, к примеру, 2,5 мм2.
Выбор схемы включения
Схема включения светодиодной лентыПеред подключением светодиодной ленты к источнику питания нужно подвести кабеля к месту монтажа. Для таких осветительных приборов используются провода маркировки ВВГ-П 2х1,5 либо же ВВГ 2х2,5. На один край кабеля устанавливают розеточную вилку, а второй зачищают от изоляционного слоя для соединения с клеммами сетевого адаптера.
Очищенные провода вставляются в гнёзда блока питания, после чего фиксируются винтами. Подсоединение выполняется к разъёмам с пометками L и N. К фазе (разъём L) подсоединяется провод с коричневым окрасом. К нулю (разъём N) подключается синий провод.
Главное при подсоединении светодиодной ленты – не перепутать полярность, так как данные источники освещения функционируют от тока постоянного типа.
При подсоединении к блоку питания нескольких лент на светодиодах нужно соблюдать определённые правила.
Каждая лента не должна быть длиннее 5 метров, не важно, цельная она или состоит из нескольких небольших отрезков. Если длина будет большей, проводящие ток дорожки могут перегореть.
Такая схема предполагает, что все осветительные ленты подсоединяются параллельным образом, а не последовательным. При их подсоединении также крайне важно соблюдать правильность полярности.
Отличия блока питания от драйвера
Блоки питания – это источники напряжения, преобразующие стандартные 220В в 12В либо 24В. Данные устройства применяют, в основном, для питания лент на светодиодах и тех модулей, где роль ограничителя выполняет резистор.
Драйверы – это источники тока для светодиодных приборов. Они не маркируются характеристикой «напряжение на выходе». Исключительно ток на выходе и максимальная мощность. Их применяют для автономных светодиодов и модулей, не обладающих ограничителем тока.
Группа продуктовЯзык: Валюта: МенюРекомендованная статья Диапазон передачи мощности Бюллетень E-mail |
|
AHD, HD-CVI, HD-TVI, PAL-КАМЕРА APTI-H52V2-36W - 5 Mpx 3.6 mm Нетто: 33.01 EUR РЕГИСТРАТОР IP NVR2108-4KS2 8 КАНАЛОВ, 4K UHD DAHUA Нетто: 122.95 EUR АНТИВАНДАЛЬНАЯ КАМЕРАAHD, HD-CVI, HD-TVI, PAL APTI-H50V3-2812W 2Mpx / 5Mpx 2.8 ... 12 mm Нетто: 39.56 EUR ДИСК ДЛЯ РЕГИСТРАТОРА HDD-ST4000VX007 4TB 24/7 SkyHawk SEAGATE Нетто: 91.35 EUR Switch PoE APTI-POE1602G-240W 18-ПОРТОВЫЙ Нетто: 130.10 EUR АНТИВАНДАЛЬНАЯ КАМЕРАAHD, HD-CVI, HD-TVI, PAL APTI-H50V3-2812 2Mpx / 5Mpx 2.8 ... 12 mm Нетто: 42.33 EUR РЕКЛАМНЫЙ НАБОР РЕКОРДЕР + ЖЕСТКИЙ ДИСК XVR5116HS-X+2TB 16 КАНАЛОВ DAHUA Нетто: 285.32 EUR Switch PoE APTI-POE0802G-120W 10-ПОРТОВЫЙ Нетто: 64.08 EUR ОПТОВОЛОКОННЫЙ СВАРОЧНЫЙ АППАРАТ AI-9 Нетто: 1410.07 EUR |
что это такое и как он работает?
Давно прошли времена, когда блоки питания на различное оборудование были трансформаторными. Многие молодые люди даже и не знают, как они выглядели. На сегодняшний день очень широкое распространение получил импульсный источник питания (или ИБП), и это не удивительно. Меньшая стоимость, отсутствие посторонних шумов при работе, более компактный размер и в то же время меньшее потребление электроэнергии вследствие более высокого коэффициента полезного действия — все эти преимущества в сумме и решили судьбу трансформаторных блоков, конечно, не в их пользу.
А все-таки, что такое импульсный блок питания? И каким же образом разработчикам удалось добиться подобного результата? Сейчас попробуем найти ответ на этот вопрос, разобраться в достоинствах (а может быть и недостатках) импульсного источника питания, а также понять схему и принцип работы подобного устройства.
Как работает импульсный блок питания
Принцип работы импульсного блока питания в корне отличается от действия обычного, трансформаторного блока питания. Изначально напряжение в 220 В проходит через диодный мост, после чего прямой ток поступает в инвертор, т.е. преобразователь напряжения в токи высокой частоты. Это действие может выполняться либо посредством гальванического отделения питающей сети от входной цепи, либо без такового.
Если гальваническая развязка присутствует, то высокочастотный ток подвергается ей при помощи трансформатора. Причем, чем выше будет частота импульсов, тем эффективнее будет работать трансформатор.
Схемы включения каскадов силовых ключейСамо действие такого БП основывается на применении трех элементов, которые содержит схема импульсного блока. Они четко взаимодействуют между собой в процессе работы. Элементы эти следующие:
- контроллер широтно-импульсного модулятора;
- транзисторный блок, который может быть включены по одной из схем — мостовой, полумостовой или же по схеме со средней точкой;
- импульсный трансформатор, у которого имеется первичная и вторичная обмотки, смонтированные на магнитопроводе.
При условии отсутствия гальванической развязки высокочастотного трансформатора тока в схеме нет, а сигнал подается сразу на фильтры НЧ. По сути, все схемы импульсных источников питания идентичны.
Далее попробуем более детально разобрать, как работает каждый из этих трех элементов.
Контроллер широтно-импульсной модуляции
Наверное, не нужно объяснять, что контроллер — это управляющее чем-либо устройство. Если разбирать именно ШИМ в импульсном блоке, то тут закладывается задача создания токов с одной частотой, но с различной длительностью включения. Логической единицей выступает, естественно, сам импульс, ну а нулем — его отсутствие.
Импульсы обусловлены одинаковым периодом колебания, т.е. амплитуда их величин равна. А вот работой электронной схемы позволяет управлять именно отношение продолжительности к самому периоду.
Для того чтобы проще было понять изложенное, можно обратиться к схематическому изображению.
Импульсы, создаваемые ШИМПринимая во внимание, что частота тока в сети 220 В равна 50 Гц, можно себе представить, насколько сложна работа, выполняемая контроллером и модулятором ШИМ. Обычно на его выходе образуется ток, с частотой порядка 30-60 кГц.
Вообще, широтно-импульсная модуляция в наше время применяется во многих устройствах. И самый яркий тому пример — инверторные сварочные аппараты, где как раз при помощи ШИМ удалось снизить габариты и массу устройства в десятки раз по сравнению с обычными трансформаторными агрегатами.
Транзисторный блок, или каскад силовых ключей
Мощные полевые или IGBT-транзисторы образуют каскад, который также может управляться и менее мощными элементами либо интегральными драйверами. Собраны эти транзисторы могут быть в одну из трех схем: мостовую, полумостовую либо со средней точкой.
Вот, собственно, и все, что можно сказать о силовых ключах импульсного блока питания.
Импульсник, или блок без гальваники
Импульсник, т.е. высокочастотный трансформатор, может быть собран на основе ферритового или альсиферового кольца, на котором и размещены первичная и вторичная обмотки. Они могут выдавать высокочастотный ток с импульсом до 100 кГц. Их работу дополняют различные фильтрующие элементы и диоды.
Если же гальваническая развязка в подобном БП отсутствует, то сигнал напрямую будет поступать на низкочастотный фильтр без какой-либо трансформации. Наглядно это показано на схематическом изображении.
Импульсный блок питания без гальванической развязкиПреимущества и недостатки ИБП
Конечно, как и любое другое электронное устройство, подобный блок питания имеет как свои достоинства, так и недостатки. Конечно, т.к. этот БП является более высокотехнологичным прибором, положительных качеств в нем намного больше, чем отрицательных, но все же есть необходимость объективного рассмотрения, а потому умалчивать о минусах тоже не стоит. Но все же, для начала перечислим плюсы, а после будем разбирать их подробнее.
Основными и несомненными достоинствами импульсного блока питания являются:
- более легкий вес;
- высокий коэффициент полезного действия;
- низкая цена;
- широкий диапазон токов;
- присутствие защиты от различных факторов.
Ну а теперь остановимся на каждом из пунктов подробнее.
Преимущества
- Малый вес и габариты достигаются за счет импульсной технологии, повышения частоты тока, а значит и уменьшения трансформаторных установок. В ИИП не требуется крупногабаритных радиаторов и обмоток. Также сокращена и емкость конденсаторов. К тому же схема выпрямления упрощается до элементарной — однополупериодной.
- Естественно, что у трансформаторных блоков питания большая часть энергии уходит на прогрев, в результате чего падает КПД. У импульсных БП незначительная часть этой энергии теряется на каскадах силовых ключей. После уже все транзисторы стабильны, а потому коэффициент полезного действия у таких БП может достигать 97%.
- Стоимость этих устройств снижается за счет расширения производства элементов для сборки подобной схемы. Они и непосредственно после появления на рынке стоили немного, а сейчас, когда ими насыщены все области продаж, их стоимость падает все ниже. Можно добавить, что и полупроводники возможно использовать менее мощные благодаря управляемым ключам.
- Широкий диапазон достигается как раз благодаря импульсным технологиям. Допускается питание разной частоты и амплитуды, что не может не сказаться и на расширении областей их применения.
- На основании того, что модули полупроводников достаточно малы, появляется возможность встраивания дополнительных блоков защиты (от короткого замыкания, перегрева, перегрузки и т.п.).
Недостатки
Если разговор зашел о плюсах, то не стоит оставлять без внимания и минусы, хотя их и ничтожно мало. Основным недочетом в работе импульсных блоков питания можно назвать высокочастотные помехи. Они естественны, т.к. само устройство работает именно на них. Как раз по этой причине используется различное шумоподавление, которое, впрочем, до конца проблему не решает.
А потому подобные ИБП не используются на некоторых высокоточных измерительных приборах.
Еще одним недостатком можно назвать некорректную работу на сверхнизких и сверхвысоких частотах — такие «стрессовые» токи могут либо вывести прибор из строя, либо на выходе он будет выдавать искаженное напряжение, не соответствующее заявленным техническим характеристикам.
Подведем итог
Очень хотелось объяснить, что означает импульсный блок питания для чайников, но вопрос этот сложен, а потому получилось ближе к научному пояснению. Если обобщить изложенную информацию, то импульсные блоки питания действительно стали прорывом в своей области электроники. По сравнению с трансформаторными блоками, такие ИБП намного экономичнее, производительнее, меньше и легче. И что самое интересное — при всех своих преимуществах они еще и дешевле аналоговых.
Конечно, технологии не стоят на месте, прогрессируя с каждым годом. Возможно, что скоро появятся еще более высокотехнологичные зарядные устройства или блоки питания. Но на сегодняшний день ИБП являются верхом инженерной мысли, а потому они стоят нашего внимания.
Похожие статьи:Регулировка напряжения в импульсном блоке питания, иип принцип работы
Принцип работы импульсного блока питания.
Существуют блоки питания (БП) линейные и импульсные.
Линейный БП состоит из силового трансформатора, выпрямителя и стабилизатора. Главным недостатком линейного БП — это наличие низкочастотного силового трансформатора с тяжелым и массивным железным сердечником и сетевой обмоткой с большим числом витков.
Это следствие того, что работать силовой трансформатор вынужден на частоте электросети 50 Гц. Уже при повышении частоты сети до 400 Гц (на некоторых промышленных предприятиях, на оборонных объектах) его массо-габиритные параметры резко снижаются. К тому же, при увеличении частоты будет увеличена и частота пульсаций выпрямленного напряжения, а значит и для эффективного сглаживания потребуется конденсатор куда меньшей емкости.
Теперь понятно, что если мы хотим компактный, легкий и мощный БП, то нужно каким-то образом повысить частоту, на которой будет работать трансформатор. Ну и если уж повышать её, то не до 400 Гц, а уж сразу лучше до нескольких десятков или сотен кГц. Однако, повысить частоту сети непосредственно практически сложно. Куда легче вообще отказаться от переменного тока, — взять и сразу же выпрямить ток, поступающий из розетки, а затем уже из него с помощью генератора сделать переменный ток любой частоты.
На рисунке 1 показана упрощенная схема импульсного блока питания.
Ток от электросети частотой 50 Гц поступает на диодный мост VD1, выпрямляется, сглаживается конденсатором С1 и на выходе получаем около 300V, которым питается высокочастотный импульсный генератор ШИМ (ШИМ — это аббревиатура названия: «широко — импульсная модуляция»). Через первичную обмотку 1 подается питание на мощный выходной транзистор VТ1, который выполняет роль усилителя и ключа подачи импульсов в трансформатор.
Генератор вырабатывает прямоугольные импульсы в несколько десятков кГц и подаются на базу VТ1. Транзистор открывается и через него и обмотку 1 пойдет нарастающий импульсный ток. На вторичной обмотке 2 наводится ЭДС самоиндукции и на выходе диода VD2 появится положительное напряжение.
Трансформатор импульсного блока питания работает на частоте значительно выше сетевых 50 Гц и поэтому он имеет малое сходство с привычным силовым трансформатором. Он компактный с ферритовым сердечником и обмотками с небольшим числом витков. И при мощности в сотню ватт весит не более 100 граммов.
Если будем увеличивать длительность импульсов приложенных к базе VТ1, во вторичной цепи будет увеличиваться напряжение, т.к энергии будет отдаваться больше, а если уменьшать длительность, — будет уменьшаться. Таким образом, изменяя длительность импульсов, поступающих на базу VT1, можно изменять напряжение вторичной обмотки Т1 и, следовательно, осуществлять стабилизацию на выходе импульсного блока питания. Для этого нужно устройство, которое будет каким-то образом измерять напряжение на выходе вторичной обмотки и регулировать соответствующим образом ширину импульсов, поступающих на базу VT1. В качестве такого устройства используется ШИМ контроллер.
В состав ШИМ контроллера входит задающий генератор импульсов, схема защиты и контроля, логическая схема, которая и управляет длительностью импульсов, поступающих на базу выходного транзистора.
Для стабилизации выходного напряжения импульсного блока питания, контроллер «должен знать» его величину при любом его изменении. Для этих целей используется цепь слежения (или цепь обратной связи) и она может быть выполнена самыми разными способами.
Если нет необходимости в гальванической развязки от сети, то напряжение с выходного выпрямителя (как показано на рис. 1) непосредственно подается на вход слежения (или на вход компаратора) генератора ШИМ (или ШИМ — контроллера). Если же необходима развязка, то, как промежуточное звено, может быть использована оптопара. Такой способ слежения называется непосредственным. Однако, существует и косвенный метод слежения (рис.2).
Суть косвенного метода слежения в том, что для измерения выходных параметров импульсного блока питания используется дополнительная обмотка 3 трансформатора с выпрямителем на выходе. Так как все обмотки взаимосвязаны, то эта дополнительная обмотка 3 и работает как некий датчик выходных параметров импульсного блока питания.
Практически, ШИМ-контроллер работает таким образом: он изменяет широту импульсов, подаваемых на базу транзистора таким образом, чтобы на его контрольном входе всегда было одно и то же напряжение. Так что регулировать выходное напряжение можно не только изменяя числа витков обмоток, но и с помощью делителя в контрольной цепи, например, переменным резистором R3 (рис.2). Меняя напряжение на контрольном входе контроллера он изменяет широту импульсов так, чтобы это напряжение на его контрольном входе восстановить.
Со стабилизацией все понятно. Теперь вопрос о защите от перегрузки импульсного блока питания. Ведь при превышении тока через транзистор он может выйти из строя.
Обычно используют датчики тока, представляющие собой мощный резистор, включенный в эмиттерную цепь транзистора. При прохождении тока через VT1 и R1 (рис.3) на резисторе создается падение напряжения, которое подается на вход защиты от КЗ ШИМ-контролера. Если оно на резисторе превышает некоторую величину, то контроллер выключает генератор и на базу транзистора не подается сигнал и транзистор не включается.
После знакомства с работой импульсного блока питания можно расширить перечень его преимуществ перед линейными блоками питания.
Кроме уменьшения веса трансформатора и конденсаторов у импульсных блоков будет выше КПД. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований. В импульсных блоках питания наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.
Также, благодаря использованию полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию импульсных блоков удается встраивать малогабаритные защиты от перегрузки, стабилизаторы выходного напряжения и др.
Но кроме преимуществ импульсные блоки питания имеют и недостатки. Вот основные:
первый — высокочастотные помехи. Так как импульсные блоки работают по принципу преобразования ВЧ импульсов и они излучают помехи для точной цифровой аппаратуры, которые не всегда можно подавить;
второй — импульсные блоки питания имеют ограничение на минимальную мощность нагрузки. Если мощность нагрузки ниже минимальной, блок питания либо не запускается, либо параметры выходных напряжений (величина, стабильность) могут не укладываться в допустимые отклонения.
Что такое импульсный блок питания и чем он отличается от обычного аналогового
Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…
Для этого создаются дополнительные элементы: блоки питания, преобразующие напряжение одного вида в другой. Они могут быть:
-
встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;
-
или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.
В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:
1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;
2. импульсных блоках питания.
Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.
Трансформаторные блоки питания
Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.
После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.
За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.
Импульсные блоки питания (ИБП)
Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:
-
доступностью комплектования распространенной элементной базой;
-
надежностью в исполнении;
-
возможностями расширения рабочего диапазона выходных напряжений.
Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.
В состав основных деталей источников питания входят:
-
сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;
-
накопительная фильтрующая емкость;
-
ключевой силовой транзистор;
-
задающий генератор;
-
схема обратной связи, выполненная на транзисторах;
-
оптопара;
-
импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;
-
выпрямительные диоды выходной схемы;
-
цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;
-
фильтрующие конденсаторы;
-
силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;
-
выходные разъемы.
Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.
Как работает импульсный блок питания
Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.
Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.
Входной диодный мост выпрямляет проходящие через него синусоиды, которые затем преобразуются транзисторной схемой в импульсы высокой частоты и прямоугольной формы с определенной скважностью. Они могут преобразовываться:
1. с гальваническим отделением сети питания от выходных цепей;
2. без выполнения подобной развязки.
Импульсный блок питания с гальванической развязкой
В этом случае высокочастотные сигналы направляются на импульсный трансформатор, осуществляющий гальваническую развязку цепей. За счет повышенной частоты увеличивается эффективность использования трансформатора, снижаются габариты его магнитопровода и вес. Чаще всего для материала подобного сердечника применяют ферромагнетики, а электротехнические стали в этих устройствах практически не используются. Это также позволяет минимизировать общую конструкцию.
Один из вариантов исполнения схемы импульсного блока питания с трансформаторной развязкой цепей показан на картинке.
В таких устройствах работают три взаимосвязанных цепочки:
1. ШИМ-контроллер;
2. каскад из силовых ключей;
3. импульсный трансформатор.
Как работает ШИМ-контроллер
Контроллером называют устройство, которое управляет каким-либо технологическим процессом. В рассматриваемых нами блоке питания им выступает процесс преобразования широтно-импульсной модуляции. В его основу заложен принцип выработки импульсов одинаковой частоты, но с разной длительностью включения.
Подача импульса соответствует обозначению логической единицы, а отсутствие — нуля. При этом они все равны по величине амплитуды и частоте (имеют одинаковый период колебаний Т). Продолжительность включенного состояния единицы и его отношение к периоду меняются и позволяют управлять работой электронных схем.
Типовые изменения ШИП-последовательностей показаны на графике.
Контроллеры обычно создают подобные импульсы с частотой 30÷60 кГц.
В качестве примера можно привести контроллер, выполненный на микросхеме TL494. Для настройки частоты выработки его импульсов используется схема, состоящая из резисторов с конденсаторами.
Работа каскада из силовых ключей
Он состоит из мощных транзисторов, которые подбираются из биполярных, полевых или IGBT-моделей. Для них может быть создана индивидуальная система управления на других маломощных транзисторах либо интегральных драйверах.
Силовые ключи могут быть включены по различным схемам:
Импульсный трансформатор
Первичная и вторичная обмотки, смонтированные вокруг г магнитопровода из феррита или альсифера, способны надежно передавать высокочастотные импульсы с частотой вплоть до 100 кГц.
Их работу дополняют цепочки из фильтров, стабилизаторов, диодов и других компонентов.
Импульсные блоки питания без гальванической развязки
В импульсных блоках питания, разработанных по алгоритмам, исключающим гальваническое разделение, высокочастотный разделительный трансформатор не используется, а сигнал поступает сразу на фильтр нижних частот. Подобный принцип работы схемы показан ниже.
Особенности стабилизации выходного напряжения
Все импульсные блоки питания имеют в своем составе элементы, осуществляющие отрицательную обратную связь с выходными параметрами. За счет этого они обладают хорошей стабилизацией выходного напряжения при изменяющихся нагрузках и колебаниях питающей сети.
Способы реализации обратной связи зависят от применяемой схемы для работы блока питания. Она может осуществляться у блоков, работающих с гальванической развязкой за счет:
1. промежуточного воздействия выходного напряжения на одну из обмоток высокочастотного импульсного трансформатора;
2. применения оптрона.
В обоих случаях эти сигналы управляют скважностью импульсов, подаваемых на выход ШИМ-контроллера.
При использовании схемы без гальванической развязки обратная связь обычно создается за счет подключения резистивного делителя напряжения.
Преимущества импульсных блоков питания над обычными аналоговыми
При сравнении конструкций блоков с равными показателями выходных мощностей импульсные блоки питания обладают следующими достоинствами:
1. уменьшенный вес;
2. повышенный КПД;
3. меньшая стоимость;
4. расширенный диапазон питающих напряжений;
5. наличие встроенных защит.
1. Пониженный вес и габариты импульсных блоков питания объясняются переходом от преобразований низкочастотной энергии мощными и тяжелыми силовыми трансформаторами с управляющими системами, расположенными на больших радиаторах охлаждения и работающими в постоянном линейном режиме, к технологиям импульсного преобразования и регулирования.
За счет повышения частоты обрабатываемого сигнала сокращается емкость конденсаторов у фильтров напряжения и, соответственно, их габариты. Также упрощается их схема выпрямления вплоть до перехода к самой простой — однополупериодной.
2. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований.
В импульсных блоках наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.
3. Цена на импульсные блоки питания постепенно снижается за счет постоянно проводимой унификации элементной базы, которая производится широким ассортиментом на полностью механизированных предприятиях со станками-роботами. К тому же режим работы силовых элементов на основе управляемых ключей позволяет использовать менее мощные полупроводниковые детали.
4. Импульсные технологии позволяют запитывать блоки питания от источников напряжения с разной частотой и амплитудой. Это расширяет область их применения в условиях эксплуатации с различными стандартами электрической энергии.
5. Благодаря использованию малогабаритных полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию импульсных блоков удается надежно встраивать защиты, контролирующие возникновение токов коротких замыканий, отключения нагрузок на выходе прибора и другие аварийные режимы.
У обычных трансформаторных блоков питания такие защиты создавались на старой электромеханической, релейной, полупроводниковой базе. Применять сейчас для них цифровые технологии в большинстве схем не имеет смысла. Исключение составляют случаи питания:
-
маломощных цепей управления сложной бытовой техники;
-
слаботочных устройств управления высокой точности, например, используемых в измерительной технике или метрологических целях (цифровые счетчики электроэнергии, вольтметры).
Недостатки импульсных блоков питания
В/ч помехи
Поскольку импульсные блоки питания работают по принципу преобразования высокочастотных импульсов, то они в любом исполнении вырабатывают помехи, транслируемые в окружающую среду. Это создает необходимость их подавления различными способами.
В отдельных случаях помехоподавление может быть неэффективным, что исключает использование импульсных блоков питания для отдельных типов точной цифровой аппаратуры.
Ограничения по мощности
Импульсные блоки питания имеют противопоказание к работе не только на повышенных, но и пониженных нагрузках. Если в выходной цепи произойдет резкое снижение тока за предел минимального критического значения, то схема запуска может отказать или блок станет выдавать напряжение с искаженными техническими характеристиками, не укладывающимися в рабочий диапазон.
А в этой статье читайте про ремонт импульсных блоков питания.
Из чего состоит импульсный блок питания часть 3
Рубрика: Информация для начинающих / Моё видео / Блоки питания; kirich; Опубликовано: 9-06-2017, 11:09 Что вообще такое — инвертор.
Данный узел предназначен для преобразования постоянного тока в переменный. В данном случае мы имеем на входе 310 Вольт постоянного тока, которые надо подать на трансформатор. Но так как трансформаторы не хотят работать на постоянном токе, то и нужен инвертор.
Инвертор состоит из двух основных узлов.
ШИМ контроллера.
А также выходных высоковольтных транзисторов. Попутно весьма кстати попал в кадр трансформатор управления этими транзисторами.
Впрочем инвертор может выглядеть заметно проще, например у известного блока питания.
Микросхема, жменька деталей, вот и весь ШИМ контроллер.
В данном случае схемотехника блока питания, а также его мощность заметно отличаются от предыдущего варианта, потому транзистор всего один.
Еще один вариант, слева конденсаторы входного фильтра, справа трансформатор, между ними инвертор.
Так как на силовом транзисторе выделяется значительная мощность, то чаще всего он устанавливается на радиатор.
Но давайте немного отвлечемся на историю, с чего собственно все начиналось. Возможно конечно начиналось не с этого, потому точнее будет сказать, с чего начинал я.
Как вы понимаете, раньше не было ШИМ контроллеров, а иногда и обычную «кренку» купить была проблема, но прогресс не стоял на месте и радиолюбители пытались заменить большие трансформаторы на импульсные блоки питания.
На схеме показан типичный автогенератор, но были схемы и с простой логикой в качестве генератора импульсов.
Тогда схемы подобных блоков питания часто встречались в журнале Радио в контексте усилителей мощности. Но мое знакомство было на примере блока питания для Синклера. Кстати на фото один из них, который я оставил себе на память 🙂
Правда вышеприведенная схема требовала подбора транзисторов и в моем случае сильно перегревалась.
Схема с автогенератором считается самой простой, в данном примере она даже не имеет стабилизации выходного напряжения.
При всем современном разнообразии микросхем показанная выше схема также нашла себя в современном мире, в качестве «электронного трансформатора» для галогенных ламп.
Правда постепенно такие лампы заменяют на светодиоды, но все равно электронные трансформаторы довольно популярны, в основном из-за свой простоты и дешевизны.
Уже через довольно большое время подобные схемы получили второе дыхание. Известная фирма International Rectifier выпустила весьма простую микросхему для электронного балласта люминесцентных ламп. Но выяснилось, что данная микросхема отлично работает в качестве задающей для импульсного БП. К ним относятся микросхемы IR2151, IR2153 и подобные.
Вообще некоторые радиолюбители делали и стабилизированные блоки питания на базе этой микросхемы, но работает это не всегда корректно.
По сути для этой микросхемы надо только несколько мелких деталей и пара полевиков, вот и вся схема инвертора. Именно с применением этой микросхемы я делал первичный блок питания для своего лабораторного.
Кстати, именно эту микросхему я рекомендую для питания усилителей мощности, как неприхотливую и довольно надежную. А также хочу сказать, что нерегулируемые БП лучше себя ведут в плане шумов.
Так выглядит трехканальный блок питания с мощностью в 300 Ватт и ШИМ регулировкой вентилятора. Более полная информация есть в обзоре лабораторника.
Также довольно часто можно встретить и однотактные блоки питания на основе автогенератора. Особенно часто они попадались в АТХ боках в качестве дежурки.
Также они могут попасться и в очень бюджетных зарядных для телефонов. Автогенератор является самым простым типом инвертора.
Хотя бывают и исключения, например блок питания довольно дорогого фирменного кондиционера также имел в своем составе автогенератор, правда сделан довольно качественно и имеет стабилизацию напряжения.
В следующий раз мне попались импульсные блоки питания в новых тогда телевизорах. После больших и тяжелых трансформаторов это был прогресс.
Схемотехника правда была жуткая, ремонтопригодность слабая, да и габарит я не назвал маленьким. На фото блок питания мощностью 80 Ватт.
Сначала они также делались по схеме с автогенератором, но потом начали ставить микросхему, правда особо ничего это не изменило.
Вот и подошли мы к теме более современных инверторов, так как на этом этапе блоки питания вышли на тот схемотехнический уровень, который мы сейчас наблюдаем в современных блоках.
Да, поднимали частоту, расширяли диапазон работы, мощность, но суть осталась той же что и была 30 лет назад. Правда так как тогда интегральные ШИМ контроллеры были слабо развиты, то делали их в виде сборок.
Впрочем и в современных блоках питания не стесняются применять такие вот унифицированные модули, по своему это даже удобно.
Типовая блок схема распространенных моделей инверторов состоит из пяти узлов.
1. Узел контроля напряжения питания, защита от работы при пониженном и повышенном напряжении.
2. Вспомогательное питания или цепь запуска.
3. Силовой элемент и датчик тока. Этот узел может заметно отличаться в зависимости от топологии блока питания.
4. Собственно ШИМ контроллер, мозги блока питания.
5. Узел основного питания ШИМ контроллера.
Рассмотрим как происходит запуск большинства блоков питания, эта информация может помочь в поиске неисправностей.
После того как подали высокое напряжение, оно через резистор попадает в цепь питания ШИМ контроллера.
Как только напряжение достигнет порога включения ШИМ контроллер запускается, питаясь в это время от конденсатора в цепи питания.
Если ваш блок питания не подает признаков жизни, проверьте, есть ли питание на входе ШИМ контроллера, иногда эти резисторы уходят в обрыв.
Затем ШИМ контроллер проверяет, в порядке ли питающее напряжение. Эта цепь есть далеко не у всех инверторов, потому если ее нет, то можно сразу перейти к следующему шагу.
Если с питанием все отлично, то контроллер начинает выдавать управляющие импульсы силовому транзистору. попутно при этом контролируется ток в цепи этого транзистора и если он превышен, то ШИМ контроллер переходит в режим защиты.
Если все нормально, то буквально после нескольких тактов на выходе цепи основного питания появляется рабочее напряжение, которое и питает контроллер. Кстати это один из узлов отказа, если питания нет, то блок питания будет работать в старт-стоп режиме.
Если все этапы запуска прошли корректно, то дальше вступает в дело ШИМ стабилизация. В данном случае я всегда сравниваю ее с бочкой, в которую мы порциями подаем воду и сливая ее через другой кран с разным напором. Задача контроллера поддерживать всегда один и тот же уровень воды в бочке при том, что вводной кран может быть только в двух состояниях, открыто и закрыто.
Кстати, многие видели на выходе блоков питания резистор, подключенный параллельно питанию, он нужен чтобы обеспечить некую минимальную нагрузку, так как блоку питания тяжело работать при очень малой ширине импульса.
Для примера ширина импульсов при небольшой нагрузке.
Если увеличить нагрузку, то ШИМ контроллер увеличит подачу энергии в трансформатор, а через него в нагрузку.
Даже если к примеру нагрузить блок питания на полную, то ширина импульсов не будет полной.
Запас необходим для компенсации снижения входного напряжения.
Если снизить входное напряжение еще больше, то ШИМ контроллер просто выставит максимальную ширину импульса. Кстати, ШИМ контроллеры блоков питания не формируют 100% заполнение, так как всегда необходимо «мертвое» время для защиты выходных транзисторов. В это время выходные транзисторы закрыты.
Для обратноходовых однотактных блоков питания, а именно они используются в качестве блоков питания небольшой мощности, максимальное заполнение составляет 50%.
Самым первым ШИМ контроллером, с которым я познакомился, была легендарная TL494. Микросхема очень старая, но так получилось, что у разработчика дешевый и очень универсальный контроллер и даже спустя много лет и при наличии современных решений он еще весьма широко применяется в блоках питания.
Выпускается она многими фирмами и иногда под разными названиями, например аналог от Самсунга называется КА7500.
На первый взгляд его внутреннее устройство может показаться довольно сложным, но на самом деле таковым не является.
Если немного упростить картинку, то будет примерно так:
1 и 2, стабилизатор питания и источник опорного напряжения.
3. Генератор импульсов, задает частоту работы контроллера.
4. Два компаратора, один обычно используется для стабилизации тока, второй — напряжения.
5. Задатчик мертвого времени, т.е. минимальной паузы между открытым состоянием выходов.
6. Узел сложения всех сигналов.
7. Триггер, который управляет выходными ключами и задает логику работы, двухтактный или однотактный режим. В некоторых аналогах этот триггер сбоил на частотах ниже 100 Гц, чем доставлял немало сюрпризов строителям повышающих инверторов в 220 Вольт.
Микросхема выполнена в корпусе с 16 выводами. Сама по себе надежна, но иногда в блоках питания АТХ, где ее питание идет от источника дежурного напряжения, выходит из строя после его ухода в разнос, когда высыхал конденсатор по выходу 5 Вольт. Пробивало стабилизатор опорного напряжения и на выходе БП запросто могло появиться высокое напряжение. Потому при проверке прежде всего смотреть наличие 5 Вольт на выводе 14.
В блоках питания АТ, а потом в распространенных китайских БП в кожухе она питается от своего же силового трансформатора. Запуск происходит за счет резисторов в базовых цепях силовых ключей. При включении они сначала входят в автогенераторный режим, на выходе трансформатора появляется небольшое напряжение, микросхема начинает работать и перехватывает управление на себя. Потому если БП не запускается, то в первую очередь проверяем резисторы выделенные на схеме резисторы.
Вторым, не менее легендарным ШИМ контроллером является семейство однотактных UC384х.
Думаю что вы могли из встречать раньше в блоках питания и преобразователях напряжения.
Внутреннее устройство весьма похоже на TL494, но немного отличается. Для начала у микросхемы только один выход, а не два.
Кроме того компараторы привязаны к определенному напряжению, заданному внутри микросхемы, а не универсальные.
Ну и конечно ключевая особенность, микротоковый старт. пока микросхема не начнет работать, он потребляет очень маленький ток, потому запустить ее можно прямо от входного напряжения через резистор, TL494 так не умеет.
Чтобы запуск проходил корректно, у микросхемы есть пороговая схема определяющая напряжение включения и выключения микросхемы. Существует два варианта, около 9 и 15 Вольт.
Кроме того микросхема может иметь 50 и 100% рабочий цикл, первая идет в блоки питания, вторая в преобразователи напряжения.
Так получается четыре варианта исполнения этого контроллера.
Микросхема выпускается в разных корпусах, но наиболее распространен корпус с восемью выводами.
Типовая схема блока питания с этой микросхемой выглядит примерно так.
Сейчас на рынке есть много блоков питания с другими микросхемами, но если посмотреть на их схему, то вы увидите очень много общего, все те же узлы и элементы. Отличия если и есть, то они минимальны.
Инверторы блоков питания могут иметь разную топологию, и об этом я обязательно расскажу отдельно, но большинство выполнено по схемотехнике флайбек или полумост, две верхние схемы на чертеже. Собственно все описанные сегодня блоки питания работают именно так.
Но вернемся к ШИМ контроллерам. Перед этим я описывал варианты, когда ШИМ контроллер отдельно, а силовой узел отдельно. но также получили распространение и полностью интегрированные контроллеры, например серии TOP от Power integrations где практически все собрано в одном корпусе.
Не так давно мне даже попалась подделка, причем что интересно, она слева, с лазерной маркировкой, справа оригинал.
Распространение они получили благодаря простейшей схемотехнике, где в простом варианте блок питания состоит буквально из нескольких деталей.
Потом появились более продвинутые контроллеры, где можно задавать напряжение включения и отключения, а также ограничение выходной мощности. Но при желании их можно перевести в трехвыводный режим, соединив выводы как было на фото раньше.
Но в любом случае данные контроллеры гораздо умнее и имеют комплекс защит от разных проблем, например они выдерживали напряжение более 300 Вольт по входу просто блокируя свою работу.
Но секрет их популярности был также и в удобной программе расчета, которую предоставлял производитель. Она позволяла рассчитать все, вплоть до укладки обмоток трансформатора. А при обнаружении проблем в расчетах, выдавала подсказки.
Производитель предоставлял варианты применения своих микросхем в виде примеров. Был даже вариант компьютерного блока питания, но как-то не пошло.
Зато в небольших блоках питания, например мониторов, он встречаются весьма часто.
Кроме того я и сам их очень активно использую уже наверное лет 15.
Китайские производители также не отстают, выпуская свои варианты подобных микросхем.
Которые довольно успешно применяют в небольших блоках питания
Кстати, при желании можно использовать ШИМ контроллеры и без обратной связи от выходного напряжения, используя обмотку питания самого контроллера. Схема упрощается, но стабильность конечно будет немного ниже чем при правильной обратной связи.
В общих чертах на этом все. Вообще мне иногда кажется, что чем больше я рассказываю, тем больше остается за кадром, что еще хотелось бы рассказать более подробно, но не успеваешь. Потому скорее всего будут еще выпуски по отдельным узлам и принципам работы.
Видео получилось слишком длинным, даже сам не ожидал, и это при том, что еще почти ничего не сказал за ключевые транзисторы и часть даже вырезал, наверное болтаю слишком много 🙁
Несколько ссылок, на полезные обзоры, которые упоминались в видео.
Неплохой модуль DC-DC ZXY6005S или лабораторный блок питания своими руками
12 Вольт 6-8 Ампер блок питания, который приятно удивил
12 Вольт 5 Ампер блок питания или как это могло быть сделано
DC-DC преобразователь, как это иногда бывает
S-180-12 180W 12V / 15A блок питания в непривычном формфакторе
36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
48 Вольт, 5 Ампер и 240 Ватт или блок питания который смог удивить
Блоки питания, маленькие и очень маленькие
Как настроить импульсный блок питания
В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.
Конструктивные особенности и принцип работы
Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:
- Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
- Импульсный принцип.
Рассмотрим, чем отличаются эти два варианта.
БП на основе силового трансформатора
Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.
Упрощенная структурная схема аналогового БП
Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.
Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.
Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.
Понижающий трансформатор ОСО-0,25 220/12
Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.
Импульсные устройства
Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.
Рисунок 3. Структурная схема импульсного блока питания
Рассмотрим алгоритм работы такого источника:
- Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
- Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
- На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
- Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.
В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.
Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.
Как работает инвертор?
ВЧ модуляцию, можно сделать тремя способами:
- частотно-импульсным;
- фазо-импульсным;
- широтно-импульсным.
На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.
Структурная схема ШИМ-контролера и осциллограммы основных сигналов
Алгоритм работы устройства следующий:
Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).
Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.
Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.
В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.
Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.
Сильные и слабые стороны импульсных источников
Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:
- Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
- Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
- Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
- Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
- Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.
К недостаткам импульсной технологии следует отнести:
Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.
Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.
Сфера применения
Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:
- различные виды зарядных устройств; Зарядки и внешние БП
- внешние блоки питания;
- электронный балласт для осветительных приборов;
- БП мониторов, телевизоров и другого электронного оборудования.
Импульсный модуль питания монитора
Собираем импульсный БП своими руками
Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.
Принципиальная схема импульсного БП
Обозначения:
- Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
- Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
- Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
- Транзистор VT1 – KT872A.
- Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
- Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
- Предохранитель FU1 – 0.25А.
Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.
СБОРКА И НАЛАДКА ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА IR2153 IR2155
Практическую часть статьи рассмотрим на примере схемы №2 первой части сатьи и чтобы не перепрыгивать туда-сюда расположим здесь принципиальную схему данного блока питания:
Принципиальная схема импульсного блока питания на микросхеме IR2153 (IR2155)
Начинать сборку все равно с чего – либо с монтажа элементов на плату, либо с изготовления моточных деталей. Мы начнем с монтажа, поэтому лучше изучить чертеж расположения деталей повнимательней, к тому же некоторые элементы отличаются от предложенных на принципиальной схеме.
Например номиналы резисторов R16 и R18 отличаются чуть ли не в полтора раза. В данном случае номиналя этих резисторов не принципиальны и могут располоагаться в пределах от 33 кОм до 100 кОм, поскольку служать прежде всего для разрядки конденсатора С4 при снятии напряжения питания. Второстепенную роль, которую они выполняют, это формировании виртуального нуля, т.е. создания половины первичного напряжения, что немного предпочтительней простого соеднинения С13 и С14 с шинами питания.
Резисторы R14 и R17 – формируют небольшую задержку немного увеличивая время реакции системы защиты. Номиналы этих резисторов могут располагаться от 33 Ом до 180 Ом.
С13 и С14 – предназначены для развязки по постоянному напряжению обмотки трансформатора, на схеме 1 мкФ, на плате 2,2 мкФ. При частоте преобразования 60 кГц реактивное сопротивление конденсатора на 1 мкФ будет составлять Хс = 1 / 2пFC = 5,3 Ома, учитывая то, что по "схемному" вариант по переменному напряжению получается паралельное соединение, т.е. получается 2 мкФ, то реактивное сопротивление составит 2,7 Ома. При протекании через это сопротивление тока в 2 А на конднесаторе будет условное "падение" напряжения всего в 2,7 Ома х 2 А = 5,4 В, что составляет 1,8 %. Другими словами выходное напряжение блока питания будет изменяться менее чем на 2 % под нагрузкой и без нее за счет реактивного сопротивление конденсаторов. При использовании конденсаторов на 2,2 мкФ в качестве С13 и С14 реактивное сопротивление составляет 1,2 Ома и под нагрузкой оно изменится на 0,8 %. Учитывая то, что напряжениесети может колебаться до 7% и это считается нормой изменения в 0,8 – 2 % врядли кто заметит, поэтому можно использовать конденсаторы от 1 мкФ до 4,7 мкФ, правда в эту плату габариты емкостей на 4,7 мкФ уже не будут слишком велики.
Сопротивление R20 может колебаться в гораздо бОльших пределах, поскольку его номинал зависит от потребляемого вентилятором принудительного охлажедения и полученным в конечном итоге выходного напряжения.
Сомнения в итоговом напряжении не напрасны, поскольку силовой трансформатор высокочастотный и имеет небольшое количество витков, а мотать дробные части витка довольно проблематично. Для примера рассмотрим случай, когда первичная обмотка составляет 17 витков. Прилагаемое к ней напряжение равно 155 В (после выпрямителя на VD1 получается 310 В, следовательно половина напряжение питания и есть 155 В). Воспользуемся пропорцией U перв / Q перв = U втор / Q втор , где U перв – напряжение на первичной обмотке, Q перв – количество витков первичной обмотки, U втор – напряжение вторичной обмотки, Q втор – количество витков вторичной обмотки и выясним, какие вторичные напряжения мы можем получить:
155 / 17 = ? / 5, где " ? " – выходное напряжение. Если во вторичной обмотке у нас будет 5 витков, то выходное напряжение будет составлять 45 В, если вторичка будет 4 витка, то выходное напряжение трансформатора составит 36 В.
Как видите получить напряжение ровно 40 вольт уже проблематично – нужно мотать 4,4 витка, а реальность показывает, что использовать обмотки не кратные половине витка довольно рискованно – можно намагнитить трансформатор и потерять силовые транзисторы.
В конечном итоге после монтажа компонентов печатная плата блока питания приобретет следующий вид:
На плате пока нет диодных мостов, силовых транзисторов, радиатров и моточных деталей, о которых сейчас и поговорим. При изготовлении импульсных блоков питания не стоит забывать о скин эффекте, который проявляется при протекании через проводник высокочастотного сигнала. Смысл этого эффекта заключается в том, что чем выше частота переменного напряжениея, тем меньше протекает ток через середину проводника, т.е. ток как будто стремится выйти на поверхность. Отсюда и название SKIN -кожа, шкура. По этому для высокочастотных трансформаторов необходимое от протекающего тока сечение получают методом сложения в жгут нескольких проводников меньшего диаметра, тем самым существенно снижая скин эффект и увеличивая КПД преобразователя.
Самым популярным способом сложения проводников является витой жгут. Определившись с длиной провода, необходимого для обмотки (одинарным проводм мотают необходимое количество витков и добавляют к полученной длине еще 15-20%) необходмое количество проводов растягиваю на эту длину а затем при помощи дрели и воротка свивают в один жгут:
Изготовление ленточного жгута более трудоемко – провода растягивают в непосредственной близости другу к другу и склеивают полиуритановым клеем, типа "МОМЕНТ КРИСТАЛЛ". В результате получается гибкая лента, намоитка которой позоволяет добится наибольшей плотности намотки:
Перед намоткой ферритовое кольцо следует подготовить. Прежде всего необходимо закруглить углы, поскольку они с легкостью повреждают лак на обмоточном проводе:
Затем необходимо кольцо изолировать, поскольку феррит имеет достаточно низкое сопротивление и в случае повреждения лака на обмоточном проводе может произойти межвиитковое замыкание. В середине, на азднем плане кольцо обмотано обычной бумагой для принтера, справа – бумага пропитана эпоксидным клеем, в середине спереди – наиболее предпочтительный материал – фторопластовая пленка:
Так же кольца можно обматывать матерчатой изолентой, но она довольно толстая и существенно сокращает размер окна, а это не очень хорошо.
Используя в качестве сердечника ферритовое кольцо обмотку необходимо равномерно распределить по всему сердечнику, что довольно существенно увеличивает магнитную связь обмоток и уменьшает создаваемые импульсным трансформатором электро-магнитные помехи:
Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.
Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.
Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.
Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.
Они подразделяются на трансформаторные и импульсные изделия.
Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.
Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.
Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение
За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.
Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).
Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.
Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.
Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.
Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.
После силового трансформатора наступает очередь работы выходного выпрямителя.
Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.
Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.
Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.
Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.
Накопительная емкость сглаживает пульсации.
Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.
Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.
Разберем все эти части подробнее.
Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций
Важно понимать, что импульсы высокой частоты играют двоякую роль:
- в/ч помехи могут приходить из бытовой сети в блок питания;
- импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.
Причины появления помех в бытовой сети:
- апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
- работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
- последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.
Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.
Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.
Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.
Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)
Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.
Работу дросселя эффективно дополняют емкостные сопротивления.
Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.
Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.
Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.
Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.
Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.
У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.
Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.
Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.
У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.
Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.
Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.
Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.
Сетевой выпрямитель напряжения: самая популярная конструкция
В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.
Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.
Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками
Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.
На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.
Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).
Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.
ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.
Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.
За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.
Импульсный трансформатор: принцип работы одного импульса в 2 такта
Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.
Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.
Его энергия расходуется:
- вначале на намагничивание сердечника магнитопровода;
- затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.
Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.
Однотактная схема импульсного блока питания: состав и принцип работы
На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.
Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.
В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.
При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.
Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.
Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.
Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.
Двухтактная схема импульсного блока питания: 3 варианта исполнения
Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.
Простейший вариант исполнения двухполупериодной методики показан на картинке.
Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.
Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.
Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.
Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.
Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.
Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.
В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:
- уменьшенного падения напряжения на прямом включении;
- и повышенного быстродействия во время обработки высокочастотных импульсов.
3 схемы силовых каскадов двухтактных ИБП
По порядку сложности их исполнения генераторы выполняют по:
- полумостовому;
- мостовому;
- или пушпульному принципу построения выходного каскада.
Полумостовая схема импульсного блока питания: обзор
Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.
К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.
Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.
Мостовая схема импульсного блока питания: краткое пояснение
Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).
Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.
Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.
Пушпульная схема: важные особенности
Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.
Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.
Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.
К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.
Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.
Выходной выпрямитель: самое популярное устройство
Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.
Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.
Схема стабилизации напряжения: как работает
Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.
С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.
Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.
В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.
Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.
Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.
Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.
Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.
Принцип импульсного источника питания
Введение
Это видео показывает нам, как работает импульсный источник питания, на схемах, объяснениях, примерах и модификациях.
Каталог
Ⅰ Принцип импульсного источника питания
1.1 Basic Принцип импульсного источника питания
Импульсный источник питания - это источник питания, в котором используется современная технология силовой электроники для управления соотношением времени включения и выключения переключающего транзистора для поддержания стабильного выходного напряжения. . Простая конструкция показана на рисунке 1.
Рисунок 1 . B asic C ircuit из Коммутация P на S подача
Коммутационный транзистор VT включен последовательно между входным напряжением VI и выходным напряжением Vo.Когда база транзистора VT вводит импульсный сигнал переключения, VT периодически переключается, то есть попеременно включается и выключается по очереди. Предполагая, что VT является идеальным переключателем, падение напряжения между базой и эмиттером приблизительно равно нулю, когда VT насыщен, и входное напряжение Vi подается на выход через VT; Напротив, в то время, когда VT отключен, выход равен нулю. После периодического переключения VT импульсное напряжение получается на выходе, а среднее напряжение постоянного тока получается схемой фильтра.Выходное напряжение указано в формуле 1:
.
(1)
T на - время включения, T - период переключения, а D - рабочий цикл. Можно видеть, что импульсный регулируемый источник питания может управлять значением выходного постоянного напряжения, изменяя рабочий цикл импульса переключения, то есть время включения.
1.2 Рабочий процесс импульсного источника питания
Импульсный источник питания обычно состоит из шести частей, как показано на рисунке 2.
Первая часть - это входная цепь, которая содержит фильтрацию нижних частот и одноступенчатое выпрямление. Vi получается после того, как переменное напряжение 220 В проходит низкочастотную фильтрацию и мостовое выпрямление. Это напряжение отправляется во вторую часть для коррекции коэффициента мощности. Цель состоит в том, чтобы улучшить коэффициент мощности. Форма должна поддерживать входной ток в фазе с входным напряжением.
Третья часть - это преобразователь мощности, который завершается электронным переключателем и высокочастотным трансформатором.Он преобразует постоянное напряжение с высоким коэффициентом мощности в высокочастотное импульсное напряжение прямоугольной формы, которое соответствует проектным требованиям. Четвертая часть - это выходная цепь, которая используется для выпрямления и фильтрации высокочастотного прямоугольного импульсного напряжения на выходе постоянного напряжения. Пятая часть - это схема управления. После разделения и выборки выходного напряжения оно сравнивается с опорным напряжением схемы и усиливается.
Шестая часть - это генератор частотных колебаний, который генерирует сигнал высокочастотного диапазона волн, который накладывается на управляющий сигнал для выполнения широтно-импульсной модуляции для достижения регулируемой ширины импульса.При высокочастотном колебании происходит преобразование мощности, поэтому суть импульсного источника питания заключается в преобразовании мощности.
Рисунок 2. Принципиальная блок-схема импульсного источника питания
1.3 Метод модуляции импульсного источника питания
Методы модуляции импульсного источника питания в основном включают три типа: PWM, PFM и PSM. Частота переключения режима широтно-импульсной модуляции (ШИМ) постоянна.Изменяя ширину импульса включения для изменения рабочего цикла, достигается управление выходной энергией, что называется расширением фиксированной частоты; Ширина импульса режима частотно-импульсной модуляции (ЧИМ) постоянна. Регулируя частоту переключения, коэффициент заполнения изменяется таким образом, чтобы реализовать управление выходной энергией, что называется модуляцией с фиксированной шириной; ширина импульса в режиме модуляции с пропуском импульсов является постоянной, а выходная энергия регулируется выборочно с пропуском определенных рабочих циклов.
1.3.1 Широтно-импульсная модуляция (ШИМ)
Режим модуляции PWM - это наиболее часто используемый метод управления в импульсном источнике питания. Сигнал обратной связи на стороне нагрузки сравнивается с пилообразной волной, генерируемой внутри, и выходной прямоугольный сигнал с постоянной частотой расширяется для управления трубкой переключателя, а время включения трубки переключателя регулируется в реальном времени в соответствии с состояние нагрузки для стабилизации выходного напряжения.Его рабочая форма сигнала показана на рисунке 3.
Рисунок 3. W orking P принцип D iagram из PWM
В настоящее время режим управления ШИМ является наиболее часто используемым в импульсных источниках питания и имеет следующие преимущества: высокий КПД в случае большой нагрузки, хорошая скорость регулировки напряжения, высокая линейность, небольшая пульсация на выходе и пригодность. для режима контроля тока или напряжения.Но он также имеет следующие недостатки: слабая модуляция входного напряжения, плохие частотные характеристики и снижение КПД при небольшой нагрузке.
1.3.2 Частотно-импульсная модуляция (ЧИМ)
PFM - это метод модуляции, часто используемый в импульсных источниках питания. Сравнивая сигнал обратной связи конца нагрузки с опорным сигналом, выходной сигнал ошибки регулирует рабочую частоту, а затем выводит прямоугольный сигнал постоянной ширины и переменной частоты для управления трубкой переключателя и регулирует время включения трубка переключателя в реальном времени в соответствии с условиями нагрузки, тем самым стабилизируя выходное напряжение.Его рабочая форма сигнала показана на рисунке 4.
Рисунок 4 . Принцип работы PFM
1.3.3 Пропуск импульсов Modulatio n (PSM)
PSM - это новый метод управления импульсными источниками питания, который называется импульсной перекрестно-цикличной модуляцией. Сигнал обратной связи конца нагрузки преобразуется в цифровой уровень, а уровень сигнала обратной связи определяется по нарастающему фронту тактового сигнала, чтобы определить, следует ли работать в тактовом цикле, а время включения переключающей трубки регулируется для стабилизации. выходное напряжение.Его рабочая форма сигнала показана на рисунке 5.
Рисунок 5. Принцип работы PSM
В настоящее время режим управления PSM используется для импульсных источников питания и имеет следующие преимущества: высокая скорость при небольшой нагрузке, высокая рабочая частота, хорошие частотные характеристики и меньшая частота переключения силовых трубок, подходящая для небольших ИС управления питанием. Однако он также имеет следующие недостатки: большая пульсация на выходе и слабая возможность регулировки входного напряжения.
1.4 Метод управления импульсным источником питания
Импульсные источники питания, которые мы обычно используем, основаны на режиме ШИМ, поэтому мы сосредоточимся на технологии управления в режиме ШИМ. Существует два основных типа технологии управления ШИМ: один - это технология управления ШИМ в режиме напряжения, а другой - технология управления ШИМ в текущем режиме.
1.4.1 ШИМ-контроллер в режиме напряжения
Импульсный источник питания изначально был основан на технологии PWM в режиме напряжения.Основной принцип работы показан на рисунке 6. Выходное напряжение Vo сравнивается с опорным напряжением для получения сигнала ошибки VE. Это напряжение ошибки сравнивается с пилообразным сигналом, генерируемым пилообразным генератором. Компаратор PWM выдает управляющий сигнал прямоугольной формы с изменением рабочего цикла. Это принцип работы технологии управления PWM в режиме напряжения.
Поскольку эта система представляет собой одноконтурную систему управления, ее самым большим недостатком является отсутствие сигнала обратной связи по току.Поскольку ток импульсного источника питания протекает через катушку индуктивности, соответствующий сигнал напряжения имеет определенную задержку. Однако для регулируемого источника питания необходимо постоянно регулировать входной ток, чтобы адаптироваться к изменению входного напряжения и требований нагрузки, тем самым достигая цели стабилизации выходного напряжения. Следовательно, недостаточно использовать метод выборки выходного напряжения, потому что реакция регулирования напряжения медленная. Даже при изменении большого сигнала трубка переключателя мощности повреждается из-за колебаний, что является самым большим недостатком технологии управления ШИМ в режиме напряжения.
Рисунок 6. Принцип работы технологии ШИМ-управления в режиме напряжения
1.4.2 ШИМ-контроллер текущего режима
Технология управления PWM в режиме тока была разработана из-за недостатков технологии управления PWM в режиме напряжения. Так называемое управление ШИМ в токовом режиме заключается в прямом сравнении сигнала обнаружения тока выходной катушки индуктивности с выходным сигналом усилителя ошибки на входе компаратора ШИМ для реализации управления рабочим циклом выходного импульса таким образом, чтобы пиковый ток выходной дроссель следует за изменением напряжения ошибки.Этот метод управления может эффективно улучшить скорость регулирования напряжения и скорость регулирования тока импульсного источника питания, а также может улучшить переходную характеристику всей системы. Принцип работы технологии управления ШИМ в текущем режиме показан на рисунке 7.
Технология управления PWM в токовом режиме в основном делится на технологию управления пиковым током и технологию управления средним током. Две технологии управления обнаруживают и предоставляют обратную связь о пиковом и среднем значении изменения тока в течение одного периода проводимости.
Технология управления пиковым током: Управление режимом пикового тока напрямую контролирует ток индуктора на стороне пикового выхода, а затем косвенно регулирует ширину импульса ШИМ. Пиковый ток катушки индуктивности легко обнаружить и логически согласуется с изменением среднего тока катушки индуктивности. Однако пиковый ток индуктора не может быть во взаимно однозначном соответствии со средним током индуктора, потому что один и тот же пиковый ток индуктора может соответствовать разным средним токам индуктора с разными рабочими циклами и единственным фактором, определяющим значение выходного напряжения. - значение среднего тока катушки индуктивности.
Когда коэффициент заполнения системы ШИМ D> 50%, режим управления режимом пикового тока с фиксированной частотой имеет присущую нестабильность разомкнутого контура, и необходимо ввести соответствующую компенсацию наклона, чтобы устранить нарушение среднего тока катушки индуктивности из-за различных рабочих циклов и чтобы контролируемый пиковый ток индуктора в конечном итоге сходился к среднему току индуктора. Когда крутизна применяемого сигнала компенсации крутизны увеличивается до определенной степени, управление режимом пикового тока преобразуется в управление режимом напряжения.
Поскольку сигнал компенсации наклона полностью заменяется треугольной волной в колебательном контуре, он становится регулятором режима напряжения, но текущий сигнал в это время можно рассматривать как текущий сигнал прямой связи. Управление в режиме пикового тока представляет собой систему управления с двойным замкнутым контуром (внешний контур - это контур напряжения, а внутренний контур - это контур тока), а текущий внутренний контур мгновенно и быстро управляется в соответствии с импульсом за импульсом.При управлении с двойным контуром текущий внутренний контур отвечает только за динамическое изменение выходной катушки индуктивности, поэтому внешний контур напряжения должен только управлять выходным напряжением и не должен управлять схемой накопления энергии. Следовательно, управление в режиме пикового тока имеет гораздо большую полосу пропускания, чем управление в режиме напряжения.
Рисунок 7. Принцип работы технологии ШИМ управления в токовом режиме
Метод контроля среднего тока: Контроль среднего тока требует определения тока катушки индуктивности, сигнала определения тока катушки индуктивности и заданного VE.После сравнения управляющий сигнал VC генерируется регулятором тока и сравнивается с сигналом пилообразной модуляции для генерации импульса ШИМ. Регуляторы тока обычно используют схему компенсации PI-типа и отфильтровывают высокочастотные компоненты в дискретизированном сигнале.
Сравнение двух технологий управления током: Технология управления пиковым током удобна и быстра, но требует компенсации стабильности; Технология управления средним током отличается стабильностью и надежностью, но скорость реакции ниже, а управление более сложным.Поэтому в практических приложениях режим управления пиковым током более распространен, чем режим управления средним током.
1.5 W orking M ode of S witching P ower S upply используется в качестве примера конструкции преобразователя fly
. , так называемый обратный ход означает, что первичная полярность трансформатора противоположна вторичной полярности, как показано на рисунке 8.Он состоит из переключающей лампы VT, выпрямительного диода D1, фильтрующего конденсатора C и развязывающего трансформатора. Если верхний конец первичной обмотки трансформатора положительный, верхний конец вторичной обмотки отрицательный, и переключающая трубка VT работает в режиме ШИМ. Обратный преобразователь имеет высокий КПД, простую схему и может обеспечивать несколько выходов, поэтому он получил широкое распространение.
Рисунок 8 . B asic C ircuit из Обратный ход C onverter
Обратный преобразователь PWM имеет два режима: постоянный ток и прерывистый ток.Для тока, протекающего через переключающую трубку первичной обмотки W1, его ток не может быть непрерывным, потому что ток переключающей трубки VT обязательно равен нулю после отключения.
Но в это время во вторичной обмотке W2 неизбежно возникает ток. Для обратного преобразователя постоянный ток означает, что суммарный ток двух обмоток преобразователя не равен нулю в течение одного цикла переключения, а прерывание тока означает, что синтетическая ампула равна нулю в течение периода выключения переключающей лампы VT.Когда ток является непрерывным, обратный преобразователь имеет два режима переключения, как показано на (a) и (b) на рисунке 9; и когда ток прерывается, обратноходовой преобразователь имеет три режима переключения, как показано на (a) (b) (c) рисунка 9.
Рисунок 9. Эквивалентная схема в различных режимах переключения
1.5.1 Принцип работы обратноходового преобразователя при постоянном токе
Как показано на рисунке 9 (a), при t = 0 переключающий транзистор VT включается, и напряжение питания Vi подается на первичную обмотку трансформатора W 1 .В это время индуцированное напряжение во вторичной обмотке W 2 отключает диод D 1 , и ток нагрузки подается от конденсатора фильтра C. В этот момент вторичная обмотка трансформатора разомкнута, только первичная обмотка работает, что эквивалентно катушке индуктивности. Индуктивность L 1 , первичный ток L p линейно увеличивается от минимального значения I Pmin , а скорость увеличения составляет: (1-2)
Когда t = T на , ток I p достигает максимума I Pmax
(1-3)
Во время этого процесса сердечник трансформатора намагничивается, и его магнитный поток Φ также линейно увеличивается.Приращение потока Φ: 900 · 10
(1-4)
Как показано на рисунке 9 (b), когда t = T на , переключающая трубка VT выключена, первичная обмотка разомкнута, и индуцированная электродвижущая сила вторичной обмотки меняет направление, чтобы включить диод D . 1 . Энергия, запасенная в магнитном поле трансформатора, высвобождается через диод D 1 , заряжая конденсатор C, с одной стороны, и подает питание на нагрузку, с другой стороны.В этот момент работает только вторичная обмотка трансформатора, которая эквивалентна катушке индуктивности, а ее индуктивность составляет L 2 . Напряжение на вторичной обмотке составляет o В, вторичный ток I с падает линейно от максимального значения I Smin и скорость его падения составляет:
(1-5)
При t = T ток I с достигает минимального значения I Smin
(1-6)
Во время этого процесса сердечник трансформатора размагничивается, и его магнитный поток Φ также линейно уменьшается.Величина уменьшения магнитного потока Φ составляет: 900 · 10
(1-7)
1.5.2 Basic R elationhip of F lyback C onverter W hen C urrent I I
При работе с регулируемым напряжением величина увеличения магнитного потока переключаемого сердечника обязательно равна величине уменьшения, когда переключатель VT выключен, то есть.Из формул (1-4) и (1-7) получаем:
(1-8)
В формуле - соотношение витков первичной и вторичной обмоток трансформатора.
Когда K 12 = 1 ,
(1-9)
Напряжение, которому подвергается переключающая трубка VT при выключении, складывается из Vi и наведенной электродвижущей силы в первичной обмотке W1, то есть
(1-10)
Когда напряжение источника питания V и является постоянным, напряжение переключающего транзистора VT зависит от продолжительности включения D, поэтому значение максимальной продолжительности включения D max должно быть ограничено.Напряжение диода D 1 равно сумме выходного напряжения V и входного напряжения Vi, преобразованного во вторичное напряжение:
(1-11)
Ток нагрузки Io - это среднее значение тока, протекающего через диод D1:
(1–12)
В соответствии с принципом работы трансформатора устанавливаются следующие две формулы.
(1-13)
(1-14)
Из формулы (1-3) и формулы (1-12) в (1-14) мы можем получить:
(1-15)
(1–16)
I Pmax и I Smax - соответственно максимальные значения тока, протекающего через переключающую трубку VT и диод D 1 .
1.5.3 Принцип работы и основные отношения обратного преобразователя при прерывании тока
Формула (1-9) все еще работает, если критический ток постоянный. В это время максимальный ток первичной обмотки составляет I Pmax , то есть ток нагрузки составляет
(1-17)
Критический постоянный ток нагрузки
(1-18)
Когда D = 0.5, I oG достигает максимального значения
(1-19)
Тогда формулу (1-18) можно записать как :
(1-20)
Формула (1-20) - критическая непрерывная граница тока индуктора.
Когда ток индуктора прерывается, это связано не только с рабочим циклом D, но и со значением тока нагрузки I или .Предположим, что относительное время свободного хода I с , мы можем получить, потому что величина увеличения и уменьшения магнитного потока сердечника равна одному циклу переключения. Итак,, и, то:
(1-21)
Формула(1-21) показывает, что когда ток прерывается, выходное напряжение не только связано с рабочим циклом D, но также связано с величиной тока нагрузки I или .Когда рабочий цикл D является постоянным, уменьшение тока нагрузки I - может привести к увеличению выходного напряжения V - .
В случае режима прерывания тока энергия, запасенная в первичной катушке индуктивности, зависит от пикового тока:
(1-22)
Энергия доставляется один раз за цикл,
(1-23)
Эта формула говорит нам, что после фиксированного входного напряжения только T может увеличить выходную мощность за счет уменьшения частоты переключения или уменьшения индуктивности.А если также выбрана частота переключения, то мощность можно увеличить только за счет уменьшения индуктивности. Однако фактическая индуктивность имеет минимальное значение, и обратный преобразователь, работающий в прерывистом режиме, имеет максимальный предел выходной мощности, обычно менее 50 Вт.
1.6 Резюме
В этой главе в основном описываются основные принципы работы и рабочий процесс импульсного источника питания. Он также вводит режим модуляции импульсного источника питания.В настоящее время режим управления ШИМ является наиболее часто используемым в импульсных источниках питания. Он имеет следующие преимущества: высокий КПД в случае большой нагрузки, хорошее регулирование напряжения, высокая линейность и небольшая пульсация на выходе, и подходит для режима управления током или напряжением. Следовательно, в этой конструкции будет использоваться модуляция ШИМ.
Существует два основных типа технологии управления ШИМ: один - это технология управления ШИМ в режиме напряжения, а другой - технология управления ШИМ в режиме тока.Поскольку метод управления током быстро реагирует на входное напряжение, в этой конструкции будет использоваться метод управления током.
В этой главе также описывается режим работы импульсного источника питания. Поскольку контур обратной связи в прерывистом режиме является стабильным, а мощность этой конструкции мала, принимается прерывистый режим.
Ⅱ Control D evices U sed in S witching P ower S 1 высокочастотный T преобразователь
2.1.1 Кривая намагничивания и петля гистерезиса
Рисунок 10 . Намагничивание C urve и H истерезис L преобразователя T преобразователя C
Как показано на рисунке 10, в качестве прямого и мостового преобразователей большинство из них работают в зонах 1 и 2.Характеристики этих двух зон: внешнее магнитное поле небольшое и процесс намагничивания обратимый. В зоне 1,. μ 1 - начальная проницаемость. И явно линейно. Для силовых трансформаторов с низкой выходной мощностью и низкой частотой значение B при работе может быть рассчитано чрезвычайно точно. В зоне 2,. Здесь B - постоянная Рэлея, и эта область не была линейной.
Но процесс намагничивания по-прежнему обратим. Обычно для этих двух областей мы все еще используем приблизительную формулу для инженерных приложений:.Из-за обратимости прямой преобразователь почти не имеет гистерезиса (на самом деле, из-за технологического процесса и других причин, все еще существует необратимая намагниченность, но это относительно неочевидно). Для источника питания с одинаковым входом и выходом, если используются топологии прямого и обратного возбуждения, соответственно, эффективность прямого трансформатора должна быть выше, чем у обратного трансформатора, если рабочая частота одинакова.
Для обратноходового трансформатора рабочая зона - это зона 1, 2 и 3.Среди них зона 3 относится к зоне необратимого намагничивания. Эта область является основной областью формирования гистерезиса, поэтому обратный трансформатор имеет компонент потерь на гистерезис. Работает в среднем диапазоне магнитного поля. Даже если диапазон изменения магнитного поля невелик, изменение B очень существенно. Магнитная проницаемость быстро увеличивается и достигает максимального значения.
Эта область также является областью с максимальной магнитной проницаемостью. Очевидно, что магнитные проницаемости зоны 1, 2 и 3 не равны, но при расчете параметров трансформатора мы пользуемся формулой.Здесь μ e - эффективная проницаемость, приравнивающая кривую B — H зон 1,2 и 3 к отношению B и H, полученному по прямой линии. Следует отметить, что эта формула адаптирована для обратноходового преобразователя, работающего в режиме DCM. Обратные преобразователи, работающие в режиме CCM, должны использовать инкрементную проницаемость для точных расчетов. Расчет индуктивности накопления энергии в прямом преобразователе также считается используемым в режиме DCM с использованием μ e и в режиме CCM с использованием инкрементной магнитной проницаемости.
Для петли максимального гистерезиса, если процесс намагничивания не может вернуться по исходному пути, неизбежно происходит потребление энергии. Мощность, потребляемая намагничиванием для одного круга, равна площади, окруженной кривой намагничивания. Чтобы снизить энергопотребление, мы всегда надеемся, что петля гистерезиса будет как можно более тонкой при выборе сердечника, потому что она больше похожа на прямую, пересекающую нулевую координату. При использовании формулы она ближе к реальной ситуации.Поскольку это приблизительная формула, а значение B max магнитопровода уменьшается с повышением температуры, значение △ B необходимо оставить с запасом при проектировании трансформатора. (Режим DCM обычно не должен превышать 2/3 своего номинального значения B max .
Следует отметить, что это значение соответствует максимальной температуре, при которой продукт может работать). Если запас небольшой, необходимо учитывать ограничение по току максимальной токовой защиты источника питания.Обычно, когда правильно спроектированный источник питания работает без обратной связи в пределах полного диапазона входного напряжения при полной нагрузке, сердечник трансформатора не насыщается.
Для трансформатора, если все вторичные обмотки не подключены, первичная обмотка эквивалентна катушке индуктивности, и весь ток, протекающий через первичную обмотку, намагничивается. В состоянии постоянного тока трансформатор эквивалентен короткозамкнутому компоненту и не может передавать энергию. Когда ток намагничивания велик, трансформатор будет насыщен.В это время резко падает эффективность передачи энергии. В реальных технических измерениях все другие обмотки обычно закорачивают для измерения при измерении индуктивности рассеяния определенной обмотки.
Когда вторичная обмотка разомкнута, первичный ток является током возбуждения. Индуктивность первичной обмотки соответствующей вторичной разомкнутой цепи может быть приблизительно выражена как индуктивность намагничивания. Для фиксированного трансформатора ток возбуждения в основном определяется напряжением, приложенным к первичной обмотке, а индуктивность намагничивания является реальной индуктивностью.Идеальный трансформатор - это просто черный ящик, передающий энергию.
Для прямого трансформатора и преобразователя, работающего как прямой трансформатор, необходим магнитный сброс, и индуктивность намагничивания пропускается через схему сброса для достижения баланса вольт-секунда. Обратный источник питания не требует магнитного сброса, потому что процесс обратного преобразователя сам по себе является процессом магнитного сброса. Существует несколько распространенных схем сброса, таких как LC-резонансный сброс, RC или RCD сброс, активный фиксатор и сброс с одной обмоткой.
2.1.2 Контроль воздушного зазора
Обратный трансформатор - это, по сути, индуктор. Весь его ток - это ток возбуждения. Формула накопления энергии индуктора:. Чтобы увеличить запас энергии, кажется, есть два пути: во-первых, увеличить индуктивность (то есть увеличить количество витков). Таким образом, объем трансформатора будет значительно увеличен. Другая проблема заключается в том, что поскольку магнитопровод постоянен, максимальный рабочий ток неизбежно уменьшается, поэтому неразумно увеличивать индуктивность для увеличения накопления энергии.Второй - увеличить рабочий ток. Текущие требования к накоплению энергии магнитного сердечника возрастают, что в конечном итоге приводит к увеличению общего накопления энергии сердечника.
Хотя магнитная проницаемость после открытия воздушного зазора меньше, чем магнитная проницаемость, когда воздушный зазор не открыт, напряженность магнитного поля (которая пропорциональна току), достигающая магнитного насыщения магнитопровода, значительно увеличивается. Это способствует накоплению большего количества энергии.
Увеличение сопротивления после воздушного зазора увеличивает рассеивание магнитного потока, особенно вокруг воздушного зазора. Если необходимо уменьшить индуктивность рассеяния, катушку можно намотать непосредственно на воздушный зазор, но катушка вокруг воздушного зазора будет находиться в сильном изменяющемся магнитном поле, и в проводе будет генерироваться локальный вихревой ток, и эмалированный провод пригорает и обесцвечивается через долгое время. Для сердечника из порошкового железа с дисперсными воздушными зазорами лучший способ уменьшить индуктивность рассеяния - это равномерно и равномерно обернуть весь сердечник.Ниже приводится формула расчета воздушного зазора трансформатора.
Во-первых, по закону Ома магнитопровода:
(2-1)
N - количество витков катушки, R m - магнитное сопротивление, NI - магнитный потенциал (аналогичный электродвижущей силе), и - магнитный поток.
Закон петли Ампера:, подставляем его в формулу (2-1) и получаем:
(2-2)
(2-3)
(2-4)
(2-5)
Теперь мы можем получить формулу магнитосопротивления:
(2-6)
Из магнитного пути открытого воздушного зазора мы можем узнать, что полное сопротивление равно сумме сопротивления материала и сопротивления воздушного зазора.Поскольку магнитная проницаемость материала намного больше, чем магнитная проницаемость воздушного зазора. Следовательно, магнитное сопротивление материала намного меньше, чем магнитное сопротивление воздушного зазора, поэтому магнитное сопротивление материала не учитывается.
(2-7)
Из формулы накопления энергии индуктора:
(2-8)
Из закона петли Ампера:
(2-9)
Мы экспортируем:
(2-10)
мкм 0 - вакуумная проницаемость
I - первичный пиковый ток
B - значение магнитной индукции при номинальном режиме работы
S e - эффективная площадь поперечного сечения A e
2.1.3 Контроль индуктивности утечки
Рисунок 11. Распределение F люкс L чернил в A ctual T преобразователя
На рисунке 11 показан двухобмоточный трансформатор, N p - первичный, а N s - вторичный. - это магнитный поток, который первично связан с вторичным, и магнитные потоки, которые не связаны друг с другом, то есть индуктивность рассеяния.Из-за наличия индуктивности рассеяния первичной обмотки энергия будет передана вторичной обмотке через некоторое время. На практике трансформатор имеет два метода намотки: метод последовательной намотки и метод многослойной намотки. Эти два метода намотки по-разному влияют на электромагнитные помехи и индуктивность рассеяния. Метод последовательной намотки обычно имеет индуктивность рассеяния около 5% от индуктивности, но поскольку первичная и вторичная обмотки имеют только одну контактную поверхность, а емкость связи мала, EMI лучше.
Метод сэндвич-обмоток обычно имеет индуктивность рассеяния примерно от 1% до 3% от индуктивности. Последовательность намотки многослойной намотки обычно сначала первичная, затем от одной секунды до одной трети вторичной. И чем меньше соотношение сторон, тем меньше индуктивность рассеяния трансформатора. Однако, поскольку первичная и вторичная обмотки имеют только две контактные поверхности и емкость связи велика, электромагнитные помехи возникают относительно сложно. Обычно, когда мощность ниже 30 ~ 40 Вт, энергия утечки приемлема, поэтому чаще используется метод последовательной намотки.Когда мощность превышает 40 Вт, энергия индуктивности рассеяния велика, и, как правило, можно использовать только метод сэндвич-намотки.
2.1.4 A анализ C ontrol P процесс F lyback P ower S S 9000
В блоке питания обратного хода первичный и вторичный ток фактически не изменяются.Теоретически ток первичной обмотки и ток вторичной обмотки плавно изменяются посредством магнитной связи, и ток каждой обмотки может изменяться, но на самом деле никаких изменений нет. Подробный рабочий процесс выглядит следующим образом: после выключения МОП первичный ток заряжает выходной конденсатор МОП и паразитную емкость трансформатора (на самом деле паразитная емкость является разрядом. Для упрощения описания она описывается в совокупности. как зарядка), а затем напряжение на клеммах DS трубки переключателя резонансно возрастает.Поскольку ток очень велик, значение Q в резонансном контуре очень мало, так что в основном это линейный рост. Когда напряжение на клемме DS повышается до тех пор, пока напряжение на вторичной обмотке не достигнет суммы выходного напряжения и напряжения выпрямителя, вторичная обмотка должна быть включена. Однако из-за влияния индуктивности рассеяния вторичной обмотки напряжение будет расти, чтобы преодолеть влияние индуктивности рассеяния вторичной обмотки, так что напряжение, отраженное в первичную обмотку, также немного выше, чем нормальное отраженное напряжение.В таких условиях вторичный ток начинает расти, а первичный ток начинает уменьшаться. Но не забывайте об индуктивности рассеяния первичной обмотки. Поскольку он не может быть связан, его энергия должна высвобождаться. В это время индуктивность рассеяния, выходная емкость МОП и паразитная емкость трансформатора резонируют, напряжение высокое и формируются несколько колебаний. Энергия потребляется в цепи зажима. Следует отметить, что ток индуктивности рассеяния всегда идет последовательно с первичным током, поэтому процесс снижения тока утечки является процессом увеличения вторичного тока.А процесс снижения тока утечки определяется разницей между напряжением на конденсаторе цепи зажима и отраженным напряжением. Чем больше разница, тем быстрее падение. Чем быстрее процесс преобразования, тем очевиднее эффективность, и процесс преобразования представляет собой процесс суперпозиции напряжения и тока. При использовании RC для поглощения, поскольку разница между напряжением на C и отраженным напряжением не слишком велика в установившемся режиме, процесс преобразования медленный, а эффективность низкая.При использовании TVS для поглощения допустимое напряжение и отраженное напряжение сильно различаются, поэтому преобразование происходит быстро, а эффективность высока. Конечно, RC потребляет больше энергии, чем TVS, но он дешевле. Когда источник питания использует УЗО в качестве контура поглощения, во время процесса установки вторичного тока напряжение постоянного тока, приложенное к конденсатору, отсутствует и превышает это напряжение. Энергия, поглощаемая контуром поглощения УЗО, состоит из двух частей: одна - это энергия индуктивности рассеяния, а другая - накопитель энергии первичной индуктивности.Если постоянная времени RC составляет от 1/10 до 1/5 периода переключения, потери будут большими, и в процессе обратного хода вторичная энергия будет поглощаться в большом количестве, что приведет к снижению энергоэффективности. 2.1.5 Конструкция A Поглощение C ontrol C Схема Звон в лампе переключателя и на выходном выпрямителе будет в каждом источнике питания. Перенапряжение, вызванное чрезмерным звонком, может вызвать повреждение устройства и вызвать проблемы с высокочастотными электромагнитными помехами или нестабильность контура.Решение обычно состоит в том, чтобы добавить петлю абсорбции RC. Сначала измерьте частоту вызывного сигнала с помощью осциллографа без добавления поглощающей цепи при небольшой нагрузке. Не забудьте использовать пробник с малой емкостью, потому что емкость пробника приведет к изменению частоты вызывного сигнала, и результат расчета не будет точным. Во-вторых, лучше измерять частоту вызывного сигнала при наивысшем рабочем напряжении, потому что частота вызывного сигнала будет меняться с увеличением напряжения, что в основном связано с изменением выходной емкости МОП или диода с изменением напряжения. Причина звонка - колебание эквивалентной цепи RLC. Для схемы с малыми потерями это колебание может длиться несколько циклов. Чтобы предотвратить это колебание, мы должны сначала знать параметр этого колебания. Для MOS индуктивность рассеяния - это основная индуктивность, вызывающая колебания, и это значение можно измерить. Для диода емкость является основным фактором, который можно определить по инструкции. Чтобы вычислить его полное сопротивление: если мы знаем L, то; если мы знаем C,.Сначала попробуйте R = Z, обычно этого достаточно для контроля звонка. Однако потери могут быть высокими, и конденсатор необходимо подключить последовательно, чтобы уменьшить потери мощности в демпфирующей цепи в это время. Значение C можно рассчитать следующим образом:. Увеличение значения C приведет к увеличению потерь и усилению демпфирующего эффекта. Уменьшение значения C приведет к уменьшению потерь и ослаблению эффекта демпфирования. Потеря сопротивления составляет:. На практике некоторые корректировки производятся на основе расчетного значения в соответствии с экспериментом. 2.1.6 Контроль электромагнитных помех трансформатора В силовых трансформаторах малой мощности обычно используются экранирующие слои двух типов: медная фольга и обмотки. Принцип медной фольги заключается в том, чтобы отрезать путь паразитной емкости между первичной и вторичной обмотками, так что все они образуют емкость относительно земли, а экранирующий эффект превосходен. но процесс будет немного сложнее, а стоимость увеличится. Экраны обмоток работают по двум принципам: отсекают путь конденсатора и уравновешивают электрическое поле.Следовательно, витки, направление намотки и положение обмотки имеют большое влияние на результаты EMI. Вкратце, есть один момент: напряжение, индуцированное экранирующей обмоткой, противоположно направлению напряжения при работе экранированной обмотки. Положение обмотки экрана оказывает большое влияние на энергопотребление источника питания в режиме ожидания. Экранирование электромагнитных помех может быть подключено к исходному заземляющему проводу или к высоковольтному концу исходной стороны. В электромагнитных помехах почти нет разницы, потому что есть высоковольтный конденсатор, а синфазный сигнал вверх и вниз (как правило, в нем преобладают синфазные помехи после того, как он превышает 1 МОм), является эквипотенциальным. Внешний экран трансформатора можно отсоединить или подключить к первичной массе. Влияние на электромагнитные помехи зависит от внутреннего состояния обмотки. Обратите внимание на проблему безопасности. Подключенный к проводу заземления первичной обмотки, магнитопровод является первичным, то есть магнитопровод находится на первичной стороне, и следует учитывать безопасное расстояние между первичной и вторичной сторонами. Обмотка экрана влияет на работу трансформатора. Чтобы играть важную роль, экранирующая обмотка обычно располагается близко к первичной обмотке, так что она образует конденсатор с первичной обмоткой. Обмотка экрана обычно подключается к первичной массе или высокому напряжению. Этот конденсатор эквивалентен стороне D-S, подключенной к MOS, и, очевидно, вызывает большие потери при включении, а также влияет на энергопотребление в режиме ожидания. Конечно, добавление экранирования также увеличит индуктивность рассеяния. В экранировании Фарадея обычно используются тонкие медные листы, которые не могут образовывать петлю. Экран первичной стороны должен быть подключен к первичной стороне, или прямолинейный конденсатор должен быть подключен к первичной стороне. Экран вторичной стороны должен быть подключен к вторичной стороне. Что касается способа подключения, лучше всего вынуть из меди точку, чтобы исключить индуктивность. В целях безопасности экран следует заземлить. Номинальный ток экрана, подключенного к земле, должен быть как минимум больше, чем значение тока силового предохранителя. Для магнитопровода с воздушным зазором используется внешний экран. Ширина щита очень привередлива и принцип очевиден. Если номинальный ток предохранителя защитного экрана меньше или равен силовому предохранителю, предохранитель защитного экрана может первым выйти из строя в случае короткого замыкания и не может работать как защитный экран. Что касается внешнего экранирования, мы должны в первую очередь соблюдать требования техники безопасности. При такой посылке, конечно, будет лучше, если она будет шире, но это также увеличит стоимость.Нам просто нужно соединить две половинки сердечника. На практике экранированная медная полоса часто находится в прямом контакте с сердечником. Основная трубка питания, используемая для управления, обычно представляет собой полевой МОП-транзистор, а окружающие его компоненты являются паразитными компонентами, что серьезно влияет на работу МОП как переключателя. В качестве переключающего элемента основное внимание уделяется тому, чтобы время включения и выключения было достаточно коротким, чтобы работать между минимальным сопротивлением и максимальным сопротивлением, чтобы снизить энергопотребление.Фактическое время переключения обычно составляет 10–100 мкс, в то время как период переключения источника питания составляет 20–200 мкс. Время переключения также в основном определяется временем заряда и разряда его паразитной емкости. И CGD, и CDS зависят от напряжения стока и не являются линейными. Еще одним важным паразитным параметром является сопротивление затвора, которое напрямую влияет на время включения переключателя, и этот параметр не предусмотрен в общей спецификации. Значение управляющего напряжения затвора обычно указывается в спецификации как значение 25 ° C.Фактически, напряжение домена затвора изменяется с отрицательным температурным коэффициентом -7 мВ / ° C. Также есть два важных паразитных параметра: индуктор истока и индуктор стока. Стоимость паразитного индуктора в основном зависит от формы корпуса МОП-трубки. Типичные значения приведены в спецификации. Основная часть импульсного источника питания в основном состоит из микросхемы прецизионного сравнения напряжения, микросхемы ШИМ, переключающей трубки, приводного трансформатора и главного выключателя трансформатора.Микросхема прецизионного сравнения напряжения сравнивает напряжение обратной связи выходной части постоянного тока с опорным напряжением, а микросхема ШИМ регулирует скважность переключающей трубки через приводной трансформатор в соответствии с результатом сравнения, тем самым управляя энергией, выводимой на часть постоянного тока. главного переключающего трансформатора для реализации регулируемого выхода. Метод управления с обратной связью PWM можно разделить на тип тока и тип напряжения. Обычно используемый UC3842 является режимом управления текущего типа, и его внутренняя блок-схема показана на рисунке 12. Рис. 12. Внутренняя блок-схема UC3842 UC3842A - это высокопроизводительный контроллер режима постоянного тока с фиксированной частотой, предназначенный для автономных приложений и преобразователей постоянного тока. Это наиболее часто используемый и наиболее типичный чип управления ШИМ. Эти интегральные схемы оснащены регулируемым генератором для точного контроля рабочего цикла, опорными сигналами с температурной компенсацией и усилителями ошибок с высоким коэффициентом усиления. Компаратор выборки тока и сильноточный выход на тотемный полюс идеально подходят для управления силовыми полевыми МОП-транзисторами. Другие функции защит включают вход и опорное пониженное напряжение блокировку, каждый из них имеет гистерезис, ЦИКЛ за циклом ограничения тока, программируемого выходного и запаздывание одной защелки измерительного импульса. Эти устройства доступны в 8-контактных пластиковых корпусах с двойным расположением выводов и 14-контактных пластиковых корпусах для поверхностного монтажа (SO-14). Выходной каскад на тотемных полюсах в корпусе SO-14 имеет отдельные выводы питания и заземления. Пороговые значения блокировки низкого напряжения 16 В (вкл.) И 10 В (выкл.) UC3842A идеально подходят для автономных преобразователей.UCX843A разработан для низковольтных приложений с порогом блокировки низкого напряжения 8,5 В (вкл.) И 7,6 В (выкл.) И имеет следующие характеристики: 1. Точно настроенный ток разряда генератора для точного управления рабочим циклом. 2. Токовый режим работает до 500 кГц 3. Широтно-импульсная модуляция с защелкой, которая может ограничивать текущий цикл циклом 4. Внутри отделан опорное напряжение с пониженным напряжением заблокирует 5. Сильноточный выход на тотемный столб 6.Блокировка минимального напряжения с гистерезисом 7. Низкий пусковой и рабочий ток 2.3.1 Функция D Регистрация E ач C контроль M модуль Осциллятор: частота определяется значениями выбора временных элементов RT и CT. Конденсатор CT заряжается опорным напряжением 0,5 В через резистор RT примерно до 2,8 В, а затем разряжается внутренним стоком тока до 1.2В. Во время разряда ТТ генератор генерирует внутренний импульс гашения, чтобы поддерживать средний вход логического элемента ИЛИ-НЕ на высоком уровне, что приводит к низкому уровню выходного сигнала и обеспечивает контролируемую величину мертвого времени выхода. Следует отметить, что хотя многие значения R и c могут давать одну и ту же частоту генератора, существует только одна комбинация, которая дает конкретное мертвое время на выходе на данной частоте. Во многих приложениях, чувствительных к шуму, частота преобразователя может быть привязана к внешним системным часам.Для конкретного управления тактовым сигналом, пожалуйста, обратитесь к таблице данных. Усилитель ошибки: он обеспечивает полностью компенсированный усилитель ошибки с доступным инвертирующим входом и выходом. Этот усилитель имеет типичное усиление по постоянному напряжению 90 дБ и коэффициент усиления 10 МГц с запасом по фазе 57 градусов при ширине полосы 1. Неинвертирующий вход имеет внутреннее смещение 2,5 В и не вытягивается штифтом. Обычно выходное напряжение преобразователя делится резистивным делителем и контролируется инвертирующим входом.Максимальный входной ток смещения составляет -2 мкА, что приведет к ошибке выходного напряжения. Последний равен входному току смещения и является произведением эквивалентного сопротивления источника входного делителя. Выход усилителя ошибки (контакт 1) используется для компенсации внешнего контура. Выходное напряжение смещено примерно на 1,4 В из-за падения напряжения на двух диодах и делится на три части перед подключением к инвертирующему входу компаратора выборки тока.Это гарантирует отсутствие импульсов возбуждения на выходе (вывод 6), когда вывод 1 находится в самом низком состоянии, что происходит, когда источник питания работает и нагрузка отключена, или в начале процесса плавного пуска схемы. Компаратор выборки тока и защелка широтно-импульсной модуляции: UC3843A работает как контроллер токового режима. Когда выходной переключатель включен генератором и пиковый ток катушки индуктивности достигает порогового уровня, установленного выходной компенсацией усилителя ошибки (вывод 1), сигнал ошибки управляет пиковым током катушки индуктивности на еженедельной основе.Конфигурация защелки с широтно-импульсной модуляцией, используемый компаратор выборки тока гарантирует, что только один одиночный импульс появляется на выходе в течение любого заданного периода генератора, а ток катушки индуктивности преобразуется в напряжение путем включения заземленного резистора выборки RS последовательно с источник выходного переключателя. Это напряжение контролируется входом выборки тока (вывод 3) и сравнивается с уровнем на выходе усилителя ошибки. В нормальных условиях эксплуатации пиковый ток индуктора контролируется напряжением на выводе 1, где: (2-11) Ненормальные рабочие условия будут возникать при перегрузке выхода источника питания или при потере выборки выходного напряжения.В этих условиях порог компаратора выборки будет внутренне ограничен 1 В. При разработке импульсного регулятора большой мощности внутреннее напряжение в баке может быть снижено до разумного уровня, чтобы сохранить потребляемую мощность RS. Однако чрезмерное снижение напряжения фиксации приведет к ошибочной работе из-за захвата шума, и обычно можно наблюдать узкий всплеск на переднем фронте формы волны тока. Если выходная нагрузка мала, это может вызвать нестабильность мощности.Этот резкий импульс генерируется из-за межвитковой емкости силового трансформатора и времени восстановления выходного выпрямителя. Добавление RC-фильтра к входу дискретизации тока приводит к тому, что его постоянная времени приближается к длительности всплеска, что обычно устраняет нестабильность. : Устройство ШИМ модели 3842 имеет выходной каскад с одним полюсным выводом, специально разработанный для непосредственного управления силовым полевым МОП-транзистором. Он обеспечивает пиковый ток возбуждения до 1 А и типичное время нарастания и спада 50 нс при нагрузке 1 нФ.В корпусе SO-14 для поверхностного монтажа предусмотрены отдельные контакты для VC (напряжения питания) и заземления. Соответствующее приложение может значительно снизить коммутационный переходной шум, воздействующий на цепь управления, и источник питания и заземление управления должны быть правильно подключены. 2.3.2 Меры предосторожности для P eripheral C ontrol C ircuit D esign Штифт (корпус с 8 выводами) Функция Описание 1 Компенсация Выход усилителя ошибки для компенсации контура 2 Обратная связь по напряжению Инвертирующий вход усилителя ошибки, выборка выходного напряжения 3 Текущая выборка На этот вывод подается напряжение, пропорциональное току катушки индуктивности, и для управления выходом сравниваются сигналы ШИМ и внутренней ошибки. 4 RT / CT К этому выводу подключены колебательный конденсатор и резистор. 5 Земля Это общая земля всего ШИМ 6 Выход Тотемный выход для прямого привода внешнего MOS 7 VCC Положительный источник питания для IC 8 VREF С.В. опорное напряжение внутри IC, точность 1%, и он может выводить 20 м Таблица 1 . Описание функций F из E ach P в UC3842 Для предотвращения дрожания ширины импульса необходимо использовать высокочастотную схему компоновки. Обычно он добавляется к входу выборки тока или обратной связи по напряжению, и возникает чрезмерный шум. Подавление шума может быть усилено за счет уменьшения импеданса цепи в этих точках. Компоновка печатной платы должна включать в себя заземляющую пластину с только слабым токовым сигналом, в то время как сильноточный переключатель и выходное заземление возвращаются к конденсатору входного фильтра по отдельному пути. В соответствии со схемой, керамический байпасный конденсатор (0,1 мкФ) обычно требуется для прямого подключения к Vcc и Vref. Это обеспечивает тракт с низким импедансом, который отфильтровывает высокочастотный шум. Все сильноточные петли должны быть как можно короче и могут уменьшить излучаемые электромагнитные помехи за счет использования крупнозернистой медной фольги. Схема компенсации усилителя ошибки и выходной делитель преобразователя должны быть ближе к интегральной схеме и как можно дальше от переключателя питания и других компонентов, генерирующих шум. Преобразователь режима тока работает при условии, что коэффициент заполнения превышает 50%, а постоянный ток индуктора будет генерировать субгармонические колебания. В это время необходимо добавить схему компенсации крутизны, чтобы весь блок питания работал стабильно. 2.4.1 Сигнал T передача в I solation С быстрым развитием электронных компонентов линейность оптопар становится все выше и выше, и оптопары являются наиболее широко используемыми устройствами изоляции и защиты от помех в импульсных источниках питания. Оптический соединитель (OC) также известен как оптоизолятор или оптрон, называемый оптопарой. Это устройство, которое передает электрические сигналы с помощью света. Обычно осветитель (инфракрасный светодиодный светодиод) и светоприемник (светочувствительная полупроводниковая трубка) упаковываются в одну и ту же упаковку. Когда на входной вывод подается питание, осветительный прибор излучает свет, и после получения света фоторецептор генерирует фототок, который вытекает из выходного конца, тем самым реализуя «электрическое оптико-электрическое» преобразование. Оптопара, которая связывает входной сигнал с выходным концом со светом в качестве среды, широко используется в схемах из-за своего небольшого размера, длительного срока службы, отсутствия контакта, сильной помехоустойчивости, изоляции между выходом и входом, односторонней передачи сигнала. , так далее. Из-за своей нелинейности типичная оптопара ограничена изолированной передачей слабых сигналов на более высоких частотах. Обычная оптопара может передавать только цифровые (коммутационные) сигналы и не подходит для передачи аналоговых сигналов. Линейные оптопары, представленные в последние годы, способны передавать непрерывно изменяющиеся аналоговые или аналоговые токовые сигналы, что расширяет область их применения. Основным преимуществом оптопары является односторонняя передача сигнала, полная гальваническая развязка между входом и выходом, сильная защита от помех, длительный срок службы и высокая эффективность передачи.Оптопара имеет большое сопротивление изоляции (около 10 12 Ом) и небольшой изолирующий конденсатор (около нескольких пФ). Оптопара, работающая в линейном режиме, добавляет управляющее напряжение на вход оптопары, которое пропорционально создает напряжение на выходе для дальнейшего управления следующим этапом схемы. Линейная оптопара состоит из светодиода и фототранзистора. Когда светодиод включен и излучает свет, фототранзистор включен.Оптопара - это токовый тип, и для включения светодиода требуется достаточно большой ток. Если входной сигнал слишком мал, светодиод не включается и его выходной сигнал будет искажен. В импульсном источнике питания цепь обратной связи оптопары может быть построена с использованием линейной оптопары, а коэффициент заполнения изменяется путем регулировки тока управляющего вывода для достижения цели точного регулирования напряжения. Технические параметры оптопары в основном включают прямое падение напряжения на светодиодах VF, прямой ток IF, коэффициент передачи тока CTR, сопротивление изоляции между входным и выходным каскадами и напряжение обратного пробоя коллектор-эмиттер V (BR). CEO , коллектор- Падение напряжения насыщения эмиттера V CE (sat).Кроме того, при передаче цифровых сигналов необходимо учитывать такие параметры, как время нарастания, время спада, время задержки и время хранения. Коэффициент передачи тока обычно выражается как коэффициент передачи постоянного тока. Когда выходное напряжение остается постоянным, оно равно процентному отношению выходного постоянного тока IC к входному постоянному току IF. Диапазон CTR оптопары, использующей фототранзистор, обычно составляет 20–300% (например, 4N35), в то время как оптопары Дарлингтона (например, 4N30) могут достигать 100–5000%. Это означает, что последний требует меньшего входного тока, если вы хотите такой же выходной ток. Следовательно, параметры CTR имеют некоторое сходство с HFE транзистора. Характеристическая кривая CTR-IF обычного оптического ответвителя является нелинейной, и нелинейные искажения особенно серьезны, когда IF мала, поэтому она не подходит для передачи аналогового сигнала. Характеристическая кривая CTR-IF линейного оптопары имеет хорошую линейность, особенно при передаче слабых сигналов.Его коэффициент передачи переменного тока очень близок к значению CTR, которое представляет собой коэффициент передачи постоянного тока. Следовательно, он подходит для передачи аналоговых сигналов напряжения или тока, обеспечивая линейную зависимость между выходом и входом. Оптопары используются в первую очередь для обеспечения изоляции между входными и выходными цепями. При проектировании схемы необходимо соблюдать следующие принципы: Выбранное устройство оптопары должно соответствовать национальным и международным стандартам напряжения пробоя изоляции: Для правильного выбора типа и параметров линейного оптического ответвителя в изоляции импульсного источника питания и конструкции импульсного источника питания с обратной связью оптопары необходимо соблюдать следующие принципы: допустимый диапазон коэффициента передачи тока ( CTR) оптопары составляет 50% - 200%. Это связано с тем, что при CTR <50% светодиоду в оптопаре требуется большой рабочий ток (IF> 5 мА) для правильного управления рабочим циклом монолитной ИС импульсного источника питания, что увеличивает энергопотребление оптопары. Если CTR> 200%, при запуске схемы или при изменении нагрузки возможно ложное срабатывание однокристального импульсного источника питания, что влияет на нормальный выход; Если схема усилителя используется для управления оптопарой, она должна быть тщательно спроектирована для компенсации температурной нестабильности и дрейфа ответвителя; Рекомендуется использовать линейный оптрон, поскольку он характеризуется линейной регулировкой значения CTR в определенном диапазоне. Оптрон, использованный выше, работает в линейном режиме. Управляющее напряжение подается на входной конец оптопары, и напряжение для дальнейшего управления схемой следующего каскада пропорционально генерируется на выходном конце, а управление регулировкой с обратной связью выполняется для стабилизации выхода источника питания. 2.4.2 Создание E rror C ontrol S ignals TL431 имеет три терминала регулируемой ссылки шунта с хорошей термической стабильностью.Он может быть использован в качестве опорного программируемого усилителя коэффициента низкотемпературного. Его выходное напряжение может быть произвольно установлено на любое значение от Vref (2,5 В) до 36 В с двумя резисторами, что позволяет снизить ток от 1 до 100 мА. Типичное динамическое сопротивление устройства составляет 0,2 Ом. Внутри TL431 является опорное напряжение 2. 5V, поэтому ее опорного входного напряжения может быть обеспечено за счет частичного напряжения выходного напряжения постоянного тока, что делает его хорошо работать. Он имеет очень низкий выходной шум и температурный коэффициент всего 50 ppm / C.Он идеально подходит для использования в качестве эталонного источника питания. Схемы выборки сравнивает полученный выходной сигнал с опорным источником 2. 5V внутри TL431, чтобы генерировать сигнал об ошибке амплификации, и в это время преобразует сигнал выходного напряжения в сигнал тока. Согласно характеристикам операционного усилителя, только когда напряжение на выводе REF (синфазный вывод) немного выше 2,5 В, через триод будет проходить стабильный ненасыщенный ток.Более того, при небольшом изменении напряжения на выводе REF ток через последовательно соединенный транзистор будет варьироваться от 1 до 100 мА. Так что TL431 - это ни в коем случае не стабилитрон, а настоящая микросхема. 2.4.3 Реализация замкнутого контура управления с отрицательной обратной связью Для схемы, показанной на рисунке 13, необходимо определить значения R1, R2, R3 и R4. Пусть выходное напряжение будет 5 В, а выпрямленное выходное напряжение вспомогательной обмотки - 12 В.Схема использует выходное напряжение для сравнения с опорным напряжением, сформированным TL431, и управляет выводом COMP ШИМ посредством изменения тока фотодиода-транзистора PC817, тем самым изменяя ширину ШИМ и достигая цели стабилизации выходного напряжения. . Поскольку управляемый объект - это ШИМ, первое, что нужно выяснить, - это характеристики управления ШИМ. Связь между Vcomp и Icomp известна из спецификации PWM. Это видно из рисунка 14. Рисунок 14. Линейная рабочая зона ШИМ Видно, что ток Icomp должен быть между 810 мкА и 822 мкА, а ШИМ будет изменяться линейно. Следовательно, ток Ice транзистора PC817 также должен изменяться в этом диапазоне. Пока Ice управляется током диода If, мы можем правильно определить прямой ток If диода PC817 по соотношению между Ice и If PC817. Из рисунка 15 видно, что когда прямой ток If диода PC817 составляет около 8 мА, ток коллектора Ice триода изменяется примерно на 810 мкА, а напряжение коллектора Vce может линейно изменяться в широком диапазоне, как показано на рисунке 16. Рисунок 15. Характеристика C urve PC817 Рисунок 16. Связь между O мощность В напряжение и C ток PC817 Отвечает требованиям управления ШИМ. Следовательно, можно определить, что прямой ток диода PC817 IF равен 8 мА. После определения прямого тока оптопары можно определить значение сопротивления токоограничивающего резистора R1: (2–12) Назначение параллельного резистора R2 - подавать ток смещения на TL431.TL431 требует, чтобы рабочий ток был не менее 1 мА, то есть, когда ток диода оптопары находится на минимальном значении срабатывания, TL431 также должен быть не менее 1 мА. Поскольку анод TL431 имеет напряжение не менее 2,5 В, по приблизительным оценкам R2 <= 2,5 В / 1 мА = 2,5 К. Кроме того, это еще и соображение энергопотребления. Здесь мы выбираем 2K, и есть два фактора, которые следует учитывать при значении R3: 1) Ток опорного входного терминала TL431 обычно составляет около 2uA.Для того, чтобы избежать этого терминала тока, воздействующего на отношение парциального давления и влияние шума, ток, протекающий через резистор R3, как правило, в 100 раз или больше тока опорного сегмента. Следовательно, сопротивление должно быть меньше 2,5 В / 200 мкА = 12,5. 2) Требования к потребляемой мощности в режиме ожидания. Если требуется попытаться взять большое значение при <12,5 КБ, мы выбираем здесь 2,5 КБ. Поскольку выходное напряжение составляет 5 В, R4 также выбирает 2,5 К. Основная работа данной главы - познакомить с устройствами управления, используемыми в конструкции, высокочастотными трансформаторами, основными силовыми лампами и основными управляющими микросхемами. Также представлены процесс управления обратным источником питания и конструкция схемы управления абсорбцией. В этой главе подробно рассматривается процесс генерации и передачи управляющего сигнала. Вам также может понравиться с пояснениями Схемотехника линейного источника питания постоянного тока Конструкция однофазного синусоидального инверторного источника питания SPWM на основе SG3525 Принципиальная электрическая схема источника питания с регулируемым напряжением Принцип и применение источника питания постоянного тока (часто сокращенно SMPS) значительно сложнее, чем линейные регулируемые источники питания, описанные в модуле источников питания 2.Основное преимущество этой дополнительной сложности состоит в том, что работа в коммутируемом режиме дает регулируемые источники постоянного тока, которые могут обеспечивать большую мощность для данного размера, стоимости и веса блока питания. Используется ряд различных типов дизайна. Если входом является сеть переменного тока (линия), переменный ток выпрямляется и сглаживается накопительным конденсатором, прежде чем он будет обработан преобразователем постоянного тока в постоянный, чтобы получить регулируемый выход постоянного тока на требуемом уровне.Следовательно, SMPS можно использовать в качестве преобразователя переменного тока в постоянный для использования во многих цепях с питанием от сети или постоянного тока в постоянный, повышая или понижая напряжение постоянного тока по мере необходимости, в системах с батарейным питанием. На рис. 3.0.1 показан пример блок-схемы типичного SMPS с входом сети переменного тока (линейным) и регулируемым выходом постоянного тока. Выходное выпрямление и фильтр изолированы от секции высокочастотного переключения высокочастотным трансформатором, а обратная связь по управлению напряжением осуществляется через оптоизолятор.Блок схемы управления типичен для специализированных ИС, содержащих высокочастотный генератор, широтно-импульсную модуляцию, управление напряжением и током, а также секции отключения выхода. Независимо от назначения SMPS, общей особенностью (после преобразования переменного тока в постоянный, если требуется) является использование высокочастотной прямоугольной волны для управления схемой электронного переключения питания. Эта схема используется для преобразования источника постоянного тока в высокочастотный сильноточный переменный ток, который различными способами, в зависимости от конструкции схемы, преобразуется в регулируемый выход постоянного тока.Причина этого процесса двойного преобразования заключается в том, что при изменении постоянного тока или частоты сети переменного тока на высокочастотный переменный ток компоненты, такие как трансформаторы, катушки индуктивности и конденсаторы, необходимые для обратного преобразования в стабилизированный источник постоянного тока, могут быть намного меньше и дешевле, чем те, которые необходимы для выполнения той же работы на сетевой (сетевой) частоте. Высокочастотный переменный ток, создаваемый в процессе преобразования, представляет собой прямоугольную волну, которая обеспечивает средства управления выходным напряжением посредством широтно-импульсной модуляции.Это позволяет регулировать выходную мощность намного эффективнее, чем это возможно в линейно регулируемых источниках питания. Комбинация прямоугольного генератора и переключателя, используемая в импульсных источниках питания, также может использоваться для преобразования постоянного тока в переменный. Таким образом, метод переключения режимов также может использоваться в качестве «инвертора» для создания источника переменного тока с потенциалом сети от источников постоянного тока, таких как батареи, солнечные панели и т. Д. В большинстве импульсных источников питания обычно обеспечивается регулировка как линии (входное напряжение), так и нагрузки (выходное напряжение).Это достигается путем изменения отношения метки к пространству формы волны генератора перед ее применением к переключателям. Контроль отношения метки к пространству достигается путем сравнения обратной связи по напряжению на выходе источника питания со стабильным опорным напряжением. Используя эту обратную связь для управления отношением метки к пространству генератора, можно управлять рабочим циклом и, следовательно, средним выходным постоянным током схемы. Таким образом может быть обеспечена защита как от перенапряжения, так и от перегрузки по току. Там, где важно поддерживать электрическую изоляцию от сети, это обеспечивается с помощью трансформатора либо на входе переменного тока, где он также может использоваться для изменения напряжения переменного тока перед выпрямлением, либо между секциями управления источником питания. секции питания и выхода, где, помимо обеспечения изоляции, трансформатор с несколькими вторичными обмотками может выдавать несколько различных выходных напряжений. Для обеспечения хорошо регулируемого выхода образец выходного напряжения постоянного тока обычно подается обратно в схему управления и сравнивается со стабильным опорным напряжением. Любая возникшая ошибка используется для управления выходным напряжением. Для поддержания гальванической развязки между входом и выходом обратная связь обычно осуществляется через такое устройство, как оптоизолятор. Использование высокой частоты для импульсного привода дает несколько преимуществ: • Трансформатор будет ВЧ-типа, который намного меньше стандартного сетевого трансформатора. • Частота пульсаций будет намного выше (например, 100 кГц), чем в линейном источнике питания, поэтому требуется меньшее значение сглаживающего конденсатора. • Кроме того, использование прямоугольной волны для управления переключающими транзисторами (режим переключения) гарантирует, что они рассеивают гораздо меньше энергии, чем обычный транзистор последовательного стабилизатора. Опять же, это означает, что для заданной выходной мощности можно использовать меньшие и более дешевые транзисторы, чем в линейных источниках питания аналогичного номинала. • Использование трансформаторов меньшего размера и сглаживающих конденсаторов делает импульсные источники питания более легкими и менее громоздкими.Добавленная стоимость сложной схемы управления также компенсируется меньшими и, следовательно, более дешевыми трансформаторами и сглаживающими конденсаторами, что делает некоторые конструкции с переключаемым режимом менее дорогими, чем эквивалентные линейные источники питания. Хотя линейные источники питания могут обеспечить лучшее регулирование и лучшее подавление пульсаций на низких уровнях мощности, чем источники с импульсным режимом, вышеуказанные преимущества делают SMPS наиболее распространенным выбором для блоков питания в любом оборудовании, где требуется стабилизированный источник питания для доставки средних и больших объемов. власти. Недостатком использования такой высокочастотной прямоугольной волны в мощной цепи, такой как SMPS, является то, что создается много мощных высокочастотных гармоник, так что без очень эффективного RF-экранирования и фильтрации существует опасность того, что SMPS создаст радиочастотные помехи. Введение: Независимо от типа электронного устройства, будь то потребительский продукт, такой как компьютеры, сотовые телефоны, игровые системы и более промышленные OEM-системы мониторинга и управления, все они имеют одно общее требование для их работы - надежность и надежность. стабильный источник постоянного тока. В настоящее время используются три типа устройств преобразования энергии: источник питания переменного / постоянного тока, преобразователь постоянного / постоянного тока и инвертор постоянного / переменного тока. Из трех наиболее часто используются источники питания переменного / постоянного тока и преобразователи постоянного / постоянного тока. Будь то основной преобразователь питания переменного тока в постоянный или встроенный преобразователь постоянного тока в более крупную распределенную энергосистему, ни один отдельный компонент не оказывает прямого влияния на общую надежность и производительность системы в качестве повсеместного источника питания. Источник питания не только обеспечивает надежное питание устройства, но и отвечает требованиям безопасности пользователя, уровням выбросов и среднему времени наработки на отказ, а также требованиям к температуре окружающей среды системы. Линейный источник питания: Линейное против. Сравнение импульсных источников питания: Импульсный источник питания имеет преимущество более широкого диапазона входных напряжений, чем его линейный аналог. Диапазон входного линейного источника питания обычно составляет +/- 10% и напрямую влияет на эффективность источника питания.При импульсном источнике питания колебания входного напряжения практически не влияют на КПД, а диапазон входного сигнала обычно составляет 50–100% при использовании универсального или автоматического переключателя управления линией. Присущий коммутатору более широкий диапазон входных напряжений делает источник питания полезным в условиях пониженного напряжения. Кроме того, благодаря использованию автоматического переключателя или универсальной схемы управления входом, импульсным источникам питания больше не требуются механические импортные перемычки диапазона для автоматической адаптации к разнице входных напряжений во всем мире, что значительно упрощает их применение. Прямой преобразователь: Когда переключатель выключен, ток в катушке индуктивности не может изменяться мгновенно. Из-за этого ток течет от элемента накопления энергии во время обеих половин цикла переключения, в отличие от схемы обратного типа. Из-за этого прямой преобразователь демонстрирует более низкое выходное пульсирующее напряжение, чем обратная схема при том же уровне выходной мощности. Этот тип конфигурации используется для уровней мощности до 250 Вт. Общая коммутируемая мощность переменного / постоянного тока: Понижающий преобразователь : Часто используемый в импульсных источниках питания с выходным уровнем до 1000 Вт, понижающий стабилизатор, показанный ниже, работает как прямой преобразователь, и для схемы отсутствует изоляция входа-выхода.Высокое входное напряжение постоянного тока регулируется до более низкого уровня с помощью широтно-импульсной модуляции переключателя. Boost Regulator: Аналогичная схема представляет собой повышающий регулятор, который работает как понижающий стабилизатор, за исключением того, что выходное напряжение в этом случае выше, чем входное напряжение. Выходное напряжение равно входному напряжению, плюс напряжение определяется переключающим элементом. Двухтактный преобразователь: Двухтактный преобразователь представляет собой вариант прямого преобразователя, за исключением того, что на первичной стороне трансформатора используются два переключающих элемента. Полномостовые и полумостовые преобразователи: Другой часто применяемой топологией являются полумостовые или полумостовые преобразователи, которые имеют разновидности прямого преобразователя. Единственная разница здесь - это разница, в которой приводится в действие первичная обмотка трансформатора. Коррекция коэффициента мощности: Сложность воздействия на коэффициент мощности сложна; По сути, коэффициент мощности системы переменного тока определяется как отношение реальной мощности, протекающей к полной мощности нагрузки, обычно количественно выражается числом от 0 до 1, часто выражается в процентах от номинального КПД. В системе электроснабжения нагрузка с низким коэффициентом мощности потребляет больше тока, чем нагрузка с высоким коэффициентом мощности, при том же количестве передаваемой полезной мощности. Эти более высокие токи увеличивают потери энергии в системах распределения электроэнергии и требуют более крупных проводов и оборудования для минимизации их воздействия. Из-за затрат, требуемых для дополнительного силового оборудования, чтобы заменить потерянную энергию, электроэнергетические компании обычно взимают более высокую плату с промышленных или коммерческих потребителей, где используется большая мощность из-за низкого номинального коэффициента мощности. по своей конструкции потребляют ток от линии переменного тока короткими импульсами, когда мгновенное напряжение сети превышает напряжение на входном конденсаторе большой емкости в течение оставшейся части цикла переменного тока, для которой этот конденсатор обеспечивает энергию. Это приводит к высокому содержанию гармоник и относительно низкому коэффициенту мощности, что создает дополнительную нагрузку на электрические сети. Эти гармоники можно удалить с помощью банков фильтров, но реализация такой большой возможности фильтрации может оказаться дорогостоящей. При выборе импульсного источника питания необходимо учитывать ряд факторов, например: - и другие факторы снижения характеристик Все это играет огромную роль в том, что каждое приложение и компонент могут делать для этого конкретного преобразования. Приходилось ли вам когда-нибудь начинать разработку схемы импульсного источника питания только для того, чтобы понять, что невозможно соответствовать предлагаемой компоновке в таблице данных? Задумывались ли вы, какие части эталонного дизайна вам следует сохранить, а какие - изменить? Как выбор макета влияет на производительность коммутатора? В этой статье я намерен кратко рассказать историю, объяснить основные принципы работы и привести примеры импульсных источников питания и методов их проектирования.Я надеюсь, что таким образом я смогу передать удовольствие, которое я получаю от разработки этих уникальных схем. История коммутатора Кто-то может подумать, что импульсные источники питания начали использоваться в 1970-х годах, но принципы были известны еще в 1930-х годах. Их реализация включает мэйнфрейм IBM 704 (1950-е годы), спутник NASA Telstar (1960-е годы) и знаменитый персональный компьютер Apple II (1970-е годы). И с тех пор почти всегда ... ну, это было! Нет недостатка в тех, кто хочет отдать должное популярности импульсных блоков питания.Однако реальность такова, что инновации в полупроводниковой промышленности (усовершенствование переключающих транзисторов и разработка новых микросхем контроллеров) - это то, чему следует приписать взрывной рост их популярности. Выключатель питания, который позволял очень быстро переключать большие токи, действительно был ключом к тому, чтобы сделать импульсные источники питания практичными для широкого спектра применений, которые мы видим сегодня. Эту возможность обеспечило изобретение переключателя питания Vertical Metal Oxide Semiconductor (VMOS).Биполярные транзисторные переключатели питания хорошо работают в мощных коммутационных приложениях, но эти компоненты демонстрируют более медленные характеристики переключения, чем MOSFET, переключатель мощности VMOS. Было важно, особенно для приложений бытовой электроники, увеличить скорость переключения не только для повышения энергоэффективности, но и для выхода за пределы слышимого диапазона частот. Терминология коммутатора Импульсный источник питания также известен под другими названиями. Термин импульсный источник питания широко использовался до тех пор, пока Motorola не ввела в действие свою торговую марку SWITCHMODE ™. Работа коммутатора Коммутатор использует выключатель питания, конденсаторы фильтра, магнетизм и выпрямитель для передачи энергии от входа к выходу, обеспечивая источник регулируемого напряжения.Он работает путем быстрого включения и выключения питания. Входное напряжение и рабочий цикл, который представляет собой пропорцию времени, в течение которого переключатель находится во включенном и выключенном состоянии, определяют выходное напряжение. Во включенном состоянии переключатель находится в режиме насыщения с незначительным падением напряжения на нем. В состоянии ВЫКЛЮЧЕНО переключатель находится в режиме отключения с незначительным током через него. Это два очень эффективных состояния, в которых переключатель мощности рассеивает очень мало энергии. Это приводит к очень эффективному преобразованию энергии и очень небольшим потерям мощности из-за тепла. не требуются низкочастотные трансформаторы, большие и тяжелые; однако они требуют высокочастотной фильтрации. Фильтрация может выполняться с использованием компонентов гораздо меньшего размера. Все это дает коммутаторам огромное преимущество перед своими аналогами с линейными регуляторами в области миниатюризации и энергоэффективности. Недостатки использования переключателя состоят в том, что он может быть требовательным к компоновке и из-за быстрого переключения и сильноточных трактов может излучать электромагнитные помехи (они могут быть шумными!). Типы коммутаторов Существует два типа переключателей: с трансформаторной развязкой и неизолированные. Коммутаторы, использующие входное напряжение выше 42,5 В постоянного тока, обычно требуют использования трансформаторной изоляции. Неизолированные переключатели могут быть очень маленькими и компактными, и часто переключатель питания и схемы управления размещаются на одной микросхеме. Существуют различные топологии переключателя (электрическое расположение переключателя, магнитов, конденсаторов и диодов) для удовлетворения требований к источнику и напряжению нагрузки современных электронных устройств.В таблице 1 перечислены три распространенные топологии неизолированных коммутаторов. имеют много общих топологий. Каждый из них имеет характеристики, которые делают его более подходящим для конкретного приложения источника питания. Входное напряжение, выходная мощность и максимальный выходной ток являются основными факторами при выборе топологии. Другие факторы включают стоимость, эффективность, количество выходов, изоляцию, размер и технические требования. Топологии изолированных коммутаторов могут быть довольно сложными, но их базовая конструкция основана на топологиях неизолированных коммутаторов.Катушка индуктивности в неизолированном переключателе разделена и соединена, образуя трансформатор, обеспечивающий изоляцию. Используя эту концепцию, прямой преобразователь основан на понижающем преобразователе, а обратный преобразователь основан на понижающем повышении. Остальные перечисленные изолированные топологии (таблица 2) являются производными от базовой конструкции прямого преобразователя. Для простоты в данной статье основное внимание будет уделено неизолированному, DC-DC, понижающему стабилизатору с одним положительным выходом (также известному как понижающий преобразователь) в качестве примера схемы коммутатора. Подсказки по макету Лучшим источником информации при создании макета видеомикшера является техническое описание производителя вместе с любыми примечаниями по применению. Возможно, макет, предоставленный для ознакомительных целей, можно использовать в качестве справочного материала. Как правило, если вы точно следуете рекомендуемой компоновке и примечаниям, то результирующая компоновка работает так, как того требует производитель. Однако чаще всего один или несколько факторов вынуждают вас внести изменения в вашу реализацию эталонного макета.Эти факторы включают: Основные компоненты различаются по размеру и форме Любой из этих факторов может повлиять на вашу способность реализовать макет производителя в вашем дизайне.Это означает, что что-то должно измениться, но что? А что делать, если нет примечания к приложению, к которому можно было бы обратиться? Как вы принимаете правильные решения при проектировании такой ответственной цепи? Обзор цепи Прежде всего, необходимо определить ключевые компоненты питания в цепи коммутатора. Это (см. Схему на рисунке 1): Силовые тракты Понимание того, как работает переключатель, требует от нас определения нескольких критических контуров тока, постоянного (постоянного) и переменного (переменного) тока. Петли постоянного тока: 1) входной контур от источника ввода через конденсатор Cin и возврат к источнику и 2) выходной контур от конденсатора Cout через выходную нагрузку и возврат обратно к Cout. .На рисунке 2 показано расположение входных и выходных контуров. Эти петли должны быть подключены как непосредственно к клеммам соответствующих конденсаторов фильтра, так и с короткими широкими дорожками для низкого импеданса. Эти два отдельных контура постоянного тока можно рассматривать как пути прохождения тока нерегулируемого источника и регулируемые напряжения нагрузки. Обратные пути переменного тока должны быть максимально согласованы с соответствующими путями прямого тока. Лучший способ сделать это - использовать полную пластину заземления в непосредственной близости от следующего соседнего слоя печатной платы. Минимизируя площадь контура и заставляя обратный путь точно следовать пути прямого тока, противоположные магнитные поля будут стремиться нейтрализовать друг друга.Это снижает нежелательные электромагнитные помехи. Обратный путь не должен быть занят слишком большим количеством незаземленных переходных отверстий, которые могут подорвать эффективную медь для этого пути из-за создания отверстий или щелей в этой плоскости. Также лучше всего выровнять эти переходные отверстия, оставляя широкие проходы из меди в направлении обратного пути. Разница между двумя путями возврата переменного тока (от анода выпрямителя к отрицательной клемме Cin) должна заключаться в коротком заземлении с низким сопротивлением и общей точкой, которое включает в себя отрицательную клемму Cout и, если применимо, термостат контроллера. pad и любые соединения PGND. Все силовые компоненты должны быть расположены на одной стороне платы, а соединения прямого пути тока должны выполняться без термического разгрузки и без использования переходных отверстий. Заземляющие переходные отверстия также должны быть подключены к плоскости без термического разгрузки. Выход переключателя называется узлом SW и является частью прямого пути переменного тока. Он переносит быстро переключающиеся колебания напряжения большой амплитуды (высокое dV / dT) вместе с высокими пиковыми токами. В частности, это соединение должно быть как можно короче.На уровне контроллера важно сделать это соединение очень низкой индуктивностью, и оно должно быть достаточно широким для протекающего через него тока. Не рекомендуется расширять соединение для компенсации большего расстояния. Это связано с тем, что вероятность того, что это соединение станет антенной и излучает электромагнитные помехи, напрямую зависит от его длины. Схема коммутатора должна быть размещена таким образом, чтобы это соединение было удалено от других схем, включая другие коммутаторы на той же плате. Подключение узла SW не должно быть частью медного потока, который используется для рассеивания тепла, даже если это лучший механический способ отвода тепла от коммутатора (см. Рисунок 4). Заливка медью для управления температурным режимом должна использовать низкоомные и бесшумные соединения постоянного тока (GND, VOUT и VIN). Направление воздушного потока также может потребоваться при размещении высоких компонентов, таких как катушка индуктивности и конденсаторы фильтра, вокруг дискретных переключателей питания. Компактный размер коммутатора, необходимый для уменьшения электромагнитных помех, также может затруднить эффективный отвод тепла. Схема управления Последний аспект коммутаторов, который мы рассмотрим, - это схема управления. Схема управления определяет рабочий цикл, который, в свою очередь, определяет выходное напряжение. Сигнал управления рабочим циклом, который может обеспечиваться либо полностью интегрированным контроллером источника питания, либо более простым драйвером затвора, передает частоту переключения (см. Рисунок 4). По этой трассе проходит ток средней мощности, и ее следует направлять в сторону от сильноточных петель.Его также следует прокладывать подальше от чувствительных цепей, на которые он может повлиять. Также может потребоваться направить этот сигнал в паре с другим сигналом от выхода драйвера к переключателю питания, чтобы уменьшить площадь контура и обеспечить подавление синфазного шума. Рабочий цикл рассчитывается для обеспечения того, чтобы коммутатор вырабатывал заданное выходное напряжение. Чтобы правильно настроить рабочий цикл, необходима обратная связь от выходной нагрузки: напряжение или ток.Для этой цели часто используется аналоговая схема усилителя с коррекцией ошибок. Вход этого усилителя (узел FB) имеет высокий импеданс и, следовательно, чувствителен к шуму, поэтому подключение к нему должно быть очень коротким (см. Рисунок 5). Для этого все компоненты, которые генерируют сигнал обратной связи (например, сеть делителя напряжения), должны быть размещены рядом с контроллером, а вход этих компонентов направлен на последний выходной конденсатор или иногда на нагрузку. Задача состоит в том, чтобы не допустить искажения сигнала FB и других аналоговых управляющих сигналов низкого уровня трактами мощности с высоким dV / dT, оставаясь при этом в непосредственной близости от них.По этой причине во многих случаях вам потребуется предоставить отдельную область аналоговой заземляющей поверхности, на которой будут ссылаться эти низкоуровневые сигналы и которая соединена с землей в одной точке. Следы обратной связи и все аналоговые сигналы должны пересекать аналоговую землю в этой общей точке. Сводка Некоторые таблицы данных или примечания к приложениям могут точно соблюдаться, если предоставленный ими макет идеально подходит для включения в ваш дизайн без изменений. Это редко бывает с импульсными источниками питания.Будь то функция, добавленная или опущенная в схеме, компонент, который слишком велик для предоставленного пространства, или что-то столь же маленькое, как изменение размера переходного отверстия, в вашем дизайне должно быть что-то другое. Но с такой часто используемой схемой, которая может так легко излучать электромагнитные помехи из-за быстрых изменений напряжения и тока, разработчику необходимо более глубокое понимание работы коммутатора, чтобы успешно завершить компоновку. Я надеюсь, что приведенная выше информация окажется полезной для вас при принятии необходимых решений при проектировании ваших печатных плат.Эта статья лишь поверхностно затронула обширную тему компоновки видеомикшера. Некоторые из обсуждаемых здесь вопросов будут иметь отношение к вашему макету, а некоторые - нет. Это связано с тем, что, несмотря на общий принцип переключения, каждое приложение переключателя уникально. Но я считаю, что это может быть то, что делает макет переключателя таким увлекательным.
автор: : MOSO
2020-03-17
Реально мы вступаем в контакт с адаптером питания - это импульсный блок питания.Импульсный источник питания должен указывать на современные электронные технологии, соотношение времени открытия и выключения трубки переключателя управления, для поддержания стабильного выходного напряжения источника питания, адаптера питания, импульсного источника питания с помощью широтно-импульсной модуляции (обычно
脉宽 调制)
Управляющая ИС и МОП-транзистор, преимущества: высокая эффективность преобразования, малый объем, возможность работы в широком диапазоне напряжений.
Чтобы помочь пользователям решить & другие;
Какую роль играет адаптер питания и принципы работы?
”
Связанная проблема, технология moso to & other;
Какую роль играет адаптер питания и принципы работы?
”
Организуйте соответствующие решения.Адаптер питания, также называемый внешним источником питания (
Переключите адаптер питания)
, это небольшие портативные электронные устройства и электронные приборы, изменение источника питания агрегата, это результат реальной жизни, электронные устройства обычно не могут использоваться непосредственно для бытового электричества, для домашнего использования - напряжение источника питания 220 В, напряжение источника питания и обычных электронных устройств обычно требуется от 5 до 20 В.
Таким образом, действие адаптера питания имеет жизненно важное значение, особенно если вы едете в США и другие страны, напряжение и другое в нашей стране, больше нужен трансформатор от 220 В до 110 В.Роль адаптера питания может преобразовать высокое напряжение работы дома в стабильное низкое напряжение, чтобы они могли нормально работать.
Вместо этого это принесет много неудобств в повседневное использование.
С его помощью мы можем удобно и безопасно пользоваться этими электронными продуктами.
Адаптер питания широко используется в управлении промышленной автоматикой, военном промышленном оборудовании, научно-исследовательском оборудовании, светодиодном освещении, промышленном контрольном оборудовании, коммуникационном оборудовании, электрическом оборудовании, контрольно-измерительных приборах, медицинском оборудовании, полупроводниковом охлаждении и нагревании, очистителе воздуха, электронном холодильнике, ЖК-дисплее, светодиод лампы и фонари, коммуникационное оборудование, аудио и видео продукты, безопасность, компьютерный корпус, цифровые продукты и оборудование и другие области, и в этих областях имеют эффект, который нельзя игнорировать.Так какова роль адаптера питания?
Функция адаптера питания: это трансформатор и выпрямитель.
Дома - 220 В переменного тока, а наша земля для компьютера - 12 В постоянного тока (
Будто)
, поэтому можете быть уверены, что адаптер питания представляет собой трансформатор и выпрямитель.
Адаптер - это трансформатор, мы все должны знать, переменный ток 220 В через трансформатор трансформатора, через переменный выпрямитель постоянного тока, здесь потребляется, и потребление будет преобразовано в тепло, поэтому адаптер питания будет нормально лихорадить.
Изготовлен из листовой кремнистой стали, трансформатор после электризации создает магнитный поток, поток между листами кремнистой стали будет вызывать силу, чтобы производить жужжащий звук, это нормально.Но пока голос не в норме, причин много: 1, переменное напряжение нестабильно.
2, поломка стружки.
3, межвитковое короткое замыкание.
4, повреждение компонентов.
Широко используется в бытовой электронике, чтобы обеспечить выходную мощность большинства из них в пределах 100 Вт, спрос на рынке быстро растет.
Используются зарядные устройства для аккумуляторов электрического велосипеда, небольшой ЖК-телевизор, портативный компьютер, принтер, DVD-плеер, телевизионные приставки и т. Д.
Ранний адаптер питания в основном используется линейный трансформатор, с бытовой электроникой для адаптера питания является высокая эффективность и широкий диапазон требований к входному напряжению, а также медь, железо и увеличение затрат на рабочую силу, этот адаптер питания внутри оригинального линейного Трансформатор был постепенно заменен импульсным блоком питания.В этой статье в основном представлены принцип и применение роли адаптера питания, несколько проблем.
Непрерывное развитие науки и техники, практика применения всех видов научно-исследовательских проектов с каждым годом увеличивается, спрос на адаптер питания с точки зрения его точности, производительности, характеристик, разновидностей, типа, размера и т. Д. Выдвинул много новых требований, Существующий адаптер питания уже не может удовлетворить текущие потребности, исследования и разработки подходят для многих видов адаптеров питания нового типа, которые стали объективным спросом, и его социальные и экономические преимущества значительны, более яркие перспективы рынка. SMPS - это аббревиатура от слова Switch Mode Power Supply. Название ясно предполагает, что концепция имеет какое-то или полностью отношение к импульсам или переключению используемых устройств. Давайте узнаем, как адаптеры SMPS работают для преобразования сетевого напряжения в более низкое напряжение постоянного тока. В адаптерах SMPS идея состоит в том, чтобы переключить входное напряжение сети на первичную обмотку трансформатора, чтобы на вторичной обмотке трансформатора можно было получить более низкое значение постоянного напряжения. Однако вопрос в том, что то же самое можно сделать с обычным трансформатором, так зачем нужна такая сложная конфигурация, когда функционирование может быть просто реализовано через обычные трансформаторы? Что ж, концепция была разработана именно для того, чтобы исключить использование тяжелых и громоздких трансформаторов с более эффективными версиями схем питания SMPS. Хотя принцип работы очень похож, результаты сильно отличаются. Наше сетевое напряжение также представляет собой пульсирующее напряжение или переменный ток, который обычно подается в обычный трансформатор для требуемых преобразований, но мы не можем сделать трансформатор меньше по размеру даже при токе всего 500 мА. Причиной этого является очень низкая частота наших сетевых входов переменного тока. Это связано с тем, что с уменьшением частоты потери на вихревые токи с намагниченностью трансформатора увеличиваются, что приводит к огромным потерям тока из-за тепла, и, следовательно, весь процесс становится очень неэффективным. Чтобы компенсировать вышеуказанные потери, используются относительно большие сердечники трансформатора с соответствующей толщиной провода, что делает весь блок тяжелым и громоздким. Импульсный источник питания очень грамотно решает эту проблему. Если более низкая частота увеличивает потери на вихревые токи, это означает, что увеличение частоты приведет к обратному эффекту. Это означает, что если частота увеличивается, трансформатор можно сделать намного меньше, но при этом он будет обеспечивать более высокий ток на их выходах. Это именно то, что мы делаем со схемой SMPS. Давайте разберемся в функционировании с помощью следующих пунктов: На схеме импульсного источника питания входной переменный ток сначала выпрямляется и фильтруется для получения постоянного тока соответствующей величины. Вышеупомянутый постоянный ток применяется к конфигурации генератора, состоящей из высоковольтного транзистора или МОП-транзистора, установленного на первичной обмотке небольшого ферритового трансформатора хорошего размера. Схема становится автоколебательной конфигурацией, которая начинает колебаться с некоторой заранее определенной частотой, установленной другими пассивными компонентами, такими как конденсаторы и резисторы. Частота обычно выше 50 кГц. Эта частота индуцирует эквивалентное напряжение и ток на вторичной обмотке трансформатора, определяемые количеством витков и шириной SWG провода. Из-за использования высоких частот потери на вихревые токи становятся пренебрежимо малыми, а выход постоянного тока с высоким током может быть получен через трансформаторы с ферритовым сердечником меньшего размера и относительно более тонкую обмотку из проволоки. Однако вторичное напряжение также будет на первичной частоте, поэтому оно снова выпрямляется и фильтруется с помощью диода быстрого восстановления и конденсатора высокой емкости. Результатом на выходе является идеально отфильтрованный низкий постоянный ток, который можно эффективно использовать для управления любой электронной схемой. В современных версиях ИИП на входе вместо транзисторов используются high-end микросхемы. Эти ИС имеют соответствующие встроенные схемы защиты, такие как защита от лавин, защита от перегрева и защита от перенапряжения на выходе, а также функцию импульсного режима. Защита от лавин гарантирует, что микросхема не будет повреждена при резком включении питания. Защита от перегрева обеспечивает автоматическое отключение ИС, если трансформатор неправильно намотан, и потребляет больше тока от ИС, что делает ее опасно горячей. Пакетный режим - интересная функция, включенная в современные блоки SMPS. Здесь выходной постоянный ток возвращается на вход считывания ИС. Если по какой-либо причине, обычно из-за неправильной вторичной обмотки или выбора резисторов, выходное напряжение поднимается выше определенного заданного значения, ИС отключает переключение входа и пропускает переключение в прерывистые всплески. Это помогает контролировать напряжение на выходе, а также ток на выходе. Эта функция также гарантирует, что если выходное напряжение настроено на некоторую высокую точку и выход не загружен, ИС переключается в пакетный режим, гарантируя, что устройство работает с перебоями до тех пор, пока выход не будет достаточно загружен, это экономит энергию блок в режиме ожидания или когда выход не работает. Обратная связь от выходной секции к ИС осуществляется через оптрон, так что выход остается в стороне от входной сети переменного тока высокого напряжения, избегая опасных ударов. Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам. Импульсный источник питания (SMPS) - это электронная схема, которая преобразует мощность с помощью переключающих устройств, которые включаются и выключаются на высоких частотах, и запоминающих компонентов, таких как катушки индуктивности или конденсаторы, для подачи энергии, когда переключающее устройство находится в нерабочем состоянии. состояние проводимости. Импульсные источники питания имеют высокий КПД и широко используются в разнообразном электронном оборудовании, включая компьютеры и другое чувствительное оборудование, требующее стабильного и эффективного источника питания.
Импульсный источник питания также известен как импульсный источник питания или импульсный источник питания.
Импульсные источники питания классифицируются по типу входного и выходного напряжений.Четыре основные категории:
Базовый импульсный источник питания переменного и постоянного тока с изолированной изоляцией состоит из:
Входной источник постоянного тока от выпрямителя или батареи подается на инвертор, где он включается и выключается на высоких частотах от 20 кГц до 200 кГц с помощью переключающего полевого МОП-транзистора или силовых транзисторов.Высокочастотные импульсы напряжения от инвертора подаются на первичную обмотку трансформатора, а вторичный выход переменного тока выпрямляется и сглаживается для получения требуемых напряжений постоянного тока. Схема обратной связи контролирует выходное напряжение и дает команду схеме управления отрегулировать рабочий цикл, чтобы поддерживать выходной сигнал на желаемом уровне.
Существуют различные конфигурации схем, известные как топологии, каждая из которых имеет уникальные характеристики, преимущества и режимы работы, которые определяют, как входная мощность передается на выход. Большинство широко используемых топологий, таких как обратноходовая, двухтактная, полумостовая и полная мостовая, состоят из трансформатора для обеспечения развязки, масштабирования напряжения и нескольких выходных напряжений. Неизолированные конфигурации не имеют трансформатора, а преобразование энергии обеспечивается индуктивной передачей энергии.
Преимущества импульсных источников питания:
Недостатки:
Импульсные источники питания используются для питания разнообразного оборудования, такого как компьютеры, чувствительная электроника, устройства с батарейным питанием и другое оборудование, требующее высокой эффективности.
2. 2 Основная трубка питания
2.3 Основная микросхема управления
2,4 G eneration и T передача из Control S ignal
2.5 Резюме Импульсные источники питания
Введение
Импульсные источники питания Конструкции с переключением режимов
Рис. 3.0.1 Типовая блок-схема SMPS
Регулировка напряжения
ВЧ переключение
Принципов преобразования энергии | Astrodyne TDI
Каждый день мы работаем с широким спектром электронных устройств. Кроме того, существует множество контрольно-измерительных приборов, систем управления, устройств связи и любого количества различных электронных устройств или систем, существующих на фоне общества в целом, от которого мы зависим ежедневно.
Линейный источник питания путем преобразования напряжения сети переменного тока в выходную мощность постоянного тока выполняет несколько функций:
Различия между двумя топологиями преобразователей мощности очевидны. Импульсные источники питания приобрели популярность благодаря своему высокому КПД и высокой удельной мощности. Ключевой особенностью примечания между ними является пульсация на выходе. Из-за распространения более высоких частотных прерываний, используемых в импульсном источнике питания, пульсации на выходе обычно выше, чем у линейного источника питания, в диапазоне 100 мВ.Это может быть проблематично при требованиях к низкому уровню шума, таких как приборы, но эти эффекты можно уменьшить с помощью схемы выходной фильтрации. Импульсные источники также имеют более медленное переходное время восстановления, чем линейные, но имеют гораздо более длительное время задержки выходного сигнала, что важно для многих компьютерных и контрольно-измерительных приложений.
Другая конфигурация переключения населения известна как прямой преобразователь. Хотя прямой преобразователь имеет некоторое сходство с обратным преобразователем, есть некоторые ключевые отличия. Прямой преобразователь накапливает значительную энергию не в трансформаторе, а в выходной катушке индуктивности. Когда транзистор включается, и выходное напряжение, генерируемое во вторичной обмотке, течет через диод в катушку индуктивности. Чем больше время включения переключателя относительно времени выключения, тем выше среднее вторичное напряжение и тем выше нагрузка холостого хода.
Рекомендации по компоновке печатной платы импульсного источника питания - на пути к лучшему коммутатору
«Коммутируемый режим» и «коммутируемый режим» теперь являются общими терминами, как и инициалы SMPS. В компьютере основной источник питания может называться импульсным источником питания, а источники питания точки нагрузки могут называться импульсными регуляторами. Во избежание путаницы вместо всех этих терминов будет использоваться универсальный термин «переключатель».
Функции схемы опущены или добавлены
Механические ограничения
Близость к другим схемам и плотность платы
Дополнительные тепловые требования
Требования к испытаниям
Детали с мелким шагом, требующие более тонкой меди
Требуются большие переходные отверстия из-за толщины платы или соображений надежности
Различное количество слоев печатной платы
Конденсаторы фильтра: Cin и Cout быстро генерируют и поглощают большие уровни переменного тока.
Выключатель питания: U1, элемент последовательного прохода, обычно представляет собой полевой МОП-транзистор.Это может быть одно или несколько дискретных устройств или встроенных в контроллер, если таковой имеется.
Индуктор: L1, магнитный элемент, обеспечивает накопление энергии, которая восстанавливается, когда переключатель выключен.
Диод: D1, выходной выпрямитель, обычно представляет собой диод Шоттки, но в сверхэффективных (например, синхронных выпрямителях) схемах переключения эту функцию будет выполнять полевой МОП-транзистор.
Катушка индуктивности и конденсатор Cout образуют LC-фильтр, обеспечивающий фильтрацию высокочастотных пульсаций напряжения. Иногда параллельно с Cin подключается высокочастотный шунтирующий конденсатор (Cbypass или Chf).Этот конденсатор необходимо разместить очень близко ко входу переключателя. Часто компоненты питания для схемы коммутатора находятся «на кристалле», то есть находятся на контроллере. Маршрутизация печатной платы будет следовать тем же правилам, что и при установке этих компонентов «вне кристалла».
Петли переменного тока - это петля переключателя питания и петля выходного выпрямителя.
Петля переключателя питания формируется, когда переключатель питания включен.В это время прямой ток течет от Cin через переключатель, индуктор, через Cout и возвращается обратно в Cin.
Цепь выходного выпрямителя формируется, когда переключатель находится в положении ВЫКЛ. Теперь энергия восстанавливается из индуктора (магнитного накопителя). Во время этого цикла прямой ток течет от катушки индуктивности к Cout и возвращается от Cout через выпрямитель и обратно к катушке индуктивности.
Можно подумать о функции переключателя, как преобразование постоянного тока на его входе в переменный ток, а затем обратно в постоянный ток на выходе, с целью повышения энергоэффективности.
Петли переменного тока являются наиболее важными соединениями в любой компоновке коммутатора. Эти пути имеют приоритет над всеми остальными. Их размещение и маршрутизация должны быть спланированы в первую очередь, и они должны быть проложены короткими путями с низкой индуктивностью (см. Рисунок 3). Функция адаптера питания и принцип действия адаптера питания? -MOSO LED Driver
Как работают схемы импульсного источника питания (SMPS)
Преимущество топологии SMPS
При 50 Гц или 60 Гц значение чрезвычайно низкое для реализации их на выходах с большим постоянным током с использованием трансформаторов меньшего размера. Как работают адаптеры SMPS
Микросхемы оснащены встроенным высоковольтным МОП-транзистором для поддержания высокочастотных колебаний и многими другими функциями защиты. Что делают встроенные средства защиты SMPS?
О Swagatam
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь! Что такое импульсный источник питания (SMPS)?
Что означает импульсный источник питания (SMPS)?
Techopedia объясняет импульсный источник питания (SMPS)