Полуавтомат сварочный старый: Сварочные полуавтоматы б/у в Старом Осколе

Содержание

Advooc — поиск объявлений

Advooc
  • О проекте
  • Политика конфиденциальности
Электроника и современные гаджеты
Домашние животные и товары для них
Одежда, обувь и аксессуары
Автозапчасти
Стройматериалы и инструменты
Оборудование для бизнеса и промышленности
Мебель и интеръер
Техника для дома
Работа
Сервис и услуги
Антиквариат и коллекционирование
Косметика и товары для ухода
Еда и напитки
Музыка и музыкальные инструменты
Товары для детей
Товары для спорта и активного отдыха
Бытовая химия
Книги и журналы
Аренда недвижимости
Продажа недвижимости

Казахстан: adkza adkze advoos advooc adkzu adkzy Украина: aduaa aduae aduau aduao aduaho Беларусь: adbyf adbyt adbye adbyy Узбекистан: aduza aduze aduzy aduzu Азербайджан: adaza adazu Таджикистан: adtja adtju Киргизия: adkga adkgu Болгария: adbgf adbgt adbgd adbgl adbgy Румыния: adroa adroe adroi

© Advooc

Сварочный аппарат полуавтомат: история создания, особенности использования


В мире сварочных аппаратов появилась настоящая находка. Новый аппарат даже близко нельзя сравнивать с прежними. Ведь пользоваться ним стало намного легче. Если рассмотреть сварочный аппарат полуавтомат, то это в сущности только блок питания. Именно он и выдает необходимые ток и напряжение. Обычно любые блоки питания изготавливают, используя трансформатор. Размеры его напрямую зависят от характеристик, которые от него требуются.

История создания

Когда же появились приборы на основе полупроводников, то тут же стал возможным переход к новому способу при изготовлении блоков питания. Результат — появление на свет полуавтомата инверторного типа. Чем же он хорош в применении? Раньше сварочный аппарат представлял собой неповоротливую, громоздкую коробку, которую транспортировать было очень неудобно. Теперь же это небольшая коробочка, в которой помещается всевозможная электроника.

Вот так и появился сварочный аппарат полуавтомат инверторного типа. Характеристики его просто уникальные, а вот по положительным функциональным признакам он не уступит старым моделям. Именно его универсальность является главным преимуществом данного аппарата. Хотя это преимущество и не единственное.

Преимущества полуавтоматов

Теперь можно производить сварку не только углеродной стали стандартных марок. Можно сваривать чугун, нержавейку. А также цветные металлы, например, алюминий. Если приобретать сварочный аппарат в первый раз, то поразительное разнообразие таких аппаратов, представленных на рынке, может сбить с толку. Ведь их возможности и характеристики самые разные. При этом, выбирая продуктивный сварочный полуавтомат, цена оказывает существенное влияние. Нужно подбирать наиболее оптимальный вариант.

Как выбирать

При покупке сперва нужно определиться, какие именно работы необходимо будет выполнять. Это будет влиять на величину тока. Данный параметр едва ли не основной, по которому производится выбор. Дальше нужно выяснить, какую сеть придется использовать для питания этого аппарата. Если к месту работы подвели однофазное напряжение, то необходим такой аппарат для сварки, который предназначен для однофазной сети. При этом нужно учитывать, что в сети происходят колебания напряжения скачкообразного характера. Когда инверторный полуавтомат используется часто, то нужно подобрать такое сварочное устройство, которое возможно было бы использовать продолжительно и непрерывно. Любительские аппараты, например, могут работать не более пяти минут подряд.


Следующий критерий — это универсальность. Для одних требуется проволока электродного типа, а для других — штучные электроды (сварка типа ММА). Последние более дорогие. Еще аппараты отличаются степенью автоматизации. У одних моделей скорость подачи проволоки имеет ручную настройку. Другие имеют автоматическую настройку этой функции. Она зависит от параметров, при которых выполняется каждая конкретная работа. Если схема сварочного аппарата более автоматизирована, это влияет на повышение ее цены. Также нужно обратить внимание на вес аппарата. От этого зависит насколько легче будет продвигаться работа.

Комплектация таких устройств может быть самая различная. Смотреть нужно на удобство в использовании, на расположение ручек-регуляторов, переносной ручки, шлангов напряжения и на прочие особенности. Играет роль и такой фактор, как фирма-изготовитель. Особую популярность получили западные аппараты, особенно итальянского производства. Китайские тоже могут работать с продолжительной надежностью, хотя покупать их рискованно. Китайская продукция не всегда соответствует требованиям. Нужно использовать все перечисленные советы и рекомендации, тогда при выборе инверторного сварочного полуавтомата ошибиться трудно.

Видео: Какой сварочный выбрать: транс или инвертор

Сварочный полуавтомат от Sema | Самодельные сварочные аппараты, полуавтоматы, схемы

Схема сварочного полуавтомата предоставленная посетителем сайта sem.

Сварочный полуавтомат собран по такой схеме,  ни чего сложного в изготовлении, главное начать  🙂

Работает полуавтомат следующим образом:

— При подключении полуавтомат к сети, загорается светодиод, который установлен на горелке. При нажатии кнопки управления этот светодиод гаснет. Далее включаются реле К1, К2 и К3.

— Реле К1 своими контактами КК1.1 подает напряжение на двигатель подачи проволоки и одновременно отключает тормоз двигателя. Реле К2 своими контактами КК2.1 включает клапан газа. Реле К3 своими контактами КК3.1  включает сварочный ток. В это время идет процесс сварки.

— После отпускания кнопки управления, загорается светодиод подсветки, двигатель обесточивается и мгновенно тормозится за счет замыкания контактов КК1.1.

— Одновременно с двигателем отключается клапан газа и сварочный ток. Сварка прекращена, схема в исходном состоянии и готова к следующему циклу сварки.

Вот собственно схема:

Печатная плата регулятора оборотов:

Также ее можно скачать  в формате программы Sprint-layout по этой ссылке: Печатная плата регулятора оборотов178

Изначально был собран на П трансформаторе:

Но потом был переделан на ТОР, размеры сердечника D=20.4-d=12-h=11.5 и того 48см*2

Первичка алюминий 4х2,5 легла в 4 слоя d=8,5 см последнего

Вторичка алюминий 5х10=50мм*2

После переделки, трансформатор стал иметь следующие характеристики:

U1U2A хх
1.22 В1.34 В1.1,0 А
2.23 В2.36 В2.1,2 А
3.24 В3.37 В3.1,4 А
4.25 В4.38 В4.1,6 А
U1 – напряжение без конденсатора
U2 – напряжение с конденсатором

Корпус сварен из уголка 25 мм, внизу расположена силовая часть и схема управления, вверху находится протяжный механизм:

Дроссель намотан на сердечнике от трансформатора ТСА-270 от старого телевизора шинкой из меди 25 мм*2 30 витков:

Двигатель протяжки проволоки взят от автомобиля ВАЗ, клапан газа от Toyota, изначально стоял ВАЗовский пневмоклапан:

Протяжный механизм собран с двумя прижимными роликами. При таком конструктивном решении вал редуктора двигателя остается как бы в подвешенном состоянии, что снижает нагрузку на него и преждевременный износ.

Общий вид подающего механизма:

Вид механизма протяжки проволоки:

Для удобства при сварке в темных местах, на горелку  был установлен светодиод. При нажатии на кнопку управления он тухнет:

Внешний вид:

И в заключении хочу сказать, что очень доволен работой своего сварочного полуавтомата.  🙂

Автор схемы и владелец сварочного полуавтомата sem

Статью опубликовал: Admin Svapka.Ru

Понравилась ли вам статья? Если не трудно, то проголосуйте пожалуйста:
Похожие записи

Простой сварочный аппарат

Несколько лет назад я получил сломанное зарядное устройство для аккумуляторов, позволяющее получать на выходе 6, 12 или 24 В и максимальным током до 100 А, позволяющим заводить автомобили.

Снаружи шасси было повреждено и невосстановимо, но внутри неплохо сохранилось.

Я думал как можно использовать в быту этот прибор, все что я мог придумать — это либо восстановить источник как зарядное устройство для аккумулятром с регулируемыми параметрами (6-24 вольт /100 ампер …!) или переделать его в сварочный аппарат.

Однажды мой друг купил себе небольшой сварочный аппарат и я получил возможность разбрать его и посмотреть изнутри. Оказалось что главный компонент аппарата — трансформатор — был немного меньше чем мой. Это привело меня к решению попробовать самостоятельно изготовить сварочный аппарат из частей от зарядного устройства.

Я изучил внутренние компоненты сварочного аппарата и наприсовал его принципиальную схему..

Как вы можете видеть на принципиальной схеме, она сильно напоминает схему любого зарядного устройства для аккумуляторов, исключая понижающий автотрансформатор, который позволяет вам пошагово выбрать потребляемый ток устройством. Выпрямительный мост собран из 4*4 диодов неизвестного типа (примерно на 20 ампер каждый). В составе прибора также были такие компоненты как регулируемый предохранитель на ток 20-150 ампер, колеса от шасси, два набора больших медных разъемов в форме «крокодилов» и два куска провода сечением 25 мм2 и длиной по 3 метра вместе с частями кабелей и разъемов. Таким образом, у меня было почти все что нужно для построения сварочного аппарата.

Таким образом я приступил к составлению принципиальной схемы сварочного аппарата.

Для преобразования зарядного устройства в недорогой сварочный аппарат необходимо сделать несколько доработок: добавить электромагнитное реле для управления током сварки, установить вентилятор для охлаждения трансформатора, а также поставить систему автоматического регулирования мощности.

При подключении трансформатора к нагрузке на напряжении 24В, напряжение холостого хода составляет порядка 35 вольт. Таким образом при токе более 120 А и напряжении 12В трансформатор работает с эффективностью порядка 65%. Это достаточно важная цифра.


Выключатель напряжения был удален из схемы, а были добавлены реле выключателя, катушка индуктивности, и вентилятор. Это по сути были основные отличия в схеме между зарядным устройством и сварочным аппаратом.

На выходе трансформатора выпрямительный мост из неизвестных диодов 4*4 был заменен на два диодных модуля (SKKD81/12) соединенных паралельно. Диодные модели были установлены на очень мощном теплоотводе, кроме того на радиаторе также был установлен вентилятор охлаждения. Таким образом температура выпрямительного моста не отличалась от окружающей на несколько градусов Цельсия даже при загрузке на 100%!

Дроссель (inductor) уменьшает пульсации в выходном напряжении и должна иметь такие характеристики, чтобы не входить в насыщение при максимальной нагрузке. Это означает, что это должно иметь воздушный зазор между витками. Катушка индуктивности дросселя намотана толстым медным проводом (шина размером 6*3 мм) смотанным со вторичной обмотки старого трансформатора.


Блок управления содержит в основном схему автоматического регулирования оборотов вентилятора. Эта схема доработана с учетом использования инерционного двигателя стеклоочистителя автомобля, поскольку этот двигатель весьма инерционен и не может остановиться сразу же после отключения сварочного аппарата, когда сварочный электрод удален на 2-3 см!

Для отключения двигателя используются два транзистора BC547, которые включают тормозящий транзистор (BDX54). Без этих компонентов схема управления может быть полезна для управения почти любым другим двигателем постоянного тока с током потребления от 20А и выше.

Частота оборотов двигателя зависит от емкости 1n включенная в отрицательный вход операционного усилителя LM358 на выводе 2. Для переключения пускового реле и реле мощности используется дополнительное реле — и хотя это не очень изящное решение, но это было более быстрым и более легким выходом в этой ситуации.

Принципиальная схема собрана на монтажной плате. Я решил не добавить таймеры для управления пуском и отключением в целях упрощения. Быть может позже я займусь этим.

Выводы

Данная схема может быть рассмотрена как весьма недорогой сварочный аппарат, собранный из ненужных запчастей. Если у вас нет под рукой таких деталей, то их покупка будет более дорогой затеей чем приобретение готового сварочного аппарата. Получивший сварочный аппарат меня вполне устраивает и обладает характеристиками, схожими с характеристиками средних сварочных аппаратов.

Существует другой класс высокочастотных сварочных аппаратов на основе катушки зажигания от автомобилей. Различие между этими моделями в том, что не требуется система подачи провода, однако у ВЧ сварочных аппаратов более лучшие характеристики, и быть может я займусь этим позже.

У меня естьна руках принципиальная схема коммерческого сварочного аппарата, однако блок управления этого прибора для меня является черным ящиком (само собой, защищенным авторским правом). Поэтому если вы можете поделиться принципиальной схемой этого прибора, я был бы глубоко счастлив!

Фотографии расположения элементов сварочного аппарата

1. Выключатель питания

2. Пусковое реле

3. Основной трансформатор 2 кВт

4. Выпрямительные диоды

5. Автоматический предохранитель 120 Ампер

6. Дроссель-индуктор

7. Понижающий трансформатор

8. Переключитель тока

9. Вентилятор

10. Радиатор

15. Двигатель охлаждения

30. Пусковое реле подачи газа

31. Трансформатор для блока управления

32. Блок управления

33. Блок подачи сварочного провода

40. Механизм загрузки сварочного провода

41. Роллер

Здесь сфотографирован механизм подачи провода. Он был построен на основе алюминиевых труб, так что это является полностью независимой единицей. Используемый двигатель применен от дворника ветрового стекла автомобиля. Ролик установлен на шахте выпуска, которуя я предварительно поместил в углубление.

Газовая горелка используется вместе с текущим проводом и обратным проводом от выключателя в пластиковой изоляции, используемый для электрической установки. Это было немного жестко, и должно было быть из более гибкого материала типа, но это было тем, что я имел в наличии.

Рукоятка газовой горелки также собственного изготовления. Это была достаточно хитрой задачей, в результате получилась достаточно надежная рукоятка и единственной вещью которую мне необходимо было купить, был провод диаметром 0,8 мм.

 

   

Источник — http://home8.inet.tele.dk/jan_p/welder/mig1.htm

Характеристики Сварочный полуавтомат Kemppi KEMPACT 323R

Общая информация

Модель

KEMPACT 323R

Основной режим работы

Полуавтоматическая сварка (MIG/MAG)

Основные характеристики

Напряжение сети

380 В

Максимальная сила тока

320 А

Диапазон сварочного тока

от 20 до 320 А

Продолжительность включения (ПВ)

35 %

Сила тока при ПВ 100%

190 А

Напряжение холостого хода

46 В

Система защиты

Класс защиты

IP23S

Конструкция

Элементы транспортировки

Ручка, Колеса

Сварка старых времен | JLC Онлайн

В 1942 году компания Holmes Burton выпустила серию профессиональных фильмов «Работа вашей жизни», призванную познакомить студентов с различными профессиями и профессиями (видео ниже). Что классно в сериале, так это то, что он проливает свет на аспекты сделок, которые могли быть потеряны для истории, потому что никто не думал, что эту информацию стоит сохранять.

Эти фильмы не показывались студентам уже более 50 лет и сами могли быть потеряны для истории.И они были бы, если бы не стараниями архивариуса Рика Прелингера, который собирал эти и другие «эфемерные» (рекламные, образовательные, индустриальные и любительские) фильмы. Его коллекция стала известна как Архив Прелингера и теперь является частью Интернет-архива.

Как говорит один из обозревателей The Welding Operator:
В центре фильма — главный метод сварки современности — газовая кислородно-ацетиленовая сварка. Хотя сегодня это считается в значительной степени устаревшим для производственных работ, это хорошая съемка основ любого метода сварки.Фильм переходит к точечной сварке, затем к стыковой сварке, а затем к описанию различных применений этих методов. Интересна газовая сварка стального планера.

Зная о существовании сварки MIG и TIG на момент создания фильма, рецензент справедливо предполагает, что эти технологии, вероятно, были слишком передовыми, чтобы их можно было включить в обзор. Первоначально разработанная для сварки цветных металлов, дуговая сварка металлическим электродом в газе (такая как MIG и TIG) не получила широкого распространения в течение следующих 10–20 лет — после того, как эти методы были адаптированы для сварки стали.

Если вы интересуетесь сваркой, то вот совершенно различающаяся подборка историй о сварке из Tools of the Trade: Thermite Welding Railroad Tracks
DeWalt Cordless Stick и TIG Welder
Cool Work Wheels: White Motor Company COE
Five Freaky Welding Videos

Газовая дуговая сварка металла и сварочная головка

20 января Газовая дуговая сварка металлов и сварочная головка

Отправлено в 12:53 в орбитальной сварке Тони Норелла (стар.)

Если вы занимаетесь сваркой, то наверняка слышали о газовой дуговой сварке.Это автоматический или полуавтоматический процесс сварки, который существует уже почти сто лет. Если вы используете орбитальный сварочный аппарат, необходимо убедиться, что у вас есть сварочная головка или большой запас этих сварочных головок, чтобы удовлетворить потребности вашего аппарата. Если вы выполняете надлежащее техническое обслуживание, ваш орбитальный сварочный аппарат должен работать оптимально. Одним из популярных методов сварки, применяемых в орбитальном сварочном аппарате, является метод дуговой сварки металлическим газом.

В методе газовой дуговой сварки металлическим электродом используется защитный газ и непрерывный плавящийся проволочный электрод, который подается через сварочный пистолет.В методе газовой дуговой сварки используется источник постоянного тока, такой как напряжение или постоянный ток, для сварки таких материалов, как сталь и алюминий. Метод газовой дуговой сварки наиболее популярен в таких отраслях, как автомобилестроение, благодаря своей универсальности и огромной скорости по сравнению с другими методами.

Метод газовой дуговой сварки также широко используется в промышленности по производству листового металла. Благодаря использованию дуговой точечной сварки отпадает необходимость в контактной сварке или сварке заклепками. Метод газовой дуговой сварки также используется в роботизированной сварке.В этом процессе роботы управляют сваркой и листовым металлом. Это помогает еще больше сэкономить время и средства. Метод газовой дуговой сварки обычно не подходит для использования на открытом воздухе, поскольку изменения в атмосфере могут привести к рассеиванию защитного газа. Если это произойдет и защитный газ рассеется, то качество сварного шва будет хуже, чем могло бы быть. Метод газовой дуговой сварки также не подходит для подводной сварки.

Оборудование, необходимое для процесса газовой дуговой сварки, — это сварочная горелка, устройство подачи проволоки, источник защитного газа и электродная проволока.При включении контрольного переключателя включаются электроэнергия и поток газа. Это вызывает зажигание электрической дуги. Основное назначение газового сопла — равномерно направлять сварочный газ в зону сварки.

Как видите, процесс газовой дуговой сварки металла довольно сложен. Несмотря на этот тщательный процесс, его относительно просто реализовать, если у вас есть подходящие инструменты. Если вам нужна новая сварочная головка, лучше всего поискать ее в Интернете.

видов сварки | Дуговая сварка, приварка шпилек, контактная сварка Руководство

Существует множество типов сварки , которые мы используем для соединения металлов вместе, некоторые современные, а некоторые древние по их созданию.От кузнечной сварки молотками в средние века до открытия угольной дуговой сварки в 1800-х годах и до более современных видов сварки, таких как дуговая сварка, контактная сварка, сварка твердым телом и приварка шпилек, было много достижения в этой области.

Типы сварки

Прочтите, чтобы узнать больше о многих типах сварки и их различиях по функциональности и применению в нашем вводном руководстве:

Дуговая сварка

Дуговая сварка — один из самых известных видов сварки .Процессы дуги включают использование концентрированного тепла электрической дуги для соединения металлических материалов. Эти процессы в целом делятся на две категории: методы с плавящимся электродом и методы с использованием неплавящегося электрода. Это различие определяет, включает ли процесс плавление электрода и его превращение в часть сварного соединения или не плавление, а только в качестве проводника дуги.

Еще одна переменная в дуговой сварке — это использование тока; некоторые методы требуют определенного типа тока, тогда как другие более универсальны.Кроме того, для некоторых процессов дуговой сварки требуется защитный газ, а для других — нет. Узнайте больше о некоторых наиболее распространенных типах дуговой сварки:

Дуговая сварка экранированным металлом (сварка электродом)

Дуговая сварка экранированных металлов (неофициально известная как сварка электродом), разработанная в 1950-х годах (неофициально известная как сварка электродом), использует расходные детали с флюсовым покрытием. электрод с источником питания переменного или постоянного тока для создания электрической дуги между материалом электрода и заготовкой. Дуга плавит деталь и электрод в ванну расплава, которая при охлаждении образует соединение.Этот тип сварки также называют дуговой сваркой в ​​среде защитного флюса из-за того, что флюсовое покрытие электрода распадается на защитный газ во время нагрева.

Газовая дуговая сварка металла (MIG Welding)

Газовая дуговая сварка металла также создает электрическую дугу, но между плавящимся проволочным электродом и материалами заготовки. Сварочная горелка пропускает через электрод и защитный газ для защиты от загрязнений. В результате заготовка плавится и материалы соединяются. Подтипами дуговой сварки металлическим электродом в газе являются сварка MIG (металл в инертном газе) и сварка MAG (металл в активном газе).Первоначально этот процесс был разработан для цветных металлов, таких как алюминий, но в конечном итоге стал наиболее распространенным процессом для ряда материалов, включая сталь.

Дуговая сварка порошковой проволокой — это процесс, аналогичный сварке MIG, но, как правило, вместо защитного газа используется полая электродная проволока, наполненная флюсом.

Газовая дуговая сварка вольфрамом (TIG-сварка)

Этот процесс сварки широко известен как сварка TIG (TIG — вольфрам в инертном газе).Для газовой вольфрамовой дуговой сварки требуется неплавящийся вольфрамовый электрод, источник постоянного тока и инертный защитный газ для создания плазменной дуги (которая состоит из паров металла и сильно ионизированного газа). Этот процесс обеспечивает больший контроль оператора, чем сварка палкой или MIG, что делает его пригодным для сварки тонких секций нержавеющей стали и цветных металлов. С другой стороны, это более медленная и технически сложная процедура.

Плазменная сварка — это родственный тип сварки, но в этом случае плазменная дуга отделяется от защитного газа путем помещения в корпус сварочной горелки, выходящего с более высокой скоростью через медное сопло.

Дуговая сварка под флюсом

Дуговая сварка под флюсом создает электрическую дугу под слоем порошкового флюса, который обеспечивает защитные газы и шлак, а также легирующие элементы для ванны расплава. Слой флюса значительно снижает потери тепла и работает как автоматизированный или полуавтоматический процесс. Бункер рециркулирует излишки флюса, а слои шлака удаляются после сварки.

Электрошлаковая сварка

В этом процессе проволока подается в зону сварки и добавляется флюс в электрическую дугу до тех пор, пока расплавленный шлак не достигнет кончика электрода и не погаснет дугу.Операторы электрошлаковой сварки используют источник постоянного тока и обычно работают с толстыми материалами заготовок, такими как пластины из низкоуглеродистой стали и алюминиевые шины. Электрогазовая сварка — процесс, аналогичный электрошлаковой сварке, но дуга остается на протяжении всей процедуры.

Сварка атомарным водородом

Сварка атомарным водородом (также известная как дуговая атомная сварка), разработанная в 1926 году Ирвингом Ленгмюром, создает дугу между двумя вольфрамовыми электродами с водородом в качестве защитного газа.Возникающая дуга сохраняется независимо от заготовки. Сварка атомарным водородом, хотя сегодня она редко используется для большинства применений, но так как MIG-сварка стала предпочтительным процессом, оказалась неоценимой для сварки подъемных цепей.

Углеродная сварка

Дуговая сварка началась с процесса сварки угольной дугой, который был запатентован в 1881 году. В этом методе между угольным электродом и заготовкой образуется электрическая дуга. Двухуглеродная дуговая сварка — это создание дуги между двумя угольными электродами.При этом выделяется значительное количество тепла и очень яркий свет, тогда как более современные методы намного безопаснее и удобнее для сварщиков.

Сварка сопротивлением

Процессы контактной сварки включают приложение силы и пропускание тока через металлические заготовки для их нагрева и плавления в областях, определяемых электродами и / или заготовками. Известные типы сварки сопротивлением включают:

Точечная сварка

Сварщики используют точечную сварку для соединения листов металла внахлест в проектах, где прочность и долговечность не являются насущными проблемами.Медные электроды удерживают детали вместе с силой, а электрический ток нагревает их до температуры сварки. Этот процесс более экономичен, чем большинство методов дуговой сварки. Однако он имеет меньше применений и имеет тенденцию к упрочнению и деформации материалов заготовки. В этом руководстве мы расскажем о различиях между точечной сваркой и приваркой шпилек.

Сварка с выступом

В качестве модификации точечной сварки сварка с выступом включает локальный нагрев и сварку выступов (выступов) на одной или нескольких заготовках.

Стыковая сварка

Стыковая сварка соединяет вместе толстые металлические стержни или пластины путем зажима электродов к заготовкам и приложения противодействующих сил. Нагрев происходит, но плавления часто не происходит, образуя твердый сварной шов.

Шовная сварка

Этот тип контактной сварки соединяет листовые металлы в швах за счет приложения противоположных сил с помощью электродных колес. Вращающиеся колеса работают, чтобы локализовать ток и выделяемое тепло.

Сварка оплавлением

При сварке оплавлением материалы заготовки размещаются на заданном расстоянии друг от друга, и подается ток, создавая сопротивление в зазоре между материалами и дугу для плавления.По достижении нужной температуры две детали прессуются и склеиваются.

Кислородно-ацетиленовая сварка

Также известна в США как кислородно-топливная сварка, кислородная сварка и газовая сварка. В кислородно-ацетиленовой сварке горелкой используются горючие газы и чистый кислород для повышения температуры пламени для локального плавления детали. Инженеры Эдмон Фуше и Шарль Пикард разработали метод кислородно-ацетиленовой сварки в 1903 году, и с тех пор он в значительной степени устарел из-за процессов дуговой сварки.Однако этот процесс по-прежнему популярен для художественных работ и домашнего использования.

Сварка в твердом состоянии

Сварка в твердом состоянии характеризуется использованием температур ниже точек плавления основных материалов. В отличие от контактной сварки, здесь не всегда требуется давление. В зависимости от используемого процесса сварка в твердом состоянии может длиться от миллисекунд до часов. Существует много типов сварки в твердом состоянии, в том числе:

  • Кузнечная сварка : детали из низкоуглеродистой стали нагреваются и скалываются.
  • Холодная сварка : при высоком давлении при комнатной температуре коалесцирует очень чистые металлы.
  • Сварка горячим давлением : нагрев и давление макродеформируют основной материал.
  • Сварка валков : валки вызывают тепловую деформацию и деформацию под давлением (вместо молотков).
  • Сварка трением : механическое скользящее движение притирает материалы друг к другу.
  • Ультразвуковая сварка : преобразователь излучает высокочастотные колебания для соединения материалов.
  • Магнитно-импульсная сварка : магнитные силы сваривают детали вместе.
  • Сварка взрывом : управляемая детонация соединяет вместе быстро движущиеся части.
  • Диффузионная сварка : соединение тугоплавких металлов без изменения их металлургических свойств.

Электронно-лучевая сварка

Электронно-лучевая сварка использует пучок высокоскоростных электронов в условиях вакуума для создания прочных сварных швов.Электроны превращаются из кинетической энергии в тепло, когда они ударяются о материалы заготовки, плавя их вместе.

Лазерная сварка

В процессе лазерной сварки используется высококонцентрированный лазерный источник тепла для узких и глубоких сварных швов. Сварщики могут использовать непрерывный или импульсный лазерный луч, первый для глубоких сварных швов, а второй для тонких материалов.

Приварка шпилек

Приварка шпилек — это специализированный и высокоэффективный метод соединения шпилек и других крепежных деталей с листовым металлом.Этот тип сварки позволяет избежать ошибок, присущих многим другим процессам соединения шпилек, таких как ослабление заготовки, ослабление шпилек, растрескивание и образование пятен. Сварка шпилек выполняется быстро и обеспечивает прочный сварной шов без обратной маркировки или отверстий. Типы приварки шпилек включают:

Приварка шпилек разряда конденсатора

Конденсаторы заряжаются до заданного напряжения в зависимости от сварочного диаметра. Шпилька соприкасается с листом, а затем конденсаторы запускают свою энергию, чтобы произвести дугу и расплавить трубку.Возвратное давление выковывает стержень к расплавленной поверхности листа для полного сплавления. Приварка шпилек CD очень рентабельна и идеально подходит для обработки тонких материалов. Однако поверхность листа должна быть чистой и ровной.

Дуговая сварка шпилек

В процессе рисованной дуги запускается вспомогательная дуга, когда шпилька поднимается на заданную высоту. Дуга плавит сварной конец шпильки, образуя ванну расплава. Возвратное давление выковывает шпильку в бассейн, а прилагаемая манжета формирует галтель.Приварка шпилек DA — лучший способ крепления шпилек к более толстым материалам от 0,7 мм и более, так как при этом получаются прочные сварные швы. Он дороже, чем компакт-диск, и требует использования наконечников, но допускает неровные поверхности и дефекты.

Короткий цикл приварки шпилек

Короткий цикл имеет сходство с приваркой шпилек как CD, так и DA. Подобно привариванию шпилек CD, при сварке шпилек с коротким циклом не требуются кабельные наконечники и могут использоваться те же шпильки; Как и приварка шпилек DA, метод SC более устойчив к неровным и грязным поверхностям.Однако он обеспечивает более глубокие сварные швы, чем CD, и стоит меньше, чем DA.

Taylor Studwelding — ведущий производитель и поставщик аппаратов для приварки шпилек, которые могут выполнять сварочные процессы типа CD, DA и SC. Мы тщательно протестировали все наше оборудование, чтобы обеспечить самые прочные и эффективные сварные швы на различных металлах. Для получения дополнительной информации просмотрите наши машины в Интернете, прочтите наше полное руководство по приварке шпилек или свяжитесь с нами, чтобы узнать, что сварка шпилек может сделать для вас.

Практическая подготовка для сварщиков-полуавтоматов

Название учреждения: OÜ A1koolitus (a1koolitus.ee)

Название программы: Практическая подготовка для сварщиков-полуавтоматов — 119 академических занятий

Учебная группа и начало разработки учебной программы: 521 Механика и обработка металлов. Компетенция четвертой категории стандартов сварки.

Уровень образования: Дополнительное образование взрослых

Языки обучения: эстонский, русский или английский

Время и объем обучения: Ежегодно 17 учебных дней.

Информация о регистрации на обучение: Регистрация на месте

Целевая группа и стартовые условия: Взрослые (от 18 лет) принимаются на обучение сварщиков на основании заявления. Все кандидаты, которые соответствуют требованиям для поступления и сдали тест на месте, также будут допущены к зачислению на курс.

Разделение на группы: Группировка студентов производится с учетом уровня знаний и разговорной речи.

Общий объем обучения (академических уроков):

119 академических часов, из них:

  • 79 академических уроков — практика,
  • 40 академических занятий по теории и визуальному контролю.

Методика обучения: Практические занятия на индивидуальном сварочном участке заключаются в выполнении инструктором различных заданий.

Онлайн-уроки: Нет

Цель обучения: По окончании обучения сварщик сможет сваривать широкий спектр сварочных изделий, деталей и строительных конструкций.Для более качественного выполнения работы (для продуктов, требующих особого контроля) проконсультируйтесь со своим руководителем, координатором или мастером. Сварщик использует следующие методы сварки: полуавтоматическая сварка (MIG 131).

Результаты обучения:
По окончании обучения сварщик:

Ознакомиться с рабочими чертежами, рабочими инструкциями и технологической картой (WPS)

Умеет правильно подобрать рабочий и сварочный инструмент

Возможность настройки сварочного оборудования и выбора режимов

Могу правильно организовать рабочее место

Можно выбрать подходящие средства самозащиты

Может создавать, собирать детали и создавать сборки

Умеет проводить контроль качества и при необходимости устранять дефекты

Может выполнять полуавтоматическую сварку и механическую обработку деталей

Содержание обучения:

1.1 Организация рабочего места, подбор и подготовка продукции и необходимых вещей к работе

1.1.1 Ознакомление с чертежом, должностной инструкцией и технологической картой (WPS)

1.1.2 Выбор инструмента

1.1.3 Выбор сварочного оборудования

1.1.4 Монтаж сварочного оборудования и выбор режима

1.1.5 Правильное управление рабочим местом

1.1.6 Подбор средств индивидуальной защиты

1.2 Подготовка и проверка деталей и швов

1.2.1 Подготовка и сборка детали

1.2.2 Испытание и наладка сварочных агрегатов

1.3 Контроль качества и устранение неисправностей

1.3.1 Проверка сварных швов и устранение неисправностей

1.3.2 Контроль сборки

1.3.3 Итоговый контроль

1,4 Полуавтоматическая сварка и постобработка деталей

1.4.1 Проведение полуавтоматической сварки

1.4.1.1 Осветите хранилище

1.4.1.2 Размораживание рулонов до плоского положения PA, PF, PC, PE

1.4.1.3 Сварка Т-образных швов в позициях PA, PF, PC, PE, PB, PD

1.4.1.4 Сварка швов в позициях ПА, ПФ, ПК, ПЭ

1.4.2 Среднесрочный контроль

1.4.3 Последующая обработка готового продукта

1.5 Подготовка к экзамену

1.6 Визуальный контроль

Описание учебной среды: Теоретические и практические секции будут проходить по адресу Паэ 29, Таллинн. Безопасность и чистота гарантированы.Для изучения теории у нас есть 4 учебных класса. В зависимости от предмета каждый класс вмещает более 30 человек. Теоретическая часть выдается в руки (или на карты памяти) для закрепления знаний после урока. Мы также предоставляем средства индивидуальной защиты и рабочее снаряжение для практических занятий.

Перечень учебных материалов: WPS при необходимости

Требования к выпуску, включая методы оценки и критерии оценки: По крайней мере, 80% посещаемости являются обязательными для завершения обучения.Кроме того, необходимая деталь должна быть сварена в соответствии с WPS и соответствовать критериям оценки.

Документы, которые необходимо оформить: Полный сертификат, если соблюдены требования при его получении. Свидетельство об участии, если результаты обучения не были достигнуты, но студент участвовал в исследовании. Сертификат выдается в зависимости от количества посещенных часов, но не в том случае, если студент прошел менее половины уроков.

Резюме: Курс предназначен для специалистов по металлу (продвинутый уровень), которые в своей повседневной работе занимаются качественной и точной сваркой.Курс направлен на получение профессиональных теоретических и практических знаний. Студент, окончивший курс, сможет применять полученные знания, а именно сваривать различные материалы и детали, с учетом выполнения своих повседневных обязанностей с использованием инструментов и сварочного оборудования. После прохождения курса и сдачи выпускного экзамена студент готов к работе или прохождению стажировки.

Формирование итогового результата:
Оценка

Знание и использование профессиональной терминологии, успешное прохождение практической части курса

Визуальный осмотр с помощью WPS

Учебный план утвержден: 01.12.2019

Объединяя все вместе — взгляд на сварку

Сварка — это процесс изготовления, в ходе которого металлы соединяются путем слияния двух отдельных деталей в одну. Мне было интересно узнать больше об истории и типах сварки, так как многие методы сварки требуют смешения газов. Здесь, в Environics, мы работали с различными клиентами над созданием систем для сварочных процессов.

Соединение двух металлических частей звучит просто, не так ли? Но варианты поразительны! Давайте посмотрим на историю и сравнительно недавний взрыв техники.

До конца 19 века единственным вариантом для вас была сварка кованой сваркой г . На протяжении веков кузнецы использовали его для соединения железа и стали путем их нагрева и обработки молотком. Эта техника все еще практикуется, и ее можно наблюдать и даже пытаться применить в реконструируемом поселке Старого Стербриджа.

В конце века были разработаны три дополнительных метода: дуговая сварка, кислородная сварка и сварка сопротивлением.

Дуговая сварка — используется источник питания для создания электрической дуги между электродом и основным материалом для плавления металлов.Область сварки иногда защищают путем создания зоны, заполненной инертным газом, известной как защитный газ . Подробнее об этом в следующий раз!

Сварка кислородным топливом — используется сварочная горелка, содержащая смесь газообразного кислорода , для нагрева металла и получения общей ванны расплавленного металла. Наиболее распространенной смесью является ацетилен / кислород, но также используются пропан, бутан, бензин, водород, пропилен, метилацетилен-пропадиен (MPS). Газы и смесь определяются в зависимости от конкретных потребностей.Контроль пламени также важен для конечного продукта.

Сварка сопротивлением — использует электрическое сопротивление материала для создания тепла, необходимое в зависимости от времени и силы, используемых для удержания материалов вместе во время сварки

Во время Первой и Второй мировых войн пользовались надежными и недорогими методами сварки огромным спросом. В 1940–1960-х годах появились новые технологии, в том числе ручная дуговая сварка металлическим электродом в защитных оболочках, которая является одним из самых популярных методов, используемых по сей день.

Были также разработаны полуавтоматические и автоматические процессы, такие как сварка металлическим электродом в газе, дуговая сварка под флюсом, порошковая сварка и электрошлаковая сварка. Более поздние разработки включают лазерную сварку и электронно-лучевую сварку. Сегодня роботизированная сварка становится все более распространенной. Поскольку исследователи всегда стремятся улучшить качество и снизить расходы, будет интересно увидеть, что принесет следующее десятилетие.

При таком большом разнообразии техник большое внимание уделяется выбранному методу и множеству мелких деталей.

На следующей неделе мы поговорим об использовании защитных газов и влиянии среды защитного газа на качество сварки и безопасность сварщика.

Сварка

— Энциклопедия Нового Света

Сварка — это процесс изготовления, в ходе которого материалы, обычно металлы или термопласты, соединяются путем слияния. Часто это делается путем расплавления заготовок и добавления присадочного материала для образования ванны расплавленного материала (сварочная ванна ), которая остывает и становится прочным швом.Иногда сварка производится под давлением, с нагревом или без него. Напротив, пайка и пайка включают плавление материала с более низкой температурой плавления между деталями для образования связи между ними без плавления деталей.

Для сварки могут использоваться различные источники энергии, включая газовое пламя, электрическую дугу, лазер, электронный луч, трение и ультразвук. Хотя часто это промышленный процесс, сварку можно проводить в самых разных средах, включая открытый воздух, подводную воду и космос.Однако независимо от местоположения сварка остается опасной, и необходимо соблюдать меры предосторожности, чтобы избежать ожогов, поражения электрическим током, ядовитых паров и чрезмерного воздействия ультрафиолетового света.

До конца девятнадцатого века единственным процессом сварки была кузнечная сварка, которую кузнецы веками использовали для соединения металлов путем нагрева и измельчения. Дуговая сварка и кислородная сварка были одними из первых процессов, разработанных в конце века, и вскоре последовала контактная сварка.Сварочные технологии быстро развивались в начале двадцатого века, поскольку Первая и Вторая мировые войны вызвали спрос на надежные и недорогие методы соединения. После войн было разработано несколько современных методов сварки, в том числе ручные методы, такие как дуговая сварка в защитном металлическом корпусе, в настоящее время один из самых популярных методов сварки, а также полуавтоматические и автоматические процессы, такие как дуговая сварка металлическим газом, сварка под флюсом и порошковая сварка. Развитие продолжилось с изобретением лазерной и электронно-лучевой сварки во второй половине века.Сегодня наука продолжает развиваться. Роботизированная сварка становится все более обычным явлением в промышленных условиях, и исследователи продолжают разрабатывать новые методы сварки и лучше понимать качество и свойства сварных швов.

В будущем сварка будет играть важную роль в освоении человеком новых исследований и строительства. Представляется вероятным, что использование сварки не будет заменено просто из-за эффективности и долговечности процесса.

История

Железный столб в Дели.

История соединения металлов насчитывает несколько тысячелетий, причем самые ранние примеры сварки относятся к бронзовому и железному векам в Европе и на Ближнем Востоке. Сварка использовалась при строительстве железной колонны в Дели, Индия, ее было возведено около 310 штук и весом 5,4 метрических тонны. [1] Средние века принесли успехи в кузнечной сварке, когда кузнецы неоднократно кололи нагретый металл до образования склеивания. В 1540 году Ваннокчо Бирингуччо опубликовал De la pirotechnia , в котором были описаны операции по ковке.Мастера эпохи Возрождения были умелыми в этом процессе, и промышленность продолжала расти в течение следующих столетий. [2] Однако сварка претерпела изменения в девятнадцатом веке. В 1800 году сэр Хамфри Дэви открыл электрическую дугу, и достижения в области дуговой сварки продолжились изобретением металлических электродов русским Николаем Славяновым и американцем К.Л. Коффином в конце 1800-х годов, даже в качестве дуговой сварки угольным газом, в которой использовался сварочный аппарат. угольный электрод, завоевавший популярность. Около 1900 г.А.П. Штроменгер выпустил в Великобритании металлический электрод с покрытием, который давал более стабильную дугу, а в 1919 году К. Дж. Хольслаг изобрел сварку переменным током, но она не стала популярной в течение следующего десятилетия. [3]

Сварка сопротивлением также была разработана в последние десятилетия девятнадцатого века. Первые патенты были получены в 1885 году Элиху Томпсону, который в течение следующих 15 лет добился дальнейших успехов. Термитная сварка была изобретена в 1893 году, и примерно в то же время стал широко применяться другой процесс — кислородно-топливная сварка.Ацетилен был открыт в 1836 году Эдмундом Дэви, но его использование в сварке не было практичным до 1900 года, когда была разработана подходящая паяльная лампа. [4] Сначала кислородная сварка была одним из наиболее популярных методов сварки из-за ее портативности и относительно невысокой стоимости. Однако по мере развития двадцатого века он потерял популярность в промышленных приложениях. Она была в значительной степени заменена дуговой сваркой, поскольку продолжалась разработка металлических покрытий (известных как флюс) для электрода, которые стабилизируют дугу и защищают основной материал от примесей. [5]

Первая мировая война вызвала значительный всплеск использования сварочных процессов, когда различные военные державы пытались определить, какой из нескольких новых сварочных процессов будет лучшим. Британцы в основном использовали дуговую сварку и даже построили корабль Fulagar с полностью сварным корпусом. Американцы сомневались, но начали осознавать преимущества дуговой сварки, когда процесс позволил им быстро отремонтировать свои корабли после нападения Германии в гавани Нью-Йорка в начале войны.Дуговая сварка была впервые применена к самолетам во время войны, так как фюзеляжи некоторых немецких самолетов были построены с использованием этого процесса. [6]

В 1920-е годы в технологии сварки были достигнуты большие успехи, включая введение в 1920 году автоматической сварки, при которой электродная проволока подавалась непрерывно. Защитный газ стал предметом пристального внимания, поскольку ученые пытались защитить сварные швы от воздействия кислорода и азота в атмосфере. Пористость и хрупкость были основными проблемами, и разработанные решения включали использование водорода, аргона и гелия в качестве сварочной атмосферы. [7] В течение следующего десятилетия дальнейшие достижения позволили сварку химически активных металлов, таких как алюминий и магний. Это, в сочетании с разработками в области автоматической сварки, переменного тока и флюсов, привело к значительному развитию дуговой сварки в 1930-х годах, а затем во время Второй мировой войны. [8]

В середине века было изобретено много новых методов сварки. В 1930 году были выпущены шпильки для приварки шпилек, которые вскоре стали популярными в судостроении и строительстве.В том же году была изобретена дуговая сварка под флюсом, и она продолжает оставаться популярной сегодня. Газовая вольфрамовая дуговая сварка после десятилетий развития была окончательно доведена до совершенства в 1941 году, а в 1948 году последовала газовая дуговая сварка металлическим электродом, которая позволила быстро сваривать цветные материалы, но потребовала дорогостоящих защитных газов. Дуговая сварка защищенным металлом была разработана в 1950-х годах с использованием расходуемого электрода и атмосферы двуокиси углерода в качестве защитного газа, и быстро стала самым популярным процессом дуговой сварки металлическим электродом.В 1957 году дебютировал процесс дуговой сварки порошковой проволокой, в котором самозащитный проволочный электрод можно было использовать с автоматическим оборудованием, что привело к значительному увеличению скорости сварки, и в том же году была изобретена плазменная дуговая сварка. Электрошлаковая сварка была представлена ​​в 1958 году, а в 1961 году последовала ее родственница — электрогазовая сварка. концентрированный источник тепла.После изобретения лазера в 1960 году лазерная сварка дебютировала несколько десятилетий спустя и оказалась особенно полезной при высокоскоростной автоматизированной сварке. Однако оба эти процесса по-прежнему довольно дороги из-за высокой стоимости необходимого оборудования, что ограничивает их применение. [10]

Сварочные процессы

Дуговая сварка

В этих процессах используется источник сварочного тока для создания и поддержания электрической дуги между электродом и основным материалом для плавления металлов в точке сварки.Они могут использовать как постоянный (DC), так и переменный (AC) ток, а также расходуемые или неплавящиеся электроды. Область сварки иногда защищают инертным или полуинертным газом, известным как защитный газ, а также иногда используется присадочный материал.

Источники питания

Для обеспечения электрической энергией, необходимой для процессов дуговой сварки, можно использовать несколько различных источников питания. Наиболее распространенная классификация — источники питания постоянного тока и источники питания постоянного напряжения.При дуговой сварке напряжение напрямую связано с длиной дуги, а сила тока связана с количеством подводимого тепла. Источники питания постоянного тока чаще всего используются для процессов ручной сварки, таких как дуговая сварка вольфрамовым электродом и дуговая сварка в среде защитного металла, поскольку они поддерживают относительно постоянный ток даже при изменении напряжения. Это важно, потому что при ручной сварке может быть трудно удерживать электрод идеально устойчивым, и в результате длина дуги и, следовательно, напряжение имеют тенденцию колебаться.Источники питания с постоянным напряжением поддерживают постоянное напряжение и изменяют ток, поэтому они чаще всего используются для автоматизированных сварочных процессов, таких как газовая дуговая сварка, дуговая сварка порошковой проволокой и дуговая сварка под флюсом. В этих процессах длина дуги поддерживается постоянной, поскольку любые колебания расстояния между проволокой и основным материалом быстро устраняются за счет большого изменения тока. Например, если проволока и основной материал подойдут слишком близко, ток будет быстро увеличиваться, что, в свою очередь, приведет к увеличению тепла и расплавлению кончика проволоки, возвращая его на исходное расстояние разделения. [11]

Тип тока, используемый при дуговой сварке, также играет важную роль при сварке. В процессах с плавящимся электродом, таких как дуговая сварка в защитном металлическом корпусе и газовая дуговая сварка, обычно используется постоянный ток, но электрод может заряжаться как положительно, так и отрицательно. При сварке положительно заряженный анод будет иметь большую концентрацию тепла, и в результате изменение полярности электрода влияет на свойства сварного шва. Если электрод заряжен положительно, он будет плавиться быстрее, увеличивая проплавление и скорость сварки.В качестве альтернативы, отрицательно заряженный электрод приводит к более мелким сварным швам. [12] В процессах с использованием неплавящегося электрода, например дуговой сварки газом вольфрамовым электродом, можно использовать как постоянный, так и переменный ток любого типа. Однако при постоянном токе, поскольку электрод только создает дугу и не обеспечивает присадочный материал, положительно заряженный электрод вызывает неглубокие сварные швы, а отрицательно заряженный электрод — более глубокие сварные швы. [13] Между ними быстро проходит переменный ток, что приводит к сварным швам со средним проплавлением.Один из недостатков переменного тока, тот факт, что дуга должна повторно зажигаться после каждого перехода через нуль, был устранен с помощью изобретения специальных блоков питания, которые создают прямоугольную форму волны вместо нормальной синусоидальной волны, что делает возможными быстрые переходы через нуль и сводит к минимуму последствия проблемы. [14]

Процессы
Дуговая сварка в экранированном металле

Одним из наиболее распространенных видов дуговой сварки является дуговая сварка металлическим электродом в защитных оболочках (SMAW), также известная как ручная дуговая сварка металлическим электродом (MMA) или сварка стержнем.Электрический ток используется для зажигания дуги между основным материалом и стержнем плавящегося электрода, который сделан из стали и покрыт флюсом, который защищает область сварного шва от окисления и загрязнения, выделяя газ CO 2 во время процесса сварки. Сам сердечник электрода действует как присадочный материал, поэтому необходимость в отдельном наполнителе отпадает.

Процесс очень универсален, может выполняться с помощью относительно недорогого оборудования и, благодаря своей универсальности, хорошо подходит для работы в мастерских и полевых работ. [15] Оператор может стать достаточно опытным, пройдя скромное обучение, и может достичь мастерства с опытом. Время сварки довольно велико, поскольку расходные электроды необходимо часто заменять, а шлак, остатки флюса, необходимо удалять после сварки. [16] Кроме того, процесс обычно ограничивается сваркой черных металлов, хотя специальные электроды сделали возможной сварку чугуна, никеля, алюминия, меди и других металлов.Неопытным операторам может быть сложно выполнить хорошие сварные швы в нестандартном положении с помощью этого процесса.

Газовая дуговая сварка металлическим электродом (GMAW), также известная как сварка в среде инертного газа (MIG), представляет собой полуавтоматический или автоматический процесс, в котором используется непрерывная подача проволоки в качестве электрода и смесь инертного или полуинертного газа для защиты сварка от загрязнений. Как и в случае с SMAW, разумная квалификация оператора может быть достигнута при скромном обучении. Поскольку электрод является непрерывным, скорость сварки для GMAW больше, чем для SMAW.Кроме того, меньший размер дуги по сравнению с процессом дуговой сварки в защитном металлическом корпусе упрощает выполнение сварных швов в нестандартном положении (например, потолочные соединения, которые будут свариваться под конструкцией).

Оборудование, необходимое для выполнения процесса GMAW, более сложное и дорогое, чем необходимое для SMAW, и требует более сложной процедуры настройки. Следовательно, GMAW менее портативен и универсален, и из-за использования отдельного защитного газа не особенно подходит для работы на открытом воздухе.Однако из-за более высокой средней скорости выполнения сварных швов GMAW хорошо подходит для производственной сварки. Этот процесс может применяться к широкому спектру металлов, как черных, так и цветных. [17]

Родственный процесс, дуговая сварка порошковой проволокой (FCAW), использует аналогичное оборудование, но использует проволоку, состоящую из стального электрода, окружающего порошковый наполнитель. Эта порошковая проволока более дорогая, чем стандартная сплошная проволока, и может выделять дым и / или шлак, но она обеспечивает еще более высокую скорость сварки и большее проникновение металла. [18]

Газовая сварка вольфрамовым электродом (GTAW) или сварка вольфрамовым электродом в среде инертного газа (TIG) (также иногда ошибочно называемая гелиаровой сваркой) — это процесс ручной сварки, в котором используется неплавящийся вольфрамовый электрод, смесь инертного или полуинертного газа и отдельный наполнитель. Этот метод особенно полезен для сварки тонких материалов, он характеризуется стабильной дугой и высококачественными сварными швами, но требует значительных навыков оператора и может выполняться только на относительно низких скоростях.

GTAW может использоваться практически для всех свариваемых металлов, хотя чаще всего применяется для нержавеющей стали и легких металлов. Его часто используют, когда качество сварных швов чрезвычайно важно, например, в велосипедах, самолетах и ​​на море. [19] В родственном процессе, плазменной сварке, также используется вольфрамовый электрод, но для создания дуги используется плазменный газ. Дуга более концентрированная, чем дуга GTAW, что делает поперечный контроль более критичным и, таким образом, в целом ограничивает технику механизированным процессом.Благодаря стабильному току, этот метод может использоваться для материала с более широким диапазоном толщины, чем процесс GTAW, и, кроме того, он намного быстрее. Его можно применять ко всем тем же материалам, что и GTAW, за исключением магния, и автоматическая сварка нержавеющей стали является одним из важных применений этого процесса. Разновидностью процесса является плазменная резка, эффективный процесс резки стали. [20]

Дуговая сварка под флюсом (SAW) — это высокопроизводительный метод сварки, при котором дуга зажигается под покровным слоем флюса.Это повышает качество дуги, поскольку загрязняющие вещества в атмосфере блокируются флюсом. Шлак, образующийся на сварном шве, обычно снимается сам по себе, и в сочетании с использованием непрерывной подачи проволоки скорость наплавки высока. Рабочие условия значительно улучшаются по сравнению с другими процессами дуговой сварки, поскольку флюс скрывает дугу и почти не образуется дыма. Этот процесс обычно используется в промышленности, особенно для крупногабаритных изделий и при производстве сварных сосудов под давлением. [21] Другие процессы дуговой сварки включают атомарную водородную сварку, углеродную дуговую сварку, электрошлаковую сварку, электрогазовую сварку и дуговую сварку шпилек.

Газовая сварка стальной арматуры кислородно-ацетиленовым процессом

Газовая сварка

Наиболее распространенным процессом газовой сварки является кислородно-топливная сварка, также известная как кислородно-ацетиленовая сварка. Это один из старейших и наиболее универсальных сварочных процессов, но в последние годы он стал менее популярным в промышленных приложениях. Его до сих пор широко используют для сварки труб и трубок, а также при ремонтных работах. Это относительно недорогое и простое оборудование, обычно использующее сжигание ацетилена в кислороде для получения температуры сварочного пламени около 3100 ° C.Пламя, поскольку оно менее концентрировано, чем электрическая дуга, вызывает более медленное охлаждение сварного шва, что может привести к большим остаточным напряжениям и деформации сварного шва, хотя облегчает сварку высоколегированных сталей. Аналогичный процесс, обычно называемый кислородной резкой, используется для резки металлов. [22] Другие методы газовой сварки, такие как сварка ацетиленом на воздухе, кислородно-водородная сварка и сварка газом под давлением, весьма схожи, обычно различаются только типом используемых газов. Водяная горелка иногда используется для точной сварки таких предметов, как ювелирные изделия.Газовая сварка также применяется при сварке пластмасс, хотя нагретым веществом является воздух, а температура намного ниже.

Сварка сопротивлением

При контактной сварке выделяется тепло за счет пропускания тока через сопротивление, вызванное контактом двух или более металлических поверхностей. Небольшие лужи расплавленного металла образуются в зоне сварного шва, когда через металл пропускается большой ток (1000–100 000 А). В целом, методы контактной сварки эффективны и вызывают незначительное загрязнение, но их применение несколько ограничено, а стоимость оборудования может быть высокой.

Точечная сварка — это популярный метод контактной сварки, используемый для соединения перекрывающихся металлических листов толщиной до 3 мм. Два электрода одновременно используются для зажима металлических листов вместе и для пропускания тока через листы. Преимущества метода включают эффективное использование энергии, ограниченную деформацию детали, высокую производительность, простую автоматизацию и отсутствие необходимых присадочных материалов. Прочность сварного шва значительно ниже, чем при других методах сварки, поэтому данный процесс подходит только для определенных областей применения.Он широко используется в автомобильной промышленности — на обычных автомобилях промышленные роботы могут сделать несколько тысяч точечных сварных швов. Для точечной сварки нержавеющей стали можно использовать специальный процесс, называемый дробеструйной сваркой.

Как и точечная сварка, шовная сварка основана на использовании двух электродов для приложения давления и тока для соединения металлических листов. Однако вместо заостренных электродов электроды в форме колеса катятся вдоль и часто питают заготовку, что позволяет выполнять длинные непрерывные сварные швы. В прошлом этот процесс использовался при производстве банок для напитков, но теперь его применение более ограничено.К другим методам контактной сварки относятся оплавление, выпуклая сварка и сварка с высадкой. [23]

Энергетическая лучевая сварка

Методы энерголучевой сварки, а именно лазерная сварка и электронно-лучевая сварка, являются относительно новыми процессами, которые стали довольно популярными в высокопроизводительных приложениях. Эти два процесса очень похожи и отличаются, прежде всего, источником энергии. При лазерной сварке используется сильно сфокусированный лазерный луч, тогда как электронно-лучевая сварка выполняется в вакууме с использованием электронного луча.Оба имеют очень высокую плотность энергии, что делает возможным глубокое проплавление сварного шва и минимизирует размер зоны сварного шва. Оба процесса очень быстры и легко автоматизируются, что делает их высокопроизводительными. Основными недостатками являются очень высокая стоимость оборудования (хотя она снижается) и подверженность термическому растрескиванию. Разработки в этой области включают гибридную лазерную сварку, в которой используются принципы как лазерной, так и дуговой сварки для еще лучших свойств сварного шва. [24]

Сварка полупроводниковая

Как и первый процесс сварки, кузнечная сварка, некоторые современные методы сварки не предполагают плавления соединяемых материалов.Одна из самых популярных — ультразвуковая сварка — используется для соединения тонких листов или проволоки из металла или термопласта путем их вибрации с высокой частотой и под высоким давлением. Используемое оборудование и методы аналогичны сварке сопротивлением, но вместо электрического тока подача энергии обеспечивается вибрацией. Сварка металлов с помощью этого процесса не включает плавление материалов; вместо этого сварной шов формируется путем горизонтального механического колебания под давлением. При сварке пластмасс материалы должны иметь одинаковую температуру плавления, а вибрации вносятся вертикально.Ультразвуковая сварка обычно используется для электрических соединений алюминия или меди, и это также очень распространенный процесс сварки полимеров.

Другой распространенный процесс, сварка взрывом, включает соединение материалов путем их сдавливания под чрезвычайно высоким давлением. Энергия удара пластифицирует материалы, образуя сварной шов, хотя выделяется лишь ограниченное количество тепла. Этот процесс обычно используется для сварки разнородных материалов, таких как сварка алюминия со сталью корпусов судов или составных пластин.Другие процессы твердотельной сварки включают в себя коэкструзионную сварку, холодную сварку, диффузионную сварку, сварку трением (включая сварку трением с перемешиванием), высокочастотную сварку, сварку горячим давлением, индукционную сварку и сварку в роликах. [25]

Геометрия

Распространенные типы сварных соединений: (1) квадратное стыковое соединение, (2) подготовительное соединение с одним V-образным вырезом, (3) соединение внахлест, (4) тавровое соединение

Геометрически сварные швы можно приготовить разными способами. Пять основных типов сварных соединений — это стыковое соединение, соединение внахлест, угловое соединение, краевое соединение и тройник.Существуют и другие варианты — например, подготовительные швы с двойным V-образным вырезом характеризуются двумя кусками материала, каждый из которых сужается к одной центральной точке на половине своей высоты. Подготовительные швы с одинарной U-образной и двойной U-образной формы также довольно распространены — вместо прямых кромок, как у подготовительных швов с одинарной и двойной V-образной линией, они изогнуты, образуя форму U-образной формы. Соединения внахлестку также обычно более двух куски толщиной — в зависимости от используемого процесса и толщины материала многие куски можно сваривать вместе с геометрическим замыканием внахлест. [26]

Часто особые конструкции соединений используются исключительно или почти исключительно в определенных сварочных процессах. Например, контактная точечная сварка, лазерная сварка и электронно-лучевая сварка наиболее часто выполняются на соединениях внахлест. Однако некоторые методы сварки, такие как дуговая сварка в защитном металлическом корпусе, чрезвычайно универсальны и позволяют сваривать практически любые типы соединений. Кроме того, для выполнения многопроходных сварных швов можно использовать некоторые процессы, при которых одному сварному шву дают остыть, а затем поверх него выполняется другой сварной шов.Это позволяет, например, сваривать толстые секции, расположенные в подготовительном шве с одним V-образным вырезом. [27]

Поперечное сечение сварного стыкового соединения: самый темный серый цвет представляет зону сварного шва или плавления, средний серый цвет — зону термического влияния, а самый светлый серый цвет — основной материал.

После сварки в области сварного шва можно выделить несколько отдельных участков. Сам сварной шов называется зоной плавления, точнее говоря, это место, где в процессе сварки был уложен присадочный металл.Свойства зоны плавления зависят в первую очередь от используемого присадочного металла и его совместимости с основными материалами. Он окружен зоной термического влияния — участком, микроструктура и свойства которого были изменены сварным швом. Эти свойства зависят от поведения основного материала при нагревании. Металл в этой области часто бывает слабее как основного материала, так и зоны плавления, а также там обнаруживаются остаточные напряжения. [28]

Качество

Чаще всего основным показателем, используемым для оценки качества сварного шва, является его прочность и прочность материала вокруг него.На это влияет множество различных факторов, включая метод сварки, количество и концентрацию подводимого тепла, основной материал, присадочный материал, флюсовый материал, конструкцию соединения и взаимодействие между всеми этими факторами. Для проверки качества сварного шва обычно используются методы разрушающего или неразрушающего контроля для проверки того, что сварные швы не имеют дефектов, имеют приемлемые уровни остаточных напряжений и деформации и имеют приемлемые свойства зоны термического влияния (HAZ).Существуют правила и спецификации по сварке, чтобы помочь сварщикам выбрать правильную технику сварки и судить о качестве сварных швов.

Зона термического влияния

ЗТВ сварного шва трубы: синяя область — металл, наиболее подверженный воздействию тепла.

Влияние сварки на материал, окружающий сварной шов, может быть пагубным — в зависимости от используемых материалов и подводимой теплоты используемого сварочного процесса ЗТВ может иметь различные размеры и прочность. Температуропроводность основного материала играет большую роль — если коэффициент диффузии высокий, скорость охлаждения материала высока, а ЗТВ относительно мала.И наоборот, низкий коэффициент диффузии приводит к более медленному охлаждению и большей ЗТВ. Количество тепла, выделяемого в процессе сварки, также играет важную роль, поскольку такие процессы, как кислородно-ацетиленовая сварка, имеют неконцентрированное тепловложение и увеличивают размер ЗТВ. Такие процессы, как сварка лазерным лучом, выделяют высококонцентрированное ограниченное количество тепла, что приводит к небольшой ЗТВ. Дуговая сварка находится между этими двумя крайностями, при этом отдельные процессы несколько различаются по тепловложению. [29] [30] Для расчета погонной энергии при дуговой сварке можно использовать следующую формулу:

Q = (V × I × 60S × 1000) × Эффективность {\ displaystyle Q = \ left ({\ frac {V \ times I \ times 60} {S \ times 1000}} \ right) \ times {\ mathit {Эффективность}}}

, где Q = погонная энергия (кДж / мм), В = напряжение (В), I = ток (А) и S = скорость сварки (мм / мин. ).Эффективность зависит от используемого процесса сварки: дуговая сварка в защитном металлическом корпусе имеет значение 0,75, дуговая сварка металлическим электродом в газовой среде и дуговая сварка под флюсом — 0,9 и дуговая сварка вольфрамовым электродом в среде газа — 0,8. [31]

Деформация и растрескивание

Методы сварки, предполагающие плавление металла в месте соединения, обязательно склонны к усадке при остывании нагретого металла. Усадка, в свою очередь, может вызвать остаточные напряжения, а также продольную и вращательную деформацию.Искажение может стать серьезной проблемой, поскольку конечный продукт не имеет желаемой формы. Чтобы уменьшить вращательную деформацию, детали можно смещать, чтобы в результате сварки получилась деталь правильной формы. [32] Другие методы ограничения деформации, такие как зажим заготовок на месте, вызывают накопление остаточных напряжений в зоне термического влияния основного материала. Эти напряжения могут снизить прочность основного материала и могут привести к катастрофическому разрушению из-за холодного растрескивания, как в случае с несколькими кораблями Liberty.Холодное растрескивание ограничивается сталями и связано с образованием мартенсита по мере охлаждения сварного шва. Растрескивание происходит в зоне термического влияния основного материала. Чтобы уменьшить величину деформации и остаточных напряжений, количество подводимого тепла должно быть ограничено, а последовательность сварки должна быть не от одного конца непосредственно к другому, а, скорее, сегментами. Другой тип растрескивания, горячее растрескивание или растрескивание при затвердевании, может возникать во всех металлах и происходит в зоне плавления сварного шва.Чтобы уменьшить вероятность этого типа растрескивания, следует избегать чрезмерного удерживания материала и использовать надлежащий наполнитель. [33]

Свариваемость

Качество сварного шва также зависит от комбинации материалов, используемых для основного материала и присадочного материала. Не все металлы подходят для сварки, и не все присадочные металлы хорошо работают с приемлемыми основными материалами.

Сталь

Свариваемость сталей обратно пропорциональна свойству, известному как прокаливаемость стали, которая измеряет легкость образования мартенсита во время термообработки.Закаливаемость стали зависит от ее химического состава, при этом большее количество углерода и других легирующих элементов приводит к более высокой прокаливаемости и, следовательно, к снижению свариваемости. Чтобы иметь возможность судить о сплавах, состоящих из множества различных материалов, используется показатель, известный как эквивалентное содержание углерода, для сравнения относительной свариваемости различных сплавов путем сравнения их свойств с простой углеродистой сталью. Влияние на свариваемость таких элементов, как хром и ванадий, хотя и не такое большое, как углерод, более существенно, чем, например, медь и никель.По мере увеличения эквивалентного содержания углерода свариваемость сплава снижается. [34] Недостатком использования простых углеродистых и низколегированных сталей является их более низкая прочность — существует компромисс между прочностью материала и свариваемостью. Высокопрочные низколегированные стали были разработаны специально для сварки в 1970-х годах, и эти, как правило, легко свариваемые материалы обладают хорошей прочностью, что делает их идеальными для многих сварочных работ. [35]

Нержавеющие стали из-за высокого содержания хрома, как правило, ведут себя иначе в отношении свариваемости, чем другие стали.Аустенитные марки нержавеющих сталей, как правило, являются наиболее свариваемыми, но они особенно подвержены деформации из-за высокого коэффициента теплового расширения. Некоторые сплавы этого типа также склонны к растрескиванию и пониженной коррозионной стойкости. Горячее растрескивание возможно, если количество феррита в сварном шве не контролируется — для решения проблемы используется электрод, который наносит наплавленный металл, содержащий небольшое количество феррита. Другие типы нержавеющих сталей, такие как ферритные и мартенситные нержавеющие стали, не так легко свариваются, и их часто необходимо предварительно нагревать и сваривать специальными электродами. [36]

Алюминий

Свариваемость алюминиевых сплавов значительно различается в зависимости от химического состава используемого сплава. Алюминиевые сплавы подвержены горячему растрескиванию, и для решения этой проблемы сварщики увеличивают скорость сварки, чтобы снизить тепловложение. Предварительный нагрев снижает температурный градиент в зоне сварного шва и, таким образом, помогает уменьшить образование горячих трещин, но он может снизить механические свойства основного материала и не должен использоваться, когда основной материал ограничен.Также можно изменить конструкцию соединения и выбрать более совместимый присадочный сплав, чтобы снизить вероятность горячего растрескивания. Алюминиевые сплавы также следует очистить перед сваркой, чтобы удалить все оксиды, масла и незакрепленные частицы с свариваемой поверхности. Это особенно важно из-за подверженности алюминиевого сварного шва пористости из-за водорода и окалины из-за кислорода. [37]

Необычные условия

Хотя многие сварочные работы выполняются в контролируемых средах, таких как фабрики и ремонтные мастерские, некоторые сварочные процессы обычно используются в самых разных условиях, например на открытом воздухе, под водой и в вакууме (например, в космосе).В наружных применениях, таких как строительство и наружный ремонт, дуговая сварка в экранированном металле является наиболее распространенным процессом. Процессы, в которых используются инертные газы для защиты сварного шва, не могут быть легко использованы в таких ситуациях, потому что непредсказуемые атмосферные движения могут привести к повреждению сварного шва. Экранированная дуговая сварка металлическим электродом также часто используется при подводной сварке при строительстве и ремонте судов, морских платформ и трубопроводов, но другие методы, такие как дуговая сварка порошковой проволокой и дуговая сварка вольфрамовым электродом, также широко распространены.Возможна и сварка в космосе — впервые она была предпринята в 1969 году российскими космонавтами, когда они провели эксперименты по испытанию дуговой сварки защищенным металлом, плазменно-дуговой сварки и электронно-лучевой сварки в условиях пониженного давления. Дальнейшее тестирование этих методов было проведено в следующие десятилетия, и сегодня исследователи продолжают разрабатывать методы для использования других сварочных процессов в космосе, таких как лазерная сварка, контактная сварка и сварка трением. Достижения в этих областях могут оказаться незаменимыми для таких проектов, как строительство Международной космической станции, которая, вероятно, будет во многом полагаться на сварку для соединения в космосе частей, которые были произведены на Земле. [38]

Проблемы безопасности

Сварка без надлежащих мер предосторожности может быть опасным и вредным для здоровья занятием. Однако с использованием новых технологий и надлежащей защиты риски травм и смерти, связанные со сваркой, могут быть значительно уменьшены. Поскольку многие стандартные сварочные процедуры связаны с открытой электрической дугой или пламенем, существует значительный риск ожогов. Чтобы предотвратить их, сварщики надевают средства индивидуальной защиты в виде толстых кожаных перчаток и защитных курток с длинным рукавом, чтобы избежать воздействия сильной жары и огня.Кроме того, яркость области сварного шва приводит к состоянию, называемому дуговым глазом, при котором ультрафиолетовый свет вызывает воспаление роговицы и может обжечь сетчатку глаз. Чтобы предотвратить это воздействие, надевают защитные очки и сварочные шлемы с темными лицевыми пластинами, а в последние годы были произведены новые модели шлемов с лицевой пластиной, которая самозатемняется при воздействии большого количества ультрафиолетового света. Чтобы защитить посторонних, зону сварки часто окружают прозрачные сварочные завесы. Эти занавески, сделанные из полиэтиленовой пленки поливинилхлорида, защищают находящихся поблизости рабочих от воздействия ультрафиолетового излучения электрической дуги, но не должны использоваться для замены стеклянного фильтра, используемого в шлемах. [39]

Сварщики также часто подвергаются воздействию опасных газов и твердых частиц. Такие процессы, как дуговая сварка порошковой проволокой и дуговая сварка металлическим электродом в защитных оболочках, производят дым, содержащий частицы различных типов оксидов, что в некоторых случаях может привести к таким заболеваниям, как лихорадка от дыма металла. Размер рассматриваемых частиц имеет тенденцию влиять на токсичность дыма, при этом более мелкие частицы представляют большую опасность. Кроме того, многие процессы производят пары и различные газы, чаще всего двуокись углерода и озон, которые могут оказаться опасными при недостаточной вентиляции.Кроме того, поскольку использование сжатых газов и пламени во многих сварочных процессах создает опасность взрыва и пожара, некоторые общие меры предосторожности включают ограничение количества кислорода в воздухе и удержание горючих материалов подальше от рабочего места. [40]

Стоимость и тенденции

Поскольку это производственный процесс, стоимость сварки играет решающую роль в принятии производственных решений. На общую стоимость влияет множество различных переменных, включая стоимость оборудования, стоимость рабочей силы, стоимость материалов и стоимость энергии.В зависимости от процесса стоимость оборудования может варьироваться от недорогого для таких методов, как дуговая сварка в защитном металлическом корпусе и кислородная сварка, до чрезвычайно дорогих для таких методов, как лазерная и электронно-лучевая сварка. Из-за их высокой стоимости они используются только в высокопроизводительных операциях. Точно так же, поскольку автоматизация и роботы увеличивают стоимость оборудования, они применяются только тогда, когда требуется высокая производительность. Стоимость рабочей силы зависит от скорости наплавки (скорости сварки), почасовой оплаты труда и общего времени работы, включая время сварки и перемещение детали.В стоимость материалов входит стоимость основного и присадочного материала, а также стоимость защитных газов. Наконец, стоимость энергии зависит от времени дуги и потребности в сварочной мощности.

При ручной сварке затраты на рабочую силу обычно составляют большую часть общих затрат. В результате многие меры по экономии направлены на минимизацию времени эксплуатации. Для этого можно выбрать процедуры сварки с высокой производительностью наплавки, а параметры сварки можно точно настроить для увеличения скорости сварки.Для снижения затрат на рабочую силу часто применяются механизация и автоматизация, но это часто увеличивает стоимость оборудования и требует дополнительного времени на настройку. Затраты на материалы имеют тенденцию к увеличению, когда необходимы особые свойства, а затраты на энергию обычно не превышают нескольких процентов от общих затрат на сварку. [41]

В последние годы, чтобы минимизировать затраты на рабочую силу в высокопроизводительном производстве, промышленная сварка становится все более автоматизированной, особенно с использованием роботов для контактной точечной сварки (особенно в автомобильной промышленности) и дуговая сварка.В роботизированной сварке механизированные устройства удерживают материал и выполняют сварку, [42] , и сначала точечная сварка была ее наиболее распространенным применением. Но популярность роботизированной дуговой сварки растет по мере развития технологий. Другие ключевые области исследований и разработок включают сварку разнородных материалов (например, стали и алюминия) и новые сварочные процессы, такие как трение, магнитный импульс, токопроводящий тепловой шов и гибридная лазерная сварка. Кроме того, желателен прогресс в том, чтобы сделать более специализированные методы, такие как сварка лазерным лучом, практичными для большего числа приложений, таких как аэрокосмическая и автомобильная промышленность.Исследователи также надеются лучше понять часто непредсказуемые свойства сварных швов, особенно микроструктуру, остаточные напряжения и склонность сварного шва к растрескиванию или деформации.

См. Также

  1. ↑ Кэри и Хелцер 2005, 4
  2. ↑ Lincoln Electric 1994, 1.1-1.
  3. ↑ Кэри и Хелцер 2005, 5–6
  4. ↑ Кэри и Хелцер 2005, 6
  5. ↑ Weman 2003, 26.
  6. ↑ Lincoln Electric 1994, 1.1-5.
  7. ↑ Кэри и Хелцер 2005, 7
  8. ↑ Lincoln Electric 1994, 1.1-6
  9. ↑ Кэри и Хелцер 2005, 9
  10. ↑ Lincoln Electric 1994, 1.1-10.
  11. ↑ Кэри и Хелцер 2005, 246–49
  12. ↑ Калпакджян и Шмид 2001, 780
  13. ↑ Lincoln Electric 1994, 5.4-5.
  14. ↑ Weman 2003, 16
  15. ↑ Кэри и Хелцер 2005, 103
  16. ↑ Weman 2003, 63
  17. ↑ Lincoln Electric 1994, 5.4-3.
  18. ↑ Weman 2003, стр. 53
  19. ↑ Weman 2003, 31.
  20. ↑ Weman 2003, 37–38
  21. ↑ Weman 2003, 68
  22. ↑ Weman 2003, 26.
  23. ↑ Weman 2003, 80–84
  24. ↑ Weman 2003, 95–101
  25. ↑ Weman 2003, 89–90
  26. ↑ Хикс 1999, 52–55
  27. ↑ Кэри и Хелцер 2005, 19, 103, 206
  28. ↑ Кэри и Хелцер 2005, 401–04
  29. ↑ Lincoln Electric 1994, 6.1-5–6.1-6
  30. ↑ Kalpakjian and Schmid 2001, 821–22.
  31. ↑ Weman 2003, 5.
  32. ↑ Weman 2003, 7–8
  33. ↑ Кэри и Хелцер 2005, 404–05.
  34. ↑ Lincoln Electric 1994, 6.1-1.
  35. ↑ Lincoln Electric 1994, 6.1-14–6.1-19
  36. ↑ Lincoln Electric 1994, 7.1-9–7.1-13
  37. ↑ Lincoln Electric 1994, 9.1-1–9.1-6
  38. ↑ Кэри и Хелцер 2005, 677–83
  39. ↑ Кэри и Хелцер 2005, 42, 49–51
  40. ↑ Кэри и Хелцер 2005, 52–62
  41. ↑ Weman 2003, 184–89
  42. ↑ Lincoln Electric 1994, 4.5-1

Ссылки

Ссылки ISBN поддерживают NWE за счет реферальных сборов

  • ASM International. 2003. Тенденции исследований в области сварки. Парк материалов, Огайо: ASM International. ISBN 0-87170-780-2
  • Блант, Джейн и Найджел С. Балчин. 2002. Здоровье и безопасность при сварке и родственных процессах. Кембридж: Вудхед. ISBN 1-85573-538-5
  • Кэри, Ховард Б. и Скотт К. Хелцер. 2005. Современные сварочные технологии. Верхняя Сэдл-Ривер, Нью-Джерси: Pearson Education.ISBN 0-13-113029-3
  • Хикс, Джон. 1999. Проектирование сварных соединений. Нью-Йорк, Нью-Йорк: Industrial Press. ISBN 0-8311-3130-6
  • Калпакджян, Сероп и Стивен Р. Шмид. 2001. Производство и технология производства. Prentice Hall. ISBN 0-201-36131-0
  • Линкольн Электрик. 1994. Руководство по дуговой сварке. Кливленд: Линкольн Электрик. ISBN 99949-25-82-2
  • Weman, Klas. 2003. Справочник по сварочным процессам. Нью-Йорк: CRC Press LLC. ISBN 0-8493-1773-8

Внешние ссылки

Все ссылки получены 18 августа 2020 г.

Металлообработка
Сварка
Дуговая сварка: Экранированный металл (MMA) | Газовый металл (МИГ) | Порошковая | Затопленный | Газ вольфрам (TIG) | Плазма
Другие процессы: Кислородное топливо | Сопротивление | Пятно | Кузница | Ультразвуковой | Электронный луч | Лазерный луч
Оснащение: Электропитание | Электрод | Присадочный металл | Защитный газ | Робот | Шлем
Связано: Зона термического влияния | Свариваемость | Остаточное напряжение | Дуговый глаз | Подводная сварка

См. Также: Пайка | Пайка | Металлообработка | Изготовление | Кастинг | Обработка | Металлургия | Ювелирные изделия

Кредиты

Энциклопедия Нового Света писателей и редакторов переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, участников, так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в Энциклопедия Нового Света :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Новые и старые способы сварки

Люди могут подумать, что сварщик — профессия неизменная. Вы можете подумать, что соединение двух металлических частей практически ничего не изменило. Ну подумай еще раз. Есть много различий между старыми способами сварки и новыми способами сварки . Поясним несколько.

Электродная сварка

Современная электродная сварка прошла долгий путь. Конечно, не во всех случаях требуется сварка электродом, но если вы работаете в полевых условиях, сваривая ржавый, окрашенный металл, сварка электродом предпочтительнее методов изготовления MIG, требующих более жестких условий.Сегодняшняя электродная сварка может быть A / C или A / C-D / C, что позволяет менять полярность, изменяя направление электрического тока, чтобы предотвратить прожог на тонких металлах. Кроме того, при современной электродной сварке легче зажигать дугу с помощью электроники, и часто возникает меньше брызг. Это лишь некоторые из преимуществ работы с современными электродными сварочными швами A / C-D / C.

Повышенная эффективность и мощность

Эти двое идут рука об руку. Чем больше мощность, тем выше эффективность.Машины двадцатого века преобразовывали только 60-70% поступающей мощности. Сегодня, с развитием механической обработки и электротехники, это число может достигать 85%, особенно если вы используете инверторный сварочный аппарат. Снизились счета за коммунальные услуги, повысилась эффективность. Коэффициенты мощности также увеличились, а это означает, что мощность, за которую вы взимаете плату за коммунальную компанию, фактически преобразуется в реальную мощность, что снижает спрос. Вы окупаете свои деньги за счет новых машин и экономии энергии.Если вы все еще используете оборудование, выпущенное до 2000 года, возможно, вам стоит подумать об обновлении.

Продукция более высокого качества

Как и большинство вещей, чем новее, тем лучше. И это справедливо даже для сварки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *