Подключение трехфазного двигателя звездой и треугольником: Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры

Содержание

Звезда и треугольник в электродвигателе: принцип подключения и отличия

Вся нагрузка в трёхфазных цепях соединяется по схеме звезда или треугольник. В зависимости от вида потребителей электроэнергии и напряжения в электросети и выбирают соответствующий вариант. Если говорить об электродвигателях, то от выбора варианта соединения обмоток зависит возможность его работы в конкретной сети с номинальными характеристиками. В статье мы рассмотрим, чем отличаются звезда и треугольник в электродвигателе, на что они влияют и какой принцип подключения проводов в клеммнике трёхфазного двигателя.

Теория

Как уже было сказано, схемы соединения звезда и треугольник характерны не только для электродвигателя, но и для обмоток трансформатора, нагревательных элементов (например, тэнов электрокотла) и другой нагрузки.

Чтобы понять почему эти схемы соединения элементов трёхфазной цепи так называются, нужно их несколько видоизменить.

В «звезде», нагрузка каждой из фаз соединена между собой одним из выводов, это называется нейтральная точка. В «треугольнике» каждый из выводов нагрузки подключается к разноимённым фазам.

Всё сказанное в статье далее справедливо для трёхфазных асинхронных и синхронных машин.

Рассмотрим этот вопрос на примере соединения обмоток трёхфазного трансформатора или трёхфазного двигателя (в этом контексте это не имеет значения).

На этом рисунке отличия более заметны, в «звезде» начала обмоток подключаются к фазным проводникам, а концы соединяются вместе, в большинстве случаев к этой же точке нагрузки подключается нулевой провод от питающего генератора или трансформатора.

Точкой обозначены начала обмоток.

То есть в «треугольнике» конец предыдущей обмотки и начало следующей соединяются, и к этой точке подключается питающая фаза. Если перепутать конец и начало — подключаемая машина не будет работать.

В чем разница

Если говорить о подключении однофазных потребителей, кратко разберем на примере трёх электротенов, то в «звезде», если сгорит один из них продолжат работать два оставшихся. Если сгорит два из трёх – вообще ни один не будет работать, поскольку они попарно подключаются на линейное напряжение.

В схеме треугольника даже при перегорании 2 тэнов – третий продолжит работать. В ней нет нулевого провода, его просто некуда подключать. А в «звезде» его подключают к нейтральной точке, и нужен он для уравнивания токов фаз и их симметрии в случае разной нагрузки по фазам (например, в одной из веток подключен 1 ТЭН, а в остальных по 2 параллельно).

Но если при таком соединении (с разной нагрузкой по фазам) отгорит ноль, то напряжения будут неодинаковы (там, где больше нагрузка просядет, а где меньше – возрастёт). Подробнее об этом мы писали в статье о перекосе фаз.

При этом нужно учесть, что подключать обычные однофазные приборы (220В) между фазами, на 380В, нельзя. Либо приборы должны быть рассчитаны на такое питание, либо сеть должна быть с Uлинейным 220В (как в электросетях с изолированной нейтралью некоторых специфичных объектов, например, кораблей).

Но, при подключении трёхфазного двигателя, ноль к средней точке звезды часто не подключают, так как это симметричная нагрузка.

Формулы мощности, тока и напряжения

Начнем с того что в схеме звезды есть два разных напряжения – линейное (между линейными или фазными проводами) и фазное (между фазой и нулём). Uлинейное в 1,73 (корень из 3) раз больше Uфазного. При этом линейный и фазный токи равны.

Uл=1,73*Uф

Iл=Iф

То есть линейное и фазное напряжение соотносятся так, что при линейном в 380В, фазное равно 220В.

В «треугольнике» Uлинейное и Uфазное равны, а токи отличаются в 1,73 раза.

Uл=Uф

Iл=1,73*Iф

Мощность в обоих случаях считают по одинаковым формулам:

  • полная S = 3*Sф = 3*(Uл/√3)*I = √3*Uл*I;
  • активная P = √3*Uл*I*cos φ;
  • реактивная Q = √3*Uл*I*sin φ.

При подключении одной и той же нагрузки на те же Uфазное и Uлинейное, мощность подключённых приборов будет отличаться в 3 раза.

Допустим, есть двигатель, который работает от трёхфазной сети 380/220В, а его обмотки рассчитаны на подключение по «звезде» к электросети с Uлинейным в 660В. Тогда при подключении в «треугольник» питающее Uлинейное должно быть в 1,73 раза меньше, то есть 380В, что подходит для подключения к нашей сети.

Приведем расчеты, чтобы показать, какие отличия для двигателя будут при переключении обмоток с одной схемы на другую.

Допустим, что ток статора при подключении в треугольник в сеть 380В был 5А, тогда полная его мощность равняется:

S=1,73*380*5=3287 ВА

Переключим электродвигатель на «звезду» и мощность снизится в 3 раза, так как напряжение на каждой обмотке снизилось в 1,73 раза (было 380 на обмотку, а стало 220), и ток тоже в 1,73 раза: 1,73*1,73=3. Значит с учетом пониженных величин проведем расчет полной мощности.

S=1,73*380*(5/3)=1,73*380*1,67=1070 ВА

Как видите – мощность упала в 3 раза!

Но что будет, если есть другой электродвигатель и он работал в «звезде» в сети 380В и током статора в те же 5А, соответственно и обмотки рассчитаны для подключения в «треугольник» на 220В (3 фазы), но по какой-то причине их соединили именно в «треугольник» и подключили к 380В?

В этом случае мощность вырастет 3 раза, так как напряжение на обмотку теперь наоборот увеличилось в 1,73 раза и ток во столько же.

S=1,73*380*5*(3)=9861 ВА

Мощность двигателя стала больше номинальной в эти самые 3 раза. Значит он просто сгорит!

Поэтому нужно подключать электродвигатель по той схеме соединения обмоток, которая соответствует их номинальному напряжению.

Практика — как выбрать схему для конкретного случая

Чаще всего электрики работают с сетью 380/220В, так рассмотрим же как подключить, звездой или треугольником, электродвигатель к такой трёхфазной электросети.

В большинстве электродвигателей может быть изменена схема соединения обмоток, для этого в брно есть шесть клемм, расположены они таким образом, чтобы с помощью минимального набора перемычек можно было собрать нужную вам схему. Простыми словами: вывод начала первой обмотки расположен над концом третьей, начала второй, над концом первой, начало третьей над концом второй.

Как отличить два варианта подключения электродвигателя вы видите на рисунке ниже.

Поговорим о том, какую схему выбирать. Схема подключения катушек электродвигателя не имеет особого влияния на режим работы двигателя, при условии соответствия номинальным параметрам двигателя питающей сети. Для этого смотрим на шильдик и определяем, на какие напряжения рассчитана конкретно ваша электрическая машина.

Обычно маркировка имеет вид:

Δ/Y 220/380

Это расшифровывается так:

Если межфазное напряжение равно 220 – собирайте обмотки в треугольник, а если 380 – в звезду.

Чтобы просто ответить на вопрос «Как соединить обмотки у двигателя?» мы сделали для вас таблицу выбора схемы соединения:

Переключение со звезды на треугольник для плавного пуска

При запуске электродвигателя наблюдаются высокие пусковые токи. Поэтому для снижения пусковых токов асинхронных двигателей используется схема пуска с переключением обмоток со звезды на треугольник. При этом, как было сказано выше, электродвигатель должен быть рассчитан подключение в «треугольник» и работе под Uлинейным вашей сети.

Таким образом в наших трёхфазных электросетях (380/220В) для таких случаев используют двигатели номинальными «380/660» Вольт, для «Δ/Y» соответственно.

При пуске обмотки включаются «звездой» на пониженное напряжение 380В (относительно номинальных 660В), двигатель начинает набирать обороты и в определенный момент времени (обычно по таймеру, в усложненных вариантах — по сигналу датчиков тока и оборотов) обмотки переключаются в «треугольник» и работают уже на своих номинальных 380 вольтах.

На иллюстрации выше описан такой способ пуска двигателей, но в качестве примера изображен перекидной рубильник, на практике же используют два дополнительных контактора (КМ2 и КМ3), она хоть и сложнее обычной схемы подключения электродвигателя, но это не является её недостатком. Зато у неё целый ряд преимуществ:

  • Меньше нагрузка на электросеть от пусковых токов.
  • Соответственно меньшие просадки напряжения и уменьшается вероятность остановки сопутствующего оборудования.
  • Мягкий пуск двигателя.

Есть два главных недостатка этого решения:

  1. Нужно прокладывать два трёхжильных кабеля от места расположения контакторов непосредственно до клемм двигателя.
  2. Падает пусковой момент.

Заключение

Как таковые различия в рабочих характеристиках при подключении одного и того же электродвигателя по схеме звезда или треугольник нет (он просто сгорит, если вы ошибетесь при выборе). Также, как и нет преимуществ и недостатков какой-либо из схем. Некоторые авторы приводят в качестве аргумента то, что в «звезде» ток меньше. Но при аналогичной мощности двух разных двигателей, один из которых рассчитан на подключение в «звезде», а второй в «треугольнике» к сети, например, 380В — ток будет одинаковым. А один и тот же двигатель нельзя переключать «как попало» и «непонятно для чего», так как он просто сгорит. Главное выбирать тот вариант, который соответствует напряжению питающей сети.

Надеемся, теперь вы стало больше понятно про то, что собой представляет схема звезда и треугольник в электродвигателе, какая разница в подключении каждым из способов и как выбрать схему для конкретного случая. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

Подключение двигателя – «звезда треугольник»

Основными способами подключения трехфазных электродвигателей являются звезда или треугольник. Это частные случаи, когда трехфазные нагрузки подключаются через автоматический выключатель. В большинстве случаев выполняется универсальное подключение двигателя – «звезда-треугольник». При этом, трехфазный электродвигатель может быть подключен и к обычной, однофазной электрической проводке.

Способы подключения: звезда и треугольник

Подключение двигателя поочередно двумя способами, то есть звездой и треугольником, выполняется простым переключением перемычек, установленных на колодке клемм между выводами обмоток.

Контакты обмоток двигателя связаны с контактами клеммной коробки. Эта электрическая связка, в свою очередь, с обмотками двигателя и фазами питания. В клеммной коробке установлены специальные перемычки, позволяющие производить переключение из положения «треугольник» в положение «звезда». Подача питания осуществляется на концы треугольника, которые образованы обмотками электродвигателя. При подключении «звездой», перемычка установлена в такое положение, что все три обмотки соединены в одной точке.

В «треугольнике», наоборот, каждая обмотка соединена с другой, соответствующей обмоткой. Поскольку нагрузка во всех обмотках является равнозначной, отпадает надобность в нейтральном проводе. В современных условиях в схеме подключения очень часто используются контакторы для того, чтобы переключать из режима «звезды» на треугольник. При этом, значительно смягчается пусковой режим электродвигателя.

Однако, само подключение контактора совершенно не меняет общей схемы, просто между электродвигателем и автоматом появляется дополнительное силовое устройство, в которое входит сразу несколько контакторов.

Переключение из различных положений

Когда электродвигатель переключается из положения «треугольник» в положение «звезда», происходит снижение его мощности почти в три раза. Если переключение выполняется в обратном направлении, то мощность двигателя, наоборот, очень резко возрастает. При этом, следует помнить, что если электродвигатель не предназначен для работы в данных условиях, то он может просто сгореть.

Подключение двигателя – «звезда-треугольник» применяется для того, чтобы уменьшить пусковой ток, значение которого в несколько раз выше рабочего тока двигателя. У электродвигателей большой мощности значение пускового тока настолько велико, что его действие может вызвать серьезные последствия и привести к падению напряжения. Во время пускового процесса частота вращения электродвигателя возрастает и происходит уменьшение тока. После этого, обмотки переключаются в режим треугольника.

Подключение звездой и треугольником на 220

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Промышленность выпускает электродвигатели, предназначенные для работы в различных условиях, в том числе для сети 220 вольт. Однако у многих людей сохранились трёхфазные асинхронные электродвигатели 380В (люди старшего поколения помнят такое явление, как «принёс домой с работы»). Такие аппараты нельзя включать в розетку. Для использования таких приборов в домашних условиях и подключении вместо 380 220 вольт схема сборки и подключения электромашины нуждаются в доработке – переключении обмоток и подключении конденсаторов.

Принцип действия трёхфазного асинхронного электродвигателя

Обмотки в статоре такой машины намотаны со сдвигом в 120°. При подаче на них трёхфазного напряжения появляется вращающееся магнитное поле, приводящее в движение ротор электромашины.

При подключении к трёхфазной электромашине к сети однофазного напряжения 220 вольт вместо вращающегося поля появляется пульсирующее. Для приведения в движение электромотора в однофазной сети пульсирующее поле преобразовывается во вращающееся.

Справка. В аппаратах, изготовленных для работы в сети 220 вольт, для этого служат пусковые обмотки или особенности конструкции статора.

При включении в сеть двигателя 380 на 220 к нему подключаются фазосдвигающие ёмкости. Запуск трехфазного двигателя с 220 без конденсаторов возможен приведением во вращение ротора. Это создаст сдвиг магнитного поля, и электромашина, потеряв в мощности, продолжит работать. Так включают циркулярки и другие подобные механизмы с низким пусковым моментом.

Начала и концы обмоток

В каждой обмотке электромашины есть начало и конец. Они выбираются условно, независимо от направления намотки, однако должны соответствовать направлению намотки остальных катушек.

Важно! В электросхемах начало катушек отмечается точкой.

Соединение катушек при подключении трехфазного двигателя к сети 220В

Большинство электродвигателей предназначены для работы с линейным напряжением 0,4кВ. В этих машинах обмотки включены «звездой». Это значит, что концы обмоток соединены вместе, а к началам подключается 3 фазы. Напряжение на каждой обмотке составляет 220В.

При включении в сеть с линейным напряжением 220В применяется соединение «треугольник». При этом начало следующей обмотки подключается к концу предыдущей.

Некоторые аппараты мощностью более 30 кВт изготавливаются для сети с линейным напряжением 660В. В таких аппаратах при включении в сеть 0,4кВ обмотки подключаются «треугольником».

Как подключить трехфазный электродвигатель в сеть 220в

Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.

Соединение звездой

При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение «звезда». К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.

Соединение треугольником

Самая распространенная схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

Изменение схемы подключения обмоток трёхфазного электродвигателя на треугольник

Самое сложное при подключении трёхфазной электромашины к бытовой сети 220 вольт – соединить её обмотки треугольником.

Изменение соединений на клеммнике

При подключении к сети 220 вольт проще всего эта операция выполняется, если провода подключены к клеммнику. На нём в два ряда установлены шесть болтов.

Соединение производится попарно, кусочками проволоки или перемычками, идущими в комплекте с двигателем.

Сборка треугольника, согласно маркировке выводов

Если клеммник отсутствует, а на выводах есть маркировка, то задача также простая. Обмотки маркируются С1-С4, С2-С5, С3-С6, где С1, С2, С3 – начала обмоток, и концы соединяются С1-С6, С2-С4, С3-С5.

Интересно. В старых электродвигателях импортного производства вывода маркируются A-X, B-Y, C-Z, а современные обозначения: U1-U2, V1-V2, W1-W2.

Что делать, если есть только три вывода

Сложнее всего собрать схему подключения со «звезды» на «треугольник» в электромашинах, соединение обмоток которых находится внутри корпуса. Эта операция выполняется при полной разборке электромашины. Для переключения обмоток на треугольник необходимо:

  1. разобрать электродвигатель;
  2. найти внутри место соединения обмоток и рассоединить его;
  3. к концам обмоток припаять отрезки гибких проводов и вывести их наружу;
  4. собрать аппарат;
  5. попарно вызвонить вывода катушек;
  6. соединить старый вывод одной катушки с новым проводом следующей;
  7. операцию повторить ещё два раза.

Соединение при отсутствии маркировки

Если маркировки нет, а из корпуса выходит шесть концов, то необходимо определить начало и конец каждой обмотки:

  1. Тестером попарно определить вывода, относящиеся к каждой обмотке. Пометить пары;
  2. В одной из пар выбрать провод. Отметить его как начало обмотки, оставшийся отмечается как конец;
  3. Соединить отмеченную обмотку последовательно с другой парой проводов;
  4. Подключить к соединённым катушкам напряжение

12-36В;

  • Замерить вольтметром напряжение на оставшейся паре. Вместо вольтметра можно использовать контрольную лампочку;
  • Статор с обмотками представляет собой трансформатор и при согласованном соединении вольтметр покажет наличие напряжения. В этом случае во второй паре проводов отмечаются начало и конец катушки. При отсутствии напряжения изменить полярность подключения одной из пар выводов и повторить п.п. 4-5;
  • Соединить одну из отмеченных пар с оставшейся неразмеченной и повторить п.п. 3-6.
  • После определения начала и концов во всех обмотках, они соединяются треугольником.

    Подключение фазосдвигающих конденсаторов

    Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

    Выбор номинала рабочего конденсатора

    Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

    После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

    Важно! Рабочие конденсаторы применяются для переменного напряжения не меньше 300В.

    Выбор и подключение пусковых конденсаторов

    Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен. Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В. Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

    Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов

    Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:

    • Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
    • Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
    • Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии «Пуск» замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку «Стоп» отключает зафиксированные контакты.

    Как переделать схему вращения в реверсивную

    Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

    Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.

    Электронные преобразователи бытового напряжения в промышленное трёхфазное 380В

    Эти трёхфазные инверторы применяются для использования в бытовой сети трехфазных двигателей. Электродвигатели подключаются напрямую к выходу аппарата.

    Необходимая мощность преобразователя выбирается, в зависимости от тока электрической машины. Есть три режима работы таких приборов:

    • Пусковой. Допускает кратковременное (до 5 секунд) двукратное превышение мощности. Этого достаточно для запуска электродвигателя;
    • Рабочий, или номинальный;
    • Перегрузочный. Допускает в течение получаса превышение тока в 1,3 раза.

    Преимущества инвертора 220 в 380:

    • подключение не переделанных трёхфазных электромашин на 220 вольт;
    • получение полной мощности и момента электромашины без потерь;
    • экономия электроэнергии;
    • плавный запуск и регулировка оборотов.

    Несмотря на появление электронных преобразователей, конденсаторные схемы включения трёхфазных электродвигателей продолжают применяться в быту и небольших мастерских.

    Видео

    На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.

    Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.

    Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.

    При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.

    Как подключить электродвигатель правильно – знает опытный электрик.

    Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.

    Определение типа способа соединения

    Выбор того или иного подсоединения зависит от:

    • надежности энергосети;
    • номинальной мощности;
    • технических характеристик самого двигателя.

    Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.

    При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.

    Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.

    Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.

    Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная схема вызывает скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом постепенно входит в норму.

    Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.

    Зависимость выбора от напряжения

    Сейчас в промышленности более применимы асинхронные трехфазные электродвигатели отечественного производства, рассчитанные на номинальное напряжение от сети220/380 В. (агрегаты на 127/220 В уже редко используются).

    Схема подключения «треугольник»- единственно верная для подключения к российским энергосетям зарубежных электромоторов номинальным напряжением 400-690 В.

    Подключение трехфазного двигателя любой мощности осуществляется по определенному правилу: агрегаты низкой мощности присоединяются по схеме «треугольник», а высокомощные – только «звездой».

    Так электромотор прослужит долго и проработает без сбоев.

    Способ «звезды» применяется при подключении трехфазных асинхронных двигателей номинальным напряжением 127/220 В к однофазным сетям.

    Как снизить пусковые токи электродвигателя?

    Явление значительного повышения пусковых токов при запуске высокомощных устройств, подсоединенных по схеме Δ, приводит в сетях с перегрузкой к кратковременному падению напряжения ниже допустимого значения. Все это объясняется особой конструкцией асинхронного электродвигателя, у которого ротор с большой массой обладает высокой инерционностью. Поэтому на начальном этапе работы мотор перегружается, особенно это актуально для роторов центробежных насосов, турбинных компрессоров, вентиляторов, станочного оборудования.

    Чтобы снизить влияние всех этих электротехнических процессов, используют подключение электродвигателя «звездой» и «треугольником». Когда двигатель набирает обороты, ножи специального переключателя (пускателя с несколькими трехфазными контакторами) переводит обмотки статора со схемы Y на Δ.

    Для реализации смены режимов кроме пускателя нужно специальное реле времени, благодаря которому происходит временная задержка 50-100 мс при переключении и защита от трехфазного короткого замыкания.

    Сама процедура использования комбинированной схемы Y/ Δ эффективно помогает уменьшить пусковые токи мощных трехфазных агрегатов. Происходит это следующим образом:

    При подаче напряжения 660 В по схеме «треугольник», каждая обмотка статора получает 380 В (√3 раза меньше), а, следовательно, по закону Ома, в 3 раза уменьшается сила тока. Поэтому при запуске в свою очередь в 3 раза снижается мощность.

    Но такие переключения возможны только для моторов с номинальным напряжением 660/380 В при включении их в сеть с такими же значениями напряжения.

    Опасно подключать электродвигатель с номинальным напряжением 380/220 В в сеть 660/380 В, его обмотки могут быстро перегореть.

    И также помните, что вышеописанные переключения недопустимо применять для электромоторов, у которых на валу размещена нагрузка без инерции, к примеру, вес лебедки или сопротивление поршневого компрессора.

    Для такого оборудования устанавливают специальные трехфазные электрические двигатели с фазным ротором, где реостаты уменьшают значение токов при пуске.

    Чтобы изменить направление вращения электромотора, необходимо сменить местами две любые фазы сети при любом типе подключения.

    Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели (рубильники).

    Схема Подключения Электродвигателя 380

    Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы

    Схема включения трехфазного двигателя на 220 вольт

    Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.

    А это более наглядная картинка:

    Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:

    Ток для расчёта мы возьмём с шильдика двигателя:

    Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:

    Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.

    Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.

    Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:

    Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»

    Источник: http://uelektrika.ru/ustanovka-i-podklyuchenie/skhema-podklyucheniya-trekhfaznogo-yelekt/

    Схемы подключения

    Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

    Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

    Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

    В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

    Источник: http://zen.yandex.ru/media/id/5db5941443863f00b1bc1256/podkliuchenie-trehfaznogo-dvigatelia-k-trehfaznoi-seti-602f391c6ce3da780400f56a

    Как подключить трехфазный двигатель к сети 220 или 380 В?

    Среди электрических машин, предназначенных для совершения механической работы, одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток. Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом. Как можно выполнить подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.

    Источник: http://kurs-ufa.ru/podklyucheniya/kak-podklyuchit-asinhronnyj-dvigatel-380.html

    Подключение трехфазного двигателя

    Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

    Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

    По принципам построения сетей 380В я уже подробно писал в статьях про трехфазный счетчик и реле напряжения.

    Другие статьи по теме – Разница между трехфазным и однофазным напряжением, Системы заземления.

    В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

    2. Подключение двигателя через рубильник или выключатель

    Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

    Подробнее про замену и установку автоматических выключателей – здесь. А про их параметры и выбор – здесь.

    Источник: http://samelectric.ru/promyshlennoe-2/shemy-podklyucheniya-magnitnogo-puskatelya.html

    Что можно переделывать

    Для переделки подойдут маломощные электродвигатели 380 Вольт: до 3 кВт. Теоритически переподключаются и мощные моторы. Но это дополнительно повлечет за собой установку отдельного автомата в электрощите и проведение специальной проводки. И эти работы теряют смысл, если вдруг обнаруживается, что такую нагрузку не потянет вводной кабель.

    Даже если ваша сеть держит высокие нагрузки, и вам удалось переделать двигатель от 3 кВт с 380 на 220 Вольт, вы огорчитесь при первом его пуске в ход. Запуск будет тяжелым. Вы решите, что труд был напрасным. Поэтому если переделывать, то именно маломощные модели.

    Источник: http://ues-company.ru/opyt/kak-peredelat-kompressor-s-380-na-220.html

    Две схемы подключения трёхфазного двигателя

    Подключение двигателя должно производиться чётко по схеме, очень важно не перепутать концы и начала обмоток. Все они должны работать одинаково, когда ток по ним двигается в одном направлении. Если же у одной любой обмотки выход и вход при подключении перепутаются, то создаваемое ей электромагнитное поле будет иметь обратное направление, чем у двух оставшихся. Мотор потеряет треть своей установленной мощности, будет постоянно перегреваться. Как результат – повышенный износ и скорый выход из строя.

    Источник: http://avtika.ru/kak-podklyuchaetsya-trehfaznyy-dvigatel-v-set-380v/

    Определение схемы подключения

    Прежде чем выбрать ту или иную схему подключения мотора к 220 В, необходимо определить, какова схема подключения его обмотки и при каком номинале он вообще может эксплуатироваться. Для этого необходимо:

    • Найти и изучить на моторе таблицу с тех. характеристиками.

    В информационном поле содержится вся важная информация – обозначение типа соединения – треугольник или звезда – Y, мощность, количество оборотов, вольтаж (220 или 380, либо 220/380) и возможность подключения по конкретной схеме.

    • Вскрыть клеммную коробку и удостовериться на практике в правильности собранной схемы.

    Начало и конец каждой обмотки подписан в соответствии с вышеприведённой цифробуквенной номенклатурой. Пользователю остаётся изучить схему соединения по перемычкам: по какой схеме выполнено соединение – звездой или треугольником.

    Обратите внимание! Если на шильдике (таблице с информацией) указан знак Y и только 380В, то при подключении его по треугольнику, обмотка сгорит. Выполнить модернизацию такого мотора на 220В могут только профессиональные электрики. Поэтому нет резона делать его доработку, тем более, что сегодня существует множество экземпляров, способных работать альтернативно – и на 220 и на 380 вольт.

    Вскрытие клеммной коробки Источник pikabu.ru

    Источник: http://m-strana.ru/articles/podklyuchenie-elektrodvigatelya/

    Использование частотного преобразователя

    В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

    Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

    Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

    — регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
    — при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
    — при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

    Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

    Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

    Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
    дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

    Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
    На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

    Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

    Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

    Источник: http://kurs-ufa.ru/podklyucheniya/kak-podklyuchit-asinhronnyj-dvigatel-380.html

    Метод использования трех фаз

    Существуют и другие способы преобразования тока без использования дорогостоящего инвертора. Одним из них является метод использования трех фаз от разных источников питания, напряжением 220 вольт. Он известен уже давно и позволяет успешно получать трехфазный ток 380 вольт. Однако в городских многоквартирных домах применение этого метода требует предварительных согласований с организацией энергонадзора.

    При наличии трехфазного распределительного щитка, можно не задумываться о том, как преобразовать напряжение. Такой щиток имеется в каждом подъезде многоквартирного дома, что позволяет напрямую подключить любое трехфазное оборудование. Единственным техническим условием подобного подключения будет наличие трехфазного удлинителя.

    Источник: http://elektroklub-nn.ru/pravila-montazha/kak-220-volt-preobrazovat-v-380.html

    Подключение двигателя на 380 Вольт

    Трёхфазный асинхронный двигатель это самый распространённый из всех электромоторов. Говорят, что электротехника – это наука о контактах. Большинство проблем, которые возникают в электрических цепях, вызваны теми или иными контактами. В конструкции асинхронного движка контактов нет. Этим и объясняется его надёжность. При правильной эксплуатации такие движки работают до износа подшипников. Правильность эксплуатации обеспечивает оптимальный температурный режим и наиболее медленное изменение свойств изоляции. Подшипники, а также нарушение изоляции обмоток – это две основные причины неисправностей асинхронных двигателей .

    В трёхфазных электросетях применяются две схемы соединения обмоток движков – «треугольник» и «звезда». Эти схемы как раз и определяют температурные режимы обмоток и нагрузку на изоляцию. Напряжение 380 В действует либо на каждую обмотку при соединении в «треугольник», либо на электрическую цепь из двух обмоток при соединении в «звезду». Поэтому в одном и том же устройстве обмотки соединённые в «треугольник» работают в более тяжёлых режимах по напряжению и температуре. Однако при этом достигается и более высокая механическая мощность на вале двигателя.

    • При соединении обмоток по схеме «треугольник» получается в полтора раза большее значение мощности по сравнению со схемой «звезда».

    Переходный процесс от пуска движка и до постоянных оборотов ротора также получается более энергичным по величине пускового тока. В маломощных электросетях это будет приводить к значительному уменьшению напряжения на время разгона ротора. Поэтому рекомендуется в таких электросетях использовать асинхронные двигатели с фазным ротором и пускорегулирующими устройствами. Из-за больших пусковых токов «звезда» является основной схемой соединения обмоток. Напряжение U для каждого движка является важнейшим параметром и поэтому всегда указывается на шильдике и в сопроводительной документации.

    Поскольку в мире производится большое количество моделей двигателей перед соединением его обмоток для подключения к электросети напряжением 380 В, надо удостоверится в соответствии отечественных стандартов и модели. Если на шильдике указаны более высокие напряжения придётся применить соединение «треугольник» вместо обычно используемого соединения «звезда».

    Источник: http://zen.yandex.ru/media/id/5db5941443863f00b1bc1256/podkliuchenie-trehfaznogo-dvigatelia-k-trehfaznoi-seti-602f391c6ce3da780400f56a

    Наилучший способ пуска

    Для наиболее эффективного использования асинхронного двигателя целесообразно применять комбинированные режимы его эксплуатации. Это означает использование переключений выводов обмоток для получения по выбору одного из двух вариантов соединения обмоток. Запуск и разгон двигателя происходит по схеме соединения «звезда». После того как завершится переходный процесс и величина пускового тока достигнет минимального значения происходит переключение на схему «треугольник».

    Достигается такое управление тремя группами контактов по три контакта в каждой группе. Чтобы переход от одной схемы к другой не привёл к аварии, должна соблюдаться определённая последовательность срабатывания контактов.

    • При пуске асинхронного двигателя первая и вторая группы замыкаются. При этом не имеет особого значения, какая из них замкнёт контакты первой.
    • Третья группа остаётся разомкнутой до окончания разгона ротора.
    • Когда ротор разогнался, вторая группа размыкает контакты.
    • Через некоторое время, которое необходимо для завершения размыкания второй группы контактов замыкаются контакты третьей группы.
    • Отключение электродвигателя от трёхфазной сети 380 В происходит размыканием контактов первой и второй группы.
    • Чтобы сделать переход от одной схемы к другой более безопасным надо отключить контакты первой группы на время отключения контактов второй группы и включения контактов третьей группы.

    Для схемы потребуется три магнитных пускателя с контактами пригодными для отключения токов управляемого двигателя.

    Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.

    На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.

    Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:

    • Короткозамкнутый ротор, который представляет собой систему проводников соединенных с торцов кольцами. Образуется пространственная конструкция, напоминающая беличье колесо. В роторе индуцируются токи, создающее свое поле, взаимодействующее с магнитным полем статора. Это и приводит в движение ротор.
    • Массивный ротор – это цельная конструкция из ферромагнитного сплава, в которой одновременно индуцируются токи и являющаяся магнитопроводом. Благодаря возникновению в массивном роторе вихревых токов идет взаимодействие магнитных полей, которое и является движущей силой ротора.

    Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.

    Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.

    Главные преимущества асинхронных двигателей

    • Простота конструкции, которая достигается за счет отсутствия коллекторных групп, имеющие быстрый износ и создающие дополнительное трение.
    • Для питания асинхронного двигателя не требуется дополнительных преобразований, он может питаться прямо из промышленной трехфазной сети.
    • За счет сравнительно небольшого количества деталей асинхронные двигатели очень надежны, имеют долгий срок эксплуатации, просты в техническом обслуживании и ремонте.

    Конечно, трехфазные машины не лишены недостатков

    • Асинхронные электродвигатели имеют чрезвычайно малый пусковой момент, что ограничивает сферу их применения.
    • При запуске эти двигатели потребляют большие токи при пуске, которые могут превышать допустимые в конкретной системе электроснабжения.
    • Асинхронные двигатели потребляют немалую реактивную мощность, которая не приводит к увеличению механической мощности двигателя.

    Источник: http://zen.yandex.ru/media/id/5db5941443863f00b1bc1256/podkliuchenie-trehfaznogo-dvigatelia-k-trehfaznoi-seti-602f391c6ce3da780400f56a

    Подключение к однофазной сети


    Трехфазный агрегат с успехом можно подключить к однофазной сети. Но стоит учитывать, что при схеме, которая называется «звезда», мощность агрегата не будет превышать половины его номинальной мощности. Чтобы увеличить этот показатель, необходимо обеспечить подключение по типу «треугольник». В таком случае можно будет добиться лишь 30-процентного падения мощности. Бояться при этом не стоит, ведь в сети 220 вольт невозможно возникновение критического напряжения, которое бы повредило обмотки двигателя.

    Источник: http://morflot.su/shema-podkljuchenija-3h-faznogo-dvigatelja-na-380/

    Различные схемы подключения асинхронных двигателей к сети 380 вольт

    Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.

    Как правильно подключить трехфазный двигатель «звездой»

    На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.

    Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.

    Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.

    В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.

    Выполняем соединение по схеме «треугольник»

    Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.

    В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.

    На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».

    В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом. а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».

    Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.

    Источник: http://zen.yandex.ru/media/id/5db5941443863f00b1bc1256/podkliuchenie-trehfaznogo-dvigatelia-k-trehfaznoi-seti-602f391c6ce3da780400f56a

    Подключение трехфазного двигателя к трехфазной сети | Денис Прокошенков

    • Основные схемы подключения
    • Использование схемы «звезда-треугольник»
    • Трехфазный двигатель с магнитным пускателем
    • Видео

    Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

    Схемы подключения

    Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

    Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

    Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

    В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

    Использование схемы «звезда-треугольник»

    Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

    Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей. устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

    Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

    Трехфазный двигатель с магнитным пускателем

    Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

    Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

    Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

    Подключение двигателя на 380 Вольт

    Трёхфазный асинхронный двигатель это самый распространённый из всех электромоторов. Говорят, что электротехника – это наука о контактах. Большинство проблем, которые возникают в электрических цепях, вызваны теми или иными контактами. В конструкции асинхронного движка контактов нет. Этим и объясняется его надёжность. При правильной эксплуатации такие движки работают до износа подшипников. Правильность эксплуатации обеспечивает оптимальный температурный режим и наиболее медленное изменение свойств изоляции. Подшипники, а также нарушение изоляции обмоток – это две основные причины неисправностей асинхронных двигателей .

    В трёхфазных электросетях применяются две схемы соединения обмоток движков – «треугольник» и «звезда». Эти схемы как раз и определяют температурные режимы обмоток и нагрузку на изоляцию. Напряжение 380 В действует либо на каждую обмотку при соединении в «треугольник», либо на электрическую цепь из двух обмоток при соединении в «звезду». Поэтому в одном и том же устройстве обмотки соединённые в «треугольник» работают в более тяжёлых режимах по напряжению и температуре. Однако при этом достигается и более высокая механическая мощность на вале двигателя.

    • При соединении обмоток по схеме «треугольник» получается в полтора раза большее значение мощности по сравнению со схемой «звезда».

    Переходный процесс от пуска движка и до постоянных оборотов ротора также получается более энергичным по величине пускового тока. В маломощных электросетях это будет приводить к значительному уменьшению напряжения на время разгона ротора. Поэтому рекомендуется в таких электросетях использовать асинхронные двигатели с фазным ротором и пускорегулирующими устройствами. Из-за больших пусковых токов «звезда» является основной схемой соединения обмоток. Напряжение U для каждого движка является важнейшим параметром и поэтому всегда указывается на шильдике и в сопроводительной документации.

    Поскольку в мире производится большое количество моделей двигателей перед соединением его обмоток для подключения к электросети напряжением 380 В, надо удостоверится в соответствии отечественных стандартов и модели. Если на шильдике указаны более высокие напряжения придётся применить соединение «треугольник» вместо обычно используемого соединения «звезда».

    Наилучший способ пуска

    Для наиболее эффективного использования асинхронного двигателя целесообразно применять комбинированные режимы его эксплуатации. Это означает использование переключений выводов обмоток для получения по выбору одного из двух вариантов соединения обмоток. Запуск и разгон двигателя происходит по схеме соединения «звезда». После того как завершится переходный процесс и величина пускового тока достигнет минимального значения происходит переключение на схему «треугольник».

    Достигается такое управление тремя группами контактов по три контакта в каждой группе. Чтобы переход от одной схемы к другой не привёл к аварии, должна соблюдаться определённая последовательность срабатывания контактов.

    • При пуске асинхронного двигателя первая и вторая группы замыкаются. При этом не имеет особого значения, какая из них замкнёт контакты первой.
    • Третья группа остаётся разомкнутой до окончания разгона ротора.
    • Когда ротор разогнался, вторая группа размыкает контакты.
    • Через некоторое время, которое необходимо для завершения размыкания второй группы контактов замыкаются контакты третьей группы.
    • Отключение электродвигателя от трёхфазной сети 380 В происходит размыканием контактов первой и второй группы.
    • Чтобы сделать переход от одной схемы к другой более безопасным надо отключить контакты первой группы на время отключения контактов второй группы и включения контактов третьей группы.

    Для схемы потребуется три магнитных пускателя с контактами пригодными для отключения токов управляемого двигателя.

    Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.

    На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.

    Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:

    • Короткозамкнутый ротор, который представляет собой систему проводников соединенных с торцов кольцами. Образуется пространственная конструкция, напоминающая беличье колесо. В роторе индуцируются токи, создающее свое поле, взаимодействующее с магнитным полем статора. Это и приводит в движение ротор.
    • Массивный ротор – это цельная конструкция из ферромагнитного сплава, в которой одновременно индуцируются токи и являющаяся магнитопроводом. Благодаря возникновению в массивном роторе вихревых токов идет взаимодействие магнитных полей, которое и является движущей силой ротора.

    Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.

    Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.

    Главные преимущества асинхронных двигателей

    • Простота конструкции, которая достигается за счет отсутствия коллекторных групп, имеющие быстрый износ и создающие дополнительное трение.
    • Для питания асинхронного двигателя не требуется дополнительных преобразований, он может питаться прямо из промышленной трехфазной сети.
    • За счет сравнительно небольшого количества деталей асинхронные двигатели очень надежны, имеют долгий срок эксплуатации, просты в техническом обслуживании и ремонте.

    Конечно, трехфазные машины не лишены недостатков

    • Асинхронные электродвигатели имеют чрезвычайно малый пусковой момент, что ограничивает сферу их применения.
    • При запуске эти двигатели потребляют большие токи при пуске, которые могут превышать допустимые в конкретной системе электроснабжения.
    • Асинхронные двигатели потребляют немалую реактивную мощность, которая не приводит к увеличению механической мощности двигателя.

    Различные схемы подключения асинхронных двигателей к сети 380 вольт

    Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.

    Как правильно подключить трехфазный двигатель «звездой»

    На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.

    Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.

    Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.

    В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.

    Выполняем соединение по схеме «треугольник»

    Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.

    В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.

    На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».

    В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом. а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».

    Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.

    Реверсивная и не реверсивная схема магнитного пускателя

    Магнитный пускатель позволяет осуществить дистанционное управление, включать и отключать потребителя на расстоянии с пульта управления. Самое распространенное применение магнитного пускателя получили асинхронные двигателя, при помощи его осуществляется пуск, стоп и реверс (смена направления вращение вала) двигателя.

    Еще магнитный пускатель служит для разгрузки маломощных контактов. Например, возьмем простой выключатель, который стоит дома, он рассчитан включать и отключать нагрузку не более 10 Ампер, определяем мощность: ток умножаем на напряжение 10*220 = 2200 Вт. Это значит, что через этот выключатель, можно, включить не более двадцати двух лампочек мощностью 100Вт.

    Разгрузим контакт простого выключателя с помощью магнитного пускателя третьей величины, у которого силовые контакты рассчитаны включать и отключать ток 40 Ампер, мощность, которую он сможет включать и отключать: 40*220 = 8800 Вт. В итоге сможем одним щелчком выключателя, включать и отключать всю алею уличного освещения через контакты магнитного пускателя.

    Управляется магнитный пускатель третьей величины с помощью электромагнитной катушки, которая потребляет 200Вт в момент срабатывания, а в сработанном состоянии потребляет всего 25Вт, что получается 200/380 = 0,52 А — это ток которым необходим, чтобы пускатель сработал и включил основную силовую цепь. Теперь представьте, что можно поставить маленький компактный выключатель, который будет управлять магнитным пускателем, а он своими силовыми контактами будет включать и отключать большие мощности.

    Причины однофазного режима: перегорела плавкая вставка на одной фазе, подгорел контакт на клемме или выкрутился винт на клеммнике магнитного пускателя и выпал фазный провод от вибрации, плохой контакт на силовых контактах пускателя.

    При перегрузке двигателя или работе в неполнофазном режиме увеличивается ток, проходящий через тепловое реле. В тепловом реле нагреваются токопроводящие биметаллические пластины, под действием тепла они выгибаются, и механически воздействует на размыкание контакта в тепловом реле, который отключает питание катушки магнитного пускателя, происходит отключение двигателя по средствам пускателя.

    СХЕМА ПОДКЛЮЧЕНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ ЧЕРЕЗ МАГНИТНЫЙ ПУСКАТЕЛЬ.

    Схема состоит:
    из QF — автоматического выключателя; KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск). Рассмотрим работу схемы в динамике.
    Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя.

    КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
    При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.

    Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

    Подключение двигателя со звезды на треугольник

    Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт, и высокооборотные ~3000 об/мин, иногда 1500 об/мин.

    Известно, что в момент запуска электродвигателя его ток увеличивается до 7 раз. Асинхронный двигатель с короткозамкнутым ротором напоминает трансформатор с замкнутой накоротко вторичной обмоткой.

    Если двигатель соединен в звезду то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходиться напряжение 380 Вольт. Здесь в действие вступает закон Ома «I=U/R» чем выше напряжение, тем выше ток, а сопротивление не изменяется.

    Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду(220).

    Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том что двигатель имеет мощность которая не зависит от того подключен он в звезду или на треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники «W=I*U»

    Мощность равна сила тока, умноженная на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник(380), ток будет ниже, чем в звезду (220).

    Прейдем к практике

    В двигателе концы обмоток выведены на «клеммник»  таким образом что в зависимости от того каким образом поставить перемычки получится подключение в звезду или в треугольник как это показано на рисунке. Такая схема обычно на рисована на крышке.

    Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты магнитных пускателей.

    Рассмотрим схему силовую часть, показана жирными линиями.

    Магнитный пускатель Р1 служит для включения и отключения двигателя. Контакты магнитного пускателя Р2 работают как перемычки для включения асинхронного двигателя в треугольник. Обратите внимания, провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе, главное не перепутать. Повторю еще раз это самое главное в схеме КОНТАКТЫ Р2 ВЫПОЛНЯЮТ РОЛЬ ПЕРЕМЫЧЕК ДЛЯ ПОДКЛЮЧЕНИЯ В ТРЕУГОЛЬНИК.

    Магнитный пускатель Р3 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

    Рассмотрим схему управления, тонкими линиями.

    При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель Р1 он срабатывает и на него подается напряжение через  блок контакт теперь кнопку можно отпустить. Далее напряжение подается на реле времени РТ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени Р1 подается на магнитный пускатель Р3 и двигатель запускается в «звезду».

    Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается. Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок контакт магнитного пускателя Р3, а от туда на катушку магнитного пускателя Р2. И электродвигатель включается в треугольник. Кстати на схеме не показано, но пускатель Р3 следует также подключать через  нормально-замкнутый блок контакт пускателя Р2, для защиты от одновременного включения пускателей.

    Магнитные пускатели Р2 и Р3 лучше взять сдвоенные с механической блокировкой одновременного включения.

    Кнопкой «СТОП» схема отключается, последовательно с этой кнопкой можно подключит «концевики», «аварийники», и так далее.

    Если в сети напряжение 220/380, то двигатель следует брать 380/660

    Мощность трех фазного двигателя в однофазной сети

    Трехфазный двигатель в однофазной сети

    Объяснение на простом английском | Electrical4U

    Что такое пускатель звезда-треугольник

    Пускатель звезда-треугольник запускает двигатель с обмоткой статора, соединенной звездой. Когда двигатель достигает примерно 80% от своей полной скорости нагрузки, он начинает работать с обмоткой статора, соединенной треугольником.

    A s Пускатель тар-дельта — это тип пускателя пониженного напряжения. Мы используем его для уменьшения пускового тока двигателя без использования каких-либо внешних устройств или устройств. Это большое преимущество пускателя со звезды на треугольник, поскольку он обычно имеет около 1/3 пускового тока по сравнению с пускателем с прямым включением.

    Пускатель в основном состоит из переключателя TPDP, который расшифровывается как трехполюсный переключатель двойного действия. Этот переключатель переключает обмотку статора со звезды на треугольник. В пусковом режиме обмотка статора соединена в виде звезды. Теперь посмотрим, как пускатель со звезды на треугольник снижает пусковой ток трехфазного асинхронного двигателя.

    Для этого давайте рассмотрим,

    В L = напряжение линии питания, I LS = ток линии питания и, I PS = ток обмотки на фазу и Z = полное сопротивление на фазу обмотки в состоянии покоя.

    Поскольку обмотка соединена звездой, ток обмотки на фазу (I PS ) равен току питающей сети (I LS ).

    Поскольку обмотка соединена звездой, напряжение на каждой фазе обмотки составляет

    Следовательно, ток обмотки на каждую фазу составляет

    Поскольку здесь ток обмотки на каждую фазу (I PS ) равен току питающей сети. (I LS ), мы можем написать,

    Теперь давайте рассмотрим ситуацию, когда двигатель запускается с подключенной треугольником обмотки статора от тех же трех фазных точек питания,

    Здесь I LD = ток линии питания и , I PD = ток обмотки на фазу и Z = полное сопротивление на фазу обмотки в состоянии покоя.
    Поскольку обмотка соединена треугольником, ток питающей сети (I LD ) в три раза больше тока обмотки на фазу (I PD )

    Поскольку обмотка соединена треугольником, напряжение на каждой фазе обмотки равен

    Следовательно, ток обмотки на каждую фазу равен

    Теперь мы можем написать:

    Теперь, сравнивая токи в линии питания, потребляемые асинхронным двигателем с обмоткой, соединенной звездой и треугольником, мы получаем

    Таким образом, мы можем сказать, что пусковой ток от сети при схеме звезда-треугольник составляет одну треть от прямого переключения в треугольник.Опять же, мы знаем, что пусковой момент асинхронного двигателя пропорционален квадрату напряжения, приложенного к обмотке на фазу.

    Уравнение показывает, что пускатель звезда-треугольник снижает пусковой крутящий момент до одной трети от крутящего момента, создаваемого прямым пускателем. Пускатель звезда-треугольник эквивалентен автотрансформатору с ответвлением 57,7%.

    Преимущества пускателя со звездой-треугольником

    К преимуществам пускателей со звезды на треугольник относятся:

    1. Недорого
    2. Не выделяется тепло или необходимо использовать устройство переключения ответвлений, что увеличивает эффективность.
    3. Пусковой ток снижен до 1/3 от постоянного пускового тока.
    4. Обеспечивает высокий крутящий момент на ампер линейного тока.

    Недостатки пускателя со звезды на треугольник

    К недостаткам пускателей со звезды на треугольник относятся:

    1. Пусковой крутящий момент снижен до 1/3 крутящего момента при полной нагрузке.
    2. Требуется определенный набор двигателей.

    Применение пускателя по схеме звезда-треугольник

    Как обсуждалось в приведенных выше преимуществах и недостатках, пускатель по схеме «треугольник» с больше всего подходит для приложений, где требуемый пусковой ток низкий, а линейный ток должен быть минимальным. .

    Пускатель со звезды на треугольник не подходит для приложений, где требуется передача высокого пускового момента. Для этих приложений вместо этого следует использовать стартер DOL.

    Если двигатель слишком нагружен, крутящего момента не хватит для разгона двигателя до скорости перед переключением в треугольное положение. Примером применения пускателя со звезды на треугольник является центробежный компрессор.

    Отношение линейного напряжения к фазному напряжению Линейное напряжение к фазному току

    Обновление:

    В трехфазной сбалансированной системе напряжение на фазе по отношению к другой фазе всегда равно величине напряжения и фазового угла, а векторная сумма трех фаз всегда равна нулю.

    Напряжение сети или фазное напряжение выше 440 В можно измерить с помощью трансформатора напряжения. Измеритель потенциала снижает напряжение с более высокого уровня до низкого уровня, обычно со 110 вольт до 63,5 вольт.

    В то же время линейный ток или фазный ток выше 25 А, трансформатор тока используется для понижения уровня тока с высокого до низкого, как правило, 1 А или 5 А.

    Что такое линейное напряжение:

    В трехфазной системе питания разность потенциалов между двумя фазами называется линейным напряжением (обычно между фазами).Обозначается V L-L . Напряжение между R и Y, или Y с B, или от B до R. В энергосистеме под системным напряжением понимается линейное напряжение. См. Схему,

    Пример: наш внутренний источник питания трехфазный, 440 Вольт. Здесь 440 вольт означает, что межфазное напряжение равно 440.

    Примечание: Если они упоминают однофазное 230 вольт, это означает, что разность потенциалов между фазой и нейтралью составляет 230 вольт.

    В звездообразном соединении:

    Напряжение сети = 1.732 раза больше фазного напряжения.

    Соединение треугольником:

    Напряжение сети = фазное напряжение.

    Что такое линейный ток:

    Измерение тока в одной фазе перед подключением компонента по схеме звезды или треугольника называется линейным током (обычно входным током в двигателе или выходным током в генераторе). В трехфазной сбалансированной системе это может быть ток фазы R, ток фазы Y или ток фазы B.

    Обозначается I L ампер.

    В звездообразном соединении:

    Линейный ток = фазный ток. (мы получаем это, применяя текущее правило Кирхгофа.)

    Соединение треугольником:

    Линейный ток = фазный ток. (мы получаем его, применяя правило Кирхгофа по напряжению.)

    Что такое фазное напряжение:

    В трехфазной системе разность потенциалов между одной фазой и естественной точкой называется фазным напряжением. Обозначается V ph вольт

    Соединение звездой:

    Фазное напряжение = Напряжение сети делится на 1.732

    Соединение треугольником:

    Фазный ток:

    Фазный ток — это величина тока внутри соединения звездой или треугольником трехфазной системы. Обозначается он I ph .

    В звездообразном соединении:

    Фазный ток = Линейный ток

    Соединение треугольником:

    Примечание: Значение 3 = 1,732.

    Трехфазное питание переменного тока: соединение звездой и треугольником

    Самый экономичный способ массового производства электроэнергии переменного тока — это паровые турбины, которые приводят в действие большие трехфазные генераторы переменного тока (генераторы переменного тока — Рисунок 1 ).

    Рис. 1. Паровые турбины приводят в действие большие трехфазные генераторы переменного тока

    Вот почему большинство электростанций расположены на реке, которая была перекрыта дамбой и образовала озеро. До того, как электричество стало массово производиться большими паровыми турбинами, вода, падающая с плотины, использовалась для поворота турбин для выработки гидроэлектроэнергии, как показано на рис.2 .

    Рис. 2. Проект гидроэлектростанции Пьемонт, река Салуда

    Как показано на Рис. 3 , три однофазных источника переменного тока могут быть произведены в одном генераторе переменного тока из общего вращающегося электромагнитного поля.

    Механическое смещение на 120 градусов внутри генератора переменного тока создает электрическое смещение на 120 электрических градусов между любыми двумя соседними однофазными источниками переменного тока: однофазный источник переменного тока в верхней части рисунка ведет к однофазному источнику переменного тока в середину рисунка на 120 электрических градусов.

    Однофазный источник переменного тока в середине рисунка опережает однофазный источник переменного тока в нижней части рисунка на 120 электрических градусов.

    Если бы синусоидальные колебания для каждого однофазного источника переменного тока были растянуты по ширине страницы, было бы показано, что однофазный источник переменного тока в нижней части чертежа также ведет к однофазному источнику переменного тока вверху. чертежа на 120 электрических градусов.

    Когда шесть проводников, по два для каждого источника однофазного переменного тока, выводятся из генератора и подводятся к трем индивидуально подключенным однофазным нагрузкам переменного тока, взаимодействие между источниками однофазного переменного тока отсутствует, только смещение фаз.

    Рисунок 3. Генерация трех однофазных двухпроводных источников переменного тока из общей цепи магнитного ротора

    Как показано на рис. 4 , выводы обмотки трех однофазных двухпроводных источников переменного тока источники могут быть соединены между собой на генераторе переменного тока для передачи трехфазного переменного тока с использованием только трех проводов цепи (или линий передачи) вместо шести проводов, показанных на рис. 3 .

    Трехфазный генератор переменного тока (или двигатель, или трансформатор) подключен по схеме 3-фазный треугольник , когда соответствующие концы отдельных однофазных обмоток подключены в последовательной конфигурации с обратной связью и , соединение с общим концом любых двух соседних обмоток осуществляется как один из трех проводов трехфазной сети переменного тока.

    Трехфазный генератор переменного тока (или двигатель, или трансформатор) подключается по схеме трехфазной звездой , когда концы (выводы) с одним и тем же опорным сигналом каждой отдельной однофазной обмотки соединены для образования общей точки, и другие концы обмотки (выведенные как три 3-фазных линейных проводника переменного тока) кажутся параллельными. Три 3-фазных линейных проводника AC обычно обозначаются как линия 1 (L1) или фаза A, линия 2 (L2) или фаза B, и линия 3 (L3) или фаза C.

    Рис. 4. Выработка трехфазного переменного тока по трехпроводной схеме

    Трехфазный переменный ток является более распространенной формой производства, передачи и распределения электроэнергии просто потому, что 3-фазный диапазон мощности (опять же, рисунок 4) никогда не проходит через переход нулевой мощности, как это происходит в каждом из трех имеющихся однофазных источников переменного тока.

    Направление тока в электрической цепи всегда от потенциала отрицательного напряжения к потенциалу положительного напряжения.

    В трехфазной схеме подключения «звезда» или «треугольник», когда какой-либо однофазный источник переменного тока проходит через нулевое напряжение, ток протекает между двумя другими однофазными источниками переменного тока. Когда все три источника однофазного переменного тока чередуются (производят либо положительное, либо отрицательное напряжение), ток все еще находится между потенциалом отрицательного напряжения и потенциалом положительного напряжения:

    Согласно временным рамкам, 3-фазный переменный ток Линейный ток может течь от первого однофазного источника переменного тока (L1) к ​​обоим другим однофазным источникам переменного тока (как L2, так и L3), и моментом позже трехфазный линейный ток может течь от второй однофазный источник переменного тока к двум другим и так далее.

    Подключение трех однофазных обмоток в трехфазном генераторе переменного тока (двигателе или трансформаторе) по схеме «звезда» или «треугольник» зависит от желаемой величины линейного напряжения по сравнению с желаемой величиной линейного тока. .

    Трехфазная схема подключения «звезда», выходящая из генератора или трансформатора, называется умножителем напряжения. В трехфазном двигателе или трансформаторе трехфазная схема подключения «звезда» называется делителем напряжения.

    Для сравнения: , выходящий из генератора или трансформатора, трехфазная схема подключения треугольником называется умножителем тока. При подключении к трехфазному двигателю или трансформатору трехфазная схема подключения треугольником называется делителем тока.

    Трехфазное соединение звездой (звездой)

    Как показано на рис. 5 , при трехфазном соединении звездой (звездой) три обмотки однофазного генератора переменного тока (или обмотки двигателя или трансформатора) являются подключены параллельно с одинаковыми выводами каждой обмотки, подключенными (по одному к каждой) к питающим проводам L1 (линия 1), L2 (линия 2) и L3 (линия 3).Другие концы или выводы трех однофазных обмоток обычно соединены друг с другом.

    Рис. 5. Соотношение напряжения и тока в трехфазной схеме разводки «звездой»

    Трехфазная конфигурация проводки «тройка» называется умножителем / делителем напряжения. Это опорное значение исходит от трехфазного сетевого напряжения переменного тока [обычно называемого либо «линейным напряжением», либо просто «линейным напряжением» (V-линия)]. Он измеряется между любыми двумя из трех линий питания в конфигурации проводки трехфазного генератора переменного тока (двигателя или трансформатора).

    Затем он применяется как сумма двух отдельных падений однофазного переменного напряжения (фаза V) на любых двух из трех однофазных обмоток.

    Хотя, как показано на рис. 5, , эти две обмотки эффективно соединены последовательно (относительно точек измерения напряжения), два однофазных напряжения обмотки переменного тока не складываются алгебраически (прямое сложение — что равняется двум раз больше напряжения любой обмотки). Соответствующие номинальные синусоидальные напряжения двух однофазных обмоток не совпадают по фазе друг с другом на 120 электрических градусов.Из-за этого «фазового сдвига» 120 0 напряжения двух однофазных обмоток переменного тока складываются векторно (в виде векторных величин).

    На рис. 5 показано линейное напряжение трехфазного переменного тока, измеренное от линии 1 до линии 3. Если напряжение однофазной обмотки всех трех обмоток источника однофазного переменного тока в этом трехфазном генераторе переменного тока равно 277 вольт: векторное сложение двух однофазных напряжений обмотки переменного тока равно:

    линия 1: SIN 120 0 × 277 вольт = 0.866 × 277 В = 240 В

    Строка 3: SIN 120 0 × 277 В = 0,866 × 277 В = 240 В

    1,732 × 277 В = 480 В

    Когда два 240 -вольт измерения суммируются, линейное напряжение трехфазного генератора переменного тока, подключенного по схеме «звезда», составляет 480 вольт. Синусоидальная функция 120 0 равна 0,866.

    Поскольку линейное напряжение должно измеряться как линейное напряжение между любыми двумя из трех однофазных источников AC в генераторе (или двигателе или трансформаторе), сумма 0.866 плюс 0,866, что равно 1,732, можно умножить на номинальное значение 277 В для любой из обмоток, чтобы получить такое же номинальное напряжение сети 480 В.

    По совпадению или удаче квадратный корень из 3 (√3) также равен 1,732, так что овладение математическими навыками тригонометрии не требуется. Просто помните, что при определении сетевого напряжения трехфазного переменного тока генератора переменного тока, соединенного звездой (двигателя или трансформатора), линейное напряжение в 1,732 раза превышает фазное напряжение, или:

    Напряжение трехфазного переменного тока в схеме звездочки. конфигурация на 173% (√3) больше, чем напряжение обмотки однофазного переменного тока.

    В формуле:

    В ЛИНИЯ = √3 × В ФАЗА (ОБМОТКА)

    Или В ФАЗА = В ЛИНИЯ ÷ 9000

    Для сравнения, значения трехфазного линейного переменного тока и однофазного переменного тока в обмотке равны в конфигурации проводки «звезда». Начало каждой соответствующей однофазной обмотки в Рис. 5 подключается непосредственно к одному из линейных проводов (провод L1, L2 или L3), так что весь трехфазный линейный ток (линия A) этого фаза проходит через катушку этой однофазной обмотки;

    A ЛИНИЯ = A ФАЗА (ОБМОТКА)

    От общего соединения других концов или выводов трех однофазных обмоток однофазный переменный ток данной фазы или обмотки делится между две другие фазы или обмотки.

    Трехфазное соединение треугольником

    Как показано на рис. 6 , соединение трехфазным треугольником представляет собой просто замкнутую схему, в которой три обмотки однофазного генератора переменного тока соединены последовательно друг с другом.

    Выходной (или конечный) вывод одной однофазной обмотки соединен с выводом второй однофазной обмотки. Вывод второй однофазной обмотки соединен с выводом третьей однофазной обмотки.Вывод третьей однофазной обмотки подключается к выводу первой однофазной обмотки: линии питания L1, L2 и L3 подключаются по одной к трем узловым соединениям выводов обмотки и вывода. .

    Рисунок 6. Зависимость напряжения от тока в схеме 3-фазного треугольника

    Когда отдельные выводы однофазной обмотки [начало (вход) и конец (выход) выводов или клемм каждого соответствующего одиночного кабеля). фазная обмотка] трехфазного генератора переменного тока (двигатель или трансформатор) подключены по схеме треугольника, каждая однофазная обмотка подключается непосредственно к двум из трех линий питания.Когда это происходит, трехфазное линейное напряжение переменного тока, измеренное между любыми двумя линиями питания, будет равно однофазному напряжению переменного тока, измеренному на тех же самых узлах входной-выходной обмотки (соединениях).

    В , рис. 6 , линейное напряжение трехфазного переменного тока, измеренное между линиями питания L1 и L2, равно напряжению однофазной обмотки переменного тока, измеренному на входных и выходных узлах, подключенных к L1 и L2:

    Значения трехфазного линейного напряжения переменного тока и однофазного переменного напряжения обмотки равны в конфигурации треугольником.

    В формуле:

    В ЛИНИЯ = В ФАЗА (ОБМОТКА)

    Для сравнения, трехфазный линейный ток, подаваемый на любой из трех проводов питания в конфигурации генератора треугольником, равен смесь токов переменного тока, протекающих от двух однофазных обмоток, подключенных к этой линии их соответствующими узлами ввода-вывода.

    Иначе говоря, , два однофазных линейных тока переменного тока, текущие от двух других трехфазных линейных проводов к заданному входу-выходу, имеют общий путь линия-проводник из узла.Хотя эти две обмотки эффективно подключены параллельно однолинейному проводнику, все три однофазных тока обмотки переменного тока не совпадают по фазе друг с другом на 120 электрических градусов, так что

    A LINE = √3 × A ФАЗА (ЗАМОК)

    Или A ФАЗА = A LINE ÷ √3

    Из-за сдвига фаз 120 0 между любыми двумя Токи соседних обмоток, однофазные переменные токи в обмотках складываются векторно (векторные величины — таким же образом, как описано для напряжений в конфигурации звездой), а не алгебраически (√3, используемое в этих расчетах, равно 1.732).

    Если два однофазных переменного тока в обмотке сложить алгебраически, то составной трехфазный линейный ток будет в два раза больше значения однофазного переменного тока (обмотки).

    Трехфазный асинхронный двигатель с промышленным пускателем со звезды на треугольник

    Трехфазный асинхронный двигатель состоит из статора, который содержит трехфазную обмотку, подключенную к трехфазному источнику переменного тока. Обмотка расположена так, чтобы создавать вращающееся магнитное поле.Ротор асинхронного двигателя содержит цилиндрический сердечник с параллельными пазами, в которых расположены проводники.


    Проблемы при запуске двигателя:

    Самой основной особенностью асинхронного двигателя является его механизм самозапуска. Из-за вращающегося магнитного поля в роторе индуцируется ЭДС, из-за которой в роторе начинает течь ток. Согласно закону Ленца, ротор начнет вращаться в направлении, препятствующем прохождению электрического тока, и это придаст двигателю крутящий момент.Таким образом двигатель запускается самостоятельно.

    Период запуска двигателя по сравнению с периодом работы в установившемся состоянии

    Во время этого периода самозапуска по мере увеличения крутящего момента в роторе протекает большой ток. Для этого статор потребляет большое количество тока, и к тому времени, когда двигатель достигает своей полной скорости, потребляется большой ток, и катушки нагреваются, что приводит к повреждению двигателя. Следовательно, возникает необходимость контролировать запуск двигателя. Один из способов — уменьшить приложенное напряжение, что, в свою очередь, снижает крутящий момент.

    Цели пускателя электродвигателя по схеме звезда-треугольник:

    • Уменьшите высокий пусковой ток и тем самым предотвратите перегрев двигателя
    • Обеспечьте перегрузку и гарантию отсутствия напряжения

    Стартер звезда-треугольник:

    При пуске со звезды на треугольник двигатель подключается в режиме ЗВЕЗДА в течение всего периода пуска. Когда двигатель достигает необходимой скорости, двигатель подключается в режиме ТРЕУГОЛЬНИК.

    Цепь питания управления электродвигателем со звездой-треугольником

    Компоненты пускателя со звезды на треугольник:

    Контакторы: Цепь пускателя звезда-треугольник состоит из трех контакторов: главного, звезды и треугольника.Требуется, чтобы три контактора соединяли обмотки двигателя сначала звездой, а затем треугольником.

    Таймер: Контакторы регулируются таймером, встроенным в пусковой механизм.

    Блокировочные выключатели: Блокировочные выключатели подключаются между контакторами звезды и треугольника в цепи управления в качестве меры безопасности, поэтому нельзя активировать контактор треугольника, не отключив контактор звезды. Если одновременно сработать контакторы со звездой и треугольником, это может привести к повреждению двигателя.

    Тепловое реле перегрузки: Тепловое реле перегрузки также объединено в схему управления звезда-треугольник, чтобы защитить электродвигатель от чрезмерного нагрева, который может ускорить обнаружение возгорания или износ электродвигателя. В случае, если температура выходит за пределы заданного значения, контакт размыкается, и питание отключается таким образом, чтобы обеспечить работу двигателя.

    Работа стартера звезда-треугольник:

    Сначала замыкаются первичный контактор и контакторы звезды. По прошествии некоторого времени таймер подает сигнал контактору звезды о переходе в разомкнутое положение, а первичные контакторы треугольника переходят в положение закрытия, соответственно структурируя схему треугольника.

    Во время пуска, когда обмотки статора соединены звездой, каждая ступень статора получает напряжение VL / √3, где VL — линейное напряжение. Следовательно, линейный ток, потребляемый двигателем при запуске, уменьшается до одной трети по сравнению с пусковым током с обмотками, соединенными треугольником. Аналогичным образом, поскольку крутящий момент, развиваемый асинхронным двигателем, соответствует квадрату приложенного напряжения; Пускатель со звезды на треугольник снижает пусковой крутящий момент до одной трети от возможного при немедленном запуске по схеме треугольник.

    Таймер управляет преобразованием со звезды в треугольник. Таймер в пускателе со звезды на треугольник для трехфазного двигателя предназначен для перехода от режима звезды, при котором двигатель работает при пониженном напряжении и токе и производит меньший крутящий момент, в режим треугольника, необходимый для работы двигателя на полную мощность. мощность, использующая высокое напряжение и ток для преобразования высокого крутящего момента.

    Клеммные соединения в конфигурациях звезды и треугольника:

    L1, L2 и L3 — это трехфазные линейные напряжения, которые подаются на первичный контактор.Катушки главного двигателя U, V и W показаны на рисунке. В режиме звезды обмотки двигателя первичный контактор связывает сеть с клеммами основной обмотки U1, V1 и W1. Контактор звездой замыкает клеммы вспомогательной обмотки U2, V2 и W2, как показано на рисунке. Независимо от того, когда первичный контактор отключен, питание поступает на клеммы A1, B1, C1, и, следовательно, обмотки двигателя находятся под напряжением в звездном режиме.

    Таймер запускается в тот момент, когда контактор звезды находится под напряжением.После того, как таймер достигает заданного периода времени, контактор звезды обесточивается, а контактор треугольник включается.

    Клеммы обмотки асинхронного двигателя соединены звездой и треугольником

    Точка, когда контактор замыкается треугольником, клеммы обмотки двигателя U2, V2 и W2 связываются с V1, W1 и U1 индивидуально через замыкающие контакты первичного контактора. То есть для объединения в треугольник, выполняющий конец одной обмотки должен быть соединен с начальным концом другой обмотки.Конфигурация обмоток двигателя изменяется по схеме «треугольник» путем подачи линейного напряжения L1 на клеммы обмотки W2 и U1, линейного напряжения L2 на клеммы обмотки U2 и V1; и линейное напряжение L3 к клеммам обмотки V2 и W1, как показано на рисунке.

    Типы пускателей звезда-треугольник:

    Есть два типа пускателей со звезды на треугольник: открытый и закрытый.

    Стартер с открытым переходом звезда-треугольник:

    Это наиболее широко признанная стратегия пуска по схеме звезда-треугольник. Как следует из названия, в этой стратегии обмотки двигателя открыты в течение всего времени переключения обмоток из режима звезды в режим треугольника.Пускатель с размыканием звезда-треугольник использует 3 контактора двигателя и реле задержки движения.

    Достоинства:

    Пускатель

    с открытым переходом очень прост в реализации с точки зрения стоимости и схемотехники, он не требует дополнительного оборудования для определения напряжения.

    Недостатки:

    Открытый переход вызывает скачок тока и крутящего момента при переключении, который оглушает систему как электрически, так и механически. В электрическом плане результат кратковременных пиков тока может вызвать колебания силы или несчастья.С механической точки зрения увеличенный крутящий момент, возникающий из-за всплеска тока, может быть достаточным, чтобы повредить компоненты системы, то есть сломать приводной вал.

    Стартер с замкнутым переходом звезда-треугольник:

    В этом пускателе переключение со звезды на треугольник осуществляется без отключения двигателя от сети. Добавляется пара компонентов, чтобы избавиться от скачка напряжения, связанного с открытым переходом, или уменьшить его. Дополнительные компоненты включают контактор и несколько переходных резисторов.Переходные резисторы потребляют текущий поток во время переключения обмотки. Четвертый контактор дополнительно используется для включения резистора в цепь перед размыканием контактора звезды и последующей откачки резисторов после замыкания контактора треугольником. Несмотря на необходимость в дополнительных механизмах замены, схема управления более запутана из-за необходимости полной замены резистора.

    Заслуга:

    Уменьшение скачка тока приращения, вызванного переходом.Таким образом, пускатель с закрытым переходом имеет плавное переключение.

    Замечание:

    Помимо необходимости большего количества переключающих устройств, схема управления более сложна из-за необходимости выполнять переключение резисторов. Кроме того, добавление схем приводит к значительному удорожанию установки.

    Ток полной нагрузки при открытом и закрытом переходах

    Пример пускателя звезда-треугольник:

    Пускатель звезда-треугольник обычно используется для уменьшения пускового тока двигателя.Дан пример, чтобы знать о пускателе со звезды на треугольник.

    Из схемы мы использовали источник питания 440 вольт для запуска двигателя. И здесь мы использовали набор реле для переключения соединений двигателя со звезды на треугольник с задержкой по времени. В этом мы объяснили работу с использованием лампы вместо двигателя для облегчения понимания. Во время работы по схеме «звезда» лампы могут слабо светиться, показывая, что напряжение питания на катушках составляет 440 вольт. В режиме треугольника после срабатывания таймера огни могут гореть с полной интенсивностью, показывая полное напряжение питания 440 вольт.Таймер 555 выполняет моностабильную работу, выход которой поддерживается реле для обновления сетевого питания с трехфазной звезды на треугольник.

    Блок-схема от Edgefx Kits

    Кредит на фото:

    • Период запуска двигателя по сравнению с периодом стабильной работы myelectrical
    • Цепь питания управления двигателем со звездой-треугольником
    • Автор: s1.hubimg
    • Клеммы обмотки асинхронного двигателя, соединенные в звезду и треугольник с помощью myelectrical
    • Ток полной нагрузки при открытом переходе и закрытом переходе с помощью электрического нейтрона

    Соединение звезда-треугольник | Обзор

    Соединение звездой и соединение треугольником

    Изображение предоставлено — Правин Мишра, Галактика Млечный Путь, вид из базового лагеря Амфулапца, CC BY-SA 4.0

    Вопросы для обсуждения

    Соединение звезда-треугольник | Преобразование звезда-треугольник

    Введение в соединение звездой и треугольником

    Соединение звездой и треугольником — два очень хорошо известных метода создания трехфазной системы. Это важная и широко используемая система. В этой статье будут рассмотрены основы подключения как звезды, так и треугольника, а также отношения между фазным и промежуточным напряжением и током в системе.Мы также выясним существенные различия между соединением звезды и треугольника.

    Соединение звездой

    Соединение звездой — это метод, при котором клеммы аналогичного типа (все три обмотки) подключаются к одной точке, известной как точка звезды или нейтраль. Есть также линейные проводники, которые являются тремя свободными выводами. Проектирование проводов во внешних цепях делает схему трехфазной, трехпроводной и обеспечивает соединение звездой. Может быть другой провод, названный нейтральным проводом, что делает систему трехфазной, четырехпроводной.

    Что означает теорема Тевенина? Кликните сюда!

    Связь между фазным напряжением и напряжением цепи при соединении звездой

    Система считается сбалансированной. В сбалансированных системах через все 3 фазы проходит равное количество тока. Вот почему R, Y, B имеют одинаковое значение тока. Теперь это имеет последствия. Это равномерное распределение тока делает значения напряжений — E NR , E NY , E NB одинаковыми, и они смещены друг от друга на 120 градусов.

    На изображениях выше стрелка представляет направление токов и напряжений (хотя и не фактический порядок). Как мы обсуждали ранее, из-за равномерного распределения тока напряжение на трех плечах одинаково, так что мы можем записать —

    E NR = E NY = E NB = Eph.

    И мы можем заметить, что напряжения между двумя линиями представляют собой двухфазное напряжение.

    Итак, наблюдая цикл NRYN, мы можем написать, что,

    E NR `+ E RY ` — E NY `= 0

    Или, E RY ` = E NY `- E NR `

    Теперь из векторной алгебры

    E RY = √ (E NY 2 + E NR 2 + 2 * E NY * E NR Cos60 o )

    Или, E L = √ (E фаза 2 + E фаза 2 + 2 * E фаза * E фаза х 0.5)

    Или, E L = √ (3E ф. 2 )

    Или, E л = √3 E ф.

    Таким же образом мы можем напишите, E YB = E NB — E NY .

    OR, E L = √3 E ph

    And,

    E BR = E NR — E NB

    Или, El = √3 Eph

    Итак, мы можем сказать, что соотношение между линейным напряжением и фазным напряжением составляет:

    Линейное напряжение = √3 x фазное напряжение

    Что такое теорема Миллмана? Кликните сюда!

    Отношение между фазным током и током в линии при соединении звездой

    Равномерный ток в фазных обмотках аналогичен току в проводе линии.

    Мы можем написать —

    I R = I NR

    I Y = I NY

    And I B = I NB

    Теперь, фазный ток будет —

    I NR = I NY = I NB = I ф.

    И линейный ток будет — I R = I Y = I B = I L

    Итак, мы можем сказать, что I R = I Y = I B = I L

    Что такое Теорема о максимальной передаче мощности ? Кликните сюда!

    Соединение по схеме «треугольник»

    Соединение по схеме «треугольник» — это еще один метод установления трех фаз в электрической системе.Концевой вывод обмоток присоединен к пуску других выводов. Трехлинейные жилы подключаются от трех узлов. Дельта-соединение устанавливается путем завязывания концов. Для этого мы объединяем 2 с b 1 , b 2 с c 1 и c 2 с 1 . Линейные проводники — это R, Y, B, идущие от трех узлов. На изображении ниже показано типичное дельта-соединение и показаны сквозные соединения.

    Соединение треугольником

    Связь между фазным напряжением и линейным напряжением при соединении треугольником

    Давайте выясним связь между фазным напряжением схемы треугольника и линейным напряжением схемы.Для этого внимательно посмотрите на изображение выше. Можно сказать, что значение напряжения на клеммах 1 и 2 такое же, как на клеммах R и Y.

    Итак, мы можем написать — E 12 = E RY .

    Таким же образом можно сделать вывод, наблюдая за схемой, E 23 = E YE .

    И E 31 = E BR

    Фазные напряжения записываются как: E 12 = E 23 = E 31 = E ph

    Линейные напряжения записываются как: E RY = E YB = E BR = E L .

    Итак, мы можем сделать вывод, что в случае соединения треугольником, фазное напряжение будет равно линейному напряжению схемы.

    Чтобы узнать о законах Кирхгофа: Щелкните здесь!

    Соотношение между фазным током и линейным током при соединении треугольником

    Для сбалансированного соединения треугольником значение постоянного напряжения влияет на значения тока. Текущие значения I 12 , I 23 , I 31 равны, но смещены друг от друга на 120 градусов.Обратите внимание на приведенную ниже векторную диаграмму.

    Мы можем написать, I 12 = I 23 = I 31 = I ph

    Теперь, применяя закон Кирхгофа на стыке 1,

    Мы знаем, что алгебраическая сумма текущего узла равна нулю.

    Итак, I 31 `= I R ` + I 12 `

    Векторальные разности равны I R ` = I 31 `- I 12 `

    Применяя векторную алгебру,

    I R = √ (I 31 2 + I 12 2 + 2 * I 31 * I 12 * Cos 60 o )

    Или, I R = √ (I ph 2 + I ph 2 + 2 * I ph * I ph x 0.5)

    Как мы обсуждали ранее, I R = I L .

    Или, I L = √ (3I ф. 2 )

    Или, I L = √3 * I ф.

    Таким же образом, I Y `= I 12 ` — I 23 . `

    Или, I L = √ 3 * I ph

    And, I B ` = I 23 `- I 31 `

    Или, I L = √ 3 I ф.

    Таким образом, соотношение между линейным током и фазным током можно записать как:

    Линейный ток = √ 3 x фазный ток

    Разница между соединением звездой и треугольником

    Методы звезды и треугольника — два известных метода для трехфазных систем.В зависимости от различных факторов между ними есть несколько принципиальных различий. Обсудим некоторые из них.

    ТОЧКИ СРАВНЕНИЯ ЗВЕЗДНОЕ СОЕДИНЕНИЕ ТРЕУГОЛЬНОЕ СОЕДИНЕНИЕ
    Определение Три терминала связаны в одной точке. Этот тип схемы называется звездой. Три концевых вывода схем соединены друг с другом, образуя замкнутый контур, известный как соединение треугольником.
    Нейтральная точка При соединении звездой имеется нейтраль. При соединении треугольником такой нейтральной точки не существует.
    Соотношение между фазным и линейным напряжением Линейное напряжение рассчитывается как √трое значение фазного напряжения при соединении звездой. Фазное напряжение и линейное напряжение равны друг другу для соединения треугольником.
    Соотношение между фазным током и линейным током Фазный ток и линейный ток при соединении звездой равны друг другу. Линейный ток в три раза больше фазного тока для соединения треугольником.
    Скорость как пускатели Двигатели, подключенные звездой, обычно медленнее, поскольку они получают 1/3 часть напряжения. Двигатели, подключенные по схеме треугольника, обычно быстрее, поскольку они получают полное сетевое напряжение.
    Фазное напряжение Значение фазного напряжения для звездообразного соединения ниже, поскольку они получают лишь 1 / √3 часть линейного напряжения. Значение фазного напряжения выше, чем фазное напряжение, а линейные напряжения равны.
    Требования к изоляции Низкий уровень изоляции, необходимый для соединения звездой. Для соединения треугольником требуется высокий уровень изоляции.
    Использование В сетях передачи электроэнергии используется соединение звездой. В системе распределения электроэнергии используется соединение треугольником.
    Требуемое количество оборотов. Для соединения звездой требуется меньшее количество витков. Соединение треугольником требует большего количества витков.
    Полученное напряжение Каждая обмотка получает напряжение 230 В при соединении звездой. При соединении треугольником каждая обмотка получает 414 вольт напряжения.
    Доступные системы Доступно соединение звездой трехпроводных трехфазных и четырехпроводных трехфазных систем. Доступно соединение треугольником трехпроводных трехфазных систем и четырехпроводных трехфазных систем.

    Узнайте об основах схемы переменного тока: Щелкните здесь!

    Преобразование звезды в треугольник

    Преобразование из звезды в треугольник и из треугольника в звезду

    Сеть типа «звезда» может быть преобразована в сеть «треугольник», а сеть, подключенная по схеме «треугольник», может быть преобразована в сеть со звездой, если это необходимо.Преобразование схем необходимо, чтобы упростить сложный курс, и поэтому расчет становится более легким.

    Преобразование со звезды в треугольник

    В этом преобразовании сеть, соединенная звездой, заменяется эквивалентной сетью, соединенной треугольником. Приведены звездочка и замененная дельта-фигура. Соблюдайте уравнения.

    Значение Z 1 , Z 2 , Z 3 дано в терминах Z A , Z B , Z C.

    Z 1 = (Z A Z B + Z B Z C + Z C Z A ) / Z C = Σ (Z A Z B ) / Z C

    Z 2 = (Z A Z B + Z B Z C + Z C Z A ) / Z B = Σ (Z A Z B ) / Z B

    Z 3 = (Z A Z B + Z B Z C + Z C Z A ) / Z A = Σ (Z A Z B ) / Z A

    Мы можем легко преобразовать соединенную звездой сеть в соединение треугольником, если мы знаем сети, соединенные звездой. ценность.

    Узнайте о расширенных схемах переменного тока: Щелкните здесь!

    Преобразование из треугольника в звезду

    В этом преобразовании сеть, подключенная по схеме треугольника, заменяется эквивалентной сетью, подключенной по схеме звезды. Приведены дельта и замененная звездочка. Соблюдайте уравнения.

    Значение Z A , Z B , Z C дается в терминах Z 1 , Z 2 , Z 3.

    Z A = (Z 1 Z 2 ) / (Z 1 + Z 2 + Z 3 )

    Z B = (Z 2 Z 3 ) / (Z 1 + Z 2 + Z 3 )

    Z C = (Z 1 Z 3 ) / (Z 1 + Z 2 + Z 3 )

    ср. можно легко преобразовать сеть, соединенную по схеме «треугольник», в сеть, соединенную по схеме «звезда», если мы знаем значение сети, соединенной по схеме «треугольник».

    Обложка GIF от: GIPHY

    О Sudipta Roy

    Я энтузиаст электроники и в настоящее время занимаюсь электроникой и коммуникациями.
    Я очень заинтересован в изучении современных технологий, таких как искусственный интеллект и машинное обучение.
    Мои работы посвящены предоставлению точных и обновленных данных всем учащимся.
    Мне доставляет огромное удовольствие помогать кому-то в получении знаний.

    Давайте подключимся через LinkedIn — https: // www.linkedin.com/in/sr-sudipta/

    Международный журнал научных и технологических исследований

    ДОБРО ПОЖАЛОВАТЬ В IJSTR (ISSN 2277-8616) —

    Международный журнал научных и технологических исследований — это международный журнал с открытым доступом из различных областей науки, техники и технологий, в котором особое внимание уделяется новым исследованиям, разработкам и их приложениям.

    Приветствуются статьи, содержащие оригинальные исследования или расширенные версии уже опубликованных статей конференций / журналов. Статьи для публикации отбираются на основе экспертной оценки, чтобы гарантировать оригинальность, актуальность и удобочитаемость.

    IJSTR обеспечивает широкую политику индексирования, чтобы опубликованные статьи были хорошо заметны для научного сообщества.

    IJSTR является частью экологически чистого сообщества и предпочитает режим электронной публикации, поскольку он является «ЗЕЛЕНЫМ журналом» в Интернете.

    Мы приглашаем вас представить высококачественные статьи для проверки и возможной публикации во всех областях техники, науки и технологий.Все авторы должны согласовать содержание рукописи и ее представление для публикации в этом журнале, прежде чем она будет отправлена ​​нам. Рукописи следует подавать в режиме онлайн


    IJSTR приветствует ученых, заинтересованных в работе в качестве добровольных рецензентов. Рецензенты должны проявить интерес, отправив нам свои полные биографические данные. Рецензенты определяют качественные материалы.Поскольку ожидается, что они будут экспертами в своих областях, они должны прокомментировать важность рецензируемой рукописи и то, способствует ли исследование развитию знаний и развитию теории и практики в этой области. Заинтересованным рецензентам предлагается отправить свое резюме и краткое изложение конкретных знаний и интересов по адресу [email protected]

    .

    IJSTR публикует статьи, посвященные исследованиям, разработкам и применению в области инженерии, науки и технологий.Все рукописи проходят предварительное рецензирование редакционной комиссией. Вклады должны быть оригинальными, ранее или одновременно не публиковаться где-либо еще, и перед публикацией они должны быть подвергнуты критическому анализу. Статьи, которые должны быть написаны на английском языке, должны содержать правильную грамматику и правильную терминологию.


    IJSTR — это международный рецензируемый электронный онлайн-журнал, который выходит ежемесячно. Цель и сфера деятельности журнала — предоставить академическую среду и важную справочную информацию для продвижения и распространения результатов исследований, которые поддерживают высокоуровневое обучение, преподавание и исследования в области инженерии, науки и технологий.Поощряются оригинальные теоретические работы и прикладные исследования, которые способствуют лучшему пониманию инженерных, научных и технологических проблем.

    Электромагнитный двигатель 3-фазный, звезда-треугольник от продуктов, сертифицированных ведущими брендами

    Присоединяйтесь к огромному выбору эффективных, высококачественных и надежных электродвигателей , 3-фазный электродвигатель звезда-треугольник на Alibaba.com для различных наборов электрических устройств в ваших домах или других местах. Эти умелые электромагнитные двигатели 3 фазы звезда-треугольник , представленные на сайте, способны точно включать и выключать несколько электрических цепей в более быстром темпе. Эти продукты экологически чистые и сертифицированы инженерами или регулирующими органами для обеспечения подлинности и качества. Эти энергоэффективные изделия пользуются наибольшим спросом среди потребителей электрических компонентов и предлагаются по выгодным сделкам.Эти трехфазные электродвигатели типа «звезда-треугольник» нового поколения способны размыкать или переключать цепи и управлять электродвигателями переменного тока с большей эффективностью.

    Многочисленные разновидности двигателя 3 фазы звезда-треугольник , представленные на сайте, изготовлены из классических материалов, а именно из металлических сплавов, меди, керамики, которые обеспечивают высокую надежность и долговечность. Эти продукты отличаются высокой экологичностью и имеют более длительный срок службы или часы работы, специально разработанные в соответствии с вашими требованиями. Несмотря на то, что у вас есть все возможности индивидуальной настройки, трехфазный двигатель звезда-треугольник оснащен всеми необходимыми расширенными функциями для обеспечения плавных электрических операций в пределах контура.Большинство из этих двигателей 3 фазы звезда-треугольник поставляются с сердечниками из чистой меди, которые обладают высоким сопротивлением и могут использоваться 10 миллионов раз.

    На Alibaba.com вы можете выбрать одну из различных разновидностей двигателя , 3 фазы, звезда-треугольник, , с различными характеристиками, качеством материала и другими аспектами в зависимости от типа продукта и требований. Эти устройства компактны по своей конструкции и могут быть подвержены тепловой перегрузке для генерации электромагнитных пускателей. Предлагаемый на объекте трехфазный электродвигатель со звездой-треугольником является ударопрочным, оснащен релейной защитой и соответствует требованиям как к низковольтному, так и к высокому напряжению.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *