Подключение двигателя: Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть

Содержание

Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)

Схема подключения электродвигателя во многом определяется условиями его эксплуатации.

Например, подключение "звездой" обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением "треугольником".

Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

  1. Схема соединения "звездой". Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

    Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

  2. Соединение обмоток электродвигателя "треугольником". При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

    В отличие от соединения "звездой" эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

  3. Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.

Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

  1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
  2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
  3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ

Такая необходимость возникает достаточно часто. Сразу замечу - мощность электродвигателя при этом теряется.

Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.

Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

Наиболее простая схема приведена на рисунке 3.

В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 - 500 кОм.

По этой схеме можно подключать электродвигатели с по схеме как "треугольник" так и "звезда".

Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

При нажатии кнопки "пуск" срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими - включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2. 1) и одновременно блокирует контакты КМ1.1 первого пускателя.

После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки "стоп", размыкающей цепь питания.

Катушки пускателей должны быть рассчитана на напряжение 220В.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


5 шагов подключения неизвестного электродвигателя

Иногда возникает такая проблема — необходимо подключить электродвигатель в стандартную сеть 380В 50 Гц, но характеристики двигателя неизвестны, поскольку документации к нему нет, а шильдик отсутствует.

Существуют 5 простых шагов, последовательно выполнив которые, можно обеспечить двигатель нужным напряжением питания, защитой и схемой включения.

1. Оцениваем номинальную мощность и ток двигателя

Прежде всего нужно ориентировочно определить мощность электродвигателя. Для этого находим похожий двигатель с известными параметрами, воспользовавшись каталогами производителей. Агрегаты должны совпадать по габаритам и диаметру вала.

На данном этапе мы сможем определить основные параметры для подключения и использования привода – мощность, ток, частоту вращения вала.

2. Определяем напряжение по схеме включения

Следующий шаг — определяем, по какой схеме подключить обмотки и какое напряжение подать. Есть несколько критериев, позволяющих с некоторой вероятностью оценить эти параметры.

Напомним, что промышленные низковольтные двигатели выпускаются с двумя видами напряжений питания: 220/380 В и 380/660 В для схем подключения «Треугольник» и «Звезда», соответственно. На двигатели первого вида можно подавать 380 В, собрав обмотки в схему «Звезда», на приводы второго вида – в «Треугольник».

Если электродвигатель новый, то, скорее всего, он собран по схеме, требующей питания 380 В. Именно такую схему обычно используют производители.

Если из двигателя выходит 3 провода, можно сделать вывод, что он имеет стандартное питание 380 В. При этом неважно, по какой схеме агрегат собран внутри. Однако, если в коробке присутствует конденсатор, можно утверждать, что двигатель рассчитан на напряжение 220 В и собран в «Треугольник». Кроме того, мощность в таком случае будет невысокой – не более 2,2 кВт. Для включения такого привода в трехфазную сеть 380 В нужно собрать его по схеме «Звезда».

Если асинхронный двигатель имеет шесть никак не подключенных выводов, определить напряжение питания по схеме включения не получится. В этом случае нужно сначала найти выводы обмоток, затем начало и конец каждой обмотки, чтобы собрать их в одну из схем. Обычно названия обмоток и их начало/конец обозначены.

Электродвигатели мощностью более 5 кВт, как правило, не включают напрямую. Для этого используют преобразователь частоты, устройство плавного пуска, либо схему «Звезда»/«Треугольник».

3. Подаем питание на двигатель

После того, как проведена оценка мощности и выбрана схема включения, можно подавать питание. Первоначально двигатель должен работать в холостом режиме. Питание подается через мотор-автомат и автоматический выключатель. Для включения желательно использовать контактор.

Ориентировочный рабочий ток асинхронного двигателя можно посчитать по эмпирической формуле: I (А) = 2 х P (кВт). То есть, если определено, что мощность двигателя составляет 3 кВт, его номинальный ток будет около 6 А в любой из схем включения.

Номинал мотор-автомата выбирается исходя из определенной ранее мощности. Для холостого хода уставку автомата можно установить в 2 раза меньше номинала, в нашем примере – около 3А. Если автомат выбивает, его уставку увеличивают вплоть до номинала (6 А).

На данном этапе необходимо следить за исправностью двигателя и его температурой, контролировать ток холостого хода токоизмерительными клещами. В холостом режиме двигатель не должен греться при нормальной работе крыльчатки вентилятора. Если нагрев происходит, это может означать, что агрегат неисправен либо нужно изменить схему его включения.

4. Определяем необходимой ток защиты

Номинальный ток и номинальная мощность электродвигателя ограничены его нагревом. Предел рабочей температуры определяется классом изоляции. Максимальная температура обмоток двигателей с низшим классом изоляции (Y) составляет 90°С. На это значение и нужно ориентироваться.

Для определения тока защиты включаем двигатель с номинальной нагрузкой на валу через мотор-автомат с током уставки, определенном на предыдущем шаге. После подачи питания автомат должен отработать по перегрузке. Далее увеличиваем его уставку, при необходимости подключаем автомат с другим диапазоном уставки.

В итоге опытным путем определяем номинал мотор-автомата, уставка которого обеспечивает продолжительную работу двигателя на номинальной нагрузке.

5. Контролируем нагрев обмоток

При работе любого двигателя необходимо периодически контролировать его температуру. В данном случае это особенно важно. Как показывает опыт, болевой порог человеческой руки равен 60°С. Такой способ контроля температуры – самый простой, однако лучшим способом будет использование встроенного термочувствительного элемента.

Заключение

Любой двигатель с неизвестными характеристиками имеет свою историю. Поэтому, прежде чем следовать советам, изложенным в статье, нужно обследовать оборудование либо расспросить персонал о том, где ранее был установлен привод.

Другие полезные материалы:
Трехфазный двигатель в однофазной сети
Эксплуатация электрооборудования вне помещений
Как прозвонить электродвигатель мультиметром
Как рассчитать потребляемую мощность двигателя

Как подключить трёхфазный электродвигатель на 380 Вольт

Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

Выбор схемы включения электродвигателя

Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.

Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.

В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.

Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу  от сети напряжением 400/690. Пример такого шильдика на картинке снизу.  Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.

На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке.   В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.

Схема подключения электродвигателя звезда треугольник

В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.

Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.

При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.

При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.

Подключение схемы звезда-треугольник

Для подключения мотора по  довольно редкой схеме  звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.

Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.

Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.

Отключение происходит пускателем К1. При повторном запуске все снова повторяется.

Схемы Подключения Трехфазного Асинхронного Электродвигателя и Описание

Подключение трехфазного асинхронного электродвигателя

Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы, связанные с подготовкой к включению, определением правильного способа подключения и, конечно, разберём возможные варианты схем включения двигателя. Поэтому не будем ходить вокруг да около, а сразу приступим к разбору поставленных вопросов.

Подготовка асинхронного электродвигателя к включению

Виды электродвигателей

На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

Определение начала и конца обмотки

Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

Обмотки статора электродвигателя

  • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
  • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
  • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
  • Следующим этапом будет определение их начала и конца.

ЭДС при различных вариантах соединения обмоток электродвигателя

  • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
  • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.

Схема определения начала и конца обмоток электродвигателя

  • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
  • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
  • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

Выбор схемы подключения электродвигателя

Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

Номинальные параметры на бирке электродвигателя

  • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
  • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.

Разница между схемами соединения «звезда» и «треугольник»

  • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
  • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Трехполюсный автоматический выключатель

Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.

Номинальные параметры пускателей

Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя.

Кнопочный пост на две кнопки

Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот.

Таблица выбора сечения провода

Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Схема подключения первичных и вторичных цепей схемы включения электродвигателя

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.

Расположение элементов пускателя

  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.

Нормально закрытые и нормально открытые контакты

  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.

Подключение кнопки «Пуск» и «Стоп»

  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1.  Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

Вывод

Способы подключения асинхронного трехфазного электродвигателя зависят от типа двигателя, схемы его соединения и задач, которые стоят перед нами. Мы привели лишь самые распространенные схемы подключения, но существуют и еще более сложные варианты. Особенно это касается асинхронных машин с фазным ротором, которые имеют функцию торможения.

Подключение трехфазного электродвигателя ленточного гриндера

В данном материале мы рассмотрим схемы подключения трехфазного асинхронного двигателя с возможностью подключения по двум схемам. Для наших ленточных гриндеров мы рекомендуем использовать двигатель АИР71B2Y3  (ВНИМАНИЕ!! Вам необходим двигатель cдвумя режимами работы на 220/380В).

Двигатель трехфазный асинхронный 220/380 АИР71

Данный двигатель можно подключить двумя способами.

Звезда.

Звезда (Только при наличии 3-ех фазного напряжения), данный тип подключение позволяет не использовать рабочий конденсатор для функционирования гриндера. Данный тип подключения позволяет использовать всю мощность применяемого мотора, т.е. если у Вас есть 3-ех фазное напряжение, то мы рекомендуем подключать гриндер именно таким способом.

Схема подключении двигателя представлена на Рис.1

Рис.1 Схема подключения электродвигателя – звезда

Для подключения электродвигателя таким способом необходимо три провода фаз ( в любой последовательности) подключить на колодки U1 V1 W1. (ВНИМАНИЕ!! Перемычки обмоток двигателя должны располагаться как на Рис.2,  В СЛУЧАЕ НЕВЕРНОГО ПОДКЛЮЧЕНИЯ ПЕРЕМЫЧЕК МЕЖДУ W2 U2 V2 ДВИГАТЕЛЬ СГОРИТ!!)

В случае запуска мотора в обратную сторону необходимо поменять местами любые из вводных проводов, см. Рис 2

Фото подключения двигателя звезда 380В

Треугольник

Треугольник, данный тип подключения хотя и менее производительный но его основным плюсом является возможность применения гриндера в домашних и гаражных условиях.

Данная схема подразумевает включение третьей обмотки двигателя через рабочий конденсатор

Когда я сам разбирался в этом вопросе на многих аналогичных схемах изображены два конденсатора (пусковой и рабочий разной номинальной емкости), но для двигателей малой мощности ( до 1.5кВт) вполне можно использовать только один конденсатор (рабочий). Емкости рабочего конденсатора подбирается очень просто:

Ф=P(двиг)*0.1

Т.е. для двигателя P=0.75 кВт – 80мкФ, для двигателя P=1.1кВт – 100мкФ

Схему подключения смотри  на Рис.3

Рис.3 Схема подключения электродвигателя – треугольник

Для подключения электродвигателя таким способом необходимо два провода ( в любой последовательности) подключить на колодки U1 V1  на колодку W1 мы подключаем провод через пусковой конденсатор.

ВНИМАНИЕ!! Перемычки обмоток двигателя должны располагаться как на Рис.4.

В случае запуска мотора в обратную сторону меняем два вводных провода местами, см. Рис 4

Фото подключения двигателя треугольник 220В

 

Схемы подключения электродвигателей к сети переменного тока 220 вольт

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Звезда и треугольник. Подключение двигателей.

Произошёл тут такой случай. Принёс человек в ремонт новый двигатель, который проработал у него 10 секунд и задымил. Двигатель он подключил треугольником в обычную трехфазную сеть, а на шильдике двигателя есть схема, на которой написано: треугольник - 230 В. звезда - 400 В. В общем, подключил он неправильно, потому двигатель и сгорел.

Для тех, кто не понимает, почему нельзя делать так, как сделал сделал тот товарищ, спаливший двигатель, предназначена эта статья. 

Однофазные, двухфазные и трёхфазные электрические сети В мире распространение имеют однофазные и трёхфазные электрические сети.

Однофазный ток представляет собой синусоиду:


Полное амплитудное напряжение превышает фазное, отличающееся от него в √2/2 раз, т.е.
311.1 х √2/2 = 220,
325.3 х √2/2 = 230,
169.7 х √2/2 = 120.

В трёхфазной сети фазы сдвинуты относительно друг друга на 120 градусов. Линейное напряжение выше фазного в √3 раз, т.е. примерно в 1.73 раза, следовательно,
220 х √3 = 380,
230 x √3 = 400,
380 x √3 = 660,
400 x √3 = 690,
120 x √3 = 208,
277 х √3 = 480.


Линейное напряжение трёхфазной сети - это межфазное напряжение, именно оно обозначается на шильдиках двигателей. Фазное напряжение (между фазой и нейтралью) на шильдиках не обозначается.

Одновременно с этим, условно говоря, вы можете считать, что на шильдике обозначено фазное напряжение, но только в том случае, если собираетесь подключать двигатель только к одной фазе через конденсатор.  

Помимо этого, в США и Канаде также распространены двухфазные сети (сети с разделённой фазой или трёхпроводные однофазные сети), которые позволяют подключать мощные бытовые приборы и приборы, выпущенные под европейский стандарт 230 В. По сути, использование таких систем обосновано тем, что в США обычно не ведут по столбам низкое напряжение как у нас, а устанавливают понижающие трансформаторы непосредственно в местах отвода потребителям. Т.е. прямо на столбах они вешают трансформаторы, понижая напряжение с условных 7 кВ до положенных по стандарту 120 В. Но вместо того, чтобы просто понизить напряжение до 120 В, они используют трансформатор на 240 В со средней точкой. Напряжения на крайних выводах вторичной обмотки трансформатора, возникающие в каждый момент его работы, сдвинуты по фазе на 180 градусов.

Т.е. они получают таким образом как бы две фазы 120 В, смещённые относительно друг друга на 180 градусов.


Соответственно, у них там применяются специальные розетки на три контакта (две фазы и нейтраль) и есть разные варианты подключения мощных бытовых приборов, например, кондиционеров, которые можно подключать к 120 В, а можно к 240 В при наличии технической возможности.

Не следует путать такие двухфазные сети с существовавшими в начале XX века в США двухфазными сетями, где фазы были смещены на 90 градусов, к которым можно было напрямую подключать двигатели с двумя обмотками (как у современных сервомоторов).

Все варианты однофазных и трёхфазных сетей, применяющихся в Америке, выглядят следующим образом:


Подключение двигателей

Вот всем известные схемы подключения треугольником (D) и звездой (Y):
Всего с двигателя выходит 6 проводов: это начала трёх обмоток и их концы. Места соединений обмоток на схеме выше обозначены точками a, b, c и 0 (последний - только для звезды). В клеммной коробке шесть указанных клемм располагают в два ряда по три клеммы, причём клеммы начала и концов обмоток не находятся параллельно друг другу, а расположены так, чтобы было удобнее подключать треугольником (т.е. соединять начала одних обмоток с концами других):

Некоторые граждане иногда подключают нейтральный провод к нулевой точке при подключении двигателя звездой. На самом деле ничего хорошего от этого нет, делать так не нужно.


Совершенно неважно как вы подключаете двигатель: звездой или треугольником. Важно только то, какое напряжение вы подаёте на обмотки двигателя. Будет ли это напряжение получаться как межфазное (треугольник) или как фазное (между фазой и нулевой точкой - звезда) - двигателю это совершенно неважно.

Если у вас есть двигатель с номинальным напряжением обмотки 220 В и есть две разные трёхфазные сети, у одной из которых линейное напряжение 380 В (220 В на фазу), а у другой - 220 В (127 В на фазу), то к первой вы можете подключать двигатель звездой, а ко второй - треугольником, разницы для  двигателя не будет никакой, отличаться будут лишь токи, протекающие в проводниках на линии, ведущей к двигателю. 

Выглядит всё это так, например, для двигателя мощностью 1.1 кВт с номинальным напряжением обмотки 220 В. Для тех, кто в танке: РИСУНОК СЛЕВА - это для РОССИИ, где 380 В 50 Гц, т.е. 220В на фазу,  а справа - это для стран, где трёхфазное напряжение 220 В, 50 Гц (или 127 В на фазу):


Для такого двигателя на шильдике будет написано: D/Y 220V / 380V, 4.9А / 2.8А. Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю (именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху). Следовательно, для России (линейное напряжение 400 В) для такого двигателя надо использовать схему подключения звезда.

Как видно по рисунку выше, при подключении к сети с большим напряжением токи в проводниках ниже (2.8A vs. 4.85A), поэтому, в случае использования преобразователя частоты переменного тока (ПЧ) для управления двигателем D/Y 230V / 400V, лучше применять схему подключения звезда и выставлять в настройка ПЧ напряжение двигателя 400В.

Теперь логичный вопрос:

если двигателю нет разницы по какой схеме он будет подключен, а важно лишь напряжение на обмотках, то зачем вообще делать двигатели с разным номинальным напряжением на этих самых обмотках?  
Ответ такой: двигатель должен соответствовать требованиям конкретной ситуации, а требоваться может следующее:

1. ВОЗМОЖНОСТЬ ПОДКЛЮЧЕНИЯ К ТРЁХФАЗНОЙ СЕТИ
В трёхфазную сеть можно подключить двигатель, номинальное напряжение обмоток которого равно либо фазному напряжению сети (звездой), либо линейному (треугольник).

2. ВОЗМОЖНОСТЬ ВКЛЮЧЕНИЯ В ОДНОФАЗНУЮ СЕТЬ
Для правильного подключения двигателя в однофазную сеть (через конденсатор) требуется, чтобы номинальное напряжение обмотки двигателя было не больше фазного напряжения сети.

3. ПЕРЕКЛЮЧЕНИЕ ЗВЕЗДА-ТРЕУГОЛЬНИК
Для двигателей со свободной нагрузкой на валу наиболее дешевым способом плавного пуска при подключении в трёхфазную сеть является пуск "звездой" с последующим переключением на "треугольник". Номинальное напряжение обмотки должно быть равно линейному напряжению сети. Т.е. сначала подается более низкое фазное напряжение (звезда - между фазой и нулевой точкой), а затем происходит переключение на треугольник, т.е. начинает подаваться межфазное напряжение, соответствующее номиналу двигателя.


Если составить таблицу по всем трём пунктам для трёхфазной сети 400В 50Гц (Россия, Европа, Китай), то будет она выглядеть так:


Аналогичная таблица для сети 208В 60Гц (США, Тайвань, Япония):


В итоге производители условно делят все двигатели на две категории:

1. Маломощные (менее 5 кВт), преимущественного бытового назначения, для которых может возникнуть потребность подключения к однофазной сети (не у каждого дома есть трёхфазная розетка). В России это двигатели D230V / Y400V.


2. Двигатели мощностью более 5 кВт, которые не имеют бытового назначения, а потому для них нет потребности подключения в однофазную сеть. Одновременно с этим, для них может возникнуть потребность переключения со звезды на треугольник при пуске. В России такими двигателями являются D400V / Y690V. Кроме того, такие двигатели можно подключать к промышленным сетям 690В, организация которой позволит экономить на прокладке кабеля, поскольку, как уже было показано выше, токи в проводниках будут ниже для сетей с более высоким напряжением.
Двигатели малой мощности 
D 230V / Y 400V


Если двигатель имеет небольшую мощность (до 4 - 5 кВт), то его обычно делают с расчётом на возможность подключения к однофазной сети. Т.е. в трёхфазную сеть его подключают звездой, а в однофазную - треугольником через фазосдвигающий конденсатор. Для последнего случая также может использоваться пусковой конденсатор (отключается сразу после запуска). Выглядит это так:


Для того, чтобы двигатель можно было так подключить в однофазную сеть, его номинальное напряжение каждой обмотки должно быть равно фазному напряжению сети. Это значит, что если двигатель планируется использовать в России или Европе, то номинальное напряжение обмотки должно быть равно 230 В. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением 400 В (подключение звезда), так и в однофазной сети 230 В (подключение треугольником через конденсатор). Это те самые двигатели, где на шильдике написано напряжение D 220V / Y 380V. 

Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США (где линейное напряжение 208 В, а фазное - 120 В), то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится, но можно подключить в их двухфазную сеть 240 В, если таковая имеется.

D 115V / Y 208-230V
Одновременно с этим, маломощные двигатели, предназначенные для стран, где стандартное напряжение ниже, чем у нас, будут подключаться как D 127V / Y 220V. Однако,  двигатели с такой надписью на шильдике вы вряд ли найдёте, потому что 127 В, 50 Гц - это очень малораспространённое напряжение в мире (см. тут). Поэтому, скорее всего, вам встретится двигатель с шильдиком, где будет указано напряжение D 115V / Y 208-230V.

Подключить такой двигатель к стандартной российской трёхфазной сети (все три фазы) можно только через преобразователь частоты переменного тока, поскольку на них есть возможность переключения линейного напряжения на выходе: 230 / 400 В.
В однофазную сеть можно подключить звездой через конденсатор. Тогда напряжение, подаваемое на каждое обмотку, будет составлять половину фазного напряжения сети (230 В / 2 = 115 В). Выглядит это вот так:
Двигатели мощности более 5 кВт 
D 400V / Y 690V
Для двигателей мощнее 5 кВт обычно не предусматривают возможность подключения в однофазную сеть, т.е. номинальное напряжение обмоток делают такое, которое соответствует линейному напряжению. Т.е. штатной схемой подключения таких двигателей в трёхфазную сеть является треугольник. В России и Европе это двигатели с номинальным напряжением обмоток 400В, т.е. где на шильдике написано D 400V / Y 690V.

Для определённых задач, где на валу двигателя находится свободная нагрузка (системы вентиляции, осевые насосы), ну, и вообще те задачи, где возможно регулирование скорости вращения вала только лишь напряжением (трансформатором), часто используют схему подключения "звезда" при старте с последующим переключением на "треугольник". Т.е. при старте на обмотку подаётся заниженное напряжение 230В вместо номинальных 400В, а затем происходит переключение на штатный режим (т.е. на треугольник). Из-за свободной нагрузки на валу момент вращения при старте на низком напряжении также будет ниже, т.е. пусковой ток будет не столь высок, как при старте на номинальном напряжении. Поэтому такой пуск двигателя называют "щадящим".

Следует помнить, что для нагрузок, требующих большого момента при запуске, подобный режим приведет напротив, к возрастанию тока в обмотках и последующим неприятным событиям.

Кроме того, надо иметь ввиду, что подключение двигателей даже со свободной нагрузкой на валу звездой для "щадящего старта" вовсе не означает, что если по такой схеме постоянно эксплуатировать двигатель (не переходя на треугольник), то такой режим станет "щадящим" для него. Низкий момент при старте ещё не означает, что заниженное напряжение годится для его нормальной работы, поскольку сам двигатель (со своими номинальными характеристиками) обычно как раз и подбирается под конкретную нагрузку. Поэтому постоянная эксплуатация двигателей на напряжении ниже номинального иногда приводит к их выходу из строя. Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом. К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом.

D 220V / Y 440V, D 277V / Y 480
Двигатели мощностью выше 5 кВт, изготовленные в США, будут иметь номинальное напряжение обмотки 277 В, поскольку там распространены промышленные сети 480 В, ну а в Тайване аналогичные двигатели будут иметь номинал в 220 В. К российской трёхфазной сети 400 В подключаются они звездой, а к российской однофазной сети через конденсатор - треугольником. Касательно величин напряжения, есть двигатели, где более подробно расписано подключение для сетей 50 Гц и 60 Гц, например вот так:

Соединения выводов двигателя - базовое управление двигателем

Трехфазные двигатели используют катушки из проволоки для создания магнитных полей и вращения.

Стандартные трехфазные двигатели используют шесть отдельных катушек, по две на каждую фазу. Внутренняя конструкция и соединение этих катушек внутри двигателя предопределяются при изготовлении двигателя. Есть два класса трехфазных двигателей: звезда и треугольник.

Конфигурация «звезда» и «треугольник»

Трехфазные двигатели также сконструированы для работы с двумя разными напряжениями , поэтому катушки могут быть подключены как в высоковольтной, так и в низковольтной конфигурации.

В высоковольтной конфигурации две катушки каждой фазы соединены друг с другом по схеме серии , так что более высокое значение напряжения питания распределяется между ними поровну, и через каждую обмотку протекает номинальный ток.

В низковольтной конфигурации две катушки каждой фазы соединены параллельно друг с другом, так что меньшее значение напряжения питания распределяется поровну между катушками и номинальный ток протекает через каждую обмотку.

Обратите внимание, что низковольтное соединение обязательно потребует от источника в два раза больше тока, чем высоковольтное соединение. На паспортных табличках большинства двигателей указаны два значения напряжения и тока. Пускатели двигателей и их реле перегрузки важно рассчитать с учетом ожидаемого значения тока, который должен потребляться двигателем при том напряжении, при котором он используется.

Каждая из шести отдельных катушек имеет два питающих провода, всего двенадцать выводов.В конфигурациях "звезда" и "треугольник" три из этих выводов подключаются внутри, поэтому только девять выводов выводятся из двигателя для подключения. Эти выводы пронумерованы 1–9, и как в треугольнике, так и в треугольнике следуют стандартному соглашению о нумерации: начиная с верхней части схемы с провода номер 1, нарисуйте нисходящую внутрь спираль от каждой точки соединения, восходя к следующему номеру на каждом шаге. .

В зависимости от внутренней конструкции двигателя, эти провода могут быть подключены одним из четырех способов: соединение звездой высокого или низкого напряжения или треугольник высокого или низкого напряжения

Иногда возникает необходимость проверить или подтвердить конфигурацию двигателя перед окончательным подключением.Если двигатель с звездообразной обмоткой подключен как двигатель с треугольной обмоткой или наоборот, двигатель не будет работать должным образом.

Рассмотрим ситуацию: у вас есть девять выводов, идущих от двигателя, но нет никаких указаний на то, имеет ли он соединение звездой или треугольником. Используя омметр для простой проверки целостности цепи, вы можете определить тип конструкции двигателя.

Если это соединение звездой, каждый из проводов 1, 2 и 3 должен иметь соединение только с одним другим проводом (4, 5 и 6 соответственно). Все три провода без соединения с проводами 1, 2 и 3 должны иметь непрерывность друг с другом.

Соединения двигателя звездой

Если он обмотан треугольником, каждый из проводов 1, 2 и 3 должен иметь соединение с двумя другими выводами:

  • T1 имеет связь с T4 и T9
  • T2 имеет связь с T5 и T7
  • T3 имеет связь с T6 и T8
Подключение электродвигателя треугольником

Важно отметить, что эти точки представляют собой внутреннее соединение катушек электродвигателя, а не то, как они должны быть подключены к источнику напряжения.

Низковольтная звезда

В этой конфигурации каждая фаза подводится к двум катушкам, подключенным параллельно друг другу.Клеммы 4, 5 и 6 соединены вместе, чтобы создать второе нейтральное соединение.

Низковольтное соединение звездой
L1 L2 L3 Связать
1,7 2,8 3,9 4,5,6

Звезда высокого напряжения

В этой конфигурации каждая фаза подводится к двум катушкам, которые последовательно соединены друг с другом.

Высоковольтное соединение двигателя "звезда".

L1 L2 L3 Связать
1 2 3 4,7 - 5,8 - 6,9

Низковольтный Delta

В этой конфигурации каждая фаза подведена к центральному соединению двух катушек и к концевым соединениям каждой из двух других групп катушек.

Подключение низкого напряжения двигателя треугольником

L1 L2 L3 Связать
1,6,7 2,4,8 3,5,9 нет

Дельта высокого напряжения

В этой конфигурации каждая фаза подводится к двум катушкам, которые соединены последовательно с катушками других фаз.

Соединение высокого напряжения двигателя треугольником

L1 L2 L3 Связать
1 2, 3 4,7 - 5,8 - 6,9

Промышленное проектирование | Советы по подключению двигателя, чтобы избежать дорогостоящих ошибок

Производители применяют различные схемы внешних подключений для производства трехфазных асинхронных двигателей для различных напряжений и / или методов запуска, поэтому успешная установка зависит от использования соответствующей схемы подключения.Если эта информация будет потеряна, повреждена или проигнорирована, ошибка соединения может привести к дорогостоящей перемотке назад (см. Рисунок 1).

Следующие советы применимы к обычным соединениям на машинах с одной скоростью при промышленной частоте. Если внешняя схема подключения производителя недоступна, обратитесь за помощью в сервисный центр, особенно если есть несколько отсутствующих меток проводов, несколько номинальных скоростей при промышленной частоте, нестандартная нумерация или перекрестные ссылки NEMA-IEC.

Три отведения

Трехжильное соединение является наиболее простым.Однако всегда проверяйте направление вращения перед окончательной установкой двигателя, независимо от количества проводов.

Шесть отведений

Если выводы пронумерованы от 1 до 6, обмотка обычно может быть соединена звездой или треугольником. На машинах, рассчитанных на два напряжения, соединение звездой предназначено для высокого напряжения; соединение треугольником предназначено для низкого напряжения.

Для одного номинального напряжения большинство 6-выводных машин могут запускаться по схеме звезда-треугольник (и будут работать в треугольнике).Исключением может быть то, что некоторые большие машины имеют внешние звездообразные соединения для облегчения дифференциальной защиты.

Если выводы пронумерованы 1-3 и 7-9, обмотка может запускаться по частям. При использовании другого метода пуска (например, плавного пуска, частотно-регулируемого привода или прямого включения) всегда подключайте машину для работы.

Некоторые машины будут иметь 1-1, 2-2, 3-3, которые будут двигателем, работающим по схеме треугольника (см. Рисунок 2). Кроме того, некоторые пусковые двигатели с неполной обмоткой имеют неправильную нумерацию от 1 до 6, поэтому помните о методе пуска, который вы используете.


Девять отведений

Если выводы пронумерованы 1–9, двигатель обычно рассчитан на два напряжения и может быть спроектирован как со звездообразным, так и с треугольным соединением. При использовании машины с более высоким номинальным напряжением внешнее подключение в любом случае будет таким же.

Однако при более низком номинальном напряжении внешнее соединение будет отличаться для двигателей, соединенных звездой, и двигателей, соединенных треугольником, поэтому важно знать, что у вас есть.Если мультиметр показывает обрыв цепи между выводами 7, 8 и 9, машина подключена звездой (см. Рисунок 3).

Двенадцать отведений

Если выводы пронумерованы от 1 до 12, двигатель обычно рассчитан на два напряжения и может использоваться со стартером звезда-треугольник либо при напряжении, либо с пускателем с частичной обмоткой только для низкого напряжения. Машины, рассчитанные на одно напряжение, могут иметь 12 выводов и подходят для пусков по схеме звезда-треугольник или с частичной обмоткой. Двенадцатипроводные асинхронные двигатели почти всегда работают по схеме треугольника.

Отведения без маркировки

Если только пара отведений не помечена, вы можете восстановить нумерацию путем исключения. В противном случае обратитесь в сервисный центр; у них есть надежные процедуры для выявления потенциальных клиентов.

Несвязанный ход

Если есть сомнения по поводу внешнего подключения, запустите машину без нагрузки, чтобы определить направление вращения и ток холостого хода. Ток холостого хода, значительно превышающий или меньший диапазонов в таблице 1, может указывать на ошибку подключения или ошибку обмотки, если машина была перемотана.(Примечание: никогда не эксплуатируйте машину с роликоподшипниками без радиальной нагрузки.)

Таблица 1: Типовые рекомендации по току холостого хода.

Некоторые неправильные подключения могут очень быстро вызвать сбои, поэтому помните, что отложенный запуск лучше, чем ненужный отказ двигателя.

- Майк Хауэлл (Mike Howell) - специалист по технической поддержке в Ассоциации обслуживания электроаппаратуры (EASA). EASA является контент-партнером CFE Media.

Что такое схема подключения двигателя 302 на паспортной табличке

Что такое схема подключения двигателя 302 в деталях паспортной таблички.

Есть несколько стандартных клеммных соединений двигателя. Производитель двигателя или генератора поставляет двигатель своему клиенту с некоторыми стандартными клеммами (СХЕМА ПОДКЛЮЧЕНИЯ). Его можно изменить в соответствии с нашими требованиями. Посмотрим, какой тип подключения двигателя используется. См. Доступную клемму двигателя. Обычно двигатель содержит 6 клемм (1U, 2U, 1V, 2V, 1W, 2W). Одна катушка имеет два вывода


[wp_ad_camp_3]

  1. Подключение асинхронного двигателя с короткозамкнутым ротором:
Схема подключения: 201

Подключение звездой напрямую к главной клеммной колодке с прямыми соединителями.В этом случае терминальное соединение не может быть изменено. Нам нужно запустить двигатель только со звездой. Одна сторона трех клемм катушки полностью впаяна в двигатель (стандартное соединение звездой). Пускатель звезда-треугольник использовать нельзя. DOL, автоматический пускатель трансформатора и частотно-регулируемый привод используются для запуска двигателя. Этот тип соединения в основном используется в двигателях мощностью менее 1 л.с. Пример: малый циркуляционный насос масла, малый насос-дозатор химикатов и т. Д.

Схема подключения 202:

Сетчатая (треугольная) коммутация с обмоткой напрямую на главный клеммный блок с прямыми соединителями.Стандартное соединение треугольником выполняется внутри самого двигателя. Терминальное соединение не может быть изменено. Пускатель звезда-треугольник использовать нельзя. DOL, автоматический пускатель трансформатора и частотно-регулируемый привод используются для запуска двигателя.

Схема подключения 301:

Переключение со звездой непосредственно на главный автотрансформатор. В этом типе подключения производитель переносит все шесть клеммных соединений на клеммную колодку. Стандартное подключение показано на рисунке. Подключение может быть изменено в соответствии с нашими требованиями.Можно использовать все виды стартеров. Это очень редко используемая схема подключения. При использовании для этого пускателя звезда-треугольник и пускателя байпаса ЧРП необходимо удалить перемычку звезды, указанную в клеммной колодке. Вы должны соединить кабель питания с помощью фазного болта клеммной колодки.

Схема подключения 302:

Переключение обмотки треугольником напрямую на главный автотрансформатор. Это лучший способ подключения из всех. Его можно изменить по нашему желанию. Можно использовать все стартеры.При использовании для этого пускателя со звезды на треугольник и пускателя байпаса с частотно-регулируемым приводом необходимо удалить соединение треугольником, указанное в клеммной колодке.
[wp_ad_camp_3]
Схема подключения 304:

Этот тип соединения использует большую мощность двигателя, а размер корпуса превышает 280. Самый эффективный тип соединения, менее обслуживаемое и беспроблемное соединение. При использовании пускателя со звезды на треугольник клемму необходимо тщательно идентифицировать.

  1. Асинхронный двигатель с контактным кольцом

Схема подключения 3MS:

Этот тип соединения в основном используется для асинхронных электродвигателей с контактным кольцом.Статор двигателя намотан со стандартным соединением в треугольник. Сопротивление будет подключено звездой.

Все чертежи:

Обеспечение надежного подключения двигателя

Соединения двигателя, обеспечивающие бесперебойную работу - низковольтные приложения

Правильное подключение двигателя - это фундаментальный компонент надежной цепи двигателя, о котором часто забывают. К сожалению, наши испытательные бригады и ремонтные мастерские продолжают находить проблемы с высоким сопротивлением и заземленными соединениями, возникающие из-за:

  • Вибрация
  • Тепло
  • Влажность
  • Загрязняющие вещества
  • Неправильное обращение
  • Сжатие в Jbox (слишком маленькое)

Две области, которые следует рассмотреть при улучшении, - это само соединение и изоляция.Соединения должны входить в распределительную коробку с некоторым допуском движения и должны иметь механическое соединение, достаточно прочное, чтобы сохранять целостность во время изменений температуры и воздействия продолжительной вибрации.

На что следует обратить внимание при подключении проводов двигателя:

  • Соединения в будущем потребуют «отключения»! Сделайте соединение, которое можно открыть, не создавая лишней работы.
  • Избегайте использования гаек и обжимных соединений (низковольтные и однофазные приложения), поскольку они постоянно преждевременно выходят из строя.
  • Неизвестно, какая причина преобладает, но мы часто находим соединения с высоким сопротивлением с устройствами с «гелевыми крышками», так что вы можете избегать их.
  • Большинство распределительных коробок не рассчитаны на установку трех (или более) комплектов полностью завернутых разъемных болтов.

Некоторые предложения по подключению отличного двигателя

Наши специалисты по намотке подбирают паяные наконечники для любых домашних работ. Это не всегда практично в полевых условиях, поэтому:

  • В качестве стандарта используйте зажимную проушину с болтовым соединением, например T&B Color-Keyed.
  • Нанесите герметик для швов, например T&B Kopr-Shield или Aluma-Shield, чтобы снизить сопротивление и предотвратить коррозию.
  • Используйте зажимные наконечники, размер которых соответствует типу кабеля двигателя. Это одна из тем, заслуживающих дополнительного освещения, поэтому, скорее всего, мы напишем на нее еще один пост.
  • Скрепите ушки болтами с помощью качественных крепежных деталей, включая разрезную шайбу (и плоскую шайбу) или, что еще лучше, шайбу Бельвилля (и плоскую шайбу).

Убедитесь, что наконечник соответствует кабелю и размеру.Большинство производителей проушин предлагают несколько прикладных инструментов для поддержки проушин, например, настенную таблицу с цветными обозначениями T&B, которую можно найти здесь: http://www.tnb.ca/aus/pdfs/Color-Keyed-Wall-Chart.pdf.

Для удобного и быстрого отключения низковольтного двигателя можно использовать разъединитель двигателя T&B. Они занимают немного больше места, но в правильной среде могут предложить гораздо более быстрое рабочее соединение. Некоторые из преимуществ включают:

  • Компрессионные соединители
  • Защелкивающиеся разъединители, не требующие болтовых соединений
  • Формованный изолирующий чехол, не требующий заклеивания лентой

Для получения более подробной информации об использовании этого отключения, взгляните на сравнение видео T&B ниже:

Щелкните здесь, чтобы прочитать дополнительную статью о надежных соединениях двигателя

Если вам нужна дополнительная помощь, обучение по изготовлению заделки или чтобы убедиться, что у вас есть лучшие варианты проушин на складе, свяжитесь с нашей моторной командой по телефону: 919.828.5411

Amazon.com: Connect Ease CE12VBOMK Easy 12V Комплект для подключения подвесного мотора: Спорт и туризм


Прейскурантная цена: 34 доллара.20 Подробности
Цена: 31,16 долл. США + Без залога за импорт и $ 15,12 за доставку в Российскую Федерацию Подробности
Вы экономите: 3,04 доллара США (9%)
Доступно по более низкой цене у других продавцов, которые могут не предлагать бесплатную доставку Prime.
  • Убедитесь, что это подходит введя номер вашей модели.
  • UL1426 / BC-5W2 Морской провод
  • (1) - Разъем для аккумулятора Easy 12 Volt 6 AWG, (2) Разъемы проводов 6 AWG с корпусом
  • Допускается использование соленой воды
  • Сделано в США - гарантия один год

Редукторы с адаптером C Подключение двигателя

Характеристики продукта

  • Оптимальное место для установки
  • Адаптация двигателей стандарта IEC
  • Адаптация двигателей стандарта NEMA
  • Передача крутящего момента без люфта между двигателем и редуктором
  • Простая сборка и разборка двигателей
  • Степень защиты IP54 и IP65 согласно ATEX
  • Стандартная муфта, не требующая обслуживания
Нажмите на изображение ниже, чтобы загрузить pdf.Чтобы заказать печатные экземпляры литературы, нажмите здесь.

Каталог продукции

3.а. Подключение двигателя и питания

TReX получает питание через клеммы разъема VIN / GND. VIN должен быть от 6 до 16 В, и ваш источник питания должен обеспечивать ток, потребляемый вашими двигателями. TReX может подавать пиковые значения от 30 А до 13 А на каждый из двух двунаправленных двигателей в типичных условиях. Производительность будет зависеть от реальной системы и ее способности рассеивать тепло. Нижняя плата драйвера двигателя TReX предназначена для отвода тепла от микросхем драйвера двигателя VNh3SP30, но добавление радиатора и хорошего воздушного потока может еще больше повысить производительность.TReX может подавать на вспомогательный двигатель до 15 А (непрерывно).

Есть несколько различных способов подключения двигателей к вашему TReX:

Вариант 1:

Соединения двигателя TReX (одна батарея)


На рисунке выше показано, как подключить к вашему TReX два двунаправленных двигателя и однонаправленный вспомогательный двигатель, которые питаются от одной и той же батареи. Обратите внимание, что вспомогательный двигатель приводится в действие путем постоянного подключения одного вывода к источнику питания, в то время как плата ШИМ подключает другой вывод между высоким импедансом и землей.Если вы планируете использовать вспомогательный двигатель, необходимо подключить заземление аккумулятора непосредственно к нижнему порту блока подключения вспомогательного двигателя. В противном случае вспомогательный двигатель может попытаться провести слишком большой ток через сам TReX, что приведет к повреждению устройства.

Другой вывод вспомогательного двигателя подключается к верхнему порту его соединительного блока. Вам нужно будет подключить диод к клеммам вспомогательного двигателя, как показано ниже. Невыполнение этого требования отрицательно скажется на работе вашего TReX и может привести к необратимому повреждению устройства.Будьте очень осторожны, чтобы не припаять диод обратной стороной! Не следует припаивать диод к двунаправленным двигателям.

Возможно, вам будет полезно припаять конденсаторы емкостью 0,1 мкФ ко всем клеммам ваших двигателей. Это уменьшит шум, создаваемый вашими моторами, и может улучшить производительность вашего TReX. Вы можете еще больше уменьшить шум, создаваемый вашими двигателями, сделав их выводы как можно короче и закручивая их друг вокруг друга по спирали.

Вариант 2:

Соединения двигателя TReX (отдельная батарея для вспомогательного двигателя)


Вспомогательный двигатель можно запитать от второй отдельной батареи 0–24 В, как показано выше.Для этого подключите заземление этой батареи к нижнему из двух портов блока подключения вспомогательного двигателя. Подключите один из выводов вспомогательного двигателя к порту верхнего соединительного блока, а другой вывод двигателя подключите непосредственно к положительной стороне аккумулятора. Вам все равно нужно будет припаять диод к клеммам вспомогательного двигателя.

Вариант 3:

Соединение шарнирного двигателя TReX


Наконец, вы можете использовать оба выхода двигателя 1 и 2 для управления одним, более мощным (до 25 А непрерывно) двунаправленным двигателем, подключив его, как показано выше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *