Подключение асинхронного двигателя однофазного: Однофазный двигатель с конденсатором схема подключения

Содержание

его устройство и принцип действия

Двигатель однофазный функционирует за счёт переменчивого электротока и подключается к сети с одной фазой. Линия должна иметь напряжённость 220 В и частоту 50 Гц.

Выпускаются модификации с мощностью от 5 Вт — 10 кВт.

Электромоторы этого вида находят применение в маломощных аппаратах:

  • бытовой технике;
  • вентиляторах;
  • насосах;
  • станках и т. п.

Значения КПД, силы и отправного момента у однофазных двигателей значительно ниже, нежели у трехфазных приборов тех же объёмов. Перегрузочная способность, кроме того, больше у моторов с 3 фазами. Таким образом, мощность однофазного приспособления не превосходит 70% силы трехфазного того же объёма.

Устройство однофазного двигателя

По сути, имеет 2 фазы, однако, работу осуществляет лишь один из них, по этой причине двигатель именуют однофазным. Как и все без исключения электромашины, однофазный двигатель складывается из 2 элементов: неподвижной (статор) и мобильной (ротор). Предполагает собой асинхронный электромотор, неподвижной частью которого является одна основная работающая обмотка, подключаемая к источнику переменного тока. К мощным граням двигателя этого вида можно причислить несложность системы, представляющую собой ротор с замкнутой обмоткой. К минусам — низкие значения отправного момента и КПД.

Главный недостаток однофазного тока — невозможность генерации им магнитного поля, исполняющего вращение. По этой причине однофазный электромотор не запустится сам при подсоединении к сети.

В теории электромашин функционирует принцип: чтобы появилось магнитное поле, крутящее ротор, в статоре должно быть 2 обмотки (фазы). Необходимо, кроме того, смещение одной обмотки на определённый ракурс относительно другой.

В период работы совершается обтекание обмоток неустойчивыми электрическими полями:

  1. В неподвижном месте однофазного двигателя находится так именуемая отправная электрообмотка. Она смещена на 90 градусов по отношению к основной рабочей.
  2. Сдвиг токов можно приобрести, включив в цепь фазосдвигающий элемент. Для этого могут применяться активные резисторы, катушки индукции и конденсаторы.
  3. В качестве основы для статоров и роторов применяется электротехническая сталь — 2212.

Неверно называть монофазными такие электродвигатели, которые по собственному строению считаются 2- и 3-фазными, однако, подсоединяются к однофазному источнику посредством методик согласования (конденсаторные электромоторы). Эти две фазы таких приборов считаются рабочими и включены все время.

Разновидности и применение

Моторы однофазные 220 В обширно применяются в разнообразном промышленном и бытовом оснащении.

Существуют 2 наиболее востребованных разновидности данных приборов:

  1. Коллекторные.
  2. Асинхронные.

Последние по собственной конструкции наиболее просты, но обладают рядом недочётов, из числа которых можно выделить трудности с переменой частоты и направления верчения ротора. Мощность этого мотора зависит от конструктивных отличительных черт и может колебаться от 5 до 10 кВт. Его ротор предполагает короткозамкнутую обмотку — алюминиевые или медные стержни, которые замкнуты с торцов.

Как правило, электромотор асинхронный однофазный снабжён 2-мя смещёнными на 90 ° друг к другу обмотками. При этом основная обмотка захватывает существенную часть пазов, а дополнительная (пусковая) захватывает оставшийся участок. Своё наименование электродвигатель асинхронный приобрёл лишь потому, что он содержит только лишь одну рабочую обмотку.

Протекающий по основной обмотке переменный электроток формирует магнитное меняющееся поле. Оно складывается из 2 слоёв равной амплитуды, вращение которых совершается навстречу друг другу. По закону индукции, изменяющийся в закрытых витках электромагнитный поток в роторах образует индукционный ток, который действует с полем, порождающим его. В случае если ротор в неподвижном состоянии, моменты сил на него равны и в результате он остаётся недвижимым.

При вращении ротора нарушится равенство момента сил, таким образом, движение его витков по отношению к крутящимся магнитным полям будет разным. Таким образом, функционирующая на роторные витки от непосредственного магнитного поля сила Ампера будет значительно больше, чем с края противоположного поля.

Схема запуска

В витках ротора индуктивный электроток может появляться только вследствие пересечения ими насильственных направлений магнитного поля. Их вращение должно реализоваться с быстротой чуть менее частоты верчения поля. Непосредственно отсюда и вышло название — асинхронный электродвигатель. Вследствие повышения механической перегрузки уменьшается быстрота верчения, увеличивается индуктивный электроток в роторных витках. А кроме того, увеличивается механическая мощность мотора и переменного тока, который он употребляет.

Принцип действия:

  1. Благодаря току появляется импульсное магнитное поле в статоре электромотора. Это поле возможно рассматривать как 2 различных поля, которые вращаются разнонаправленно и имеют похожие амплитуды и частоты.
  2. Если ротор располагается в неподвижном состоянии, данные поля приводят к появлению одинаковых по модулю, но разнонаправленных факторов.
  3. Если у двигателя отсутствуют особые начальные механизмы, в этом случае при старте результирующий момент станет равный нулю, а, следовательно — двигатель не будет вертеться.
  4. Если же ротор приведён в обращение в любую сторону, в таком случае соответствующий момент приступает доминировать, а следовательно, ось двигателя продолжит вертеться в определённом направлении.

Пуск выполняется магнитным полем, что крутит мобильную часть двигателя. Оно формируется 2 обмотками: основной и дополнительной. Заключительная обмотка имеет минимальный объем и считается пусковой. Она подключается к главной электрической сети через имеющуюся ёмкость или индуктивность. Подсоединение осуществляется только лишь в период запуска. В моторах с невысокой мощностью отправная фаза замкнута накоротко.

Запуск мотора осуществляют удержанием пусковой клавиши на несколько секунд, вследствие чего совершается разгон ротора. В период отпускания пусковой клавиши электродвигатель с двухфазного режима передаётся в однофазовый режим и его работа удерживается нужной компонентой переменчивого магнитного поля.

Отправная фаза рассчитана на временную работу — как правило, до 3 с. Более продолжительное время пребывания под нагрузкой может послужить причиной к перегреву, возгоранию изоляции и неисправности приспособления. Поэтому немаловажно своевременно освободить пусковую клавишу. С целью увеличения надёжности в корпус двигателей встраивают центробежный коммутатор и термическое реле.

Роль центробежного выключателя состоит в выключении пусковой фазы, если ротор наберёт скорость. Это происходит автоматом — без вмешательства. Тепловое реле отключает фазы обмотки, если они нагреваются свыше допустимого.

Работа механизма

Для работы устройства необходима 1 фаза с усилием 220 В. Это значит, что подсоединить его можно в домашнюю розетку. Непосредственно в этом причина известности двигателя среди населения. В абсолютно всех домашних устройствах, от соковыжималки до шлифующей машины, установлены механизмы такого типа.

Имеется 2 вида электромоторов: с пусковой обмоткой и с конденсатором.

  1. В первом виде приборов отправная обмотка функционирует с помощью конденсатора только в период старта. Уже после достижения техникой обычной скорости она выключается, и деятельность продолжается с 1 обмоткой.
  2. Во втором случае для двигателей с рабочим конденсатором, дополнительная электрообмотка подключена через конденсатор все время.

Электродвигатель может быть взят с одного устройства и включён к другому. К примеру, надёжный однофазный двигатель от стиральной машины либо пылесоса может применяться для работы газонокосилки, станка и т. д.

Схема подключения однофазного асинхронного двигателя:

  1. В 1 схеме работа запускающей обмотки производится с помощью конденсатора и только лишь в период пуска.
  2. 2 модель также учитывает временное подсоединение, но оно совершается через сопротивление, а не через холодильник.
  3. 3 модель считается наиболее популярной. В рамках этой схемы холодильник постоянно подключен к источнику электричества, а не только лишь в период старта.

Подключение мотора с пусковым противодействием

Дополнительная обмотка подобных приборов имеет высокое интенсивное противодействие

. Для пуска электромашины этого вида может быть применён пусковой резистор. Его необходимо поочерёдно подсоединить к пусковой обмотке. Подобным способом можно приобрести сдвиг фаз в 30° меж токами обмоток, чего станет абсолютно достаточно для старта приспособления.

Помимо этого, сдвиг фаз может быть приобретён посредством применения пусковой фазы с огромным значением противодействия и наименьшей индуктивностью. У такого рода обмотки меньшее число витков и тоньше кабель.

Подключение двигателя с конденсаторным пуском

У этих электромашин отправная цепь включает конденсатор и вводится только лишь в период старта.

Для свершения наибольшего значения отправного момента необходимо циркулярное магнитное поле, что осуществляет оборот. Для того чтобы оно появилось, токи обмоток должны быть направлены на 90° друг к другу. Подобные фазосдвигающие компоненты, как резистор и дроссель, не гарантируют нужный сдвиг фаз. Только лишь вовлечение в цепь конденсатора даёт возможность приобрести сдвиг фаз 90°, если верно выбрать ёмкость.

Определить нужные провода и то, к какой обмотке они причисляются, можно посредством замера противодействия. У рабочей обмотки значение противодействия постоянно меньше (12 Ом), чем у пусковой обмотки (30 Ом). В соответствии с этим сечение провода основной обмотки больше, чем у пусковой.

Конденсатор подбирается согласно употребляемому двигателем току. К примеру, в случае если ток равен 1,4 А, то нужен конденсатор 6 мкФ.

Контроль функциональности

Ниже перечислены все дефекты, говорящие о вероятных проблемах с мотором, их причиной могла быть некорректная эксплуатация либо перегруженность:

  1. Неисправная опора или монтажные щели.
  2. В середине двигателя потемнела окраска (показывает на перегрев).
  3. Через щели в корпусе внутрь аппарата втянуты сторонние вещества.

Чтобы проконтролировать функциональность двигателя, необходимо включить его сначала на 1 минуту, а потом предоставить потрудиться приблизительно 15 минут.

Если уже после этого мотор окажется тёплым, то:

  • вероятно, подшипники загрязнились, зажались либо попросту износились;
  • причина может быть в очень повышенной ёмкости конденсатора.

Отключите конденсатор и опустите мотор вручную: в случае если он прекратит прогреваться — следует сократить конденсаторную ёмкость.

Подключение однофазного электрического двигателя

Однофазный асинхронный двигатель с замкнутым ротором состоит из ротора — вращающейся части с неподвижно закрепленном на нем замкнутым контуром и статора — корпуса с неподвижно закрепленными на нем двумя обмотками. Существует несколько способов подключения : без конденсатора, с одним или двумя конденсаторами, с постоянно работающими двумя обмотками или с одной из обмоток работающей только при старте. Здесь описан простейший вариант, который подойдет в большинстве случаев.

Найти обмотки

Из клеммной коробки двигателя торчит 3 или 4 конца провода. Если выводов 3, то значит два вывода соединены внутри, что немного усложнит нам задачу. В любом случае нам потребуется мультиметр.

Четыре провода

Ставим мультиметр на «прозвон» и находим концы обмоток, они звонятся попарно. Замеряем сопротивление каждой обмотки. Та, у которой сопротивление меньше — рабочая, та, у которой сопротивление больше — разгонная.

Три провода

Замеряем сопротивление между тремя выводами. Наименьшее значение — рабочая обмотка, среднее значение — разгонная.

Подключение

Подключение без конденсатора

Если сопротивление отличается в разы, то разгонная обмотка должна работать кратковременно, только при пуске двигателя. В таком случае конденсатор не нужен. Достаточно коммутирующего устройства, которое бы обеспечивало подачу напряжения на разгонную обмотку в момент запуска двигателя. В простейшем случае это кнопка без фиксации.

Подключение через конденсатор

Если сопротивление рабочей и разгонной обмоток примерно одинаковое, то при работе двигателя должны быть подключены обе обмотки, одна из которых подключена через конденсатор.

Параметры конденсатора зависят от мощности двигателя, нужен неполярный конденсатор, расчитанный на напряжение 450 Вольт, с емкостью 80 мкФ на каждый киловатт мощности двигателя.

К выводам рабочей обмотки подключаем ноль и фазу, к разгонной обмотке подключаем конденсатор, а потом ноль и фазу. Если требуется изменить направление вращения двигателя, необходимо поменять местами ноль и фазу на разгонной обмотке. В случае, если постоянно менять направление вращения, в схеме нужно предусмотреть коммутационный блок, который бы менял местами ноль и фазу на выводах разгонной обмотки.

Подключение трехфазного двигателя к однофазной сети

Способы подключения трехфазного двигателя к однофазной сети

Три обмотки асинхронного двигателя вставлены в пазы статора со сдвигом 120°. Вывода этих обмоток выведены в соединительную коробку. Концы обмоток соединяются по схеме “звезда” или “треугольник”. В трехфазной сети электромагнитное поле статора вращает ротор.

Трехфазный асинхронный электродвигатель

Если этот же электродвигатель включить в однофазную сеть, ротор вращаться не будет, так как нет электромагнитного поля со сдвигом 120°. Самым простым вариантом создать вращающееся магнитное поле – это использовать фазосдвигающий конденсатор. При таком подключении частота вращения ротора практически не меняется, а вот мощность падает от 30 до 50%, для разных схем подключения.

В однофазных сетях 220 В используют асинхронные электродвигатели марок А, АО2, АОЛ, АПН и другие с рабочим напряжением 380/220 B и 220/127 В. Первая цифра указана для схемы соединения обмоток “звезда”, а вторая для “треугольника”. Обычно используют электродвигатели по схеме “треугольник”, имеющие меньшие потери мощности чем схема “звезда”.

Если обмотки расключены по схеме “звезда” и выведено только 3 вывода для подключения, тогда есть два выбора. Первый, когда вы подключаете двигатель к однофазной сети как есть, со значительной потерей мощности по схеме “звезда”. Или разбираете электродвигатель и переключаете схему обмоток на “треугольник” с 30% потерей мощности.

Электродвигатели с рабочим напряжением 220/127 В “звезда” – “треугольник” собирают только на “звезду” (220 В), так как на “треугольнике” (127 В) обмотки сгорят. Если обмотки включены по схеме “треугольник” для двигателя 380/220 В, тогда остается только подключить рабочий и пусковой конденсаторы. При соединении схемы на “звезду”, можно легко ее переключить перемычками на схему “треугольника” (схема включения указывается на внутренней стороне крышки коробки соединений).

Схемы подключения трехфазного двигателя к однофазной сети

Самое продуктивное подключение трехфазного двигателя к однофазной сети будет по схеме “треугольник”, при которой сохраняется 70% полезной мощность электродвигателя. Здесь два вывода обмоток, подключаются к сети 220 В, а оставшуюся третью подключают через конденсатор на любой вывод сети.

Подключение асинхронного двигателя на клеммной колодке

Электродвигатель можно запускать на холостом ходу без нагрузки с одной рабочей емкостью, или под нагрузкой. Здесь запуск под нагрузкой будет более тяжелым, поэтому на время запуска подключают пусковой дополнительный конденсатор на 2 – 3 сек.

Специально для такого запуска двигателя используют кнопку с дополнительными отключающими контактами. Если установить двухпозиционный тумблер на обмотки электродвигателя, тогда можно менять направление вращения ротора. Если обмотки электродвигателя собраны по схеме “звезда”, тогда рабочая емкость рассчитывается по формуле:

Cр = 2800•I/U,

в случае “треугольника”

Cр = 4800•I/U, здесь рабочая емкость Cр в мкФ, ток в амперах, а напряжение в вольтах.

Рассчитать ток можно по формуле:

I = P/(1.73•U•n•cosф),

где Р – указанная на табличке мощность электродвигателя, cosф – коэффициент мощности также указан на табличке, 1,73 – соотношение линейного и фазного тока, n – КПД двигателя указан также на табличке.

Упростить расчёт можно по формуле:

C = 70•Pн,  Pн – мощность электродвигателя в кВт.

Эта формула показывает, что на каждый 100 Вт мощности двигателя ставят приблизительно 7 мкф емкости конденсатора. Более точную подгонку емкости рабочего конденсатора проводят при эксплуатации. Большая ёмкость вызовет перегрев электродвигателя, а маленькая снизит мощность.

Схемы подключения трехфазного двигателя от однофазной сети с тяжелым пуском и реверсом

Выбрать оптимальный режим работы электродвигателя для определенной нагрузки, нужно подбором рабочей емкости с измерением тока каждой обмотки токоизмерительными клещами. Токи всех обмоток должны быть по возможности близки. При таком подборе рабочей емкости электродвигатель будет работать с минимальными шумами и максимальной мощностью для данной нагрузки.

Двигатель под нагрузкой запускается тяжелее, поэтому для такого запуска нужно подключать C пуск – пусковую ёмкость. Обычно пусковую емкость берут в 2-3 раза превышающую рабочую емкость. Например, для рабочей емкости 50 мкФ подбирают Cпуск в пределах 100 – 150 мкФ.

Значение пусковой емкости зависит от величины нагрузки, для большой нагрузки Cпуск выбирают большой, а для малых нагрузок пусковая емкость может отсутствовать. Запуск электродвигателя происходит за короткое время 2 – 3 сек, поэтому для запуска применяют электролитические конденсаторы, которые предназначены именно для пуска электродвигателей.

Устанавливают рабочую емкость Ср с запасом по напряжению в пределах 350 – 400 В. Для подключения трехфазных электродвигателей используют конденсаторы марки МБГ, МБГО, КГБ, К75-12 в металлобумажном исполнении.

Подключение и проверка работоспособности однофазного электродвигателя

Однофазные двигали используются для различной бытовой техники. Они есть в насосах, стиральных машинах. Своими руками при необходимости можно отремонтировать и подключить такой агрегат, проверить его обмотку. Для подключения однофазного электродвигателя необходимо выбрать схему, после чего в точности следовать процессу.

Общий вид однофазного пускового устройства.

Что представляет собой однофазный двигатель? В данном случае ток создает при работе магнитное пульсирующее поле с разной амплитудой. Именно это при запуске мотора делает результирующий момент равным нулю, без специального приспособления он просто не начнет вращаться. Если же ротор приводится в движение в ту или иную сторону (то есть наблюдается его вращение), то один момент начинает преобладать над другим, вал мотора продолжает двигаться.

Запуск мотора осуществляется за счет возникновения магнитного вращающегося поля. Количество обмоток – две, ротор используется короткозамкнутый. В основном двигатели однофазные применяются для маломощных устройств, например, для бытовой техники, для вентиляторов, насосов, для буровых под водяные скважины.

Как своими руками подключить электродвигатель АИРЕ 80 С2

Схемы подключения однофазного электродвигателя.

Например, требуется подключение однофазного электродвигателя АИРЕ 80 С2. Пусть он будет иметь такие технические характеристики:

  • частота вращения составляет 3000 об./мин;
  • мощность мотора равна 2,2 кВт;
  • КПД (коэффициент полезного действия) данного мотора равен 76%;
  • режим работы – S1;
  • cosφ=0,9;
  • степень защиты конструкции – IP54;
  • мотор может работать в сети 220 В;
  • у рабочего конденсатора напряжение равно 450 В;
  • емкость используемого рабочего конденсатора составляет 50 мкФ.

Используется такой однофазный двигатель обычно для малогабаритных станков, которые можно применять в быту. Требуется подключение к сети в 220 В. Установочные параметры указывают в паспорте двигателя, на них требуется обратить внимание, так как именно они задают условия использования.

Подключение однофазного электродвигателя осуществляется таким образом:

Подключение однофазного двигателя.

  1. Конструкция двигателя состоит из 2-х обмоток, которые сдвигаются друг относительно друга строго на 90°. Пусковая (вспомогательная) обозначается Z1, Z2, рабочая обмотка – U1, U2. Главная обмотка подключается к однофазной сети, пусковая – через предусмотренный рабочий конденсатор. Важно на этом этапе не ошибиться, у однофазного асинхронного двигателя необходимо сразу после пуска вспомогательную обмотку отключить. У данного типа мотора такая обмотка должна всегда находиться под напряжением, т.е. отключать ее не следует. Это требуется по той причине, что у двигателя имеется магнитодвижущая сила вращающегося типа.
  2. Емкость конденсатора равна 50 мкФ, она указывается в паспорте мотора. Конечно, можно емкость рассчитать и самостоятельно, но для этого применяется сложная формула, да и опыт в таких расчетах требуется немалый, поэтому лучше сразу обратить внимание на указываемые технические характеристики.
  3. Далее необходимо параллельно рабочему конденсатору подключить пусковой, емкость его определяется только опытным путем посредством получения наибольшего значения пускового момента. Оптимально брать емкость, примерно в 2-3 раза большую, чем емкость рабочего.
  4. Пусковой конденсатор подключается при помощи реле времени, хотя такая схема может показаться сложной. Но она более надежная, отличается качеством. Допускается применять и более простую схему, например, с использованием обычной пусковой кнопки.

Для однофазного мотора используются короткозамкнутые роторы. Далее следует обратить внимание на клеммник, который имеет 6 выводов. Для выполнения прямого подключения применяется подача переменного напряжения на 220 В, подается оно на клеммы V1 и W2. Перемычки ставятся между клеммами V1-U2, U1-W2.

Если требуется обратное подключение, то необходимо подать переменное напряжение на 220 В на такие же клеммы, которые использовались ранее, но перемычки ставятся таким образом: U1-V1, W2-U2.

Вернуться к оглавлению

Как проверить работоспособность агрегата

Схема подключения однофазного электродвигателя с прямым включением пусковой обмотки.

Перед тем как начинать сборку, необходимо выполнить проверку работоспособности двигателя. Для этого мотор сначала включается, эксплуатируется в течение 15 минут. Если корпус мотора сильно нагрелся, то причиной этого могут быть:

  • зажатость подшипников;
  • сильная изношенность конструкции;
  • загрязнение подшипников;
  • слишком большая емкость конденсатора.

В этом случае мотор требуется отключить, уменьшить емкость конденсатора или выполнить работы по чистке, ремонту двигателя, т.е. устранить неисправности.

Перед включением однофазного двигателя важно проверить его обмотку.

Перед этим необходимо определить, какая именно обмотка используется. Обычно применяются двухфазные обмотки, которые состоят из 2-х частей:

  • пусковая обмотка;
  • основная обмотка.

Такая система необходима для того, чтобы обеспечить запуск вращения ротора, именно по этому значению все однофазные двигатели можно разделить на такие категории:

  • однофазный электродвигатель с рабочим конденсатором;
  • двигатель с пусковой обмоткой.

Схема включения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

Например, агрегат имеет 3 вывода, замеры показывают такие значения: 10 Ом, 25 и 15 Ом. После того как измерения проведены, необходимо определить сетевые провода, для которых показания будут составлять 10 и 15 Ом. При этом провод на 10 Ом будет сетевым, а провод на 15 Ом – пусковым, подключаемым через сетевой.

Разновидность обмоток однофазного двигателя может давать и такие показания: 10, 10 и 20 Ом. Обычно подобный электродвигатель используется для бытовых стиральных машин и другого оборудования, предназначенного для дома. Пусковые и рабочие обмотки имеют одинаковое значение, они выполняются так, как для трехфазных агрегатов.

Вернуться к оглавлению

Применение магнитного пускателя для правильного подключения

Подключить однофазный электродвигатель можно и при помощи специального магнитного пускателя. Выбирать его необходимо так, чтобы контактная система отлично выдерживала нагрузку во время работы мотора. К примеру, все пускатели разделяются на несколько типов, чем больше будет величина, тем больший ток может проходить через магнитный пускатель. Такие типы включают в себя (серия ПМЛ):

Укладка обмоток в статоре однофазного электродвигателя.

  • 1 величина – 10 А;
  • 2 величина – 25 А;
  • 3 величина – 40 А;
  • 4 величина – 63 А;
  • 5 величина – 80 А;
  • 6 величина – 125 А;
  • 7 величина – 200 А.

Когда пусковая величина уточнена, надо выбрать катушку управления на 220 В, можно применять на 380 В – все зависит от типа оборудования. Схема для магнитного пускателя собирается, после этого выполняется подключение силовой части, выполняется ввод 220 В на контакты. Электродвигатель включается, при этом кнопку «Пуск-Стоп» надо подключать с использованием силовых контактов пускателя.

К примеру, фаза для кнопки «Стоп» подключается для замкнутого контакта, а для кнопки «Пуск» выполняется соединение с контактом разомкнутого типа, после чего пускается на катушку пускателя. Ноль следует подключать на второй вывод катушки магнитного пускателя, для фиксации используется специальный блок, который и подает электропитание на катушку.

При использовании оборудования на электромоторах необходимо большое внимание уделить их подключению, выбору соответствующей схемы. Для подключения также применяются магнитные пускатели, перед работой рекомендуется проверить обмотку.

Однофазная асинхронная машина

- MATLAB и Simulink

Этот пример показывает работу однофазного асинхронного двигателя в режимах работы конденсаторного запуска и конденсаторного запуска-работы.

H. Ouquelle и Louis-A.Dessaint (Ecole de technologie superieure, Монреаль)

Описание

В этой модели используются два однофазных асинхронных двигателя соответственно в режимах конденсатор-пуск и конденсатор-пуск-работа, для сравнения их рабочие характеристики, такие как крутящий момент, пульсация крутящего момента, КПД и коэффициент мощности.Оба двигателя имеют номинальную мощность 1/4 л.с., 110 В, 60 Гц, 1800 об / мин и питаются от однофазного источника питания 110 В. У них одинаковые обмотки статора (основная и вспомогательная) и беличья клетка ротора.

Двигатель 1 Двигатель работает в конденсаторном режиме. Его вспомогательная обмотка, включенная последовательно с пусковым конденсатором емкостью 255 мкФ, отключается, когда его скорость достигает 75% от номинальной скорости. Пусковой конденсатор используется для обеспечения высокого пускового момента.

Двигатель 2 работает в конденсаторном режиме пуск-пуск.В этом режиме работы используются два конденсатора: рабочий и пусковой. Во время пуска вспомогательная обмотка также подключается последовательно с конденсатором емкостью 255 мкФ, но после достижения скорости отключения вспомогательная обмотка остается подключенной последовательно с рабочим конденсатором 21,1 мкФ. Это значение конденсатора оптимизировано для уменьшения пульсаций крутящего момента. Двигатель работает эффективно с высоким коэффициентом мощности.

Два двигателя сначала запускаются без нагрузки при t = 0. Затем при t = 2 с, когда двигатели достигли своего установившегося режима, a 1 Н.m крутящий момент (номинальный крутящий момент) внезапно прикладывается к валу.

Моделирование

Запустите моделирование. Блок Scope отображает следующие сигналы для двигателя с конденсаторным пуском (желтые линии) и двигателя с конденсатором (пурпурные линии): общий ток (основная + вспомогательная обмотка), ток основной обмотки, ток вспомогательной обмотки, напряжение конденсатора, скорость ротора и электромагнитный момент. Механическая мощность, коэффициент мощности и КПД двигателя 1 и двигателя 2 вычисляются в подсистеме обработки сигналов и отображаются на 3 блоках дисплея.

В течение периода пуска, пока выключатель остается замкнутым (от t = 0 до t = 0,48 с), все формы сигналов идентичны. После размыкания переключателя наблюдаются различия, как описано ниже.

1. Конденсаторный пуск:

Обратите внимание на пульсации крутящего момента 120 Гц, которые вызывают механические колебания ротора 120 Гц и снижают КПД двигателя. Пульсации крутящего момента от пика до пика составляют около 3 Н, или 300% от номинальной нагрузки, когда двигатель работает без нагрузки.Обратите внимание, что пусковой конденсатор остается заряженным при максимальном напряжении, когда вспомогательная обмотка отключена.

2. Конденсатор-пуск-работа:

Обратите внимание, что пульсации крутящего момента существенно уменьшены. Номинал рабочего конденсатора оптимизирован для минимизации пульсаций крутящего момента при полной нагрузке. Величина пульсаций крутящего момента составляет 2 Нм от пика до пика (200% от номинального крутящего момента) без нагрузки, тогда как от пика до пика всего 0,04 Нм (4% от номинального крутящего момента) при полной нагрузке. Коэффициент мощности и КПД при полной нагрузке (соответственно 90% и 75%) выше, чем у двигателя с конденсаторным пуском (соответственно 61% и 74%).

Однофазный асинхронный двигатель | Electrical4U

Мы используем однофазную систему питания более широко, чем трехфазную, для бытовых, коммерческих и, в некоторой степени, промышленных целей. Потому что однофазная система более экономична, чем трехфазная, а потребности в электроэнергии в большинстве домов, магазинов и офисов невелики, и их легко удовлетворить с помощью однофазной системы.

Однофазные двигатели просты по конструкции, дешевы по стоимости, надежны и просты в ремонте и обслуживании.Благодаря всем этим преимуществам, однофазный двигатель находит свое применение в пылесосах, вентиляторах, стиральных машинах, центробежных насосах, воздуходувках, стиральных машинах и т. Д.

Однофазные двигатели переменного тока далее классифицируются как:

  1. Однофазные асинхронные двигатели или асинхронные двигатели .
  2. Однофазные синхронные двигатели.
  3. Коллекторные двигатели.

В этой статье будут представлены основы, описание и принцип работы однофазного асинхронного двигателя .

Конструкция однофазного асинхронного двигателя

Как и любой другой электродвигатель, асинхронный двигатель также имеет две основные части, а именно ротор и статор.

Статор:
Как видно из названия, статор является неподвижной частью асинхронного двигателя. Однофазное питание переменного тока подается на статор однофазного асинхронного двигателя.

Ротор:
Ротор - это вращающаяся часть асинхронного двигателя. Ротор соединяет механическую нагрузку через вал. Ротор однофазного асинхронного двигателя представляет собой ротор с короткозамкнутым ротором.

Конструкция однофазного асинхронного двигателя почти аналогична конструкции трехфазного асинхронного двигателя с короткозамкнутым ротором. Но в случае однофазного асинхронного двигателя статор имеет две обмотки вместо одной трехфазной обмотки в трехфазном асинхронном двигателе.

Статор однофазного асинхронного двигателя

Статор однофазного асинхронного двигателя имеет многослойную штамповку для уменьшения потерь на вихревые токи по периферии. На его штамповке предусмотрены прорези для крепления статора или основной обмотки.Штамповки изготовлены из кремнистой стали для уменьшения потерь на гистерезис. Когда мы подаем однофазный источник переменного тока на обмотку статора, создается магнитное поле, и двигатель вращается со скоростью, немного меньшей, чем синхронная скорость N с . Синхронная скорость N с определяется как
, где
f = частота напряжения питания,
P = количество полюсов двигателя.

Конструкция статора однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя, за исключением двух отличий в части обмотки однофазного асинхронного двигателя.

  1. Во-первых, однофазные асинхронные двигатели в основном снабжены концентрическими катушками. Мы можем легко отрегулировать количество витков на банку с помощью концентрических катушек. Распределение mmf почти синусоидальное.
  2. За исключением двигателя с экранированными полюсами, асинхронный двигатель имеет две обмотки статора, а именно основную обмотку и вспомогательную обмотку. Эти две обмотки расположены в пространственном квадратуре друг к другу.

Ротор однофазного асинхронного двигателя

Конструкция ротора однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя с короткозамкнутым ротором.Ротор имеет цилиндрическую форму с прорезями по всей периферии. Прорези не параллельны друг другу, а немного перекошены, так как перекос предотвращает магнитную блокировку зубцов статора и ротора и делает работу асинхронного двигателя более плавной и тихой (т.е. менее шумной).

Ротор с короткозамкнутым ротором состоит из алюминиевых, латунных или медных стержней. Эти алюминиевые или медные шины называются проводниками ротора и помещаются в пазы на периферии ротора. Медные или алюминиевые кольца постоянно замыкают проводники ротора, называемые концевыми кольцами.

Для обеспечения механической прочности эти проводники ротора прикреплены к концевому кольцу и, следовательно, образуют полную замкнутую цепь, напоминающую клетку, и поэтому получили свое название асинхронный двигатель с короткозамкнутым ротором. Поскольку концевые кольца постоянно замыкают стержни, электрическое сопротивление ротора очень мало, и невозможно добавить внешнее сопротивление, поскольку стержни постоянно закорачиваются. Отсутствие контактного кольца и щеток делает конструкцию однофазного асинхронного двигателя очень простой и надежной.

Принцип работы однофазного асинхронного двигателя

ПРИМЕЧАНИЕ: Мы знаем, что для работы любого электродвигателя, будь то двигатель переменного или постоянного тока, нам требуются два потока, поскольку взаимодействие этих двух потоков создает требуемый крутящий момент.
Когда мы подаем однофазный источник переменного тока на обмотку статора однофазного асинхронного двигателя, переменный ток начинает течь через статор или главную обмотку. Этот переменный ток создает переменный поток, называемый основным потоком.Этот основной поток также связывается с проводниками ротора и, следовательно, разрезает проводники ротора.

Согласно закону электромагнитной индукции Фарадея в роторе индуцируется ЭДС. Поскольку цепь ротора замкнута, ток начинает течь в роторе. Этот ток называется током ротора. Этот ток ротора создает магнитный поток, называемый потоком ротора. Поскольку этот поток создается по принципу индукции, двигатель, работающий по этому принципу, получил название асинхронного двигателя.Теперь есть два потока, один из которых является основным, а другой называется потоком ротора. Эти два потока создают желаемый крутящий момент, необходимый двигателю для вращения.

Почему однофазный асинхронный двигатель не запускается автоматически?

Согласно теории вращения двойного поля, мы можем разделить любую переменную величину на две составляющие. Каждый компонент имеет величину, равную половине максимальной величины переменной величины, и оба эти компонента вращаются в противоположном направлении друг к другу.Например, поток φ можно разделить на две составляющие

Каждая из этих составляющих вращается в противоположном направлении i. е если один φ м /2 вращается по часовой стрелке, то другой м /2 вращается против часовой стрелки.

Когда мы подаем однофазный источник переменного тока на обмотку статора однофазного асинхронного двигателя, он создает магнитный поток величиной φ м . Согласно теории вращения двойного поля, этот переменный поток φ м делится на две составляющие величиной φ м /2.Каждый из этих компонентов будет вращаться в противоположном направлении с синхронной скоростью N s .

Назовем эти две составляющие потока прямой составляющей потока, φ f и обратной составляющей потока, φ b . Результирующая этих двух составляющих потока в любой момент времени дает значение мгновенного потока статора в этот конкретный момент.


Теперь в исходном состоянии прямая и обратная составляющие магнитного потока прямо противоположны друг другу.Кроме того, обе эти составляющие потока равны по величине. Таким образом, они компенсируют друг друга, и, следовательно, чистый крутящий момент, испытываемый ротором в условиях запуска, равен нулю. Таким образом, однофазные асинхронные двигатели не являются самозапускающимися двигателями.

Способы создания однофазного асинхронного двигателя в качестве самозапуска

Из вышеупомянутой темы мы можем легко сделать вывод, что однофазные асинхронные двигатели не самозапускаются, потому что создаваемый поток статора является переменным по своей природе и при запуске две составляющие этого магнитного потока компенсируют друг друга, и, следовательно, нет чистого крутящего момента.Решение этой проблемы состоит в том, что если мы сделаем поток статора вращающимся типом, а не переменным типом, который вращается только в одном конкретном направлении. Тогда асинхронный двигатель станет самозапускающимся.

Теперь для создания этого вращающегося магнитного поля нам нужны два переменных потока, имеющих между собой некоторый угол разности фаз. Когда эти два потока взаимодействуют друг с другом, они создают результирующий поток. Этот результирующий поток вращается по своей природе и вращается в пространстве только в одном определенном направлении.

После запуска двигателя мы можем удалить дополнительный магнитный поток. Двигатель будет продолжать работать только под действием основного магнитного потока. В зависимости от методов изготовления асинхронного двигателя в качестве самозапускающегося двигателя, в основном существует четыре типа однофазных асинхронных двигателей , а именно:

  1. Асинхронный двигатель с расщепленной фазой,
  2. Индукционный двигатель с конденсаторным пуском,
  3. Конденсаторный пусковой двигатель с конденсатором. ,
  4. Асинхронный двигатель с экранированными полюсами.
  5. Двигатель с постоянным разделенным конденсатором или двигатель с однозначным конденсатором.

Сравнение однофазных и трехфазных асинхронных двигателей

  1. Однофазные асинхронные двигатели просты в конструкции, надежны и экономичны для малой мощности по сравнению с трехфазными асинхронными двигателями.
  2. Коэффициент электрической мощности однофазных асинхронных двигателей ниже по сравнению с трехфазными асинхронными двигателями.
  3. Однофазные асинхронные двигатели того же размера вырабатывают около 50% выходной мощности, чем трехфазные асинхронные двигатели.
  4. Пусковой момент также низкий для асинхронных двигателей / однофазных асинхронных двигателей.
  5. Эффективность однофазных асинхронных двигателей ниже, чем у трехфазных асинхронных двигателей.

Однофазные асинхронные двигатели просты, прочны, надежны и дешевле для небольших номиналов. Они доступны с номинальной мощностью до 1 кВт.

Однофазный двигатель

- Типы, применение, преимущества и недостатки

10 января 2017 г. - Однофазный двигатель - Типы, применение, преимущества и недостатки

В зависимости от типа машины и области применения, которые вам требуются, одни двигатели будут работать лучше, чем другие.Если вы используете меньшее оборудование, которое требует меньше мощности, однофазный двигатель лучше всего подойдет для ваших нужд.

Хотя этот тип двигателя обычно служит годами, со временем он изнашивается. Если вы хотите заменить однофазный двигатель, у Bonfiglio есть ряд BS - однофазных двигателей. Эти двигатели изготовлены в соответствии с применимыми стандартами IEC и относятся к закрытому типу, с внешней вентиляцией и постоянно подключенным рабочим конденсатором. Если вы заинтересованы в установке нового однофазного двигателя, запросите предложение у Гордона Рассела сегодня.Продолжайте читать, чтобы узнать больше об однофазных двигателях.

Разница между однофазным и трехфазным двигателем

Есть два типа двигателей: однофазный двигатель и трехфазный двигатель. Однофазные двигатели требуют меньшего обслуживания, чем трехфазные, и часто служат годами дольше. Эти двигатели обычно используются в устройствах и оборудовании, которым требуется меньшая мощность в лошадиных силах или когда использование трехфазного двигателя неэффективно.

Однофазные двигатели имеют конструкцию, аналогичную трехфазным двигателям, включая обмотку переменного тока, которая размещена на статоре, и короткозамкнутые проводники, помещенные в цилиндрический ротор.Самая большая разница между двумя двигателями заключается в том, что у однофазного двигателя к статору подается только одна фаза (отсюда и название).

Однофазные двигатели Сводка

Типы: Есть несколько различных типов однофазных двигателей; Некоторые из них - это двухклапанные конденсаторы, конденсаторные пускатели, электродвигатели с расщепленной фазой, постоянные разделенные конденсаторы, двигатели с фазным ротором и электродвигатели с расщепленными полюсами. У каждого типа двигателя есть свои уникальные преимущества и недостатки.

Использование: Однофазные двигатели используются в оборудовании и машинах, которые меньше по размеру и требуют меньшей мощности (например, одной лошадиной силы).Сюда входит такое оборудование, как насосы, холодильники, вентиляторы, компрессоры и переносные дрели.

Эксплуатация: Однофазные асинхронные двигатели не могут запускаться самостоятельно без вспомогательной обмотки статора, приводимой в действие противофазным током. Вспомогательная обмотка двигателя с постоянным разделением конденсаторов имеет конденсатор, включенный последовательно с ней во время пуска и работы. Однофазные двигатели сами по себе не создают магнитного поля, поэтому их необходимо активировать выключателем, чтобы ротор вращался.Этот тип двигателя может работать только тогда, когда ротор приводится в движение и создается магнитное поле.

Преимущества: Однофазные двигатели обладают множеством преимуществ. Что касается стартеров, то однофазные двигатели дешевле в производстве, чем большинство других типов двигателей. Однофазные двигатели обычно требуют очень небольшого обслуживания, не часто требуют ремонта, а когда они требуются, их довольно легко завершить. Однофазные двигатели также прослужат годами, и обычно большинство отказов однофазных двигателей является результатом неправильного применения, а не производственным дефектом самого двигателя.

Недостатки: Однофазные двигатели просты с точки зрения механики, это не означает, что они идеальны и ничего не может выйти из строя. Иногда они, как известно, работают медленно, перегреваются или даже не запускаются, перегреваются или работают медленно. Если при прикосновении к двигателю ощущается толчок, это означает, что двигатель неисправен, и его необходимо немедленно отремонтировать.


Заинтересованы в установке или модернизации однофазного двигателя Bonfiglioli? Позвоните Гордону Расселу по телефону (604) 940-1627 (Британская Колумбия) или (403) 340-8856 (Альберта).Или запросите расценки онлайн сегодня!

Основы однофазного двигателя

Однофазная система питания

В электротехнике однофазная электроэнергия - это распределение электроэнергии переменного тока с использованием системы, в которой все напряжения источника питания изменяются в унисон. Вот некоторые основы однофазного двигателя.

Однофазное распределение используется, когда нагрузки в основном связаны с освещением и обогревом, с небольшим количеством больших электродвигателей в домах, коммерческих и промышленных помещениях.Однофазная система более экономична.

Однофазные асинхронные двигатели можно легко собрать с меньшими затратами, и они надежны с точки зрения ремонта и технического обслуживания. Эти преимущества делают однофазную систему полезной для таких предметов, как вентиляторы, пылесосы, стиральные машины, воздуходувки, центробежные насосы и даже небольшие игрушки.

Одна фаза создает колеблющееся магнитное поле, которое движется вперед и назад, а не вращающееся магнитное поле. В результате настоящий однофазный двигатель имеет нулевой пусковой момент.После того, как ротор начинает вращаться, он продолжает вращаться из-за колеблющегося магнитного поля в статоре.

Для сборки однофазного асинхронного двигателя требуются обычно две основные части: ротор и статор. Ротор - это вращающаяся часть двигателя, и он связан с механической нагрузкой через вал. Однофазные асинхронные двигатели имеют концентрические катушки. Статор - это неподвижная часть двигателя, и на статор подается однофазное питание переменного тока.

Однофазный источник переменного тока поступает на обмотку статора двигателя, и переменный ток начинает течь через статор. Этот переменный ток создает переменный поток, известный как основной поток. Основной поток соединяется с проводниками ротора, которые затем разрезаются.

В роторе начинает течь ток, и этот ток называется током ротора. Поток ротора создается из этого тока. Два потока, основной поток и поток ротора, создают крутящий момент, необходимый для вращения двигателя.

Однофазные асинхронные двигатели имеют медную или алюминиевую короткозамкнутую клетку, встроенную в цилиндр из стального ламината, типичного для многофазных асинхронных двигателей.

Есть несколько типов однофазных двигателей:

Двигатель с экранированными полюсами. Это очень простые двигатели, в которых не используется конденсатор. Их низкий КПД делает их пригодными для применений с низким энергопотреблением.

Двигатель с расщепленной фазой. В этом двигателе также не используется конденсатор.Они недороги и обладают низким пусковым моментом и высоким пусковым током.

Двигатель с постоянным разделенным конденсатором (PSC). Этот двигатель часто называют однозначным конденсаторным двигателем. Он может использовать центробежный переключатель для отключения фазы пуска, когда двигатели набирают обороты. Поскольку в нем используется конденсатор, этот тип двигателя обеспечивает более высокий пусковой момент и более высокий КПД, чем двигатели без конденсатора.

Конденсаторный двигатель с двумя номиналами. Этот тип имеет те же преимущества, что и двигатель PSC.Конденсаторные двигатели с двумя номиналами могут использовать центробежный переключатель для отключения фазы пуска, когда двигатель набирает обороты. Он имеет более высокий пусковой момент и более высокий КПД, чем двигатели без конденсатора.

Большинство сбоев происходит из-за их использования в неподходящем приложении. Обратите особое внимание на требования к применению, прежде чем выбирать двигатель для замены вышедшего из строя или для новой конструкции.

Днем или ночью служба IER Services дежурит, чтобы ваши системы работали на полной скорости.У нас есть службы экстренной помощи, доступные 24 часа в сутки, 7 дней в неделю. Позвоните в IER Services сегодня по телефону 614-298-1600.

Однофазный асинхронный двигатель

: схема работы и приложения

Поскольку требования к питанию систем с одной нагрузкой обычно невелики, все наши дома, офисы снабжены только однофазным источником переменного тока. Для обеспечения надлежащих условий работы при использовании этого однофазного источника питания необходимо использовать совместимые двигатели. Помимо совместимости, двигатели должны быть экономичными, надежными и простыми в ремонте.Все эти характеристики легко найти в однофазном асинхронном двигателе. Подобно трехфазным двигателям, но с некоторыми модификациями, однофазные асинхронные двигатели являются отличным выбором для бытовой техники. Их простой дизайн и низкая стоимость привлекли множество приложений.

Определение однофазного асинхронного двигателя

Однофазные асинхронные двигатели - это простые двигатели, которые работают от однофазного переменного тока и в которых крутящий момент создается за счет индукции электричества, вызванного переменными магнитными полями.Однофазные асинхронные двигатели бывают разных типов в зависимости от условий запуска и различных факторов. Они -

1). Двигатели с расщепленной фазой.

  • Электродвигатели с резистивным пуском.
  • Двигатели емкостные пусковые.
  • Двигатель с постоянным разделенным конденсатором.
  • Двухзначный конденсаторный двигатель.

2). Асинхронные двигатели с расщепленными полюсами.

3). Асинхронный двигатель с резистивным пуском.

4). Отталкивание - пуск асинхронного двигателя.

Конструкция однофазного асинхронного двигателя

Основными частями однофазного асинхронного двигателя являются статор, ротор и обмотки.Статор - это неподвижная часть двигателя, на которую подается переменный ток. Статор содержит два типа обмоток. Одна - основная обмотка, другая - вспомогательная. Эти обмотки размещены перпендикулярно друг другу. К вспомогательной обмотке параллельно подключен конденсатор.

Поскольку питание переменного тока используется для работы однофазного асинхронного двигателя, необходимо учитывать определенные потери, такие как - потери на вихревые токи, потери на гистерезис. Для устранения потерь на вихревые токи статор имеет пластинчатую штамповку.Для уменьшения потерь на гистерезис эти штамповки обычно изготавливают из кремнистой стали.

Ротор - это вращающаяся часть двигателя. Здесь ротор похож на ротор с короткозамкнутым ротором. Ротор не только цилиндрический, но и имеет по всей поверхности прорези. Чтобы обеспечить плавную и стабильную работу двигателя, предотвращая магнитную блокировку статора и ротора, пазы скошены, а не параллельны.

Жилами ротора являются алюминиевые или медные стержни, которые вставляются в пазы ротора.Торцевые кольца, изготовленные из алюминия или меди, замыкают проводники ротора. В этом однофазном асинхронном двигателе не используются контактные кольца и коммутаторы, поэтому их конструкция становится очень простой и легкой.

Эквивалентная схема однофазного асинхронного двигателя

На основе теории двойного вращающегося поля можно нарисовать эквивалентную схему однофазного асинхронного двигателя. Схема изображена в двух положениях - состояние покоя ротора состояние заблокированного ротора.

Двигатель с заблокированным ротором работает как трансформатор с короткозамкнутой вторичной обмоткой.

Эквивалентная схема однофазного асинхронного двигателя

В состоянии покоя ротора два вращающихся магнитных поля имеют противоположное направление с одинаково разделенными величинами и кажутся соединенными последовательно друг с другом. Цепь однофазного асинхронного двигателя

в состоянии покоя ротора

Принцип работы однофазного асинхронного двигателя

Основная обмотка однофазного асинхронного двигателя питается от однофазного А.C. ток. Это создает флуктуирующий магнитный поток вокруг ротора. Это означает, что при изменении направления переменного тока изменяется направление генерируемого магнитного поля. Этого условия недостаточно, чтобы ротор вращался. Здесь применяется принцип теории двойного вращающегося поля.

Согласно теории двойного вращающегося поля, одиночное переменное поле возникает из-за комбинации двух полей равной величины, но вращающихся в противоположном направлении. Величина этих двух полей равна половине величины переменного поля.Это означает, что при приложении переменного тока создаются два поля половинной величины с равными величинами, но вращающимися в противоположных направлениях.

Итак, теперь в статоре течет ток, а на роторе вращается магнитное поле, таким образом, закон электромагнитной индукции Фарадея действует на ротор. Согласно этому закону вращающиеся магнитные поля производят в роторе электричество, которое создает силу «F», которая может вращать ротор.

Почему однофазный асинхронный двигатель не запускается автоматически?

Когда к ротору применяется закон электромагнитной индукции Фарадея, индуцируется электричество и на стержнях ротора создается сила.Но согласно теории двойного вращающегося поля, есть два магнитных поля с одинаковой величиной, но вращающихся в противоположном направлении. Таким образом, создаются два вектора силы с одинаковой величиной, но противоположными по направлению.

Таким образом, эти векторы силы, поскольку они имеют одинаковую величину, но противоположны по направлению, не вызывают вращения ротора. Итак, однофазные асинхронные двигатели не запускаются самостоятельно. Мотор в таком состоянии просто гудит. Чтобы предотвратить эту ситуацию и вращать ротор, необходимо приложить пусковое усилие для однофазного двигателя.Когда сила в одном направлении становится больше, чем сила в другом направлении, ротор начинает вращаться. В однофазных асинхронных двигателях для этой цели используются вспомогательные обмотки.

Способы пуска однофазного асинхронного двигателя

Однофазный асинхронный двигатель не имеет пускового момента, поэтому для обеспечения этого пускового момента требуется внешняя схема. Для этого в статоре этих двигателей имеется вспомогательная обмотка. Вспомогательная обмотка подключена параллельно конденсатору.Когда конденсатор включен, аналогично основной обмотке, на вспомогательной обмотке наблюдаются вращающиеся два магнитных поля одинаковой величины, но в противоположном направлении.

Из этих двух магнитных полей вспомогательной обмотки одно компенсирует одно из магнитных полей основной обмотки, а другое складывается с другим магнитным полем основной обмотки. Таким образом, в результате получается одно вращающееся магнитное поле большой величины. Это создает силу в одном направлении, следовательно, вращает ротор.Когда ротор начинает вращаться, он вращается, даже если конденсатор выключен.

Существуют различные способы определения однофазных асинхронных двигателей. Обычно эти двигатели выбираются в зависимости от способа их запуска. Эти методы можно классифицировать как

  • Пуск с разделенной фазой.
  • Пуск с расщепленными полюсами.
  • Пуск отталкивающего двигателя
  • Пуск с противодействием.

При двухфазном пуске статор имеет два типа обмоток - основная обмотка и вспомогательная обмотка, соединенные параллельно.Двигатели с этим типом пуска:

  • Резисторные двухфазные двигатели.
  • Электродвигатели с конденсаторной фазой.
  • Конденсаторы запускают и запускают двигатели.
  • Двигатель конденсаторный.

Однофазный индукционный двигатель с конденсаторным пуском

Его также называют конденсаторным электродвигателем с разделенной фазой. Здесь количество витков вспомогательной обмотки равно количеству витков основной обмотки. Конденсатор включен последовательно со вспомогательной обмоткой. Вспомогательная обмотка отключается с помощью центробежного переключателя, когда ротор достигает 75% синхронной скорости.Двигатель продолжает ускоряться, пока не достигнет нормальной скорости.

Номинальная мощность двигателей с конденсаторным пуском находится в диапазоне от 120 до 750 Вт. Эти двигатели обычно выбирают для таких применений, как холодильники, кондиционеры и т. Д. Из-за их высокого пускового момента.

Применение однофазных асинхронных двигателей

Эти двигатели находят применение в вентиляторах, холодильниках, кондиционерах, пылесосах, стиральных машинах, центробежных насосах, инструментах, мелкой сельскохозяйственной технике, воздуходувках и т. Д.Они в основном используются для маломощных устройств с постоянной скоростью, таких как сельскохозяйственные инструменты и оборудование, где трехфазное питание недоступно. Двигатели от 1/400 кВт до 1/25 кВт используются в игрушках, фенах и т. Д.…

Таким образом, мы часто используем однофазные асинхронные двигатели в повседневной жизни. Эти моторы легко ремонтировать. Тем не менее, у этих двигателей есть некоторые недостатки. С каким недостатком этих моторов вы столкнулись? Вы можете назвать некоторые из них?

Источник изображения: Схемы однофазных асинхронных двигателей

Трехфазный асинхронный двигатель: типы, работа и применение

Трехфазный асинхронный двигатель - конструкция, работа и типы трехфазных асинхронных двигателей

Двигатель используется преобразовывать электрическую форму энергии в механическую.По типу питания двигатели классифицируются как двигатели переменного тока и двигатели постоянного тока. В сегодняшнем посте мы обсудим различных типов трехфазных асинхронных двигателей с рабочими характеристиками и приложениями.

Асинхронный двигатель , особенно трехфазные асинхронные двигатели широко используются в двигателях переменного тока для выработки механической энергии в промышленных приложениях. Почти 80% двигателей - это трехфазные асинхронные двигатели среди всех двигателей, используемых в промышленности. Следовательно, асинхронный двигатель является наиболее важным двигателем среди всех других типов двигателей.

Что такое трехфазный асинхронный двигатель?

Трехфазный асинхронный двигатель - это тип асинхронного двигателя переменного тока, который работает от трехфазного источника питания по сравнению с однофазным асинхронным двигателем, где для его работы требуется однофазное питание. Трехфазный питающий ток создает электромагнитное поле в обмотке статора, которое приводит к созданию крутящего момента в обмотке ротора трехфазного асинхронного двигателя, имеющего магнитное поле.

Конструкция трехфазного асинхронного двигателя

Конструкция асинхронного двигателя очень проста и надежна.Он состоит в основном из двух частей;

Статор

Как следует из названия, статор является неподвижной частью двигателя. Статор асинхронного двигателя состоит из трех основных частей;

  • Рама статора
  • Сердечник статора
  • Обмотка статора
Рама статора

Рама статора является внешней частью двигателя. Рама статора служит опорой для сердечника статора и обмотки статора.

Придает механическую прочность внутренним частям двигателя. Рама имеет ребра на внешней поверхности для отвода тепла и охлаждения двигателя.

Рама отлита для малых машин и изготовлена ​​для большой машины. В зависимости от области применения рама изготавливается из литой под давлением или сборной стали, алюминия / алюминиевых сплавов или нержавеющей стали.

Сердечник статора

Сердечник статора передает переменный магнитный поток, который вызывает гистерезис и потери на вихревые токи.Для минимизации этих потерь сердечник ламинирован штамповкой из высококачественной стали толщиной от 0,3 до 0,6 мм.

Эти штамповки изолированы друг от друга лаком. Все штамповки штампуются по форме сердечника статора и фиксируются его рамой статора.

Внутренний слой сердечника статора имеет несколько пазов.

Обмотка статора

Обмотка статора размещается внутри пазов статора, имеющихся внутри сердечника статора. Трехфазная обмотка размещена как обмотка статора.А на обмотку статора подается трехфазное питание.

Число полюсов двигателя зависит от внутреннего соединения обмотки статора и определяет скорость двигателя. Если количество полюсов больше, скорость будет меньше, а если количество полюсов меньше, скорость будет высокой. Полюса всегда попарно. Поэтому общее количество полюсов всегда четное число. Соотношение между синхронной скоростью и числом полюсов показано в уравнении ниже:

N S = 120 f / P

Где;

  • f = частота питания
  • P = общее количество полюсов
  • N с = синхронная скорость

Как конец обмотки, подключенный к клеммной коробке.Следовательно, в клеммной коробке шесть клемм (по две каждой фазы).

В зависимости от применения и способа запуска двигателей обмотка статора подключается по схеме звезды или треугольника, и это осуществляется путем соединения клемм в клеммной коробке.

Ротор

Как следует из названия, ротор - это вращающаяся часть двигателя. По типу ротора асинхронный двигатель классифицируется как;

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с фазовой обмоткой / асинхронный двигатель с контактным кольцом

Конструкция статора одинакова в обоих типах асинхронных двигателей.Мы обсудим типы роторов, используемых в трехфазных асинхронных двигателях, в следующем разделе, посвященном типам трехфазных асинхронных двигателей.

Типы трехфазных асинхронных двигателей

Трехфазные двигатели подразделяются в основном на две категории в зависимости от обмотки ротора (обмотки катушки якоря), то есть короткозамкнутого ротора и контактного кольца (двигатель с фазным ротором).

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с контактным кольцом или с обмоткой ротора

Связанная статья: Бесщеточный двигатель постоянного тока (BLDC) - конструкция, принцип работы и применение

Индукция с короткозамкнутым ротором Двигатель

По форме этот ротор напоминает клетку белки.Поэтому этот двигатель известен как асинхронный двигатель с короткозамкнутым ротором.

Конструкция этого типа ротора очень проста и надежна. Таким образом, почти 80% асинхронного двигателя - это асинхронный двигатель с короткозамкнутым ротором.

Ротор состоит из многослойного цилиндрического сердечника и имеет пазы на внешней периферии. Прорези не параллельны, но перекошены под некоторым углом. Это помогает предотвратить магнитную блокировку между статором и зубьями ротора. Это обеспечивает плавную работу и снижает гудение.Увеличивает длину проводника ротора, за счет чего увеличивается сопротивление ротора.

Ротор с короткозамкнутым ротором состоит из стержней ротора вместо обмотки ротора. Штанги ротора изготавливаются из алюминия, латуни или меди.

Стержни ротора постоянно закорочены концевыми кольцами. Таким образом, он делает полностью закрытый путь в цепи ротора. Стержни ротора приварены или скреплены концевыми кольцами для обеспечения механической поддержки.

Короткое замыкание стержней ротора. Следовательно, невозможно добавить внешнее сопротивление в цепь ротора.

В роторах этого типа не используются контактные кольца и щетки. Следовательно, конструкция этого типа двигателя проще и надежнее.

Асинхронный двигатель с контактным кольцом или фазным ротором

Асинхронный двигатель с контактным кольцом также известен как двигатель с фазным ротором . Ротор состоит из пластинчатого цилиндрического сердечника с прорезями на внешней периферии. Обмотка ротора размещена внутри пазов.

В этом типе ротора обмотка ротора намотана таким образом, что число полюсов обмотки ротора совпадает с числом полюсов обмотки статора.Обмотка ротора может быть соединена звездой или треугольником.

Концевые выводы обмоток ротора соединены с контактными кольцами. Итак, этот двигатель известен как асинхронный двигатель с контактным кольцом.

Внешнее сопротивление может легко подключаться к цепи ротора через контактное кольцо и щетки. И это очень полезно для управления скоростью двигателя и улучшения пускового момента трехфазного асинхронного двигателя.

Электрическая схема трехфазного асинхронного двигателя с контактным кольцом и внешним сопротивлением показана на рисунке ниже.

Внешнее сопротивление используется только для пусковых целей. Если он остается подключенным во время работы, это приведет к увеличению потерь в меди в роторе.

Высокое сопротивление ротора хорошо для начальных условий. Таким образом, внешнее сопротивление подключено к цепи ротора во время запуска.

Когда двигатель работает со скоростью, близкой к фактической, контактные кольца замыкаются накоротко из-за металлической манжеты. Таким образом, щетки и внешнее сопротивление удаляются из цепи ротора.

Это снижает потери меди в роторе, а также трение в щетках. Конструкция ротора немного сложнее по сравнению с двигателем с короткозамкнутым ротором из-за наличия щеток и контактных колец.

Обслуживание этого мотора больше. Таким образом, этот двигатель используется только тогда, когда требуется регулирование скорости и высокий пусковой момент. В противном случае асинхронный двигатель с короткозамкнутым ротором предпочтительнее асинхронного двигателя с контактным кольцом.

Принцип работы трехфазного асинхронного двигателя

Обмотки статора перекрываются под углом 120 ° (электрически) друг к другу.Когда на обмотку статора подается трехфазное питание, в цепи статора индуцируется вращающееся магнитное поле (RMF).

Скорость вращающегося магнитного поля называется синхронной скоростью (N S ).

Согласно закону Фарадея, ЭДС индуцируется в проводнике из-за скорости изменения магнитного потока (dΦ / dt). Схема ротора отсекает магнитное поле статора и ЭДС, индуцированную в стержне или обмотке ротора.

Цепь ротора - закрытый путь. Значит, за счет этой ЭДС по цепи ротора будет протекать ток.

Теперь мы знаем, что проводник с током индуцирует магнитное поле. Таким образом, ток ротора индуцирует второе магнитное поле.

Относительное движение между магнитным потоком статора и магнитным потоком ротора, ротор начинает вращаться, чтобы уменьшить причину относительного движения. Ротор пытается поймать поток статора и начинает вращаться.

Направление вращения определяется законом Ленца. И находится в направлении вращающегося магнитного поля, индуцированного статором.

Здесь ток ротора создается за счет индуктивности.Поэтому этот двигатель известен как асинхронный двигатель.

Скорость ротора меньше скорости синхронной скорости. Ротор пытается поймать вращающееся магнитное поле статора. Но никогда не улавливает. Следовательно, скорость ротора немного меньше скорости синхронной скорости.

Синхронная скорость зависит от количества полюсов и частоты питания. Разница между фактической скоростью ротора и синхронной скоростью называется скольжением.

Почему скольжение в асинхронном двигателе никогда не бывает нулевым?

Когда фактическая скорость ротора равна синхронной скорости, скольжение равно нулю.Для асинхронного двигателя этого никогда не будет.

Потому что, когда скольжение равно нулю, обе скорости равны и относительного движения нет. Следовательно, в цепи ротора не наведена ЭДС, и ток ротора равен нулю. Следовательно, двигатель не может работать.

Асинхронный двигатель широко используется в промышленности. Потому что преимуществ больше, чем недостатков.

Преимущества и недостатки асинхронных двигателей

Преимущества

Ниже перечислены преимущества асинхронных двигателей:

  • Конструкция двигателя очень проста и надежна.
  • Асинхронный двигатель работает очень просто.
  • Может работать в любых условиях окружающей среды.
  • КПД мотора очень высокий.
  • Асинхронный двигатель требует меньшего обслуживания по сравнению с другими двигателями.
  • Это двигатель с одним возбуждением. Следовательно, ему нужен только один источник. Он не требует внешнего источника постоянного тока для возбуждения, как синхронный двигатель.
  • Асинхронный двигатель - это самозапускающийся двигатель. Таким образом, для нормальной работы не требуется никаких дополнительных вспомогательных устройств для запуска.
  • Стоимость этого мотора очень меньше по сравнению с другими моторами.
  • Срок службы этого двигателя очень высок.
  • Реакция якоря меньше.

Связанное сообщение: Прямой онлайн-пускатель - Схема подключения стартера прямого запуска для двигателей

Недостатки

Недостатки двигателя перечислены ниже;

  • В условиях малой нагрузки коэффициент мощности очень низкий. И он потребляет больше тока.Таким образом, потери в меди больше, что снижает эффективность при небольшой нагрузке.
  • Пусковой момент этого двигателя (асинхронный двигатель с короткозамкнутым ротором) не меньше.
  • Асинхронный двигатель - это двигатель с постоянной скоростью. В приложениях, где требуется регулировка скорости, этот двигатель не используется.
  • Управление скоростью этого мотора затруднено.
  • Асинхронный двигатель имеет высокий пусковой ток. Это вызывает снижение напряжения во время запуска.

Применение трехфазных асинхронных двигателей

Асинхронный двигатель в основном используется в промышленности.Асинхронные двигатели с короткозамкнутым ротором используются как в жилых, так и в промышленных целях, особенно там, где не требуется регулирование скорости двигателей, например:

  • Насосы и погружные
  • Прессовый станок
  • Токарный станок
  • Шлифовальный станок
  • Конвейер
  • Мукомольные мельницы
  • Компрессор
  • И другие устройства с малой механической мощностью

Двигатели с контактным кольцом используются в тяжелых нагрузках, где требуется высокий начальный крутящий момент, например:

  • Сталелитейные заводы
  • Подъемник
  • Крановая машина
  • Подъемник
  • Линейные валы
  • и другие тяжелые механические мастерские и т. Д.

Связанные сообщения:

Однофазные асинхронные двигатели Типы, конструкция, принципы работы

Однофазный асинхронный двигатель - один из самых известных представителей огромного семейства двигателей переменного тока.Этот тип двигателя предназначен для преобразования электрической энергии в механическую для выполнения некоторых физических задач. Для правильного выполнения своей работы этому асинхронному двигателю требуется только одна фаза питания. Они часто используются в приложениях с низким энергопотреблением, например, в быту и легкой промышленности. Легкая и простая конструкция, дешевая стоимость обслуживания, высокая надежность и низкая стоимость ремонта - вот некоторые из его значительных преимуществ.

Linquip собрал всю информацию, необходимую для знакомства с этим типом двигателя.В следующих разделах мы подробно остановимся на конструкции, принципе работы и типах однофазных асинхронных двигателей. Оставайтесь с нами.

Конструкция однофазного асинхронного двигателя

Двумя основными компонентами однофазного асинхронного двигателя являются статор и ротор. Как вы, возможно, знаете и понимаете по названию, статор - это неподвижная часть этого двигателя. С другой стороны, ротор - это вращающийся компонент двигателя. однофазное переменное питание достигает обмотки статора.Ротор с помощью вала подключается к механической нагрузке. Ротор имеет многослойный железный сердечник с множеством перекошенных пазов. Эти пазы ротора бывают закрытого или полузакрытого типа. Обмотки ротора симметричны.

Между ротором и статором имеется воздушный зазор. Чаще всего этот двигатель используется в холодильниках, часах, дрелях, насосах, стиральных машинах и т. Д. Обмотка статора в асинхронных двигателях разделена на две части: основную обмотку и вспомогательную обмотку.положение этих двух типов обмоток таково, что вспомогательная обмотка перпендикулярна основной обмотке. В асинхронных двигателях основная обмотка - это обмотка с большим количеством витков, а другая называется вспомогательной обмоткой.

Принцип работы однофазного асинхронного двигателя

В предыдущем разделе вы получили некоторую информацию о конструкции и конструкции однофазных асинхронных двигателей. Теперь, когда вы знаете некоторые части этого типа асинхронного двигателя, давайте посмотрим, какой принцип работы определяет работу этой конструкции.

Как упоминалось ранее, на обмотку статора подается однофазный переменный ток. После того, как обмотка статора получает питание, создается магнитное поле, которое действует синусоидальным образом. Через некоторое время полярность магнитного поля меняется на противоположную, и переменный поток не может обеспечить необходимую силу вращения для двигателя. Как вы знаете, для работы любого электродвигателя нам нужны два потока.

Взаимодействие этих двух потоков создает требуемый крутящий момент.При подаче однофазного переменного тока на обмотку статора переменный ток начинает проходить через статор. Этот переменный ток создает переменный поток, который называется основным потоком. основной поток также связан с проводниками ротора.

Согласно закону электромагнитной индукции Фарадея, ЭДС индуцируется в роторе. Поскольку цепь ротора замыкается, ток начинает течь в роторе. Этот ток, называемый током ротора, создает свой поток, называемый потоком ротора.Поскольку этот поток создается по принципу индукции, двигатель, работающий по этому принципу, получил название асинхронного двигателя.

Типы однофазных асинхронных двигателей

В предыдущем разделе вы прочитали об условиях и принципах работы однофазного асинхронного двигателя в зависимости от них. Пришло время узнать больше о различных типах однофазных асинхронных двигателей. Основываясь на различных методах запуска однофазного IM, существует четыре основных различных типа, которые мы собираемся предоставить полезную информацию о каждом из них в следующих разделах.

Асинхронный двигатель с разделенной фазой

Этот тип однофазного электродвигателя IM также известен как электродвигатель с резистивным пуском. В этом типе основная обмотка и вспомогательная обмотка смещены на 90 градусов. Вспомогательная обмотка и центробежный выключатель включены последовательно. Работа этого переключателя заключается в отключении вспомогательной обмотки от главной цепи, когда скорость двигателя достигает 75-80 процентов от синхронной скорости.

Некоторые характеристики асинхронного двигателя с расщепленной фазой включают номинальную мощность от 60 до 250 Вт, постоянную скорость и высокий пусковой ток.Из-за невысокой стоимости обслуживания и ремонта двигателя он очень популярен на рынке. В некоторых бытовых применениях этот двигатель эффективно используется. Помните, что из-за низкого пускового момента он не может развивать мощность более 1 кВт.

Конденсаторный пусковой двигатель

В этом однофазном ИД вспомогательная обмотка имеет больше витков. электролитический конденсатор включен последовательно со вспомогательной обмоткой. Как и в предыдущем типе, также подключен центробежный переключатель, и две обмотки расположены под углом 90 градусов.Некоторые характеристики конденсаторного пускового двигателя заключаются в том, что стоимость обслуживания и ремонта высока, а номинальная мощность составляет от 120 до 7 кВт. Двигатели с конденсаторным пуском обычно используются в приложениях, где требуется высокий пусковой момент.

Конденсаторный пусковой двигатель и конденсаторный двигатель

Принцип работы и конструкция конденсаторного пускового устройства и конденсаторного пускового двигателя и конденсаторного пускового двигателя почти одинаковы. Двумя основными компонентами этого двигателя являются ротор с сепаратором и обмотки статора.Обмотки статора расположены под углом 90 градусов. В этом типе асинхронного двигателя используются два конденсатора, включенных параллельно. Здесь вы также можете найти центробежный выключатель. Запуск больших нагрузок, простота эксплуатации и конструкции, а также высокий КПД - вот некоторые из характеристик конденсаторного запуска и конденсаторного запуска двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *