Подключение 3х фазного двигателя в 3х фазную сеть схема: Схема подключения 3х фазного двигателя на 380

Содержание

Схема подключения 3х фазного двигателя на 380

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя

Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода.

  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток

Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:

  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата

Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
– зачем шесть контактов в двигателе?
– а почему контактов всего три?
– что такое «звезда» и «треугольник»?
– а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
– а как измерить ток в обмотках?
– что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы – C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая – C2 и C5, а третья – C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
– использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

– использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

– регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
– при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
– при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

Некоторые мастера самостоятельно собирают станки по обработке древесины или металла в домашних условиях. Для этого могут использоваться любые доступные двигатели подходящей мощности. В некоторых случаях приходится разбираться с тем, как подключить трехфазный двигатель к однофазной сети. Именно этой теме и посвящена статья. Также будет рассказано о том, как правильно подобрать требуемые конденсаторы.

Однофазные и трехфазные


Чтобы правильно понимать предмет обсуждения, который объясняет подключение двигателя 380 на 220 вольт, необходимо разобраться, в чем лежит принципиальное отличие таких агрегатов. Все трехфазные двигатели являются асинхронными. Это означает, что фазы в нем подключены с некоторым смещением. Конструктивно двигатель состоит из корпуса, в который помещена статическая часть, которая не вращается, ее называют статором. Также есть вращающийся элемент, который называется ротором. Ротор находится внутри статора. На статор подается трехфазное напряжение, каждая фаза по 220 вольт. После этого происходит образование электромагнитного поля. Из-за того, что фазы находятся в угловом смещении, появляется электродвижущая сила. Она и заставляет ротор, который находится в магнитном поле статора вращаться.

Однофазные асинхронные агрегаты имеют немного иной тип подключения, т. к. питаются от сети 220 вольт. В ней есть только два провода. Один называется фазным, а второй нулевым. Чтобы запуститься, двигателю необходимо иметь только одну обмотку, к которой подключается фаза. Но только одной будет мало для пускового импульса. Поэтому присутствует еще она обмотка, которая задействована во время пуска. Чтобы она выполнила свою роль, она может быть подключена через конденсатор, что бывает чаще всего, или кратковременно замыкаться.

Подключение трехфазного двигателя


Обычное подключение трехфазного двигателя к трехфазной сети может стать непростой задачей для тех, кто никогда не сталкивался с ней. В некоторых агрегатах есть только три провода для подключения. Они позволяют сделать это по схеме «звезда». В других приборах есть шесть проводов. В таком случае появляется выбор между треугольником и звездой. Ниже на фото можно видеть реальный пример подключения звездой. В белой обмотке подходит питающий кабель, и он подключается только к трем выводам. Дальше установлены специальные перемычки, которые обеспечивают правильное питание обмоток.

Чтобы было понятнее, как это реализовать самостоятельно, ниже будет приведена схема такого подключения. Подключение треугольником несколько проще, т. к. три дополнительные клеммы отсутствуют. Но это говорит лишь о том, что механизм перемычек реализован уже в самом двигателе. При этом нет возможности повлиять на способ соединения обмоток, а значит необходимо будет соблюсти нюансы при подключении такого двигателя в однофазную сеть.

Подключение к однофазной сети


Трехфазный агрегат с успехом можно подключить к однофазной сети. Но стоит учитывать, что при схеме, которая называется «звезда», мощность агрегата не будет превышать половины его номинальной мощности. Чтобы увеличить этот показатель, необходимо обеспечить подключение по типу «треугольник». В таком случае можно будет добиться лишь 30-процентного падения мощности. Бояться при этом не стоит, ведь в сети 220 вольт невозможно возникновение критического напряжения, которое бы повредило обмотки двигателя.

Схемы подключения


Когда трехфазный двигатель подключен к сети 380, тогда каждая его обмотка запитана от одной фазы. При соединении его к 220 вольтовой сети на две обмотки приходит фазный и нулевой провод, а третья остается незадействованной. Чтобы исправить этот нюанс, необходимо подобрать правильный конденсатор, который в требуемый момент сможет подать на нее напряжение. В идеале в цепи должно быть два конденсатора. Один из них является пусковым, а второй рабочим. Если мощность трехфазного агрегата не превышает 1,5 кВт, и нагрузка на него подается уже после того, как он наберет требуемые обороты, тогда можно использовать только рабочий конденсатор.

В этом случае его необходимо его необходимо установить в разрыв между третьим контактом треугольника и нулевым проводом. Если необходимо добиться эффекта, при котором двигатель будет вращаться в обратном направлении, тогда необходимо на один вывод конденсатора подключить не нулевой, а фазный провод. Если двигатель по мощности превосходит, указанную выше, тогда понадобится еще и пусковой конденсатор. Он монтируется параллельно рабочему. Но стоит учитывать, что в провод, который дет между ними, на разрыв должен быть установлен выключатель без фиксации. Такая кнопка позволит задействовать конденсатор только во время пуска. При этом придется после включения двигателя в сеть несколько секунд удерживать эту клавишу для того, чтобы агрегат набрал требуемые обороты. После этого ее необходимо отпустить, чтобы не сжечь обмотки.

Если потребуется реализовать включение такого агрегат реверсивно, тогда монтируется тумблер на три вывода. Средний должен быть постоянно подключен к рабочему конденсатору. Крайние должны быть подключены к фазному и нулевому проводу. В зависимости от того, в какую сторону должно быть вращение, потребуется выставить тумблер либо на ноль, либо на фазу. Ниже схематически изображена схема такого подключения.

Подбор конденсатора


Не существует универсальных конденсаторов, которые бы подходили ко всем агрегатам без разбора. Их характеристикой служит емкость, которую они способны держать. Поэтому каждый придется подбирать индивидуально. Основным требованием для него будет работа при напряжении сети в 220 вольт, чаще они рассчитаны на 300 вольт. Чтобы определиться, какой именно элемент потребуется, необходимо воспользоваться формулой. Если соединение осуществляется звездой, тогда необходимо силу тока разделить на напряжение в 220 вольт и умножить на 2800. Показателем силы тока берется цифра, которая указана в характеристиках двигателя. Для подключения треугольником формула остается такой же, но последний коэффициент изменяется на 4800.

Например, если на агрегате написано, что номинальный ток, который может протекать по его обмоткам составляет 6 ампер, тогда емкость рабочего конденсатора будет 76 мкФ. Это при подключении звездой, для подключения треугольником результат будет 130 мкФ. Но выше говорилось, что если агрегат испытывает нагрузку при старте или имеет мощность больше 1,5 кВт, тогда понадобится еще один конденсатор – пусковой. Его емкость обычно в 2 или в 3 раза больше рабочего. То есть для соединения звездой понадобится второй конденсатор с емкостью 150–175 мкФ. Подбирать его придется опытным путем. В продаже может не быть конденсаторов требуемой емкости, тогда можно собрать блок для получения требуемой цифры. Для этого доступные конденсаторы соединяются параллельно, чтобы их емкость сложилась.

Почему пусковые конденсаторы лучше подбирать опытным путем начиная с наименьшего? Дело в том, что при недостаточном его значении будет подаваться ток большего значения, что может вывести из строя обмотки. Если его значение будет больше требуемого, тогда агрегату будет недостаточно импульса для запуска. Более наглядно представить себе подключение можно с помощью видео.

Вывод


Во время работы с электрическим током соблюдайте технику безопасности. Не запускайте ничего, если до конца неуверены в правильности выполненного подключения. Обязательно посоветуйтесь с опытным электриком, который подскажет, сможет ли проводка выдержать требуемую нагрузку от агрегата.

Подключение трехфазного двигателя к однофазной и трехфазной сети

Из всех видов электропривода наибольшее распространение получили асинхронные двигатели. Они неприхотливы в обслуживании, нет щеточно-коллекторного узла. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит почти вечность. Но есть одна проблема — большинство асинхронных двигателей, которые вы можете купить на ближайшей барахолке, трёхфазные, так как предназначены для использования на производстве. Несмотря на тенденцию к переходу на трёхфазное электроснабжение в нашей стране, подавляющее большинство домов до сих пор с однофазным вводом. Поэтому давайте разбираться, как выполнить подключение трехфазного двигателя к однофазной и трехфазной сети.

Что такое звезда и треугольник у электродвигателя

Для начала давайте разберемся, какими бывают схемы подключения обмоток. Известно, что у односкоростного трёхфазного асинхронного электродвигателя есть три обмотки. Они соединяются двумя способами, по схемам:

  • звезда;
  • треугольник.

Такие способы соединения характерны для любых видов трёхфазной нагрузки, а не только для электродвигателей. Ниже изображено, как они выглядят на схеме:

Питающие провода подключаются к клеммной колодке, которая расположена в специальной коробке. Её называют брно или борно. В неё выведены провода от обмоток и закреплены на клеммниках. Сама коробка снимается с корпуса электродвигателя, как и клеммники, расположенные в ней.

В зависимости от конструкции двигателя в брно может быть 3 провода, а может быть и 6 проводов. Если там 3 провода — то обмотки уже соединены по схеме звезды или треугольника и, при необходимости, перекоммутировать их быстро не получится, для этого нужно вскрывать корпус, искать место соединения, разъединять его и делать отводы.

Если в брно 6 проводов, что встречается чаще, то вы можете в зависимости от характеристик двигателя и напряжения питающей сети (об этом читайте далее) соединить обмотки так, как посчитаете нужным. Ниже вы видите брно и клеммники, которые в него устанавливаются. Для 3-проводного варианта в клеммнике будет 3 шпильки, а для 6-проводного — 6 шпилек.

К шпилькам начала и концы обмоток подключаются не просто «как попало» или «как удобно», а в строго определенном порядке, таким образом, чтобы одним набором перемычек вы могли соединить и треугольник, и звезду. То есть начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй.

Таким образом, если вы установите перемычки на нижние контакты клеммника в линию — получаете соединение обмоток звездой, а установив три перемычки вертикально параллельно друг другу — соединение треугольником. На двигателях «в заводской комплектации» в качестве перемычек используются медные шинки, что удобно использовать для подключения — не нужно гнуть проволочки.

Кстати, на крышках брна электродвигателя часто наносят соответствие расположения перемычек этим схемам.

Подключение к трёхфазной сети

Теперь, когда мы разобрались как подключаются обмотки, давайте разберемся как они подключаются к сети.

Двигатели с 6 проводами позволяют переключать обмотки для разных питающих напряжений. Так получили распространение электродвигатели с питающими напряжениями:

  • 380/220;
  • 660/380;
  • 220/127.

Причем большее напряжение для схемы подключения звездой, а меньшее — для треугольника.

Дело в том, не всегда трёхфазная сеть имеет привычное напряжение в 380В. Например, на кораблях встречается сеть с изолированной нейтралью (без нуля) на 220В, да и в старых советских постройках первой половины прошлого века и сейчас иногда встречается сеть 127/220В. В то время как сеть с линейным напряжением 660В встречается редко, чаще на производстве.

Об отличиях фазного и линейного напряжения вы можете прочитать в соответствующей статье на нашем сайте: https://samelectrik.ru/linejnoe-i-faznoe-napryazhenie.html.

Итак, если вам нужно подключить трехфазный электродвигатель к сети 380/220В, осмотрите его шильдик и найдите питающее напряжение.

Электродвигатели на шильдике которых указано 380/220 можно подключить только звездой к нашим сетям. Если вместо 380/220 написано 660/380 — подключайте обмотки треугольником. Если вам не повезло и у вас старый двигатель 220/127 — здесь нужен либо понижающий трансформатор, либо однофазный частотный преобразователь с трёхфазным выходом (3х220). Иначе подключить его к трём фазам 380/220 не получится.

Самый худший вариант — это когда номинальное напряжение двигателя с тремя проводами с неизвестной схемой соединения обмоток. В этом случае нужно вскрывать корпус и искать точку их соединения и, если это возможно, и они соединены по схеме треугольника — переделывать в схему звезды.

С подключением обмоток разобрались, теперь поговорим о том какие бывают схемы подключения трехфазного электродвигателя к сети 380В. Схемы показаны для контакторов с катушками с номинальным напряжением 380В, если у вас катушки на 220В — подключайте их между фазой и нулем, то есть второй провод к нулю, а не к фазе «B».

Электродвигатели почти всегда подключаются через магнитный пускатель (или контактор). Схему подключения без реверса и самоподхвата вы видите ниже. Она работает таким образом, что двигатель будет вращаться только тогда, когда нажата кнопка на пульте управления. При этом кнопка выбирается без фиксации, т.е. замыкает или размыкает контакты пока удерживается в нажатом положении, как те, что используются в клавиатурах, мышках и дверных звонках.

Принцип работы этой схемы: при нажатии кнопки «ПУСК» начинает протекать ток через катушку контактора КМ-1, в результате якорь контактора притягивается и силовые контакты КМ-1 замыкаются, двигатель начинает работать. Когда вы отпустите кнопку «ПУСК» — двигатель остановится. QF-1 – это автоматический выключатель, который обесточивает и силовую цепь и цепь управления.

Если вам нужно чтобы вы нажали кнопку и вал начал вращаться — вместо кнопки ставьте тумблер или кнопку с фиксацией, то есть контакты которой после нажатия остаются замкнутыми или разомкнутыми до следующего нажатия.

Но так делают нечасто. Гораздо чаще электродвигатели пускают с пультов с кнопками без фиксации. Поэтому к предыдущей схеме добавляется еще один элемент — блок-контакт пускателя (или контактора), подключенный параллельно кнопке «ПУСК». Такая схема может использоваться для подключения электровентиляторов, вытяжек, станков и любого другого оборудования, механизмы которого вращаются только в одном направлении.

Принцип работы схемы:

Когда автоматический выключатель QF-1 переводят во включенное состояние на силовых контактах контактора и цепи управления появляется напряжение. Кнопка «СТОП» — нормально замкнутая, т.е. её контакты размыкаются, когда на неё нажимают. Через «СТОП» подаётся напряжение на нормально-разомкнутую кнопку «ПУСК», блок-контакт и в конечном итоге катушку, поэтому когда вы на неё нажмёте, то цепь управления катушкой обесточится и контактор отключится.

На практике в кнопочном посте каждая кнопка имеет нормально-разомкнутую и нормально-замкнутую пару контактов, клеммы которых расположены на разных сторонах кнопки (см. фото ниже).

Когда вы нажимаете кнопку «ПУСК», ток начинает протекать через катушку контактора или пускателя КМ-1 (на современных контакторах обозначается, как A1 и A2), в результате его якорь притягивается и замыкаются силовые контакты КМ-1. КМ-1.1 – это нормально-разомкнутый (NO) блок-контакт контактора, при подаче напряжения на катушку он замыкается одновременно с силовыми контактами и шунтирует кнопку «ПУСК».

После того как вы отпустите кнопку «ПУСК» — двигатель продолжит работать, так как ток на катушку контактора теперь подаётся через блок-контакт КМ-1.1.

Это и называется «самоподхват».

Основная сложность, которая возникает у новичков в понимании этой базовой схемы, состоит в том, что не сразу становится понятно, что кнопочный пост располагается в одном месте, а контакторы в другом. При этом КМ-1.1, который подключается параллельно кнопке «ПУСК», на самом деле может находится и за десяток метров.

Если вам нужно чтобы вал электродвигателя вращался в обе стороны, например, на лебедке или другом грузоподъёмном механизме, а также разных станках (токарный и пр.) — используйте схему подключения трехфазного двигателя с реверсом.

Кстати эту схему часто называют «реверсивная схема пускателя».

Реверсивная схема подключения – это две нереверсивных схемы с некоторыми доработками. КМ-1.2 и КМ-2.2 — то нормально-замкнутые (NC) блок-контакты контакторов. Они включены в цепь управления катушкой противоположного контактора, это так называемая «защита от дурака», она нужна чтобы не произошло межфазного КЗ в силовой цепи.

Между кнопкой «ВПЕРЁД» или «НАЗАД» (их назначение такое же, что в предыдущей схеме у «ПУСК») и катушкой первого контактора (КМ-1) подключается нормально-замкнутый (NC) блок-контакт второго контактора (КМ-2). Таким образом, когда включается КМ-2 — нормально-замкнутый контакт размыкается соответственно и КМ-1 уже не включится, даже если вы нажмёте «ВПЕРЁД».

И наоборот, NC от КМ-2 установлен в цепь управления КМ-1, чтобы предотвратить одновременное их включение.

Чтобы запустить двигатель в противоположном направлении, то есть включить второй контактор, нужно отключить действующий контактор. Для этого нажимаете на кнопку «СТОП», и цепь управления двумя контакторами обесточивается, и уже после этого нажимайте на кнопку запуска в противоположном направлении вращения.

Это нужно, чтобы не допустить короткого замыкания в силовой цепи. Обратите внимание на левую часть схемы, отличия подключения силовых контактов КМ-1 и КМ-2 состоят в порядке подключения фаз. Как известно для смены направления вращения асинхронного двигателя (реверса) нужно поменять местами 2 из 3 фаз (любые), здесь поменяли местами 1 и 3 фазу.

В остальном работа схемы аналогична предыдущей.

Кстати на советских пускателях и контакторах были совмещенные блок-контакты, т.е. один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть 2-4 пары дополнительных контактов как раз для этих целей.

Подключение к однофазной сети

Для подключения трёхфазного электродвигателя 380В к однофазной сети 220В чаще всего используется схема с фазосдвигающими конденсаторами (пусковыми и рабочими). Без конденсаторов двигатель может и запустится, но только без нагрузки, и придется при запуске крутануть его вал от руки.

Проблема состоит в том, что для работы АД нужно вращающееся магнитное поле, которое нельзя получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через дроссель, можно сдвинуть фазу напряжения до -90˚ а с помощью конденсатора на +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз мы рассматривали в статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели. Таким образом получают не вращающееся, а эллиптическое. В результате вы теряете около половины мощности от номинала. Однофазные АД работают при таком включении лучше, за счет того, что у них обмотки изначально рассчитаны и расположены на статоре для такого подключения.

Типовые схемы подключения двигателя без реверса для схем звезды или треугольника вы видите ниже.

Резистор на схеме ниже нужен для разрядки конденсаторов, так как после отключения питания на его выводах останется напряжение и вас может ударить током.

Ёмкость конденсатора для подключения трёхфазного двигателя к однофазной сети вы можете выбрать исходя из таблицы ниже. Если вы наблюдаете сложный и затяжной запуск — зачастую нужно увеличить пусковую (а иногда и рабочую) ёмкость.

Или посчитать по формулам:

Если двигатель мощный или запускается под нагрузкой (например, в компрессоре) — нужно подключить и пусковой конденсатор.

Чтобы упростить включение вместо кнопки «РАЗГОН» используют «ПНВС». Это кнопка для запуска двигателей с пусковым конденсатором. У неё три контакта, на два из них подключается фаза и ноль, а через третий – пусковой конденсатор. На лицевой панели расположено две клавиши — «ПУСК» и «СТОП» (как на автоматах АП-50).

Когда вы включаете двигатель и нажимаете первую клавишу до упора, замыкаются три контакта, после того как двигатель раскрутился, и вы отпускаете «ПУСК», средний контакт размыкается, а два крайних остаются замкнутыми, из цепи выводится пусковой конденсатор. При нажатии кнопки «СТОП» все контакты разомкнуться. Схема подключения при этом почти аналогична.

Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:

Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом изображена ниже. За реверс отвечает переключатель SA1.

Обмотки двигателя 380/220 соединяют треугольником, а у двигателей 220/127 – звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если всего три выхода, а не шесть, то вы не сможете изменять схемы подключения обмоток без вскрытия. Здесь есть два варианта:

  1. Номинальное напряжение 3х220В — вам повезло, и используйте приведенные выше схемы.
  2. Номинальное напряжение 3х380В — вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть 220В, но стоит попробовать, возможно работать будет!

Но при подключении электродвигателя 380В на 1 фазу 220В через конденсаторы есть одна большая проблема — потери мощности. Они могут достигать 40-50%.

Главным и действенным способом подключения без потери мощности является использование частотника. Однофазные частотные преобразователи выдают на выходе 3 фазы с линейным напряжением 220В без нуля. Таким образом вы можете подключать двигатели до 5 кВт, для большей мощности просто очень редко встречаются преобразователи, способные работать с однофазным вводом. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его.

Теперь вы знаете, как подключить трехфазный двигатель на 220 и 380 Вольт, а также что для этого нужно. Надеемся, предоставленная информация помогла вам разобраться в вопросе!

Материалы по теме:

Подключение трехфазного электродвигателя к однофазной сети

3-х фазный мотор можно использовать для работы от бытовой сети переменного тока одной фазы напряжением 220 вольт. Переделка возможна, даже если нет большого опыта электротехнических работ с минимальным навыком монтажа. Затраты на дополнительные элементы схемы малы.

Виды соединения обмоток


Трехфазный двигатель содержит статор – неподвижную часть с закрепленными проволочными катушками. Они смещены относительно друг друга по окружности на 120 угловых градусов. Переменный ток, проходя через обмотки, создает изменяющееся магнитное поле, толкающее подвижную часть двигателя – ротор, или как называли раньше – якорь.
Известно два способа включения обмоток между собой:

  • Звезда — первые концы обмоток соединены между собой, а фазные проводники сети подключены на вторые выводы катушек.

  • Треугольник – катушки соединены последовательно друг за другом, конец третьей обмотки включен к началу первой. Схематически образуют треугольник, к вершинам которого подключены фазы.


Этапы выполнения работы:


1. Внимательно осмотрев электродвигатель, отыскать панельку (обычно, алюминиевая пластинка) с информацией о параметрах. Не нужно браться за переделку мотора мощностью более 1 кВт (1kW). Надпись DY 220/400 означает, что мотор допускается включать как по схеме «треугольник» (D), так и «звезда» (Y). Рабочее напряжение составляет 220 вольт одно-/либо 400 трехфазной. Клеммы, обозначенные L(1÷3), для подключения фаз.
2. Стандартно катушки 3-фазного электромотора включены «звездой». Изменение положения полосковых перемычек создаст схему «треугольник».
3. После этого L1 соединим с фазной жилой, а на L3 — нулевой провод. Среднюю клемму (L2) подключим на сдвигающий конденсатор, второй вывод которого соединяем с фазой или нулем. Это определяет направление вращения якоря. Мощность двигателя 100 Вт потребует емкости 8÷10 мкФ, для 0,25 кВт нужен конденсатор 20 мкФ.
4. Удобно оперативно менять направление вращения, переключая конденсатор с фазного проводника на нулевой. Двухполюсный выключатель подаст питание двигателя.

Подключение к однофазной сети


Снять крышку коммутационной коробки электродвигателя, получив доступ к перемычкам.
Предварительно открутив гайки крепления, поменять положение перемычек, изменив схему соединения обмоток на «треугольник». После этого гайки надежно затянуть и установить на место крышку коробки, отметив провода подключения 1, 2 и 3 фазы.

Определить среднюю обмотку, перерезать жилу, зачистить изоляцию. Концы обжать клеммным наконечником, если они есть, подключить в разрыв конденсатор.

Удобно, надежно коммутировать схему при помощи клеммных пар. Подключив на соединитель провода от двигателя и конденсатора, с другого конца подаются заземление, фаза и нуль. Аккуратное затягивание винтов клемм обеспечит надежный электрический контакт.
ВАЖНО! В двигателе есть проводник с желто-зеленой изоляцией. Он подключен к корпусу. Соединенный через третьи контакты вилки шнура и розетки с заземлением, защищает от пробоя напряжения по массе мотора. К нему нельзя подключать другие провода электрической сети – только желто-зеленый конец сетевой вилки.
Работоспособность схемы можно проверить подключением провода от конденсатора на фазу и включив питание 220. Если все детали исправны, двигатель должен вращать ротор в одну сторону.
Сняв питание, переключаем конденсатор на нулевой проводник – мотор вращает в обратную сторону. Выбрав подходящее направление, оставляем нужное подключение постоянным.

Оперативную смену стороны вращения на противоположную, обеспечит переключатель подключения конденсатора к фазе или нулю.
ВАЖНО! Менять направление разрешается только после отключения питания и полной остановке ротора.

Безопасность


Переделка электродвигателя связана с работой в сети 220 вольт. Неосторожное обращение, неаккуратность в работе связана с угрозой жизни или здоровья. Не оставляйте соединений без надежной изоляции. Ограничивайте доступ посторонних к монтажу до его завершения.

Смотрите видео


Схема Подключения Трехфазного Двигателя — tokzamer.ru

Последний подключается параллельно первому.


Причем большее напряжение для схемы подключения звездой, а меньшее — для треугольника.

Ограничивайте доступ посторонних к монтажу до его завершения. Она является самой простой и безотказной.
Как подключить трехфазный двигатель через магнитный пускатель.

Пишите комментарии, буду рад прислушаться к вашему мнению.

К одной врезают в разрыв конденсаторы: рабочие и пусковые. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Номинальная мощность указывается на металлической табличке на корпусе мотора. Приблизительно можно сказать, что двигатель, рассчитанный на трехфазное питание, при включении в однофазную сеть потеряет от 30 до 50 процентов мощности.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера.

Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.

Подключение электродвигателя на 220В треугольником и звездой Демонстрация работы Какой вид лучше

Варианты подключения 3-х фазного двигателя к электросети

Ввиду того, что конструкция движка в таком варианте усложняется, чаще применяется электродвигатель, подключение которого обеспечивается переключением между этими схемами. Двигатель с магнитным пускателем Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. На третью обмотку включают напряжение.

Включение такого двигателя в сеть v приводит к снижению его номинальной мощности в з раза. Это можно легко заметить, проанализировав его конструкцию.

Первая задача решается «прозваниванием» всех проводов тестером замером сопротивления. Если электрические и механические режимы соответствуют конструктивно заложенным нормам, асинхронный движок — это самый долгоживущий из всех электромоторов.

Если концы одной обмотки найдены — лампа загорается.

При размыкании контакта стрелка пойдет к минусу. Но будет значительное падение мощности и эффективности его работы.

Кстати на советских пускателях и контакторах были совмещенные блок-контакты, то есть один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть пары дополнительных контактов как раз для этих целей. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Но таких накопителей не найти в магазинах. При запуске мощного асинхронного двигателя от Вт или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к В через рабочий и пусковой конденсаторы.
Как подключить кнопку пуска трехфазного двигателя

Читайте дополнительно: Оформление энергетического паспорта

Выбор схемы включения электродвигателя

Другие подключения электродвигателя Схем несколько: Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Тогда запуск будет следующим: Питание подается через тумблер или специальную кнопку; Нажимается кнопка пускового конденсатора; Она удерживается до тех пор, пока электродвигатель не разгонится; Кнопка пуска отпускается, отчего ее пружины размыкают цепочку конденсатора.

Это приведет к короткому замыканию между фазами, подключенными к ним. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. Во время отпускания кнопки цепь разрывается.

Схема звезды Этот тип схемы подключения двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы. Это нужно, чтобы не допустить короткого замыкания в силовой цепи. В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток.

Обратите внимание на левую часть схемы, отличия подключения силовых контактов КМ-1 и КМ-2 состоят в порядке подключения фаз. Номинальное напряжение 3хВ — вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть В, но стоит попробовать, возможно работать будет! В статоре асинхронного двигателя на В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Для 3-проводного варианта в клеммнике будет 3 шпильки, а для 6-проводного — 6 шпилек. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации. Остальные три вывода подать на фазное питание напряжением вольт.

Подключение трёхфазного электродвигателя


При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой». Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. В случае с однофазными моторами это невозможно: они работают только при питании от В. Подбор конденсаторов Емкость конденсаторов для подключения к В необходимо подбирать.

В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. Фазное питание подсоединяется к точкам узлов концов обмоток.

Изоляция может быть пробита, а двигатель полностью выходит из строя. Подключение к однофазной сети Для подключения трёхфазного электродвигателя В к однофазной сети В чаще всего используется схема с фазосдвигающими конденсаторами пусковыми и рабочими. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его. Можно подбирать конденсаторы, включив сначала небольшую ёмкость и увеличивая их ёмкость, пока ваш электродвигатель не начнёт развивать требуемую мощность.
Нереверсивная схема магнитного пускателя

Подключение к трёхфазной сети

Принцип работы схемы: Когда автоматический выключатель QF-1 переводят во включенное состояние на силовых контактах контактора и цепи управления появляется напряжение. Российские моторы на три фазы подключаются по звезде.

В коллекторных движках аналогичные задачи решаются намного проще.

Его ёмкость должна быть в 2,5 — 3 раза больше ёмкости рабочего.

Пишите в комментариях! Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели.

Читайте также: Устройство песчаной подушки под кабель

Концы обжать клеммным наконечником, если они есть, подключить в разрыв конденсатор. Для работы схемы необходимы 3 пускателя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.

Обычно его емкость Сп больше в раза по сравнению с Ср. Проверка переменным током Две любые обмотки включают параллельно концами к мультиметру. Работа по выводу недостающих концов требует определенного навыка.

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

На практике это условие практически невыполнимо, поэтому при пуске двигателя подключают два конденсатора Ср — рабочий конденсатор; Сп — пусковой конденсатор. В двигателе есть проводник с желто-зеленой изоляцией.

Но у простого автоматического выключателя нет возможности настроить ток. Схема звезды Этот тип схемы подключения двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы. Когда включается один МП, у другого происходит размыкание контактов. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети самодельщики применяют: фазосдвигающий конденсатор; тринисторные фазосдвигающие устройства; другие емкостные и индукционно-емкостные фазосдвигающие схемы. Но это уже совсем другая история… Похожие статьи:.
Как подключить магнитный пускатель. Схема подключения.

Схема подключения 3 х фазного двигателя

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя
Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:
  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Подключение трехфазного двигателя к трехфазной сети

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Схемы подключения трехфазных электродвигателей

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

Условные обозначения на схемах

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

{SOURCE}

Как подключить 3 фазный двигатель к 220

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С — емкость конденсатора, мкФ, Рном — номинальная мощность электродвигателя, кВт.

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
п

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.

Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.

В связи с этим двигатель желательно иметь помощнее.

Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.

Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.

Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.

Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.

Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.

Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.

Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.

Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.

Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.

На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.

На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.

Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.

Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.

Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.

Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.

Расчет конденсаторов. Емкость рабочего конденсатора.

Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.

Емкость пускового конденсатора.

Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.

Особенности подбора конденсаторов.

Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.

Реверс.

Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».

Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Более подробно можно увидеть на рисунке.

Подключение трех фазного двигателя в одно фазную сеть (380В в 220В)

В этой статье я бы хотел вам рассказать как легко и быстро запустить трёх фазный двигать в одно фазную сеть , у многих на даче или в гараже валялись старые непонятно откуда-то взятые 3ф двигатели , но подключить их было невозможно из за отсутствия напряжения в 380В. Замену линии в 380В (только для двигателей) могут вот такие нехитрая штучка «конденсатор».

И так что нам нужно знать и иметь для пуска двигателя:

Нужно решить каким способом будем подключать обмотки статора: первый способ звезда , при таком подключении двигатель выдаст только 50% от своей мощности , второй способ треугольник намного лучше он выдает 70% от мощности двигателя , поэтому зачастую выбираю второй способ что бы добиться наибольшей мощности.

Схема соединений на панели

Схема подключения 3ф двигателя с рабочими и пусковыми к конденсаторами

При соединение обмоток статора треугольником  двигателя мощность которого менее или равен 1,5кВт и запускающийся без нагрузочной мощности схема имеет следующий вид:

Схема подключения 3ф двигателя с рабочими и пусковыми к конденсаторами

Если же двигатель имеет мощности более 1,5кВт или же при старте имеет нагрузочную мощность то в схеме нужно добавить ещё и пусковые конденсаторы.

При необходимости пуска двигателя в разные стороны говоря по научному реверс необходимо добавить тумблер как на картинке:

реверс

 Какие конденсаторы и сколько нужно для пуска двигателя:

Марки конденсаторов МБГО, МБГЧ, БГТ, МБПГ имеющие рабочее напряжение не менее 300В, эти данные вы можете найти на самом конденсаторе.

конденсаторы для пуска двигателя

Но просто взять и подключить любой конденсатор данных марок не получится, у каждого конденсатора есть ёмкость измеряющаяся в мкФ , поэтому нужно рассчитать какая ёмкость нам понадобится для рабочих конденсаторов и отдельно для пусковых по следующей формуле:

 

Для рабочих Ср=4800х(I/U)

Для пусковых Сп=Срх( 2 или 3 раза)

Важно знать что мы рассчитываем рабочие конденсаторы на номинальную мощность двигателя и при неполной нагрузке двигателя он будет греться и вам придётся отключать какую то часть конденсаторов для снижения тока в обмотках статора , но уменьшение конденсатор поведёт к снижению развивающей мощности. Так же работа двигателя в холостую долгое время может привести к его сгоранию.Что касается конденсаторов то помните что конденсатор это ёмкость которая может удерживать напряжение большой величины которая опасна для здоровья людей , также при пуске мощных двигателей более трёх кВт , убедитесь что проводка выдержит долгое время работу двигателя и не выйдет из строя.

Похожие статьи:

Трехфазная конфигурация Y и треугольника | Полифазные цепи переменного тока

Трехфазное соединение звездой (Y)

Изначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»).

Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника. (Рисунок ниже)

Трехфазное соединение «Y» имеет три источника напряжения, подключенных к общей точке.

Если мы нарисуем схему, показывающую, что каждый источник напряжения представляет собой катушку с проводом (генератор переменного тока или обмотку трансформатора), и произведем небольшую перестановку, конфигурация «Y» станет более очевидной на рисунке ниже.

Трехфазное четырехпроводное соединение «Y» использует «общий» четвертый провод.

Три проводника, идущие от источников напряжения (обмоток) к нагрузке, обычно называются линиями , а сами обмотки обычно называются фазами .

В системе с Y-соединением нейтральный провод может быть или не быть (рисунок ниже) в точке соединения посередине, хотя это, безусловно, помогает облегчить потенциальные проблемы, если один из элементов трехфазной нагрузки выйдет из строя, поскольку обсуждалось ранее.

Трехфазное трехпроводное соединение «Y» не использует нейтральный провод.

Значения напряжения и тока в трехфазных системах

Когда мы измеряем напряжение и ток в трехфазных системах, нам нужно уточнить значение , где мы измеряем .

Напряжение сети означает величину напряжения, измеренного между любыми двумя проводниками линии в сбалансированной трехфазной системе. В приведенной выше схеме линейное напряжение составляет примерно 208 вольт.

Фазное напряжение относится к напряжению, измеренному на любом одном компоненте (обмотка источника или сопротивление нагрузки) в сбалансированном трехфазном источнике или нагрузке.

Для схемы, показанной выше, фазное напряжение составляет 120 вольт. Термины линейный ток и фазный ток следуют той же логике: первый относится к току через любой один линейный проводник, а второй — к току через любой один компонент.

Источники и нагрузки, подключенные по схеме Y, всегда имеют линейное напряжение больше, чем фазное, а линейные токи равны фазным токам. Если источник или нагрузка, подключенные по схеме Y, сбалансированы, линейное напряжение будет равно фазному напряжению, умноженному на квадратный корень из 3:

.

Однако конфигурация «Y» не единственная допустимая для соединения трехфазного источника напряжения или элементов нагрузки.

Трехфазная конфигурация, треугольник (Δ)

Другая конфигурация известна как «Дельта» из-за ее геометрического сходства с одноименной греческой буквой (Δ).Обратите внимание на полярность каждой обмотки на рисунке ниже.

Трехфазное, трехпроводное соединение Δ не имеет общего.

На первый взгляд кажется, что три таких источника напряжения могут вызвать короткое замыкание, электроны текут по треугольнику, и ничто иное, как внутренний импеданс обмоток, сдерживает их.

Однако из-за фазовых углов этих трех источников напряжения это не так.

Закон Кирхгофа о напряжении при соединении треугольником

Для быстрой проверки этого можно использовать закон Кирхгофа, чтобы увидеть, равны ли три напряжения вокруг контура нулю. Если они это сделают, тогда не будет доступного напряжения для проталкивания тока вокруг этого контура и, следовательно, не будет циркулирующего тока.

Начиная с верхней обмотки и двигаясь против часовой стрелки, наше выражение KVL выглядит примерно так:

В самом деле, если мы сложим эти три векторные величины вместе, они в сумме дадут ноль.Другой способ проверить тот факт, что эти три источника напряжения могут быть соединены вместе в петлю без возникновения циркулирующих токов, — это разомкнуть петлю в одной точке соединения и рассчитать напряжение на разрыве: (рисунок ниже)

Напряжение на открытии Δ должно быть нулевым.

Начиная с правой обмотки (120 В ∠ 120 °) и продвигаясь против часовой стрелки, наше уравнение KVL выглядит следующим образом:

Конечно, на разрыве будет нулевое напряжение, что говорит нам о том, что ток не будет циркулировать в треугольной петле обмоток, когда это соединение будет выполнено.

Установив, что трехфазный источник напряжения, подключенный по схеме Δ, не сгорит до корки из-за циркулирующих токов, переходим к его практическому использованию в качестве источника питания в трехфазных цепях.

Поскольку каждая пара линейных проводов подключается непосредственно к одной обмотке в цепи Δ, линейное напряжение будет равно фазному напряжению.

И наоборот, поскольку каждый линейный проводник присоединяется к узлу между двумя обмотками, линейный ток будет векторной суммой двух соединяющихся фазных токов.

Неудивительно, что результирующие уравнения для Δ-конфигурации выглядят следующим образом:

Анализ цепи примера соединения треугольником

Давайте посмотрим, как это работает на примере схемы: (Рисунок ниже)

Нагрузка на источнике Δ подключена по схеме Δ.

Когда каждое сопротивление нагрузки получает 120 В от соответствующей фазной обмотки источника, ток в каждой фазе этой цепи будет 83.33 ампера:

Преимущества трехфазной системы Delta

Таким образом, каждый линейный ток в этой трехфазной системе питания равен 144,34 А, что значительно больше, чем линейные токи в системе с Y-соединением, которую мы рассматривали ранее.

Можно задаться вопросом, не потеряли ли мы все преимущества трехфазного питания здесь, учитывая тот факт, что у нас такие большие токи в проводниках, что требует более толстого и более дорогостоящего провода.

Ответ — нет. Хотя для этой схемы потребуются три медных проводника калибра 1 (на расстоянии 1000 футов между источником и нагрузкой это составляет чуть более 750 фунтов меди для всей системы), это все же меньше, чем 1000+ фунтов меди, необходимых для Однофазная система, обеспечивающая одинаковую мощность (30 кВт) при одинаковом напряжении (120 В между проводниками).

Одним из явных преимуществ системы с подключением по схеме Δ является отсутствие нейтрального провода. В системе с Y-соединением нейтральный провод был необходим на случай, если одна из фазных нагрузок выйдет из строя (или отключится), чтобы не допустить изменения фазных напряжений на нагрузке.

Это не обязательно (или даже возможно!) В схеме с Δ-соединением.

Если каждый элемент фазы нагрузки напрямую подключен к соответствующей обмотке фазы источника, фазное напряжение будет постоянным независимо от обрыва в элементах нагрузки.

Возможно, самым большим преимуществом источника с Δ-подключением является его отказоустойчивость.

Возможно, что одна из обмоток трехфазного источника, подключенного по схеме Δ, откроется при отказе (рисунок ниже) без влияния на напряжение или ток нагрузки!

Даже при выходе из строя обмотки источника напряжение в сети по-прежнему составляет 120 В, а напряжение фазы нагрузки по-прежнему составляет 120 В.Единственное отличие — дополнительный ток в оставшихся функциональных обмотках источника.

Единственным последствием разрыва обмотки источника для источника, подключенного по схеме Δ, является увеличение фазного тока в остальных обмотках. Сравните эту отказоустойчивость с системой с Y-соединением, имеющей обмотку с открытым исходным кодом, как показано на рисунке ниже.

Разомкнутая обмотка источника «Y» снижает вдвое напряжение на двух нагрузках по Δ, подключенных к нагрузке.

При подключении нагрузки по схеме Δ два сопротивления испытывают пониженное напряжение, в то время как одно остается при исходном линейном напряжении 208.Нагрузка, подключенная по схеме Y, постигает еще худшую судьбу (рисунок ниже) из-за того же отказа обмотки в источнике, подключенном по схеме Y.

Обмотка с открытым истоком системы «Y-Y» снижает вдвое напряжение на двух нагрузках и полностью теряет одну нагрузку.

В этом случае два сопротивления нагрузки испытывают пониженное напряжение, а третье полностью теряет напряжение питания! По этой причине источники с Δ-соединением предпочтительнее для надежности.

Однако, если требуется двойное напряжение (например,г. 120/208) или предпочтительнее для более низких линейных токов, предпочтительной конфигурацией являются системы с Y-соединением.

ОБЗОР:

  • Проводники, подключенные к трем точкам трехфазного источника или нагрузки, называются линиями .
  • Три компонента, составляющие трехфазный источник или нагрузку, называются фазами .
  • Напряжение линии — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
  • Фазное напряжение — это напряжение, измеренное на отдельном компоненте трехфазного источника или нагрузки.
  • Линейный ток — это ток через любую линию между трехфазным источником и нагрузкой.
  • Фазный ток — это ток через любой компонент, содержащий трехфазный источник или нагрузку.
  • В симметричных Y-цепях линейное напряжение равно фазному напряжению, умноженному на квадратный корень из 3, а линейный ток равен фазному току.

  • В симметричных схемах Δ линейное напряжение равно фазному напряжению, а линейный ток равен фазному току, умноженному на квадратный корень из 3.

  • Трехфазные источники напряжения, подключенные по схеме Δ, обеспечивают большую надежность в случае отказа обмотки, чем источники, подключенные по схеме Y. Однако источники, подключенные по схеме Y, могут выдавать такое же количество энергии при меньшем линейном токе, чем источники, подключенные по схеме Δ.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

курсов PDH онлайн.PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов. «

Russell Bailey, P.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечу на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей компании

имя другим на работе. «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что уже знаком с

с деталями Канзас

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

в моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал. «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что позволили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения. «

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.э., позволяя

студент для ознакомления с курсом

материалов до оплаты и

получение викторины. «

Арвин Свангер, П.Е.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

Получил огромное удовольствие «.

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курсов.»

Уильям Валериоти, P.E.

Техас

«Этот материал во многом оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемых тем ».

Майкл Райан, П.Е.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам. »

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании каких-то неясных раздел

законов, которые не применяются

по «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация «

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн формат был очень

Доступно и просто

использовать. Большое спасибо. «

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признать, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

предоставленных фактических случаев »

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.Модель

испытание действительно потребовало исследования в

документ но ответы были

в наличии «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный

курсов. Процесс прост, и

намного эффективнее, чем

в пути «.

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для Professional

.

Инженеры получат блоки PDH

в любое время.Очень удобно »

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

пора искать где

получить мои кредиты от. «

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. »

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро проезд

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы высоко рекомендовал

вам на любой ЧП нужно

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад помочь финансово

по ваш промо-адрес который

пониженная цена

на 40%. «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительно

аттестация. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

.

мне то, за что я заплатил — много

оценено! »

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предоставляет удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материал краток.

хорошо организовано. «

Глен Шварц, П.Е.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку».

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Строительство курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и комплексное ».

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили этот курс

поможет по моей линии

работ.»

Рики Хефлин, П.Е.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, П.Е.

Монтана

«Легко выполнить. Никакой путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Луан Мане, П.Е.

Conneticut

«Мне нравится, как зарегистрироваться и читать материалы в автономном режиме, а затем

Вернуться, чтобы пройти викторину. «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материал для изучения, а потом вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Глэдд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

сертификат. Спасибо за создание

процесс простой. »

Фред Шейбе, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилась возможность скачать документы для проверки содержания

и пригодность, до

имея платить за

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об EE для инженеров, не являющихся электротехниками».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, который требует

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

много разные технические зоны за пределами

своя специализация без

приходится путешествовать.»

Гектор Герреро, П.Е.

Грузия

Подключение трехфазного трансформатора и основные сведения

До сих пор мы рассмотрели конструкцию и работу однофазного двухобмоточного трансформатора напряжения, который можно использовать для увеличения или уменьшения вторичного напряжения по отношению к первичному напряжению питания. Но трансформаторы напряжения также могут быть сконструированы для подключения не только к одной однофазной, но и для двухфазной, трехфазной, шестифазной и даже сложных комбинаций до 24 фаз для некоторых трансформаторов выпрямления постоянного тока.

Если мы возьмем три однофазных трансформатора и соединим их первичные обмотки друг с другом, а их вторичные обмотки друг с другом в фиксированной конфигурации, мы сможем использовать трансформаторы от трехфазного источника питания.

Трехфазные, также называемые трехфазными или 3-фазными источниками питания, используются для производства, передачи и распределения электроэнергии, а также для всех промышленных целей. Трехфазные источники питания имеют много электрических преимуществ по сравнению с однофазными, и при рассмотрении трехфазных трансформаторов мы должны иметь дело с тремя переменными напряжениями и токами, различающимися по времени фазы на 120 градусов, как показано ниже.

Трехфазные напряжения и токи

Где: V L — линейное напряжение, а V P — межфазное напряжение.

Трансформатор не может действовать как устройство изменения фазы и преобразовывать однофазное в трехфазное или трехфазное в однофазное. Чтобы соединения трансформатора были совместимы с трехфазными источниками питания, нам необходимо соединить их вместе определенным образом, чтобы сформировать конфигурацию трехфазного трансформатора .

A Трехфазный трансформатор или 3-фазный трансформатор можно сконструировать либо путем соединения трех однофазных трансформаторов, образуя так называемую батарею трехфазных трансформаторов, либо с помощью одного предварительно собранного и сбалансированного трехфазного трансформатора, который состоит из трех пары однофазных обмоток, установленных на один ламинированный сердечник.

Преимущества построения одного трехфазного трансформатора заключаются в том, что при той же номинальной мощности в кВА он будет меньше, дешевле и легче, чем три отдельных однофазных трансформатора, соединенных вместе, поскольку медный и железный сердечники используются более эффективно.Способы подключения первичной и вторичной обмоток одинаковы, независимо от того, используется ли один трехфазный трансформатор или три отдельных однофазных трансформатора . Рассмотрим схему ниже:

Подключение трехфазного трансформатора

Первичная и вторичная обмотки трансформатора могут быть соединены в различной конфигурации, как показано, чтобы удовлетворить практически любые требования. В случае обмоток трехфазного трансформатора возможны три формы соединения: «звезда» (звезда), «треугольник» (сетка) и «соединенная звезда» (зигзаг).

Комбинации трех обмоток могут быть с первичным соединением треугольником и вторичным соединением звезды или звезда-треугольник, звезда-звезда или треугольник-треугольник, в зависимости от использования трансформаторов. Когда трансформаторы используются для обеспечения трех или более фаз, их обычно называют многофазным трансформатором .

Трехфазный трансформатор со звездой и треугольником

Но что мы подразумеваем под «звездой» (также известной как звезда) и «треугольником» (также известной как сетка), когда имеем дело с подключениями трехфазного трансформатора.Трехфазный трансформатор имеет три набора первичной и вторичной обмоток. В зависимости от того, как эти наборы обмоток соединены между собой, определяется, будет ли соединение звездой или треугольником.

Три доступных напряжения, каждое из которых смещено друг от друга на 120 электрических градусов, не только определяют тип электрических соединений, используемых как на первичной, так и на вторичной стороне, но и определяют протекание токов трансформатора.

При соединении трех однофазных трансформаторов магнитные потоки в трех трансформаторах различаются по фазе на 120 градусов времени.У одного трехфазного трансформатора в сердечнике есть три магнитных потока, различающихся по фазе на 120 градусов.

Стандартный метод маркировки обмоток трехфазного трансформатора заключается в маркировке трех первичных обмоток заглавными (прописными) буквами A, B и C, которые используются для обозначения трех отдельных фаз: КРАСНОГО, ЖЕЛТОГО и СИНЕГО. Вторичные обмотки обозначены маленькими (строчными) буквами a, b и c. Каждая обмотка имеет два конца, обычно обозначаемые 1 и 2, так что, например, вторая обмотка первичной обмотки имеет концы, которые будут обозначены B1 и B2, а третья обмотка вторичной обмотки будет иметь обозначения c1 и c2, как показано.

Конфигурация трансформатора со звездой и треугольником

Символы обычно используются на трехфазном трансформаторе для обозначения типа или типов соединений, используемых с верхним регистром Y для соединения звездой, D для соединения треугольником и Z для соединенных между собой первичных обмоток звезды, с нижним регистром y, d и z для их соответствующих вторичные. Тогда звезда-звезда будет помечена Yy, дельта-дельта будет помечена Dd, а взаимосвязанная звезда с взаимосвязанной звездой будет Zz для тех же типов подключенных трансформаторов.

Идентификация обмотки трансформатора

Соединение Первичная обмотка Вторичная обмотка
Дельта D д
Звезда Y года
Подключено Z z

Теперь мы знаем, что существует четыре различных способа соединения трех однофазных трансформаторов между их первичными и вторичными трехфазными цепями.Эти четыре стандартные конфигурации представлены как: Дельта-Дельта (Dd), Звезда-Звезда (Yy), Звезда-Дельта (Yd) и Дельта-Звезда (Dy).

Трансформаторы для работы с высоким напряжением с соединением звездой имеют преимущество в снижении напряжения на отдельном трансформаторе, уменьшении количества необходимых витков и увеличении размера проводников, что делает изоляцию обмоток катушки проще и дешевле, чем у дельта-трансформаторов. .

Соединение треугольником, тем не менее, имеет одно большое преимущество перед конфигурацией звезда-треугольник в том, что если один трансформатор из группы из трех выйдет из строя или отключится, два оставшихся будут продолжать подавать трехфазное питание с одинаковой мощностью. примерно до двух третей исходной выходной мощности трансформаторного блока.

Подключение трансформатора по схеме «треугольник» и «треугольник»

В группе трансформаторов, соединенных треугольником (Dd), линейное напряжение V L равно напряжению питания, V L = V S . Но ток в каждой фазной обмотке задается как: 1 / √3 × I L линейного тока, где I L — линейный ток.

Одним из недостатков трехфазных трансформаторов, соединенных треугольником, является то, что каждый трансформатор должен быть намотан на полное линейное напряжение (в нашем примере выше 100 В) и на 57.7 процентов, линейный ток. Большее количество витков в обмотке вместе с изоляцией между витками требует большей и более дорогой катушки, чем соединение звездой. Еще один недостаток трехфазных трансформаторов, подключенных по схеме треугольника, заключается в отсутствии «нейтрального» или общего подключения.

В схеме «звезда-звезда» (Yy), (звезда-звезда) каждый трансформатор имеет одну клемму, подключенную к общему переходу или нейтральной точке, а три оставшихся конца первичных обмоток подключены к трехфазной сети.Количество витков в обмотке трансформатора при соединении звездой составляет 57,7% от количества витков, необходимых для соединения треугольником.

Соединение звездой требует использования трех трансформаторов, и если какой-либо один трансформатор выходит из строя или выходит из строя, вся группа может выйти из строя. Тем не менее, трехфазный трансформатор, соединенный звездой, особенно удобен и экономичен в системах распределения электроэнергии, поскольку четвертый провод может быть подключен в качестве нейтральной точки (n) трех вторичных обмоток, соединенных звездой, как показано.

Соединение звездой и звездой трансформатора

Напряжение между любой линией трехфазного трансформатора называется «линейным напряжением», В L , а напряжение между любой линией и нейтралью трансформатора, подключенного звездой, называется «фазным напряжением», В P . Это фазное напряжение между нейтральной точкой и любым из соединений линии составляет 1 / √3 × V L напряжения сети. Тогда выше, фазное напряжение первичной стороны, V P , указано как.

Вторичный ток в каждой фазе группы трансформаторов, соединенных звездой, такой же, как и для сетевого тока источника питания, тогда I L = I S .

Тогда взаимосвязь между линейными и фазными напряжениями и токами в трехфазной системе можно резюмировать как:

Трехфазное напряжение и ток

Соединение Напряжение фаз Напряжение сети Фазный ток Линейный ток
Звезда

V P = V L ÷ √3

В L = √3 × V P

I P = I L

I L = I P

Дельта

V P = V L

V L = V P

I P = I L ÷ √3

I L = √3 × I P

Где опять же, V L — это линейное напряжение, а V P — это межфазное напряжение на первичной или вторичной стороне.

Другие возможные соединения для трехфазных трансформаторов — звезда-треугольник Yd, где первичная обмотка соединена звездой, а вторичная — треугольником, или треугольник-звезда Dy с соединением треугольником первичной и вторичной звездой.

Трансформаторы

, соединенные треугольником, широко используются в распределительных сетях малой мощности, где первичные обмотки обеспечивают трехпроводную сбалансированную нагрузку для энергокомпании, в то время как вторичные обмотки обеспечивают необходимое 4-проводное соединение нейтрали или земли.

Когда первичная и вторичная обмотки имеют разные типы соединения обмоток, звезду или треугольник, общее соотношение витков трансформатора становится более сложным. Если трехфазный трансформатор подключен по схеме треугольник-треугольник (Dd) или звезда-звезда (Yy), то коэффициент трансформации трансформатора потенциально может составлять 1: 1. То есть входное и выходное напряжения для обмоток одинаковы.

Однако, если трехфазный трансформатор подключен по схеме звезда-треугольник, (Yd) каждая первичная обмотка, соединенная звездой, получит фазное напряжение источника питания P , равное 1 / √3 × V L .

Тогда в каждой соответствующей вторичной обмотке будет индуцировано такое же напряжение, и, поскольку эти обмотки соединены треугольником, напряжение 1 / √3 × V L станет вторичным линейным напряжением. Тогда при соотношении витков 1: 1 трансформатор, подключенный по схеме звезда-треугольник, обеспечит понижающее отношение линейного напряжения √3: 1.

Тогда для трансформатора, подключенного по схеме звезда-треугольник (Yd), коэффициент трансформации будет равен:

Передаточное отношение звезда-треугольник

Аналогичным образом, для трансформатора, подключенного по схеме треугольник-звезда (Dy), с соотношением витков 1: 1 трансформатор будет обеспечивать повышающее отношение линейного напряжения 1: √3.Тогда для трансформатора, подключенного по схеме треугольник-звезда, коэффициент трансформации станет равным:

.

Передаточное число Delta-Star

Затем для четырех основных конфигураций трехфазного трансформатора мы можем перечислить вторичные напряжения и токи трансформаторов относительно напряжения первичной линии, V L и его тока первичной линии I L , как показано в следующей таблице. .

Линейное напряжение и ток трехфазного трансформатора

Где: n — «коэффициент трансформации» трансформатора (T.R.) количества вторичных обмоток N S , деленного на количество первичных обмоток N P . (N S / N P ) и V L — линейное напряжение, а V P — межфазное напряжение.

Пример трехфазного трансформатора

Первичная обмотка трансформатора 50 ВА, подключенного по схеме треугольник-звезда (Dy), питается от трехфазного источника питания 100 В, 50 Гц. Если трансформатор имеет 500 витков на первичной обмотке и 100 витков на вторичной обмотке, рассчитайте напряжения и токи вторичной стороны.

Приведенные данные: номинал трансформатора, 50 ВА, напряжение питающей сети, 100 В, первичная обмотка 500, вторичная обмотка, 100.

Затем вторичная сторона трансформатора подает линейное напряжение V LINE около 35 В, дающее вторичное фазное напряжение V PHASE 20 В при 0,834 ампера.

Конструкция трехфазного трансформатора

Ранее мы говорили, что трехфазный трансформатор фактически представляет собой три соединенных между собой однофазных трансформатора на одном ламинированном сердечнике, и значительная экономия в стоимости, размере и весе может быть достигнута путем объединения трех обмоток в единую магнитную цепь, как показано.

Трехфазный трансформатор обычно имеет три магнитные цепи, которые чередуются для обеспечения равномерного распределения диэлектрического потока между обмотками высокого и низкого напряжения. Исключением из этого правила является трехфазный трансформатор оболочки. В конструкции оболочки, даже несмотря на то, что три жилы вместе, они не переплетены.

Конструкция трехфазного трансформатора

Трехфазный трансформатор с сердечником и сердечником является наиболее распространенным методом построения трехфазного трансформатора, позволяющим соединять фазы магнитным полем.Поток каждой ветви использует две другие ветви в качестве обратного пути с тремя магнитными потоками в сердечнике, создаваемыми линейными напряжениями, различающимися по фазе на 120 градусов. Таким образом, магнитный поток в сердечнике остается почти синусоидальным, создавая синусоидальное вторичное напряжение питания.

Корпус трехфазного трансформатора с пятью конечностями тяжелее и дороже в строительстве, чем с сердечником. Пятилепестковые сердечники обычно используются для очень больших силовых трансформаторов, так как они могут быть изготовлены с меньшей высотой.Материалы сердечника, электрических обмоток, стального корпуса и охлаждения корпусных трансформаторов практически такие же, как и для более крупных однофазных трансформаторов.

Базовая программа PLC для управления трехфазным двигателем переменного тока

Motor Starter

В то время как система управления освещением, рассмотренная ранее, полезна для объяснения основных операций PLC, более практичным и лишь немного более сложным приложением является управление запуском и остановкой. двигателя переменного тока.Прежде чем исследовать программу ПЛК, сначала рассмотрите аппаратный подход.

Базовая программа ПЛК для управления трехфазным двигателем переменного тока — для начинающих (на фото: ПЛК Simatic S7-1500; предоставлено SIEMENS)

На следующей линейной диаграмме показано, как можно подключить нормально разомкнутую и нормально замкнутую кнопки для управления трехфазным двигателем переменного тока .

В этом примере катушка пускателя двигателя (M) соединена последовательно с нормально разомкнутой кнопкой мгновенного пуска, нормально замкнутой кнопкой мгновенного останова и нормально замкнутыми контактами реле перегрузки (OL) .

Схема электрических соединений пускателя двигателя

Кратковременное нажатие кнопки «Пуск» завершает путь прохождения тока и включает пускатель двигателя (M). Это замыкает соответствующие контакты M и Ma (вспомогательный контакт, расположенный в пускателе двигателя).

При отпускании кнопки «Пуск» ток продолжает течь через кнопку «Стоп» и контакт Ma , а катушка M остается под напряжением.

Двигатель будет работать до тех пор, пока не будет нажата нормально замкнутая кнопка Стоп, если только контакты реле перегрузки (OL) не разомкнуты.При нажатии кнопки «Стоп» путь прохождения тока прерывается, размыкаются соответствующие контакты M и Ma, и двигатель останавливается.

Так работает аппаратный пускатель двигателя. Теперь давайте обсудим немного о ПЛК, использующем одно и то же //


ПЛК и приложение управления двигателем

Это приложение управления двигателем также может быть выполнено с помощью ПЛК . В следующем примере нормально разомкнутая кнопка пуска подключена к первому входу (I0.0), нормально замкнутая кнопка останова подключена ко второму входу (I0.1), а нормально замкнутые контакты реле перегрузки (часть пускателя двигателя) подключены к третьему входу (I0.2).

Эти входы используются для управления нормально разомкнутыми контактами в цепи релейной логики , запрограммированной в ПЛК.

Схема управления двигателем ПЛК

Первоначально бит состояния I0.1 представляет собой логическую единицу, поскольку нормально замкнутая (NC) кнопка останова замкнута. Бит состояния I0.2 — это логическая 1 , потому что нормально замкнутые (NC) контакты реле перегрузки (OL) замкнуты.Бит состояния I0.0 представляет собой логику 0 , однако, поскольку нормально разомкнутая кнопка пуска не была нажата.

Нормально разомкнутый выходной контакт Q0.0 также запрограммирован в сети как герметизирующий контакт. В этой простой сети для включения двигателя требуется подача питания на выходную катушку Q0.0.

Вернуться к основным темам ↑


Работа программы ПЛК

При нажатии кнопки «Пуск» ЦПУ получает логику от входа I0.0. Это вызывает замыкание контакта I0.0.Все три входа теперь являются логикой. CPU отправляет логику на выход Q0.0. На пускатель двигателя подается напряжение, и двигатель запускается.

Операция программы ПЛК

Бит состояния выхода для Q0.0 теперь равен a. При следующем сканировании, когда нормально открытый контакт Q0.0 устранен, контакт замыкается, и выход Q0.0 останется включенным, даже если кнопка «Пуск» будет отпущена.

Работа программы ПЛК

При нажатии кнопки Стоп: вход I0.0 отключается, контакт I0.0 размыкается, выходная катушка Q0.0 обесточивается, и двигатель выключается.

Работа программы ПЛК

Вернуться к основным темам ↑


Добавление световых индикаторов работы и остановки

Приложение можно легко расширить , добавив световые индикаторы для условий работы и остановки . В этом примере световой индикатор RUN подключен к выходу Q0. а к выходу Q0.2 подключена контрольная лампа STOP.

Релейная логика для этого приложения включает в себя нормально разомкнутый контакт Q0.0, подключенный в сети 2 к выходной катушке Q0.и нормально замкнутый контакт Q0.0, подключенный в сети 3 к выходной катушке Q0.2. Когда Q0.0 выключен, нормально разомкнутый контакт Q0.0 в Сети 2 разомкнут, а индикатор RUN не горит. При этом нормально замкнутый контакт Q0.0 замкнут и горит индикатор STOP.

Добавление световых индикаторов пуска и останова

При нажатии кнопки «Пуск» ПЛК запускает двигатель. Выход Q0.0 включен. Нормально разомкнутый контакт Q0.0 в сети 2 теперь замкнут, и горит индикатор RUN. В то же время нормально закрытый Q0.0 в сети 3 разомкнут, и индикатор STOP, подключенный к выходу Q0.2, не горит.

Добавление световых индикаторов пуска и останова

Вернуться к основным темам ↑


Добавление концевого выключателя

Приложение можно расширить, добавив концевой выключатель. Концевой выключатель может использоваться в этом приложении для множества функций. Например, концевой выключатель можно использовать для остановки двигателя или предотвращения запуска двигателя.

В этом примере концевой выключатель связан с дверцей доступа к двигателю или связанному с ним оборудованию.Концевой выключатель подключен к входу I0.3 и управляет нормально разомкнутым контактом в программе. Если дверца доступа открыта, концевой выключатель LS разомкнут, и нормально разомкнутый контакт I0.3 также разомкнут. Это предотвращает запуск двигателя.

Добавление концевого выключателя

Когда дверца доступа закрыта, концевой выключатель LS замыкается, и нормально открытый контакт I0.3 также замыкается. Это позволяет двигателю запускаться при нажатии кнопки «Пуск».

Добавление концевого выключателя

Вернуться к основным темам ↑


Дальнейшее расширение программы ПЛК

Программа ПЛК может быть дополнительно расширена для соответствия широкому спектру коммерческих и промышленных приложений.

Можно добавить кнопки пуска / останова, переключатели, световые индикаторы и сигнальные столбцы. Можно добавить пускатели двигателей для управления дополнительными двигателями. Можно добавить концевые выключатели перебега вместе с бесконтактными выключателями для определения положения объекта. Могут быть добавлены различные типы реле, чтобы расширить разнообразие контролируемых устройств.

При необходимости можно добавить модули расширения для дальнейшего увеличения возможностей ввода / вывода . Приложения ограничены только количеством входов / выходов и объемом памяти, доступной для ПЛК.

Дальнейшее расширение программы ПЛК

Вернуться к основным темам ↑

Ссылка // Основы ПЛК от SIEMENS

Трехфазное соединение по схеме «треугольник» | Соотношение напряжения и тока

Трехфазное соединение, треугольник:

Система с подключением по схеме «треугольник» — На рисунке 9.26 показана сбалансированная трехфазная трехпроводная система с подключением по схеме «треугольник». Такое расположение называется сетчатым соединением, потому что оно образует замкнутую цепь.Это также известно как трехфазное соединение по схеме «треугольник», потому что три ветви в цепи также могут быть расположены в форме треугольника (Δ).

Судя по способу соединения трех фаз в цепи, может показаться, что эти три фазы закорочены между собой. Тем не менее, это не так. Поскольку система сбалансирована, сумма трех напряжений на замкнутой сетке равна нулю; следовательно, ток не может течь по сетке, когда клеммы разомкнуты.

Стрелки, расположенные рядом с напряжениями, V RY , V YB и V BR , трех фаз показывают, что клеммы R, Y и B положительны по отношению к Y, B и R, соответственно, во время их соответствующие положительные полупериоды.

Отношение напряжения:

Из рис. 9.27 мы замечаем, что только одна фаза подключена между любыми двумя линиями
. Следовательно, напряжение между любыми двумя линиями (V L ) равно фазному напряжению (V Ph ).

Поскольку система сбалансирована, все фазные напряжения равны, но смещены друг от друга на 120 °, как показано на векторной диаграмме на рис. 9.27. Предполагается фазовая последовательность RYB.

Текущее отношение:

На рис. 9.28 мы замечаем, что, поскольку система сбалансирована, трехфазные токи (I Ph ), то есть I R , I Y , I B , равны по величине, но смещены на 120 °. друг от друга, как показано на рис.9.28 (б). I 1 , I 2 и I 3 — линейные токи (I L ), т.е. I 1 — линейный ток в линии 1, соединенной с общей точкой R. Аналогично, I 2 и I 3 — линейные токи в линиях 2 и 3, подключенных к общим точкам Y и B, соответственно. Хотя здесь все линейные токи направлены наружу, ни в какой момент все три линейных тока не будут течь в одном и том же направлении, ни наружу, ни внутрь.Поскольку три линейных тока смещены на 120 ° друг от друга, когда один из них положительный, два других могут быть отрицательными, либо одним положительным и одним отрицательным. Также следует отметить, что стрелки, расположенные рядом с фазными токами на рис. 9.28 (a), указывают направление токов, когда они предполагаются положительными, а не их фактическое направление в конкретный момент. Мы можем легко определить линейные токи на рис. 9.28 (a), I 1 , I 2 и I 3 , применив KCL на трех выводах R, Y и B соответственно.Таким образом, ток в строке 1, I 1 = I R — I B ; то есть ток в любой линии равен разности векторов токов в двух фазах, подключенных к этой линии. Аналогично, ток в строке 2, I 2 = I Y — I R , и ток в строке 3, I 3 = I B — I Y .

Сложение векторов этих токов показано на рис. 9.28 (b). На рисунке

Точно так же оставшиеся два линейных тока, I 2 и I 3 , также равны √3-кратным фазным токам; я.е. I L = √3 I Ph .

Как видно из Рис. 9.28 (b), все линейные токи равны по величине, но смещены на 120 ° друг от друга; и линейные токи на 30 ° отстают от соответствующих фазных токов.

Питание в системе, соединенной треугольником:

Очевидно, что общая мощность в трехфазном соединении по схеме «треугольник» является суммой мощностей трех фаз. Поскольку нагрузка сбалансирована, мощность, потребляемая в каждой фазе, одинакова.Общая мощность равна трехкратной мощности в каждой фазе.

, где Φ — фазовый угол между фазным напряжением и фазным током.

По количеству строк

с

для сбалансированной системы, звезды или треугольника, выражение для полной мощности такое же.

N-фазная ячеистая система:

На рис. 9.30 (a) показана часть n-фазной сбалансированной ячеистой системы. Его векторная диаграмма представлена ​​на рис.9.30 (б).

Пусть ток в линии BB ’будет I L .. Это то же самое для всех остальных линий n-фазной системы. I AB , I BC — фазные токи в фазах AB и BC соответственно. Векторное сложение линейного тока показано на рис. 9.30 (c). Из Рис. 9.30 (b) видно, что линейное и фазное напряжения равны.

Рассмотрим параллелограмм OABC.

Приведенное выше уравнение является общим уравнением для линейного тока в сбалансированной n-фазной сетчатой ​​системе.

Простая схема трехфазного инвертора

В статье обсуждается, как сделать схему трехфазного инвертора, которую можно использовать в сочетании с любой обычной однофазной схемой инвертора прямоугольной формы. Схема была запрошена одним из заинтересованных читателей этого блога.


ОБНОВЛЕНИЕ : Ищете дизайн на основе Arduino? Вы можете найти это полезным:

3-фазный инвертор Arduino


Принципиальная схема

3-х фазная нагрузка может работать от однофазного инвертора, используя следующие поясненные этапы схемы.

В основном задействованные каскады можно разделить на три группы:

На первой диаграмме ниже показан каскад генератора ШИМ, его можно понять по следующим пунктам:

Осциллятор и каскад ШИМ

Схема подключения микросхемы IC 4047 стандартный триггерный выходной генератор со скоростью желаемой частоты сети, установленной VR1 и C1.

Двухтактный ШИМ с заданными размерами теперь доступен на переходе E / C двух транзисторов BC547.
Эта ШИМ подается на вход трехфазного генератора, описанного в следующем разделе.

Следующая схема показывает простую схему трехфазного генератора, которая преобразует вышеуказанный входной двухтактный сигнал в 3 дискретных выхода, сдвинутых по фазе на 120 градусов.

Эти выходы дополнительно разделяются на отдельные двухтактные каскады, сделанные из каскадов НЕ-ворот. Эти 3 дискретных, сдвинутых по фазе на 120 градусов, двухтактных ШИМ теперь становятся питающими входными сигналами (HIN, LIN) для заключительного трехфазного каскада драйвера, описанного ниже.

В этом генераторе сигналов используется один источник питания 12 В, а не два источника питания.

Полное объяснение можно найти в этой статье о генераторе трехфазных сигналов.

Схема ниже показывает каскад схемы с трехфазным инвертором, использующий конфигурацию H-мостовых МОП, которая принимает сдвинутые по фазе ШИМ из вышеуказанного каскада и преобразует их в соответствующее высокое напряжение. Выходы переменного тока для работы с подключенной трехфазной нагрузкой, обычно это трехфазный двигатель.

Высокое напряжение 330 в отдельных секциях драйверов МОП-транзисторов получается от любого стандартного однофазного инвертора, встроенного в показанные стоки МОП-транзисторов для питания желаемой трехфазной нагрузки.

Трехфазный полномостовой каскад драйвера

В приведенной выше схеме трехфазного генератора (вторая последняя диаграмма) использование синусоидальной волны не имеет смысла, потому что 4049 в конечном итоге преобразует ее в прямоугольные волны и, более того, в микросхемы драйвера в последней конструкции используются цифровые ИС, которые не реагируют на синусоидальные волны.

Следовательно, лучше использовать трехфазный генератор прямоугольных сигналов для питания последнего каскада драйвера.

Вы можете обратиться к статье, в которой объясняется, как сделать схему 3-фазного солнечного инвертора, чтобы понять работу ступени генератора 3-фазных сигналов и детали реализации.

Использование IC IR2103

Относительно более простая версия вышеупомянутой схемы трехфазного инвертора может быть изучена ниже с использованием ICS драйвера полумоста IC IR2103. В этой версии отсутствует функция выключения, поэтому, если вы не хотите включать функцию выключения, вы можете попробовать следующий более простой дизайн.

Упрощение вышеуказанных схем

В описанной выше схеме 3-фазного инвертора каскад 3-фазного генератора выглядит излишне сложным, и поэтому я решил поискать альтернативный более простой вариант для замены этой конкретной секции.

После некоторых поисков я нашел следующую интересную схему трехфазного генератора, которая выглядит довольно простой и понятной с ее настройками.

Таким образом, теперь вы можете просто полностью заменить описанную ранее микросхему IC 4047 и секцию операционного усилителя и интегрировать эту конструкцию с входами HIN, LIN в схему 3-фазного драйвера.

Но помните, что вам все равно придется использовать вентили N1 —- N6 между этой новой схемой и полной мостовой схемой драйвера.

Создание схемы солнечного трехфазного инвертора

До сих пор мы узнали, как сделать базовую схему трехфазного инвертора, теперь мы увидим, как солнечный инвертор с трехфазным выходом может быть построен с использованием очень обычных ИС и пассивных компонентов. .

Концепция в основном та же, я только что изменил каскад трехфазного генератора для этого приложения.

Основное требование к инвертору

Для получения трехфазного выхода переменного тока от любой однофазной или постоянного тока нам потребуются три основных каскада схемы:

  1. Трехфазная схема генератора или процессора
  2. Трехфазная схема силового каскада драйвера.
  3. Схема повышающего преобразователя
  4. Панель солнечных батарей (с соответствующим номиналом)

Чтобы узнать, как согласовать солнечную панель с батареей и инвертором, вы можете прочитать следующее руководство:

Расчет солнечных панелей для инверторов


В этой статье можно изучить один хороший пример, который объясняет простую схему трехфазного инвертора

В настоящий проект мы также включаем эти три основных этапа, давайте сначала узнаем о схеме процессора трехфазного генератора из следующего обсуждения:

Как это Работает

На схеме выше показана базовая схема процессора, которая выглядит сложной, но на самом деле это не так.Схема состоит из трех частей: IC 555, который определяет 3-фазную частоту (50 Гц или 60 Гц), IC 4035, который разделяет частоту на необходимые 3 фазы, разделенные фазовым углом 120 градусов.

R1, R2 и C должны быть соответствующим образом выбраны для получения частоты 50 Гц или 60 Гц при рабочем цикле 50%.

8 номеров НЕ вентилей от N3 до N8 можно увидеть включенными просто для разделения сгенерированных трех фаз на пары высоких и низких логических выходов.

Эти шлюзы НЕ могут быть получены от двух ИС 4049.

Эти пары высоких и низких выходов на показанных вентилях НЕ становятся важными для питания нашего следующего трехфазного силового каскада драйвера.

В следующем пояснении подробно описывается схема драйвера трехфазного МОП-транзистора от солнечной батареи.

Примечание. Вывод выключения должен быть подключен к линии заземления, если он не используется, иначе схема не будет работать.

Как видно из приведенного выше На рисунке эта секция построена на трех отдельных микросхемах драйверов полумоста, использующих IRS2608, которые предназначены для управления парами МОП-транзисторов с высокой и низкой стороны.

Конфигурация выглядит довольно простой, благодаря этой сложной микросхеме драйвера от International Rectifier.

Каждый каскад ИС имеет свои собственные входные контакты HIN (высокий вход) и LIN (низкий вход), а также соответствующие контакты питания Vcc / заземления.

Все Vcc должны быть соединены вместе и подключены к линии питания 12 В первой цепи (контакты 4/8 IC555), чтобы все каскады схемы стали доступны для источника питания 12 В от солнечной панели.

Точно так же все контакты заземления и провода должны быть объединены в общую шину.

HIN и LIN должны быть объединены с выходами, генерируемыми вентилями NOT, как указано на второй диаграмме.

Вышеупомянутая схема обеспечивает трехфазную обработку и усиление, однако, поскольку трехфазный выход должен быть на уровне сети, а солнечная панель может быть рассчитана максимум на 60 В, мы должны иметь схему, которая позволила бы повысить это низкое напряжение 60 вольт солнечной панели до необходимого уровня 220 или 120 вольт.

Использование понижающего / повышающего преобразователя на базе микросхемы IC 555

Это можно легко реализовать с помощью простой схемы повышающего преобразователя на базе микросхемы 555, которая может быть изучена ниже:

Опять же, показанная конфигурация повышающего преобразователя с 60 В на 220 В выглядит не так. сложно и может быть сконструирован с использованием самых обычных компонентов.

IC 555 сконфигурирован как нестабильный с частотой приблизительно от 20 до 50 кГц. Эта частота подается на затвор переключающего МОП-транзистора через двухтактный биполярный транзистор.

Сердце схемы повышения формируется с помощью компактного трансформатора с ферритовым сердечником, который принимает частоту возбуждения от МОП-транзистора и преобразует входное напряжение 60 В в требуемый выход 220 В.

Этот 220 В постоянного тока, наконец, подключен к ранее объясненному каскаду драйвера МОП-транзистора через стоки трехфазных МОП-транзисторов для достижения трехфазного выходного сигнала 220 В.

Трансформатор повышающего преобразователя может быть построен на любом подходящем узле EE сердечник / катушка с использованием первичной обмотки 1 мм 50 витков (два 0.5-миллиметровый бифилярный магнитный провод параллельно) и вторичный с использованием магнитного провода диаметром 0,5 мм с 200 витками

Трехфазных цепей переменного тока (со схемой)

В этой статье мы обсудим: 1. Введение в трехфазные цепи переменного тока 2. Генерацию трехфазной ЭДС в цепях переменного тока 3. Чередование фаз 4. Преобразование системы сбалансированной нагрузки со звезды на треугольник и наоборот 5. Балансировка параллельных нагрузок.

Состав:

  1. Введение в трехфазные цепи переменного тока
  2. Генерация трехфазной ЭДС в цепях переменного тока
  3. Чередование фаз в трехфазных цепях переменного тока
  4. Преобразование системы сбалансированной нагрузки со звезды на треугольник и наоборот
  5. Балансировка параллельных нагрузок в трехфазной цепи переменного тока

1.Введение в трехфазные цепи переменного тока:

Типы переменных токов и напряжений, обсуждавшиеся до сих пор в книге, называются однофазными токами и напряжениями, поскольку они состоят из одиночных волн переменного тока и напряжения. Однофазные системы, использующие однофазные токи и напряжения, вполне подходят для бытового применения. Даже двигатели, используемые в бытовых применениях, в основном однофазные, например двигатели для смесителей, охладителей, вентиляторов, кондиционеров, холодильников.

Однако однофазная система имеет свои ограничения и поэтому была заменена многофазной системой. Для питания электропечей обычно используется двухфазная система. Шестифазная система обычно используется в преобразовательных машинах и аппаратах. Для общего питания универсально используется трехфазная система. Для генерации, передачи и распределения электроэнергии повсеместно принята трехфазная система. Двухфазное питание и шестифазное питание получают от трехфазного источника питания.

Многофазная система означает систему, которая состоит из множества (поли означает множество или несколько) обмоток или цепей (фаза означает обмотку или цепь).

Многофазная система по существу представляет собой комбинацию нескольких однофазных напряжений, имеющих одинаковую величину и частоту, но смещенных друг относительно друга на равный угол (электрический), который зависит от количества фаз и может быть определен из следующего соотношения:

Электрическое смещение = 360 электрических градусов / Количество фаз… (7.1)

Вышеупомянутое соотношение не выполняется для двухфазных обмоток, которые смещены на 90 электрических градусов друг от друга.

Система питания считается симметричной, если несколько напряжений одной и той же частоты имеют одинаковую величину и смещены друг от друга на равный временной угол. Трехфазная, трехпроводная или четырехпроводная система питания будет симметричной, если линейные напряжения равны по величине и смещены по фазе на 120 электрических градусов относительно друг друга.Кроме того, в четырехпроводной системе напряжения относительно нейтрали трех фазных проводов должны быть равны друг другу по величине и смещены по фазе на 120 ° относительно друг друга.

Трехфазное питание будет несимметричным, если одно из трехфазных напряжений не одинаково по величине или фазовый угол между этими фазами не равен 120 °.

Цепь нагрузки считается сбалансированной, если нагрузки (импедансы), подключенные в различных фазах, одинаковы по величине и по фазе.Любая трехфазная нагрузка, в которой полное сопротивление одной или нескольких фаз отличается от полного сопротивления других фаз, называется несбалансированной трехфазной нагрузкой.

Если одна из трех фаз трехфазного источника питания, подключенного к трехфазной нагрузке, недоступна, такое состояние называется однофазным.

Достоинства и недостатки многофазной системы по сравнению с однофазной системой:

Преимущества многофазной системы перед однофазной системой перечислены ниже:

(i) В однофазной цепи подаваемая мощность пульсирует.Даже когда ток и напряжение совпадают по фазе, мощность равна нулю дважды в каждом цикле, а когда ток опережает или отстает от напряжения, мощность становится отрицательной дважды и равна нулю четыре раза в течение каждого цикла. Это не является проблемой для освещения и небольших двигателей, но с большими двигателями это вызывает чрезмерную вибрацию. В многофазной системе общая передаваемая мощность постоянна, если нагрузки сбалансированы, хотя мощность любой одной фазы или цепи может быть отрицательной. Поэтому многофазная система очень желательна, особенно для силовых нагрузок.

(ii) Рейтинг данной машины увеличивается с увеличением количества фаз. Например, мощность трехфазного двигателя в 1,5 раза больше, чем мощность однофазного двигателя того же размера.

(iii) Однофазные асинхронные двигатели не имеют пускового момента, поэтому необходимо снабдить эти двигатели вспомогательными средствами запуска, но в случае трехфазных двигателей, за исключением синхронных двигателей, нет необходимости предоставлять вспомогательные средства для начиная.

(iv) Коэффициент мощности однофазного двигателя ниже, чем у многофазного двигателя того же номинала (мощность и скорость).КПД многофазного двигателя также выше, чем у однофазного двигателя.

(v) Трехфазная система требует 3/4 веса меди от того, что требуется однофазной системе для передачи такого же количества энергии при заданном напряжении и на заданном расстоянии.

(vi) Вращающееся магнитное поле можно создать, пропуская многофазные токи через неподвижные катушки,

(vii) Многофазная система более функциональна и надежна, чем однофазная система, и

(viii) Параллельная работа многофазных генераторов проще по сравнению с однофазными генераторами из-за пульсирующей реакции в однофазных генераторах.

Однако трехфазный режим не так практичен для бытовых применений, где двигатели обычно меньше 1 кВт и где большую часть нагрузки обеспечивают цепи освещения.

Обычно используемая многофазная система:

Хотя существует несколько многофазных систем, таких как двухфазная, трехфазная, но неизменно принимается трехфазная система из-за присущих ей преимуществ перед всеми другими многофазными системами.

Спрос на двухфазную систему почти исчез, потому что у нее нет никаких преимуществ, которые не были бы равны или превзойдены трехфазной системой в производстве, передаче или использовании.Трехфазная система повсеместно используется для производства, передачи и распределения электроэнергии. Двухфазное питание и, при необходимости, шестифазное питание обеспечивается от трехфазного источника питания.

Системы с числом фаз, превышающим три, увеличивают сложность и стоимость оборудования для передачи и использования и становятся неэкономичными.

Таким образом, знание трехфазных систем питания необходимо для понимания технологии электроснабжения. К счастью, базовая схемотехника, используемая при решении однофазных цепей, напрямую применима к трехфазным цепям, потому что три фазы идентичны, а одна фаза представляет собой поведение всего вышеперечисленного.В этой статье речь пойдет только о 3-х фазных системах.


2. Генерация трехфазной ЭДС в цепях переменного тока:

Когда три катушки, жестко скрепленные вместе и разнесенные на 120 ° (электрические), вращаются вокруг одной оси в однородном магнитном поле, наведенная ЭДС в каждой из них будет иметь разность фаз 120 ° или 2/3 π радиан.

Рассмотрим три идентичных катушки a 1 a 2 , b 1 b 2 и c 1 c 2 , установленных на одной оси, но смещенных друг от друга на 120 ° и вращающихся против часовой стрелки. в биполярном магнитном поле, как показано на рис.7.1 (а). Здесь a 1 , b 1 и c 1 — это начальные клеммы, а a 2 , b 2 и c 2 — конечные клеммы трех катушек.

Когда катушка a 1 a 2 находится в положении AB, наведенная ЭДС в этой катушке равна нулю и увеличивается в положительном направлении, катушка b 1 b 2 находится на 120 ° позади катушки a 1 a 2 , поэтому ЭДС, наведенная в этой катушке, приближается к своему максимальному отрицательному значению, а катушка c 1 c 2 находится на 240 ° позади катушки прошло положительное максимальное значение и уменьшается.

Поскольку каждая идентичная катушка имеет одинаковое количество витков и намотана проводом того же типа и одинакового поперечного сечения, наведенные ЭДС в каждой из катушек имеют одинаковую величину. Индуцированная ЭДС в каждой катушке также имеет одинаковую частоту и форму волны (в данном случае синусоидальную), но смещены друг от друга на 2π / 3 радиана или 120 °, как показано на рис. 7.1 (b) с помощью форм сигналов.

Соответственно, мгновенные значения ЭДС, индуцированной в катушках a 1 a 2 , b 1 b 2 и c 1 c 2 могут быть представлены как:

, если t = 0, соответствует моменту, когда напряжение или ЭДС катушки a 1 a 2 проходит через ноль и возрастает в положительном направлении.

Двойное подстрочное обозначение:

Решение проблем, связанных с цепями и системами, содержащими несколько напряжений и токов, упрощается и менее подвержено ошибкам, если векторы напряжения и тока обозначены некоторыми систематическими обозначениями. Обозначение двойного индекса — очень полезная концепция с этой точки зрения. В этом обозначении две буквы помещены в основании символа напряжения или тока, порядок, в котором написаны индексы, указывает направление, в котором действует напряжение или течет ток.

Например, если напряжение в цепи действует в таком направлении, что вызывает протекание тока от A к B, положительное направление напряжения будет от A к B, и напряжение может быть представлено как V AB или E AB , порядок нижних индексов, обозначающих, что напряжение или ЭДС действует от A до B.

Если напряжение указано V BA или E BA , это означает, что точка B положительна относительно. точка A (во время ее положительного полупериода), и напряжение заставляет ток течь от B к A i.е., V BA или E BA указывает, что напряжение или ЭДС действует в направлении, противоположном тому, в котором действует V AB или E AB .

Так V BA = — V AB … (7.3)

Аналогично I AB указывает, что ток течет от A к B, но I BA указывает, что ток течет в направлении от B к A, то есть I BA = — I AB .


3.Чередование фаз в трехфазных цепях переменного тока:

Последовательность фаз — это порядок или последовательность, в которой токи или напряжения в разных фазах достигают своих максимальных значений один за другим.

На рис. 7.1 (a) показаны три катушки a 1 a 2 , b 1 b 2 и c 1 c 2 , вращающихся против часовой стрелки. Поскольку катушка b 1 b 2 , находится на 120 ° позади катушки a 1 a 2 , а катушка c 1 c 2 находится на 240 ° позади катушки a 1 a 2 , поэтому , первая катушка a 1 a 2 , достигает максимального или пикового значения наведенной ЭДС, катушка b 1 b 1 достигает максимального или пикового значения наведенной ЭДС, когда катушки поворачиваются дальше на 120 ° (электрический) и катушка c 1 c 2 достигает пикового значения наведенной ЭДС, когда катушки вращаются на 240 ° (электрическая).Поскольку наведенные ЭДС в трех катушках a 1 a 2 , b 1 b 2 и c 1 c 2 , достигают максимальных значений в порядке a, b, c, последовательность фаз равна, ab c.

Если направление вращения катушек меняется на противоположное, то есть по часовой стрелке, трехфазные ЭДС достигают своих максимальных значений в порядке a, c, b и, следовательно, последовательность фаз будет acb. Поскольку катушки можно вращать по часовой стрелке или против часовой стрелки, возможны только две возможные последовательности фаз.

Знание последовательности фаз 3-фазного источника питания необходимо для подключения генераторов и трансформаторов для их параллельной работы. Изменение чередования фаз трехфазного генератора переменного тока, который должен работать параллельно с другим аналогичным генератором переменного тока, может вызвать серьезные повреждения обеих машин.

Направление вращения асинхронного двигателя зависит от последовательности фаз. Если чередование фаз поменять местами любыми двумя клеммами 3-источника питания, двигатель будет вращаться в противоположном направлении.

Чередование фаз напряжения, приложенного к нагрузке, обычно определяется порядком, в котором соединены три фазных линии. В случае трехфазных несимметричных нагрузок эффект изменения чередования фаз, как правило, вызывает совершенно другой набор значений токов. Поэтому при работе с такими системами важно четко указать последовательность фаз, чтобы избежать ненужной путаницы.


4. Преобразование системы сбалансированной нагрузки со звезды на треугольник и наоборот:

Любая сбалансированная система, соединенная звездой, может быть полностью заменена эквивалентной системой, соединенной треугольником, или наоборот из-за их соотношения между фазными и линейными напряжениями и токами.Например, сбалансированная нагрузка, подключенная по схеме звезды, имеющая полное сопротивление Z с коэффициентом мощности cos ɸ (или Z) в каждой фазе, может быть заменена эквивалентной нагрузкой, подключенной по схеме треугольника, с полным сопротивлением 3Z и коэффициентом мощности cos ɸ (т.е. 3Z ∠ɸ) в каждой фазе.

Это может быть установлено следующим образом:

Теперь в эквивалентной системе с подключением по схеме треугольника для тех же значений напряжения и тока, что и в случае системы с подключением звездой:


5.Балансировка параллельных нагрузок в трехфазной цепи переменного тока:

Комбинация сбалансированных 3- ɸ нагрузок, подключенных параллельно, может быть решена любым из следующих методов:

1. Все данные нагрузки могут быть преобразованы либо в эквивалентные нагрузки, подключенные по схеме Y, либо в Δ, а затем объединены вместе в соответствии с законом, регулирующим параллельные цепи.

2. Альтернативный метод — определение вольт-ампер.

Активная мощность и реактивная мощность различных нагрузок могут быть сложены арифметически и алгебраически соответственно, чтобы получить общие вольтамперы в соответствии с выражением:

Где P — мощность в ваттах (или кВт), Q — это реактивная мощность в реактивных вольт-амперах (или кВАр), а S — вольтамперы (или кВА)

Пример:

Трехфазный генератор на 1000 В, подключенный звездой, обеспечивает питание асинхронного двигателя мощностью 500 кВт, подключенного по схеме «треугольник».Если коэффициент мощности двигателя составляет 0,8, а его эффективность 0,9, найдите ток в каждом генераторе и фазе двигателя.

Решение:

Вход двигателя, P = Мощность двигателя / КПД двигателя = 500 / 0,9 = 555,55 кВт

Коэффициент мощности двигателя, cos ɸ = 0,8 (отстающий)


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *