Плазменная сварка как работает: Страница не найдена — Plazmen.ru

Содержание

Плазменная сварка - сущность и принцип работы

Плазменная сварка применяется при соединении некоторых марок нержавеющих сталей, тугоплавких и многих цветных металлов, также изделий из разных материалов.

Технология соединения металлов с помощью плазменной дуги открывает большие возможности в области сварки. Она основана на принципе расплавления сплавов узконаправленной струей плазмы, обладающей огромной энергией. Плазменная сварка применяется при соединении некоторых марок нержавеющих сталей, тугоплавких и многих цветных металлов, а также изделий из разных материалов.

Особенности технологии


Плазменная сварка основана на технологии аргонодуговой сварки. Различие этих технологий в особенностях дуги. В отличие от обычной электрической, дуга плазмы представляет собой сжатую плазменную струю, обладающую мощной энергией. Чтобы понять сущность процесса плазменной сварки, нужно знать, что такое плазма и условия ее возникновения.

Что такое плазма и как она возникает

Плазма — это состояние газа при его частичной или полной ионизации. Это значит, что он может состоять не только из нейтральных молекул и атомов, но и из электронов и ионов, обладающих определенным электрическим зарядом или полностью состоять из заряженных частиц. Для перевода газа в состояние плазмы нужно ионизировать большую часть его молекул и атомов. Чтобы добиться этого, необходимо приложить к электрону, входящему в состав атома, усилие, превышающее его энергию связи с ядром и помочь оторваться от него.

Для этого должны быть созданы определенные условия, которые и были разработаны в области получения плазменной дуги.

Первое упоминание о разработке плазменной сварки было в 1950 году. В 1960 году были представлены некоторые принципы получения плазменного потока и внедрена технология и оборудование плазменной сварки. У нас в стране исследованиями в этой области и разработкой технологии занимались в Институте металлов им. А. А. Байкова, руководил проектом Н.Н. Рыкалин. После изучения физических свойств и энергии сжатой электрической дуги в среде аргона, преобразованной в плазменную струю, были определены ее технические возможности в области сварки и разработано специальное оборудование.

Схема получения плазменной струи


Плазменное преобразование достигается за счет воздействия сильного электрического поля, созданного дугой при прохождении через газ, на принудительно вдуваемый газ, поступающий через сопло горелки.

Таким образом, для преобразования электрической дуги в наэлектризованную струю плазмы, необходимо выполнить два условия:

  • выполнить ее сжатие;
  • провести прогон через нее специального газа для создания плазмы.

Сжатие обеспечивает специальное устройство плазмотрона. В итоге, толщина струи уменьшается, а напор — возрастает. Одновременно к дуге подается газ, который под ее воздействием нагревается и превращается в плазму. За счет нагрева происходит расширение и увеличение объема газа. В результате из сопла он устремляется с большой скоростью. При этом, если обычный электрический разряд имеет температуру порядка 5000-7000оС, то плазма может достигать 30 000оС.

Для образования плазмы используют в основном аргон с добавлением небольшого количества гелия.

Электрод должен быть также защищен нейтральным аргоном. В качестве электрода выбирают вольфрамовые изделия с добавлением тория или иттрия.

Технология плазменной сварки характеризуется высокой температурой и небольшим диаметром дуги, что обеспечивает ее значительную мощность.

Основные характеристики и преимущества


Получив плазменную дугу, вы можете значительно расширить возможности сварки. Основными отличиями ее от обычной аргоновой сварки являются:
  • высокая температура плазмы, достигающая 30000оС;
  • малое поперечное сечение дуги;
  • коническая форма дуги, характерная для аргоновой сварки, изменена на цилиндрическую форму;
  • малый диаметр струи позволяет значительно увеличивать давление, с которым она воздействует на металл. Оно выше, чем при аргонной сварке почти в 10 раз.
  • процесс сварки может поддерживаться небольшим током в пределах от 0,2 до 3,0 ампер.

Такие свойства плазмы обеспечивают существенные возможности этой сварки перед аргонодуговой сваркой:

  • обеспечивается более глубокий проплав шва;
  • уменьшается зона расплавления без разделки свариваемых кромок;
  • благодаря цилиндрической форме и способности увеличиваться по длине, с помощью плазменной дуги можно проводить сварку труднодоступных мест.

Недостатки технологии


Сварка не лишена недостатков:
  • во время ее проведения происходит частичное рассеивание энергии в пространство;
  • возникает потребность в плазмообразующем газе и охлаждении плазмотрона водой;
  • стоимость оборудования значительно выше стоимости аргонодуговых аппаратов.

Виды плазменной сварки

Плазменные устройства работают преимущественно с горелками, использующими постоянный ток.

Применяют две схемы работы:

  • С использованием дуги, образованной между неплавким электродом и свариваемой поверхностью металла;
  • С использованием струи плазмы, образованной между неплавким электродом и корпусом плазмотрона.

Соединение металлов с использованием плазмы разделяют также по значению величины используемого тока. Применяется следующие виды сварки:

  • микроплазменный вид, проходящий в интервале тока от 0,1 до 25 ампер;
  • сварка с использованием средних токов, величиной от 50 до 150 ампер;
  • сварка с использованием токов более 150 ампер.

При микроплазменной сварке металл практически не прогорает. В случае использования токов большого значения достигается полное проплавление шва с разделением изделий и последующей их заваркой.

Устройство и принцип работы плазмотрона


Аппарат, выполняющий роль плазменного генератора, называют плазмотроном. Он представляет собой устройство, использующее энергию электричества для создания плазменного состояния газа и дальнейшего использования плазмы в образовании сварочной дуги.

Используют два вида конструкций плазмотронов, работающих по схеме косвенного или прямого образования дуги.

Для плазменной сварки используют преимущественно плазмотрон, работающий по прямой схеме, когда катодом служит вольфрамовый электрод, а анодом — свариваемая поверхность. Именно тогда дуга приобретает форму цилиндра.При косвенной схеме работы струя плазмы имеет обычный конический вид.

Основными узлами такого устройства являются:

  • вольфрамовый электрод (катод), который образует одну связку с устройством подачи плазмообразующего газа;
  • корпус устройства;
  • сопло с формообразующим наконечником;
  • термостойкий изолятор;
  • охлаждающая система с использованием водной струи;
  • пусковое устройство.

Для возбуждения основной дуги к поверхности металла от аппарата подключается положительно заряженный кабель.


Возникшая дуга ионизирует газ, поступающий из баллона или компрессора в камеру под давлением. При разогреве во время ионизации газ расширяется и выбрасывается в виде струи плазмы из камерного пространства с большой кинетической энергией.

Для того, чтобы облегчить розжиг основной дуги, в камеру плазмотрона встроен вспомогательный электрод, выполняющий роль анода. При включении плазмотрона в сеть и его запуске этот электрод получает положительный заряд, образуя дугу с вольфрамовым катодом. Возникшая плазменная струя разогревает свариваемый металл и провоцирует розжиг основной мощной плазменной дуги по схеме “вольфрамовый катод-поверхность металла”. Выполнив свою функцию, дежурная плазменная дуга гасится, а аппарат продолжает работать на основной струе плазмы.

Оборудование для сварки плазмой

Для проведения плазменной сварки в нашей стране используют аппараты отечественного производства, наиболее востребованным из которых является мобильный аппарат универсального применения «ПЛАЗАР».

Также распространены в использовании плазмотроны зарубежного изготовления «FoxWeld PLAMA 33 Vulti», «BLUE WELD BEST PLASMA 60 HF» и другие.

что это такое, особенности и сущность

Чтобы металлические конструкции изделия были прочными и качественными, для соединения важных частей из стали применяется сварка.

Эта технология используется на протяжении многих лет и за период ее существования появилось множество разновидностей, которые позволяют работать с разными материалами.

Плазменная сварка является популярной разновидностью, которую применяют многие опытные сварщики. В ее основе лежит принцип расплавления сплавов узконаправленной струей плазмы, которая обладает огромной энергией. Этот вид технологии используется для соединения некоторых марок нержавеющих сталей, тугоплавких и многих цветных металлов, а также изделий из разных материалов. Но все же перед тем как приступать к сварочным работам стоит предварительно рассмотреть важные особенности.

Сущность плазменной сварки

Плазменная сварка металла основывается на использовании технологии аргонодуговой технологии. Различие между этими двумя технологиями состоит в особенностях дуги. В отличие от электрической дуга плазма имеет вид сжатой плазменной струи, которая обладает мощной энергией.

Чтобы понять, в чем заключается сущность плазменной сварки, требуется для начала рассмотреть, что такое плазма и условия ее возникновения.

Плазмой считается состояние газа при его частичной или полной ионизации. Это означает, что в его основу могут входить не только нейтральные молекулы и атомы, но и электроны, ионы, имеющие определенный электрический заряд, состоящие полностью из заряженных частиц.

Для перевода газа в состояние плазмы требуется провести ионизацию большей части его молекул и атомов. Чтобы это получить, необходимо приложить к электрону, входящему в основу атома, усилие, превышающее его энергию связи с ядром и помочь оторваться от него. Именно в этом состоит сущность плазменной сварки.

Особенности и характеристики процесса

Чтобы понять, что такое плазменная сварка, стоит рассмотреть ее важные особенности, а именно как производится процесс. Во время него обычно в области сваривания применяется очень высокая температура, которая образуется при принудительном уменьшении размеров сечения дуги и повышении ее показателей мощности.

В результате получается сварка плазменной струей, при которой показатели температуры могут доходить до 300000С.

А вот при аргонодуговой сварке они могут быть всего 5000-70000С. Во время сварочного процесса дуга приобретает цилиндрическую форму, именно это позволяет сохранять одинаковый показатель мощности по всей длине.

Во время проведения плазменного сваривания наблюдается высокое давление дуги на поверхность свариваемых металлических элементов. Именно это позволяет оказывать воздействие практически на все виды металлов и сплавов.

Стоит отметить! Плазменную технологию сваривания можно применять при небольших величинах электрического тока. Процесс может осуществляться при 0,2-30 А.

Все эти особенности делают этот вид сварки практически универсальным. Он может с успехом применяться в труднодоступных зонах, при соединении тонких алюминиевых листов без возможных прожогов. Незначительное изменение расстояния между электродом и деталью не оказывает сильного воздействия на прогревание, а это значит, не влияет на качество шва, как это бывает в других видах сварки.

За счет того, что во время плазменной технологии наблюдается большая глубина прогревания деталей, это позволяет обходиться без предварительной подготовки кромок. Допускается проводить сваривание металлов с неметаллами.

В итоге происходит повышение производительности работ, уменьшение температурной деформации сварного соединения, это значит, что деталь конструкции не ведет. А вот сварка плазморезом позволяет проводить не только сваривание металлических конструкций, но и обеспечивает качественное разрезание металлов и неметаллов в разном положении.

Преимущества и недостатки

Плазменная сварка и резка является востребованной технологией, при помощи которой производят сваривание конструкций разного размера. Этот процесс имеет ряд положительных качеств:

  • повышенный показатель температуры плазмы, который может доходить до 300000С;
  • небольшое поперечное сечение дуги;
  • в отличие от газовой сварки скорость металла с толщиной от 5 до 20 см по плазменной технологии выше три раза;
  • наблюдается высокая точность сварных соединений, которые получаются в процессе плавления;
  • качество проведенных работ не требует проведения дополнительной обработки краев изделий;
  • плазменный сварочный процесс может применяться практически для любых типов металла. К примеру, при помощи него можно варить изделия из запорожской стали, меди, алюминия, чугуна;
  • во время проведения сварочных работ металл не подвергается деформациям, даже при вырезании сложных фигур;
  • плазменная технология предполагает проведение резки металлической поверхности, которая не прошла предварительную подготовку. К примеру, ее можно применять в случаях, когда на изделии присутствует ржавчина, краска;
  • нет необходимости применять аргон, ацетилен, кислород. Это позволяет существенно сэкономить;
  • наблюдается высокая степень безопасности проводимых работ. Это связано с тем, что во время сваривания не применяются баллоны с газом, которые выделяют токсичные пары. Также при неправильном применении и хранении они могут взорваться.

У плазменного сварочного процесса имеются некоторые недостатки:

  • во время его проведения происходит частичное рассеивание энергии в пространство;
  • требуется использование плазмообразующего газа;
  • обязательно должно проводиться охлаждение плазмотрона при помощи воды;
  • высокая стоимость сварочных аппаратов.

Принцип работы

Перед тем как приступать к плазменной сварке стоит рассмотреть ее принцип работы. Во время процесс подается мощный электрический разряд, который превращает рабочую среду в плазменную. Образуется газ, который имеет высокую температуру.

За счет воздействия на металлическую поверхность потока ионизированного газа, проводимого электрическим током, происходит плавление металлической основы. Во время нагревания дуги газ подвергается ионизации, уровень которой увеличивается с повышением температурных показателей газа.

Плазменная струя, которая обычно имеет сверхвысокую температуру, повышенная мощность, это все формируется из обычно дуги после сжатия, вдувания в дугу. Она образуется при помощи плазмообразующего газа, в качестве которого часто применяется аргон, в редких случаях используется водород, гелий.

Плазменная сварка прямого действия

Что такое плазменная сварка прямого действия? Этот метод является распространенным, он осуществляется благодаря электрической дуге, которая образуется между электродом и рабочим изделием.

Технология плазменной сварки имеет некоторые характерные особенности:

  1. Плазменная сварка алюминия должна выполняться с максимальной осторожностью. Это связано с тем, что данный металл плавится при температуре 660,3 градусов.
  2. Обязательно нужно внимательно контролировать процесс, чтобы не допустить пропал.
  3. В инструкции к сварочным аппаратам всегда указывается таблица, в которой обозначается рекомендованная сила тока для каждого вида металла. К примеру, плазменная сварка нержавейки выполняется на среднем токе, а стали - на высоком.

Обратите внимание! В дуге с прямым действием изначально происходит возбуждение дуги на малых токах, между соплом и заготовкой. После того как плазма прикасается к свариваемой детали образуется основная дуга прямого действия.

Питание дуги производится при помощи переменного или постоянного тока с прямой полярностью. Ее возбуждение выполняется осциллятором.

Плазменная сварка косвенного действия

Перед тем как приступать стоит рассмотреть, что такое плазменная сварка косвенного действия. Во время этого метода образование плазмы осуществляется так же, как и при технологии прямого действия. Отличие состоит в том, что источник питания подключается к электроду и соплу, в результате этого между этими элементами образуется дуга, и на выходе из горелки появляется плазменная среда.

Скорость выхода потока плазмы находится под контролем давления газа. Секрет состоит в том, что газовая смесь при переходе в состояние плазмы увеличивает объем в 50 раз и благодаря этому вылетает из аппарата в виде длиной струи. Энергетические показатели расширяющегося газа совместно с тепловой энергией делают плазму мощным источником энергии.

К преимуществам сварки косвенного действия можно отнести:

  • обеспечивает бесперебойный рабочий процесс;
  • позволяет существенно сэкономить затраты на электрический ток;
  • за счет того, что во время сварочного процесса применяется высокое давление, газовые смеси практически не разбрызгиваются;
  • этот вид отлично подходит для сварки и резки металлов.

Важно! Плазменная сварка и резка металлов должна проводиться с использованием правильных режимов. Они должны осуществлять правильную подачу тока, учитывать типы свариваемых материалов, их показатели толщины, диаметр сопла плазмотрона. Для резки разных материалов должны применяться разные виды газов.

Устройство и принцип работы плазмотрона

Во время плазменного сварочного процесса применяется специальный аппарат, который выполняет роль плазменного генератора, он называется плазмотроном. Это устройство применяет энергию электричества для преобразования газа в состояние плазмы для сварки, которая в дальнейшем применяется для создания сварочной дуги.

Применяется два вида устройств, которые работают по схеме косвенного и прямого преобразования дуги. Плазмотрон для сварки плазмой идет прямого действия, когда в качестве катода применяется вольфрамовый электрод, а анода - свариваемая поверхность. Именно это приводит к тому, что дуга приобретает цилиндрическую форму.

К основным узлам плазмотрона относят:

  1. Вольфрамовый электрод (катод). Он образует одну связку с устройством подачи плазмообразующего газа.
  2. Корпусная часть прибора.
  3. Сопло с формообразующим наконечником.
  4. Термостойкий изолятор.
  5. Система охлаждения, для которой применяется водная струя.
  6. Пусковое устройство.

Для возбуждения основной дуги к поверхности металла от устройства подключается кабель с положительным зарядом. Появившаяся дуга ионизирует газ, который поступает из баллона или компрессора в камеру под давлением. При разогревании во время ионизации газ расширяется и выбрасывается из камерного пространства в форме струи с высокой кинетической энергией.

Стоит отметить! Чтобы облегчить розжиг основной дуги, в область камеры плазмотрона встроен вспомогательный электрод, который выполняет функции анода. При включении плазмотрона в сеть и запуске, данный электрод получает положительный заряд и образует дугу с вольфрамовым катодом.

Важные требования

Возможно, для многих плазменно-дуговая сварка покажется простым процессом, который можно с легкостью выполнить с первого раза не имея большого опыта. Однако во время него обязательно требуется соблюдать все важные правила технологии. К основным ошибкам относятся:

  • запоздалая замена сменных компонентов плазмотрона;
  • применение деталей с низким качеством или дефектами;
  • использование некорректных режимов, которые снижают длительность срока службы элементов;
  • отсутствие контроля за параметрами плазмообразующего газа;
  • применение высокой или низкой скорости резки по сравнению с предусмотренным режимом.

Все эти важные требования относятся к плазменному сварочному процессу, а также его подвидам - микроплазменной сварке, воздушно-плазменной сварке и другим методам. Обязательно требуется применять сварочный аппарат, который сможет обеспечить необходимые характеристики сварочного тока. Понадобится горелка, неплавящийся электрод, комплект шлангов для подачи или циркуляции охлаждающей жидкости и другие важные компоненты для работы.

Плазменный сварочный процесс считается востребованной технологией, которую активно применяют в разных областях промышленности - машиностроение, приборостроение, изготовление деталей высокой точности, ювелирная сфера и так далее. Этот метод отличается высокой точностью, он позволяет получить ровный шов отличного качества. Но все же его проведение должно осуществляться с учетом важных правил и требований.

Интересное видео

Применение процесса плазменной и плазменной+TIG сварки

Плазменная дуга: природный феномен, полностью изученный и освоенный SAF-FRO. В основном, термин «плазма» касается газообразных сред, в которых при атмосферном давлении преобладают температуры свыше 3000 °С. С позиции температуры, можно считать, что это четвертое состояние материи после твердого, жидкого и газообразного.

Плазменная дуга ныне широко используется в черной металлургии, химии и при изготовлении механических конструкций. Будучи лидером в своей области, SAF-FRO сделала плазму исключительно эффективным инструментом для резки и сварки. Что касается сварки, следует признать, что метод с использованием плазмы является новым технологическим этапом в развитии открытой дуги в нейтральном газе (метод TIG).
 

Из представленных изотерм четко видно, что распределение энергии сильно изменяется в дуге.

В плазме зона температур от 16000 до 24000° К находится за пределами наконечника. Зона 10000-16000° К полностью переведена на деталь и порождает режим дуги с лучом, выходящим с обратной стороны соединения (эффект замочной скважины).
 

В случае с открытой дугой (TIG), зона высоких температур слишком близка к катоду, чтобы ее можно было использовать. Если рассмотреть зону температур 4000-10000° К, то можно отметить, что она узкая в плазме и шире раскрыта при TIG. Данная зона небесполезна: в ней осуществляется плавление (поверхностное) с глубиной, уменьшающейся по отношению к плоскости соединения, делая возможным, таким образом, плавное соединение свариваемой зоны и основного металла. Однако данная зона чересчур широка при TIG, что ограничивает эффективность.

  Материя плазма состоит из электронов, ионов и атомов или возбужденных молекул; данное состояние часто встречается в природе, например, разрядом молнии образуется плазма. Приблизительно с 1960 в области сварки по инициативе SAF-FRO значение слова «плазма» изменилось и обозначает состояние повышенной концентрации энергии, вызванное сжатием электрической дуги посредством диафрагмы или наконечника.

ПРЕИМУЩЕСТВА ПЛАЗМЕННОЙ СВАРКИ

  • Быстродействие и малые деформации, что позволяет снизить и даже полностью исключить операции по выпрямлению, а также мало излишних наплавлений, что исключает операции по полировке, а также контроль химического состава основного материала во избежание коррозии.
  • Отличный внешний вид является показателем качества, т.к. все чаще сварные швы остаются на виду, а также постоянство получаемого качества и снижение затрат времени на подготовку посредством исключения операции по обработке торцов деталей толщиной до 8 мм.
  • Снижение длительности сварки, по сравнению с ручной сваркой, в 4 и даже 5 раз, а также гарантия полного и равномерного плавления благодаря технологии проникающего пучка при сварке на стыках.
  • Обеспечение высокого качества, отвечающего самым строгим требованиям, и гарантия его воспроизводимости.
  • Безупречное качество наложения шва благодаря полному контролю управляемых параметров.
 


ТЕХНОЛОГИЯ ПЛАЗМЕННОЙ СВАРКИ + TIG Если длина листов, подлежащих сварке, достигает 3-4 м, производство завода, изготавливающего трубы или котлы путем поэтапной формовки (прокат или пресс), может быть ограничено скоростью плазменной сварки с одиночным электродом. Именно в данной ситуации оправдана комбинация плазма + TIG.

SAF-FRO, будучи специалистом в области плазменной сварки и TIG, сумела интегрировать эти два процесса в единую установку, способную увеличить производительность на 30-50 %.

Преимущества технологии Плазма + TIG:

  • Высокое качество плазменной сварки
  • Улучшение производительности на 30-50%
  • Большие возможности адаптации к различным процессам производства котлов
В технологии Плазма + TIG первая (плазменная) дуга обеспечивает плавление по всей толщине соединения благодаря использованию строго ограниченной плазменной среды, воздействующей только на обратную сторону соединения. Следующая за ней и расположенная в 250-300 мм дуга TIG в комбинации с металлом-наполнителем и системой магнитного колебания осуществляет окончательную обработку сварного шва. Он получается очень аккуратным благодаря магнитному колебанию дуги и защитной газовой среде длиной 120 мм.

Технология Плазма + TIG весьма эффективна при сварке деталей толщиной от 3 до 8 мм.

 

Детали толщиной менее 3 мм превосходно свариваются технологией TIG с одиночным электродом. Сварка деталей толщиной более 8 мм требует дополнительного заполнения методом TIG с одиночным электродом.


Технология и оборудование плазма + TIG специально разработаны для производства котлов большой емкости из нержаверщей стали:

  • длиной > 3 метров,
  • диаметром > 2,2 метра

или для производства болших нержаверщих труб индивидуального размера.

 

ПЛАЗМЕННАЯ СВАРКА В ЦЕХАХ

Использование плазменной технологии и TIG для продольной или круговой сварки на плоскости нержаверщей стали, благородных металлов, железа или алюминия. Изготовление различной продукции для нефтехимической пищевой, аэрокосмической и других видов промышленности.

Продольная сварка на стенде

Закрытие цистерны и стыковая сварка. Начало и завершение сварки по внутренней стороне

Сварка с использованием сварочной колонны 

  • Максимальное перемещение в стандартном исполнении: 4,3 м по горизонтали, 6,2 м по вертикали
За информацией по оборудованию со специальными характеристиками обращайтесь к нашим специалистам.

Сварка на стенде

  • Допустимая толщина - до 10 мм,
  • Максимальная длина сварки 6 в зависимости от типа стенда: 4 м (exter), 6 м (exinter) или 7 м (inter)
За информацией по оборудованию со специальными характеристиками обращайтесь к нашим специалистам.

Вращатели выдерживают нагрузку в 5 т, 10 т и 15 т. За информацией по оборудованию со специальными характеристиками обращайтесь к нашим представителям.

 


Плазменная сварка при производстве сборных труб Производство сборных труб является предварительным этапом строительства трубопроводов, что позволяет осуществлять в цехах производство и сварку базовых элементов (трубы, фланцы, угольники и т.д.).

Данный тип производства применяется в различных производственных областях:

  • Кораблестроительные верфи и оффшорные платформы
  • Нефтепереработка и теплоэлектроцентрали
  • Химический и пищевой комплекс
  • Газораспределительные станции

Материалы:

  • Углеродистые стали
  • Нержаверщие стали
  • Благородные металлы и титан
Плазменная сварка весьма эффективна при производстве сборных труб диаметром свыше 1,5 дюйма. Сварку элементов меньшего диаметра можно осуществлять методом TIG на том же оборудовании.
 
  

 Плазма NERTAMATIC 450 + TIG бикатодная установка

Данный комплекс разработан для производства емкостей большого объема из нержаверщей стали (марка 300 толщиной от 1 до 8-10 мм для транспортировки и хранения химической и пищевой продукции).

Это идеальное оборудование для сварки листов на предварительной стадии производства контейнеров большой длины (более 4 м), а также для круговой сварки диаметром более 2 метров.


Данная установка работает по оригинальной технологии SAF-FRO плазма + TIG, когда первая, «плазменная», сварочная головка осуществляет плавление на стыке двух листов. Вторая головка, «TIG», с металлом-наполнителем, оснащенная электромагнитным дуговым осциллятором и модулем защитного газа, выполняет шов с отличной поверхностью, которая зачастую не требует дополнительной обработки. Данный метод с двумя работающими в тандеме сварочными головками обеспечивает более высокую производительность - на 30-50% выше, по сравнению плазменной сварочной установкой с одиночной головкой.

Каждая установка сохраняет и управляет собственными параметрами сварки. Установки также дополнены цифровым блоком управления для синхронизации начала движения или остановок сварочных головок, для управления скоростью движения и длиной сварки. Данный блок управления записывает и управляет параметрами перемещения.

Сварочное оборудование

 

Установка TIG + плазма состоит из двух установок NERTAMATIG 450:

  • Плазменная установка со сварочной головкой SP 7 и регулируемым напряжением дуги
  • Установка TIG со сварочной головкой МЕС 4, регулируемым напряжением дуги, механизмом подачи проволоки, осциллятором дуги и модулем защитного газа.

Источник питания NERTAMATIC 450

Источник питания NERTAMATIC 450 оснащен:

  • Центральным модулем
  • Интерфейсом для:
    • Облегчения его интеграции в окружение машины посредством внешнего PLC (режим открытого PLC)
    • Обеспечения (посредством ПО, установленного на ПК) доступа к программным файлам, возможности редактирования программ, экспорта программ в файл Excel для печати и хранения.
  • Промышленным разъемом USB для импорта-экспорт программ
  • Вспомогательным источником питания для пилотной дуги (25A)
  • Основным источником питания (450A)
 
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Источник питания использует транзисторную технологию с прерывателем, специально предназначен для сварки ТИГ или плазменной сварки, на параметры не влияют колебания питающей сети + 10 %.

  • Сварочный ток : 3 - 450 A
  • ПВ: 100% при 450A и 40°C
  • Частота импульса: 1 – 1000 Гц.
  • Напряжение без нагрузки: 110 В
  • Ток вспомогательной дуги: 7 - 25 A / 100 %
  • Напряжение питающей сети: 230 / 400 / 415 / 440 В - 3 ф., 50-60 Гц
  

Система управления NERTAMATIC 450 HPW

Эта установка отвечает самым высоким требованиям к качеству сварки и производительности в различных отраслях промышленности, таких как изготовление бойлеров из нержавеющей стали, аэрокосмическая техника с использованием цветных металлов, химическая технология, производство, трансформация и
транспорт энергии, а также сборка газо и нефтепроводов.

В этой системе блок управления заменен на промышленный ПК, позволяющий осуществлять полное управление пуском аппарата только с одной панели управления и придающий следующие функции:

  • Цифровое управление процессом сварки, связанных с ней перемещениями и приводами.
  • Прослеживаемость, программа включает все параметры, позволяющие обеспечить воспроизводимость сварки.
  • Система контроля качества по опции, запись и сохранение важнейших параметров сварки (ток, напряжение, подача проволоки, перемещение).
  • Удобный для пользователя интуитивный интерфейс, позволяющий осуществлять программирование, контроль и слежение.
  • Интуитивное составление цикла благодаря графическому программированию.
  • Сенсорный экран, облегчающий использование HPW.
  • Независимое программирование на РС, обмен данными через USB.
  • Оптимизация компоновки аппарата.
  • Управление с помощью промышленного ПК.

Удобство пользования и интуитивный интерфейс, позволяющий программирование, управление и
слежение

 

Интуитивная, интерактивная и удобная для пользователя программа интерфейса HPW позволяет легкое ориентирование и облегчение диалога между аппаратом и оператором, следовательно, гибкость сварки применительно к вашей продукции

  

ДОПОЛНИТЕЛЬНЫЕ ЭЛЕМЕНТЫ

Видеосистема TIG / плазма является узлом, который легко интегрируется в оборудование SAF-FRO и благодаря значительному увеличению изображения позволяет более точно позиционировать сварочную головку, что облегчает работу оператора и улучшает качество сварки.

Отклонение дуги Осцилляция дуги
  • Отклонение дуги или электромагнитная осцилляция дуги TIG


Отклонение дуги Данная технология позволяет электрически изогнуть дугу TIG, что значительно удлиняет тепловую зону вдоль оси сварки и на 30-50 % ускоряет сварку деталей толщиной менее 2 мм. Данная особенность имеет большое значение при непрерывной сварке тонких труб, гнутых с листа, патрубков для кабеля, защиты электрического сопротивления и пр. детали, выпускаемые крупными сериями без металла-наполнителя.

Осцилляция дуги
Развитие метода отклонения дуги, описанного выше. Осцилляция дуги применяется для нанесения металла на зоны шириной до 20 мм, чтобы заполнить фацетированные участки или восстановить покрытие поверхности.

  • Плазма и TIG с горячей проволокой

 
Повышение производительности путем увеличения скорости нанесения металла.
  Для заполнения фасок глубиной 40 мм использование горячей проволоки является очень интересным решением, которое великолепно адаптировано к установкам, имеющим повышенные требования к характеристикам сварного шва.

Особый метод, позволяющий с использованием дополнительной энергии довести конец проволоки до состояния, близкого к точке плавления. Доказавший свою рентабельность при сварке листов толщиной более 10 мм, метод с горячей проволокой позволяет наносить 2,5-3 кг металла в час для заполнения фацетированных участков в несколько заходов или для наплавки на поверхности.

  • Система контроля напряжения дуги  (AVC)

 

Данное устройство обеспечивает автоматическое регулирование положения горелки в пределах допустимых отклонений. Поддержание расстояния между электродом и свариваемой деталью эквивалентно поддержанию постоянного значения напряжения дуги. Эта функция выполняется путем управления приводной направляющей, на которой установлена сварочная горелка.
 

Плазменная сварка - Плазма и газ-резка, сварка, напыление

Требования предъявляемые к плазматронам

При конструировании плазмотронов, предназначенных для различных видов обработки материалов следует учитывать ряд общих требований, предъявляемых к ним:

  • Плазмотрон должен обеспечивать многократное надежное зажигание и стабильное горение плазменной дуги в заданном диапазоне рабочих токов и напряжений. Это требование удовлетворяется при определенных соотношениях между диаметром электрода, сопла, длиной последнего, и зазором между ними, а также при правильном конструктивном решении узла формирования и стабилизации дуги.
  • Элементы, наиболее подверженные действию тепла (электрод, сопло), должны выдерживать длительную тепловую нагрузку при максимальной мощности плазмотрона. Это требование выполняется при правильном выборе материала теплонапряженных элементов и си-стемы их охлаждения.
  • Электрическая изоляция между электродами и соплом должна быть рассчитана на максимальное напряжение, возникающее на дуговом промежутке при возбуждении дуги и ее обрыве. При возбуждении дуги с помощью осциллятора это напряжение составляет 2-5 кв в диапазоне частот 0,3-1 Мгц.
  • Элементы водяных и газовых коммуникаций плазмотрона (шланги, уплотнения, прокладки и пр.) должны выдерживать давление не ниже 10 атм.
  • Для обеспечения маневренности плазмотрона подсоединяемые к нему шланги и электрические провода должны быть гибкими и прочными.
  • Плазмотрон должен быть технологичным в изготовлении, в ремонте и удобным в эксплуатации. Особо важно обеспечить легкость его разборки и сборки и возможность быстрой замены наиболее часто изнашиваемых деталей (катода и сопла).
  • Конструкция плазмотрона должна быть экономичной, т. е. должна предусматривать возможность применения недифицитных материалов для его изготовления и обеспечивать минимальное потребление охлаждающей воды, рабочего газа и минимальные потери тепла.
  • К плазмотронам предъявляется и ряд специальных требований, обусловленных особенностями технологического процесса.
  • Плазмотроны для сварки и наплавки должны обеспечивать надежную защиту шва от вредного воздействия окружающей среды, плазмотроны для напыления — высокие скорость течения и теплосодержание плазменной струи при минимальной ее загрязненности продуктами эрозии электродов, плазмотроны для резки — высокую концентрацию теплового потока плазменной струи. Ручной плазменный резак должен быть легким и удобным в обращении.
Конструкция плавильных плазмотронов, предназначенных для работы в печи с высокой температурой атмосферы, должна обеспечивать выполнение следующих специальных требований:
  • отсутствие любых водо-, электро- или газоподводящих шлангов в рабочем пространстве печи;
  • водоохлаждение всех металлических частей;
  • защита от излучения всех уплотнений и неметаллических деталей водоохлаждаемыми или термоизоляционными экранами;
  • возможность ввода плазмотрона в печную камеру через уплотнение.
При этом желательно обеспечить возможность его поступательного перемещения в камере в процессе работы.

В ряде случаев выдвигаются особые требования к системе управления плазмотроном, к способу его охлаждения, к защите от воздействия окружающей среды, к повышенной надежности его в условиях работы на поточной линии и др.

Плазматроны: схемы, классификация

При создании плазмотрона первым шагом является составление схемы его устройства. Исходя из особенностей технологического процесса и условий работы плазмотрона выбираем систему его охлаждения, род тока, плазмообразующую среду, вид и материал электрода, способ стабилизации дуги, перемещения ее электродных пятен и т. д. Различные варианты схем плазмотронов удобнее всего представить в виде классификации (рис.). Данная классификация составлена таким образом, что один из вариантов каждого подраздела является необходимым составным элементом общей схемы плазмотрона любого типа.

В первую очередь все плазмотроны разделяются на две группы по виду дуги (см. рис.): плазмотроны с дугой прямого и косвенного действия (схемы 1 и 2). Различие тепловых свойств обоих типов плазмотронов и области их применения уже рассматривались выше.


рис. 1 Классификация плазмотронов по критериям

По системе охлаждения электрода и сопла плазмотроны также делятся на два основных типа: с воздушным и с водяным охлаждением (схемы 3, 4). Теплоемкость воды намного выше теплоемкости воздуха и других газов. Поэтому наиболее эффективной и распространенной является водяная система охлаждения, при которой допускаются высокие тепловые нагрузки на электрод и сопло, т. е. обеспечивается нормальная работа плазмотрона при больших токах и высокой степени обжатия плазменной дуги. Однако водяное охлаждение несколько усложняет конструкцию плазмотрона, утяжеляет его из-за наличия водоподводящих шлангов и удорожает эксплуатацию плазменной установки. Чистота воды существенно влияет на эффективность теплоотвода. При больших расходах воды плазменную установку целесообразно оснащать циркуляционной системой охлаждения с использованием дистиллированной воды во избежание образования накипи. Система воздушного охлаждения ввиду низкой эффективности применяется реже, главным образом для охлаждения малоамперных плазменных горелок и ручных плазменных резаков, предназначенных для монтажных работ в зимних условиях. В таких резаках рабочий ток обычно не превышает 300-400 а. В обеих системах охлаждающая среда чаще всего проходит последовательно электродный и сопловой узел через изолирующий корпус плазмотрона. При этом существенную роль с точки зрения эффективности охлаждения играет профиль полостей охлаждения, температура и давление поступающей в плазмотрон охлаждающей среды. Основная задача при выборе системы охлаждения состоит в том, чтобы обеспечить максимальную интенсивность отвода тепла стенками сопла, так как чем выше величина теплового потока, отводимого соплом, тем круче температурный градиент газовой прослойки между столбом дуги и стенками канала сопла и, следовательно, тем выше плотность тока и мощность столба дуги.


рис. 2 Классификация плазмотронов по методам стабилизации дуги

Плазмотроны можно классифицировать и по способу стабилизации дуги. Система стабилизации дуги, обеспечивающая сжатие столба и строгую фиксацию его по оси электрода и сопла плазмотрона, является наиболее важным элементом плазмотрона. Существуют три вида стабилизации дуги: газовая, водяная и магнитная. Наиболее простой и распространенной является газовая стабилизация, при которой наружный холодный слой рабочего плазмообразующего газа, омывая стенки столба дуги, охлаждает и сжимает его. При этом в зависимости от способа подачи газа (вдоль или перпендикулярно оси столба) газовая стабилизация может быть аксиальной или вихревой (схемы 5, 6). Наибольшее обжатие дуги достигается при вихревой ее стабилизации, поэтому этот способ используется главным образом в плазмотронах для резки и напыления. При аксиальной стабилизации поток газа, обдувающего столб дуги, имеет более спокойный, ламинарный характер, что обеспечивает лучшие условия защиты нагреваемого изделия от воздействия окружающей среды. Поэтому аксиальная стабилизация применяется в плазмотронах для сварки и наплавки. Иногда применяют двойную стабилизацию дуги (схема 7), при которой сочетается аксиальная подача газа через первичное и вихревая подача через вторичное сопло или наоборот. Столб дуги можно стабилизировать, омывая его водяной струей (схема 8). Образуемый из струи водяной пар служит плазмообразующей средой. При водяной стабилизации можно достигнуть наиболее высокой степени сжатия и температуры столба дуги до 50 000 °К.  Однако присутствие паров воды вблизи катодной области приводит к интенсивному сгоранию электродов из любых материалов. В плазмотронах с водяной стабилизацией, предназначенных для резки, используется графитовый электрод, автоматически перемещаемый по мере его сгорания. Плазмотроны с водяной стабилизацией отличаются сложностью конструкции, малой надежностью системы автоматического регулирования подачи электрода и сложностью способов возбуждения дуги. Магнитная стабилизация (схема 9), при которой создается продольное магнитное поле, сжимающее столб дуги, менее эффективно, чем газовая и водяная. Кроме того, надетый на сопло соленоид усложняет конструкцию плазмотрона. Преимущество способа магнитной стабилизации состоит в возможности регулирования степени сжатия столба дуги независимо от расхода рабочего газа, в то время как при газовой и водяной стабилизации рабочий газ является одновременно плазмообразующим и стабилизирующим. На практике наложение продольного магнитного поля применяется не столько для стабилизации дуги, сколько для вращения ее анодного пятна по внутренним стенкам сопла с целью повышения стойкости последнего. Например, в плазмотронах, применяемых для напыления, магнитное вращение анодного пятна газовихревым способом позволяет значительно снизить эрозию сопла и, следовательно, загрязненность плазменной струи.

Классификация плазмотронов по виду электрода

По виду электрода-катода плазмотроны постоянного тока можно разделить на две группы: плазмотроны со стержневым и плазмотроны с распределенным катодом.В плазмотронах со стержневым катодом, катодное пятно фиксируется на торце электрода, а в плазмотронах с распределенным катодом — интенсивно перемещается с помощью газовихревого или магнитного вращения по развитой поверхности электрода.

В плазмотронах для обработки металлов применяются в основном стержневые катоды, подразделяемые на три основных вида: расходуемый, газозащищенный и пленкозащитный (схемы 1, 2, 3).

Расходуемый, чаще всего графитовый, электрод был показан в схеме плазмотрона с водяной стабилизацией. Несмотря на то, что графит обладает высокой температурой плавления, при нагревании до этой температуры он не плавится, а возгоняется, чем и обусловлен его повышенный расход.

Газозащищенный вольфрамовый электрод — самый распространенный из всех видов электродов. При работе в инертной (аргон, гелий) и восстановительной (азот, водород) средах катод из тугоплавкого вольфрамового стержня при нагрузке 15-20 а/мм2 практически не расходуется. Вольфрамовый катод по сравнению с графитовым значительно прочнее и обладает во много раз большей электропроводностью.

Для улучшения условий работы катоды дуговых плазмотронов изготовляют из вольфрама с небольшой добавкой окиси тория или лантана (1,5-2%). Существует мнение, что торированные вольфрамовые электроды обладают некоторой радиационной способностью, поэтому в последнее время чаще используются лантанированные вольфрамовые электроды. Примеси окиси тория или лантана повышают эмиссионные свойства вольфрамового катода (работа выхода электронов понижается с 4,5 до 2,63 эв), что обеспечивает лучшие условия зажигания, более высокую допустимую плотность тока и устойчивость горения дуги. Кроме того, вольфрам с указанными добавками имеет температуру рекристаллизации на 600° К выше, чем чистый вольфрам и, следовательно, сохраняет волокнистое строение и пластичность до более высокой температуры. Однако стойкость вольфрамового электрода при добавлении кислорода к газовой среде в связи с образованием летучих соединений резко снижается. Например, в плазмотронах, применяемых для резки, при использовании технического азота, содержащего 3-5% О2, на вольфрамовом катоде через 2-3 ч работы при токе 300-400 а образуется кратер, смещение центра которого относительно оси сопла вызывает соответствующее смещение столба дуги и приводит к явлению двойного дугообразования. Поэтому при работе с кислородосодержащей плазмообразующей средой в первичное сопло подается аргон, защищающий вольфрамовый электрод от воздействия рабочего кислородосодержащего газа, подаваемого во вторичное сопло. Система с двойным газовым потоком имеет существенные недостатки. При использовании дешевого рабочего газа, например воздуха, все же остается необходимость в использовании дефицитного аргона. При этом усложняется конструкция плазмотрона и ухудшается нагрев рабочего газа, так как наиболее эффективно газ нагревается вблизи катодной области. Сравнительно недавно появился новый вид катода — пленкозащитный стержневой катод, обладающий высокой стойкостью в газах, содержащих кислород (в воздухе, углекислом газе, техническом азоте). Он представляет собой стержень из циркония или его сплавов, запрессованный в медной обойме. Механизм работы такого электрода должен быть еще детально изучен, но можно уже считать установленным, что достаточно высокая термостойкость циркония, имеющего относительно низкую температуру плавления (2125° К), в значительной мере обусловлена образованием стойкой тугоплавкой пленки из его окислов и нитридов, защищающей чистый цирконий от испарения. Тугоплавкие соединения, образующие пленку, при обычных температурах являются диэлектриками, а при температурах, близких к температуре плавления (3200° К), теряют свои диэлектрические свойства и становятся проводниками с ионной проводимостью (σ >= 1 ом-1*см-1). Таким образом, стойкость циркониевого катода определяется его термохимическим взаимодействием с плазмообразующей средой. Не-обходимыми условиями, обеспечивающими высокую стойкость катода, является наличие в составе газовой среды кислорода и азота, а также такая интенсивность его охлаждения, при которой температура катодного пятна не превышала бы температуру разложения туго-плавких соединений. Эрозия циркониевого катода резко повышается при большем процентном содержании кислорода, чем в воздухе (более 20%) и особенно при наличии в газовой среде водорода. Особо важное значение с точки зрения повышения стойкости циркониевого катода имеет его конструкция и система охлаждения. В настоящее время в плазмотронах для воздушно-плазменной резки достигнута вполне удовлетворительная стойкость циркониевого катода при работе на токах до 400 а. Применение пленкозащитного электрода в плазмотронах переменного тока исключается ввиду его активного разрушения в полупериоды обратной полярности. Особенностью работы циркониевой вставки является постепенное углубление ее нижнего основания в медную обойму по мере эрозии. Циркониевая вставка расходуется главным образом при включении дуги, очевидно, вследствие разрушения пленки от термоудара. При определенном углублении нижней поверхности вставки последующее зажигание дуги осуществляется с медной обоймы, поэтому для перемещения катодного пятна на циркониевую вставку и для жесткой фиксации его необходимо применять газовихревую или магнитную стабилизацию дуги, обеспечивающую строгую соосность столба дуги с электродом и соплом плазмотрона. При использовании циркониевого электрода допускается большая плотность тока, достигающая 80-100 а/мм2, чем при использовании вольфрамового электрода. При работе плазмотрона с окислительной плазмообразующей средой на больших токах (1000 а и выше) используются разнообразные виды распределенных катодов, наиболее распространенными из которых являются полый, дисковый и кольцевой (схемы 4, 5 и 6). Недостатками распределенных катодов являются сложность их конструкции, трудность равномерного перемещения катодного пятна по всей поверхности электрода, низкая стабильность горения дуги, возрастание напряжения прикатодной области дуги и связанное с этим увеличение потерь мощности в электроде. Поэтому в плазмотронах для обработки металлов распределенные катоды не нашли практического применения. Существует классификация плазмотронов и по плазмообразующей среде. Состав плазмообразующей среды диктуется технологическим процессом и в свою очередь является определяющим фактором при выборе схемы плазмотрона.

По химическому воздействию на обрабатываемое изделие и электроды плазмотрона все плазмообразующие среды можно разделить на три большие группы: инертная, восстановительная и окислительная. Физические свойства и оценка роли каждого из плазмообразующих газов уже рассматривались выше.

Классификация плазмотронов по роду тока

По роду тока плазмотроны отличаются наибольшим разнообразием вариантов. Поэтому рассмотрим лишь основные из них. Подавляющее большинство плазмотронов для обработки металлов выполняется на постоянном токе прямой полярности (схема 1). Это объясняется, прежде всего, физической особенностью дуги, заключающейся в том, что на аноде дуги выделяется большее количество тепла, чем на катоде. Тепловая мощность, выделяемая в электроде плазмотрона, в отличие от плавящегося электрода сварочной дуги является не только бесполезной, но и вредной. Наименьшую тепловую нагрузку несет электрод, являющийся катодом. Достаточно отметить, что предельно допустимая токовая нагрузка на лантанированный вольфрамовый электрод на переменном токе примерно в два раза, а на обратной полярности при использовании постоянного тока в десять раз ниже, чем на прямой полярности. Поэтому плазмотроны постоянного тока имеют наиболее высокий коэффициент полезного использования мощности. Столб интенсивно сжатой дуги должен быть жестко стабилизирован по оси электрода и сопла плазмотрона. При смене полярности электрода эта стабилизация нарушается, поэтому дугу переменного тока сжать труднее, чем дугу постоянного тока.

Важным преимуществом плазмотронов постоянного тока по сравнению с плазмотронами переменного тока является большая стабильность горения дуги. Прохождение тока через нуль может вызвать погасание дуги, поэтому обычно напряжение холостого хода источника питания переменным током не менее чем вдвое превышает рабочее напряжение дуги. При питании плазмотронов постоянным током можно достичь отношения uд/uxx равного 0,8-0,9. Следовательно, при одинаковой мощности дуги установленная мощность и габариты источника постоянного тока меньше, чем мощность и габариты источника переменного тока. Кроме того, источник постоянного тока обеспечивает равномерную загрузку трехфазной сети. Существовавшая раньше проблема выпрямления постоянного тока в настоящее время практически решена благодаря созданию и широкому выпуску электропромышленностью мощных малогабаритных полупроводниковых вентилей. Первоначальные затраты и расходы на эксплуатацию плазменных установок переменного и постоянного тока приблизительно равны. Поэтому с учетом перечисленных выше преимуществ для большинства процессов обработки материалов целесообразно применять плазмотроны постоянного тока. Плазмотроны переменного тока применяются в ряде случаев в силу технологических требований процесса. Например, плазменную сварку алюминиевых сплавов необходимо вести на переменном токе, так как в периоды обратной полярности за счет действия эффекта катодного распыления разрушается тугоплавкая пленка окиси алюминия, препятствующая нормальному процессу сплавления металла.

При плазменной плавке в случае параллельной работы нескольких мощных плазмотронов постоянного тока на общую ванну-анод возникает трудноустранимое магнитное взаимодействие между дугами. Поэтому в этих условиях могут быть использованы плазмотроны переменного тока. В этом случае целесообразно использовать плазмотроны в количестве, кратном трем, что обеспечивает равномерную загрузку трехфазной сети. Рассмотрим три основные схемы плазмотронов переменного тока. На схемах 2 и 3 плазмотроны питаются от однофазного трансформатора. В схеме 3 осуществлена вентильная коммутация тока таким образом, что электрод функционирует только как катод (в полупериод прямой полярности), а сопло — как анод (в полупериод обратной полярности). При такой схеме обеспечивается большая стойкость вольфрамового электрода. Однако с увеличением тока ухудшаются условия работы сопла, а при работе на токах ниже определенного предела (~150 а) нарушается стабильность горения дуги. На схеме 4 плазмотрон питается от трехфазного трансформатора. В этом случае обеспечивается высокая стабильность горения дуги, однако электроды и сопло находятся в сравнительно тяжелых условиях работы. Кроме того, значительно усложняется конструкция плазмотрона. В целях повышения стабильности горения дуги переменного тока некоторые плазмотроны выполняют комбинированными. В этом случае основную дугу переменного тока прямого действия стабилизируют вспомогательной маломощной дугой постоянного тока, горящей либо между электродом и соплом (схема 5), либо между двумя соплами (схема 6), одно из которых (катод) является формирующим. Второе сопло (анод) выполняется с большим внутренним диаметром. Благодаря этому оно подвержено меньшему тепловому воздействию столба основной дуги.

Наряду с дуговыми плазмотронами, работающими на переменном токе промышленной частоты, за последнее время были разработаны высокочастотные (ВЧ) и сверхвысокочастотные (СВЧ) плазмотроны [7, 8]. Принцип работы высокочастотного индуктивного или безэлектродного плазмотрона (схема 7) заключается в нагреве газа до состояния плазмы в электромагнитном поле индуктора. Для этого в полость индуктора, питаемого от высокочастотного генератора (частотой 1-40 Мгц, напряжением до 10 кв и мощностью до 50 кВт), помещается трубка из термостойкого изолирующего материала, например, кварца. В трубку подается плазмообразующий газ и кратковременно вводится металлический или графитовый пруток. Последний раскаляется под действием поля индуктора и вызывает нагрев и первоначальную ио-низацию окружающего газа. Когда электропроводность газа возрастает до определенной величины, начинается интенсивный его нагрев и ионизация вихревыми токами, создаваемыми полем индуктора. После развития самостоятельного кольцевого разряда пруток удаляется из полости трубки. Продуваемый через трубку газ, проходя через кольцевой разряд, нагревается и истекает в виде плазменной струи, температура которой достигает 15 000-20 000° К, а скорость истечения в десятки раз меньше, чем скорость истечения плазменной струи дуговых плазмотронов. Высокочастотная энергия сравнительно дорога, высокочастотные генераторы сложны и имеют ограниченную мощность. Поэтому очень чистый (ввиду отсутствия электродов) и мягкий факел индукционного плазмотрона нашел применение для обработки особо чистых тугоплавких порошковых материалов, выращивания монокристаллов и других специальных процессов, не требующих высокой производительности.

В сверхвысокочастотных (СВЧ), или электронных плазмотронах, газ также нагревается электромагнитным полем, создаваемым электродом-излучателем (схема 8). Плазменный высокочастотный факел возникает у электрода при остроконечной форме электрода и высокой напряженности поля вблизи него. В высоковольтном и сверхвысокочастотном электрическом поле свободные электроны ускоряются и приобретают такую кинетическую энергию, что при столкновении с частицами газа вызывают их диссоциацию и ионизацию. Электрод плазмотрона подключен к магнетронному генератору частотой 2000-3000 Мгц и мощностью 2-5 кет. Плазменный факел электронного плазмотрона интересен тем, что в нем нет термического равновесия: температура электронов на порядок выше температуры ионов и свободных атомов. Например, при температуре факела 3500° К электронная температура достигает 35 000° К. Такая высокая температура электронов позволяет проводить в плазменной струе химические реакции синтеза некоторых специальных материалов.

Плазменная сварка

Фигурная плазменная резка

Резка кузова в этой сфере оборудование для ручной плазменной резки металла получило широкого распространение

Плазменная резка нержавеющей трубы

Плазменная резка по шаблону листового металла

Факел плазменной горелки в режиме сварки и пайки

Плазменная сварка – это одна из инновационных технологий сварочных работ, которые ведутся посредством использования направленного потока плазменной дуги. Технология соединения плазмой очень похожа на аргонную сварку, но дает температуру в точке плавления в разы выше.

Технология

Плазма, которая используется в сварочных работах, представляет собой частично, или же полностью, ионизированный поток газа, который состоит из таких частиц, как нейтральные атомы и молекулы, а также, электрически заряженные электроны и ионы. Для превращения обычной сварочной дуги в плазменную (повышения ее температуры и мощности) одновременно используются два процесса – сжатие дуги и вдувание в нее специального плазмообразующего газа. А сжатие дуги выполняется посредством использования специального устройства – плазмотрона. В результате сжатия дуга, с которой работает плазменная сварка, характеризуется меньшим показателем поперечного сечения и большей мощностью.

Виды плазменной сварки

В зависимости от того, какую именно схему подключения анода использует сварщик, различают три разных виды плазменной струи:

•    Открытая струя плазмы. В данном случае в качестве анода используется пруток или конкретная деталь. Во время сварочных работ происходит повышенный нагрев поверхности детали. Плазменная сварка этого вида чаще всего используется для резки металла и для нанесения на поверхность деталей покрытий.

•    Закрытая плазменная струя. В этом случае анодом выступает канал горелки. Температура сжатой плазменной дуги в данном случае почти на 25% выше, чем при сваривании открытой плазменной струей. Однако, интенсивность потока дуги ниже, что влечет за собой увеличение теплоотдачи. Закрытая плазменная струя используется для закалки деталей или напыления порошкового покрытия.

•    Комбинированная схема сваривания. В этом случае анод подключается и к рабочей детали, и к соплу горелки.

Плазменная сварка с каждым днем пользуется все большей популярностью благодаря тому, что посредством ее использования можно наплавлять на стальные детали покрытие из таких износостойких материалов, как медь или латунь. И это далеко не все достоинства сварки этого типа. Компания Азмен выполняет все виды сварочных работ и предлагает заказать плазменную сварку в Москве на очень выгодных условиях. Для получения более подробной информации свяжитесь с нашим менеджером по телефону.

Сохранить

Сохранить

Поделитесь информацией

что это? Принцип работы, технология плазменно-дуговой и ручной микроплазменной сварки, техника безопасности при сварке плазмой

Плазменную сварку называют относительно молодым способом соединения деталей. Но условная новизна не мешает быстрому набору востребованности: плюсы и возможности, которые даёт этот метод, объясняют его высокие конкурентные качества.

Что это такое?

Плазменной сваркой зовётся метод, при котором аргон переходит в плазму под влиянием дуги. Плазмогенератором выступает ток, пронизывающий электропроводный аргон. Но прежде чем перейти к нюансам метода, нелишним будет напомнить отдельные моменты из курса физики.

Плазмой называют такое состояние газа, в которое тот трансформируется под влиянием электродуги. Она формируется в особом наконечнике, называемом плазмотроном. Его легко сравнить с горелкой в обычной газовой сварке. Плазмотроном именуют двухсторонне открытый конус, который становится узким внизу, в центре этого конуса размещается тугоплавкий электрод, а внизу – сопло. Из этого сопла под серьёзным давлением выходит плазма.

Плазмообразующим газом выступает аргон (с включением водорода, конечно). Он нагнетаем в вышеописанный конус сверху. Поле же образует подвод электротока к двум полюсам: наружной зоне горелки и электроду. В ходе нагрева и ионизации газ предсказуемо расширяется, внутренние силы его мощно вытесняют. Сопло же регулирует подачу плазмы. В рабочем месте параллельно с плазменной струёй подводится аргон, что создаёт защитное облако. Его ценность заключается в предохранении сплава от кислородного контакта, который содержится в воздухе.

Именно аргон отвечает за чистые швы. Плазменно-дуговая сварка может называться экономичной, в этом её особенность. Чтобы аппарат работал, менять нужно только электроды и тот самый плазмотрон. В сравнении с иными видами сварки уходовых работ (и ручных тоже) немного. Да и иные сварочные разновидности можно считать более взрывоопасными, с плазмой работать не так рискованно.

Плюсы и минусы

Основное преимущество плазменной сварки – высокоскоростная резка металлов. Не менее привлекательна в ней и опция применения оборудования практически со всеми металлами и сплавами. Доскональность шва высока. Цена работ относительно прочих видов сварок более низкая. Радует и то, что деформация металла при плазменном способе не то что низка, а фактически отсутствует.

Но минусы также стоит отметить:

  • высокочастотный шум + ультразвук – не самая приятная комбинация;
  • ионизация воздуха;
  • электромагнитное излучение в оптическом диапазоне;
  • сопло плазменной горелки недолговечно, так как нагрузка высокотемпературная.

Правда, недостатки есть в каждой технологии сварки, поэтому выбирать приходится всегда. Иногда в выборе вида помогает простой анализ принципа работы аппарата.

Принцип работы

Дежурную дугу после зажигания ожидает сжатие в плазмотроне. Потом туда вдувается под давлением аргон в качестве плазмообразующего газа. Так зона нагревается до 50 000 градусов, газ предсказуемо растёт в объёме и из сопла выходит очень быстро.

Мощный источник – это соединение тепловой и кинетической энергии. Раскалённая струя вытекает и образует шов. Защитный и плазмообразующий газы не контактируют, так как проходят по разным каналам.

Надо отметить, что сварка может быть ручной и автоматической. Ручная сварка подойдёт для небольших объёмов работы. Сварка может проходить с присадками и без них. Автоматической технологией пользуются в промышленных масштабах. Оператор руководит процессом с помощью пульта.

И ещё кое-что из проясняющей информации о плазменной дуге:

  • обычная дуга становится плазменной путём сжатия и принудительного вдувания аргона в дугу;
  • сжатие дуги получается путём активного охлаждения водой плазмотроновых стенок;
  • когда поперечное сжатие дуги снижается, растёт мощность;
  • газ нагреваем дугой, он ионизируется и в 100 раз растёт в объёме;
  • плазменная дуга от другой отличается высокими термопоказателями, меньшим диаметром, цилиндрической формой, большим давлением на металл и опцией поддержания дуги на малом токе.

Разновидности плазменной сварки тоже следует учесть перед выбором того или иного способа.

Виды

Виды плазменной сварки определяет сила тока. Сварка бывает микроплазменной, на средних и на больших токах.

Микроплазменная

Данный вариант используется, если нужно соединить тонкие детали, толщина которых до 1,5 мм. Диаметр дуги в таком случае не превысит 2 мм, что даёт возможность фокусировать тепло в маленькой области без ненужного нагрева соседних зон.

Прибор микроплазменной сварки может работать в следующих режимах: импульсный, непрерывный, непрерывный обратной полярности. Основной газ технологии – аргон, но это обстоятельство не исключает добавление разных примесей, которые делают процесс более эффективным.

На средних токах

Она имеет множество сходств с аргонодуговой сваркой. Но всё же температурные данные сварки на средних токах более высоки, а вот область нагрева намного меньше. Поэтому данная технология справедливо считается более продуктивной.

Такая сварка проплавляет материал более глубоко, чем аргоновая, но ширина шва при этом будет меньшей. Сварочные работы проводятся и с присадочным материалом, и без него.

С большим амперажем

Работы с большим амперажем – это подходящий вариант для варки элементов с толстыми стенками. Или же такая технология подходит прошивному свариванию металла. Под таким амперажем подразумевается показатель до 150 А. Этот способ связан с силовым действием на металл, то есть полным его проплавлением. Если говорить образно: детали обрабатываемого изделия сначала словно разрезаются, а потом сплавляются вновь.

Классификация по типу действия

Тип действия бывает либо прямым, либо косвенным.

Косвенного

Дуга образуется путём подведения одного из полюсов к тугоплавкому электроду, второго – к оболочке плазмотрона (то есть «минус» к «плюсу»). Данный вид сварки можно считать экономичным относительно газа: его надо меньше для образования стабильной дуги, которая с силой выходит из сопла.

При косвенном сварочном процессе температура плазмы ниже (если сравнивать с прямым методом). Дуга под воздействием газа идёт к металлу с большой силой – этот метод даёт возможность работать с металлами, отличающимися низкой теплопроводностью.

Прямого

Работает это так: один полюс подключается на электрод (при прямой полярности минус), второй – к металлу, что в данный момент обрабатывается. Так получается прямая дуга, направляемая на обрабатываемую деталь.

Клемму изначально фиксируют к соплу для ионизации газа, идущего по плазмотрону. После образования плазмы клемму переводят на деталь, осуществляется пробой дуги на деталь, и из сопла исходит плазма. Плазменную струю корректирует сила тока. А газ не просто вырвется из сопла, но и станет защитой рабочей зоны.

И один, и другой метод применяется как для сварочных работ, так и для резки металлов.

Оборудование и материалы

Внешняя конструкция плазменной сварки не имеет радикальных отличий от прочего оборудования, используемого в тех же целях. И по габаритам, и по весу такое оборудование можно сравнить и с инверторами, и с электродуговыми полуавтоматами, и, конечно, с аргоно-дуговыми сварочниками.

Какие ещё операции может выполнять плазменная сварка:

  • воронение – т. е. химико-теоретическую обработку, чтобы получить нужный оттенок металла;
  • порошковое напыление различных красителей и продуктов защиты – на самой детали он создаёт ровную плёнку;
  • температурное оксидирование чёрных сплавов – получается диоксид кремния с тугоплавкими характеристиками;
  • закалка – внутренняя структура сплавов становится термически более прочной, так как снимаются внутренние напряжения.

В структуру плазменного оборудования входят сам аппарат, плазмотрон, компрессор, шлангопакет, режим заземления.

Плазменная дуга, если перейти к её возможностям, уступает разве что тем технологиям, что опираются на лазерные и электронные лучи. В основном задача использования этой сварки – резка металлов. Особую эффективность она проявляет в отношении меди, нержавеющей стали, латуни. Тонколистовой металл с этой сваркой соединяется без присадочной проволоки. Швы получаются оптимальные.

Описание технологии

В место соединения из плазмотрона подходит плазма. В плазменной струе собрана вся энергия. Поэтому нагрев не расходится по всему изделию, а концентрируется именно в месте соединения. И хоть температура будет очень высокой, вследствие скорого отвода тепла металлом она скоро же падает в области стыка до температуры плавления.

Корпус горелки стальной, анод медный, он охлаждается водой. Дугу питает газ, который под большим давлением подается в полость между анодом и катодом. Аргон же быстро улетучивается, смешивается с воздухом. Для того чтобы он действительно был защитным, нужного расстояния между деталью и горелкой следует придерживаться всегда.

Полную схему сварки можно увидеть на чертеже.

Техника безопасности

Если машина для сварки с дефектом (недостаточной изоляции), электроток может пройти по телу человека – и это очень опасно, чревато судорогами, остановкой сердца. Поэтому работать нужно в защитных перчатках на обеих руках. Сами перчатки должны быть без повреждений, в хорошем состоянии. Чтобы защитить себя от брызг расплавленного металла, также не обойтись без средств индивидуальной защиты. Нужна защитная обувь, кожаный фартук и, конечно, гамаши.

В помещении, где осуществляется сварка, должны быть хорошие вытяжки и вентиляционные системы, так как в процессе выделяются загрязняющие вещества и газы. Если вытяжной системы нет, операторы должны пользоваться респираторной маской или шлемом с фильтром, который отделяет опасные частицы. Защита органов слуха в процессе работы также обязательна, ведь уровень шума при плазменной сварке от 90 до 115 дБ.

По той причине, что процесс плазменной резки сопровождается также сильным видимым и ультрафиолетовым светом, оператор должен защищать глаза и кожу. Это защитная одежда (закрывающая всё тело), защитный щиток и защитные же очки – всё в соответствии с официальными предписаниями и рекомендациями.

Плазменная сварка не случайно считается перспективной: она очень удобна, например, при монтаже теплосистем в загородных домах. Для действий с электроникой она тоже подходит. Область её применения всё больше расширяется, поэтому интерес к плазменной технологии вполне закономерен.

В следующем видео представлена демонстрация плазменного комплекса.

Процесс плазменной сварки | Энергия

Процесс плазменной сварки был введен в сварочную промышленность как метод улучшения управления процессом дуговой сварки в более низких диапазонах тока. Сегодня аппарат плазменной сварки в Самаре сохраняет первоначальные преимущества, которые он принес промышленности, обеспечивая продвинутый уровень контроля и точности для получения высококачественных сварных швов в миниатюрных или высокоточных приложениях, а также для обеспечения длительного срока службы электродов для высоких производственных требований.

Процесс плазменной резки одинаково подходит для ручного и автоматического применения. Он использовался во множестве операций, начиная от сварки металлических лент в больших объемах и заканчивая прецизионной сваркой хирургических инструментов, автоматическим ремонтом лопастей реактивных двигателей и ручной сваркой кухонного оборудования для пищевой и молочной промышленности.

Как работает плазменная сварка

В горелке для плазменной сварки вольфрамовый электрод расположен внутри медного сопла с небольшим отверстием на конце. Между электродом горелки и наконечником сопла зажигается вспомогательная дуга. Затем эта дуга переносится на свариваемый металл.

Пропуская плазменный газ и дугу через суженное отверстие, резак передает высокую концентрацию тепла на небольшую площадь. Благодаря высокопроизводительному сварочному оборудованию плазменный процесс позволяет получать сварные швы исключительно высокого качества.

Плазменные газы обычно представляют собой аргон. В горелке также используется вторичный газ, аргон, аргон / водород или гелий, которые помогают защитить расплавленную сварочную ванну, тем самым сводя к минимуму окисление сварного шва.

Список необходимого оборудования

  • Источник питания
  • Плазменная консоль (иногда внешняя, иногда встроенная)
  • Рециркулятор воды (иногда внешний, иногда встроенный)
  • Плазменная сварочная горелка
  • Комплект принадлежностей для горелки (наконечники, керамика, цанги, датчики для установки электродов)

Список характеристик и преимуществ плазменной сварки

  • Pащищенный электрод снижает загрязнение электрода. Это особенно полезно для сварочных материалов, которые выделяют газ при сварке и загрязняют незащищенный электрод GTAW.
  • Увеличение длины дуги за счет формы дуги и равномерного распределения тепла Расстояние от дуги не так критично, как при GTAW. Обеспечивает хорошую однородность сварного шва. В 99% приложений AVC не требуется, иногда даже при подаче проволоки.
  • Перенос дуги мягкий и постоянный Обеспечивает сварку тонких листов, тонкой проволоки и миниатюрных компонентов, где резкое начало дуги GTAW может повредить свариваемую деталь.
  • Стабильная дуга при сварке Уменьшает блуждание дуги. Дуговая сварка там, где она предназначена. Позволяет использовать инструменты для зажигания дуги в непосредственной близости от сварного шва для оптимального отвода тепла.
  • Минимальный высокочастотный шум при сварке. Минимальный высокочастотный шум после зажигания вспомогательной дуги, поэтому плазму можно использовать с ЧПУ. Еще одно преимущество заключается в сварке, предусматривающей герметичное уплотнение электронных компонентов, где зажигание дуги GTAW может вызвать электрические помехи, которые могут повредить электронные внутренние компоненты свариваемого компонента.
  • Время сварки до 0,005 секунды. Исключительно короткое и точное время сварки, возможное для точечной сварки тонкой проволоки, точное время сварки в сочетании с прецизионными устройствами перемещения обеспечивают повторяемость положений начала / остановки сварки.
  • Варианты оборудования предлагают до 10 000 Гц Предлагает широкий спектр вариантов пульсации для разнообразных. пульсирующие приложения.

Понравилась статья? Поделиться с друзьями:

Что такое плазменная сварка? - TWI

Плазменно-дуговая сварка (PAW) - это процесс дуговой сварки, очень похожий на сварку TIG, поскольку дуга образуется между заостренным вольфрамовым электродом и заготовкой. Однако, располагая электрод внутри корпуса горелки, плазменную дугу можно отделить от оболочки защитного газа. Затем плазма проходит через медное сопло с мелким отверстием, которое сужает дугу.

Возможны три режима работы за счет изменения диаметра ствола и расхода плазменного газа -

Микроплазменная сварка (0.1 - 15А)

Microplasma используется для сварки тонких листов (толщиной до 0,1 мм), а также секций из проволоки и сетки. Жесткая игольчатая дуга сводит к минимуму блуждание дуги и ее искажение.

Среднетоковая сварка (15 - 200 А)

При использовании в режиме плавления это альтернатива обычному TIG. Преимуществами являются более глубокое проникновение (из-за более высокого потока плазменного газа), большая устойчивость к поверхностному загрязнению, включая покрытия (электрод находится внутри корпуса горелки) и лучшая устойчивость к изменениям расстояния между электродом и заготовкой без значительного изменения тепловложения.

Сварка в замочную скважину (более 100 А)

За счет увеличения сварочного тока и потока плазменного газа создается очень мощный плазменный луч, который может обеспечить полное проникновение в материал, как при лазерной или электронно-лучевой сварке. Во время сварки образуется замочная скважина, которая постепенно прорезает металл с течением расплавленной сварочной ванны, образуя сварной шов под действием сил поверхностного натяжения. Этот процесс можно использовать для сварки более толстых материалов (до 10 мм нержавеющей стали) за один проход.

Плазменная дуга обычно работает от источника постоянного тока с постоянной (падающей) характеристикой тока. Поскольку его уникальные рабочие характеристики обусловлены специальной компоновкой горелки и разделением потоков плазмы и защитного газа, пульт управления плазмой может быть добавлен к обычному источнику питания для сварки TIG. Также доступны специализированные плазменные системы.

Хотя дуга инициируется с помощью ВЧ, сначала она образуется между электродом и плазменным соплом. Эта «пилотная» дуга удерживается внутри корпуса горелки до тех пор, пока она не понадобится для сварки, а затем переносится на заготовку.Система вспомогательной дуги обеспечивает надежное зажигание дуги, а поскольку вспомогательная дуга поддерживается между сварными швами, она устраняет необходимость в высокочастотном повторном зажигании, которое может вызвать электрические помехи.

В плазменном процессе используется электрод из вольфрама с 2% тория, плазменное сопло - из меди. Диаметр отверстия плазменного сопла имеет решающее значение, а слишком маленький диаметр отверстия для данного уровня тока и расхода плазменного газа приведет к чрезмерной эрозии сопла или даже к плавлению.

Обычные комбинации газов: аргон для плазменного газа, аргон или аргон плюс от 2 до 5% водорода в качестве защитного газа.Гелий можно использовать в качестве плазменного газа, но из-за того, что он более горячий, снижается номинальный ток сопла. Меньшая масса гелия также может затруднить режим замочной скважины. Смеси гелия и аргона используются в качестве защитного газа для таких материалов, как медь.

Дополнительная информация

Знание сварщика 18: Оборудование для плазменной сварки.

Плазменная сварка - Weld Guru

PAW или плазменно-дуговая сварка (PAW) - это когда соединение металлов или коалесценция происходит путем нагрева суженной дугой между заготовкой (дугой переноса) и электродом или сужающимся соплом и электродом (дуга без переноса).

С помощью этого процесса можно выполнять узкие и глубокие сварные швы при высоких скоростях сварки.

Способ экранирования связан с выходом горячего ионизированного газа из отверстия. Он также может быть дополнен другим источником защитного газа. Защитный газ может быть смесью газов или инертным газом. Давление можно использовать (или не использовать). Вы также можете поставлять или не поставлять присадочный металл.

Целью процесса плазменно-дуговой сварки является контролируемое повышение уровня энергии дуговой плазмы.

Это достигается за счет использования специального газового сопла вокруг вольфрамового электрода, работающего от источника питания DCEN.

Образовавшаяся сжатая плазма концентрирована и сильно ионизирована.

Процесс подробно описан на схеме ниже:

Схема процесса плазменно-дуговой сварки в режиме «замочная скважина» - Рис. 10-35 Демонстрационное видео

PAW

Оборудование для плазменной сварки

Источник питания

Рекомендуется использовать источник питания с постоянной падающей характеристикой, который подает сварочный ток постоянного тока; что указанная мощность переменного / постоянного тока также может быть использована.

Напряжение холостого хода должно составлять 80 вольт с рабочим циклом 60%. Предпочтительно, чтобы источник питания имел встроенный контактор и средства дистанционного регулирования тока.

При сварке очень тонких металлов минимальная расчетная сила тока должна составлять 2 ампера. Макс. 300 подходит для большинства проектов плазменной сварки.

Сварочная горелка PAW

Сварочная горелка для плазменной сварки внешне похожа на газовую вольфрамовую дуговую горелку, но более сложна.

Все плазмотроны имеют водяное охлаждение, даже горелки с минимальным током. Это связано с тем, что дуга находится внутри камеры горелки, где выделяется значительное количество тепла. Если на короткое время прервать подачу воды, форсунка может расплавиться.

Поперечное сечение головки плазмотрона - рисунок 10-36).

Поперечное сечение головки горелки для плазменной сварки показано на рисунке 10-36. В период отсутствия переноса дуга будет зажжена между соплом или наконечником с отверстием и вольфрамовым электродом.Ручные плазменные дуговые горелки производятся различных размеров от 100 до 300 ампер. Также доступны автоматические горелки для машинной работы.

В горелке используется 2-процентный торированный вольфрамовый электрод, аналогичный тому, который используется для газовой сварки вольфрамом. Поскольку вольфрамовый электрод расположен внутри горелки, загрязнение его основным металлом практически невозможно.

Консоль управления

Для плазменной сварки требуется пульт управления. Плазменно-дуговые горелки предназначены для подключения к консоли управления, а не к источнику питания.Консоль включает:

  • Источник питания вспомогательной дуги
  • Система отсчета времени задержки для перехода от вспомогательной дуги к переданной дуге
  • Клапаны водогазовые
  • Отдельные расходомеры для плазменного газа и защитного газа.

Консоль обычно подключается к источнику питания и может управлять контактором. Он также будет содержать блок зажигания высокочастотной дуги, источник непереключаемого питания вспомогательной дуги, схему защиты горелки и амперметр.

Генератор высокой частоты используется для зажигания вспомогательной дуги. К защитным устройствам горелки относятся реле давления воды и плазменного газа, которые блокируются с контактором.

Устройство подачи проволоки

Механизм подачи проволоки может использоваться для машинной или автоматической сварки и должен быть с постоянной скоростью. Механизм подачи проволоки должен иметь регулировку скорости в диапазоне от 10 дюймов в минуту (254 мм в минуту) до 125 дюймов в минуту (3,18 м в минуту) скорости подачи.

Автоматическая плазменная сварка или плазменная сварка.Электрическая дуга образуется между заготовкой и электродом.

Преимущества

Преимущества плазменно-дуговой сварки по сравнению с дуговой сваркой вольфрамовым электродом в газе обусловлены тем, что PAW имеет более высокую концентрацию энергии. Его более высокая температура, суженная площадь поперечного сечения и скорость плазменной струи создают более высокое теплосодержание. Другое преимущество основано на жестком столбчатом типе дуги или форме плазмы, которая не вспыхивает, как газовая вольфрамовая дуга.

Эти два фактора обеспечивают следующие преимущества:

  • Больше свободы при ручной сварке: Расстояние между горелкой и изделием от плазменной дуги менее критично, чем при сварке газовой вольфрамовой дугой.Это важно для ручного управления, поскольку это дает сварщику больше свободы для наблюдения и контроля сварного шва.
  • Эффект «замочной скважины» (полное проплавление за один проход): Высокая температура и высокая концентрация тепла в плазме допускают эффект «замочной скважины», который обеспечивает сварку многих стыков за один проход с полным проплавлением. В этой операции более желательны зона термического влияния и форма сварного шва. Зона термического влияния меньше, чем у газовой вольфрамовой дуги, и сварной шов имеет тенденцию иметь больше параллельных сторон, что снижает угловую деформацию.

    В режиме «замочная скважина» сквозное отверстие формируется на передней кромке сварочной ванны. Расплавленный металл сварного шва обтекает отверстие и затвердевает за замочной скважиной, образуя валик сварного шва. Таким образом, швы со шпонкой представляют собой сварные швы со сплошным проплавлением с большим отношением глубины к ширине. Это приводит к низкой деформации сварного шва. При рабочих токах до 300 ампер этот режим можно использовать для сварки материалов толщиной до 3/4 дюйма, а также для сварки титановых и алюминиевых сплавов.

  • Более высокие скорости движения: Более высокая концентрация тепла и плазменная струя позволяют достичь более высоких скоростей движения.

Плазменная дуга более стабильна и не так легко отклоняется до ближайшей точки основного металла. При плазменно-дуговой сварке возможны большие вариации совмещения стыков. Это важно при выполнении корневых швов на трубах и других односторонних сварных швах. Плазменная сварка имеет более глубокий провар и дает более узкий сварной шов. Это означает, что соотношение глубины и ширины более выгодно.

Недостатки

  • Требуется замена диафрагмы
  • Дорогое оборудование
  • Требуется больше навыков, чем для процесса GTAW

Основное использование

Некоторые из основных применений плазменной дуги - это ее применение для изготовления труб (нержавеющая сталь, титановый сплав).Более высокая производительность, основанная на более высоких скоростях перемещения, является результатом плазменной сварки вольфрамовым электродом над газом. Трубки из нержавеющей стали, титана и других металлов производятся плазменным способом с более высокой производительностью, чем ранее при газовой вольфрамовой дуговой сварке.

Большинство применений плазменной сварки находятся в диапазоне слабых токов, от 100 ампер или меньше. Плазма может работать при очень низких токах, что позволяет сваривать фольгу толщиной.

Плазменная сварка также используется для выполнения небольших сварных швов сварных деталей в приборостроении и других мелких деталей из тонкого металла.Применяется для стыковых соединений стеновых труб.

Этот процесс также используется для выполнения работ, аналогичных электронно-лучевой сварке, но с гораздо более низкой стоимостью оборудования.

Сравнение сварки TIG и PAW: TIG (слева) PAW (справа)

Сварочный процесс

Плазменно-дуговая сварка обычно применяется как процесс ручной сварки, но также применяется в автоматических и машинных установках. Ручное приложение является наиболее популярным. Полуавтоматические способы нанесения бесполезны.

Стандартными методами плазменной сварки являются ручной (MA), машинный (ME) и автоматический (AU).

позиций

Процесс плазменной сварки - это процесс сварки во всех положениях. В Таблице 10-2 ниже показаны возможности сварочного положения.

Возможности сварочных позиций
Положение при сварке Рейтинг
1. Плоское горизонтальное сопряжение А
2. Горизонтальный А
3. Вертикальный А
4.Накладные расходы А
5. Фиксированный на трубе А

Металлы

Типы свариваемых металлов

Процесс плазменной сварки позволяет соединять практически все коммерчески доступные металлы. Возможно, это не лучший выбор или не самый экономичный способ сварки некоторых металлов. Процесс плазменно-дуговой сварки соединит все металлы, которые будут свариваться газо-вольфрамовой дугой.

Это показано в таблице 10-3 ниже.

Основные металлы, свариваемые плазменно-дуговой сваркой
Основной металл Свариваемость
Алюминий Сварной
Бронзы Возможно, не популярно
Медь Сварной
Никель медь Сварной
Литой, ковкий, с шаровидным графитом Возможно, не популярно
Кованое железо Возможно, не популярно
Свинец Возможно, не популярно
Магний Возможно, не популярно
Инконель Сварной
Никель Сварной
Монель Сварной
Драгоценные металлы Сварной
Низкоуглеродистая сталь Сварной
Сталь с низким допуском Сварной
Высокий и средний углерод Сварной
Сплавы Сталь Сварной
Нержавеющая сталь Сварной
Инструментальная сталь Сварной
Титан Сварной
Вольфрам Сварной

Толщина металла

Что касается диапазонов толщин, свариваемых плазменным процессом, режим работы «замочная скважина» может использоваться только в том случае, если плазменная струя может проникать через соединение.В этом режиме его можно использовать для сварки материалов от 1/16 дюйма (1,6 мм) до 1/4 дюйма (12,0 мм). Диапазон толщины зависит от металла. Режим плавления используется для сварки материала толщиной от 0,002 дюйма (0,050 мм) до 1/8 дюйма (3,2 мм).

Используя многопроходную технику, можно сваривать металл неограниченной толщины. Обратите внимание, что присадочный пруток используется для сварки более толстых материалов. В таблице 10-4 ниже указаны диапазоны толщины основного металла.

Диапазон толщины основного металла - Таблица 10-4

Ограничения процесса

Основные ограничения процесса плазменной сварки связаны, в большей степени, с оборудованием и аппаратурой.

  • Горелка более хрупкая и сложная, чем газовая вольфрамовая дуговая горелка. Даже горелки с самым низким номиналом должны иметь водяное охлаждение.
  • Наконечник вольфрама и совмещение отверстия в сопле чрезвычайно важны и должны поддерживаться в очень узких пределах. Текущий уровень резака не может быть превышен без повреждения наконечника.
  • Каналы водяного охлаждения в горелке относительно малы, по этой причине для горелок с малым током или меньшей мощности рекомендуются фильтры для воды и деионизированная вода.Консоль управления добавляет в систему еще одно оборудование. Это дополнительное оборудование делает систему более дорогой и может потребовать более высокого уровня обслуживания.

Сводка по плазменной сварке

Процесс плазменной сварки был внедрен в сварочную промышленность в 1964 году как метод улучшения управления процессом дуговой сварки в более низких диапазонах тока. Сегодня плазма сохраняет первоначальные преимущества, которые она принесла промышленности, обеспечивая высокий уровень контроля и точности для получения высококачественных сварных швов в миниатюрных или высокоточных приложениях.

Процесс плазменной резки одинаково подходит для ручного и автоматического применения. Он использовался в различных операциях, начиная от сварки металлических лент в больших объемах и заканчивая прецизионной сваркой хирургических инструментов, автоматическим ремонтом лопастей реактивных двигателей и ручной сваркой кухонного оборудования для пищевой и молочной промышленности.

Как работает плазменная сварка:

Плазма - это газ, который нагревается до чрезвычайно высокой температуры и ионизируется, так что он становится электропроводным.В процессе плазменно-дуговой сварки эта плазма используется для передачи электрической дуги на заготовку. Свариваемый металл плавится под действием сильного тепла дуги и сплавляется.

Для системы требуется источник питания и сварочная горелка. В горелке электрод расположен внутри сопла горелки с небольшим отверстием на конце. Между электродом горелки и наконечником сопла зажигается вспомогательная дуга. Газ подается через сопло, где пилотная дуга нагревает газ до диапазона температур плазмы и ионизирует его.Газ выходит из сопла в виде струи, более горячей, чем любое химическое пламя или обычная электрическая дуга. Основная сварочная дуга передается на изделие через этот столб плазменного газа.

Плазменные газы обычно представляют собой аргон. В горелке также используется вторичный газ, аргон, аргон / водород или гелий, которые помогают защитить расплавленную сварочную ванну, тем самым сводя к минимуму окисление сварного шва.

Пропуская плазменный газ и дугу через суженное отверстие, горелка передает высокую концентрацию тепла на небольшую площадь.При использовании подходящего оборудования этот процесс позволяет получать резку исключительно высокого качества на самых разных материалах.

Характеристики и преимущества плазменной сварки:


F: Защищенный электрод

B: Защищенный электрод снижает загрязнение электрода. Это особенно полезно при сварке материалов, которые выделяют газ при сварке и загрязняют незащищенный электрод GTAW.


F: Увеличение длины дуги за счет формы дуги и равномерного распределения тепла

B: Расстояние от дуги не так критично, как в GTAW.Обеспечивает хорошую однородность сварного шва. Никакой AVC не требуется в 99% приложений распределения, иногда даже с подачей проволоки.


F: Перенос дуги мягкий и стабильный

B: Предназначены для сварки тонких листов, тонкой проволоки, миниатюрных компонентов, в которых резкое начало дуги GTAW может повредить свариваемую деталь.


F: Стабильная дуга при сварке

B: Уменьшает дрейф дуги. Дуговая сварка там, где она предназначена. Позволяет использовать инструменты для зажигания дуги в непосредственной близости от сварного шва для оптимального отвода тепла.


F: Минимальный высокочастотный шум при сварке

B: Минимальный высокочастотный шум после зажигания вспомогательной дуги, поэтому плазму можно использовать с ЧПУ. Еще одно преимущество заключается в сварке, предусматривающей герметичное уплотнение электронных компонентов, где запуск дуги GTAW может вызвать электрические помехи, которые могут повредить электронные внутренние компоненты свариваемого компонента.


F: Плотность энергии дуги в 3 раза выше, чем у TIG

B: Вызывает меньшую деформацию сварного шва и меньший размер сварных швов.Обеспечивает высокую скорость сварки


F: Время сварки всего 0,005 секунды

B: Исключительно короткое и точное время сварки возможно для точечной секундной сварки тонкой проволоки, точное время сварки в сочетании с прецизионными устройствами перемещения обеспечивают повторяемость положений начала / остановки сварки.


F: Варианты оборудования до 10 000 Гц

B: Предлагает широкий спектр импульсных опций для разнообразных импульсных приложений.


F: Художественная сварка при низком токе (всего 0,05 А)

B: Позволяет приваривать миниатюрные компоненты или контролировать наклон к кромке шва.


F: Диаметр дуги выбирается через отверстие сопла

B: Эта функция помогает прогнозировать размер сварного шва.


Особенности и преимущества:

P Защищенный электрод, длительное время до технического обслуживания электрода (обычно одна 8-часовая смена)

L Возможность сварки при низком токе (всего 0.05 ампер)

A Стабильность дуги и плавное зажигание дуги обеспечивают стабильные сварные швы раз за разом

S Стабильная дуга при зажигании дуги и сварке малой силой тока

M Минимальные проблемы с высокочастотным шумом, ВЧ только при запуске вспомогательной дуги, а не для каждого сварного шва

A Плотность энергии дуги в 3 раза выше, чем у GTAW. Возможна более высокая скорость сварки

Вт Время сварки всего 5 мсек (.005 секунд)

E Плотность энергии уменьшает зону термического влияния, улучшает качество сварки

L Увеличение длины дуги за счет формы дуги и равномерного распределения тепла

D Диаметр дуги, выбранный через отверстие сопла


К металлам, которые можно сваривать в плазме, относятся нержавеющая, жаропрочная и другие стали, титан, инконель, ковар, циркаллой, тантал, медь, латунь, золото и серебро.


Заявки:

Преимущества плазменного процесса обеспечивают два основных преимущества: Повышенная скорость сварки и улучшенное качество сварки . Плазма отлично подходит для сварки проволокой, трубок, полос, листов и всех миниатюрных, средних и крупных компонентов, требующих точной сварки. Во многих сферах применения многие уникальные преимущества плазмы сочетаются с улучшением процесса сварки.

Сварка проволокой: Процесс плазменной сварки позволяет плавно, но стабильно запускать дугу на кончике проволоки или других мелких компонентах и ​​создавать повторяемые сварные швы с очень короткими периодами времени сварки.

Сварка металлической ленты: Плазменный процесс обеспечивает возможность постоянного переноса дуги на заготовку и сварки до краев сварного шва. В автоматических приложениях для длинных сварных швов регулирование расстояния до дуги не требуется, и этот процесс требует меньшего обслуживания компонентов горелки. Это особенно выгодно при больших объемах применения, когда материал выделяет газ или имеет поверхностные загрязнения.

Герметичные компоненты: Медицинские и электронные компоненты часто герметично закрываются сваркой.Плазменный процесс дает возможность:
1. Уменьшите подвод тепла к детали
2. Сваривайте рядом с тонкими изоляционными уплотнениями
3. Зажигайте дугу без высокочастотных электрических помех, которые могут повредить внутренние электрические устройства

Прецизионные инструменты: Для многих инструментов требуются сварные швы высокой точности. Плазменная сварка с ее контролем и точностью дает возможность выполнять эти критически важные сварные швы.


Другие приложения для плазменной сварки

Хирургические инструменты, иглы, провода, нити лампочек, термопары, зонды, датчики давления и электрические, сильфоны, уплотнения, банки, корпуса, микропереключатели, клапаны, электронные компоненты, двигатели, батареи, миниатюрная трубка для фитинга / фланца, продукты питания и молочные продукты Оборудование, применение трубных мельниц, ремонт штампов и пресс-форм.


Параметры испытаний: Ручная сварка, без зажимного устройства, сталь Cr / Ni, толщина 0,102 ″; все значения определены с помощью измерительных приборов.

GTAW: 125 ампер 12 Вольт 10,24 I.P.M.
Плазма: 75 ампер 18 Вольт 13,38 I.P.M.
Тепловая нагрузка: В x A x 60

Скорость, см / мин

GTAW: 12 х 125 х 60

Скорость, см / мин

= 3.46 кДж
Тепловая нагрузка: 18 х 75 х 60

34 см / мин

= 2,38 кДж

Помимо того факта, что возможна более высокая скорость сварки, более низкое тепловложение дает следующие преимущества:

  • Снижение напряжения в сварной детали
  • Менее цвет при отпуске для Cr / Ni сталей
  • Снижение риска повреждения любых термочувствительных деталей, прилегающих к сварному шву

Плазма

ПРЕИМУЩЕСТВА ПЛАЗМЕННОЙ СВАРКИ:
Процесс плазменной сварки дает два основных преимущества: улучшенное качество сварки и повышенная производительность сварки.Плазменная сварка обеспечивает улучшенный контроль, стабильность дуги и стабильность сварного шва для получения высококачественных сварных швов как в миниатюрных, так и в прецизионных приложениях.

Процесс плазменной резки одинаково подходит для ручного и автоматического применения. Он использовался в различных операциях, начиная от сварки микрокомпонентов в больших объемах и заканчивая прецизионной сваркой хирургических инструментов, автоматическим ремонтом лопастей реактивных двигателей и ручной сваркой для ремонта компонентов в производстве инструментов, штампов и пресс-форм.

ПРЕИМУЩЕСТВА МИКРОПЛАЗМЕННОЙ СВАРКИ:
Как работает плазменная сварка: Для системы требуется источник питания и сварочная горелка. В горелке для плазменной сварки вольфрамовый электрод расположен внутри медного сопла с небольшим отверстием на конце. Между электродом горелки и наконечником сопла зажигается вспомогательная дуга. Затем эта дуга переносится на свариваемый металл.

Пропуская плазменный газ и дугу через суженное отверстие, горелка передает высокую концентрацию тепла на небольшую площадь.Благодаря высокопроизводительному сварочному оборудованию плазменный процесс позволяет получать сварные швы исключительно высокого качества на различных материалах.

ХАРАКТЕРИСТИКИ И ПРЕИМУЩЕСТВА:
Защищенный электрод, обеспечивает длительное время до технического обслуживания электрода (обычно одна 8-часовая смена)
Возможность сварки при низком токе (всего 0,1 А)
Стабильность дуги и плавный запуск дуги обеспечивают стабильные сварные швы, раз за разом
Стабильная дуга при зажигании дуги и сварке с низким током
Минимальные проблемы с высокочастотным шумом, ВЧ только при запуске вспомогательной дуги, а не для каждого сварного шва
Плотность энергии дуги в 3 раза выше, чем при GTAW.Возможны более высокие скорости сварки
Время сварки до 0,1 секунды
Плотность энергии уменьшает зону термического влияния, улучшает качество сварки
Увеличивает длину дуги за счет формы дуги и равномерного распределения тепла
Диаметр дуги выбирается через отверстие сопла

Свяжитесь с нами для получения более подробной информации о плазменной сварке или позвоните нам по телефону 615.793.7020.

Плазменно-дуговая сварка (PAW)

Процесс плазменно-дуговой сварки (PAW) - это процесс в среде защитных газов, в котором используется сжатая дуга между неплавящимся вольфрамовым электродом и заготовкой.Переносимая дуга обладает высокой плотностью энергии и скоростью плазменной струи. Возможны два различных режима работы: режим плавления и режим замочной скважины. В режиме плавления используется более низкий сварочный ток и создается сварочная ванна, аналогичная той, которая образуется при GTAW, в результате чего часть материала заготовки под дугой плавится. В режиме «замочная скважина» используется более высокий сварочный ток, так что дуга полностью проникает в материал заготовки, образуя концентрическое отверстие по толщине соединения.Расплавленный металл сварного шва затвердевает за замочной скважиной, когда резак проходит через заготовку. Экранирование сварочной ванны обеспечивается ионизированным плазменным газом, который выходит из отверстия горелки и дополняется дополнительным источником защитного газа. Процесс PAW можно использовать с добавлением присадочного металла или без него.

Поскольку сжатая дуга PAW обеспечивает большую глубину плавления по сравнению с GTAW, PAW потенциально выгодна для автогенной сварки (то есть без использования присадочного металла) материала на основе Ni / Co в диапазоне толщин приблизительно 0.От 125 до 0,3 дюйма (от 3,2 до 7,6 мм). Для сравнения, для GTAW материала толщиной более 0,125 дюйма (3,2 мм) обычно требуется присадочный металл. Сварные швы с квадратной канавкой можно использовать до толщины около 7,6 мм (0,3 дюйма). Хотя плазменно-дуговой сваркой можно сваривать широкий диапазон толщин, лучшие результаты обычно достигаются с помощью других процессов сварки для толщин, выходящих за пределы диапазона от 0,125 до 0,3 дюйма (от 3,2 до 7,6 мм). Для швов толщиной более 0,3 дюйма (7,6 мм) для первого прохода можно использовать автогенную сварку со шпонкой, за которой следует плазменная сварка без шпонки (плавление) с присадочным металлом.Другой процесс сварки, такой как GTAW, также можно использовать для второго и последующих проходов.

Электрическая полярность для процесса PAW должна быть отрицательной для электрода постоянного тока (DCEN / «прямая полярность»). Должен быть достигнут надлежащий баланс между сварочным током, потоком газа и скоростью движения, чтобы обеспечить стабильную сварку в замочную скважину. Нестабильная замочная скважина может вызвать турбулентность в сварочной ванне. В качестве газа через отверстие и защитного газа обычно используются смеси аргона или аргона с водородом.Газ через отверстие сильно влияет на глубину и профиль проникновения. Небольшого количества водорода (~ 5%) обычно достаточно для увеличения энергии дуги для автогенной сварки со шпонкой, а более высокие количества могут привести к пористости в металле сварного шва. Для большей толщины шва может потребоваться увеличенный поток газа через отверстие и нарастание сварочного тока, чтобы вызвать замочную скважину. Чтобы заполнить полость замочной скважины в конце сварного шва, может потребоваться уменьшение потока газа через отверстие и уменьшение сварочного тока.Более высокие скорости перемещения требуют более высоких сварочных токов для выполнения сварки в скважину. Чрезмерная скорость перемещения может привести к поднутрению, которое представляет собой канавку, проплавленную в основном металле рядом с носком или корнем сварного шва, и оставленную незаполненной металлом сварного шва. Сварочную горелку следует держать по существу перпендикулярно заготовке как в продольном, так и в поперечном направлениях, а также на средней линии сварного шва. Даже небольшое отклонение от этого условия может вызвать дефекты неплавления в металле шва.

Работа, типы, преимущества и недостатки

Метод плазменно-дуговой сварки (PAW), представляющий собой метод резки, был открыт в 1953 году Робертом Мерреллом Гейджем и признан в 1957 году. может выполнять точную резку как тонкого, так и толстого металла. Этот вид сварки также подходит для напыления твердого металла на новые металлы. Этот процесс сварки используется в сварочной промышленности для обеспечения превосходного контроля над методом дуговой сварки в малых диапазонах тока.В настоящее время плазма обладает уникальными преимуществами и используется во всей отрасли, обеспечивая превосходный уровень управления и точность для создания дорогостоящих соединений в миниатюрных приложениях, чтобы обеспечить долгий срок службы расходных материалов с высокой производительностью. В этой статье приводится краткая информация о том, что такое плазменная сварка, принцип работы, различные типы, оборудование, преимущества, недостатки и области применения.

Что такое плазменная дуговая сварка?

Метод плазменно-дуговой сварки (PAW) связан с GTAW (газовой сваркой вольфрамовым электродом).Эта дуга может образовываться как между металлом, так и электродом. Основное различие между PAW и GTAW заключается в том, что в PAW сварщик может поместить электрод в корпус горелки; таким образом, это позволит отделить PAW от защитного газа.

После этого плазма проходит через сопло, которое сжимает дугу и вытесняет плазму с высокой скоростью, а также температурой. В методе плазменной дуги используется неплавящийся вольфрамовый электрод, и дуга может быть образована путем усиления плазмы через сопло с отверстием.Эту дуговую сварку можно эффективно применять ко всем металлам, которые можно соединить с помощью техники дуговой сварки газом вольфрамом.

Принцип работы плазменной дуги

Плазменная дуговая сварка - это метод, при котором возникает коалесценция с температурой, которая создается специальной установкой между электродом из вольфрамового сплава и соплом с водяным охлаждением (непереносимая дуга) или между вольфрамом сплав электрода и работа (перенесенная ARC). В обмотке этого типа используются три типа подачи газа, а именно плазменный газ, защитный газ и газ обратной продувки.Подача плазменного газа через сопло превращается в ионизированную. Защитный газ подается через внешнее сопло и защищает соединение от воздействия окружающей среды. Газ обратной продувки в основном используется при использовании определенных материалов.

Плазменно-дуговая сварка

Оборудование, используемое для плазменно-дуговой сварки

Оборудование , используемое в PAW , включает следующее.

  • Источник питания , используемый в PAW, является источником постоянного тока, и подходящее напряжение для этого типа сварки составляет 70 вольт, в противном случае выше.
  • Типичными параметрами сварки являются напряжение, сила тока и расход газа. Значения этих параметров могут быть в диапазоне, например, ток составляет 500 А, напряжение от 30 В до 250 В, скорость резки: от 0,1 до 7,5 м / мин, толщина листа до 200 мм, требуемая мощность от 2 кВт до 200 кВт, скорость съема материала 150 см3 / мин, скорость плазмы 500 м / сек.
  • Для зажигания дуги используются токоограничивающие резисторы, а также высокочастотный генератор.
  • Плазменная горелка включает электрод, а также систему водяного охлаждения, которые используются для сохранения сопла и срока службы электрода от растворения из-за чрезмерного нагрева, выделяемого во время сварки.
  • Крепление необходимо для предотвращения загрязнения атмосферы расплавленным металлом под валиком.
  • Защитный газ используется для защиты области дуги от атмосферы

Типы плазменно-дуговой сварки

Плазменно-дуговая сварка подразделяется на два типа, например


Типы плазменно-дуговой сварки
1) Переносимая PAW

Переносимая PAW В методе используется постоянный ток прямой полярности. И в этом методе вольфрамовый электрод может быть соединен с клеммой –ve, а металл может быть соединен с клеммой + ve.Дуга возникает среди вольфрамового электрода, а также на рабочей части. В этом способе и дуга, и плазма перемещаются к рабочей части, что увеличивает нагревательную способность метода. Этот тип PAW можно использовать для соединения сплошных листов.

2) PAW без передачи

В методе PAW без передачи используется постоянный ток прямой полярности. И в этом методе вольфрамовый электрод может быть подключен к отрицательному полюсу, а сопло - к положительному полюсу. Дуга возникает между соплом и вольфрамовым электродом внутри горелки, что усиливает ионизацию газа внутри горелки.И горелка будет передавать ионизированный газ для дальнейшей процедуры. Этот тип PAW можно использовать для соединения тонких листов.

Преимущества PAW

Преимущества PAW в основном заключаются в следующем.

  • Низкое энергопотребление
  • Скорость сварки высокая, поэтому его можно использовать для соединения толстых и твердых деталей.
  • Проникновение и сильная дуга высокие.
  • Может работать при малой силе тока.
  • Расположение дуги не зависит от расстояния между инструментом и заготовкой.
  • Используя этот метод, можно получить более устойчивую дугу.

Недостатки PAW

К недостаткам PAW в основном относятся следующие.

  • Процесс шумный.
  • Стоимость оборудования высока.
  • Требуется высококвалифицированный персонал.
  • Радиация больше.

Приложения PAW

Приложения PAW в основном включают следующее.

  • PAW может использоваться в таких отраслях, как авиакосмическая, а также морская.
  • PAW используется для соединения нержавеющих труб и труб.
  • Этот тип сварки в основном применяется в электронной промышленности.
  • PAW в основном используется для фиксации инструментов, пресс-форм и штампов.
  • PAW используется для нанесения покрытий на лопатки турбины.

Таким образом, речь идет о плазменно-дуговой сварке. Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что метод плазменно-дуговой сварки одинаково подходит для автоматических и ручных операций, а также для различных операций, от сварки металлических полос в больших объемах до прецизионной сварки медицинских устройств, автоматического восстановления лопаток реактивных двигателей. на сварку физического кухонного оборудования.Вот вам вопрос, в чем особенности плазменно-дуговой сварки?

Что такое плазменная сварка? - Сварочный штаб

Процесс дуговой сварки, плазменная сварка (PAW) в чем-то похож на сварку TIG, поскольку дуга создается между сфокусированным вольфрамовым электродом и объектом. Однако плазменную дугу можно изолировать от оболочки защитного газа, поместив электрод внутрь корпуса горелки.

Вместо этого плазма проталкивается через тонкостенное медное сопло, ограничивающее дугу.

Что такое плазменная сварка?

Сварка или центральная дуга горит между деталью и вольфрамовым электродом при плазменной сварке. В качестве альтернативы, между вольфрамовым электродом и соплом с сильным влажным охлаждением горит нечто, называемое «пилотной дугой», с максимальной силой тока 3-30 А.

Кроме того, между соплом и электродом проходит плазменный газ (обычно аргон). Это немного вытесняет пилотную дугу из сопла, поэтому ее можно использовать в качестве электромагнитной «вспышки».”

Вспомогательная дуга полимеризует контур контура, и с чрезвычайно высокой надежностью основная дуга теперь может быть активирована без высокочастотного контакта.

Различные физические эффекты (охлаждающий эффект сопла, электромагнитные эффекты) обеспечивают сужение дуги, типичное для плазменной сварки. Ванна расплава защищена безопасным газом, который подается между внешним соплом защитного газа и плазменными соплами.

Смеси чистого аргона или метана с водородом или гелием могут использоваться в качестве безопасного метана.

Подобно другим традиционным методам дуговой сварки, плазменная дуга имеет немного более высокую плотность энергии и меньшее расстояние между лучами.

Хотя диаметр дуги TIG расширяется от кончика электрода до заготовки под углом 45 °, диаметр плазменной дуги увеличивается лишь незначительно и имеет форму столба.

Принцип работы плазменно-дуговой сварки

В атмосфере нейтрального газа, генерирующего плазму, подвод энергии, необходимой для сварки, поддерживается за счет электрической дуги.Эта дуга, образованная между плавким электродом и изготовленными деталями, нагнетается соплом, которое пневматически и механически сжимает ее.

  • Превосходный внешний вид
  • Сокращение времени подготовки к сборке за счет исключения снятия фаски со слоев до 10 мм
  • Правдивая манипуляция
  • Качество стыков: 100-процентная точность рентгеновских лучей благодаря максимальному и частому проникновению
  • Соблюдение химической структуры вяжущего
  • Уменьшение зоны теплового воздействия из-за сжатия дуги

Основы плазменно-дуговой сварки (PAW)

В процессе дуговой сварки, PAW, используется электрод из неплавящегося вольфрама или вольфрамового сплава, что-то вроде GTAW.Основное различие между этими двумя процессами сварки заключается в том, что электрод в PAW закреплен консолью в сопле, которое служит для подавления дуги.

Через ограничивающее сопло плазменный газ ионизируется и выходит из сопла с высокой скоростью.

Плазменный газ сам по себе недостаточен для защиты атмосферы от расплавленного сварочного потока. Следовательно, защитный газ подается вокруг плазменной базы, как и при GTAW.

Выходная мощность плазменного газа немного ниже, чем у защитного газа для уменьшения турбулентности

Для поддержания равномерного размера пятна и плотности энергии конусообразная форма газовой вольфрамовой дуги требует использования устройства контроля напряжения дуги (AVC) или длины дуги (ALC) для автоматической сварки.В PAW ограниченная дуга приводит к более высокой столбчатой ​​дуге.

Это снижает влияние вариации длины дуги на плотность энергии и снижает потребность в AVC или ALC. Преимущество отрезания электрода в сопле состоит в том, что уменьшается контакт с электродом.

Обычно электрода хватает на всю смену производства без пескоструйной обработки.

Еще одна особенность PAW - это способ зажигания дуги. Обычно ток высокой частоты (ВЧ) используется для создания вспомогательной дуги между медным соплом и электродом.

HF отключается после начала вспомогательной дуги. Ток вспомогательной дуги обычно фиксируется на одном уровне или может быть установлен на одном из двух этапов, обычно от 2 до 15 ампер.

Дуга передается на сварку и является составной частью электрической цепи. Поскольку дуга образуется до того, как будет сделан сварной шов, начало дуговой сварки обычно бывает довольно точным.

Во время сварки пилотная дуга остается включенной, и горелка может выполнить следующий шов, не требуя дополнительной высокочастотной сварки.

Может быть полезен для сварки в роботизированных приложениях, где ВЧ электромагнитные помехи могут взаимодействовать с автоматизированными системами управления. Следствием пилотной дуги является то, что для нее требуются плазменные горелки с водяным охлаждением, особенно для приложений с минимальным током.

Различные режимы работы PAW

Изменяя расход плазменного газа и диаметр ствола, можно выполнять следующие три режима работы.

Микроплазменная сварка

Микроплазма применяется для сварки тонких листов (до 0.Толщиной 1 мм), а также для деталей из сетки и проволоки. Прямая дуга в виде шприца сводит к минимуму блуждающие дуги и смещение.

Среднетоковая сварка

Это альтернатива традиционному TIG при использовании в режиме плавления. Преимущества заключаются в большей инфильтрации (из-за более высокого потока плазменного газа), лучшей устойчивости к загрязнениям подложки, таким как покрытия (электрод находится внутри горелки), и улучшенной устойчивости к различиям в зазоре между заготовкой и электродом без значительных изменений в энергозатратах. .

Сварка в канавку

За счет увеличения сварочного тока и потока плазменного газа создается действительно сильный плазменный луч, который может обеспечить полное погружение в материал, например, при лучевой или лазерной сварке. Во время сварки создается замочная скважина, которая медленно проходит через металл, а расплавленная сварочная ванна движется позади, создавая сварной шов под факторами поверхностного натяжения.

Этот метод можно использовать для сварки более толстых материалов за один процесс (до 10 мм нержавеющей стали).

Плазменная дуга обычно обрабатывается с помощью фирменного источника питания постоянного постоянного тока (провисания). Так как специальная система горелки и независимые потоки плазмы и защитного газа являются источником ее специфических функциональных характеристик, пульт управления плазмой может быть подключен к традиционному источнику питания TIG.

Он также предоставляет плазменные системы собственного производства.

Хотя для активации дуги используется HF, она сначала возникает между плазменным соплом и электродом.Эта «вспомогательная» дуга сохраняется внутри корпуса горелки до тех пор, пока не переместится к заготовке, необходимой для сварки.

Устройство вспомогательной дуги гарантирует стабильное начало дуги, а поскольку вспомогательная дуга сохраняется между сварными швами, оно устраняет необходимость в повторном зажигании высокочастотной дуги, которое может вызвать электрические помехи.

Электродом, используемым во время плазменной фазы, является вольфрам с 2% тория, а медь является плазменным соплом. Диаметр отверстия плазменного сопла имеет жизненно важное значение, а диаметр отверстия слишком мал для текущей стадии, а скорость потока плазменного газа может вызвать значительное окисление сопла или даже возгорание.

Для плазменного газа обычное соотношение газов - аргон с аргоном или аргоном плюс от двух до пяти процентов водорода в качестве защитного материала. В качестве плазменного газа можно использовать гелий.

Однако из-за его высокой температуры это снижает текущий рейтинг сопла. Меньшая масса гелия также может затруднить режим замочной скважины.

Комбинации гелия и аргона используются в таких материалах, как медь, в качестве защитного газа.

Общие сведения о различных типах плазменной сварки (PAW)

Теперь, когда мы знаем основы плазменной сварки, мы можем перейти к различным типам плазменно-дуговой сварки, используемым сегодня.Ниже приведены две категории плазменной сварки:

Передано PAW

Эта система PAW использует постоянный ток с постоянным напряжением. Кроме того, в этой форме металл может быть связан с выводом + ve , а вольфрамовый электрод может быть связан с выводом -ve .

Дуга образует вольфрамовый электрод, а также участок работы. Для этого вида процесса и дуга, и плазма движутся к секции работы, что увеличивает мощность нагрева техники.

Этот вид PAW можно использовать для соединения прочных листов.

Неперенесенная PAW

В этом процессе PAW используется постоянный ток прямой полярности. Кроме того, в этом процессе можно соединить сопло с наконечником + ve и связать вольфрамовый электрод с наконечником -ve .

Дуга возникает внутри горелки между вольфрамовым электродом и соплом, что способствует ионизации газа внутри горелки. Кроме того, резак должен пропускать ионизированный газ, чтобы идти дальше.

Этот стиль PAW можно использовать для соединения тонких листов.

Это два разных типа дуговой сварки лапой, которые можно использовать для сварки. Вы можете выбрать правильный метод плазменно-дуговой сварки для своих приложений, учитывая процесс / этап, связанный с каждым типом плазменно-дуговой сварки.

Обсудив типы плазменной сварки, мы можем перейти к преимуществам и недостаткам плазменной сварки.

Преимущества и недостатки плазменной сварки

Несмотря на то, что плазменная дуговая сварка (или плазменно-дуговая сварка) часто игнорируется в производстве стали, алюминия или нержавеющей стали, несмотря на то, что она используется в приложениях с высокой степенью достоверности, таких как аэрокосмическая, электронная, автомобильная и медицинская промышленность, потому что это гораздо больше. сложный и требует более дорогостоящего набора инструментов по сравнению с другими процессами дуги.

Объяснение игнорируемого затруднительного положения заключается в том, что лапа работает немного медленнее по сравнению с другими методами сварки, такими как сварка лазерным лучом (LBW).

Однако

PAW не самый медленный из всех. Это быстрее, чем GTAW (газовая дуговая сварка вольфрамом), которую также называют TIG или инертным газом. Кроме того, PAW обеспечивает сварку с минимальными затратами, тогда как LBW была первым вариантом.

У

PAW также есть свои плюсы и минусы, включая металлопрокат, гибку металла, лазерную резку и т. Д.По правде говоря, PAW намного медленнее, чем LBW.

Интенсивность может быть в пять раз больше, чем достигается PAW, в зависимости от лазера, используемого в LBW. Однако, когда вы обнаружите затраты на сварку, PAW намного более экономичен, чем LBW и некоторые другие методы сварки.

Вот почему PAW все еще используется в обработке металлов как экономичная альтернатива дорогостоящей LBW, где высокое качество и высокая скорость не являются обязательными. Однако у PAW есть обратная сторона, заключающаяся в большем тепловложении.

Позволяет образовывать более широкие сварные швы и некоторые термически затронутые области, а также LBW и EBW. Это создает большую нестабильность, а также приводит к повреждению механических свойств.

Тем не менее, PAW имеет преимущество перед ними помимо экономической эффективности. Именно сопротивление стыковке зазоров, а также неровностей обеспечивает использование PAW в производстве металла.

Хотя дуга ограничена, столб плазмы имеет значительно больший диаметр, чем пучок. Следовательно, легче создавать наполнители с PAW, чем с LBW или EBW.

Что касается контраста между PAW и GTAW, PAW имеет серьезный недостаток - сложность. Фактически, как вы узнаете, рентабельность GTAW выше.

По сравнению с конической газовой вольфрамовой дугой, тонкая дуга для плазменно-дуговой сварки менее устойчива к неровностям стыка. Тем не менее, тонкая дуга микроплазмы легко сохраняется при более низком уровне тока, что дает ей небольшое преимущество перед GTAW.

PAW имеет немного более низкий предел тока, который составляет почти одну десятую GTAW.Это наряду с эффективным зажиганием дуги делает плазменно-дуговую сварку идеальным вариантом для многих приложений с меньшей чувствительностью, таких как медицина и электроника.

PAW также имеет более высокие преимущества по сравнению с GTAW. По этой причине активация сварных швов в режиме «замочная скважина» при плазменной дуговой сварке может привести к полному проплавлению всего за один проход в более мелком материале.

PAW устраняет необходимость в дорогостоящих совместных подготовительных работах и ​​устраняет необходимость в наполнителе.Кроме того, большую часть материала можно сваривать с помощью DCEN (отрицательный электрод постоянного тока) с помощью плазменной сварки.

Несмотря на свою сложность и медлительность, PAW все еще используется, и легко понять, почему.

Выше мы обсудили некоторые причины использования плазменной сварки, а также некоторые причины, по которым ее следует избегать. Вы можете решить, использовать ли плазменную сварку или нет, в зависимости от того, что вы хотите получить от процесса сварки.

Чтобы облегчить вам выбор, мы быстро перечислим основные преимущества и недостатки не только плазменной сварки (PAW), но и плазменной резки.

Преимущества плазменной резки

Ниже приводится список основных преимуществ использования плазменной резки:

  • Быстрая автоматизация
  • Остается крошечный пропил
  • Можно резать любые металлы
  • Плавная толщина 150 мм
  • Резка быстрее (примерно в 5-10 раз), чем газокислородная

Недостатки плазменной резки

Ниже приводится список основных недостатков плазменной резки:

  • Большие первоначальные инвестиционные затраты
  • Большая область, подверженная воздействию тепла
  • Система также вызывает заусенцы
  • Поверхность шероховатая
  • Создает дым и шум
  • Сложно построить острые углы

Преимущества PAW

Ниже приводится список основных преимуществ использования PAW:

  • Зона воздействия тепла меньше по сравнению с GTAW
  • Архитектура горелки обеспечивает большую мощность дуги
  • Высокая температура плазмы и повышенная теплоемкость допускают воздействие замочной скважины и обеспечивают полную инфильтрацию нескольких стыков при однопроходной сварке.
  • Увеличенная тепловая и плазменная струя позволяет увеличить скорость переноса
  • Такой подход обеспечивает более свободное наблюдение и контроль сварного шва.

Недостатки PAW

Ниже приводится список основных недостатков PAW:

  • Горелка тяжелая, поэтому ручная сварка очень сложна и требует обучения
  • По сравнению с EBW и LBW, он обеспечивает более широкие сварные швы и зоны термического влияния
  • Система генерирует более высокий уровень шума в диапазоне около 100 дБ
  • Системы плазменной сварки очень дороги; следовательно, он будет иметь более высокие стартовые затраты
  • Генерирует ультрафиолетовое и инфракрасное излучение
  • Для проведения плазменной сварки требуется обучение и специализация

Вот и все - преимущества и недостатки плазменной резки и плазменной сварки (PAW).Основываясь на этой информации, вы можете решить, является ли использование плазменной сварки для вашего конкретного случая хорошей идеей.

Применение плазменной сварки

Один из наиболее распространенных вопросов о плазменной сварке после «что такое плазменная сварка» - это «где можно использовать плазменную сварку?» Ниже перечислены основные области применения плазменной сварки:

  • Используется для особого покрытия лопатки турбины
  • Может использоваться в таких секторах, как морская и авиакосмическая промышленность.
  • PAW используется в основном для ремонта инструментов, придания формы и окраски
  • Этот вид сварки применяется в основном в электронной промышленности
  • Используется для соединения нержавеющих труб и трубок вместе

Этот список не является исчерпывающим, и существуют другие области применения плазменной сварки.

Сводка

Что такое плазменная сварка? Приведенная выше информация - это все, что нужно знать о плазменной сварке.

Из приведенных выше деталей мы можем сделать вывод, что метод плазменно-дуговой сварки в равной степени подходит для ручных, автоматизированных приложений, в дополнение к различным операциям, охватывающим сварку листового металла большого объема и сварку кухонного оборудования, автоматический ремонт лопастей реактивного двигателя до прецизионная сварка медицинского оборудования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *