Пк блок питания схема: Устройство компьютерных блоков питания и методика их тестирования

Содержание

Как работает блок питания компьютера | Блоки питания компьютера | Блог

Большинство рассказов про блоки питания начинается с подчеркивания их важнейшей и чуть ли не главенствующей роли в составе компьютера. Это не так. БП — просто один из компонентов системы, без которого она не будет работать. Он обеспечивает преобразование переменного напряжения из сети в необходимые для работы ПК стабилизированные напряжения. Все блоки можно разделить на импульсные и линейные. Современные компьютерные блоки выполнены по импульсной схеме. 

Линейные блоки питания

Сетевое напряжение поступает на первичную обмотку трансформатора, а со вторичной мы снимаем уже пониженное до нужных пределов переменное напряжение. Далее оно выпрямляется, следом стоит фильтр (в данном случае нарисован обычный электролитический конденсатор) и схема стабилизации. Схема стабилизации необходима, так как напряжение на вторичной обмотке напрямую зависит от входного напряжения, а оно только по ГОСТу может меняться в пределах ±10 %, а в реальности — и больше.


Основные достоинства линейных блоков питания — простая конструкция и низкий уровень помех (поэтому аудиофилы часто используют их в усилителях). Недостаток таких БП — габариты и невысокий КПД. Собрать БП мощностью 400 и более Вт по такой схеме возможно, но он будет иметь устрашающие размеры, вес и стоимость (медь нынче дорогая).

Импульсные блоки питания

Далее в тексте сократим название «импульсный источник питания» до ИИП. Такие блоки питания более сложны, но гораздо более компактны. Для примера на фото ниже показана пара трансформаторов.

Слева — отечественный сетевой с номинальной мощностью 17 Вт, справа — выпаянный из компьютерного БП мощностью 450 Вт. Кстати, отечественный еще и весит раз в 5 больше.

В ИИП сетевое напряжение сначала выпрямляется и сглаживается фильтром, а потом опять преобразуется в переменное, но уже гораздо более высокой частоты (несколько десятков килогерц). А затем оно понижается трансформатором.  

Так выглядит плата вживую:

Фильтр

Фильтр в блоке питания двунаправленный: он поглощает разного рода помехи: как созданные самим БП, так и приходящие из сети. В самых бюджетных БП предприимчивые китайцы вместо дросселей распаивали перемычки (или, как их называют ремонтники, «пофигисторы»), а конденсаторы не ставили вообще. Чем это плохо: помехи будут влиять на другую аппаратуру, подключенную к данной сети, а напряжение на выходе получится с «мусором». Сейчас таких блоков уже немного. Встречается также экономия на размерах: фильтр как бы есть, но работать он будет кое-как.

Фильтр работает эффективнее, когда он находится как можно ближе к источнику помех. Поэтому часть фильтра зачастую располагают прямо на сетевой розетке.

На картинке изображен фильтр в минимальной комплектации. F1 — предохранитель, VDR1 — варистор, N1 — термистор, Х2 — Х-конденсатор, Y1 — Y-конденсаторы, L1 — синфазный дроссель. Резистор R1 служит для разряда конденсатора Х2.

Еще одна опасная для жизни пользователей экономия — когда вместо специальных Х- и Y-конденсаторов ставят обычные. Впрочем, встречается она редко. Автор видел такое всего один раз и очень давно. Экономия очень незначительна, а риск для пользователей очень велик, так как, например, Y-конденсаторы подключаются одной «ногой» на фазу, а другой — на корпус. В случае пробоя конденсатора можно получить опасное для жизни напряжение на корпусе.

Корректор коэффициента мощности

Не будем вдаваться в подробности, поскольку статьи на эту тему уже были: раз и два. Скажем только, что корректор коэффициента мощности должен быть во всех компьютерных БП, желательно активного типа (A-PFC). 

Плюсы корректора:
1) Снижается нагрузка на сеть.
2) Повышенный диапазон входного напряжения (чаще всего, но не всегда).
3) Улучшение работы инвертора.

Минусы:
1) Увеличивается сложность конструкции, соответственно, снижается надежность.
2) Возможны проблемы при работе с UPS.

Преобразователь

Обычно используется мостовая или полумостовая схема. Чаще всего встречается полумост. На картинке ниже он изображен в упрощенном виде.

Как видно по схеме, транзисторы открываются поочередно с небольшой задержкой, чтобы не случилось ситуации, когда оба окажутся открыты. В таком случае получаем на первичной обмотке переменный ток высокой частоты, а на вторичной — уже пониженный до нужной величины.

В топовых блоках применяются резонансные преобразователи (LLC), которые имеют более высокий КПД, но они технически сложнее.

Выпрямление и стабилизация выходных напряжений

На выходе БП имеется четыре напряжения:
1) 12 В — отвечает за питание процессора, видеокарты, HDD, вентиляторов.
2) 5 В — питание логики материнской платы, накопителей, USB.
3) 3,3 В — питание оперативной памяти.
4) -12 В — считается атавизмом и не используется в современных компьютерах.  

По способу выпрямления и стабилизации блоки можно поделить на четыре группы:

1) Выпрямление с помощью диодов Шоттки (полупроводниковый прибор, у которого при прямом включении падение напряжения будет в три-четыре раза меньше, чем у обычных кремниевых), групповая стабилизация.

Внешне их можно определить по двум крупным дросселям. На одном — три обмотки (12 В, 5 В и тонкий провод -12 В). 


Второй имеет меньший размер. Это отдельная стабилизация канала 3,3 В. Сейчас такие БП часто встречаются в основном в бюджетном сегменте. Например:

Вот, например, фото такого блока. Очень бюджетно:

2) Выпрямление с помощью диодов Шоттки, раздельная стабилизация на магнитных усилителях. Внешне их можно отличить по наличию в выходных цепях трех крупных дросселей. Данная схема в современных БП не используется: ее вытеснили более производительные решения. Пик такой схемотехники — начало 2000-х годов.

3) Выпрямление канала 12 В с помощью диодов Шоттки. Напряжения 5 В и 3,3 В получают из 12 В с помощью преобразователей DC-DC. Развитие электроники позволило производить недорогие и эффективные преобразователи такого рода. БП будет ненамного эффективнее обычных с групповой стабилизацией (так как нагрузка на низковольтные каналы небольшая), но стабильность напряжений выше. 

4) Канал 12 В — синхронный выпрямитель на MOSFET (полевой транзистор с изолированным затвором), остальные напряжения получают при помощи преобразователей DC-DC.


Это наиболее эффективная и точная, но и более сложная схемотехника. В соответствии с ней делают все топовые блоки питания. Отклонения выходных напряжений у таких блоков укладываются в один-два процента при допустимых 5 %.  

Дежурный источник питания

Представляет из себя маломощный ИИП с напряжением на выходе 5 В. Он работает все время, пока БП подключен к сети. Обеспечивает питание микросхем внутри блока и питание логики на материнской плате, а также подает питание на порты USB при выключенном компьютере.

Супервизор

Микросхема обеспечивает функционирование основных защит в блоке (превышения выходных напряжений, превышение выходного тока и прочее), управляет включением и выключением блока по сигналам с материнской платы.


Теперь вы представляете, как обстоит дело со схемотехникой в наши дни. А что нас ждет в будущем? В мае 2020 года компания Интел выпустила новый ATX12VO (12 V Only) Desktop Power Supply Disign Guide в котором описывает совершенно новые БП: у блока осталось только одно напряжение — 12 В. Нужные напряжения будет преобразовывать материнская плата. Дежурный источник питания с напряжения 5 В перейдет на 12 В. При этом размеры блоков АТХ остаются такими же. Это сделано для того, чтобы сохранить совместимость со старыми корпусами. Правда, пока производители не торопятся переходить на этот формфактор. 

Как устроен блок питания, который работает в каждом системнике / Блог компании Дата-центр «Миран» / Хабр


Блок питания извлечён из корпуса. Пучок проводов слева подключается к компьютеру. Большой компонент посередине типа трансформатора — это фильтрующий индуктор. Кликабельно, как и все фотографии в статье

Вы когда-нибудь задумывались, что находится внутри блока питания (БП) вашего компьютера? Задача БП — преобразовать питание из сети (120 или 240 В переменного тока, AC) в стабильное питание постоянного, то есть однонаправленного тока (DC), который нужен вашему компьютеру. БП должен быть компактным и дешёвым, при этом эффективно и безопасно преобразовывать ток. Для этих целей при изготовлении используются различные методы, а сами БП внутри устроены гораздо сложнее, чем вы думаете.

В этой статье мы разберём блок стандарта ATX и объясним, как он работает1.

Как и в большинстве современных БП, в нашем используется конструкция, известная как «импульсный блок питания» (ИБП). Это сейчас они очень дёшевы, но так было не всегда. В 1950-е годы сложные и дорогие ИБП использовались разве что в ракетах и космических спутниках с критическими требованиями к размеру и весу. Однако к началу 1970-х новые высоковольтные транзисторы и другие технологические усовершенствования значительно удешевили ИБП, так что их стали широко использовать в компьютерах. Сегодня вы можете за несколько долларов купить зарядное устройство для телефона с ИБП внутри.

Наш ИБП формата ATX упакован в металлический корпус размером с кирпич, из которого выходит множество разноцветных кабелей. Внутри корпуса мы видим плотно упакованные компоненты. Инженеры-конструкторы явно были озабочены проблемой компактности устройства. Многие компоненты накрыты радиаторами. Они охлаждают силовые полупроводники. То же самое для всего БП делает встроенный вентилятор. На КДПВ он справа.

Начнём с краткого обзора, как работает ИБП, а затем подробно опишем компоненты. Своеобразный «конвейер» на фотографии организован справа налево. Справа ИБП получает переменный ток. Входной переменный ток преобразуется в высоковольтный постоянный ток с помощью нескольких крупных фильтрующих компонентов. Этот постоянный ток включается и выключается тысячи раз в секунду для генерации импульсов, которые подаются в трансформатор. Тот преобразует высоковольтные импульсы в сильноточные низковольтные. Эти импульсы преобразуются в постоянный ток и фильтруются, чтобы обеспечить хорошее, чистое питание. Оно подаётся на материнскую плату, накопители и дисководы через кабели на фотографии слева.

Хотя процесс может показаться чрезмерно сложным, но большинство бытовой электроники от мобильника до телевизора на самом деле питаются через ИБП. Высокочастотный ток позволяет сделать маленький, лёгкий трансформатор. Кроме того, импульсные БП очень эффективны. Импульсы настраиваются таким образом, чтобы обеспечить только необходимую мощность, а не превращать избыточную мощность в отработанное тепло, как в линейном БП.

Первым делом входной переменный ток проходит через цепь входного фильтра, которая фильтрует электрический шум, то есть беспорядочные изменения электрического тока, ухудшающие качество сигнала.

Фильтр ниже состоит из индукторов (тороидальных катушек) и конденсаторов. Квадратные серые конденсаторы — специальные компоненты класса X для безопасного подключения к линиям переменного тока.


Компоненты входного фильтра

Переменный ток с частотой 60 герц в сети меняет своё направление 60 раз в секунду (AC), но компьютеру нужен постоянный ток в одном направлении (DC).

Полномостовой выпрямитель

на фотографии ниже преобразует переменный ток в постоянный. Выходы постоянного тока на выпрямителе отмечены знаками

?

и

+

, а переменный ток входит через два центральных контакта, которые

постоянно меняют свою полярность

. Внутри выпрямителя — четыре диода. Диод позволяет току проходить в одном направлении и блокирует его в другом направлении, поэтому в результате переменный ток преобразуется в постоянный ток, протекающий в нужном направлении.


На мостовом выпрямителе видна маркировка GBU606. Цепь фильтра находится слева от выпрямителя. Большой чёрный конденсатор справа — один из удвоителей напряжения. Маленький жёлтый конденсатор — это специальный керамический Y-конденсатор, который защищает от всплесков напряжения

Ниже — две схемы, как работает мостовой выпрямитель. На первой схеме у верхнего входа переменного тока положительная полярность. Диоды пропускают поток на выход DC. На второй схеме входы переменного тока поменяли полярность, как это происходит постоянно в AC. Однако конфигурация диодов гарантирует, что выходной ток остаётся неизменным (плюс всегда сверху). Конденсаторы сглаживают выход.


На двух схемах показан поток тока при колебаниях входного сигнала AC. Четыре диода заставляют ток течь в направлении по стрелке

Современные БП принимают «универсальное» входное напряжение от 85 до 264 вольт переменного тока, поэтому могут использоваться в разных странах независимо от напряжения в местной сети. Однако схема этого старого БП не могла справиться с таким широким диапазоном. Поэтому предусмотрен переключатель для выбора 115 или 230 В.


Переключатель 115/230 В

Переключатель использует умную схему с удвоителем напряжения. Идея в том, что при закрытом переключателе (на 115 В) вход AC обходит два нижних диода в мостовом выпрямителе, а вместо этого подключается непосредственно к двум конденсаторам. Когда «плюс» на верхнем входе AC, полное напряжение получает верхний конденсатор. А когда «плюс» снизу, то нижний. Поскольку выход DC идёт с обоих конденсаторов, на выходе всегда получается двойное напряжение. Дело в том, что остальная часть БП получает одинаковое напряжение независимо от того, на входе 115 или 230 В, что упрощает его конструкцию. Недостаток удвоителя в том, что пользователь обязан установить переключатель в правильное положение, иначе рискует повредить БП, а для самого БП требуются два больших конденсатора. Поэтому в современных БП удвоитель напряжения вышел из моды.


Схема удвоителя напряжения. Каждый конденсатор получает полный вольтаж, поэтому на выходе DC двойное напряжение. Серые диоды не используются в работе удвоителя

В целях безопасности высоковольтные и низковольтные компоненты разделены механически и электрически, см. фотографию ниже. На основной стороне находятся все цепи, которые подключаются к сети AC. На вторичной стороне — низковольтные цепи. Две стороны разделены «пограничной изоляцией», которая отмечена зелёным пунктиром на фотографии. Через границу не проходит

никаких

электрических соединений. Трансформаторы пропускают энергию через эту границу через магнитные поля без прямого электрического соединения. Сигналы обратной связи передаются на основную сторону с помощью оптоизоляторов, то есть световыми импульсами. Это разделение является ключевым фактором в безопасной конструкции: прямое электрическое соединение между линией AC и выходом БП создаёт опасность удара электрическим током.


Источник питания с маркировкой основных элементов. Радиаторы, конденсаторы, плата управления и выходные кабели удалены ради лучшего обзора (SB означает источник резервного питания, standby supply)

К этому моменту входной переменный ток преобразован в высоковольтный постоянный ток около 320 В

2

. Постоянный ток нарезается на импульсы переключающим (импульсным) транзистором (

switching transistor

на схеме выше). Это силовой МОП-транзистор (MOSFET)

3

. Поскольку во время использования он нагревается, то установлен на большом радиаторе. Импульсы подаются в главный трансформатор, который в некотором смысле является сердцем БП.

Трансформатор состоит из нескольких катушек проволоки, намотанных на намагничиваемый сердечник. Высоковольтные импульсы, поступающие в первичную обмотку трансформатора, создают магнитное поле. Сердечник направляет это магнитное поле на другие, вторичные обмотки, создавая в них напряжение. Так ИБП безопасно вырабатывает выходной ток: между двумя сторонами трансформатора нет электрического соединения, только соединение через магнитное поле. Другим важным аспектом является то, что в первичной обмотке много оборотов проволоки вокруг сердечника, а на вторичных контурах гораздо меньше. В результате получается понижающий трансформатор: выходное напряжение намного меньше входного, но при гораздо большем вольтаже.

Переключающий транзистор3 управляется интегральной схемой под названием «ШИМ-контроллер режима тока UC3842B». Этот чип можно считать мозгом БП. Он генерирует импульсы на высокой частоте 250 килогерц. Ширина каждого импульса регулируется для обеспечения необходимого выходного напряжения: если напряжение начинает падать, чип производит более широкие импульсы, чтобы пропускать больше энергии через трансформатор4.

Теперь можно посмотреть на вторую, низковольтную часть БП. Вторичная схема производит четыре выходных напряжения: 5, 12, ?12 и 3,3 вольта. Для каждого выходного напряжения отдельная обмотка трансформатора и отдельная схема для получения этого тока. Силовые диоды (ниже) преобразуют выходы трансформатора в постоянный ток. Затем индукторы и конденсаторы фильтруют выход от всплесков напряжения. БП должен регулировать выходное напряжение, чтобы поддерживать его на должном уровне даже при увеличении или уменьшении нагрузки. Интересно, что в БП используется несколько различных методов регулирования.


Крупным планом показаны выходные диоды. Слева вертикально установлены цилиндрические диоды. В центре — пары прямоугольных силовых диодов Шоттки, в каждом корпусе по два диода. Эти диоды прикреплены к радиатору для охлаждения. Справа обратите внимание на два медных провода в форме скоб. Они используются в качестве резисторов для измерения тока

Основными являются выходы 5 и 12 В. Они регулируются одной микросхемой контроллера на основной стороне. Если напряжение слишком низкое, микросхема увеличивает ширину импульсов, пропуская больше мощности через трансформатор и увеличивая напряжение на вторичной стороне БП. А если напряжение слишком высокое, чип уменьшает ширину импульса. Примечание: одна и та же схема обратной связи управляет выходами на 5 и 12 В, поэтому нагрузка на одном выходе может изменять напряжение на другом. В более качественных БП два выхода регулируются по отдельности5.


Нижняя сторона печатной платы. Обратите внимание на большое расстояние между цепями основной и вторичной сторон БП. Также обратите внимание, какие широкие металлические дорожки на основной стороне БП для тока высокого напряжения и какие тонкие дорожки для схем управления

Вы можете задать вопрос, как микросхема контроллера на основной стороне получает обратную связь об уровнях напряжения на вторичной стороне, поскольку между ними нет электрического соединения (на фотографии виден широкий зазор). Трюк в использовании хитроумной микросхемы под названием оптоизолятор. Внутри чипа на одной стороне чипа инфракрасный светодиод, на другой светочувствительный фототранзистор. Сигнал обратной связи подаётся на LED и детектируется фототранзистором на другой стороне. Таким образом оптоизолятор обеспечивает мост между вторичной и первичной сторонами, передавая информацию светом, а не электричеством6.

Источник питания также обеспечивает отрицательное выходное напряжение (?12 В). Это напряжение в основном устарело, но использовалось для питания последовательных портов и слотов PCI. Регулирование питания ?12 В кардинально отличается от регулирования +5 и +12 В. Выход ?12 В управляется стабилитроном (диодом Зенера) — это специальный тип диода, который блокирует обратный ток до определённого уровня напряжения, а затем начинает проводить его. Избыточное напряжение рассеивается в виде тепла через силовой резистор (розовый) под управлением транзистора и стабилитрона (поскольку этот подход расходует энергию впустую, современные высокоэффективные БП не используют такой метод регулирования).


Питание ?12 В регулируется крошечным стабилитроном ZD6 длиной около 3,6 мм на нижней стороне печатной платы. Соответствующий силовой резистор и транзистор A1015 находятся на верхней стороне платы

Пожалуй, наиболее интересной схемой регулирования является выход 3,3 В, который регулируется магнитным усилителем. Магнитный усилитель — это индуктор с особыми магнитными свойствами, которые заставляют его работать как ключ (переключатель). Когда ток подаётся в индуктор магнитного усилителя, то сначала он почти полностью блокирует ток, поскольку индуктор намагничивается и магнитное поле увеличивается. Когда индуктор достигает полной намагниченности (то есть насыщается), его поведение внезапно меняется — и индуктор позволяет частицам течь беспрепятственно. Магнитный усилитель в БП получает импульсы от трансформатора. Индуктор блокирует переменную часть импульса. Выход 3,3 В регулируется изменением ширины импульса7.


Магнитный усилитель представляет собой кольцо из ферритового материала с особыми магнитными свойствами. Вокруг кольца намотано несколько витков проволоки

В блоке питания есть небольшая плата, на которой размещена схема управления. Эта плата сравнивает напряжение с эталонным, чтобы генерировать сигналы обратной связи. Она отслеживает вольтаж также для того, чтобы генерировать сигнал «питание в норме» (power good). Схема установлена на отдельной перпендикулярной плате, поэтому не занимает много места в БП.


Основные компоненты установлены на верхней стороне платы со сквозными отверстиями, а нижняя сторона покрыта крошечными SMD-компонентами, которые нанесены путём поверхностного монтажа. Обратите внимание на резисторы с нулевым сопротивлением в качестве перемычек

В БП есть ещё вторая цепь — для резервного питания

9

. Даже когда компьютер формально «выключен», пятивольтовый источник резервного питания обеспечивает ему мощность 10 Вт для функций, которые продолжают работать: часы реального времени, функция пробуждения по локальной сети и др. Цепь резервного питания является почти независимым БП: она использует отдельную управляющую микросхему, отдельный трансформатор и отдельные компоненты на вторичной стороне DC, но те же самые компоненты на основной стороне AC. Эта система гораздо меньшей мощности, поэтому в цепи трансформатор меньшего размера.


Чёрно-жёлтые трансформаторы: трансформатор для резервного питания находится слева, а основной трансформатор — справа. Перед ним установлена микросхема для управления резервным питанием. Большой цилиндрический конденсатор справа — компонент удвоителя напряжения. Белые капли — это силикон, который изолирует компоненты и удерживает их на месте

Блок питания ATX сложно устроен внутри, с множеством компонентов, от массивных индукторов и конденсаторов до крошечных компонентов поверхностного монтажа

10

. Однако эта сложность позволяет выпускать эффективные, маленькие и безопасные БП. Для сравнения, я когда-то писал о

блоке питания 1940-х годов

, который выдавал всего 85 ватт мощности, но был размером с чемодан, весил 50 кг и стоил сумасшедшие деньги. В наше время с продвинутыми полупроводниками делают гораздо более мощные БП дешевле 50 долларов, и такое устройство поместится у вас в руке.


Блок питания REC-30 для телетайпа Model 19 (ВМФ США) 1940-х годов

Я уже писал о БП, включая историю блоков питания в IEEE Spectrum. Вам также могут понравиться детальные разборы зарядного устройства Macbook и зарядного устройства iPhone.


1

Intel представила стандарт ATX для персональных компьютеров в 1995 году. Стандарт ATX (с некоторыми обновлениями) по-прежнему определяет конфигурацию материнской платы, корпуса и блока питания большинства настольных компьютеров. Здесь мы изучаем блок питания 2005 года, а современные БП более продвинутые и эффективные. Основные принципы те же, но есть некоторые изменения. Например, вместо магнитных усилителей почти везде используют преобразователи DC/DC.


Этикетка на блоке питания

На этикетке БП указано, что он изготовлен компанией Bestec для настольного компьютера Hewlett-Packard Dx5150. Этот БП слегка не соответствует формату ATX, он более вытянут в длину. [вернуться]

2 Вы можете задать вопрос, почему AC напряжением 230 В преобразуется в постоянный ток 320 В. Причина в том, что напряжение переменного тока обычно измеряется как среднеквадратичное, которое в каком-то смысле усредняет изменяющуюся форму волны. По факту в 230-вольтовом сигнале AC есть пики до 320 вольт. Конденсаторы БП заряжаются через диоды до пикового напряжения, поэтому постоянный ток составляет примерно 320 вольт (хотя немного провисает в течение цикла). [вернуться]

3 Силовой транзистор представляет собой силовой МОП-транзистор FQA9N90C. Он выдерживает 9 ампер и 900 вольт. [вернуться]

4 Интегральная схема питается от отдельной обмотки на трансформаторе, которая выдаёт 34 вольта для её работы. Налицо проблема курицы и яйца: управляющая микросхема создаёт импульсы для трансформатора, но трансформатор питает управляющую микросхему. Решение — специальная цепь запуска с резистором 100 kΩ между микросхемой и высоковольтным током. Она обеспечивает небольшой ток для запуска микросхемы. Как только чип начинает отправлять импульсы на трансформатор, то питается уже от него. [вернуться]

5 Метод использования одного контура регулирования для двух выходов называется перекрёстным регулированием. Если нагрузка на одном выходе намного выше другого, напряжения могут отклоняться от своих значений. Поэтому во многих БП есть минимальные требования к нагрузке на каждом выходе. Более продвинутые БП используют DC/DC преобразователи для всех выходов, чтобы контролировать точность напряжения. Дополнительные сведения о перекрёстном регулировании см. в этих двух презентациях. Один из обсуждаемых методов — многоуровневая укладка выходных обмоток, как в нашем БП. В частности, 12-вольтовый выход реализован в виде 7-вольтового выхода поверх 5-вольтового выхода, что даёт 12 вольт. При такой конфигурации ошибка 10% (например) в 12-вольтовой цепи будет составлять всего 0,7 В, а не 1,2 В. [вернуться]

6 Оптоизоляторы представляют собой компоненты PC817, которые обеспечивают 5000 вольт изоляции между сторонами БП (то есть между высокой и низкой сторонами). Обратите внимание на прорезь в печатной плате под оптоизоляторами. Это дополнительная мера безопасности: она гарантирует, что ток высокого напряжения не пройдёт между двумя сторонами оптоизолятора вдоль поверхности печатной платы, например, при наличии загрязнения или конденсата (в частности, прорезь увеличивает расстояние утечки). [вернуться]

7 Ширина импульса через магнитный усилитель устанавливается простой схемой управления. В обратной части каждого импульса индуктор частично размагничивается. Схема управления регулирует напряжение размагничивания. Более высокий вольтаж усиливает размагничивание. Тогда индуктору требуется больше времени для повторного намагничивания, и, таким образом, он дольше блокирует входной импульс. При более коротком импульсе в цепи выходное напряжение уменьшается. И наоборот, более низкое напряжение размагничивания приводит к меньшему размагничиванию, поэтому входной импульс блокируется не так долго. В итоге выходное напряжение регулируется изменением напряжения размагничивания. Обратите внимание, что ширина импульса в магнитном усилителе регулируется управляющей микросхемой. Магнитный усилитель сокращает эти импульсы по мере необходимости при регулировании выходного напряжения 3,3 В. [вернуться]

8 Плата управления содержит несколько микросхем, включая операционный усилитель LM358NA, чип супервизора/сброса TPS3510P, четырёхканальный дифференциальный компаратор LM339N и прецизионный эталон AZ431. Чип супервизора интересный — он специально разработан для БП и контролирует выходное напряжение, чтобы оно было не слишком высоким и не слишком низким. Прецизионный эталон AZ431 — это вариант эталонного чипа TL431, который часто используется в БП для обеспечения опорного (контрольного) напряжения. Я уже писал о TL431. [вернуться]

9 Источник резервного питания использует другую конфигурацию — обратноходовой трансформатор. Здесь установлена управляющая микросхема A6151 с переключающим транзистором, что упрощает конструкцию.


Схема БП с использованием A6151. Она взята из справочника, поэтому не идентична схеме нашего БП, хотя близка к ней
[вернуться]

10 Если хотите изучить подробные схемы различных БП формата ATX, рекомендую сайт Дэна Мельника. Удивительно, сколько существует реализаций БП: различные топологии (полумостовые или прямые), наличие или отсутствие преобразования коэффициента мощности (PFC), разнообразные системы управления, регулирования и мониторинга. Наш БП довольно похож на БП с прямой топологией без PFC, внизу той странички на сайте Дэна. [вернуться]



схема и полное описание БП на 200 Вт

Основные признаки и причины поломки блока питания

Длительность и качество работы компьютера зависит от условий эксплуатации и присмотра за ним. Если пользователь бережливо относится к своему ПК, периодически проводит его чистку и придерживается инструкций, то устройство прослужит достаточно долго.

Но случается так, что ваш блок питания рано или поздно выходит со строя. Тогда вам приходится либо обращаться в сервисный центр, либо, если у вас есть навыки самим разбираться в чем причина неисправности. Имея соответствующие приборы. паяльник и немного терпения разобравшись в схеме, вы сможете подчинить свой домашний ПК, не выходя из дома. Например, у Вас вышел из строя 200-ваттный блок питания ПК. Принципиальную электрическую схему с полным описанием 200-ваттного блока питания ПК, можно найти на этом сайте: Shema.Info.  Блок питания ПК обеспечивает работу всех компонентов ПК.
 



 
Электрические схемы Shema.Info с описаниями для:
  • Бытовой электроники;
  • Детекторов напряженности поля;
  • Медицинских аппаратов;
  • Освещение;
  • Радиомикрофонов;
  • Радиопередатчиков;
  • Телевидения, видеотехники;
  • Телефонии;
  • Узлов радиолюбительской техники.

Основные признаки и причины поломки блока питания

Пользователь может замечать определенные изменения в работе персонального компьютера, которые требуют внимания, среди них:
  • отсутствие индикатора питания, исходного напряжения;
  • чувствуется запах горелой проводки;
  • свист во время работы ПК;
  • устройство не включается или сразу сам выключается.
Попадаются случаи, когда после подачи питания не запускается материнская плата, причиной этого также может быть неисправность БП. Надо вовремя диагностировать поломку, чтобы эффективно ее устранить.

Ремонт блока питания может понадобиться при низком качестве функциональных элементов, которые быстро вышли из строя, а также при исчерпании лимита их срока службы. Резкие перепады напряжения и частое перегревание компонентов - еще одни вероятные факторы, которые могут повлечь поломку БП.

Если вам удалось отыскать неисправность и успешно устранить ее, то после включения БП сразу проверьте уровень всех выходных напряжений и только после этого делайте установку его в компьютер.

Схожі матеріали:

Подключение блока питания к материнской плате: 3 шага

Почти всем частям аппаратной начинки ПК нужно питание, которое им обеспечивает специальное устройство. Оно ставится на материнку, а затем провода от него подключаются к другим девайсам. Как подсоединить такой элемент к плате правильно — в статье.

Какие функции выполняет блок питания

Этот компонент — источник электроэнергии, который:

  • превращает ток из переменного в постоянный для обеспечения энергией начинки компьютера;
  • стабилизирует электроэнергию, защищая комплектующие системы от сгорания при перепадах напряжения в сети;
  • помогает поддерживать оптимальную температуру, поскольку оснащен вентилятором.

Примечание: если система собрана в корпусе с расположенным вверху БП, то его кулер почти не охлаждает другие элементы, но если он размещен снизу — воздух циркулирует лучше, охватывая большее количество компьютерных деталей.

Как подключить блок питания к материнской плате

Делается это в три коротких этапа. Лучше сфотографировать подключенный БП, который нужно менять, перед тем, как снять его с материнской панели. Это поможет не забыть, какой кабель куда нужно воткнуть.

Читайте также: Какие разъемы есть на материнской плате и какие у них названия: ликбез в 4 разделах

Отключаем старый блок питания

Если пользователь не собирает новый системник, и задача состоит только в том, чтобы поменять БП, то сперва нужно демонтировать ранее поставленный девайс.

Как делать:

1. Перед извлечением устройства необходимо полностью обесточить системный блок, после чего вынуть сетевой кабель непосредственно из БП. Рекомендуется подождать 3-5 минут, пока накопленная электроэнергия рассеется, а также надеть электростатический браслет — все это обеспечит безопасный демонтаж.

2. Вынимать блок питания лучше, положив корпус ПК на бок. Тогда при ослаблении фиксаторов БП не упадет на другие элементы.

3. Открыть корпус и все провода, которые идут от питающего устройства к комплектующим, переходникам, отсоединить.

Примечание: из самого блока никакие провода доставать не нужно.

4. Выкрутить фиксирующие винтики, которые располагаются на тыльной части корпуса, и вынуть девайс. 

Узнайте: Какой процессор лучше для игр, AMD или INTEL — выбираем из 2 производителей

Монтаж нового блока питания

Схема БП практически идентична процессу демонтажа, только все делается в обратном порядке:

  • Поместить устройство в корпус.
  • Прикрутить крепежные винты.

  • Подключить все кабели в нужные разъемы на материнке и не забыть подсоединить провода к девайсам, которые требуют подпитки: процессору, видеоадаптеру.

Полезно: Совместимость процессора и материнской платы — как подобрать комплектующие: гайд в 3 разделах

Подключение

Для всех блоков питания есть стандартный набор кабелей. Что и для чего предназначено — в таблице. 

Примечание: MOLEX — устаревший разъем,. который раньше использовали для подключения винчестеров с PATA. Его редко, но можно встретить на современных моделях БП.

Инструкция: Установка процессора на материнскую плату: 3 шага

Что делать, если компьютер не включается

Если компьютер не реагирует на попытки включения после замены БП — возможно, что-то сделано неверно: не до конца подсоединен кабель или же к блоку питания подключены не все комплектующие.

Важно проверить корректность соединения всех элементов сборки, а также обратить внимание на положение кнопки на самом БП: она должна быть включенной.

Нужно посмотреть, есть ли напряжение в сети, подключив любой другой электроприбор. В моделях с усиленной защитой от перепадов напряжения, например, Proton 850W, может сработать блокировка при сильно заниженном или завышенном вольтаже.

Стоит открыть корпус и осмотреть визуально «внутренности», проверить надежность и корректность подключения составляющих системы. Можно попробовать отключить все периферийные девайсы и запустить комп повторно.

Совет: не лишней будет регулярная чистка ПК от пыли, которая может привести к нестабильной работе, поскольку мешает охлаждению. Бывает, что она просто засоряет контактную часть, из-за чего БП не сможет взаимодействовать с материнкой.

В тему: Как проверить блок питания для компьютера: правильная проверка БП 4 способами

Как видно, присоединить блок к «матери» и другим внутренним составляющим PC нетрудно. Главное — действовать аккуратно и помнить, для чего предназначен каждый кабель.

Wt7520 схема блока питания - Вместе мастерим

Есть ли схемы для переделки ПК БП АТХ (ШИМ WT7520) в регулируемый по напряжению и току

Всех приветствую.
Был старый БП AT на TL494, переделывал его в регулируемый, но сам регулятор был отдельно собран на 2SC5200, а сам БП был просто увеличен до 20В.
БП был староват и слабоват, вообщем или он сам сгорел или не выдержал нагрузок, что накрылось вкурсе но ремонтировать его не стал, купил БУ ATX на 420вт HQ-420. Глянул что на нем стоит не TL494 а WT7520 не заморачиваясь о схемах, выпаял провода, потом когда начал искать схемы, понял что тут переделка посложнее будет, чем на TL.

  • 1 комментарий
  • Подробнее
  • 69 просмотров

При старте выходные напряжения взлетают больше нормы, БП на WT7520 уходит в защиту.

Блок питания на WT7520.

  • 9 комментариев
  • 135 просмотров

Не держит нагрузку канал 3,3в

Здравствуйте! Попался мне БП LogicPower 450W, с платой KY-9605M, собран на шиме WT7520. Попал с наклейкой СЦ — "Не держит нагрузку", проверка показала, что проблема в линии 3,3в, все остальные напряжения в норме(в т. ч. дежурка), нагрузку выдерживают нормально, линия 3,3в при нагрузке 1,5А проседает до 2,5В, с большей нагрузкой и естественно большей просадкой БП уходит в защиту, на остальные линии просадка 3,3в не влияет, всё укладывается в допуск.
5,1-5,2в
12,1-12,2В
Дежурка 5,1-5,2в
Стабилизатор 3,3 в норме, выпрямители тоже, в том числе и на 5В. В узле коррекции магн.

  • 23 комментария
  • Подробнее
  • 1289 просмотров

ATX на WT7520 не стартует с нагрузкой

БП не особо ширпотребный Powerex Rex-300CS (300W) плата YLP-013 PCB ver2.1
(Есть почти все элементы входного фильтра, но только один из двух предусмотренных дросселей на входе. Конденсаторы 2*470мкф*200в Canicon, измеренная емкость 350мкф, довольно часто встречающееся явление, мост KBL406, дежурка C5027(TO220)+С945+оптрон 817С, силовые транзисторы J13009-2*2шт(TO220), ШИМ WT7520, выпрямители S16C40C (TO220)(3,3), F12C20C(TO220)(+12), SB3040PT(TO247)(+5).

  • 18 комментариев
  • Подробнее
  • 1384 просмотра

непонятная микросхема

Подскажите пожалуйста ,чё это за зверь (EST7502B) Микросхема имеет 16 выводов, стоит в китайском БП фирмы EUOLUTION model EVO1025
микруха стоит одна, значит это шим, изначально небыло 5 вольт на сером проводе, 5 вольт выходит вроде как из неё ,когда я замерял на ней цэшкой напруги,БП совсем здох
Чем её можно заменить,дата шита на неё я не нашел

  • 5 комментариев
  • 3941 просмотр

HQ-Tech HQ-390, HQ-400, HQ-420

Принесли мне посмотреть 3 таких блока.
HQ-390, HQ-400 внутри абсолютно одинаковы, собраны на плате KK 9955. ШИМ SD6109. Диоды 16А в +5 и +3.3, 12А в +12. Входные емкости 220х200 промаркированы как 330х200. На выходах стоят 1000 + 470 мкф
Как ни странно, на этикетках написаны теоретически почти правильные выходные данные 14Ампер по 3.3, 16А по +5 и 12А по +12

HQ-420 собран на плате KY-9605M. ШИМ WT7520. Диоды 30А в +5, по 10 в +3.3 и +12. Входные емкости 330х200 промаркированы как 330х200.

Есть ли схемы для переделки ПК БП АТХ (ШИМ WT7520) в регулируемый по напряжению и току

Всех приветствую.
Был старый БП AT на TL494, переделывал его в регулируемый, но сам регулятор был отдельно собран на 2SC5200, а сам БП был просто увеличен до 20В.
БП был староват и слабоват, вообщем или он сам сгорел или не выдержал нагрузок, что накрылось вкурсе но ремонтировать его не стал, купил БУ ATX на 420вт HQ-420. Глянул что на нем стоит не TL494 а WT7520 не заморачиваясь о схемах, выпаял провода, потом когда начал искать схемы, понял что тут переделка посложнее будет, чем на TL.

  • 1 комментарий
  • Подробнее
  • 69 просмотров

При старте выходные напряжения взлетают больше нормы, БП на WT7520 уходит в защиту.

Блок питания на WT7520.

  • 9 комментариев
  • 135 просмотров

Не держит нагрузку канал 3,3в

Здравствуйте! Попался мне БП LogicPower 450W, с платой KY-9605M, собран на шиме WT7520. Попал с наклейкой СЦ — "Не держит нагрузку", проверка показала, что проблема в линии 3,3в, все остальные напряжения в норме(в т. ч. дежурка), нагрузку выдерживают нормально, линия 3,3в при нагрузке 1,5А проседает до 2,5В, с большей нагрузкой и естественно большей просадкой БП уходит в защиту, на остальные линии просадка 3,3в не влияет, всё укладывается в допуск.
5,1-5,2в
12,1-12,2В
Дежурка 5,1-5,2в
Стабилизатор 3,3 в норме, выпрямители тоже, в том числе и на 5В. В узле коррекции магн.

  • 23 комментария
  • Подробнее
  • 1289 просмотров

ATX на WT7520 не стартует с нагрузкой

БП не особо ширпотребный Powerex Rex-300CS (300W) плата YLP-013 PCB ver2.1
(Есть почти все элементы входного фильтра, но только один из двух предусмотренных дросселей на входе. Конденсаторы 2*470мкф*200в Canicon, измеренная емкость 350мкф, довольно часто встречающееся явление, мост KBL406, дежурка C5027(TO220)+С945+оптрон 817С, силовые транзисторы J13009-2*2шт(TO220), ШИМ WT7520, выпрямители S16C40C (TO220)(3,3), F12C20C(TO220)(+12), SB3040PT(TO247)(+5).

  • 18 комментариев
  • Подробнее
  • 1384 просмотра

непонятная микросхема

Подскажите пожалуйста ,чё это за зверь (EST7502B) Микросхема имеет 16 выводов, стоит в китайском БП фирмы EUOLUTION model EVO1025
микруха стоит одна, значит это шим, изначально небыло 5 вольт на сером проводе, 5 вольт выходит вроде как из неё ,когда я замерял на ней цэшкой напруги,БП совсем здох
Чем её можно заменить,дата шита на неё я не нашел

  • 5 комментариев
  • 3941 просмотр

HQ-Tech HQ-390, HQ-400, HQ-420

Принесли мне посмотреть 3 таких блока.
HQ-390, HQ-400 внутри абсолютно одинаковы, собраны на плате KK 9955. ШИМ SD6109. Диоды 16А в +5 и +3.3, 12А в +12. Входные емкости 220х200 промаркированы как 330х200. На выходах стоят 1000 + 470 мкф
Как ни странно, на этикетках написаны теоретически почти правильные выходные данные 14Ампер по 3.3, 16А по +5 и 12А по +12

HQ-420 собран на плате KY-9605M. ШИМ WT7520. Диоды 30А в +5, по 10 в +3.3 и +12. Входные емкости 330х200 промаркированы как 330х200.

Дата: 23.05.2017 // 0 Комментариев

Совсем недавно мы публиковали материалы по переделке компьютерного блока в зарядное на ШИМ АТ2005В. Тем читателям, кто в своем блоке столкнулся с ШИМ АТ2005А важно учесть несколько нюансов, о которых речь пойдет ниже.

Переделка БП на ШИМ AT2005A в зарядное устройство

Для переделки блока на основе ШИМ АТ2005А можно применять материалы со статьи о переделке блока на основе ШИМ АТ2005В, но с небольшой корректировкой. Дело в том, что микросхемы АТ2005А и АТ2005В не взаимозаменяемые, и основное их отличие в распиновке.

Как видим, назначение выводов у АТ2005А сдвинуты на две ножки. Это влечет за собой небольшую корректировку в подключении платы, с помощью которой происходит обман супервизора.

Также схема блока питания на ШИМ АТ2005А уже приобретает следующий вид.

Корректировка выходного напряжения у АТ2005А происходит с помощью резисторов на 16 ножке, а не по второй, как у АТ2005В.

П.С. По некоторым данным аналогом АТ2005А является WT7520 и WT7514, который часто встречается блоках питания Linkworld. Если переделка блока на основе ШИМ WT7514 по этим материалам прошла успешно, просим отписаться в комментах, они всегда открыты.

Ремонт блока АТХ/АТ (методика)

Ремонт блока АТХ/АТ (методика)

Ремонт блока АТХ/АТ (методика).




	Типовую схему можно взять тут:  AT и ATX

   Все работы с импульсным блоком питания проводить отключив его от сети ~220V !!!

  Схема управления.
  
  Проверку блока начинают со схемы управления. (ШИМ-контроллер TL494CN)
  Описание микросхемы можно взять тут
  
  Для этого понадобится стабилизированный блок питания 12В.
  Подключаем к схеме испытуемого ИБП как показано на схеме рис.1 и смотрим 
  наличае осциллограмм на соответсвующих выводах.
  Показания осциллографа снимать относительно общего провода.
  
  Рис.1 Проверка работоспособности TL494CN

После проверки не забудь вывод 4 вернуть в схему !!! Высоковольтная цепь. Для этого последовательно проверяем: предохранитель, защитный терморезистор, катушки, диодный мост, электролиты высокого напряжения, силовые транзисторы (2SC4242), первичную обмотку трансформатора, элементы управления в базовой цепи силовых транзисторов. (смотри рис.2 и рис.3) Первыми обычно сгорают силовые транзисторы. Лучше заменить на аналогичные: 2SC4242, 2SC3039, КТ8127(А1-В1), КТ8108(А1-В1) и т.п. Элементы в базовой цепи силовых транзисторов.(проверить резисторы на обрыв) Как правило, если сгорает диодный мост (диоды звонятся накоротко), то соответственно от поступившего в схему переменного тока вылетают электролиты высокого напряжения. Обычно мост - это RS205 (2А 500В) или хуже. Рекомендуемый - RS507 (5А 700В) или аналог. Ну и последним всегда горит предохранитель. :) И так: все нерабочие элементы заменены. Можно приступить к безопасным испытаниям силовой части блока. Для этого понадобится трансформатор с вторичной обмоткой на 36В. Подключаем как показано на Рис.2 На выходе диодного моста должно быть напряжение 50..52В Соответственно на каждом электролите высокого напряжения будет половина от 50..52В. Между эмиттером и коллектером каждого силового транзистора также должна быть половина от 50..52В. Рис.2 Проверка входной цепи.

Если всё в порядке, то можно переходить к следующему пункту. Проверка работы силовых транзисторов. Проверку режимов работы в принципе можно и не делать. Если первые два пункта пройдены, то на 99% можно считать БП исправным. Однако, если силовые транзисторы были заменены на другие аналоги или если вы решили заменить биполярные транзисторы на полевые (напрмер КП948А, цоколёвка совпадает), то необходимо проверить как транзистор держит переходные процессы. Для этого необходимо подключить испытуемый блок как показано на рис.1 и рис.2. Осциллограф отключить от общего провода! Осциллограммы на коллекторе силового транзистора измерять относительно его эмиттера. (как показано на рис.3, напряжение будет меняться от 0 до 51В) При этом процесс перехода от низкого уровня к высокому должен быть мгновенным. (ну или почти мгновенным). Это во многом зависит от частотных харрактеристик транзистора и демпферных диодов (на рис.3 FR155. аналог 2Д253, 2Д254). Если переходной процесс происходит плавно (присутствует небольшой наклон), то скорее всего уже через несколько минут радиатор силовых транзисторов очень сильно нагреется. (при нормальной работе - радиатор длжен быть холодный) Рис.3 Проверка работы силовых транзисторов.

Проверка выходных параметров блока питания. После всех вышеперечисленных работ необходимо проверить выходные напряжения блока. Нестабильность напряжения при динамической нагрузке, собственные пульсации и т.п. Можно на свой страх и риск воткнуть испытуемый блок в рабочую системную плату или собрать схему рис. 4 Рис.4 Упрощенная схема нагрузки БП.

Данная схема собирается из резисторов ПЭВ-10. Резисторы монтировать на алюминиевый радиатор. (для этих целей очень хорошо подходит швеллер 20х25х20) Блок питания без вентилятора не включать ! Также желательно обдувать резисторы. Пульсации смотреть осциллографом непосредственно на нагрузке. (от пика до пика должно быть не более 100 мВ, в худшем случае 300 мВ) Вообще не рекомендуется нагружать БП более 1/2 заявленной мощности. (например: если указано, что БП 200 Ватт, то нагружать не более 100 Ватт) При желании схему нагрузки можно усложнить: Рис.4.1 Экстремальная нагрузка блока питания.

Автогенераторный вспомогательный источник. Используется для питания TL494CN и стабилизатора +5Vsb (смотри схему АТХ блока) Варианты вспомогательных источников в недорогих блоках: Рис.5 Вариант 1

Рис.6 Вариант 2

В более дорогих БП дополнительные источники реализуют на микросхемах серии TOPSwitch. KA1H0165R KA1H0165RN ...или второй вариант: .
Part Value Part Value
R101

100 kOm

D101

UF4007

R102

500 kOm

D102

1N4937

R103

120 Om

D103

1N4948

R104

1,2 kOm

D201

Shottoky

C101

222/630V

C202

470mF / 10V

C103

222 uF

R201

500 Om

ZD101

12V / 0.5W

D201

20mH


   Описание на русском языке смотрите на сайте www.compitech.ru   
		вот тут или воспользоваться поисковиком     www.av.com



Назад

Cхемы компьютерных блоков питания ATX - 3 Октября 2018

Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.

Cхемы компьютерных блоков питания ATX

Схема JNC LC-250ATX

Схема JNC LC-B250ATX

Схема JNC SY-300ATX

Схема JNC LC-B250ATX

 


 

 

Схема FSP145-60SP

Схема Enlight HPC-250 и HPC-350

Схема Linkworld 200W, 250W и 300W

Схема Green Tech MAV-300W-P4

Схема AcBel API3PCD2 ATX-450P-DNSS 450W

Схема AcBel API4PC01 400W

Схема Maxpower PX-300W

Схема PowerLink LPJ2-18 300W

Схема Shido LP-6100 ATX-250W

Схема Sunny ATX-230

Схема KME PM-230W

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-200PB-59

Схема InWin IW-P300A2-0

Схема SevenTeam ST-200HRK

Схема SevenTeam ST-230WHF

Схема DTK PTP-2038

Схема PowerMaster LP-8

Схема PowerMaster FA-5-2

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Схема Codegen 300X 300W

Схема ISO-450PP

Схема PowerMan IP-P550DJ2-0

Схема LWT 2005

Схема Microlab 350w

Схема Sparkman SM-400W (STM-50CP)

Схема GEMBIRD 350W (ShenZhon 350W)

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105

Схема блока NT-200ATX (KA3844B+LM339)

Терминология

PSU | Питание и охлаждение ПК

ДИАПАЗОН РАБОТЫ:

Минимальные и максимальные пределы входного напряжения, в пределах которых источник питания будет работать в соответствии со спецификациями. Рекомендуется использовать источник питания с широким диапазоном входных сигналов, когда напряжение в сети подвержено резким скачкам и перепадам напряжения.


ЭФФЕКТИВНОСТЬ:

Отношение выходной мощности к входной, выраженное в процентах.


EMI:

Электромагнитные помехи - это шум, возникающий при переключении источника питания.Кондуктивные электромагнитные помехи - часть, отраженная обратно в линию электропередачи, обычно контролируется сетевым фильтром. Излучаемые электромагнитные помехи, та часть, которая излучается в свободное пространство, подавляются заключением схемы в металлический корпус. FCC регулирует уровни кондуктивного и излучаемого излучения.


PFC:

Коэффициент мощности - это отношение реальной мощности (ватт) к полной мощности (вольт x ампер или ВА). Стандартный источник питания имеет коэффициент мощности 0,70-0,75, а источник питания с активной коррекцией коэффициента мощности (PFC) имеет коэффициент мощности 0.95-0,99. Блок питания с коррекцией коэффициента мощности лучше способен преобразовывать ток в мощность. Это приводит к более низкому пиковому току и более низкому гармоническому току, уменьшая нагрузку на проводку, автоматические выключатели и трансформаторы.


ВЫХОДНОЙ ТОК:

Максимальный ток, который может непрерывно потребляться от выхода источника питания. Материнские платы ПК и карты расширения потребляют ток 5 В. Приводные двигатели потребляют ток 12 В.


РЕГУЛИРОВАНИЕ НАГРУЗКИ:

Изменение выходного напряжения из-за того, что выходная нагрузка изменяется от минимума до максимума, при сохранении всех остальных факторов постоянными.Выражается в процентах от номинального выходного напряжения. Источник питания с жесткой регулировкой нагрузки обеспечивает оптимальное напряжение независимо от конфигурации системы.


НОРМА ЛИНИИ:

Изменение выходного напряжения из-за изменения входного напряжения при сохранении всех остальных факторов постоянными. Выражается в процентах от номинального выходного напряжения. Источник питания с жесткой регулировкой линии обеспечивает оптимальное напряжение во всем рабочем диапазоне.


ПЕРЕХОДНЫЙ ОТВЕТ:

Время, необходимое для того, чтобы выходное напряжение вернулось в пределы диапазона регулирования после изменения нагрузки на 50%.Блок питания с быстрой переходной реакцией снизит риск ошибок чтения / записи во время доступа.


RIPPLE:

Величина переменного напряжения, накладываемого на выход постоянного тока, указывается в размахе напряжения или выражается в процентах от номинального выходного напряжения. Блок питания с чистым выходом постоянного тока необходим для компьютеров с высокоскоростными процессорами и микросхемами памяти.


ВРЕМЯ ОЖИДАНИЯ:

Период времени после потери входной мощности, в течение которого выходная мощность блока питания остается в указанных пределах.Адекватное время удержания позволяет компьютеру работать в течение времени переключения, требуемого ИБП.


ПИТАНИЕ ХОРОШИЙ СИГНАЛ:

Схема задержки, используемая для инициализации компьютера и подачи логического сигнала при низком линейном напряжении.


ЗАЩИТА ОТ ПЕРЕНАПРЯЖЕНИЯ:

Цепь, отключающая источник питания, если выходное напряжение превышает указанный предел.


ЗАЩИТА ОТ ПЕРЕГРУЗКИ ПО ТОКУ:

Схема, защищающая блок питания и компьютер от чрезмерного тока, включая ток короткого замыкания.


УТВЕРЖДЕНИЕ АГЕНТСТВА:

UL, CSA и TUV - это агентства по безопасности, которые проверяют такие спецификации, как расстояние между компонентами, инсоляция HI-pot, токи утечки, воспламеняемость печатной платы и температурный рейтинг.


РАБОЧАЯ ТЕМПЕРАТУРА:

Диапазон температур окружающей среды, в котором источник питания может безопасно работать.


РЕЙТИНГ ВЕНТИЛЯТОРА:

Расход воздуха в кубических футах в минуту.Увеличение воздушного потока на 100% снизит рабочие температуры системы на 50% по сравнению с окружающей средой. С каждым снижением температуры на 10 ° C (18 ° F) срок службы системы удваивается. (Уравнение Аррениуса)


ШУМ:

Акустический шум в дБ (А) на расстоянии 1 метра. Логарифмическая шкала. Каждое уменьшение на 3 дБ означает уменьшение шума на 50%. Проблемы включают шаг и скорость лопастей вентилятора, размер ступицы, глубину Вентури, качество подшипников и расположение компонентов источника питания.


Среднее время безотказной работы:

Среднее время наработки на отказ. Измерение относительной надежности источника питания, основанное на фактических рабочих данных или рассчитанное в соответствии с MIL-HDBK-217.


Меры предосторожности для источников питания Меры предосторожности для источников питания

Пример для серии S8FS-G Работа серии

Два источника питания могут быть подключены последовательно.

Примечание 1. Диод подключается, как показано на рисунке. Если нагрузка закорочена, внутри источника питания будет генерироваться обратное напряжение. В этом случае источник питания может выйти из строя или выйти из строя. Всегда подключайте диод, как показано на рисунке. Выберите диод со следующими характеристиками.

Примечание 2. Хотя блоки питания с различными характеристиками могут быть подключены последовательно, ток, протекающий через подключенный последовательно, ток, протекающий через нагрузку, не должен превышать меньший номинальный выходной ток.

<Создание положительных / отрицательных выходов>

Выходы являются беспотенциальными выходами (т. Е. Первичные и вторичные цепи разделены). Таким образом, вы можете создавать положительные / отрицательные выходы, используя два источника питания. Вы можете сделать положительный / отрицательный выход с любой из моделей. Если вы используете положительный / отрицательный выходы, подключите два источника питания одной модели, как показано ниже. Вы можете комбинировать модели с разной выходной мощностью и выходным напряжением.Однако в качестве тока нагрузки следует использовать меньший из двух номинальных выходных токов.

В зависимости от модели внутренние цепи могут быть повреждены из-за сбоя при запуске при включении питания, если такие нагрузки, как серводвигатель или операционный усилитель, могут работать последовательно.
Поэтому подключите байпасные диоды (D1, D2), как показано на следующем рисунке. Если в списке моделей, поддерживающих последовательное соединение выходов, указано, что внешний диод не требуется, внешний диод также не требуется для положительных / отрицательных выходов.

Используйте следующую информацию в качестве руководства для определения типа диода, диалектической силы и силы тока.

Подключение источников питания параллельно или последовательно для увеличения выходной мощности

В некоторых приложениях использования одного источника питания может быть недостаточно для обеспечения мощности, необходимой для нагрузки. Причины использования нескольких источников питания могут включать избыточную работу для повышения надежности или увеличения выходной мощности. При обеспечении комбинированного питания необходимо следить за тем, чтобы все источники питания передавали его сбалансированным образом.

Источники питания, подключенные для резервирования

Резервные источники питания - это топология, в которой выходы нескольких источников питания соединены для повышения надежности системы, но не для увеличения выходной мощности. Резервные конфигурации обычно предназначены для получения выходного тока только от основных источников питания и для получения тока от резервных источников питания при отказе одного из основных источников питания. Поскольку потребление тока нагрузки создает нагрузку на компоненты в источнике питания, высокая надежность в системе достигается, когда ток не потребляется от резервных источников до тех пор, пока не возникнет проблема с одним из основных источников питания.

  • Источники питания A и B - аналогичные блоки питания; Vout и максимальный Iout одинаковые
  • Напряжение нагрузки равно напряжению питания
  • Максимальный ток нагрузки равен максимальному выходному току одного источника
  • Электронный переключатель подключает один из выходов питания к нагрузке

Источники питания с параллельно подключенными выходами

Обычная топология, используемая для увеличения выходной мощности, заключается в параллельном подключении выходов двух или более источников питания.В этой конфигурации каждый источник питания обеспечивает необходимое напряжение нагрузки, а параллельное подключение источников увеличивает доступный ток нагрузки и, следовательно, доступную мощность нагрузки.

Эту топологию можно успешно реализовать, но есть много соображений для обеспечения эффективности конфигурации. Для параллельных конфигураций предпочтительны источники питания с внутренними цепями, поскольку внутренние цепи улучшают эффективность распределения тока. Если источники питания, используемые в приложении для разделения тока, не имеют внутренних цепей разделения, необходимо использовать внешние методы, которые могут быть менее эффективными.

Основная проблема заключается в том, насколько равномерно ток нагрузки распределяется между источниками питания. Распределение тока нагрузки зависит как от конструкции источников питания, так и от конструкции внешней цепи и проводников, используемых для параллельного соединения выходов источников питания. Практически всегда при параллельном подключении используются одинаковые блоки питания из-за проблем, связанных с эффективной настройкой блоков питания. Однако можно настроить источники питания параллельно с согласованными выходными напряжениями и несовпадающими максимальными выходными токами.

Более подробное обсуждение параллельного подключения источников питания можно найти в нашем техническом документе Current Sharing with Power Supplies.

  • Источники питания A и B должны иметь одинаковый Vout; Максимум Iout может быть разным
  • Напряжение нагрузки равно напряжению питания
  • Максимальный ток нагрузки равен сумме максимального выходного тока обоих источников
  • Цепи контроля тока уравновешивают ток нагрузки между источниками питания

Источники питания с последовательными выходами

Другой вариант увеличения мощности, подаваемой на нагрузку, - это соединение выходов нескольких источников питания последовательно, а не параллельно.Некоторые из преимуществ использования последовательной топологии включают в себя: почти идеальное использование подачи питания между источниками, отсутствие необходимости в конфигурации или совместном использовании цепей, а также устойчивость к большому разнообразию конструкций приложений. Как упоминалось ранее, при параллельном соединении выходов источников питания каждый источник обеспечивает необходимое напряжение, а ток нагрузки распределяется между источниками. Для сравнения, когда выходы источников питания соединены последовательно, каждый источник обеспечивает требуемый ток нагрузки, а выходное напряжение, подаваемое на нагрузку, будет представлять собой комбинацию последовательно включенных источников.

Следует отметить, что когда блоки питания сконфигурированы с последовательным соединением выходов, источники питания не обязательно должны иметь аналогичные выходные характеристики. Ток нагрузки будет ограничен наименьшим допустимым током нагрузки любого из источников в конфигурации, а напряжение нагрузки будет суммой выходных напряжений всех источников в цепочке.

Есть несколько ограничений, накладываемых на источники питания, когда они используются в конфигурации с последовательным выходом.Одно из ограничений заключается в том, что выход источников питания должен быть спроектирован так, чтобы выдерживать смещение напряжения из-за последовательной конфигурации. Это напряжение смещения обычно не является проблемой, но выходные напряжения источников питания с заземлением не могут быть суммированы на выходах других источников. Второе ограничение заключается в том, что выход источника питания может подвергаться обратному напряжению, если выход неактивен, когда активны остальные выходы в цепочке. Проблема обратного напряжения может быть легко решена путем размещения диода с обратным смещением на выходе каждого источника питания.Номинальное напряжение пробоя диода должно быть больше, чем выходное напряжение отдельного источника питания, а номинальный ток диода должен быть больше, чем максимальный номинальный выходной ток любого источника питания в последовательной цепочке.

  • Источники питания A и B могут иметь разные максимальные значения Vout и Iout
  • Напряжение нагрузки равно сумме выходных напряжений питания
  • Максимальный ток нагрузки равен наименьшему из максимального выходного тока любого источника
  • Диоды обратного смещения защищают выходы источников питания

Резюме

Источники питания, подключенные параллельно:

  • Плохое использование мощности из-за допуска управления разделением тока между источниками
  • Требуется специальная цепь для управления разделением тока между источниками
  • Чувствительность к конструкции и конструкции проводников, соединяющих источники питания параллельно
  • Проще всего сконструировать с похожими блоками питания

Источники питания, подключенные последовательно:

  • Эффективное использование мощности ограничено только точностью выходного напряжения каждого источника
  • Никаких цепей для управления распределением напряжения или тока между источниками питания не требуется
  • Отсутствие чувствительности к конструкции или конструкции проводников, соединяющих источники питания в серии
  • Простая конструкция с любой комбинацией источников питания

Хотя общий метод, используемый для увеличения мощности нагрузки, подаваемой от источников питания, заключается в параллельном подключении выходов, другим решением может быть последовательное соединение выходов нескольких источников питания.У поставщиков источников питания, таких как CUI, есть технический персонал, который может помочь настроить приемлемое решение для этих и других проблем, связанных с применением источников питания.

Категории: Основы , Выбор продукта

Дополнительные ресурсы


У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?
Отправьте нам письмо по адресу powerblog @ cui.ком

Как вручную проверить источник питания с помощью мультиметра

Правильно выполненный тест блока питания с помощью мультиметра должен подтвердить, что блок питания находится в хорошем рабочем состоянии или его необходимо заменить.

  • Прочтите важные советы по безопасности при ремонте ПК из-за опасностей, связанных с этим процессом. Ручное тестирование источника питания предполагает тесную работу с электричеством высокого напряжения.

    Не пропускайте этот шаг! Безопасность должна быть вашей главной заботой во время проверки источника питания, и есть несколько моментов, о которых вы должны знать, прежде чем начинать этот процесс.

  • Откройте корпус вашего компьютера. Короче говоря, это включает в себя выключение компьютера, отсоединение кабеля питания и отключение всего остального, подключенного к внешнему компьютеру.

    Чтобы упростить проверку источника питания, вам также следует переместить отключенный и открытый корпус компьютера в удобное место для работы, например, на столе или другой плоской нестатической поверхности.

  • Отсоедините разъемы питания от каждого внутреннего устройства .

    Простой способ убедиться, что каждый разъем питания отключен, - это работать от связки кабелей питания, идущих от блока питания внутри ПК. Каждая группа проводов должна подключаться к одному или нескольким разъемам питания.

    Нет необходимости снимать сам блок питания с компьютера, а также нет причин отсоединять кабели данных или другие кабели, не исходящие от блока питания.

  • Сгруппируйте все силовые кабели и разъемы вместе для облегчения тестирования.

    Когда вы размещаете силовые кабели, мы настоятельно рекомендуем их изменить и вытащить как можно дальше от корпуса компьютера. Это максимально упростит проверку соединений источника питания.

  • Замкните контакты 15 и 16 на 24-контактном разъеме питания материнской платы с помощью небольшого отрезка провода.

    Вам, вероятно, потребуется взглянуть на таблицу выводов 24-контактного блока питания 12 В ATX, чтобы определить расположение этих двух контактов.

  • Убедитесь, что переключатель напряжения питания, расположенный на блоке питания, правильно настроен для вашей страны.

    В США напряжение должно быть установлено на 110/115 В. Обратитесь к Руководству по розеткам для других стран, чтобы узнать о настройках напряжения для других стран.

  • Подключите блок питания к розетке и нажмите переключатель на задней панели блока питания. Предполагая, что источник питания хотя бы минимально исправен и что вы правильно закоротили контакты на шаге 5, вы должны услышать, как вентилятор начинает работать.

    У некоторых источников питания нет переключателя на задней панели устройства. Если тестируемый блок питания не работает, вентилятор должен начать работать сразу после подключения блока к стене.

    Просто потому, что вентилятор работает, это не означает, что ваш блок питания правильно подает питание на ваши устройства. Вам нужно будет продолжить тестирование, чтобы подтвердить это.

  • Включите мультиметр и поверните циферблат в положение VDC (Вольт постоянного тока).

    Если используемый мультиметр не имеет функции автоматического выбора диапазона, установите диапазон на 10.00V.

  • Проверьте 24-контактный разъем питания материнской платы:

    Подключите отрицательный щуп на мультиметре (черный) к любому контакту заземления и подключите положительный щуп (красный) к первой линии питания, которую вы хотите проверить. 24-контактный основной разъем питания имеет линии +3,3 В постоянного тока, +5 В постоянного тока, -5 В постоянного тока (опционально), +12 В постоянного тока и -12 В постоянного тока через несколько контактов.

    Мы рекомендуем проверить каждый контакт 24-контактного разъема, на который подается напряжение. Это подтвердит, что каждая линия подает правильное напряжение и что каждый вывод правильно терминирован.

  • Задокументируйте номер, который показывает мультиметр для каждого проверенного напряжения, и подтвердите, что указанное напряжение находится в пределах утвержденного допуска. Вы можете обратиться к допускам по напряжению источника питания, чтобы получить список подходящих диапазонов для каждого напряжения.

    Есть ли напряжения за пределами утвержденного допуска? Если да, замените блок питания. Если все напряжения находятся в пределах допуска, ваш источник питания исправен.

    Если ваш блок питания прошел тесты, настоятельно рекомендуется продолжить тестирование, чтобы убедиться, что он может правильно работать под нагрузкой.Если вы не заинтересованы в дальнейшем тестировании блока питания, переходите к шагу 15.

  • Выключите выключатель на задней панели блока питания и отсоедините его от стены.

  • Подключите все ваши внутренние устройства к источнику питания. Кроме того, не забудьте удалить короткое замыкание, созданное на шаге 5, перед тем, как снова подключить 24-контактный разъем питания материнской платы.

    Самая большая ошибка, сделанная на этом этапе, - это то, что вы забыли все подключить обратно. Помимо основного разъема питания на материнской плате, не забудьте подключить питание к жесткому диску (-ам), оптическому дисководу (-ам) и гибкому диску. водить машину.Некоторым материнским платам требуется дополнительный 4-, 6- или 8-контактный разъем питания, а некоторым видеокартам также требуется выделенное питание.

  • Подключите блок питания, нажмите переключатель на задней панели, если он у вас есть, а затем включите компьютер, как обычно, с помощью переключателя питания на передней панели компьютера.

    Да, вы будете запускать компьютер со снятой крышкой корпуса, что совершенно безопасно, если вы будете осторожны.

    Это нечасто, но если ваш компьютер не включается при снятой крышке, вам, возможно, придется переместить соответствующую перемычку на материнской плате, чтобы сделать это возможным.В руководстве к вашему компьютеру или материнской плате должно быть объяснено, как это сделать.

  • Повторите шаги 9 и 10, проверяя и документируя напряжения для других разъемов питания, таких как 4-контактный разъем питания для периферийных устройств, 15-контактный разъем питания SATA и 4-контактный разъем питания для гибких дисков.

    Как и в случае с 24-контактным разъемом питания материнской платы, если какое-либо напряжение выходит за пределы указанного напряжения, вам следует заменить блок питания.

  • По завершении тестирования выключите компьютер, отсоедините его от сети и снова закройте корпус крышкой.

  • Предполагая, что ваш блок питания прошел тестирование или вы заменили его на новый, теперь вы можете снова включить компьютер и / или продолжить устранение возникшей проблемы.

    Характеристики блока питания Часто задаваемые вопросы | Силовая электроника

    Как характеристики источника питания влияют на электронную систему?

    Характеристики источника питания влияют на производительность и конструкцию электронной системы. Среди важных характеристик источника питания - эффективность в указанном диапазоне температур.Кроме того, существуют важные функции, которые защищают источник питания и его нагрузку от повреждений, таких как перегрузка по току на выходе, перегрев, пусковой ток и перенапряжение на выходе. Кроме того, существуют рабочие параметры источника питания, такие как дрейф, динамический отклик, линейное регулирование и регулирование нагрузки, которые могут повлиять на работу системы.

    Как эффективность блока питания влияет на работу электронной системы?

    Рис. 1. Типичный график эффективности источника питания.

    Эффективность источника питания определяет тепловые и электрические потери в системе, а также количество необходимого охлаждения.Кроме того, это влияет на физические размеры корпуса как источника питания, так и конечной конечной системы. Кроме того, это влияет на рабочие температуры компонентов системы и, как следствие, на надежность системы. Эти факторы влияют на определение общей стоимости системы, как оборудования, так и поддержки на месте. Листы данных источника питания обычно включают график зависимости КПД от выходного тока, как показано на рис. , рис. 1, , . Этот график показывает, что эффективность зависит от приложенного напряжения источника питания, а также от выходного тока нагрузки.

    Эффективность, надежность и рабочая температура взаимосвязаны. В технических паспортах источников питания обычно указываются конкретные требования к воздушному потоку и радиатору. Например, рабочая температура окружающей среды влияет на выходной ток нагрузки, с которым источник питания может надежно справиться. Кривые снижения номинальных характеристик источника питания (, , рис. 2, , ) показывают его надежный рабочий ток в зависимости от температуры. Рис. 2 показывает, с какой силой тока источник питания может безопасно выдерживать, если он работает с естественной конвекцией, или 200 LFM и 400 LFM.

    Рис. 2. Типичные кривые снижения номинальных характеристик источника питания.

    Какие рабочие функции защищают источник питания?

    Есть несколько других характеристик, которые влияют на работу блока питания. Среди них есть те, которые используются для защиты поставок, в том числе:

    Перегрузка по току: Режим отказа, вызванный выходным током нагрузки, превышающим указанный. Он ограничен максимальной допустимой токовой нагрузкой источника питания и контролируется внутренними схемами защиты.В некоторых случаях это также может повредить блок питания. Короткие замыкания между выходом источника питания и землей могут создавать токи в системе, которые ограничиваются только максимальной допустимой токовой нагрузкой и внутренним сопротивлением источника питания. Без ограничения этот высокий ток может вызвать перегрев и повредить источник питания, а также нагрузку и ее межсоединения (дорожки на печатной плате, кабели). Поэтому большинство источников питания должны иметь ограничение по току (защиту от перегрузки по току), которое срабатывает, если выходной ток превышает указанный максимум.

    Перегрев: Необходимо не допускать превышения температуры, превышающей указанный предел для источника питания, иначе это может вызвать сбой источника питания. Чрезмерная рабочая температура может повредить источник питания и подключенные к нему цепи. Поэтому во многих источниках питания используется датчик температуры и связанные с ним цепи для отключения источника питания, если его рабочая температура превышает определенное значение. В частности, полупроводники, используемые в источниках питания, уязвимы к температурам, превышающим указанные пределы.Многие источники питания включают защиту от перегрева, которая отключает подачу, если температура превышает указанный предел.

    Перенапряжение: Этот режим отказа возникает, если выходное напряжение превышает указанное значение постоянного тока, что может вызвать чрезмерное постоянное напряжение, которое повреждает цепи нагрузки. Обычно нагрузки электронных систем могут выдерживать перенапряжение до 20% без каких-либо необратимых повреждений. Если это необходимо, выберите источник, который минимизирует этот риск. Многие источники питания включают защиту от перенапряжения, которая отключает питание, если выходное напряжение превышает заданное значение.Другой подход - ломовой стабилитрон, который проводит достаточный ток на пороге перенапряжения, чтобы активировать ограничение тока источника питания и выключиться.

    Мягкий пуск : ограничение пускового тока может потребоваться при первом включении питания или при «горячей» замене новых плат. Обычно это достигается с помощью схемы плавного пуска, которая замедляет начальный рост тока, а затем обеспечивает нормальную работу. Если его не лечить, пусковой ток может генерировать высокий пиковый зарядный ток, который влияет на выходное напряжение источника питания.Если это важное соображение, выберите источник питания с этой функцией.

    Блокировка при пониженном напряжении : известная как UVLO, она включает питание, когда оно достигает достаточно высокого входного напряжения, и выключает питание, если входное напряжение падает ниже определенного значения. Эта функция используется для источников питания, работающих как от электросети, так и от батареи. При работе от батарейного источника питания UVLO отключает источник питания (а также систему), если батарея разряжается настолько, что снижает входное напряжение источника питания до слишком низкого уровня для обеспечения надежной работы.

    Коррекция коэффициента мощности (PFC): Применимо только к источникам питания ac-dc . Взаимосвязь между напряжением линии переменного тока и током называется коэффициентом мощности. Для чисто резистивной нагрузки на линии питания напряжение и ток совпадают по фазе, а коэффициент мощности равен 1,0. Однако, когда источник питания переменного и постоянного тока размещается на линии электропередачи, разность фаз напряжения и тока увеличивается, а коэффициент мощности уменьшается, поскольку процесс выпрямления и фильтрации входного переменного тока нарушает соотношение между напряжением и током в линии электропередачи.Когда это происходит, это снижает эффективность источника питания и генерирует гармоники, которые могут вызвать проблемы для других систем, подключенных к той же линии питания. Цепи коррекции коэффициента мощности (PFC) изменяют соотношение между напряжением и током линии электропередачи, делая их ближе к синфазным. Это улучшает коэффициент мощности, уменьшает гармоники и повышает эффективность источника питания. Если важны гармоники в линии питания, выберите источник питания с коррекцией коэффициента мощности, имеющий коэффициент мощности 0,9 или выше.

    Электромагнитная совместимость (ЭМС): В изготовленных источниках питания должны использоваться методы проектирования, обеспечивающие электромагнитную совместимость (ЭМС) за счет минимизации электромагнитных помех (EMI). В импульсных источниках питания постоянное напряжение преобразуется в прерывистую или импульсную форму волны. Это приводит к тому, что источник питания генерирует узкополосный шум (EMI) на основной частоте частоты переключения и связанных с ней гармоник. Чтобы уменьшить шум, производители должны минимизировать излучаемые или кондуктивные излучения.

    Производители блоков питания могут минимизировать излучение электромагнитных помех, заключив блок питания в металлический ящик или нанеся на корпус металлический материал, нанесенный распылением. Производители также должны обращать внимание на внутреннюю компоновку источника питания и проводку, входящую и выходящую из источника, которые могут создавать электрические помехи.

    Большая часть кондуктивных помех в линии питания является результатом работы главного переключающего транзистора или выходных выпрямителей. Благодаря коррекции коэффициента мощности и правильной конструкции трансформатора, подключению радиатора и конструкции фильтра производитель источника питания может снизить кондуктивные помехи, чтобы источник питания мог получить одобрение регулирующего органа по электромагнитным помехам без чрезмерных затрат на фильтрацию.Всегда проверяйте соответствие производителя блока питания требованиям нормативных стандартов EMI.

    Нормативные стандарты

    Стандарты

    пытаются стандартизировать характеристики продукта по электромагнитной совместимости в отношении электромагнитных помех. Нормативные стандарты должны соблюдаться, поскольку для секции управления питанием конечного оборудования требуются международные и национальные стандарты. Эти стандарты различаются от страны к стране, поэтому производитель подсистемы питания и производитель конечной системы должны придерживаться этих стандартов там, где система будет продаваться.Инженеры-проектировщики должны понимать эти стандарты, даже если они не могут проводить сертификацию стандартов. Понимание этих нормативных стандартов обычно создает проблемы для разработчиков подсистем управления питанием, потому что:

    · Многие стандарты технически сложны, и для их расшифровки требуется эксперт.

    · Часто стандарты написаны в форме, которую непосвященным трудно интерпретировать, потому что обычно существуют исключения и исключения, которые не ясны.

    · Могут быть задействованы несколько различных агентств, поэтому некоторые из них могут относиться к одной стране или группе стран, а не к другим.

    · Стандартные требования различаются и иногда противоречат друг другу.

    · Стандарты постоянно развиваются, периодически вводятся новые, поэтому сложно за ними успевать.

    Какие агентства по стандартизации встречаются на уровне продуктов и систем?

    1. ANSI : Американский национальный институт стандартов курирует создание, распространение и использование норм и руководств, которые напрямую влияют на бизнес, включая распределение энергии

    2. Директивы ЕС (Европейское сообщество). Компании, ответственные за продукт, предназначенный для использования в Европейском сообществе, должны проектировать и производить его в соответствии с требованиями соответствующих директив.

    3. EN (Европейская норма): Стандартные директивы для Европейского сообщества.

    4. IEC (Международная электротехническая комиссия): Разрабатывает стандарты для электрических и электронных систем.

    5. UL (Лаборатория страховщика): Сертификаты безопасности для электротехнической и электронной продукции в США. Утверждение UL также можно получить через CSA.

    6. CSA (Канадская ассоциация стандартов): Сертификат безопасности, необходимый для использования электрического или электронного продукта в Канаде. Одобрение CSA также можно получить через UL.

    7. Telcordia : Стандарты для телекоммуникационного оборудования в США.

    8. ETSI (Европейский институт телекоммуникационных стандартов) : Стандарты для телекоммуникационного оборудования.

    Обязательные стандарты безопасности для источников питания содержат требования по предотвращению травм или повреждений из-за таких опасностей, как: поражение электрическим током, энергия, пожар, механические, тепловые, радиационные и химические.

    Специальные стандарты для акустики источников питания определяют максимальные уровни слышимого шума, которые может издавать изделие.Основной причиной акустического шума обычно является вентилятор в блоке питания с внутренним вентилятором.

    Стандарты

    ESD (электростатический разряд) проверяют невосприимчивость к воздействию высоковольтных разрядов малой энергии, таких как статический заряд, накопленный обслуживающим персоналом.

    Как работают блоки питания для ПК

    Взгляните на мельчайшие детали того, что дает вашей установке мощь

    Блок питания (PSU) - один из компонентов ПК, который мы склонны принимать как должное.Он сидит в корпусе, из него торчит куча проводов, и, может быть, время от времени мы продуваем его воздухом, чтобы избавиться от пылевых кроликов. Но это, пожалуй, самая важная часть аппаратного обеспечения ПК, потому что она выполняет одну задачу: снабжает остальную часть машины необходимой ей электроэнергией.

    К сожалению, электричество из розетки не подходит. Электронные устройства рассчитаны на использование электричества постоянного тока, а то, что выходит из стены, является переменным током. К тому же электричество от стены слишком мощное.Это означает, что основная роль блока питания заключается в преобразовании электроэнергии переменного тока в электричество постоянного тока на безопасном уровне.

    Мы рассмотрим, как это делает блок питания, и собственное оборудование внутри него, которое делает это возможным. В качестве наглядного пособия мы будем вскрывать одну из них, чтобы обнажить ее внутренности.

    Quick Primer: типы источников питания

    Источники питания бывают двух основных типов: линейные и переключаемые.

    Линейные источники питания проще, требуя всего нескольких шагов, чтобы преобразовать электричество переменного тока в электричество постоянного тока.Они постоянно расходуют энергию и обычно сбрасывают избыточную энергию в виде тепла, и для обеспечения высокой мощности потребуются компоненты большего размера. Это ограничивает их в основном приложениями с меньшей мощностью. В чем они действительно хороши, так это в том, что на их выходе мало шума, и настольные принадлежности лабораторного уровня часто бывают линейными по этой причине.

    Импульсный источник питания, с другой стороны, имеет внутренний переключатель, который контролирует поток электричества, поступающего в остальную часть источника питания.Хотя это добавляет сложности, у него есть несколько преимуществ. Во-первых, источник питания потребляет меньше электроэнергии, чем линейный источник питания. Во-вторых, при переключении генерируется высокочастотное электричество переменного тока, что, в свою очередь, позволяет уменьшить размеры некоторых компонентов, таких как катушки индуктивности и трансформаторы. Обратной стороной является то, что переключение создает много шума, который необходимо отфильтровать на выходе и, возможно, экранировать, чтобы предотвратить утечку.

    Из переменного тока в постоянный: этапы процесса источника питания

    Как уже упоминалось, основная задача источника питания заключается в преобразовании переменного тока в постоянный.Как только электричество постоянного тока вырабатывается, оно преобразует его в соответствующие напряжения для использования компонентами. Это становится немного сложнее, если принять во внимание другие особенности, поэтому вот блок-схема с разбивкой:

    Блок-схема блока питания ПК. Красные линии - это переменный ток, зеленые - постоянный ток.

    Вот изображение блока питания, который мы изучаем, с выделенными частями, которые выполняют все эти шаги. В случае, если вас интересует белая пленка и пластиковые листы, она призвана свести к минимуму вибрации, а пластиковые листы должны изолировать компоненты от соприкосновения друг с другом или с шасси, к которому подключен заземляющий провод.

    Шаг 1. Фильтрация переменного тока на входе

    Электроэнергия, выходящая из стены, очень шумная по ряду причин. Первый шаг - отфильтровать как можно больше шума, используя комбинацию конденсаторов (известных как конденсаторы X и Y) и катушек индуктивности. Кроме того, может быть некоторая схема защиты, аналогичная той, что используется в устройствах защиты от перенапряжения, для защиты от внезапных скачков тока.

    Если источник питания имеет физический переключатель напряжения, вход либо переходит в цепь удвоителя напряжения, либо продолжает работать.Удвоитель напряжения используется, когда на входе 115 В, так что остальной блок питания должен работать только с 230 В независимо от фактического входа. Если есть активная коррекция коэффициента мощности, то она позаботится об этом шаге. Таким образом, если источник питания потребляет 115–230 В без физического переключателя, есть большая вероятность, что он имеет активную коррекцию коэффициента мощности.

    На этом рисунке показана основная часть фильтрации переменного тока и части выпрямления переменного тока, описанные в шаге 2. Винты в середине радиатора прикрепляют диод для коррекции коэффициента мощности (описанный в шаге 3) и пару переключающие полевые МОП-транзисторы (отвечающие за переключение, описанное в шаге 4).

    Шаг 2 - Выпрямление и фильтрация

    Электричество, идущее от стены, попеременно то положительное, то отрицательное. Это заставляет ток течь вперед и назад по проводам, не производя никакой реальной работы с течением времени. Выпрямители преобразуют переменный ток в чисто положительный, как показано на рисунке ниже:

    Вход переменного тока в двухполупериодный выпрямленный выход (из Falstad’s Circuit Simulator ).

    Накопительный конденсатор используется для улавливания энергии из все еще переменного потока, чтобы превратить его в более плоский и стабильный.

    Обратите внимание, что на выходе есть что-то вроде зубчатой ​​пилы. Это связано с тем, что конденсатор может быть заряжен только тогда, когда напряжение выпрямленного выхода достигает определенной точки до пикового напряжения. В противном случае он разряжается. Самая низкая и самая высокая точки зуба пилы образуют так называемую рябь. Количество пульсаций зависит от качества, емкости и типа конденсатора. Качественные блоки питания сведут к минимуму пульсации.

    Кстати, спецификация ATX требует не более пяти процентов пульсации на 3.Линии 3В, 5В, 5В_SB и 12В.

    Шаг 3 - Коррекция коэффициента мощности (PFC)

    Коэффициент мощности - это явление, которое происходит в цепях переменного тока. В цепях переменного тока есть два типа мощности: активная и реактивная. Активная мощность - это мощность, которая используется на резистивных нагрузках, например при вращении двигателя. Реактивная мощность - это мощность, которая воздействует на такие компоненты, как конденсаторы и катушки индуктивности, чтобы заряжать их, без какой-либо работы с реальной нагрузкой.

    Коэффициент мощности - это соотношение между суммой активной и реактивной мощности (называемой полной мощностью) и самой активной мощностью, которое всегда меньше 1.Коррекция коэффициента мощности направлена ​​на то, чтобы это отношение было как можно ближе к 1. Хотя это звучит похоже на эффективность, эффективность - это унаследованный компонент электроники, который не может использовать все электричество для выполнения полезной работы и сбрасывает то, что не может использовать в качестве тепла.

    Существует два типа коррекции коэффициента мощности: пассивная и активная. Пассивный PFC использует индукторы, пассивный электрический компонент . Активный PFC использует схему управления и транзисторы, или активных электрических компонентов.

    Шаг 4 - Переключение

    Коммутация объединяет несколько действий для достижения того же эффекта: пропускание электричества к остальной части источника питания. Другие функции переключения включают:

    • Схема защиты, такая как защита от перенапряжения, перегрузки по току, избыточной мощности и короткого замыкания.
    • Обеспечивает базовую обратную связь с компьютером, наиболее важным из которых является сигнал о хорошем питании, который сообщает материнской плате о том, что блок питания готов к работе.
    • Создайте высокочастотный (в диапазоне десятков килогерц) выход переменного тока.Причина в том, что это позволяет трансформаторам, используемым на следующем этапе, быть небольшими.

    Для правильной работы переключения требуется обратная связь от выхода. Это делается путем измерения выходного напряжения, подаваемого на компьютер.

    Это схема управления для управления переключением.

    Шаг 5 - Преобразование

    Трансформаторы используются для понижения напряжения до первичной линии 12 В и вторичной линии 5 В. Затем основная линия 12 В понижается с помощью преобразователей постоянного тока до 5 В и 3.3V для использования ПК. Вторичная линия 5 В используется для питания схемы резервного питания 5 В, так что компьютер может включаться с помощью переключателя питания на передней панели.

    Шаг 6 - Выпрямить выход и фильтр

    После преобразования входа в выход с безопасным уровнем напряжения пора еще раз выпрямить и отфильтровать, потому что то, что выходит из трансформатора, - это электричество переменного тока. По сути, это повторение шага 2.

    На рисунке справа показан выпрямитель, который для данной модели является полуволновым.Это означает, что используется только половина волны переменного тока. Скорее всего, это экономическая мера, позволяющая избежать необходимости в более сложном трансформаторе. Слева от выпрямителя находятся конденсаторы, используемые для фильтрации.

    Выход возвращается в схему переключения. По соображениям безопасности выходные цепи не подключены напрямую к входным цепям. То есть на плате нет проводов или проводов, соединяющих их. Чтобы обойти это, в этом источнике питания используется изолирующий трансформатор. В других источниках питания они могут использовать так называемые оптопары.( https://en.wikipedia.org/wiki/Opto-isolator )

    Шаг 7. Преобразование и регулировка

    Поскольку от главного трансформатора создается только 12 В, преобразователи постоянного тока используются для создания 5 В и 3,3 В. Регуляторы помогают поддерживать напряжение как можно более стабильным. Следующие изображения показывают вывод этих строк. Выходные провода очень толстые, потому что они должны выдерживать большой ток.

    Сюда выходят линии 12 В и 3,3 В.

    Сюда выходит линия 5В.

    Все эти провода ведут к главной плате распределителя. Ничего особенного здесь не происходит.

    Вы могли заметить, что из выхода выходят две линии 12 В (отмечены меткой «12 В 2» на печатной плате). Это будет означать, что этот конкретный источник питания имеет две шины 12 В, которые, скорее всего, распределены между основным 24-контактным разъемом и разъемом EPS12V для одной шины с периферийными устройствами, включая разъем PCI Express, для другой.

    Собираем все вместе: для преобразования электроэнергии требуется много времени

    Для кажущейся простой задачи преобразования электроэнергии блок питания выполняет несколько шагов, чтобы обеспечить безопасные и правильные электрические розетки в ваших компонентах.Хотя эта статья поверхностно описывает ее внутреннюю работу, мы надеемся, что она дает лучшее представление о том, что часто упускается из виду.

    [решено] - Короткое замыкание блока питания ПК

    Конечно, любая катушка будет иметь очень низкое сопротивление между ее концами.

    Я имею в виду, что каждый конец катушки закорочен на землю.

    Как я измеряю в этой ситуации, я соединяю один конец цифрового мультиметра с землей, а второй конец с любой точкой печатной платы, я перехожу к контактам транзисторов и некоторых других устройств.Но другие компоненты; типа резисторов (которые не будут похожи на очень низкие), диодов. Я измеряю их, подключая цифровой мультиметр между его концами, чтобы увидеть, не закорочен ли диод или не перегорел ли резистор.

    Потому что тестирование другое.

    Вот скриншот моей печатной платы блока питания.

    Примечание: красные кружки - это закороченные диоды, это определенно сломанные диоды.

    Вся эта область в беспорядке, все закорочено.

    - - - Обновлено - - -

    Привет,

    Я согласен с Барри.
    Зуммер цифрового мультиметра подает сигнал постоянного тока (плюс и минус), он проверяет ток.
    Если есть достаточный ток, bzzer включается.
    Но порог не определен.

    С блоком питания ПК - при обратноходовом типе - выход 12 В состоит как минимум:
    * вторичная обмотка трансформатора
    * (улавливающий) диод
    * конденсатор.

    Ваше тестирование:
    * Вторичная обмотка имеет очень низкое сопротивление. Это обязательно вызовет срабатывание зуммера.
    * Диод имеет низкое сопротивление в одном направлении и высокое сопротивление в другом направлении.Очень вероятно, что с неподключенным диодом ваш зуммер звучит, когда вы подключаете цифровой мультиметр в одном направлении, но он будет тихим в другом направлении.
    * Конденсатор, подключенный в правильном направлении, сначала имеет низкое сопротивление ... затем он заряжается, и, таким образом, ток уменьшается. Очень вероятно, что вы сразу же услышите короткий гудок при подключении цифрового мультиметра, но он перестанет гудеть автоматически. Подключение конденсатора в неправильном направлении вызовет звучание зуммера, но, возможно, он будет звучать постоянно или прекратится.

    Теперь все три компонента (и, возможно, другие) подключены ... это делает менее предсказуемым, звучит ли зуммер или нет.

    Клаус


    Я принимаю во внимание полярность диода и, чтобы убедиться, что проверил их еще раз, они закорочены с обеих сторон.

    Я знаю, когда конденсатор держит заряд и вызывает некоторое время зуммера, а затем, когда заряд уменьшается, звук прекращается, если это исправный компонент. А если он неисправен, то звук продолжается.

    Я не тестирую обмотку между ее контактами или двумя концами катушки, конечно, они имеют низкое сопротивление и вызывают включение зуммера. Этот тест проводится для проверки того, что обмотки не сломаны.

    Проверяю каждый конец землей.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *