Петля фаза ноль расчет: Допустимое сопротивление петли «фаза-ноль»

Содержание

Допустимое сопротивление петли «фаза-ноль»

Чаще всего реальное сопротивление петли «фаза-ноль» достаточно невелико для надёжной защиты линии. Но бывают ситуации, когда токи КЗ не достигают требуемых значений. В самом деле, при значениях петли более 0,8 Ом величина тока КЗ не превышает 275А и, с учётом требований ПТЭЭП, прил. 3, табл. 28, п. 4, автомат с Iном=25А уже не гарантирует отключение в заданное время. А это очень распространённый номинал автомата для защиты групповых линий розеточной сети. Иногда это можно увидеть в сельской местности, в садоводческих обществах, когда линия 0,4 кВ имеет длину 1-2 км, а сечение проводов невелико.

На величину сопротивления петля «фаза-ноль» влияет площадь поперечного сечения жил кабеля и его длина. Эти параметры связаны между собой. При увеличении длины линии приходится увеличивать её сечение, чтобы обеспечить необходимую кратность токов КЗ. Больше всего это проявляется в осветительных и розеточных сетях, где линии протяженные, а сечение проводов небольшое. По тем же причинам увеличено сопротивление петли «фаза-ноль» линий электроснабжения на вводе в здание. При этом свою долю вносит сопротивление обмоток силового трансформатора на подстанции.

Конечно, устранение указанных причин, т.е. замена электропроводки или кабельных линий повлечет за собой немалые затраты и частичную остановку функционирования объекта. Такая ситуация встречается, в основном, там, где электромонтажные работы выполнялись без предварительных расчетов и разработки проекта. При разработке проекта, проектировщики, используя справочники и таблицы производят расчеты сопротивлений цепи «фаза-ноль» и учитывают полученные значения при выборе аппаратов защиты. Поэтому так важно, чтобы монтаж любой электроустановки производился на основе качественно подготовленной проектной документации.

Можно ли как-нибудь исправить сложившуюся ситуацию, не прибегая к радикальным мерам? Конечно можно! Если не получается убрать причину малых токов короткого замыкания, можно ужесточить требования к защитным аппаратам. В осветительных и розеточных сетях, в основном, применяются модульные автоматы бытового назначения с характеристиками «В», «С», «D». В таких случаях единственный выход – установить в качестве аппарата защиты автомат с характеристикой «В» расцепителя мгновенного действия. В отличие от распространенного автомата с характеристикой «С» у него срабатывание происходит при токе Iкз = 5хIном, т.е. в рассмотренном выше примере он уверенно отключит даже ещё меньший ток (137 А) при сопротивлении петли «фаза-ноль» до 1,6 Ом. Можно уменьшить номинал автомата, тогда будут автоматически отключаться ещё меньшие токи КЗ. При этом следует помнить, что номинал автомата не должен быть меньше расчетного тока на защищаемом участке. Для защиты кабельных или воздушных линий электроснабжения можно применить предохранители, выносные реле.

Пример расчета тока однофазного КЗ

В данной статье, я буду рассматривать пример расчета тока однофазного КЗ (ОКЗ) используя в первом варианте справочные таблицы представленные в [Л1], а во втором варианте справочные таблицы из [Л2].

С методами определения величины тока однофазного КЗ и с приведенными справочными таблицами для всех элементов короткозамкнутой цепи, можно ознакомиться в статье: «Расчет токов однофазного кз при питании от энергосистемы».

Исходные данные:

  • масляный трансформатор напряжением 6/0,4 кВ, мощностью 1000 кВА со схемой соединения обмоток – Y/Yо.
  • от трансформатора до ВРУ используется кабель марки ААШвУ 3х95 длиной 120 м.
  • от ВРУ до двигателя используется кабель марки ААШвУ 3х95+1х35 длиной 150 м.

Рис.1 — Расчетная схема сети эл. двигателя

Вариант I

1. Расчет тока однофазного КЗ будет выполнятся по формуле приближенного метода при большой мощности питающей энергосистемы (Хс < 0,1Хт) [Л1, с 4 и Л2, с 39]:

где:

  • Uф – фазное напряжение сети, В;
  • Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
  • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

2. По таблице 2 [Л1, с 6] определяем сопротивление трансформатора при вторичном напряжении 400/230 В, Zт/3 = 0,027 Ом.

3. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:

где:

  • Zпт.уд.1 = 0,729 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 12 [Л1, с 16];
  • l1 = 0,120 км – длина участка №1.
  • Zпт.уд.2 = 0,661 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 13 [Л1, с 16];
  • l2 = 0,150 км – длина участка №2.

4. Определяем ток однофазного КЗ:

Обращаю ваше вниманию, что при определении величины тока однофазного КЗ приближенным методом, сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас [Л2, с 40].

Вариант II

Определим ток однофазного КЗ по справочным таблицам из [Л2].

1. По таблице 2.4 [Л2, с 29] определяем сопротивление трансформатора Zт/3 = 33,6 мОм.

2. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:

где:

  • Zпт.уд.1 = 0,83 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 2.11 [Л2, с 41];
  • l1 = 120 м – длина участка №1.
  • Zпт.уд.2 = 1,45 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 2.10 [Л2, с 41].

Обращаю ваше внимание, что в данной таблице значение Zпт.уд. приводится для кабелей независимо от материала оболочки кабеля.
Если же посмотреть [Л1, с 16], то в таблице 13 для 4-жильных кабелей с алюминиевой оболочкой 3х95+1х35, Zпт.уд. = 0,661 мОм/м. Принимаю Zпт.уд.2 = 1,45 мОм/м, для того чтобы было наглядно видно, на сколько будет отличатся значение тока однофазного КЗ от расчета по «Варианту I». На практике же, лучше совмещать справочные таблицы из [Л1 и Л2].

3. Определяем ток однофазного КЗ:

Как видно из результатов расчета (вариант I: Iк = 1028 А; вариант II: Iк = 627 А), полученные значения тока однофазного КЗ почти в 2 раза отличаются. По каким справочным таблицам выполнять расчет тока однофазного КЗ, уже решайте сами, в любом случае это приближенный метод, поэтому, если нужны точные значения тока однофазного КЗ, следует рассчитывать по формуле представленной в ГОСТ 28249-93.

Литература:

1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
2. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

общее представление и методика, периодичность и приборы для измерения

Надежность электрической сети напрямую зависит от правильности срабатывания защитных устройств. Петля фаза ноль позволяет проверить их работоспособность в сети до 1 кВ с глухо-заземленной нейтралью. Поэтапно разберемся, что представляет собой схема «Ф-Н», а также нюансы ее проверки.

Общее представление о цепи «фаза ноль»

Большинство потребителей электроэнергии запитаны сетями с уровнем напряжения до 1 кВ через трехфазный трансформатор. Для обеспечения безопасности в них используется глухо-заземленная нейтраль. В ней возможно появление тока из-за сдвига фаз в обмотках трансформатора, которые соединены по схеме звезды.

В случае возникновения контакта между линейным и нулевым или защитным проводом формируется контур «фаза-нуль». Указанная связь приводит к образованию короткого замыкания. В цепи могут находиться соединительные провода, коммутационная и защитная аппаратура, что сопровождается формированием определенного значения сопротивления.

Зачем проверяется петля «фаза ноль»

Изучение показателей схемы «Ф-Н» осуществляется для определения слабых мест в действующей сети. Это может своевременно предотвратить развитие более серьезных аварий в питающей цепи. Еще одной важной функцией указанного тестирования является проверка соответствия установленных коммутационных и защитных устройств токам короткого замыкания. Это требуется для предотвращения воспламенения проводки.

Проведение испытаний электросети

Сроки проведения испытаний

Электрические сети и оборудование эксплуатируются в различных режимах. Со временем наблюдается естественное старение изоляции кабеля, ухудшение свойств проводников из-за токовых перегрузок, отклонений напряжения, влияния окружающей среды и т. д.

Этим обусловлена необходимость в периодической проверке целостности контура фаза ноль.

В соответствии с указаниями ПУЭ испытание петли «Ф-Н» проводится, как минимум, один раз в 36 месяцев, а для электрических сетей, эксплуатируемых в опасных или агрессивных средах, как минимум, один раз в 24 месяца. Также предусматриваются внеплановые проверки, в следующих ситуациях:

  • при внедрении в работу нового оборудования;
  • после осуществления модернизации, профилактики или ремонта действующей сети;
  • по требованию поставщика электроэнергии;
  • по факту запроса от потребителя.
Периодичность осмотров электрооборудования жилых домов

Методы и порядок проверки сопротивления контура «Ф-Н»

Проверка сопротивления петли «фаза нуль» подразумевает замер тока короткого замыкания на конкретном участке электрической цепи. В дальнейшем зафиксированное значение сопоставляется с отключающими уставками автоматов. При этом измерения проводятся либо непосредственно под рабочим напряжением, либо с питанием от постороннего источника.

Далее рассмотрим требуемую последовательность действий при проверке сопротивления.

Визуальный контроль

Первоначально понадобится изучить имеющиеся схемы и документацию. В дальнейшем осуществляется визуальный осмотр всех элементов цепи на предмет выявления явных недостатков и повреждений. В процессе выполнения указанных мероприятий рекомендуется проверить качество затяжки контактных соединений. Иначе велика вероятность получения недостоверных измеренных данных.

Осмотр элементов электросети на соответствие схеме

Замер показателей контура «Ф-Н»

В ходе испытаний могут использоваться различные специализированные приборы, которые могут использовать следующие методики измерений:

  1. Падения напряжения — проводится на обесточенной цепи с дальнейшим подсоединением сопротивления установленной величины. Зафиксированные показания сверяются с допустимыми нормами значениями после проведения расчетов.
  2. Короткого замыкания — предполагает осуществление испытаний при наличии напряжения. Измерительное устройство формирует искусственное короткое замыкание на конечном участке от ввода питания с дальнейшей фиксацией величины тока и времени отработки защитных элементов.
  3. Амперметра-Вольтметра — подразумевает применение понижающего трансформатора переменного тока с замыканием фазного провода на защитное заземление электрической цепи. Предварительно выполняется обесточивание питающей сети. Необходимые показания получаются после проведения расчетов.

Вычисления и оформление документации

Заключительным этапом испытания является расчет величины тока короткого замыкания. Он определяется по соотношению:

Iкз = Uф/R, где

Uф — фазное напряжение сети;

R — полное сопротивление цепи.

Вычисленная величина сопоставляется с пределом отключения Iкз защитными аппаратами. Для определения минимальной и максимальной уставки срабатывания понадобится номинальный ток автомата увеличить в определенное количество раз, в зависимости от типа установленного защитного устройства. Ниже приведена требуемая кратность для минимального и максимального тока отключения по отношению к номинальному для конкретных серий автоматов:

  • В — 3 и 5;
  • С — 5 и 10;
  • D и К — 10 и 14.

Итог испытания подводится в специальном протоколе, о содержании которого будет указано далее с предоставлением примера заполнения.

Приборы для проведения измерений

Замерить основные показатели контура «Ф-Н» можно двумя типами приборов. Первые допускается использовать исключительно после снятия напряжения, а вторые способны работать под нагрузкой. Также имеются различия в выводе количества информации.

Простые приборы выдают значения необходимые для вычисления Iкз. Более сложное исполнение измерителей позволяет сразу вывести значение Iкз.

Специалисты рекомендуют использовать следующие модели приборов:

  1. MZC 300 — современный микропроцессорный измеритель, о нюансах работы которого мы расскажем далее.
  2. М-417 — зарекомендовал себя с наилучшей стороны много лет назад. Испытания ведутся по методу падения напряжения. При этом измеритель можно использовать под рабочим линейным напряжением в сетях с глухо-заземленной нейтралью. Размыкание испытываемой схемы осуществляется за 0,3 с. Предварительно понадобится выполнить калибровку.
  3. ИФН-200 — предназначен для проверки цепей с сопротивлением до 1 кОм, с допустимым напряжением от 180 до 250 В. Помимо замера схемы «Ф-Н», способен функционировать и в других режимах. Память ИФН-200 может хранить данные о тридцати пяти крайних вычислениях.
Измеритель сопротивления ИФН-200

Подведение итогов и опасности от проведения неправильного измерения

По полученной в результате измерений информации делается заключение о возможности дальнейшей эксплуатации сети. При выявлении несоответствия отключающих уставок защитных аппаратов зафиксированному Iкз, выносится решение о необходимости их замены. В противном случае велика вероятность образования пожара и разрушения электрооборудования под воздействием Iкз.

Протокол по проведенным замерам контура «фаза нуль»

На основании произведенных измерений оформляется специальный протокол. Он используется для хранения зафиксированных показаний, а также для осуществления сравнительного анализа с последующими тестами.

В протоколе отображается следующая информация:

  • дата проведения;
  • номер протокола;
  • цель проведения тестирования;
  • данные об организации, проводящей испытания;
  • информация о заказчике;
  • действующие климатические условия: атмосферное давление, температура и влажность воздуха;
  • диапазон измерения, класс точности и вид расцепителя;
  • измеритель, используемый для тестирования;
  • зафиксированные показания;
  • итог испытаний;
  • должности, фамилии и подписи лиц, проводивших замеры и проверивших протокол.

Обратите внимание! В случае положительного итога цепь допускается к эксплуатации без ограничений. При выявлении недостатков составляется перечень требуемых действий для восстановления необходимых показателей.

Техника безопасности при замере контура «Ф-Н»

Процедура замера контура фаза ноль должна вестись специалистами в возрасте от 18 лет, сдавшими экзамен по межотраслевым нормам и правилам техники безопасности. Работы должны осуществляться в соответствии с ПУЭ и при наличии требуемых приборов и инструментов.

Проведение работ должно оформляться нарядом или распоряжением. В состав бригады должны входить, как минимум, два специалиста с третьей группой по электробезопасности. Запрещается производить тестирование в условиях повышенной влажности и опасности.

Проведение проверки цепи фаза-ноль

Испытание цепи «Ф-Н» измерителем MZC 300

Измерение петли фаза ноль прибором MZC 300 требует соблюдения определенной последовательности действий, учитывая некоторые особенности устройства.

Обязательные условия

Первоначально рекомендуется включить MZC 300 и убедиться в отсутствии на экране надписи bAt. Она сигнализирует о разряженных батарейках, а следовательно, провести достоверные измерения не удастся.

В процессе осуществления замеров могут появляться характерные ошибки, обусловленные следующими причинами:

  1. Напряжение сети менее 180 или более 250 Вольт. В первом случае на экране высветится буква U в сопровождении с двумя звуковыми сигналами, а во втором надпись OFL и одно продолжительное звучание.
  2. Высокая нагрузка на измеритель, сопровождающаяся перегревом. На дисплее высветится буква T, а зуммер выдаст два длительных звука.
  3. Обрыв нулевого или защитного провода в исследуемой схеме, что сопровождается появлением на дисплее символа «— —» и продолжительным звуком.
  4. Превышено допустимое значение общего сопротивления исследуемой схемы — два продолжительных звука и символ «—».

Способы подключения

С помощью MZC 300 можно произвести замеры различных участков цепи. При этом необходимо обеспечить качественный контакт наконечников прибора.

Далее представлен порядок подключения измерителя в зависимости от вида проводимого тестирования:

  1. Снятие характеристик с петли «Ф-Н» — один наконечник измерителя фиксируется к нулевому (N) проводу, а второй поочередно устанавливается на линейные (L) провода.
  2. Проверка защитной цепи — один контакт поочередно крепится к линейным проводникам, а второй к защитному заземлению (PE).
  3. Тестирование надежности заземления корпуса электрооборудования производится в зависимости от типа сети — с занулением (TE) или с защитным заземлением (TT). При этом порядок производства измерений идентичен. Один наконечник прибора цепляется к корпусу электрооборудования, а второй поочередно к питающим проводникам.

Считывание показаний о напряжении сети

MZC 300 рассчитан на выдачу показаний фазного напряжения в пределах от 0 до 250 В. Для снятия данных понадобится нажать на клавишу «Start». При отсутствии указанных манипуляций измерительное устройство автоматически выведет на дисплей полученное значение, по истечении пяти секунд с момента начала тестирования.

Измерение характеристик контура «Ф-Н»

Для получения основных показателей в MZC 300 используется методика искусственного короткого замыкания. Она позволяет измерить полное сопротивление петли, разлагая на активную и реактивную составляющую, а также выдавая данные по углу сдвига фаз и величине предполагаемого Iкз. Для их поочередного просмотра понадобится нажимать кнопку «Z/I».

Измерительный ток протекает по тестируемому контуру в течение 30 мс. Для ограничения величины тока в схеме прибора смонтирован ограничивающий резистор на 10 Ом. При этом прибор автоматически устанавливает требуемую величину измерительного тока, учитывая уровень напряжения в сети и величину сопротивления схемы «Ф-Н».

Обратите внимание! При проведении тестирования важно учитывать, что прибор ведет расчеты с учетом номинального значения напряжения 220 В, независимо от действующих показаний в сети. Поэтому в дальнейшем необходимо осуществить корректировку полученного значения предполагаемого Iкз в цепи «Ф-Н». Для этого необходимо измерить действующее значение напряжения и разделить на 220. Полученное значение умножить на измеренный прибором Iкз.

При наличии в схеме УЗО следует предварительно исключить защитный аппарат из тестируемого контура посредством установки шунта. Это обусловлено тем, что подаваемый от MZC 300 измерительный ток приводит к отключению УЗО.

Вывод результатов измерения

После осуществления необходимых подключений на экране прибора будет отражаться уровень напряжения сети. Процесс измерения начинается после нажатия кнопки «Start». По факту окончания тестирования на дисплей выводится информация о величине полного сопротивления или предполагаемого Iкз, в зависимости от первоначальных установок. Для отображения других доступных показаний понадобится использовать клавишу «SEL».

Вывод результатов испытания на экран

Для получения достоверных измерений цепи «Ф-Н» рекомендуется воспользоваться услугами профессионалов. От правильности испытаний зависит дальнейшая безопасность эксплуатации электрической сети.

Как проверить петлю фаза ноль

Нередко в домашней электрической проводке и силовых подстанциях возникают неполадки, в результате которых происходит естественный перекос фаз по нейтральной электроцепи. В таком случае, чтобы предотвратить проблему, делают измерение петли фазы ноль. Что это такое, как правильно произвести замер петли фаза нуль, какие приборы для этого использовать? Об этом и другом далее.

Что это такое

Петля фаза ноль — параметр, который по техническим нормативам должен проверяться в силовых установках, имеющих глухозаземленную нейтраль и напряжение до тысячи вольт. Это величина, которая нужна, чтобы предотвратить появление тока в электроцепи нейтрали из-за естественного фазного перекоса. Она образуется при подключении фазного провода к проводнику защитного или нулевого типа. В конечно итоге, образуется контур, имеющий собственное сопротивление с перемещающимся по нему электрическому току. Этот контур может состоять из защитного автомата, клеммов и других связующих.

Измерить самостоятельно петлю сложно из-за имеющихся недостатков. Так, сложно подсчитать все коммутационные элементы на выключателях, рубильниках, которые могли измениться при сетевой эксплуатации. Кроме того, нереально сделать расчет влияния аварии на значение сопротивления. Лучшим при этом методом будет замер поверенным аппаратом с учитыванием погрешностей.

Как проверить петлю

Проверка петли нужна для профилактики, а также для того, чтобы обеспечить корректную работу защитного оборудования с автоматическими выключателями, УЗО и диффавтоматами. Самой распространенной проблемой подключения чайника или другого электроприбора является отключение нагрузки автомата.

Обратите внимание! Ложное срабатывание защиты с нагревом кабелей и пожаром является большой показатель сопротивления.

Проверка делается для того, чтобы успешно работали удаленные и более массивные электрические приемники, но не больше 10% от всего числа. Проверка создается с помощью формулы Zпет = Zп + Zт / 3 где Zп является полным сопротивлением проводов петли фазы-ноль, а Zт считается показателем полного сопротивления трансформаторного питания.

Испытуемое электрооборудование отключается от сети. Потом создается на трансформаторной установке искусственный вид замыкания первого фазного провода на электроприемный корпус. После того, как будет подано напряжение, измеряется сила тока и напряжения вольтметром.

Обратите внимание! Сопротивление петли будет равно делению показателя напряжения на силу тока. Приобретенный результат должен быть арифметически сложен с полным сопротивлением трансформатора, поделенного на цифру 3.

Как делают замеры

Замеры нужно проводить по нормативному техническому документу ПТЭЭП, в соответствии с конкретной периодичностью — 1 раз в несколько лет. Система ППР прописывает необходимость текущего и капитального ремонта электрического оборудования. Это нужно, чтобы работало оборудование исправно.

Приборы для замеров

Учитывая тот факт, что результаты измерений петли востребованы, в качестве измерительных приборов применяется обычно мультиметр. Из других приборов используются наиболее часто:

  • М-417 — стрелочное удобное и простое в эксплуатации устройство, которое основано на калибруемой схеме мостового типа. Работает без необходимости снятия напряжения величиной до 380 вольт.
  • МZC-300 — современный измерительный аппарат, имеющий цифровую обработку измеряемых параметров с отображением на дисплее. Чтобы измерять напряжение до 250 вольт, можно использовать контрольный вид сопротивления в 10 Ом.
  • ИФН-200 — прибор, работающий под напряжением до 250 вольт, который может быть применен в качестве тестера. Однако при петлевых замерах, диапазон значений сопротивления ниже 1000 Ом.

Стоит отметить, что параметровое петлевое измерение сопротивления петли фаза нуль простое. Все что нужно, это присоединить щупы к контактным местам, которые нужно предварительным образом почистить при помощи наждака или напильника, чтобы минимизировать контактное сопротивление. После этого включается оборудование и на табло появляется результат.

Рассчет петли фаза-ноль

Перед тем, как измерить петлю фаза-ноль, необходима проверка плотности проводного соединения к защитным аппаратам. Если не остаются протянутыми провода, то смысла в измерении нет, поскольку точные данные не будут получены.

Обратите внимание! Цель расчета в выяснении соответствия номинального тока защиты с проводным сечением электроцепи. Замер должен быть произведен на самой удаленной точки линии измерения.

Сделав замер полного сопротивления цепи фаза нуль по предложенной схеме, на приборном дисплее будет отражена величина тока короткого замыкания. Этот показатель нужно сравнить по характеристике времени и току с расцепительным током срабатывания выключателя иди с предохранительной вставкой.

По нормативным требованиям расчет петли должен быть произведен в электролаборатории. Чтобы произвести данные работы, нужно получить наряд-допуск. При этом испытания могут производить взрослые люди с необходимыми знаниями в месте, не отличающейся повышенной опасностью или высокой влажностью.

Сопротивление в петли фаза-ноль

Для подсчета полного сетевого сопротивления электроустановки, нужно определить показатель электродвижущей силы, создающейся на трансформаторных обмотках. При этом замер напряжения должен быть под нагрузкой, в дополнение к теме проверка петля фаза ноль требования. Для этого следует подключить в розетки какой-либо расчетный прибор. Это может быть лампочкой. Делается замер напряжения и силы тока. Затем по закону Ома можно сделать определение полного сопротивления петли. Нужно учесть, что напряжение, которое замеряется в розетке, может отклоняться от номинального при нагрузке. Проверять оборудование следует, принимая во внимание этот факт.

Обратите внимание! Показание полного сопротивления проводниковой защиты между шиной и корпусом должно быть удовлетворено требованию: ZPE=U0/Zф0≤50В

В целом, петля фаза ноль — это контур, образующийся в момент соединения фазного проводника и нулевого рабочего защитного проводника. Проверяется она при помощи специальной формулы или измерительного прибора. При этом для вычисления петли и возобновления работы электросистемы, необходимо знать величину ее сопротивления, которую также можно найти профессиональным оборудованием.

При существующем разнообразии электрического оборудования, устанавливаемого в силовых цепях, важно научиться правильной эксплуатации систем энергоснабжения и поддержанию их в рабочем состоянии. Нарушение этого требования приводит к снижению эксплуатационных показателей и возможности повреждения подключенных к ней устройств. Проверка электропроводящих линий предполагает организацию тестирования, включающего в себя измерение распределенных электрических параметров. При проведении периодических испытаний обязательно обследуются все защитные устройства и электрические проводники, а также так называемая «петля фаза ноль».

Определение понятия

Любое подключенное к электросети оборудование оснащается защитным заземляющим контуром. Это приспособление обустраивается в виде сборной металлической конструкции, располагающейся либо рядом с контролируемым объектом, либо на трансформаторной подстанции. В случае аварийной ситуации (при повреждении изоляции проводов, например) фазное напряжение попадает на заземленный корпус, а затем стекает в землю.

Для надежного растекания в грунт опасного потенциала сопротивление цепочки не должно превышать определенной нормы (единиц Ома).

Под петлей фаза ноль понимается проводной контур, образуемый при замыкании фазной жилы на токопроводящий корпус подключенного к сети оборудования. Фактически он образуется между фазой и заземленной нейтралью (нулем), что и явилось причиной такого названия. Знать его сопротивление необходимо для того, чтобы контролировать состояние цепей защитного заземления, обеспечивающих стекание аварийного тока в грунт. От состояния этого контура зависит безопасность человека, пользующегося оборудованием и бытовыми приборами.

Методика определения сопротивления петли фаза-нуль

В соответствии с требованиями ПТЭЭП при эксплуатации промышленного и бытового электрооборудования необходим постоянный контроль состояния защитных устройств. Согласно требованиям нормативной документации в установках до 1000 Вольт с глухозаземленной нейтралью они проверяются на однофазное замыкание в грунт. В известных методиках испытаний в первую очередь учитывается техническая база, представленная образцами специальных измерительных приборов.

Используемая аппаратура

Для измерения цепочки фаза-нуль применяются электронные приборы, отличающиеся как своими возможностями (способом снятия показаний и их погрешностью, в частности), так и назначением. К самым распространенным образцам измерителей относятся:

  • Приборы М417 и MSC300, позволяющие определять искомую величину, по окончании измерений токи КЗ на землю вычисляются на основе полученных результатов.
  • Устройство ЭКО-200, посредством которого удается замерить только ток замыкания.
  • Прибор ЭКЗ-01, применяемый для тех же целей, что ЭКО-200.
  • Измеритель ИФН-200.

Прибор М417 позволяет проводить измерения в цепях 380 Вольт с глухозаземленной нейтралью без необходимости снятия питающего напряжения. При проведении замеров используется метод его падения в режиме размыкания контролируемой цепи на промежуток времени, составляющий 0,3 секунды. К недостаткам этого устройства относят необходимость калибровки системы перед началом работы.

Прибор MSC300 относится к изделиям нового типа с электронной начинкой, построенной на современных микропроцессорах. При работе с ним используется метод падения потенциала при подключении фиксированного сопротивления величиной 10 Ом. Рабочее напряжение – 180-250 Вольт, а время замера контролируемого параметра – 0,03 сек. Устройство подсоединяется к проверяемой линии в самой дальней ее точке, после чего нажимается кнопка «Старт». Итоги измерений выводятся на встроенный в прибор цифровой дисплей.

Когда в наличии не имеется ни одного образца измерительного прибора (а также при необходимости дублирования операций), для практического определения искомой величины используется способ измерения с помощью вольтметра и амперметра.

Существующие методики измерений

Известные методики включают в себя расчетную часть, представленную в виде формул. Общепринятый расчетный инструмент позволяет узнать суммарное сопротивление петли по следующей формуле:

Zпет = Zп + Zт/3, где

  • Zп – полное сопротивление проводов на участке КЗ;
  • Zт – то же, но для силового трансформатора подстанции (источника тока).

Для дюралевых и медных проводов Zпет в среднем составляет 0,6 Ом/км. По найденному сопротивлению находится ток однофазового замыкания на землю: Iк = Uф/Zпет.

Если в результате приведенных выкладок выяснится, что значение искомого параметра не превышает трети от допустимой величины (смотрите ПУЭ), можно ограничиться этим вариантом расчета. В противном случае проводятся прямые измерения тока посредством приборов ЭКО-200 или ЭКЗ-01. В их отсутствие может применяться метод амперметра-вольтметра.

Общий порядок проведения испытаний с помощью измерительных приборов указанных марок:

  • Контролируемое оборудование отключают от сети.
  • Организуется питание проверяемой петли от понижающего трансформатора.
  • Нужно умышленно замкнуть фазу на корпус электрического приемника, а затем измерить значение Zпет, получившееся в результате КЗ.

При измерениях по способу амперметра-вольтметра после подачи напряжения в контролируемую цепочку и организации замыкания определяются величины тока I и потенциала U. Первое из этих значений не должно превышать 10-20 Ампер.

Расчеты и оформление результатов

Сопротивление проверяемой петли вычисляется по формуле: Zпет=U/I. Полученное по результатам расчета значение складывается с импедансом одной из 3-х обмоток станционного трансформатора, равным Rтр./3.

По завершении линейных измерений согласно действующим нормативам их следует зафиксировать документально. Для этого по установленной форме подготавливаются протоколы испытаний, в которых обязательно регистрируются следующие данные:

  • Тип линии, ее основные характеристики.
  • Используемое при проверке измерительное оборудование.
  • Величины собственного переходного сопротивления и обмоток станционного трансформатора.
  • Их сумма, являющаяся итогом проведенных измерений.

В соответствии с основными положениями ПУЭ периодичность проводимых на силовых цепях проверок составляет один раз в 6 лет. Для взрывоопасных объектов – раз в два года.

Расчеты по таблицам

Полное значение искомой величины зависит от следующих факторов:

  • Параметры трансформатора силовой подстанции.
  • Выбранные при проектировании электрической сети сечения фазных и нулевых жил.
  • Сопротивление переходных соединений, всегда имеющихся в любой цепи.

Проводимость используемых проводов может задаваться еще на стадии проектирования энергосистемы, что при условии правильного ее выбора позволит избежать многих неприятностей.

Согласно ПУЭ этот показатель должен соответствовать хотя бы половине аналогичного значения для фазных проводников. По необходимости ее допускается увеличивать до той же величины. В требованиях главы 1.7 ПУЭ оговариваются эти значения, а ознакомиться с ними можно в Таблице 1.7.5, приводимой в Приложении Правил. Согласно ей производится выбор наименьшего сечения проводников защиты (в миллиметрах квадратных).

По завершении табличного этапа обсчета петли фаза-ноль переходят к ее проверке путем вычисления тока короткого замыкания по формулам. Его расчетное значение сравнивается затем с практическими результатами, полученными ранее путем непосредственных измерений. При последующем выборе приборов защиты от КЗ (линейных автоматов, в частности) время их срабатывания привязывается к этому параметру.

В каких случаях проводят измерения

Замер сопротивления участка цепи фаза-ноль обязательно организуется в следующих ситуациях:

  • при вводе в постоянную эксплуатацию новых, еще не работающих силовых электроустановок;
  • когда со стороны контролирующих энергетических служб поступило указание на их проведение;
  • согласно заявке предприятий и организаций, подключенных к обслуживаемой электрической сети.

При вводе энергетической системы в эксплуатацию тестовые замеры сопротивления петли является частью комплекса мероприятий, проводимых с целью проверки ее рабочих характеристик. Второй случай связан с аварийными ситуациями, нередко случающимися при эксплуатации силовых цепей. Заявка от тех или иных потребителей, представленных предприятием или организацией, может поступить при неудовлетворительной защите оборудования (по жалобам конкретных пользователей, например).

Примеры проведения вычислений

В качестве примеров таких измерений рассматриваются два способа.

Эффект от падения напряжения на контролируемом участке силовой цепи

При описании этого способа важно обратить внимание на трудности его практической реализации. Это объясняется тем, что для получения конечного результата потребуется несколько этапов. Сначала придется измерить параметры сети в двух режимах: с отключенной и подключенной нагрузкой. В каждом из этих случаев сопротивление измеряется путем снятия показаний по току и напряжению. Далее оно рассчитывается по классическим формулам, вытекающим из закона Ома (Zп=U/I).

В числителе этой формулы U представляет собой разницу двух напряжений – при включенной и при выключенной нагрузке (U1 и U2). Ток учитывается только для первого случая. Для получения корректных результатов разница между U1 и U2 должна быть достаточно большой.

Полное сопротивление учитывает импеданс катушки трансформатора (он суммируется с полученным результатом).

Применение независимого источника электрического питания

Данный подход предполагает определение интересующего специалистов параметра с помощью независимого источника питающего напряжения. При его проведении потребуется учесть следующие важные моменты:

  • В процессе измерений первичная обмотка питающего станционного трансформатора замыкается накоротко.
  • С независимого источника напряжение питания подается непосредственно в зону КЗ.
  • Сопротивление фаза-ноль рассчитывается по уже знакомой формуле Zп=U/I, где: Zп – это значение искомого параметра в Омах, U – измеренное испытательное напряжение в Вольтах, I – величина измерительного тока в Амперах.

Все рассмотренные методы не претендуют на абсолютную точность полученных по их итогам результатов. Они дают лишь приблизительную оценку величины полного сопротивления петли фаза-ноль. Такой ее характер объясняется невозможностью в рамках предложенных методик измерять индуктивные и емкостные потери, которые всегда присутствуют в силовых цепях с распределенными параметрами. При необходимости учета векторной природы измеряемых величин (фазовых сдвигов, в частности) придется вводить специальные поправки.

В реальных условиях эксплуатации мощных потребителей величины распределенных реактивных сопротивлений настолько незначительны, что в определенных условиях они не учитываются.

Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке. Этот метод электрики называют измерением сопротивления петля фаза ноль.

Что это такое, и как формируется проверочная схема

Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

Итак, от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация. Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень. Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их. Что это такое, и как формируется проверочная схема.

Видео измерения петля фаза ноль

Петля фаза ноль расчет — советы электрика

Петля фаза ноль расчет

Проверка согласования параметров цепи «ФАЗА-НУЛЬ»
с характеристиками защитных аппаратов

Определение «петли ФАЗА-НУЛЬ

Петлёй «ФАЗА-НУЛЬ» принято называть цепь, состоящую из фазы трансформатора и проводников — нулевого и фазного.

Цель проведения испытаний

По измеренному полному сопротивлению петли «ФАЗА-НУЛЬ» производится расчет тока однофазного короткого замыкания. Основной целью является проверка временных параметров срабатывания аппаратов защиты от cверхтоков при замыкании фазы на корпус. Данная проверка так же подверждает непрерывность PE цепи. Время срабатывания аппаратов защиты должно удовлетворять требованиям п. 1.7.79 ПУЭ.

Надёжность срабатывания защиты от сверхтоков является одним из основных требований как при проектировании, так и при монтаже и требует расчетной и натурной проверки.

Обратите внимание

Поскольку речь идёт о замыкании на корпус, то под нулевым проводником мы понимаем совокупность защитных (PE) и защитно-рабочих (PEN) проводников от “корпуса” до трансформатора. Таким образом, проверка петли “ФАЗА-НУЛЬ” позволяет оценить и качество защитной цепи.

• Полное сопротивление цепи «ФАЗА-НУЛЬ» достаточно точно можно рассчитать по следующей формуле:

где: Z фо – полное сопротивление цепи «ФАЗА-НУЛЬ»; Z n – полное сопротивление цепи фазного и нулевого проводника; Z т – полное сопротивление трансформатора.
Полное сопротивление «складывается» из активного и реактивного сопротивлений.

• Ток короткого замыкания отражается в следующей зависимости:

где: I кз – ток короткого замыкания; U о – фазное напряжение.

• Для расчета ожидаемого тока короткого замыкания принята формула:

• Должны удовлетворяться требования:

где: I ра – номинальный ток срабатывания расцепителя автомата; K g – коэффициент допустимой кратности тока короткого замыкания к номинальному току срабатывания расцепителя.

где: Z pe – полное сопротивление защитного проводника между главной заземляющей шиной и корпусом распределительного устройства; U снн – сверхнизкое напряжение (напряжение прикосновения), обычно принимается равным 50В (п. 1.7.79 и 1.7.104 ПУЭ).

где: I н – номинальный ток нагрузки.

Существует несколько методик измерения сопротивления петли «ФАЗА-НУЛЬ» и токов короткого замыкания, как с отключением напряжения линии, так и без.

В настоящее время в основном применяются современные микропроцессорные измерительные приборы, реализующие методику измерения полного сопротивления петли «ФАЗА-НУЛЬ» без отключения напряжения, и автоматического расчета тока короткого замыкания на основании значения сопротивления петли. Применение данных приборов упрощает процесс испытаний. Кроме того, испытания оказываются более щадящими по отношению к испытываемым линиям и аппаратам защиты. Некоторые из этих приборов позволяют проводить измерения без искючения из испытываемой линии УЗО и не вызывают их срабатывания, что представляется достаточно важным и удобным, поскольку измерения проводятся между фазным проводником и нулевым защитным проводником. Измерения проводятся на концах проводников, защищаемых аппаратами защиты от сверхтока.

Пример схемы измерения петли “ФАЗА-НУЛЬ” без снятия напряжения:

Результаты измерений оформляются протоколом установленного образца.

Перед проведением измерений петли «ФАЗА-НУЛЬ» рекомендуется провести измерение сопротивлений защитных проводников, проверку их непрерывности (проверка металлосвязи, проверка заземления).

Важно

Если при проведении измерений петли «ФАЗА-НУЛЬ» в действующей электроустановке получены неудовлетворительные результаты, то требуется срочное устранение дефекта.

Как правило, бывает достаточно заменить аппарат защиты от сверхтоков на другой, с более подходящими характеристиками. Но иногда требуется замена существующего кабеля на кабель с другим сечением жил.

Подобные случаи, как правило, сложнее с точки зрения монтажа.

Расчет петли «ФАЗА-НУЛЬ»

С целью своевременного согласования параметров кабельных линий и аппаратов защиты от сверхтоков необходимо производить расчёты петли «ФАЗА-НУЛЬ» на стадии проектных работ.

Подобные расчеты удобно проводить в комплексе: мощность нагрузки; cos φ; длина кабельной линии; сечение жилы; вид монтажа; падение напряжения на линии; расчетное полное сопротивление петли; прогнозируемый ток короткого замыкания; номинальный ток аппарата защиты; характеристика аппарата защиты.

Расчет петли «ФАЗА-НУЛЬ» является одним из наиболее сложных, поскольку требует принятия во внимание ряда трудно учитываемых параметров.

Иногда необходимо произвести измерение или сделать расчёт петли “ФАЗА — РАБОЧИЙ НУЛЬ” или “ФАЗА — ФАЗА”. Методики подобны описанным выше, за исключением замены защитного проводника рабочим или фазным.

Измерение петли фаза-ноль

Нормативно-технический документ ПТЭЭП устанавливает, что измерение петли фаза-ноль нужно проводить периодически. Данная периодичность устанавливается по системе ППР-организации.

Эту систему ППР, которая состоит из циклов текущих, а также капремонтов для электрооборудования, утверждает технический руководитель организации. Так, например, измерение петли фаза-ноль проводится не менее раза в два года для взрывоопасных зон.

В случае, если устройства защиты электрических установок отказали, электрические измерения необходимо выполнять внепланово.

Цель проведения испытаний

По измеренному полному сопротивлению петли «ФАЗА-НУЛЬ» производится расчет тока однофазного короткого замыкания. Основной целью является проверка временных параметров срабатывания аппаратов защиты от cверхтоков при замыкании фазы на корпус. Данная проверка так же подверждает непрерывность PE цепи. Время срабатывания аппаратов защиты должно удовлетворять требованиям п. 1.7.79 ПУЭ.

Надёжность срабатывания защиты от сверхтоков является одним из основных требований как при проектировании, так и при монтаже и требует расчетной и натурной проверки.

Поскольку речь идёт о замыкании на корпус, то под нулевым проводником мы понимаем совокупность защитных (PE) и защитно-рабочих (PEN) проводников от «корпуса» до трансформатора. Таким образом, проверка петли «ФАЗА-НУЛЬ» позволяет оценить и качество защитной цепи.

Полное сопротивление цепи «ФАЗА-НУЛЬ» достаточно точно можно рассчитать по следующей формуле:

где: Zфо – полное сопротивление цепи «ФАЗА-НУЛЬ»; Zn – полное сопротивление цепи фазного и нулевого проводника; Zт – полное сопротивление трансформатора.
Полное сопротивление «складывается» из активного и реактивного сопротивлений.

Ток короткого замыкания отражается в следующей зависимости:

где: Iкз – ток короткого замыкания; Uо – фазное напряжение.

Для расчета ожидаемого тока короткого замыкания принята формула:

Должны удовлетворяться требования:

где: Iра – номинальный ток срабатывания расцепителя автомата; Kg – коэффициент допустимой кратности тока короткого замыкания к номинальному току срабатывания расцепителя.

Совет

где: Zpe – полное сопротивление защитного проводника между главной заземляющей шиной и корпусом распределительного устройства; Uснн – сверхнизкое напряжение (напряжение прикосновения), обычно принимается равным 50В (п. 1.7.79 и 1.7.104 ПУЭ).

Iра>Iн
где: Iн – номинальный ток нагрузки.

Существует несколько методик измерения сопротивления петли «ФАЗА-НУЛЬ» и токов короткого замыкания, как с отключением напряжения линии, так и без.

В настоящее время в основном применяются современные микропроцессорные измерительные приборы, реализующие методику измерения полного сопротивления петли «ФАЗА-НУЛЬ» без отключения напряжения, и автоматического расчета тока короткого замыкания на основании значения сопротивления петли. Применение данных приборов упрощает процесс испытаний. Кроме того, испытания оказываются более щадящими по отношению к испытываемым линиям и аппаратам защиты. Некоторые из этих приборов позволяют проводить измерения без искючения из испытываемой линии УЗО и не вызывают их срабатывания, что представляется достаточно важным и удобным, поскольку измерения проводятся между фазным проводником и нулевым защитным проводником. Измерения проводятся на концах проводников, защищаемых аппаратами защиты от сверхтока.

Результаты измерений оформляются протоколом установленного образца.

Перед проведением измерений петли «ФАЗА-НУЛЬ» рекомендуется провести измерение сопротивлений защитных проводников, проверку их непрерывности (проверка металлосвязи, проверка заземления).

Устранение дефектов

Важно

Если при проведении измерений петли «ФАЗА-НУЛЬ» в действующей электроустановке получены неудовлетворительные результаты, то требуется срочное устранение дефекта.

Как правило, бывает достаточно заменить аппарат защиты от сверхтоков на другой, с более подходящими характеристиками. Но иногда требуется замена существующего кабеля на кабель с другим сечением жил.

Подобные случаи, как правило, сложнее с точки зрения монтажа.

Расчет петли «ФАЗА-НУЛЬ»

С целью своевременного согласования параметров кабельных линий и аппаратов защиты от сверхтоков необходимо производить расчёты петли «ФАЗА-НУЛЬ» на стадии проектных работ.

Подобные расчеты удобно проводить в комплексе: мощность нагрузки; cos φ; длина кабельной линии; сечение жилы; вид монтажа; падение напряжения на линии; расчетное полное сопротивление петли; прогнозируемый ток короткого замыкания; номинальный ток аппарата защиты; характеристика аппарата защиты.

Расчет петли «ФАЗА-НУЛЬ» является одним из наиболее сложных, поскольку требует принятия во внимание ряда трудно учитываемых параметров.

Расчет сопротивления петли «фаза-ноль»

Контур, состоящий из фазы трансформатора и цепи фазного и нулевого проводников. Сопротивление петли фаза-ноль определяет ток такого короткого замыкания.

Если сопротивление петли фаза-ноль велико, то может оказаться, что ток короткого замыкания не достаточен для быстрого срабатывания защиты от короткого замыкания. И защита или вообще не отключает короткое замыкание, или отключает через длительное время. Все это время на корпусе электроаппарата присутствует опасное напряжение.

В электроустановках до 1000 В с заземлением нейтрали безопасность обслуживания электрооборудования при пробое на корпус обеспечивается отключением поврежденного участка с минимальным временем.

При замыкании фазного провода на соединенный с нейтралью трансформатора (или генератора) нулевой провод или корпус оборудования образуется контур, состоящий из фазы трансформатора и цепи фазного и нулевого проводников.

Этот контур принято называть петлей «фаза-ноль»

Проверка надежности и быстроты отключения поврежденного участка сети состоит в следующем:

Определяется ток короткого замыкания на корпус Iкз. Этот ток сопоставляется с расчетным током срабатывания защиты испытуемого участка сети. Если возможный в данном участке сети ток аварийного режима превышает ток срабатывания защиты с достаточной кратностью, надежность отключения считается обеспеченной.

Произведем расчет сопротивления петли фаза-ноль

Rт. Хт — активное и индуктивное сопротивление вторичной обмотки силового трансформатора

Rк — переходное сопротивление контактного соединения

Rа — сопротивление аппаратов защиты и коммутации

Rтт. Хтт — активное и индуктивное сопротивление вторичной обмотки трансформатора тока

Rпр. Хтпр — активное и индуктивное сопротивление провода (длину провода в обоих случаях принимаем 80м.)

Индуктивное и активное сопротивление обмотки трансформатора (мОм)

Сопротивления контактов определяются по следующей формуле

Полное сопротивление петли фаза-ноль

Поученный расчетный ток к.з. сравниваем с током срабатывания защитной аппаратуры. Если выполняется условие, то аппарат защиты сработает и его выбор произведен верно

Произведем расчет сопротивления петли фаза-ноль

В качестве трансформатора принимаем следующий

Определяем сначала индуктивное и активное сопротивление обмотки трансформатора (мОм) по формулам (6.1) и (6.2)

Сопротивления контактов определяются по формуле

Fк =50 Н (сила нажатия в контакте)

K=4 (коэффициент, зависящий от материала контактов и состояния их поверхности; определяется по сводной таблице)

m=1,0 (коэффициент, зависящий от типа контакта)

По таблицам определяем остальные параметры

Полное сопротивление петли фаза-ноль

Так как 2084 А>630 А то при к.з. защитная аппаратура сработает.

На этом расчет окончен

Источники: http://380-electro.ru/proverka_cepi_fazanul.htm, http://etl.atonot.ru/izmerenie-petli-faza-nol/, http://studbooks.net/624016/tovarovedenie/raschet_soprotivleniya_petli_faza_nol

Источник: http://electricremont.ru/petlya-faza-nol-raschet.html

Сопротивление цепи фаза – ноль

Таблица 1

Сечение фазных жил   мм2 Сечение нулевой жилы мм2 Полное сопротивление цепи фаза – ноль, Ом/км при температуре жил кабеля +65 градусов
Материал жилы:
Алюминий Медь
R фазы R нуля Z цепи (кабеля) R фазы R нуля Z цепи (кабеля)
1,5 1,5 14,55 14,55 29,1
2,5 2,5 14,75 14,75 29,5 8,73 8,73 17,46
4 4 9,2 9,2 18,4 5,47 5,47 10,94
6 6 6,15 6,15 12,3 3,64 3,64 7,28
10 10 3,68 3,68 7,36 2,17 2,17 4,34
16 16 2,3 2,3 4,6 1,37 1,37 2,74
25 25 1,47 1,47 2,94 0,873 0,873 1,746
35 35 1,05 1,05 2,1 0,625 0,625 1,25
50 25 0,74 1,47 2,21 0,436 0,873 1,309
50 50 0,74 0,74 1,48 0,436 0,436 0,872
70 35 0,527 1,05 1,577 0,313 0,625 0,938
70 70 0,527 0,527 1,054 0,313 0,313 0,626
95 50 0,388 0,74 1,128 0,23 0,436 0,666
95 95 0,388 0,388 0,776 0,23 0,23 0,46
120 35 0,308 1,05 1,358 0,181 0,625 0,806
120 70 0,308 0,527 0,527 0,181 0,313 0,494
120 120 0,308 0,308 0,616 0,181 0,181 0,362
150 50 0,246 0,74 0,986 0,146 0,436 0,582
150 150 0,246 0,246 0,492 0,146 0,146 0,292
185 50 0,20 0,74 0,94 0,122 0,436 0,558
185 185 0.20 0,20 0,40 0,122 0,122 0,244
240 240 0,153 0,153 0,306 0,090 0,090 0,18

                                                                                                                     Таблица 2

Мощность трансформатора, кВ∙А 25 40 69 100 160 250 400 630 1000
Сопротивление трансформатора, Zт/3, Ом  (Δ/Υ) 0,30 0,19 0,12 0,075 0,047 0,03 0,019 0,014 0,009

                                                                                                                   Таблица 3

I ном. авт. выкл, А 1 2 6 10 13 16 20 25 32-40 50 и более
R авт., Ом 1,44 0,46 0,061 0,014 0,013 0,01 0,007 0,0056 0,004 0,001

                                                                                                                         Таблица 4

R цепи, Ом 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,8 1,0 1,5 2 и более
Rдуги, Ом 0,015 0,022 0,032 0,04 0,045 0,053 0,058 0,075 0,09 0,12 0,15

    При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза – ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность  ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

                          RL-N= Rрасп + Rпер.гр + Rавт.гр+  Rnгр∙Lnгр +Rдуги                      (2)

где, Rрасп – измеренное сопротивление цепи фаза – ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; Rпер.гр – сопротивление переходных контактов в групповой линии, Ом; Rавт.

Обратите внимание

гр – суммарное сопротивление автоматических выключателей – вводного группового щита и отходящей групповой линии, Ом; Rnгр – удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Lnгр – длина n-й групповой линии, км.

    Рассмотрим процесс вычисления сопротивления цепи фаза – ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.

Исходные данные:

– трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник – звезда» – по таблице 2 находим  Zт/3=0,014 Ом;

– питающая сеть – кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм2  и нулевой – 50 мм2. По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

– распределительная сеть – кабель с медными жилами  длиной 50 метров и сечением жил 35 мм2. По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

              1,25 Ом/км∙0,05 км=0,0625 Ом;

– групповая сеть – кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм2. По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

              17,46 Ом/км∙0,035 км=0,61 Ом;

– автоматический выключатель отходящий линии – 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

– переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

    Суммируем все полученные значения и получаем сопротивление цепи фаза – ноль без учета сопротивления дуги RL-N=0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины RL-N=0,80 Ом+0,075 Ом=0,875 Ом.

    В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

    Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты  от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в  1,2 – 1,25 раза.

    В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3.

При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза – ноль 0,875 Ом.

При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

Uф/ RL-N=220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

Важно

    Максимальное сопротивление цепи фаза – ноль для  автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис.

1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом – 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом – 0, 265 Ом=0,875 Ом.

Его максимальную длину L при сечении жил кабелей 2,5 мм2 определим при помощи таблицы 1.

               L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

    Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза – ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель.

Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть ток короткого замыкания оказывается недостаточным для мгновенного отключения сети.

Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

    Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару.

Именно поэтому возникли требования к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов.

Совет

Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия токов короткого замыкания.                           

                                                                                                                                          9 марта 2013 г.

                                   К ОГЛАВЛЕНИЮ

Источник: https://electromontaj-proekt.ru/nashi-stati/proektirovanie/soprotivlenie-cepi-faza-nol/

Измерение петли фаза-ноль: самая полная методика

Надежность работы электрических сетей TN с классом напряжения до 1 кВ во многом зависит от параметров срабатывания защитного оборудования, отключающего аварийный участок при образовании сверхтоков.

Существует несколько методик, позволяющих проверить надежность срабатывания автоматов защиты, сегодня мы подробно рассмотрим одну из них – измерение сопротивления петли «фаза-ноль».

Для лучшего понимания процесса начнем с краткого описания терминологии, после чего перейдем к методике электрических испытаний при помощи специального устройства MZC-300.

Что подразумевается под цепью «фаза-ноль»?

В системах с глухозаземленной нейтралью (подробно о них можно прочитать в статье https://www.asutpp.ru/programmy-dlja-cherchenija-jelektricheskih-shem.html) при контакте одной из фаз с рабочим нулем или защитным проводником РЕ, образуется петля фаза-ноль, характерная для однофазного КЗ.

Как и любая электроцепь, она имеет внутреннее сопротивление, расчет которого позволяет определить остальные значащие параметры, в частности, ток КЗ. К сожалению, самостоятельный расчет сопротивления такой цепи связан с определенными трудностями, вызванными необходимостью учета многих составляющих, например:

  • Суммарная величина всех переходных сопротивлений петли, возникающих в АВ, предохранителях, коммутационном оборудовании и т.д.
  • Движение электротока при нештатном режиме. Петля может образоваться как с рабочим нулем, так и заземленными конструкциями здания.

Учесть в расчетах все перечисленные составляющие на практике не реально, именно поэтому возникает необходимость в электрических измерениях. Спецоборудование позволяет получить необходимые параметры автоматически.

Необходимость в измерениях

Замер сопротивления петли проводится в следующих случаях:

  • При вводе в эксплуатацию, после ремонта, модернизации или переоборудовании установок.
  • Требование со стороны служб различных служб контроля, например Облэнерго, Ростехнадзор и т.д.
  • По заявлению потребителя.

В ходе электрических замеров устанавливаются определенные параметры петли Ф-Н, а именно:

  • Общее сопротивление цепи, которое включает в себя:

электросопротивление трансформатора на подстанции;

аналогичный параметр линейного проводника и рабочего нуля;

образующиеся в коммутационном оборудовании многочисленные переходные сопротивления, например в защитных устройствах (АВ, УЗО, диффавтоматах), пускателях, ручных коммутаторах и т.д. Также влияние оказывает сечение проводников, изоляция кабелей, заземление нейтрали трансформатора, параметры УЗО или другой защиты электроустановок.

  • Ток КЗ (IКЗ). В принципе, его можно рассчитать, используя формулу: IКЗ = UН /ZП  , где UН – номинальный уровень напряжения в электросети, а ZП – общее сопротивление петли. Учитывая, что защитные устройства при КЗ должны автоматически отключать питание согласно установленным временным нормам, то необходимо выполнение следующего условия: ZП*IAB 

Источник: https://www.asutpp.ru/kak-izmerit-soprotivlenie-petli-faza-nol.html

Измерение сопротивления петли фаза – ноль

Передача электроэнергии по электросети всегда связана с потерями в ней. Каждый из элементов вносит свою лепту в этот процесс. Для того чтобы разобраться с его деталями, используется метод, называемый «петля фаза – ноль». Далее расскажем более подробно о том, как это делается.

Общие сведения

Такая цепь может быть создана шунтом или эталонным резистором в любом месте электрической сети. В результате этого можно выполнить контроль наиболее важных параметров на участках фаза – шунт – ноль, таких как:

  • состояние изоляции;
  • импеданс и его составляющие;
  • текущее состояние заземления;
  • текущие параметры контактов коммутационного оборудования;
  • соответствие отключаемых токов заданным значениям.

Полученные результаты измерений берутся за основу расчетов оптимальных нагрузок обследованного участка электрической сети. Если бы эти данные отсутствовали, электрическая нагрузка на проводники могла оказаться слишком большой.

В результате – запредельный нагрев жил, порча изоляции и сокращение срока службы значительной по протяженности линии. Это в лучшем случае. Поскольку замыкание и пожар нередки в таких ситуациях.

При одном и том же шунте точки фазы и нуля могут быть выбраны (удалены от него) в зависимости от количества элементов электросети.

И наоборот, если абстрагироваться от фазы и нуля применительно к шунту. Помимо проводников так можно охватить проверяемые коммутаторы и заземления. Хотя всегда можно расчетным путем определить искомые параметры они не смогут учесть старение изоляции, а также воздействие окружающей среды. Поэтому измерения дают наиболее полное отображение текущего состояния электросети.

  • При формировании петли необходимо либо исключать, либо отключать устройства защитного отключения. Если токи утечки, которые могут вызвать измерения, приведут к срабатыванию УЗО, результаты получатся некорректными.

Измерения в петлях фаза – ноль обычно делаются:

  • перед использованием вновь построенной электросети;
  • перед использованием электросети, прошедшей капитальный или иной вид ремонта;
  • после замены оборудования;
  • в соответствии с имеющимся планом испытаний;
  • в общем не реже 1 раза в шесть лет в обычных электросетях и не реже одного раза в два года в электросетях взрывоопасных объектов.

Как делаются измерения в петле

Наиболее распространенными являются три способа выполнения измерений:

  • получают данные для расчетов по падению напряжения. Вместо нагрузки, которую отключают, присоединяется специальное (эталонное) сопротивление с известными характеристиками.
  • Используются данные измерения силы тока с использованием шунта. Он устанавливается в определенном месте электросети соответственно заданным параметрам.
  • Вместо существующего напряжения, которое отключается, подается пониженное напряжение от трансформатора. Провод фазы замыкается на корпусе того элемента электросети, который выбран для создания петли. Используются данные амперметра и вольтметра, которыми выполняются измерения, которые затем обрабатываются.  

Из трех перечисленных способов расчеты на основе падения напряжения наиболее распространены по причине того, что этот способ самый простой.

Если при этом замере контрольное сопротивление присоединить максимально удаленно от точек фазы и нуля можно охватить наибольшее количество элементов электросети и получить их необходимые характеристики. Сначала делаются замеры напряжения с ненагруженной сетью.

Затем сеть нагружают с присоединенным амперметром. Показания приборов используются в расчетах сопротивления петли, поскольку оно составляет доли Ома. Полученные результаты заносятся в протокол.

В настоящее время для обработки данных, содержащих результаты измерений петли фаза – ноль, можно использовать специализированные компьютерные программы. Например, СОНЭЛ, которая работает в среде Windows 2000 Service Pack 4 и выше. Программа также формирует протокол стандартной формы. Пример подобного протокола показан ниже.

Пример протокола, составленного на основании расчетов, выполненных по результатам измерений петли фаза – ноль

Специальные измерительные приборы

Учитывая важность результатов измерений в петле и востребованность таковых, на рынке измерительных приборов представлены специальные модели. Чаще других применяются:

  • М-417. Это стрелочный прибор, основанный на мостовой измерительной схеме, которая постоянно калибруется. Этим прибор в основном и неудобен. Зато надежен и долговечен. Работает без снятия напряжения величиной до 380 В.

М-417

  • MZC-300 (производство фирмы Sonel). Современный прибор с цифровой обработкой измеряемых параметров и отображением их на дисплее. Для измерений в диапазоне напряжения до 250 В применяется контрольное сопротивление 10 Ом.

MZC-300

  • ИФН-200. Работает под напряжением до 250 В, может использоваться как тестер. Но при замерах петли фаза – ноль диапазон измеряемых прибором значений сопротивления лежит ниже 1000 Ом.

ИФН-200

  • ТС-20 (производство фирмы Sonel). Прибор с большим функционалом как измерений в однофазных и трехфазных электросетях, так и обработки их результатов.

ТС-20

Измерения параметров петли фаза – ноль современными цифровыми приборами очень проста.

Щупы присоединяются к местам-контактам, которые необходимо предварительно зачистить наждаком или напильником для минимизации контактного сопротивления.

После этого нажимается та или иная кнопка на панели прибора, соответственно поставленной задаче. На табло получается результат. Как правило, результаты можно запомнить и обработать.

Обратите внимание

Современные приборы и программное обеспечение существенно упрощают и ускоряют измерения в петле фаза – ноль. К тому же результаты получаются более точными.

Источник: https://domelectrik.ru/elektrosnabzhenie/seti/petlya-faza-nol

Петля фаза-ноль в защите электроустановок

Одним из важных факторов в работе электрооборудования считается продолжительность его эксплуатации. Большое значение имеет надежная и устойчивая работа всех приборов и устройств. При различных повреждениях, коротких замыканиях и перегрузках, должно обеспечиваться моментальное срабатывание защитной аппаратуры и отключение опасного участка.

Поэтому, необходимо заранее предусмотреть исправность самого электрооборудования и средств защиты, где большое значение имеет фаза-ноль.

Физическое понятие петли фаза-ноль

Во всех электроустановках, напряжением до 1000 вольт оборудуются системы глухогозаземления. В такой системе, фаза-ноль представляет собой контур, образующийся в результате соединения проводника фазы и нулевого рабочего провода. В некоторых схемах, фазный проводник может соединяться с защитным проводником. Полученная цепь, во всех случаях, обладает собственным сопротивлением.

Теоретические расчеты сопротивления петли представляют серьезную проблему. Это объясняется переходными сопротивлениями, которые имеются в рубильниках, контакторах, автоматах и прочей аппаратуре, включаемой в общую цепь. Особую сложность представляет вычисление точного пути токов при аварийных ситуациях, где нужно учитывать и влияние различных металлических конструкций.

Поэтому, для получения точных данных о значении сопротивления, существуют специальные приборы, позволяющие автоматически учитывать все необходимые параметры.

Проведение измерений

Необходимость измерения петли фаза-ноль производится в определенных ситуациях. Прежде всего, это мероприятие осуществляется при вводе электроустановок в эксплуатацию после монтажа или реконструкции.

В этом случае, тестирование проводится во время приемосдаточных испытаний.

Внеплановые измерения могут проводиться по требованию организаций, контролирующих электробезопасность установок, а также, в любое время, по желанию клиента.

Когда измеряется фаза-ноль, в обязательном порядке определяется величина сопротивления. Этот показатель получается в результате параметров сопротивления, образующегося в обмотках трансформатора питания, фазном и нулевом проводнике. Одновременно измеряются переходные сопротивления контактов коммутационной аппаратуры.

Кроме сопротивления, измеряется величина тока, образующегося при коротком замыкании. Для этого применяется специальный прибор, с помощью которого возможно автоматически получить все необходимые показатели.

После проведения всех измерений все полученные результаты сравниваются с уставкой, рассчитанной на тот или иной автоматический выключатель.

Источник: https://electric-220.ru/news/petlja_faza_nol_v_zashhite_ehlektroustanovok/2014-06-29-645

Петля фаза ноль. Для чего проверяют сопротивление петли фаза-ноль?

   Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы.

Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке.

Этот метод электрики называют измерением сопротивления петля фаза ноль.

Что это такое, и как формируется проверочная схема

   Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

   Итак,  от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация.

Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень.

Важно

Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

   Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их.Что это такое, и как формируется проверочная схема.

Видео измерения петля фаза ноль

   Необходимо отметить, что вся электрическая цепочка – это зацикленный контур, образованный фазным контуром и нулевым. По сути, это своеобразная петля. Поэтому ее так и называют петля фаза ноль.

Как измеряется сеть

   Чтобы это понять, необходимо рассмотреть схему, в которой присутствует потребитель, подключенный через обычную розетку. Так вот к розетке, как уже было сказано выше, подводятся фаза и ноль. При этом до розетки происходит потеря напряжения за счет сопротивления магистральных кабелей и проводов. Это известно давно, описан данный процесс формулой Ома:

R=U/I.

   Правда, эта формула описывает соотношение величин постоянного электрического тока. Чтобы перевести ее на ток переменный, придется учитывать некоторые показатели:

   Что это значит?

   Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

   Как измерить сопротивление петля фаза ноль

   Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу, которая создается на обмотках трансформатора.

Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой.

Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

   Теперь по закону Ома можно определить полное сопротивление петли. При этом придется учитывать, что напряжение (замеряемое) в розетке может отклоняться от номинального при нагрузке и без таковой.

Поэтому сначала надо высчитать сопротивление при разных величинах напряжения.

Понятно, что при нагрузке напряжение будет больше, поэтому полное сопротивление петли – это разница двух сопротивлений:

   Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2). 

   Процесс измерения петля фаза ноль

   Хотя надо отдать должное рынку, сегодня можно такие приборы приобрести в свободном доступе. Стоят они недешево, но для профессионала это необходимая вещь.

Где провести замер

   Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите. Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

Цель проводимых замеров

   Итак, цели две – определение качества эксплуатируемых сетей и оценка надежности защитных блоков и приборов.

   Что касается первой позиции, то здесь придется сравнивать полученные замеры, а, точнее, сопротивление петли с проектной. В данном случае, если расчетный показатель оказался выше нормативного, то на поверку явно неправильно произведенный монтаж или другие дефекты магистрали.

Совет

К примеру, грязь или коррозия контактов, малое сечение кабелей и проводов, неграмотно проведенные скрутки, плохая изоляция и так далее. Если проект электрической сети по каким-то причинам отсутствует, то для сравнения расчетного сопротивления петли с номинальным необходимо будет обратиться в проектную организацию.

Чтобы разобраться в таблицах и расчетах самому, надо в первую очередь обладать инженерными знаниями по электрике.

   Замер сопротивления петля фаза ноль

   Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть. Поэтому в данном случае используется формула:

   Если считать, что сопротивление петли фаза к нулю равно, например, 1,47 Ом, то сила тока короткого замыкания будет равна 150 ампер. Под эту величину и придется подбирать прибор защиты, то есть, автомат. Правда, в правилах ПУЭ есть определенные нормы, которые создают некий запас прочности. Поэтому Iном увеличивают на коэффициент 1,1.

   Подобрать автомат под все вышеуказанные величины можно, если сравнить их в таблицах ПУЭ. В нашем случае потребуется автомат класса «С» с Iном=16 А и кратностью 10. В итоге получаем:

    I = 16 х 10 х 1,1 = 176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup.by/kak-eto-ustroeno/petlya-faza-nol

Измерение петли фаза-ноль

Если в вашем доме или квартире регулярно срабатывают автоматические выключатели на вводах (перед электросчетчиком), и даже увеличение их номинала не дает результата – невозможно, например, одновременно включить стиральную машину и электрический чайник, то вам стоит провести замер полного сопротивления цепи. На языке профессионалов эта процедура называется «измерение сопротивления петли фаза-ноль».

Что такое петля фаза-ноль?

В силовых подстанциях напряжением до 1 тыс. вольт, с которых подается электроэнергия бытовым потребителям, выходные обмотки трехфазного трансформатора соединены звездой – c так называемой глухозаземленной технической нейтралью. По ней, вследствие естественного перекоса фаз, не выходящего за пределы норм эксплуатации электроустановок, может течь ток.

Теперь условно представьте, что вы единственный потребитель на линии и у вас есть только один электроприбор – электрическая лампочка. Один конец подающейся вам фазы подключен к технической нейтрали трансформатора, другой – к центральной клемме (надеемся, что это именно так) электропатрона. Через нить лампы она соединяется с нейтральным проводом.

Так образуется непрерывное кольцо, по которому циркулирует электрический ток. Вот оно и называется петлей фаза-ноль, которая обладает сопротивлением, складывающимся из удельного сопротивления проводников и нити лампы накаливания.

На практике количество элементов, составляющих полное сопротивление цепи, может быть значительно большим. Часть из них является естественным условием нормальной эксплуатации электроустановки. Другие возникают в результате нарушений, которые до поры до времени не приводят к катастрофическим последствиям.

Обратите внимание

Например, дома у вас могут быть ослаблены скрутки в клеммных коробках.

Они способны добавить в общую копилку до сотен Ом! А на уличном столбе треснувший изолятор отдает часть фазы земле или заброшенный мальчишками на провода воздушный змей частично закорачивает электролинию и вызывает едва заметное – на пару вольт, падение напряжения. Вот именно эти нарушения и выявляются измерением петли фаза-ноль.

Почему срабатывают автоматы на вводах

Причины частого и необъяснимого срабатывания автоматов на вводах бывают двух типов:

  1. Внешние, обусловленные нарушениями в работе электролинии.
  2. Внутренние, из-за неисправности электропроводки в доме.

Внешние характеризуются стойким несоответствием норме номинала напряжения. Например, оно у вас постоянно не 220, а 200 вольт. Это сопровождается увеличением силы тока, протекающего по вашей домашней электропроводке.

Увеличение номинала автоматического выключателя на входе, например, с 25 до 40 А в этом случае вам ничего не даст, кроме того, что сам автомат будет нагреваться, а при дальнейшем вашем упорствовании может даже эффектно взорваться.

Внутренних причин несколько. Самые распространенные из них:

  • Неплотный контакт в клеммных коробках.
  • Не соответствующее номиналу тока сечение проводов.
  • Уменьшение сопротивления изоляции проводов в результате естественного старения.

Внешне они проявляются нагревом проводников и скруток. Поэтому установка более мощных автоматических выключателей приведет к пожару. Конечно, можно потратить день на то, чтобы руками перещупать все розетки, провода и скрутки в доме. Но, во-первых, это чревато электротравмой. И, во-вторых, слишком субъективно. Измерение даст лучший результат.

Как и чем измерять

Сразу скажем, что замерить сопротивление петли фаза-ноль на внешнем контуре (от силовой подстанции до вводов в дом) могут только лица из оперативно-технического персонала местного РЭС. Вам этого делать категорически нельзя.

Во-вторых, это сделать не удастся из-за отсутствия нужных приборов, а если и получится, то вы не сможете воспользоваться полученным значением.

Ведь вам не с чем его сравнивать – у вас нет доступа к протоколам испытаний электрической сети.

Дома вы можете сделать это двумя способами:

  1. Использовать сетевое напряжение и прибор с эталонным сопротивлением.
  2. Протестировать схему с помощью внешнего источника напряжения.

Перед началом измерений вам надо определить общую длину электрических проводников и вычислить их удельное сопротивление.

При этом вы должны считать, что их сечение соответствует нормам электробезопасности при пропускании через них тока, сила которого равна номиналу автоматических выключателей на вводе.

После этого рассчитываете сопротивление всех энергопотребителей, для чего делите квадрат напряжения на величину их паспортной мощности. Полученное значение суммируете с удельным сопротивлением проводников.

Измерение прибором с эталонным сопротивлением

В этом случае вы оставляете домашнюю электропроводку подключенной к электрической сети. Находите самую дальнюю от вводных автоматов розетку. Если контуров несколько, то измерение проводятся отдельно для каждого. Ваша цель – установить величину падения напряжения при включении эталонного сопротивления в цепь измерителя.

Если у вас нет специальных приборов для таких измерений, то используйте мультиметр и сопротивление 100 Ом, рассчитанное на работу с напряжением 230 вольт. Установив количество вольт в розетке без нагрузки, подключаете эталонное сопротивление к нейтральной линии и повторяете опыт.

После этого вам надо сравнить расчетное падение напряжения с фактическим, эти значения не должны отличаться более чем на 5–6 вольт. Проведя подобные опыты с каждой розеткой, и сдвигаясь при этом в сторону вводных автоматов, вы найдете проблемную клеммную коробку или участок проводки.

От необходимости проводить вычисления после опытов вас избавят приборы MZC-300 или ИФН-200, они выводят на дисплей значение сопротивления тестируемого участка цепи.

Измерение с внешним источником напряжения

Внешним источником напряжения может стать гальванический мегомметр. Однако при его использовании надо принять меры предосторожности и подготовить электропроводку.

  • Отключить внешнюю сеть.
  • Закоротить выходные клеммы автоматического выключателя на вводах или в ближайшей клеммной коробке.
  • Отключить всех потребителей от розеток, вместо них установить эталонные сопротивления по 100 Ом каждое.
  • Вместо светодиодных и люминесцентных ламп (экономок) установить лампы накаливания.
  • Если есть дифавтоматы (АВДТ) или УЗО, установить между входными и выходными клеммами с маркировкой N перемычки из проводников того же сечения, что и в фазной линии.

Предел измерений мегомметра устанавливается по шкале кОм. Произведите опыт на самой дальней розетке и сравните полученное значение с вычисленной суммой удельного сопротивления проводников, всех эталонных сопротивлений в розетках и ламп в светильниках.

Измерение полного сопротивления цепи фаза-ноль является частью регламента по обслуживанию электрических сетей и электроустановок. Оно дает наиболее точную картину их состояния.

Поэтому результаты протоколируются и являются основанием для проведения ремонта или нахождения виновных в случае чрезвычайных ситуаций. В бытовых условиях оно применяется редко. Однако вы можете провести его и самостоятельно. При этом надо строго соблюдать все меры электробезопасности.

Источник: https://electriktop.ru/provodka/izmerenie-petli-faza-nol.html

Петля фаза-ноль – основной замер в сетях 0,4 кВ

Так в электричестве достаточно важным параметром является работоспособность защиты, которая выполняется как при помощи автоматических выключателей, так и при помощи тепловых реле или предохранителей разнообразной конструкции. Для определения работоспособности защиты в сетях 0,4 кВ прежде всего необходимо достоверно оценить возможный ток однофазного короткого замыкания, а сделать это можно как прямым способом, так и косвенными методами.

Этот замер в электричестве носит наименование «Петля Фаза-Ноль», что определяет всю суть проводимого замера, так как сами замеры производятся между фазой и нулём в необходимом месте глухозаземлённой нейтрали. Именно этот замер позволяет учесть все сопротивления, как активные, так и реактивные которые проходит электрический ток от генератора, до потребителя. Причём значение сопротивления в сетях 0,4 кВ значительно отличаются от распространённости электрических линий и количества промежуточных силовых трансформаторов.

Наиболее точным прибором для измерения «Петля Фаза-Ноль» долгое время считалась разработка, сделанная в союзе – это прибор М-416, который меряет ток короткого замыкания в необходимой точке. Более поздняя версия и усовершенствованная является прибор Щ 41160, который значительно безопаснее и в то же время позволяет определять достаточно точные значения сопротивления петли Фаза-ноль.

В настоящее время появилось огромное количество разнообразных измерителей петли Фаза-ноль, что достаточно сложно определиться с преимуществом одних, над другими. При этом следует отметить, что принцип работы данных приборов практически идентичен, и предусматривает создание искусственного короткого замыкания в сети 0,4 кВ. После создания искусственного К.З. производится анализ падения напряжения на внутреннем сопротивлении прибора, после чего выдаётся в виде значения тока или значения сопротивления петли Фаза-ноль на дисплей.

Так что каждый прибор измеряющий петлю Фаза-ноль имеет внутреннее сопротивление, причем, чем оно ниже, тем более точно можно определить значения токов короткого замыкания и несомненно сопротивление петли Фаза-ноль. Но при этом для безопасности персонала достаточно часто устанавливается калиброванное сопротивление с минимальным термическим отклонением, значение которого исчисляется не мили Омами, а Омами. Данная особенность позволяет персоналу делающим измерения, производить замеры, достаточно безопасно для здоровья и жизни, при соблюдении соответствующих правил и норм. Ведь ток, протекающий по измерительной части прибора не превышает десятков ампер, а не носит значения сотен, а то и тысяч ампер. Да, для того чтобы данный прибор был достаточно точным необходимо чтобы в нём измерительная часть была очень чувствительна к изменению напряжения которое измеряется до подключения сопротивления вызывающего искусственное короткое замыкание, так и во время его подключения. Ведь именно по значению отклонения напряжения вычисляется автоматически и ток короткого замыкания, который в аварийном режиме может создаться в этой точке и соответственно сопротивление петли Фаза-ноль.

Измерение сопротивления петли фаза-нуль | Электролаборатория СК «Олимп»

Благодарственное письмо от ГКУ Самарской области «Центр по делам ГО, ПБ и ЧС»

Благодарственное письмо от ГБУЗ «Самарский областной клинический онкологический диспансер»

Благодарственное письмо от ФКУ СИЗО-4 УФСИН

Благодарственное письмо от ООО «Газпромнефть-Ямал»

Благодарственное письмо от ООО «СДЭК-ГЛОБАЛ»

Благодарственное письмо от ООО «ЮЖУРАЛПРОЕКТ»

Благодарственное письмо от ООО «ПТБ «Фактор»

Благодарственное письмо от ООО «ЗНИГО»

Благодарственное письмо от управления Федеральной Почтовой Службы Санкт-Петербурга и Ленинградской области — филиала ФГУП «Почта России»

Благодарственное письмо от ФКП «Аэропорты Севера»

Благодарственное письмо от ООО «Добрый Доктор»

Благодарственное письмо от ООО «АвтоТрансЮг»

Благодарственное письмо от ООО «Орион Наследие»

Благодарственное письмо от ООО «ЮгСтройКонтроль»

Благодарственное письмо от ООО «Транснефть-Охрана»

Благодарственное письмо от ООО «Аэропорт АНАПА»

Благодарственное письмо от ООО «Краун»

Благодарственное письмо от ООО «ИТЕРАНЕТ»

Благодарственное письмо от ГБПОУ МО «Колледж «Подмосковье»

Благодарственное письмо от ГБУ ФК «Строгино»

Благодарственное письмо от ООО «НПО «АКЕЛЛА»

Благодарственное письмо от филиала ПАО «РусГидро» — «Жигулевская ГЭС»

Благодарственное письмо от «Дор Хан 21 век»

Благодарственное письмо от «МСЧ №29 ФСИН»

Благодарственное письмо от ФГУП «РОСМОРПОРТ»

Благодарность от МК «ВТБ Ледовый дворец»

Благодарственное письмо от ОАО «РАМПОРТ АЭРО»

Благодарственное письмо от ПАО «Межгосударственная Акционерная Корпорация «ВЫМПЕЛ»

Благодарственное письмо от ПАО «РусГидро»

Благодарственное письмо от ООО «Новый город»

Благодарственное письмо от ФКУЗ МСЧ-10 ФСИН России

Благодарственное письмо от ООО «Зелдент»

Благодарственное письмо от ГБУ ЗДРАВООХРАНЕНИЯ РЕСПУЕЛИКИ КРЫМ «КРАСНОГВАРДЕИСКАЯ ЦЕНТРАЛЬНАЯ РАЙОННАЯ БОЛЬНИЦА»

Благодарственное письмо от АО «Научно-исследовательский институт вычислительных комплексов им. М.А. Карцева»

Благодарственное письмо от АО «ДХЛ Интернешнл»

Благодарственное письмо от ООО «Специальные системы и технологии»

Благодарственное письмо от ООО «АЛЬФА-НДТ»

Благодарственное письмо от ООО «Международный деловой центр Шереметьево»

Благодарственное письмо от ЧОП «АЛЬФА ПАТРИОТ»

Благодарственное письмо от ООО «ЛИТАС РЕНТГЕН»

Благодарственное письмо от ООО «МосРентген»

Благодарственное письмо от ООО «Центр безопасности информации «МАСКОМ»

Благодарственное письмо от ООО «СЛУЖБА-7»

Loop Phase — обзор

11.3.1.4 Малосигнальная модель VSC с контуром управления напряжением звена постоянного тока

Схема управления VSC с контуром управления по току, PLL и контуром DVC представлена ​​на рис. 11.26. Эквивалентная выходная проводимость, на которую воздействуют регулятор тока и система ФАПЧ, проиллюстрирована как Yodqm (s) и YPLLm (s) на рис. 11.26. Их выражения получены по формулам. (11.19) и (11.33).

Рисунок 11.26. Блок-схема инвертора источника напряжения с управлением по току, управлением фазовой автоподстройкой частоты и управлением напряжением промежуточного контура.

Из рисунка 11.26 видно, что эквивалентная выходная проводимость, вносимая управлением током и управлением ФАПЧ, изменяется внешним контуром DVC. Кроме того, можно видеть, что DVC вводит новую эквивалентную проводимость на выходе через установившийся выходной ток I1dqT.

Согласно рис. 11.26, коэффициент усиления разомкнутого контура DVC может быть задан как

(11,43) Tdcm (s) = Gclm (s) Gdccm (s) Gdcp (s) Gi − pm (s),

, который представляет собой матрицу два на два.

Общая выходная проводимость, а именно передаточная функция замкнутого контура от v dq до — i 1 dq , может быть получена как

(11.44) Ydc & PLL & CCm (s) = Ydcm (s) + YPLLdcm (s) + Yodcm (s),

, где

(11,45) Ydcm (s) = [I + Tdcm (s)] — 1Ydc0m (s) = [ I + Tdcm (s)] — 1Gclm (s) Gdccm (s) Gdcp (s) I1dqTYPLLdcm (s) = [I + Tdcm (s)] — 1YPLLm (s) Yodcm (s) = [I + Tdcm (s) ] −1Yodqm (s).

YPLLdcm (s) и Yodcm (s) — это измененные эквивалентные выходные проводимости, вводимые контуром управления PLL и контуром управления током на стороне преобразователя. Ydcm (s) — это новая эквивалентная выходная проводимость, вводимая внешним контуром DVC. Все они представляют собой матрицы размером два на два.

Стоит отметить, что связь между v dc и рабочим циклом d не учитывается в этом методе моделирования, поскольку предполагается, что v dc отменены нормализацией, как показано на рис. 11.4. Однако в этом случае переменная нормализации является константой и не может отменить динамику v dc , что вызовет сложную связь между контуром DVC и контуром управления током. Напряжение промежуточного контура в реальном времени, отобранное для нормализации, смягчит этот эффект связи, но из-за задержки управления и датчика динамику v dc нельзя полностью исключить в реальной системе.Более точная модель, основанная на функции переключения, может быть использована для моделирования эффекта связи [17].

Коэффициент усиления контура и его влияние на аналоговые системы управления

Аннотация

В этой статье собраны воедино идеи усиления разомкнутого контура, усиления замкнутого контура, усиления и запаса по фазе, стабильности минимального усиления и показано, как эти параметры взаимосвязаны в системе обратной связи. Он рассматривает усиление контура с точки зрения теоретической системы управления, а также практических электронных схем, включая линейные регуляторы.

В статье Боба Добкина 2014 «Новые линейные регуляторы решают старые проблемы», в которой описывается революционный линейный стабилизатор LT3081 с малым падением напряжения, предполагается, что его постоянный коэффициент усиления контура улучшает переходные характеристики и абсолютную точность выходного напряжения по сравнению с другими решениями LDO. Это утверждение, хотя и впечатляющее и правдивое, делает важное предположение о понимании инженерами петлевого усиления и о том, что существует четкая связь между постоянным контурным усилением и преимуществами LT3081. К сожалению, усиление контура не так широко признано, как усиление замкнутого или разомкнутого контура.

Без понимания коэффициента усиления контура и его влияния на электронную схему нельзя по-настоящему оценить преимущества LT3081. Эта статья предназначена для инженеров по источникам питания, исследуя влияние коэффициента усиления контура на коэффициент усиления и запас по фазе и связывая их с теоретической системой управления и реальными аналоговыми цепями обратной связи.

Классическим аналоговым строительным блоком является операционный усилитель, и его поведение можно применить к большинству систем управления с обратной связью. Фактически, производительность многих устройств можно упростить, смоделировав их как операционные усилители.Мы можем применить теорию операционных усилителей, скажем, к линейным регуляторам с малым падением напряжения (LDO) и импульсным стабилизаторам, чтобы предсказать стабильность части. На рисунке 1 показана упрощенная схема операционного усилителя.

Рисунок 1. Упрощенная схема операционного усилителя

Входное напряжение подается на усилитель ошибки, который вычитает долю (β) выходного напряжения из V IN для получения сигнала ошибки. Таким образом ошибка

Этот сигнал ошибки подвергается усилению без обратной связи усилителя (A0) для получения выходного напряжения:

Это преобразовано, чтобы найти коэффициент усиления усилителя с обратной связью:

В большинстве схем операционных усилителей коэффициент усиления без обратной связи очень высок, т.е.е. намного больше, чем «1» в знаменателе, что позволяет использовать приближение коэффициента усиления с обратной связью:

На рисунке 2 показана традиционная схема операционного усилителя, предсказуемая работа которой зависит от этого приближения усиления.

Рисунок 2. Схема традиционного ОУ

Для любого заданного напряжения на выходе, если коэффициент усиления разомкнутого контура бесконечен, разница напряжений между двумя входными контактами (V DIFF ) равна нулю, и операционный усилитель регулирует, чтобы поддерживать оба своих входных контакта при одинаковом напряжении.Здесь выход подается обратно на вход через резистивный делитель R1-R2, поэтому доля обратной связи (β) составляет 0,1 (1 кОм / 10 кОм). Из приведенных выше уравнений, если усиление разомкнутого контура высокое, усиление замкнутого контура схемы приближается к обратной величине доли обратной связи, поэтому схема имеет усиление замкнутого контура 10.

Эта упрощенная теория операционных усилителей полезна при моделировании различных схем, справедливо для низкочастотных входов, но эта простая модель теряет силу для высокочастотных входов.

Операционный усилитель LT1012 отличается классической зависимостью коэффициента усиления разомкнутого контура от частотной характеристики, показанной на рисунке 3.

Рисунок 3. Коэффициент усиления ОУ LT1012 в разомкнутом и замкнутом контурах в зависимости от частоты

На Рисунке 3 вы можете видеть, что усиление разомкнутого контура велико до входной частоты 0,3 Гц, а затем уменьшается со скоростью 20 дБ за декаду. Хотя коэффициент усиления остается очень высоким в широком диапазоне входных частот, наступает момент, когда коэффициент усиления без обратной связи нельзя считать относительно бесконечным.То есть, когда коэффициент усиления разомкнутого контура приближается к усилению замкнутого контура, идеальная модель операционного усилителя, описанная выше, и соответствующие предположения, которые мы сделали о ее характеристиках, начинают терять доверие.

Рассмотрим влияние конечного коэффициента усиления разомкнутого контура на усиление замкнутого контура схемы на рисунке 2. Доля обратной связи (β) составляет 1/10, поэтому в идеальной модели операционного усилителя усиление замкнутого контура обратно пропорционально этому , или 10. Если наш операционный усилитель имеет коэффициент усиления разомкнутого контура 100, рассчитанный коэффициент усиления замкнутого контура будет

Расчетное усиление замкнутого контура

Прирост по-прежнему составляет примерно 10, но с ошибкой 9%.

Теперь рассмотрите возможность использования того же усилителя, но с обратной связью с единичным усилением. Коэффициент обратной связи (β) равен 1, поэтому идеальное усиление замкнутого контура операционного усилителя должно быть обратным этому, или 1. Если наш операционный усилитель имеет усиление разомкнутого контура, равное 100, это приводит к усилению замкнутого контура

.

Хотя коэффициенты усиления разомкнутого контура у этих двух схем одинаковы, ошибка в усилении снижается до 1% просто за счет уменьшения усиления замкнутого контура.

Приведенные выше уравнения показывают, что ошибка является функцией того, насколько велик βA 0 по отношению к члену «1» в знаменателе.Обратите внимание, что только коэффициент усиления без обратной связи не всегда определяет ошибку, но важно произведение коэффициента усиления без обратной связи (A 0 ) на долю обратной связи (β). Для больших βA 0 член «1» теряет значение; для βA 0 , близкого к единице, «1» становится значительной, увеличивая ошибку.

Так что же такое βA 0 ? На рисунке 3 разница между кривой замкнутого контура (приблизительно 1 / β) и кривой разомкнутого контура (A 0 ) в логарифмической шкале составляет

.

Таким образом, зазор между кривой усиления без обратной связи и кривой усиления с обратной связью составляет βA 0 (около 105 дБ при постоянном токе).Ссылаясь на рисунок 1, мы видим, что A 0 • β — это коэффициент усиления, проходящий через усилитель и контур обратной связи, поэтому βA 0 — это усиление контура и представляет собой избыточное усиление, доступное в системе. Хотя часто считается, что коэффициент усиления разомкнутого контура усилителя должен быть высоким, чтобы коэффициент усиления операционного усилителя был точным, мы можем видеть, что это не обязательно усиление разомкнутого контура, а усиление контура, которое должно быть высоким. Другими словами, усиление разомкнутого контура должно быть большим по сравнению с усилением замкнутого контура, чтобы получить точное усиление схемы.

Итак, какое влияние конечное усиление разомкнутого контура оказывает на схему операционного усилителя? Базовая теория операционного усилителя утверждает, что два входных напряжения регулируются до одного и того же напряжения, подходящее предположение при очень высоких коэффициентах усиления разомкнутого контура, но что происходит, когда усиление разомкнутого контура уменьшается с увеличением частоты сигнала?

Рассмотрим схему на рисунке 2: поскольку коэффициент усиления без обратной связи усилителя уменьшается с увеличением входной частоты, мы видим возрастающее напряжение переменного тока между двумя входными контактами, равное выходному напряжению, деленному на коэффициент усиления без обратной связи.Это не входное напряжение смещения, а небольшое переменное напряжение (V DIFF ), которое равно выходному напряжению, деленному на коэффициент усиления разомкнутого контура усилителя. Если коэффициент усиления разомкнутого контура равен одному миллиону и у нас есть 1 В на выходе, тогда V DIFF составляет 1 мкВ на двух входных контактах. По мере увеличения входной частоты и уменьшения коэффициента усиления разомкнутого контура V DIFF увеличивается. В крайнем случае, когда коэффициент усиления разомкнутого контура упал до 10, наш V DIFF становится значительным 100 мВ.

Это то место, где многие неправильно понимают работу операционного усилителя на более высоких частотах переменного тока, когда два входных контакта больше не регулируются на одно и то же напряжение. Напряжение между двумя входными контактами состоит из входного напряжения смещения постоянного тока (которое для простоты мы здесь игнорируем) и V DIFF . V DIFF обычно можно игнорировать, но только не на высоких частотах.

Мы знаем, что коэффициент усиления разомкнутого контура представлен как

, и мы знаем, что β представлен

, где V — напряжение на инвертирующем входе, поэтому коэффициент усиления контура определяется как

.

Коэффициент усиления контура сравнивает V (который должен быть равен входному сигналу) с V DIFF .

Также существует фазовый сдвиг, связанный с V DIFF . Кривая усиления без обратной связи на рисунке 3 идентична характеристикам фильтра нижних частот. Частота прерывания составляет 0,3 Гц, после чего усиление спадает на 20 дБ за декаду и еще одно — на 1 МГц, после чего усиление снижается до 40 дБ за декаду. На рисунке 4 показан фильтр нижних частот с такими же частотами срыва.

Рисунок 4. Фильтр низких частот с частотной характеристикой, которая соответствует кривой усиления разомкнутого контура на рисунке 2

Передаточная функция фильтра нижних частот одинарного порядка (состоящего из R1 и C1) равна

Как показывает опыт, для фильтра нижних частот простого порядка на одной десятой частоты излома фазовый сдвиг примерно равен нулю.На каждой частоте обрыва фаза сдвигается на –45 ° (фазовое отставание), а при десятикратной частоте обрыва фазовый сдвиг составляет приблизительно –90 °, оставаясь на более высоком уровне. Если вторая частота прерывания составляет 1 МГц, то при 100 кГц общий фазовый сдвиг фильтра составляет примерно –90 °, на 1 МГц общий фазовый сдвиг составляет –135 °, а на 10 МГц общий фазовый сдвиг составляет примерно –180 °.

Поскольку усиление без обратной связи усилителя ведет себя одинаково, хотя входное и выходное напряжения на Рисунке 2 синфазны, существует фазовый сдвиг между V DIFF и V OUT , связанный с фазовым сдвигом коэффициент усиления разомкнутого контура усилителя.Опять же, поскольку V DIFF обычно невелик, мы можем игнорировать его, но по мере увеличения входной частоты увеличение V DIFF , не совпадающего по фазе с входным напряжением, может привести к проблемам со стабильностью. Кривая усиления разомкнутого контура на Рисунке 3 не представляет проблем со стабильностью, но легко представить, что если бы вторая частота прерывания была на гораздо более низкой частоте, чем 1 МГц, наша схема теперь имела бы увеличивающийся V DIFF , который имеет потенциал быть на 180 ° не совмещенным по фазе с входным напряжением, что, безусловно, повлияет на стабильность.

LTspice — полезный инструмент для анализа эффектов фазового сдвига на различных частотах. На рисунке 5a показано отставание выходного напряжения V DIFF на 90 ° на частоте 1 кГц.

Рисунок 5а. V OUT Отставание V DIFF по фазе на 90 ° при 1 кГц

Если входная частота увеличивается с 1 кГц до 10 кГц, V DIFF увеличивается в 10 раз, но фазовая задержка остается 90 °, указывая на то, что мы еще далеко не приблизились ко второй частоте прерывания коэффициента усиления разомкнутого контура.Это показано на рисунке 5b. Когда входная частота приближается к 1 МГц, фазовая задержка начинает увеличиваться выше 90 °, и V DIFF соответственно увеличивается.

Рисунок 5б. V OUT Отставание V DIFF по фазе на 90 ° при 10 кГц

Таким образом, можно увидеть, что V DIFF может иметь значение, сравнимое с входным напряжением и сдвигом на 180 ° по фазе с входным напряжением — для того, чтобы цепь колебалась, коэффициент усиления вокруг контура должен быть равен единице и фазовый сдвиг вокруг контура должен составлять 180 °.Если V DIFF подвергается усилению без обратной связи усилителя (A 0 ), то ослаблению цепи обратной связи, (β), мы можем видеть, что это усиление контура (βA 0 ) и его фазы, которые определяют устойчивость системы.

Рассматривая схему на рисунке 2, операционный усилитель усиливает напряжение между своими входами (V DIFF ), и это подвергается усилению βA 0 , создавая напряжение на уровне V . Если коэффициент усиления контура равен 1, это означает, что напряжение на V такое же, как V DIFF , таким образом, амплитуда V DIFF не изменилась при прохождении через контур.Если он претерпел сдвиг фазы на 180 ° и V DIFF не изменился по амплитуде, цепь будет колебаться. Пуристы могут возразить, что фазовый сдвиг должен составлять 360 °, и эти дополнительные 180 ° обеспечиваются инвертирующим входным контактом.

Кстати, если схема на Рисунке 2 имеет высокий коэффициент усиления, это означает, что резисторы обратной связи значительно ослабляют выходное напряжение. Большая часть фазового сдвига происходит в усилителе (поскольку резисторы обратной связи не имеют реактивных компонентов и, следовательно, не имеют фазового сдвига), поэтому чем ниже коэффициент усиления, тем большее «сдвинутое по фазе» выходное напряжение появляется на инвертирующем входе, что увеличивает вероятность нестабильности.Вот почему некоторые усилители имеют минимальную стабильность усиления. Если вы уменьшите коэффициент усиления ниже определенной точки, на инвертирующем выводе появится больше сдвинутого по фазе выходного напряжения, поэтому схема будет более подвержена колебаниям.

Стоит рассмотреть работу схемы на Рисунке 2 для различных коэффициентов усиления контура и фазовых сдвигов.

На низких частотах, когда усилитель имеет большое усиление контура, V DIFF невелик и имеет фазовый сдвиг –90 ° по сравнению с напряжением на инвертирующем входе (V ).В этой ситуации напряжение на инвертирующем входе набирает V DIFF , поэтому V DIFF можно игнорировать. Однако, если фазовый сдвиг V DIFF составляет –180 ° по отношению к V , и есть усиление в контуре, мы можем видеть, что любое напряжение на V DIFF усиливается при перемещении по контуру. и инвертированный, затем усиленный и инвертированный, поэтому цепь колеблется. Для поддержания колебаний в схеме должно быть только единичное усиление контура. Насколько близко V DIFF приближается к –180 °, когда схема имеет единичный коэффициент усиления контура, является мерой запаса по фазе схемы и говорит нам, насколько близка к точке нестабильности фаза схемы.Схема с фазовым сдвигом –120 ° имеет запас по фазе 60 °.

Аналогичным образом, если V DIFF имеет фазовый сдвиг -180 ° по отношению к V , но испытывает затухание при прохождении через контур, напряжение, возвращающееся к V , будет меньше, поэтому любые потенциальные колебания останавливаются из-за отсутствия усиления контура. Какое затухание V DIFF испытывает при прохождении через контур (когда фазовый сдвиг составляет –180 °), является мерой запаса по усилению схемы и говорит нам, насколько ниже единицы коэффициент усиления контура схемы, когда фаза сдвиг –180 °.Схема с затуханием в контуре 10 дБ, когда V DIFF составляет –180 °, имеет запас усиления 10 дБ.

Все вышеперечисленное может быть связано с теорией управления и блок-схемой на рисунке 1. Мы знаем, что коэффициент усиления замкнутой системы обратной связи равен

.

, где βA 0 — контурное усиление системы. Если βA 0 имеет фазовый сдвиг –180 ° и единичное усиление, знаменатель становится равным нулю на одной конкретной частоте, и цепь колеблется на этой частоте.Если βA 0 велико, но не имеет фазового сдвига -180 °, знаменатель не равен нулю и цепь не колеблется — у нас есть достаточный запас по фазе. Точно так же, если βA 0 меньше единицы, но имеет фазовый сдвиг -180 °, схема не колеблется — у нас есть достаточный запас по усилению.

Итак, теперь мы можем видеть, что мы связали усиление разомкнутого контура, усиление замкнутого контура, усиление контура, запас усиления и запас по фазе, а также объяснили это в области теории управления и теории схем.

Так как это относится к цепям питания? Большинство систем питания можно смоделировать как схему операционного усилителя. На рисунке 6 показан линейный регулятор LT1086. Мы видим, что в схеме есть два резистора обратной связи, которые обеспечивают часть выходного напряжения на выводе ADJ (который является инвертирующим входом внутреннего операционного усилителя). Неинвертирующий терминал привязан к внутреннему опорному напряжению.

Рисунок 6. Традиционный линейный регулятор (LT1086)

Как обсуждалось выше, точность усиления усилителя определяется контурным усилением усилителя: чем больше контурное усиление в усилителе, тем выше точность усиления.

Увеличение выходного напряжения LT1086 идентично увеличению коэффициента усиления с обратной связью операционного усилителя. На рисунке 7 показан эффект увеличения коэффициента усиления с обратной связью с 20 дБ до 80 дБ. Если усиление контура представлено разностью между кривой усиления разомкнутого контура и кривой усиления замкнутого контура, увеличение выходного напряжения LT1086 уменьшает усиление контура, снижая абсолютную точность выходного напряжения. Еще одним недостатком увеличения выходного напряжения является уменьшение частотной характеристики схемы (в данном случае от 100 кГц до 100 Гц), поэтому страдает переходная характеристика нагрузки.

Рисунок 7. Зависимость усиления напряжения от частоты

Семейство линейных регуляторов LT308x заменяет традиционную архитектуру LDO на ту, что показана на рисунке 8.

Рис. 8. Линейный регулятор LT3080 использует нетрадиционную архитектуру для повышения точности и переходных характеристик

LT3080 использует внутренний источник тока для создания напряжения на внешнем резисторе R SET . Затем это напряжение подается на буфер с единичным усилением для получения выходного напряжения.Это имеет ряд последствий.

Внутренний операционный усилитель работает с постоянным единичным коэффициентом усиления с обратной связью, с выходным напряжением, установленным значением резистора R SET на «входе» операционного усилителя.

Сравните LT3080, показанный на рисунке 7, с традиционной схемой операционного усилителя, показанной на рисунке 6. Выходное напряжение LT1086 на рисунке 6 изменяется путем изменения резисторов обратной связи (и, следовательно, коэффициента усиления с обратной связью) LT1086. Сравните это с LT3080, работающим с постоянным усилением замкнутого контура, где «входное» напряжение усилителя изменяется, задаваемое напряжением на R SET .Если коэффициент усиления замкнутого контура остается неизменным, коэффициент усиления контура остается неизменным, поэтому схема обеспечивает хорошую абсолютную точность даже при высоких выходных напряжениях. Между прочим, именно поэтому компоненты компенсации контура в преобразователе постоянного / постоянного тока всегда имеют последовательную емкость. Выход усилителя ошибки является источником тока, а последовательная емкость на постоянном токе имеет высокий импеданс, что обеспечивает высокий коэффициент усиления на постоянном токе в компенсационном контуре.

Еще одним следствием сохранения неизменного коэффициента усиления контура является то, что частотная характеристика остается неизменной и не приносится в жертву при высоких выходных напряжениях, поэтому компонент может быстро реагировать на переходные процессы нагрузки.

Еще одно преимущество, представляющее особый интерес в свете постоянно уменьшающегося напряжения питания, заключается в том, что части LT308x могут выдавать выходное напряжение до 0 В. Традиционные LDO-стабилизаторы не могут устанавливать выходное напряжение ниже внутреннего опорного напряжения, тогда как путем замыкания RSET на части LT308x выходное напряжение может быть установлено на уровне 0 В.

Семейство LDO LT308x, благодаря их постоянному высокому коэффициенту усиления контура, обеспечивает лучшую точность выходного напряжения и переходную характеристику, чем традиционные LDO.Их также можно использовать способами, недоступными для традиционных LDO, например, для установки выхода на 0 В или их параллельного включения для работы с более высоким током.

График Боде

График Боде — это график, обычно используемый в проектировании систем управления для определения стабильности системы управления. График Боде отображает частотную характеристику системы с помощью двух графиков — графика амплитуды Боде (выражает величину в децибелах) и графика фазы Боде (выражает фазовый сдвиг в градусах).

Графики Боде были впервые представлены в 1930-х годах Хендриком Уэйдом Боде, когда он работал в Bell Labs в США. Хотя графики Боде предлагают относительно простой метод расчета устойчивости системы, они не могут обрабатывать передаточные функции с особенностями правой полуплоскости (в отличие от критерия устойчивости Найквиста).

Запас по приросту и запас по фазе, показанные на графике Боде

Понимание полей усиления Запас по фазе и имеет решающее значение для понимания графиков Боде.Эти термины определены ниже.

Маржа прироста

Чем больше маржа прироста (GM), тем выше стабильность системы. Запас усиления относится к величине усиления, которую можно увеличивать или уменьшать, не делая систему нестабильной. Обычно выражается величиной в дБ.

Обычно мы можем определить запас усиления непосредственно с графика Боде (как показано на диаграмме выше). Это делается путем вычисления расстояния по вертикали между кривой амплитуды (на графике величины Боде) и осью x на частоте, где график фазы Боде = 180 °.Эта точка известна как частота перехода фазы .

Важно понимать, что Прибыль и Маржа прироста — не одно и то же . Фактически, маржа усиления является отрицательной величиной усиления (в децибелах, дБ). Это будет иметь смысл, если мы посмотрим на формулу маржи прироста.

Формула прибыли

Формула для маржи прибыли (GM) может быть выражена как:

Где G — прибыль. Это величина (в дБ), отсчитываемая от вертикальной оси графика амплитуды на частоте разделения фазы.

В нашем примере, показанном на графике выше, усиление ( G ) равно 20. Следовательно, используя нашу формулу для запаса усиления, запас усиления равен 0–20 дБ = -20 дБ (нестабильно).

Запас по фазе

Чем больше запас по фазе (PM), тем выше будет стабильность системы. Запас по фазе относится к количеству фазы, которое можно увеличивать или уменьшать, не делая систему нестабильной. Обычно это фаза в градусах.

Обычно мы можем считать запас по фазе непосредственно с графика Боде (как показано на диаграмме выше).Это делается путем вычисления расстояния по вертикали между фазовой кривой (на фазовом графике Боде) и осью x на частоте, где график амплитуды Боде = 0 дБ. Эта точка известна как частота кроссовера усиления .

Важно понимать, что фазовая задержка и фазовый запас — не одно и то же. Это будет иметь смысл, если мы посмотрим на формулу запаса по фазе.

Формула запаса по фазе

Формула для запаса по фазе (PM) может быть выражена как:

Где — фазовая задержка (число меньше 0).Это фаза, отсчитываемая от вертикальной оси фазового графика при частоте кроссовера усиления.

В нашем примере, показанном на графике выше, фазовая задержка составляет -189 °. Следовательно, используя нашу формулу для запаса по фазе, запас по фазе равен -189 ° — (-180 °) = -9 ° (нестабильный).

В качестве другого примера, если коэффициент усиления без обратной связи усилителя пересекает 0 дБ на частоте, где фазовая задержка составляет -120 °, то фазовая задержка составляет -120 °. Следовательно, запас по фазе этой системы обратной связи составляет -120 ° — (-180 °) = 60 ° (стабильный).

Стабильность графика Боде

Ниже приведен обобщенный список критериев, относящихся к построению графиков Боде (и расчету их стабильности):

  1. Маржа прироста: больше будет маржа прироста больше будет стабильность системы. Это относится к величине усиления, которую можно увеличивать или уменьшать, не делая систему нестабильной. Обычно выражается в дБ.
  2. Запас по фазе: чем выше запас по фазе , тем выше , тем выше стабильность системы.Это фаза, которую можно увеличивать или уменьшать, не делая систему нестабильной. Обычно это выражается в фазе.
  3. Частота кроссовера усиления: Относится к частоте, на которой кривая амплитуды пересекает ось нулевого дБ на графике Боде.
  4. Частота кроссовера фазы: Относится к частоте, на которой фазовая кривая срезает отрицательные значения оси 180o на этом графике.
  5. Угловая частота: частота, при которой две асимптоты срезают или встречаются друг с другом, известна как частота разрыва или частота среза.
  6. Резонансная частота: значение частоты, при которой модуль G (jω) имеет пиковое значение, называется резонансной частотой.
  7. Факторы: Передаточная функция каждого контура {т. Е. G (s) × H (s)} произведение различных факторов, таких как постоянный член K, интегральные множители (jω), множители первого порядка (1 + jωT) (± n), где n — целое число, множители второго порядка или квадратичные множители. .
  8. Наклон: существует наклон, соответствующий каждому фактору, и наклон для каждого фактора выражается в дБ на декаду.
  9. Угол: каждому коэффициенту соответствует угол, и угол для каждого фактора выражается в градусах.

Теперь есть некоторые результаты, которые следует запомнить, чтобы построить кривую Боде. Эти результаты записаны ниже:

  • Постоянный член K: Этот коэффициент имеет наклон ноль дБ на декаду. Этому постоянному члену не соответствует угловая частота. Фазовый угол, связанный с этим постоянным членом, также равен нулю.
  • Интегральный коэффициент 1 / (jω) n : Этот коэффициент имеет наклон -20 × n (где n — целое число) дБ на декаду.Этому интегральному коэффициенту не соответствует угловая частота. Фазовый угол, связанный с этим интегральным коэффициентом, составляет -90 × n. Здесь n тоже целое число.
  • Фактор первого порядка 1 / (1 + jωT): Этот коэффициент имеет наклон -20 дБ на декаду. Угловая частота, соответствующая этому фактору, составляет 1 / T рад в секунду. Фазовый угол, связанный с этим первым множителем, равен -tan — 1 (ωT).
  • Фактор первого порядка (1 + jωT): Этот коэффициент имеет наклон 20 дБ на декаду. Угловая частота, соответствующая этому фактору, составляет 1 / T рад в секунду.Фазовый угол, связанный с этим первым фактором, равен tan — 1 (ωT).
  • Второй порядок или квадратичный множитель: [{1 / (1+ (2ζ / ω)} × (jω) + {(1 / ω 2 )} × (jω) 2 )]: этот множитель имеет крутизна -40 дБ на декаду. Угловая частота, соответствующая этому фактору, равна n радиан в секунду. Фазовый угол, связанный с этим первым фактором, равен

Как нарисовать график Боде

Помня все вышеперечисленное, мы можем нарисовать график Боде для любого типа системы управления.Теперь давайте обсудим процедуру построения графика Боде:

  1. Подставим s = jω в передаточную функцию разомкнутого контура G (s) × H (s).
  2. Найдите соответствующие угловые частоты и сведите их в таблицу.
  3. Теперь нам требуется, чтобы один полулогарифмический график выбирал частотный диапазон, так что график должен начинаться с частоты, которая ниже самой низкой угловой частоты. Отметьте угловые частоты на оси x, отметьте уклоны слева от оси y, отметив нулевой наклон посередине, а на правой стороне отметьте угол фазы, взяв -180 o в середине.
  4. Рассчитайте коэффициент усиления и тип заказа системы.
  5. Теперь вычислите наклон, соответствующий каждому коэффициенту.

Для построения графика величин Боде :

  • Отметьте частоту излома на миллиметровой бумаге.
  • Составьте таблицу этих факторов, двигаясь сверху вниз в заданной последовательности.
    1. Постоянный член K.
    2. Интегральный коэффициент
    3. Фактор первого порядка
    4. Фактор первого порядка (1 + jωT).
    5. Второй порядок или квадратичный множитель:
  • Теперь нарисуйте линию с помощью соответствующего наклона данного множителя. Измените крутизну на каждой угловой частоте, добавив крутизну следующего коэффициента. Вы получите масштабный сюжет.
  • Рассчитайте запас усиления.

Для построения фазового графика Боде :

  1. Вычислите фазовую функцию, добавив все фазы факторов.
  2. Подставьте различные значения в указанную выше функцию, чтобы определить фазу в разных точках и построить кривую.Вы получите фазовую кривую.
  3. Рассчитайте запас по фазе.

Критерий стабильности Боде

Условия стабильности приведены ниже:

  1. Для стабильной системы: оба поля должны быть положительными или запас по фазе должен быть больше, чем запас по усилению.
  2. Для предельно стабильной системы: оба поля должны быть равны нулю или запас по фазе должен быть равен запасу по усилению.
  3. Для нестабильной системы: если любой из них отрицательный или запас по фазе должен быть меньше, чем запас по усилению.

Преимущества графика Боде

  1. Он основан на асимптотическом приближении, который обеспечивает простой метод построения кривой логарифмической величины.
  2. Умножение различной величины в передаточной функции можно рассматривать как сложение, а деление можно рассматривать как вычитание, поскольку мы используем логарифмическую шкалу.
  3. Только с помощью этого графика мы можем напрямую прокомментировать стабильность системы без каких-либо расчетов.
  4. Графики Боде обеспечивают относительную стабильность с точки зрения запаса по усилению и запаса по фазе .
  5. Он также охватывает диапазон от низких до высоких частот.

% PDF-1.7 % 716 0 объект > эндобдж xref 716 120 0000000016 00000 н. 0000003420 00000 н. 0000003655 00000 н. 0000003691 00000 н. 0000003758 00000 п. 0000004237 00000 п. 0000004358 00000 п. 0000004516 00000 н. 0000004637 00000 н. 0000004758 00000 п. 0000004917 00000 н. 0000005037 00000 н. 0000005159 00000 н. 0000005281 00000 п. 0000005403 00000 п. 0000005525 00000 н. 0000005647 00000 н. 0000005769 00000 н. 0000005889 00000 н. 0000006009 00000 п. 0000006131 00000 п. 0000006253 00000 н. 0000006373 00000 п. 0000006493 00000 н. 0000006616 00000 н. 0000006739 00000 н. 0000006860 00000 н. 0000006981 00000 п. 0000007100 00000 н. 0000007220 00000 н. 0000007341 00000 п. 0000007460 00000 н. 0000007583 00000 н. 0000007706 00000 н. 0000007829 00000 н. 0000007952 00000 н. 0000008075 00000 н. 0000008196 00000 н. 0000008314 00000 н. 0000008435 00000 н. 0000008493 00000 п. 0000008581 00000 п. 0000008663 00000 н. 0000008697 00000 п. 0000016352 00000 п. 0000016908 00000 п. 0000017290 00000 п. 0000017713 00000 п. 0000018772 00000 п. 0000019304 00000 п. 0000019587 00000 п. 0000019937 00000 п. 0000020047 00000 н. 0000028034 00000 п. 0000028073 00000 п. 0000028151 00000 п. 0000029449 00000 п. 0000036155 00000 п. 0000036603 00000 п. 0000036965 00000 п. 0000037260 00000 п. 0000037850 00000 п. 0000039613 00000 п. 0000041141 00000 п. 0000041388 00000 п. 0000041723 00000 п. 0000041971 00000 п. 0000042067 00000 п. 0000043768 00000 п. 0000043831 00000 п. 0000044010 00000 п. 0000048436 00000 п. 0000048793 00000 п. 0000049167 00000 п. 0000049378 00000 п. 0000049854 00000 п. 0000050509 00000 п. 0000050746 00000 п. 0000051034 00000 п. 0000052716 00000 п. 0000054554 00000 п. 0000056357 00000 п. 0000058073 00000 п. 0000058203 00000 п. 0000059815 00000 п. 0000061847 00000 п. 0000078063 00000 п. 0000124196 00000 н. 0000158942 00000 н. 0000159466 00000 н. 0000159603 00000 н. 0000160147 00000 н. 0000160269 00000 н. 0000200636 00000 н. 0000200675 00000 н. 0000200753 00000 п. 0000200832 00000 н. 0000200905 00000 н. 0000200971 00000 п. 0000201039 00000 н. 0000201107 00000 н. 0000201173 00000 н. 0000201239 00000 н. 0000201300 00000 н. 0000201378 00000 н. 0000201436 00000 н. 0000201592 00000 н. 0000201681 00000 н. 0000201766 00000 н. 0000201866 00000 н. 0000201966 00000 н. 0000202078 00000 н. 0000202213 00000 н. 0000202329 00000 н. 0000202449 00000 н. 0000202638 00000 н. 0000202784 00000 н. 0000202927 00000 н. 0000203053 00000 н. 0000002696 00000 н. трейлер ] >> startxref 0 %% EOF 835 0 объект > поток x ڄ SMLAfi4e * He5EmZ DAaJUJ4 = ᢆ DH ՟ ƃovKAovfgoP `@ 7DÀ:

˶G-ȑΦM ٹ.* 5 {c) w 2 / b

Оценка запаса по фазе с использованием скорости закрытия

Как инженер может измерить стабильность в аналоговой цепи отрицательной обратной связи? Для цепей с минимальной фазой вы можете рассмотреть возможность использования скорости замыкания.

В повседневном аналоговом проектировании инженерам часто требуется быстро оценить степень стабильности (или ее отсутствия) цепи с отрицательной обратной связью. Удобный инструмент, который применим к цепям с минимальной фазой (так называемым, потому что все их полюса и нули находятся в левой половине комплексной плоскости), — это скорость замыкания (ROC).

Чтобы подготовить фон, рассмотрим знакомую блок-схему на Рисунке 1a :

(а) (б)
Рисунок 1. (a) Блок-схема цепи отрицательной обратной связи и (b) визуализация коэффициента усиления контура T.

Эта схема состоит из усилителя ошибки с коэффициентом усиления a ( jf ) , цепи обратной связи с передаточной функцией β ( jf ) и блока суммирования, генерирующего ошибку сигнал S e ,

Уравнение (1)

Сбор и решение для S e дает

Уравнение (2)

, где T = aβ , называется усилением контура , потому что любой сигнал, входящий в усилитель и идущий по контуру по часовой стрелке, сначала усиливается на a , а затем на β , с общим усилением .Очевидно, что больший T приводит к меньшему S e для данного входа S и .

Переписав как T = a / (1 / β) , взяв логарифмы и умножив на 20 для преобразования в децибелы, получим

Уравнение (3)

, что указывает на то, что мы можем визуализировать график децибел | T | как разность между графиками децибел | a | и | 1 / β |.Это изображено на рисунке 1b для случая операционного усилителя с постоянным произведением коэффициента усиления и ширины полосы пропускания и частотно-независимого β .

Частота f x , на которой пересекаются две кривые, метко названная частотой кроссовера , играет важную роль в стабильности схемы (или ее отсутствии). На этой частоте | T ( jf x ) | дБ = 0, или | T ( jf x ) | = 1.Если фаза ph [ T ( jf x ) ] когда-либо достигнет –180 °, тогда у нас будет T ( jf x ) = –1, что, заменив в уравнение. (2) указывает на то, что S e взорвутся и приведут к колебаниям. (Обратите внимание, что даже если мы установим S i = 0 , собственный шум схемы вызовет накопление S e .) Чтобы предотвратить колебания, мы должны убедиться, что ph [ T ( jf x ) ] находится на расстоянии от устрашающего значения –180 ° на ° на достаточную величину, метко названную запасом по фазе ɸ м ,

ɸ м = 180 ° + ph [T (jf x )]
Уравнение (4)

Запасы фаз, представляющие практический интерес, составляют ɸ м = 90 °, ɸ м = 65.5 ° (что отмечает начало пика в ответе на переменный ток), ɸ м = 76,3 ° (что отмечает начало звона в переходной характеристике) и ɸ м = 45 ° (что, как мы увидим, упрощает геометрическую визуализацию, хотя это приводит к пиковому значению 2,4 дБ и «звену» с выбросом 23%).

В ситуации, изображенной на Рисунке 1b , 1 / β является действительным числом, поэтому его фаза равна 0 °, и мы имеем ph [ T ( jf x ) ] = ph [ a ( jf x ) ] ≈ –90 °, в связи с тем, что f x >> f p .Следовательно, ɸ м ≈ 180 ° + (–90 °) = 90 °. Однако все не всегда так радужно, поэтому мы обратимся к более общим случаям на рисунке 2, чтобы оценить запас по фазе для различных случаев. Для этого мы будем использовать скорость закрытия (ROC).

Какова скорость закрытия?

Скорость замыкания или ROC определяется как разница между наклонами ⎪ 1 / β ⎪ и a ⎪ кривых справа на частоте кроссовера:

Уравнение (5)

Как только мы знаем ROC, мы оцениваем запас по фазе как

Уравнение (6)

На рисунке 2 мы предполагаем, что усилитель ошибки имеет более общий профиль усиления, чем тип произведения постоянного коэффициента усиления и ширины полосы, показанный на рисунке 1a .(Для упрощения рисования мы используем прямые сегменты, хотя мы знаем, что на практике острые углы — это закругленные углы , как | a | кривая на рисунке 1b .)

(а)

б)
Рисунок 2. (a) Часто встречающиеся ситуации с запасом по фазе с (a) частотно-независимым и (b) частотно-зависимым коэффициентом обратной связи β (jf).

Теперь, после первой полюсной частоты f p1 , ⎪ a ⎪ спад со скоростью –20 дБ / дек, а после второй полюсной частоты f p2 он спадет со скоростью –40 дБ / дек.Прямо в точке f p2 наклон должен быть средним из двух наклонов, или –30 дБ / дек. Аналогичным образом, предыдущие f p3 , ⎪ a ⎪ скатываются со скоростью –60 дБ / дек, а наклон прямо на f p3 должен быть –50 дБ / дек.

  • На рисунке 2a кривая ⎪ 1 / β 1 ⎪ имеет наклон 0 и пересекает кривую ⎪ в области, где ⎪ ​​ a ⎪ скатывается со скоростью –20. дБ / дек, поэтому уравнение.(5) дает ROC = 0 — (- 20) = 20 дБ / дек, и уравнение. (6) дает ɸ m1 ≈ 180 — 4,5 × 20 = 90 °.
  • Кривая 1 / β 2 ⎪ имеет наклон 0 и пересекает кривую a ⎪ при f p2 , где кривая a ⎪ имеет наклон –30 дБ. / dec, поэтому уравнения. (5) и (6) дают ROC = 0 — (- 30) = 30 дБ / дек, а ɸ м2 ≈ 180 — 4,5 × 30 = 45 °.
  • Кривая 1 / β 3 ⎪ имеет наклон 0 и пересекает кривую ⎪ в области, где ⎪ ​​ a имеет наклон –40 дБ / дек, поэтому уравнения.(5) и (6) дают ROC = 0 — (- 40) = 40 дБ / дек, а ɸ м3 ≈ 180 — 4,5 × 40 = 0 °.
  • На рисунке 2b наклон кривой ⎪ 1 / β 4 ⎪ изменяется от 0 дБ / дек ниже его частоты кроссовера до +20 дБ / дек выше его частоты кроссовера, поэтому прямо на кроссовере наклон должен быть +10 дБ / дек. Тогда уравнения. (5) и (6) дают ROC = +10 — (- 20) = 30 дБ / дек, а ɸ м4 ≈ 180 — 4,5 × 30 = 45 °.
  • Наклон кривой ⎪ 1 / β 5 ⎪ на частоте кроссовера составляет +20 дБ / дек, поэтому уравнения(5) и (6) дают ROC = +20 — (- 20) = 40 дБ / дек, а ɸ m5 ≈ 180 — 4,5 × 40 = 0 °.
  • Наклон кривой ⎪ 1 / β 6 ⎪ изменяется от +20 дБ / дек, непосредственно ниже его частоты кроссовера, до 0 дБ / дек выше его частоты кроссовера, поэтому прямо на кроссовере его наклон должен составлять +10 дБ. / дек. Тогда уравнения. (5) и (6) дают ROC = +10 — (- 20) = 30 дБ / дек, а ɸ m6 ≈ 180 — 4,5 × 30 = 45 °.
  • Наклон кривой ⎪ 1 / β 7 ⎪ изменяется от 0 ниже его частоты кроссовера до –20 дБ / дек выше его частоты кроссовера, поэтому прямо на кроссовере его наклон должен составлять +10 дБ / дек.Более того, наклон кривой ⎪ составляет –40 дБ / дек, поэтому уравнения (5) и (6) дают ROC = –10 — (- 40) = 30 дБ / дек, и ɸ m7 ≈ 180 — 4,5 × 30 = 45 °.
  • Наклон кривой 1 / β 8 ⎪ на ее частоте кроссовера составляет –20 дБ / дек, а наклон кривой a ⎪ составляет –40 дБ / дек, поэтому уравнения. (5) и (6) дают ROC = –20 — (- 40) = 20 дБ / дек, а ɸ m8 ≈ 180 — 4,5 × 20 = 90 °. Интересно, что даже несмотря на то, что кроссовер происходит в области, где a ⎪ сползает с крутой скоростью –40 дБ / дек, как это происходит с кривой ⎪ 1 / β 3 ⎪, –20 дБ Наклон кривой 1 / β 8 резко улучшает запас по фазе по сравнению со случаем 1 / β 3 ⎪.

Стоит рассматривать ROC как угол между кривыми ⎪ 1 / β ⎪ и ⎪ a в точке их пересечения. По мере того, как этот угол становится уже, схема становится более стабильной. И наоборот, чем шире этот угол, тем ближе цепь к нестабильности.

Оценка запаса по фазе, обеспечиваемая методом ROC, может быть довольно хорошей, если все полюсные и нулевые частоты находятся на расстоянии , по крайней мере, на декаду от частоты кроссовера. Даже если это не так, метод ROC по-прежнему является разумной отправной точкой.Накопив достаточный опыт, разработчик сможет улучшить оценку запаса по фазе.

Реальный пример скорости закрытия

Применим изложенные выше соображения к реальному примеру. Предположим, мы хотим разработать высокоточный усилитель с ( a ) усилением по постоянному току с обратной связью 10 3 В / В (или 60 дБ) и ( b ) с усилением по постоянному току T 0 не менее 10 6 . Все, что у нас есть под рукой, — это операционные усилители с коэффициентом усиления по постоянному току 10 5 В / В (или 100 дБ) и произведением постоянного усиления на ширину полосы 1 МГц (т.е., частота перехода f t = 1 МГц).

После построения кривых ⎪ a ⎪ и ⎪ 1 / β ⎪, как на рис. 3b , мы замечаем, что с одиночным операционным усилителем у нас будет стабильная схема (его ситуация аналогична ⎪ 1 / β1 ⎪ случай на рисунке 2a ), но с T 0 = 100-60 = 40 дБ, или 10 2 , что недостаточно. Чтобы поднять T 0 , давайте используем два операционных усилителя в каскаде, чтобы получить общее усиление a × a = 2 .Теперь мы удовлетворяем требованию T 0 ( T 0 = 200 — 60 = 140 дБ, или 10 7 > 10 6 ), но наклон | a 2 | при частоте кроссовера составляет –40 дБ / дек, что указывает на то, что мы находимся в ситуации ⎪ 1 / β 3 ⎪, показанной на Рисунке 2a , с ɸ m ≈ 0 °. Нам нужно стабилизировать схему соответствующим образом

(а) (б)
Рисунок 3. (a) Композитный усилитель, предназначенный для усиления по постоянному току с обратной связью 60 дБ с коэффициентом усиления по постоянному току T 0 ≥ 10 6 . (b) Диаграмма Боде, показывающая, что композит имеет ɸ м ≈ 0 ° и, следовательно, требует частотной компенсации. Нажмите, чтобы увеличить.

Рисунок 4. Схема PSpice для моделирования усилителя, показанного на Рисунке 3a.

, изменяя свою кривую ⎪ 1 / β ⎪ вблизи частоты кроссовера f x , которая в нашем примере может рассматриваться как среднее геометрическое для 1 кГц и 1 МГц, или f x = (10 3 × 10 6 ) 1/2 = 31.6 кГц. Случай ⎪ 1 / β 7 ⎪ на Рисунке 2b предполагает, что для ɸ м ≈ 45 ° нам нужно согнуть кривую вниз , установив точку излома прямо на f x , задача, которую мы решаем, размещая конденсатор C f параллельно с R 2 и налагая условие

Уравнение (7)

Подключение f x = 31.6 кГц и R 2 = 99,9 кОм дает C f = 50,36 пФ. Запустив схему PSpice на Рисунке 4, мы получим следы Рисунка 5a , где мы измеряем f x ≈ 40,2 кГц и ɸ м ≈ 51,6 °. Отклик на переменный ток A = V o / V i демонстрирует некоторый пик, а переходный отклик (не показан, но легко проверяется) демонстрирует некоторый звон.

(а) (б)
Рисунок 5. Графики | a 2 |, ⎪1 / β⎪ и коэффициента усиления | A | для (а) C f = 50.36 пФ и (б) C f = 283.3 пФ.

Чтобы избежать пиков и звона, давайте установим ситуацию типа случая ⎪ 1 / β 8 ⎪ на Рисунке 2b . Мы достигаем этого путем смещения нашей кривой ⎪ 1 / β влево на до тех пор, пока она не пересечет | a 2 | кривая в точке, где | a 2 | падает до 30 дБ, или до 31.6. Это происходит при новой частоте кроссовера f x = (31,6 × 10 3 × 10 6 ) 1/2 = 178 кГц. Чтобы найти новую точку излома f 0 кривой ⎪ 1 / β ⎪, мы используем постоянство произведения коэффициента усиления и ширины полосы на наклонной части кривой ⎪ 1 / β ⎪ и наложим 31,6 × 178 × 10 3 = 10 3 × f 0 . Это дает f 0 = 5.623 кГц, поэтому теперь нам нужно C f = 1 / (2π × 99,9 × 10 3 × 5,623 × 10 3 ) = 283,3 пФ.

Повторно прогоняя схему PSpice на Рисунке 4, но с этим новым значением C f , мы получаем графики на Рисунке 5b , где мы измеряем f x ≈ 177,8 кГц и ɸ м ≈ 86,4 °. Мы избавились от пиков и звона, но ценой более низкой полосы пропускания с обратной связью около 5,8 кГц.

Заключение

В этой статье представлен графический метод частотной области, который обеспечивает простой способ оценки стабильности системы отрицательной обратной связи.Изучая пересечение кривых, представляющих коэффициент усиления разомкнутого контура и обратную величину коэффициента β обратной связи, мы можем определить скорость замыкания, а по скорости замыкания мы можем вычислить приблизительный запас по фазе.

При просмотре этого материала обратите особое внимание на рис. 2, потому что большинство схем, встречающихся на практике, соответствуют одному из случаев, изображенных на рисунке, по крайней мере, в непосредственной близости от частоты кроссовера.

Двухфазное наведение без усилия-промаха / нулевой скорости для посадки на Марс

  • [1] Браун Р.Д. и Мэннинг Р. М., «Проблемы входа, спуска и посадки при исследовании Марса», журнал , журнал космических аппаратов и ракет, , том. 44, № 2, 2007, с. 310–323. https://doi.org/10.2514/1.25116

  • [2] Topcu U., Casoliva J. и Mease KD, «Спуск на минимальном топливе для точной посадки на Марс», Journal of Spacecraft and Rockets , Vol. . 44, № 2, 2007, с. 324–331. https://doi.org/10.2514/1.25023

  • [3] Клювер К. А., «Характеристики наведения при входе на Марс для точной посадки», Journal of Guidance, Control, and Dynamics , Vol.31, № 6, 2008, с. 1537–1544. https://doi.org/10.2514/1.36950

  • [4] Ачикмеше Б. и Плоен С.Р., «Подход к системе конвексного программирования к управляемому спуску для посадки на Марс», Journal of Guidance, Control, and Dynamics , Vol. . 30, № 5, 2007, с. 1353–1366. https://doi.org/10.2514/1.27553

  • [5] Блэкмор Л., Ачикмеше Б. и Шарф Д.П., «Руководство по минимальной ошибке посадки с автоматическим спуском для посадки на Марс с использованием выпуклой оптимизации», Journal of Руководство, контроль и динамика , Vol.2010. Т. 33, № 4. С. 1161–1171. https://doi.org/10.2514/1.47202

  • [6] Санчес-Санчес К. и Иззо Д., «Оптимальное управление в реальном времени через глубокие нейронные сети: исследование проблем посадки», Journal of Guidance, Управление и динамика , Vol. 41, № 5, 2018, с. 1122–1135. https://doi.org/10.2514/1. , Vol.76, май 2018 г., стр. 37–48. https://doi.org/10.1016/j.ast.2018.02.009

  • [8] Экзархос И., Теодору Э.А. и Циотрас П., «Оптимальный профиль тяги для мягкой посадки планет при стохастических возмущениях», журнал Journal управления, контроля и динамики , Vol. 42, No. 1, 2019, стр. 209–216. https://doi.org/10.2514/1.G003598

  • [9] Шарф Д.П., Ачикмеше Б., Дуэри Д., Бенито Дж. и Казолива Дж., «Внедрение и экспериментальная демонстрация бортового наведения с двигателем на спуск , » Journal of Guidance, Control, and Dynamics , Vol.40, № 2, 2017, с. 213–229. https://doi.org/10.2514/1.G000399

  • [10] Дуэри Д., Ачикмеше Б., Шарф Д.П. и Харрис М.В., «Индивидуальные методы определения внутренней точки в реальном времени для бортового наведения на спуск», Journal of Guidance, Control, and Dynamics , Vol. 40, № 2, 2017, с. 197–212. https://doi.org/10.2514/1. , и Control Conference , AIAA Paper 2018-0616, 2018.https://doi.org/10.2514/6.2018-0616

  • [12] Лу П., «Направление спуска с оптимальным расходом топлива», журнал Journal of Guidance, Control, and Dynamics , Vol. 41, No. 4, 2018, с. 813–826. https://doi.org/10.2514/1.G003243

  • [13] Брайсон А. Э. и Хо Ю. К., Applied Optimal Control , Wiley, New York, 1969, стр. 154–155.

  • [14] Баттин Р. Х., Введение в математику и методы астродинамики , Образовательная серия AIAA, AIAA, Нью-Йорк, 1987, стр.558–561.

  • [15] Д’Суза С.Н., «Оптимальный закон наведения для посадки на планету», Конференция AIAA по наведению, навигации и управлению , документ AIAA 1997-3709, 1997. https://doi.org/10.2514 /6.1997-3709

  • [16] Эбрахими Б., Бахрами М. и Рошанян Дж. «Оптимальное наведение в скользящем режиме с ограничением конечной скорости для движущихся маневров с фиксированным интервалом», Acta Astronautica , Vol. 62, май – июнь 2008 г., стр. 556–562. https: // doi.org / 10.1016 / j.actaastro.2008.02.002

  • [17] Фурфаро Р., Селник С., Кэпплс М.Л. и Крибб М.В., «Алгоритмы нелинейного скользящего наведения для точной посадки на Луну», AAS / AIAA Space Flight Mechanics Встреча , American Astronautical Soc. Бумага 2011-167, Сан-Диего, Калифорния, 2011.

  • [18] Чжан Б., Тан С. и Пан Б., «Наведение на снижение с несколькими ограничениями и субоптимальным приводом для точного мягкого приземления на Луну», Aerospace Science and Технология , Vol.48, январь 2016 г., стр. 203–213. https://doi.org/10.1016/j.ast.2015.11.018

  • [19] Гуо Ю., Хокинс М. и Ви Б., «Применение обобщенного метода нулевого усилия-промаха / нулевого усилия- Алгоритм управления с обратной связью по скорости », Journal of Guidance, Control, and Dynamics , Vol. 36, № 3, 2013, с. 810–820. https://doi.org/10.2514/1.58099

  • [20] Фурфаро Р., Ланаве Г., Топпуто Ф., Ловера М. и Линарес Р., «Руководство по обратной связи ZEM / ZEV на основе путевых точек: приложения для Межпланетный переход с малой тягой и подъем на орбиту », Конференция специалистов по астродинамике AAS / AIAA , American Astronautical Soc.Paper 2017-740, San Diego, CA, 2017.

  • [21] Ван П., Го Й. и Ви Б., «Сравнение характеристик орбитального сближения с дифференциальными геометрическими алгоритмами и алгоритмами управления с обратной связью ZEM / ZEV», Astrodynamics , т. 3, № 1, 2019, с. 79–92. https://doi.org/10.1007/s42064-018-0037-6

  • [22] Ан Дж., Ван П., Го Й. и Ви Б., «Определение оптимального конечного времени для ZEM / Закон обратной связи ZEV с обобщенным показателем эффективности », Astrodynamics , Vol.3, № 2, 2019, с. 127–136. https://doi.org/10.1007/s42064-019-0039-x

  • [23] Гуо Й., Хокинс М. и Ви Б., «Оптимизированные для путевых точек нулевые усилия-промахи / нулевые усилия- Руководство по обратной связи по скорости при посадке на Марс », Journal of Guidance, Control, and Dynamics , Vol. 36, № 3, 2013, с. 799–809. https://doi.org/10.2514/1.58098

  • [24] Чжоу Л. и Ся Й., «Улучшенное руководство по обратной связи ZEM / ZEV для фазы спуска с двигателем на Марсе», Advances in Space Research , Vol.54, № 11, 2014, с. 2446–2455. https://doi.org/10.1016/j.asr.2014.08.011

  • [25] Чжан Ю., Го Ю., Ма Г. и Цзэн Т., «Оптимальное руководство по предотвращению столкновений ZEM / ZEV для Фаза спуска с двигателем при посадке на Марс », Успехи в космических исследованиях, , Vol. 2017. 59, №6. С. 1514–1525. https://doi.org/10.1016/j.asr.2016.12.040

  • [26] Виббен Д.Р. и Фурфаро Р., «Оптимальный алгоритм наведения скольжения для фазы спуска с марсианским двигателем», Advances in Space Research , Vol.57, №4, 2016, с. 948–961. https://doi.org/10.1016/j.asr.2015.12.006

  • [27] Цуй П., Цинь Т., Чжу С., Лю Ю., Сюй Р. и Ю З., «Траектория Руководство по кривизне для посадки на Марс в опасной местности », Automatica , Vol. 93, июль 2018 г., стр. 161–171. https://doi.org/10.1016/j.automatica.2018.03.049

  • [28] Чжан Ю., Го Ю., Ма Г. и Ви Б., «Точная посадка на Марс с фиксированным временем с использованием двух скользящих -Поверхностное автономное наведение », Acta Astronautica , Vol.159, июнь 2019 г., стр. 547–563. https://doi.org/10.1016/j.actaastro.2019.01.046

  • [29] Лу П., «Дополненное наведение на спуск на базе Аполлона», Journal of Guidance, Control, and Dynamics , Vol. 42, № 3, 2019, с. 447–457. https://doi.org/10.2514/1. 43, № 3, 2020, с. 398–409. https://doi.org/10.2514 / 1.G004556

  • [31] Лин К. Ф. и Цай Л. Л., «Аналитическое решение оптимального управления траекторией», Journal of Guidance , Vol. 10, № 1, 1987, стр. 61–66. https://doi.org/10.2514/3.20181

  • [32] Лин К. Ф., Modern Navigation Guidance and Control Processing , Prentice-Hall, Upper Saddle River, NJ, 1991, стр. 562–583.

  • [33] Серакос Д. и Лин К. Ф., «Линеаризованное управление каппа», Journal of Guidance, Control, and Dynamics , Vol.18, № 5, 1995, стр. 975–980. https://doi.org/10.2514/3.21493

  • [34] Янушевский Р. Т., Modern Missile Guidance , CRC Press, Бока-Ратон, Флорида, 2008 г., стр. 133–144.

  • [35] Пепи Р. и Херисс Б., «Косвенный метод оптимального наведения планера», Труды 19-го Всемирного конгресса МФБ , том. 2014. 47, № 3. С. 5097–5102. https://doi.org/10.3182/20140824-6-za-1003.01261 ​​

  • [36] Фурфаро Р., Скорсольо А., Линарес Р. и Массари М., «Адаптивное обобщенное руководство по обратной связи ZEM-ZEV для посадки на планету с использованием подхода глубокого обучения с подкреплением», Acta Astronautica , Vol. 171, июнь 2020 г., стр. 156–171. https://doi.org/10.1016/j.actaastro.2020.02.051

  • Дом

    Qorvo® создаст современный центр упаковки полупроводников

    Qorvo® был выбран правительством США для создания центра по производству и созданию прототипов высокотехнологичной (SOTA) гетерогенной интегрированной упаковки (SHIP) RF.Программа SHIP обеспечит доступность опыта и лидерства в области упаковки микроэлектроники как для оборонных подрядчиков США, так и для коммерческих клиентов, которым требуется проектирование, проверка, сборка, тестирование и производство радиочастотных компонентов следующего поколения.

    Эксклюзивное соглашение о других сделках с судном (OTA) на сумму до 75 миллионов долларов было присуждено компании Qorvo Центром боевых действий ВМС (NSWC), Подразделение кранов. Эта программа финансируется Программой доверенной и гарантированной микроэлектроники (T&AM) Управления заместителя министра обороны по исследованиям и разработкам (OUSD R&E) и администрируется Соглашением о других транзакциях (OTA) Advanced Resilient Trusted System (S²MARTS) для стратегических и спектральных миссий. ), управляемый National Security Technology Accelerator (NSTXL).

    В рамках программы SHIP Qorvo разработает и предоставит высочайший уровень интеграции разнородной упаковки. Это необходимо для удовлетворения требований к размеру, весу, мощности и стоимости (SWAP-C) для радарных систем следующего поколения с фазированной антенной решеткой, беспилотных транспортных средств, платформ радиоэлектронной борьбы и спутниковой связи.

    Электронная книга: Учебник для дизайнеров по радиолокационным системам

    В сочетании с достижениями в области фазированных антенных решеток и интеграционных технологий, радары выходят за пределы военных / аэрокосмических рынков для решения множества коммерческих приложений.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *