Переход с алюминиевого провода на медный: Соединение проводов СИП между собой и с медным проводом

Содержание

Соединение проводов СИП между собой и с медным проводом

Провод СИП в последние годы стал очень распространенным материалом при монтажных работах по электроснабжению. Ранее вместо него использовались либо изолированные и не изолированные провода, либо кабель. За долгие годы эксплуатации этих проводников большинство из нас уже сталкивались с проблемой соединения их между собой. На этот счет написано не мало статей и инструкций.

А вот вопрос как соединять провод СИП, может оказаться не до конца понятен для рядового пользователя. Здесь также есть свои особенности и правила, нарушение которых может привести не только к элементарному исчезновению контакта, но и более тяжелым последствиям.

Рассмотрим две основных проблемы соединения самонесущих изолированных проводов:

  • соединение провода СИП между собой
  • соединение СИП с медным кабелем

Как соединить провода СИП между собой

Если вам необходимо соединить СИП с СИПом в первую очередь выясните его марку.

Например СИП 4 в отличие от других типов самонесущих проводов категорически запрещено соединять между собой в пролетах.

Делается это только на какой-либо опоре, когда на жилы не оказывается усилия тяжения. Некоторые однако полагают, что если выполнить соединения гильзами с обжатием прессом в 12тн, то он спокойно все выдержит в течении всего срока службы.

Безусловно, некоторое время это соединение проработает, но вследствие постоянных вибраций, ветровых нагрузок, плюс тяжения в разные стороны, в один прекрасный день все закончится обыкновенным обрывом.

Поэтому соединять провода СИП-4 между собой можно только между двух анкерных зажимов.

Если у вас СИП-1 или СИП-2 их между собой можно соединить в пролетах спецзажимами MJPT или ГСИ-Ф.

 

Причем эти зажимы используйте для фазных проводников. Несущий изолированный или не изолированный провод в СИПе желательно оставлять цельным, либо соединяйте его с помощью другой гильзы в промежутке между анкерных креплений.

В некоторых роликах демонстрируется соединение нулевого несущего провода гильзой в середине пролета. В правилах ПУЭ п.2.4.21 это не запрещено. Главное обеспечить требуемую несущую способность провода.

Для этого берется гильза увеличенной длины, под большее число опрессовок (длиной 170мм вместо 100мм). С аббревиатурой «Н» или «N» — нулевая. 

Но просто логически подумайте, что будет с напряжением в розетках, когда пропадет нулевой контакт при очередном ветре вот в таком соединении? А будет вместо напряжения 220В все 380! И элементарный обрыв провода в гильзе, покажется наименьшим злом в данной ситуации.

Как соединять гильзами СИП

Подбираете требуемую гильзу согласно сечению СИП. На верхней части гильзы указывается под провод какого сечения она предназначена. Рядом пишется номер матрицы под опрессовку (E173 — это диаметр матрицы 17,3мм) Также сечение можно подобрать по цвету герметичной гильзы. Каждому сечению соответствует своя расцветка.

  1. Жилы СИП разных фаз нужно обрезать «лесенкой». Чтобы одни гильзы после опрессовки не были напротив других, и не соприкасались между собой.
  2. Снимаете изоляцию с жилы СИП на необходимую глубину
  3. Вставляете провод внутрь, пока он не упрется в перегородку расположенную посредине. Неизолированная часть провода должна полностью скрыться внутри.
  4. Используя гидравлический пресс обжимаете всю конструкцию прямо через изоляцию гильзы. Строго соблюдаете последовательность — от середины в конец. Бывает, что некачественные гильзы с жестким пластиком в этот момент могут лопаться, также это происходит если не правильно подобрана матрица пресса. 
  5. Таким образом обжимаете все фазные жилы СИП. Контактная смазка внутри гильз при этом может выступить наружу. Уберите ее чистой ветошью.

Имеются гильзы предназначенные для соединения проводов СИП разных сечений, например СИП 16 и СИП 25.

Качественно обжатая изолированная гильза способна выдержать испытательное напряжение в 6кВ даже при погружении в воду.

Важное замечание: если вы соединяете СИП магистральной линии, то единственным правильным решением будет использование именно соединительных гильз. Нельзя соединять магистральный СИП через прокалывающие зажимы.

Они никогда не обеспечат того уровня переходного сопротивления на контактах, как гильзы после обжатия.

А что делать, если у вас нет изолированных гильз и достать их проблематично? В этом случае правила допускают применение обыкновенных алюминиевых гильз без изоляции. Только после обжатия обязательно нужно их заизолировать термоусадочной трубкой.

Трубку надо подбирать не абы какую, а среднестенную с клеевым составом. Чтобы после усадки клей выступил наружу и надежно загерметизировал соединение. 

Единственное что можно соединять через плашечный зажим в петлях анкерных опор при монтаже магистрального СИП — это неизолированный несущий провод, например в СИП-1. Все остальное только через гильзы.

Подключение СИП через прокалывающие зажимы

Когда речь идет о подключении отпаечного СИП к головному, то здесь уже выбор должен быть в пользу прокалывающих зажимов.

Первый ориентир для выбора таких зажимов — сечение основного СИП и отпайки. Когда отпайка выполнена СИП малого сечения (16мм2), целесообразнее использовать зажим с меньшим расчетным диаметром под прокалывающие контакты. Например предназначенным для ответвлений максимум до 50мм2, нежели до 95мм2.

Затем подбирается марка и производитель. На что здесь нужно обратить внимание? Возможен такой вариант, что для подключения вашего СИП к головному, нельзя будет отключить электроэнергию. Например от него питается больница, котельная или другие ответственные объекты.

В этом случае выбирайте изолированные прокалывающие зажимы, которыми можно работать даже под напряжением. Вот наиболее качественные марки таких зажимов:

  • фирма ENSTO — SLIP 12.1 и SLIP 22.1
  • фирма NILED — P616R, Р645, Р70

Последовательность монтажа

При затяжке срывной гайки должно оказываться такое усилие, чтобы зубцы зажима:

  • не повредили основную жилу СИП
  • прокололи, но не порезали изоляцию
  • сохранили несущую способность жилы на уровне 80% от первоначальной

Изделия Ensto благодаря пирамидальной форме зубцов и их расположению в шахматном порядке лучше многих других справляются с этим.

Можно посмотреть испытания СИП на разрыв, после того как его жилы прокололи зажимами разных марок.

В конце подключенный отпаечный СИП загибается к основному и подтягивается к нему стяжкой. Делается это для того, чтобы при ветре контакт не подвергался механическим воздействиям и не обломился в дальнейшем.

Соединение СИП с медным кабелем

С данным подключением вы можете столкнуться при следующих обстоятельствах:

  • подключение медного кабеля при вводе в дом от провода СИП
  • подключение СИП к медным контактам оборудования в распредщите

Второй вариант встречается, когда от уже готовой щитовой с помощью СИП нужно запитать какую-то пристройку или другой рядом стоящий объект. Здесь все решается просто — используйте алюмомедные наконечники или шайбы и подключайте к шинам без проблем.

Если у вас небольшой щиток и никаких шин там нет и не будет — лучший вариант клемники на дин рейку. Подобрать их можно под любое сечение.

Подключение же медного кабеля к СИП может быть выполнено в двух местах:

  • непосредственно на опоре
  • на фасаде дома

Подключение кабеля к СИП на опоре

На опоре все решается с помощью прокалывающих зажимов. Как правило, используют кабель ВВГнг 3*10 с монолитной жилой. Для подключения через прокалывающий зажим, зачищать изоляцию жилы кабеля не нужно.

Самые пригодные для этого зажимы:
  • Ensto — SLIP 12.1
  • Niled — Р616R
  • ИЭК — ЗОИ 16-70/1,5-10
  • КВТ — ЗПО 16-95/1,5-10

Они могут одинаково использоваться как с медными так и с алюминиевыми проводами. Редко, но все же случается, что при проколе моножильного кабеля, зубцы зажима могут повредить или надломить жилу.

жила после прокола с изоляцией

 

жила после прокола без изоляции

Если вы опасаетесь такого варианта, для соединения СИП и меди можно использовать зажимы односторонне прокалывающие. Марки таких зажимов:

  • Ensto — SM6.21
  • Ensto — Sliw65+Sliw64 (для многократного подключения)
  • Niled — Р 617,619

 

Подключение СИП к кабелю на фасаде

Рассмотрим второй вариант, когда вы соединяете медный кабель с СИП на фасаде дома. Некоторые рекомендуют сделать это с помощью обыкновенных «орешков». Просто и дешево. 

Не делайте этого, так как климатическое исполнение у орехов никакое. Степень защиты IP20. Соединения ими можно делать только внутри помещения. И пропадание контакта с его последующим выгоранием — только вопрос времени.

Поэтому остается два варианта:

  • уже известные нам прокалывающие зажимы SLIP 12.1 или SM6.21 + Р616R или Р 617
  • гильзы алюмомедные

Порядок подключения зажимов тот же самый что и на опоре. Если изолирующий колпачок в единственном числе, то одевайте его на СИП, либо прячьте СИП внутри зажима. Для моножильного медного кабеля, доступ влаги к свободному концу жилы, не задействованной в контакте, не так критичен. Во избежание попадания влаги внутрь кабеля и СИПа, а также проникновения влаги по внешней оболочке внутрь дома, загибайте их к низу.

Использование гильз хоть и надежный, но самый неудобный вариант. Понадобится специальные алюмомедные переходные гильзы, плюс термоусаживаемая трубка. 

Главный минус, кроме необходимости наличия пресса, неудобства монтажа на высоте и дефицита подобных гильз — соединение будет неразъемным. И в случае необходимости, отсоединить кабель от СИП без его разрезания уже не получится.

Правда некоторые энергосетевые компании категорически требуют обеспечить именно неразрывность соединения и отсутствие доступа к токоведущим частям до шкафа учета со счетчиком. Тогда этот вариант может вам подойти.

Если вы вообще хотите избавиться от всех этих переходных соединений меди с алюминием при подключении СИП, то заводите кабель СИП прямо на вводной распредщиток.

Только помните, что он должен стоять снаружи помещения, так как стандартный СИП — горючий проводник и заводить его в дом запрещено.

Помимо этого позаботьтесь чтобы щиток был соответствующих габаритов. Самонесущий провод выпускается сечением минимум 16мм2 и если у вас трехфазка, то завести его во внутрь щитка, плюс там изогнуть соответствующим образом при минимуме свободного места будет проблематично.

Статьи по теме

Соединение медных и алюминиевых проводов

Автор Светозар Тюменский На чтение 3 мин. Просмотров 4k. Опубликовано Обновлено

Общеизвестно, что монтаж любой электропроводки без соединений проводов невозможен – это, в первую очередь соединения проводов в распределительных коробках. На сегодняшний день из-за постоянного роста  энергопотребления в быту увеличивается нагрузка на электрические сети и, соответственно, на соединения проводов электропроводки.

Поэтому, к соединениям проводов в настоящее время предъявляются довольно серьёзные требования, направленные на повышение пожаро- и электробезопасности, которые, в общем-то, вполне оправданы.

Показателем хорошего, качественного соединения проводов, кроме плотности скручиваемого или стягиваемого контакта, является электрохимическая совместимость металлов соединяемых проводов.

Пожалуй, для многих, да-же далёких от электромонтажа людей не секрет, что алюминиевые и медные провода напрямую соединять ни в ком случае не допускается. Однако, это грубая ошибка очень распространена при соединении проводов.

Почему соединять медные и алюминиевые провода напрямую категорически запрещено? Алюминий – металл с высокой окисляемостью Это процесс образования на его поверхности окисной плёнки, имеющей очень высокое сопротивление, что естественно не может не сказываться на токопроводимости такого соединения.

Медные провода менее подвержены окислению, вернее, окисная плёнка на них имеет гораздо меньшее сопротивление, чем окисная плёнка на алюминиевых проводах, поэтому на токопроводимости это сказывается очень незначительно.

Поэтому при соединении медных и алюминиевых проводов электрический контакт фактически происходит через окисные плёнки меди и алюминия, имеющие разные электрохимические свойства, что существенно может затруднять токопроводимость в этом месте соединения.

На улице, под влиянием атмосферных осадков и прохождения через соединение электрического тока происходит процесс электролиза. Результат – образование в месте соединения раковин, нагрев и искрение контактов – повышенная  пожароопасность соединения.

Как соединить алюминиевые и медные провода?

Соединения медных  и алюминиевых проводов на улице или в помещении допускаются только с использованием специальных переходников – клеммников. Хорошим решением для содинений на улице будет использование зажимов ответвительных для СИП («проколы») с пастой, защищающей поверхность проводов от окисления.

Неплохой  вариант – ответвительные сжимы («орешки») – соединение  проводов в них просходит через промежуточную пластину внутри, т.е исключается прямой контакт меди с алюминием.

В помещении целесообразно применение самозажимных клеммников Wago с пастой, препятствующей окислению алюминиевых проводов. Это быстрый способ соединения медных и алюминиевых проводов, не требующий дополнительной изоляции.

Благодаря своим небольшим размерам, самозажимные, винтовые или пружинные клеммники очень удобны для соединений проводов в распаячных коробках.

Наконец, при отсутствии под рукой клеммника или «орешка» – ситуации бывают разные, куда надежней вместо обычной скрутки медного и алюминиевого проводов стянуть их болтом и гайкой, проложив между ними шайбу, которая исключит прямой контакт меди и алюминия.

Такой соединитель по своей надёжности контакта уступит выпускаемым клеммникам или «орешкам», разве что, своей громоздкостью – его более   затруднительно расположить в распаячной коробке. При использовании такого способа, стоит отметить так-же о необходимости хорошего изолирования соединения.

Соединение медь – алюминий, наращивание алюминиевых проводов. Ваш Электрик Коломна.


КАК СОЕДИНИТЬ ПРОВОДА (Клеммники, Зажимы)


Как соединить алюминиевый и медный провод. Стройхак. Электрика.


Борьба с гальванической коррозией или технологии присоединения алюминия к меди

Медные и алюминевые наконечники и гильзы

Медь и алюминий — два металла, наиболее часто используемые при изготовлении токопроводящих жил в кабельно-проводниковой продукции. Алюминий, в силу небольшой стоимости (порядка трех-четырех раз ниже стоимости меди) получил широкое распространение в производстве силовых кабелей. Однако этот металл обладает рядом особенностей и недостатков, оказывающих существенное влияние на качество и надежность электрического соединения. По своей электропроводимости алюминий значительно уступает меди, серебру и золоту, поэтому алюминиевая кабельная жила в сравнении с медной обладает более слабой способностью выдерживать длительные токовые нагрузки, что приходится компенсировать увеличением ее сечения. К недостаткам алюминия можно отнести его быструю окисляемость на открытом воздухе, в результате чего на поверхности проводника образуется тугоплавкая (с температурой плавления около 2000°С) окисная плёнка, обладающая высоким сопротивлением и плохо проводящая электрический ток.

Помимо этого в энергетике существует проблема подключения кабелей с алюминиевыми жилами к медным шинам электрических шкафов и медных устройств. Это связано с разными электрохимическими потенциалами меди и алюминия, которые, в свою очередь, под воздействием влажной агрессивной внешней среды образуют гальваническую пару. В результате электрокоррозии ухудшается качество контакта, как следствие, происходит нагрев места соединения и потеря электроэнергии. По этой причине контактные соединения Al и Cu необходимо защищать от проникновения влаги специальными пастами или наносить на них дополнительное покрытие (как правило — олово) для избегания прямого контакта двух разнородных металлов.

Cu2++2e = Cu  | E = 0,34B
Al3++3e = Al     | E = -1,66B

 

На практике существуют следующие варианты присоединения алюминиевого наконечника к медной шине:

  • Наиболее грамотным и профессиональным является монтаж с использованием биметаллических алюмомедных наконечников, контактная часть лопатки которых изготавливается из электротехнической меди, а хвостовик — из алюминия. Среди всех возможных модификаций алюмомедных наконечников наиболее надежными являются наконечники, изготовленные по технологии сварки трением
  • Применение дополнительной прокладки в виде оцинкованной стальной шайбы уменьшает вероятность образования гальванической пары Al-Cu. Однако, использование стали с ее низкой электропроводимостью негативно сказывается на качестве контакта
  • Абсолютно недопустимым, но, к сожалению, иногда используемым способом является прямое подключение алюминиевого наконечника к медной шине Однако помимо вышеупомянутых допустимых и недопустимых способов присоединения алюминиевых наконечников к электрическим аппаратам с медными шинами существует еще один экономный, практичный и профессионально грамотный метод
  • Для обеспечения безопасного и долговечного подключения алюминиевых наконечников к медным шинам, во избежание прямого гальванического контакта, а также снижения себестоимости конструкции рекомендовано использование специальных алюмомедных шайб ШАМ производства электротехнического завода КВТ в качестве биметаллической прокладки между медной шиной и контактной лопаткой алюминиевого наконечника.

 

Использование данного продукта позволяет:

  1. Предотвратить гальваническую коррозию
  2. Полностью ликвидировать потери электроэнергии, возникающие при протекании процесса электротехнической коррозии между алюминием и медью
  3. Избежать перегревания места соединения
  4. Обеспечить быстрый и удобный монтаж за счет несложной конструкции
  5. Охватить несколько типоразмеров как алюминиевых, так и медных наконечников и шин
  6. Найти достойную и экономически выгодную альтернативу алюмомедным наконечникам

Алюминиевая проводка в доме. Как соединять алюминиевые провода

Алюминиевая проводка — характеристики алюминия, соединения проводов, советы по эксплуатации и монтажу. А также способ соединения алюминия с медью. Об этом и многом другом узнаете из этой статьи. Надеюсь будет полезной.

В современных условиях использование алюминиевой проводки нельзя отнести к оптимальному варианту. Все же ее можно применять, если придерживаться ряда требований.

Правила использования алюминиевой проводки

Если вы по какой-либо причине вынуждены использовать дома алюминиевую проводку, тогда следует учитывать такие условия:

  • поперечное сечение провода должно быть 2,5 мм и более;
  • при соединении необходимо пользоваться контактными зажимами, спец-смазкой для предотвращения окисления контактов и сохранения низкого переходного сопротивления
    в распределительных коробках.
  • Лучшим способом соединения алюминиевых проводов считается сварка.
  • Периодически раз в 1-1,5 года требуется подтягивать контакты, из-за его свойств текучести.

Также стоит помнить о предельных нагрузках на алюминиевые провода различного сечения. Такие данные мы предоставляем в следующей таблице:

Независимо от вида алюминиевых кабелей или сечения провода, необходимо следовать стандартным правилам пожарной безопасности и правилам эксплуатации алюминиевой проводки. Таким способом вы обезопасите себя и свой дом от несчастных случаев, непредвиденных ситуаций и плачевных последствий.

Преимущества металла

Алюминий — это легкий металл. Данное преимущество существенно при использовании очень большого количества кабеля с алюминиевым сердечником. Эта особенность делает алюминиевый провод фаворитом при прокладке высоковольтных линий электропередач.

К тому же, распространенность алюминиевых проводов обусловлена низкой стоимостью по сравнению с медными. Именно эти факторы были причиной массового применения алюминиевой проводки во времена социалистического строительства.

Третья положительная черта алюминия — стойкость металла к коррозии. Однако тут кроются некоторые нюансы. Алюминиевая поверхность мгновенно окисляется при контакте с кислородом: образуется темная пленка, которая защищает остальную часть металла от коррозии.

  •  Алюминий в 3,5 раза легче меди;
  • Широко распространён в природе;
  • Алюминий покрыт оксидной плёнкой, предохранающей его от коррозии.

Недостатки алюминия. Текучесть, проводимость, сопротивление

Самозащита алюминия от коррозии, это хорошее качество, только вот для электричества — это является минусом: оксидная пленка имеет высокое сопротивление и плохо проводит ток. В следствии, в местах скруток возникают проблемы с токопрохождением, растет нагрузка на всю проводку в целом. При повышении силы тока она просто греется.

  • Алюминий имеет низкую механическую прочность;
  • Для пайки нужны специальные припои и ультразвуковые паяльники;
  • Удельное сопротивление алюминия в 1,63 раза больше, чем у меди;
  •  В месте контакта с другими металлами возникает большое переходное сопротивление и идёт усиленная коррозия — гальваническая пара.

По этому факту возникает следующее: при нагревании любое вещество, включая и металл, увеличивает свою форму и пластичность. После исчезновения нагрузки металл остывает и приобретает обычную форму. При частом повторении данных процессов возникает ослабление контактов электропроводов.

Каждый металл по-разному реагирует на нагрев; у алюминия коэффициент расширения на порядок выше, чем у меди. По этой причине алюминиевые контакты приходится чаще проверять и периодически подтягивать болтовые соединения.

У алюминия высокая хрупкость, которая еще возрастает после нагрева. Из-за этих свойств продолжительность эксплуатации алюминиевой проводки составляет около 25 лет. По истечению этого срока она становится небезопасной.

Срок службы, электрическое сопротивление алюминия

В последнее время люди в квартире или своем доме активно используют инновационные изобретения, чего не было ранее: электрические полы и батареи, бойлеры, микроволновые печи, механическая кухонная утварь перешла на электричество и т.п. Поэтому получается, что старые электросети нагружены ненормированно. Да и по времени, срок службы алюминиевой проводки 30 или 40 лет — это уже предел.

Алюминий характеризуется повышенным сопротивлением по сравнению с другими проводниками. Оно равняется 0,027 Ом кв. мм на длину погонного метра. Проводку с сечением меньше 2,5 мм на квадрат — необходимо заменить.

В общей сложности выходит так: чтобы обеспечить определенный уровень пропускной способности тока, нужны провода с большим сечением или с другим составом металла, имеется ввиду медь. Иными словами необходим повсеместный демонтаж электропроводки.

Но, это уже дело времени. Мы же сравним алюминий и медь. У меди электрическое сопротивление — 0,017 Ом Х кв. мм/м, относительно 0,027 у алюминия. Разница в 10 тысячных Ом довольно существенна для экономии электричества в масштабе страны.

Между прочих свойств алюминия, как металла, можно выделить его повышенную степень текучести. Она влияет на то, что контакты и скрутки стоит всячески оберегать от механических воздействий. К примеру, если соединение болтовое, то по истечению времени его нужно регулярно подтягивать, потому что алюминий вытечет из-под контактов.

Как соединять алюминиевые провода скруткой

Скрутки между двумя алюминиевыми проводами также имеют свои особенности, их длительная, безотказная работа зависит от множества факторов: нагрузки по току, степени влажности воздуха, окружающей температуры.

Для временного соединения контактов скрутка очень даже подойдет, нужно только тщательно ее изолировать. Но лучше всего делать скрутку для последующей сварки.

Для скрутки алюминиевых проводов стоит придерживаться ряда правил:

  • оба конца нужно равномерно друг друга обвивать;
  • для проводов толще 5 мм необходимо не менее 5 витков, для тонких проводов — не менее 7-10.

Для домашней электропроводки лучше используйте одножильный провод, а не гибкий (многожильный).

Неразъемные, надежные соединения. Алюминиевые провода

Самый надежный способ соединить провода — сварка.

Неразъемные соединения, это те, которые нельзя рассоединить, не повредив провода. Это сварка, пайка, и опрессовка. Данные методы весьма надежны и долговечны. Выбор подходящего способа зависит от следующих обстоятельств:

  • диаметр соединяемых проводов;
  • расчетная нагрузка по току;
  • наличие оборудования и расходных материалов;
  • наличие навыков у работника.

Метод сварки очень прост, только требуется навык и сварочный трансформатор. Сварка происходит в течение секунды с помощью угольного электрода. На конце скрутки получается капля. Это очень практичный вариант, если скруток много.

Для пайки потребуется паяльник, специальные припои и канифоль. Кроме того, необходимо место, ведь паять навесу с вытянутыми вверх руками, подключая потолочную люстру, мягко говоря, неудобно.

Для опрессовки применяются пресс-клещи. Понадобится также и расходный материал: гильзы или полые стержни. Электрик зачищает провода и вставляет концы в гильзу, затем обжимает в трех местах. Для алюминиевых проводов используются алюминиевые гильзы, для медных — медные. Для опрессовки алюминиевых проводов с медными существуют алюминиево-медные гильзы.

Как соединить алюминий с медью. Видео

Обычная скрутка проводников меди и алюминия не допустима.

Допустимо прямое соединение только если между металлами показатель электрохимического потенциала не превышает 0,6 милливольт. К примеру, соединяя медь и нержавеющую сталь, потенциал составит 0,1 мВ — это качественное соединение. Для сравнения: медь/серебро — 0,25 мВ, медь/золото — 0,4 мВ. Тоже неплохо. Медь/алюминий — 1,5 мВ — это уже недопустимо. Поэтому, для соединения алюминиевых контактов с медными, существуют специальные соединяющие приспособления.

Существует и такое наблюдение: любой токопроводник имеет конкретный электрохимический потенциал. По этому принципу работают батарейки и аккумуляторы. В местах соединений разнородных металлов, при попадании воды, образуется короткозамкнутый гальванический компонент; разрушается один из металлов. Дабы определить какой металл с каким можно соединять, необходимо знать степень электрохимического потенциала соединяемых проводников тока.

Алюминий имеет свойство текучести при повышении температуры, поэтому при соединении с медью само соединение постепенно ослабляется и начинает все больше греться, создавая опасность возгорания. А также, как указано выше, имеют разную электропроводимость и гальваническую совместимость.

Также алюминий имеет оксидную пленку, которая образуется при взаимодействии с воздухом. Поэтому перед скруткой и любым соединением, советуем обработать кварцевовазелиновой пастой. К слову, она уже есть в оригинальных клеммах Wago, что ускоряет монтаж. Но они подходят для слаботочек.

Соединение 2 разных типов проводки производится всегда через третий металл. Это могут быть:

  • Клеммы самозажимные, например Wago;
  • Обычная клммная колодка тоже подходит, но их качество желает желать лучшего — не советую, часто плавятся;
  • Лужение (третий металл — олово, свинец) с последующей опрессовкой. Перед началом обязательно обработать флюсом, чтобы снять оксидную пленку;
  • Болтовое соединение. Разделяем проводники шайбами. Желательно поставить ещё и гравер, чтобы не раскрутилось;
  • Сжим «Орех».
Например, болтовое соединение

Если вам нужно сделать быстро и под рукой ничего нет, то подойдет и болтовое соединение. Как его сделать показано в видео ниже. Но настоятельно советую заменить на самозажимные клеммы, или опрессовку. Ну а в идеале поменять всю проводку на медную и спать спокойно.

Итог

Все эти нормы и моменты не следует игнорировать, т.к. алюминиевая проводка наиболее пожароопасна. По статистике, в алюминиевых электросетях в 50 раз больше фиксировалось пожаров, по сравнению с другими видами проводок.

В многоквартирных жилых домах алюминиевая электропроводка все еще разрешена в эксплуатации, однако, на временной основе.

Надеемся, наши заметки, относительно алюминиевой проводки, плюсы и минусы, помогут вам принять наиболее рациональное решение — как соединять, и менять или нет электропроводку.

Уникальная статья на нашем сайте — electricity220.ru.

Как соединить медный и алюминиевый провод

Методы соединения медного и алюминиевого проводов между собой.


Содержание:

Даже неискушенные в электротехнике люди знают, что соединять между собой алюминиевый и медный провод с помощью скрутки нельзя. Непосредственное соединение медных и алюминиевых проводов приводит к протеканию электрохимических процессов сопровождающихся сильным окислением обоих металлов. Образовавшиеся окислы сильно ухудшают качество контакта. Контакт начинает греться и это может стать причиной возгорания электропроводки. В этом материале мы рассмотрим, как надежно и безопасно соединить медный провод с алюминиевым.

Соединения алюминиевых и медных проводов с помощью болта

Болтовое соединение алюминиевых и медных проводов электрики применяют с незапамятных времен. Этот способ прост и надежен. Как правило, все необходимые материалы для выполнения болтового соединения всегда имеются под рукой. Допустим нам нужно соединить медный и алюминиевый провод самого ходового сечения 2.5 мм. Для выполнения соединения нам понадобится стальной болт диаметром 5-6 мм, гайка, три плоских шайбы достаточной ширины и разрезная пружинная шайба (шайба гровер).

Сначала провода зачищают от изоляции на длину, достаточную для изготовления колец с внутренним диаметром равным диаметру болта. Затем выгибают кольца. Проще всего при изготовлении колец пользоваться круглогубцами, но, в принципе, выполнить эту операцию можно и используя обычные пассатижи. Затем собирается «бутерброд» из шайб и проволочных колец. Ка он должен выглядеть показано на рисунке.


При таком соединении, провода контактирую между собой через стальные шайбы. А контакт меди и алюминия со сталью не приводит к окислению материалов. При сборке болтового соединения проволочные кольца должны быть ориентированы так, чтобы при затягивании болта они стремились плотнее его охватить. При таком соединении проводов пружинная шайба выполняет важную функцию. Дело в том, что алюминий «текучий» металл. В отсутствие пружинной шайбы, со временем, алюминий под давлением может деформироваться, «потечь» и электрически контакт ослабнет. Применение гровера позволит плотно сжимать провода в течение долгого времени.

 После затяжки гайки болтовое соединение изолируют с помощью хлопчатобумажной или ПХВ изоленты. Применять для изоляции болтового соединения термоусадочные трубки не рекомендуется. Все-таки болтовое соединение является обслуживаемым соединением, а удалить старую термоусадку часто бывает очень непросто.

Иногда при выполнении болтового соединения не «гнут кольца» на концах проводов, а вместо колец применяют специальные наконечники которые опрессовывают или напаивают на концы проводов.

Схожий принцип соединения проводов применяют и в промышленных соединителях. Одним из таких соединителей является ответвительный сжим «орешек». Орешки широко применяют в этажных распределительных электрощитах многоквартирных домов для подключения ответвлений к магистральным проводам. Орешек представляет собой три пластины, стягиваемые между собой четырьмя винтами. Верхняя и нижняя пластины имеют профиль увеличивающий площадь контакта с проводом. После выполнения соединения на конструкцию надевается «орех» – карболитовый изоляционный корпус, состоящий из двух половинок. Как выглядит такой ответвительный сжим показано на рисунке.


 Как видно из рисунка, подобные соединители подходят и для однопроволочных и многопроволочных проводов. Применение ореха не требует разрезания магистрального провода, с него достаточно снять участок изоляции соответствующий размерам пластины.

Клеммники

Для соединения любых проводов очень удобно пользоваться клеммниками. Сейчас промышленность предлагает большой ассортимент клеммников самых разных конструкций. С их помощью можно легко и быстро соединить провода из разных материалов и разного сечения.

Несмотря на большое разнообразие выпускаемых клеммников они делятся всего на два типа – пружинные и винтовые. Пружинные клеммники могут быть однократного и многократного применения. В пружинных клеммниках однократного применения, при попытке извлечь провод из клеммы, может произойти необратимая деформация пружины, исключающая повторное использование изделия. На рисунке показан популярный тип пружинных клеммников Vago предусмотренных для многократного использования.


При соединении многопроволочных проводов с помощью клеммников рекомендуется использовать наконечники. Во-первых, многопроволочный провод очень трудно вставить в пружинную клемму одноразового клеммника. Во-вторых, при затягивании винтового зажима многопроволочная жила сильно деформируется, и получить надежный контакт может не получается.

Соединение алюминиевых и медных проводов с помощью пайки

Пайка относится к виду неразборных соединений. Прибегают к ней не очень часто. Однако этот вид соединений является одним из самых надежных. Основная сложность при пайке алюминиевых и медных проводов заключается в трудности залуживания алюминия. Связано это с тем, что алюминий на воздухе мгновенно покрывается слоем окисла, который препятствует смачиванию провода слоем расплавленного припоя. Удалить слой окисла с поверхности алюминиевого провода достаточно сложно. Флюсы, которые раньше использовались для удаления оксида алюминия, плохо справлялись с этой задачей. С появлением активных флюсов на основе фтора для пайки алюминия и других металлов задача сильно упростилась. Выбирая флюс для пайки медных и алюминиевых проводов, лучше остановить выбор на, так называемых, безотмывочных флюсах которые не требуют очистки места пайки после ее выполнения.


Кроме подбора подходящего флюса, процесс пайки медных и алюминиевых проводов не имеет отличий от процесса пайки медного провода. Пайку можно производить оловяно-свицовыми припоями ПОС-60 или ПОС-40. Провода зачищают от изоляции, тщательно залуживают и, затем, спаивают внахлест или, предварительно скрутив их между собой. Если использовался флюс, требующий промывки, то паяную поверхность очищают с помощью специальной жидкости, бензина или другого растворителя. 

10 Квадратный терминал Переходное соединение медно-алюминиевых соединений Проводной соединитель высокой мощности 80A / 1000V (10PCS) | Клеммы |

Оплата:

Доставка:

-Пожалуйста, обратите больше внимания на адрес вашего заказа, который ДОЛЖЕН СООТВЕТСТВОВАТЬ вашему адресу доставки.(Если вы из России, укажите свое полное имя. Это очень важно)

-Товары будут отправлены в течение 7 рабочих дней после оплаты.

-Доставка будет по всему миру через ePacket / China Post Air Mail / DHL / TNT / EMS.

-Проверьте детали при доставке, в случае повреждения примите их и немедленно свяжитесь с нами. Мы подтвердим и предложим решение.

Свяжитесь с нами:

-Если вы хотите разместить крупный заказ для оптовой продажи, пожалуйста, свяжитесь с нами.

-Если вам нужно заказать несколько товаров (≥1500 долларов США), пожалуйста, сначала сообщите нам. Мы можем предложить вам дополнительную скидку.

Обратная связь:

- Мы будем очень благодарны за любые отзывы от вас. Если вы удовлетворены нашими услугами или продуктами, поставьте нам 5 звезд. -Если у вас есть какие-либо вопросы, свяжитесь с нами, и мы предложим вам помощь в ближайшее время.

Обратите внимание:

-Ввозные пошлины, налоги и сборы не включены в стоимость доставки.

-Покупатели несут полную ответственность за все дополнительные расходы (если таковые имеются).

-Для наших клиентов из Брази / Индия: если вы выбираете любую быструю доставку (EMS / DHL), пожалуйста, оставьте свой номер CPF / копию документа удостоверения личности, чтобы обеспечить нормальную доставку.

Справочник по сварке алюминия

Газ-металл-дуговая сварка

Подготовка основного металла: При сварке алюминия операторы должны позаботиться о том, чтобы очистить основной материал и удалить любые загрязнения оксида алюминия и углеводороды из масел или режущих растворителей. Оксид алюминия на поверхности материала плавится при 3700 F, в то время как алюминий основного материала под ним будет плавиться при 1200 F. Следовательно, оставление любого оксида на поверхности основного материала будет препятствовать проникновению присадочного металла в заготовку.Для удаления оксидов алюминия используйте проволочную щетку из нержавеющей стали или растворители и травильные растворы. При использовании щетки из нержавеющей стали чистите только в одном направлении. Следите за тем, чтобы не чистить щеткой слишком грубо: грубая чистка щеткой может еще больше накапливать оксиды в заготовке. Кроме того, используйте щетку только для обработки алюминия - не чистите алюминий щеткой, которая использовалась для обработки нержавеющей или углеродистой стали. При использовании растворов для химического травления обязательно удалите их из работы перед сваркой. Чтобы минимизировать риск попадания углеводородов из масел или режущих растворителей в сварной шов, удалите их обезжиривающим средством.Убедитесь, что обезжириватель не содержит углеводородов.

Предварительный нагрев: Предварительный нагрев алюминиевой детали может помочь избежать растрескивания сварного шва. Температура предварительного нагрева не должна превышать 230 F - используйте индикатор температуры, чтобы предотвратить перегрев. Кроме того, выполнение прихваточных швов в начале и в конце свариваемой области поможет усилить предварительный нагрев. Сварщики также должны предварительно нагреть толстый кусок алюминия при его приваривании к тонкому. если происходит холодная притирка, попробуйте использовать вкладки для притирки и притирки.

Метод проталкивания: В случае алюминия отталкивание пистолета от сварочной ванны вместо его вытягивания приведет к лучшему очищающему эффекту, уменьшению загрязнения сварных швов и улучшенному покрытию защитным газом.

Скорость перемещения: Сварка алюминия должна выполняться «горячо и быстро». В отличие от стали, высокая теплопроводность алюминия требует использования более высоких значений силы тока и напряжения, а также более высоких скоростей сварки.Если скорость движения слишком низкая, сварщик рискует получить чрезмерный ожог, особенно на тонкостенных алюминиевых листах.

Защитный газ: Аргон, благодаря хорошему очищающему эффекту и профилю проникновения, является наиболее распространенным защитным газом, используемым при сварке алюминия. Сварка алюминиевых сплавов серии 5XXX в смеси защитного газа, содержащей аргон и гелий - максимум 75 процентов гелия - минимизирует образование оксида магния.

Сварочная проволока: Выберите алюминиевую присадочную проволоку, имеющую температуру плавления, аналогичную температуре плавления основного материала.Чем больше оператор может сузить диапазон плавления металла, тем легче будет сваривать сплав. Возьмите проволоку диаметром 3/64 или 1/16 дюйма. Чем больше диаметр проволоки, тем легче она подается. Для сварки тонкостенных материалов хорошо подходит проволока диаметром 0,035 дюйма в сочетании с импульсной сваркой при низкой скорости подачи проволоки - от 100 до 300 дюймов / мин.

Сварные швы выпуклой формы: При сварке алюминия кратерные трещины вызывают большинство отказов.Растрескивание возникает из-за высокой скорости теплового расширения алюминия и значительных сжатий, возникающих при остывании сварных швов. Риск растрескивания наиболее высок в случае вогнутых кратеров, поскольку поверхность кратера сжимается и разрывается при охлаждении. Поэтому сварщики должны создавать кратеры, чтобы они образовали выпуклую форму или холмик. По мере охлаждения сварного шва выпуклая форма кратера компенсирует силы сжатия.

Выбор источника питания: При выборе источника питания для GMAW алюминия сначала рассмотрите метод переноса - дуговая сварка распылением или импульсный.Аппараты постоянного тока (cc) и постоянного напряжения (cv) могут использоваться для дуговой сварки с распылением. Распылительная дуга берет крошечный поток расплавленного металла и распыляет его поперек дуги от электродной проволоки к основному материалу. Для толстого алюминия, для которого требуется сварочный ток более 350 А, оптимальные результаты дает cc.

Импульсный перенос обычно осуществляется от инверторного источника питания. Новые блоки питания содержат встроенные импульсные процедуры в зависимости от типа и диаметра присадочной проволоки.Во время импульсной GMAW капля присадочного металла переходит от электрода к заготовке в течение каждого импульса тока. Этот процесс обеспечивает положительный перенос капель и приводит к меньшему разбрызгиванию и более высокой скорости следования, чем при сварке с переносом распылением. Использование импульсного процесса GMAW на алюминии также позволяет лучше контролировать подвод тепла, облегчая сварку вне положения и позволяя оператору сваривать тонкостенные материалы при низких скоростях и токах подачи проволоки.

Механизм подачи проволоки: Предпочтительным методом подачи мягкой алюминиевой проволоки на большие расстояния является двухтактный метод, при котором используется закрытый шкаф подачи проволоки для защиты проволоки от воздействия окружающей среды.Двигатель с регулируемой скоростью с постоянным крутящим моментом в шкафу подачи проволоки помогает проталкивать и направлять проволоку через пистолет с постоянной силой и скоростью. Двигатель сварочной горелки с высоким крутящим моментом протягивает проволоку и поддерживает постоянную скорость подачи проволоки и длину дуги.
В некоторых цехах сварщики используют одни и те же устройства подачи проволоки для подачи стальной и алюминиевой проволоки. В этом случае использование пластиковых или тефлоновых футеровок поможет обеспечить плавную и стабильную подачу алюминиевой проволоки. Для направляющих труб используйте стамески на выходе и пластиковые входящие трубы, чтобы поддерживать проволоку как можно ближе к приводным роликам, чтобы проволока не запуталась.Во время сварки держите кабель горелки как можно прямее, чтобы минимизировать сопротивление подаче проволоки. Проверьте правильность совмещения между ведущими роликами и направляющими трубками, чтобы предотвратить стружку алюминия.

Используйте приводные ролики, предназначенные для алюминия. Настройте натяжение приводных роликов для обеспечения равномерной скорости подачи проволоки. Чрезмерное натяжение приведет к деформации проволоки и вызовет грубую и беспорядочную подачу; слишком маленькое натяжение приводит к неравномерной подаче. Оба условия могут привести к нестабильной дуге и пористости сварного шва.

Сварочные пистолеты: Используйте отдельный вкладыш для сварочного пистолета для сварки алюминия.Во избежание истирания проволоки старайтесь удерживать оба конца лайнера, чтобы устранить зазоры между лайнером и диффузором газа на пистолете. Часто меняйте футеровки, чтобы минимизировать вероятность того, что абразивный оксид алюминия вызовет проблемы с подачей проволоки. Используйте контактный наконечник примерно на 0,015 дюйма больше, чем диаметр используемого присадочного металла - при нагревании наконечник расширится до овальной формы и, возможно, ограничит подачу проволоки. Обычно, когда сварочный ток превышает 200 А, используйте пистолет с водяным охлаждением, чтобы минимизировать тепловыделение и уменьшить трудности с подачей проволоки.

Свойства материалов плавких элементов

Материал, используемый для элементов предохранителя, должен иметь низкую температуру плавления, низкие омические потери, высокую проводимость (или низкое удельное сопротивление), низкую стоимость и отсутствие повреждений. Материал, используемый для изготовления плавкого элемента, имеет низкую температуру плавления, такой как олово, свинец или цинк. Однако низкая температура плавления доступна для металла с высоким удельным сопротивлением, показанного в таблице ниже.

Металл Точка плавления по Цельсию Удельное сопротивление Значение константы предохранителя k
для d в мм
Серебро 980 16 -
Олово 240 112 12.8
Цинк 419 60 -
Свинец 328 210 10,8
Медь 1090 17 80
Алюминий 665 28 59

Материал, в основном используемый для элемента предохранителя, - это олово, свинец, серебро, медь, цинк, алюминий и сплав свинца и олова.Для плавких предохранителей на небольшой ток используется сплав свинца и олова. При токе, превышающем 15 А, этот сплав не используется, поскольку диаметр проволоки будет больше, и после плавления высвободившийся металл будет чрезмерным.

Для цепи с номинальным током более 15 А используются предохранители из медного провода. Недостатком медной проволоки является то, что она работает при довольно высокой температуре, если желателен достаточно низкий коэффициент плавления. Таким образом, существует тенденция к перегреву провода, в результате чего его площадь поперечного сечения и ток плавления постепенно уменьшаются, и может произойти преждевременное плавление провода.

Серебро используется в качестве элемента предохранителя, потому что оно имеет следующие преимущества

  • Не окисляется, оксид нестабилен.
  • Электропроводность серебра не ухудшается при окислении.
  • Благодаря высокой проводимости масса обрабатываемого расплавленного металла сведена к минимуму и, следовательно, скорость работы высокая.

Но серебро очень дорого по сравнению с другими металлами, поэтому медь или сплав свинца и олова в основном используются в качестве плавкой проволоки.Цинк только в виде ленты также используется в качестве элемента предохранителя, поскольку он не плавится очень быстро при небольшой перегрузке.

алюминиевая полоса для обмотки трансформатора

В ВЫПУСКЕ

В ВЫПУСКЕ Существует распространенное заблуждение, что распределительный трансформатор с медными обмотками в некотором роде более эффективен, надежен или имеет более высокую стойкость к короткому замыканию по сравнению с трансформатором с алюминиевыми обмотками.

РЕКОМЕНДАЦИЯ

Усовершенствования в технологии использования алюминия в трансформаторах сделали трансформаторы с алюминиевой обмоткой идеальным выбором для современных приложений.

ОБОСНОВАНИЕ

Эксплуатационные расходы - Cooper Power Systems проектирует трансформаторы с алюминиевой обмоткой с обмотками большего поперечного сечения, чем те, которые используются для трансформаторов с медной обмоткой. Эта большая площадь поперечного сечения означает более низкую плотность тока и эквивалентную рабочую температуру. За счет уменьшения плотности тока в обмотках можно добиться конструкции с низкими потерями с алюминиевыми или медными обмотками.

Надежность - Срок службы трансформатора определяется сроком службы его системы изоляции.Поскольку блоки Cooper с алюминиевой обмоткой и с медной обмоткой работают при одинаковых рабочих температурах, системы изоляции стареют с одинаковой скоростью для каждой конструкции. Низкая стоимость прежде всего - независимо от того, являются ли низкие потери целью или нет, алюминиевые обмотки дешевле, чем медные. В следующем примере показаны две конструкции с эквивалентными потерями: с алюминиевыми обмотками и одна с медными.

Спецификация

Сплав Темпер Толщина / мм Ширина / мм
1050 1060 1070 1350 O 0.08 ~ 3,0 16 ~ 1500
Примечание : другие спецификации могут быть выполнены в соответствии с требованиями заказчика.

Допуск

Сплав / закалка 1050-О, 1060-О, 1070-О,
Толщина 0,2-0,4 0,4-0,8 0,9-1,1 1,2–1,6 1,8–2,5
Допуск ± 0.01 ± 0,015 ± 0,02 ± 0,025 ± 0,03
Ширина < 100 100-200 201-500 501-1250 > 1250
Допуск ± 0,1 ± 0,2 ± 0,2 ± 1 ± 2

Допуск заусенцев и разрушения

Ширина алюминиевой полосы Высота Бёрра Высота в сложенном состоянии
< 0.2 0,01 ≥0,05-0,1
0,2–1,0 0,015
1,1–1,5 0,02
> 1,6 0,03

Химический состав

Сплав Si Fe Cu Mn мг Cr Ni Zn Ca В Ti Другое Мин.Al
1050 0,25 0,40 0,05 0,05 0,05 0,05 0,05 0,03 0,03 99,50
1060 0,25 0,35 0,05 0.03 0,03 0,05 0,05 0,03 0,03 99,60
1070 0,20 0,25 0,04 0,03 0,03 0,04 0.05 0,03 0,03 99,70
1350 0,10 0,40 0,05 0,01 0,01 0,05 0,03 0,03 99,50

Механические свойства

U.Т.С .: 60-95Н / мм2 Удлинение: > 25%
Плотность при 20 ℃: 2,703 кг / дм3 Макс. Сопротивление при 20 ℃: ≤0,02825 Ом · мм2 / м

Внешний вид: Мягкая поверхность, без смазки, гладкая и без ощущения царапин. Допуски бокового заусенца, толщины и ширины должны быть меньше, чем в стандарте.

Упаковка: Стандартный экспортный деревянный поддон или ящик. Также мы можем удовлетворить особые требования клиентов.Поставляется в бухтах, внутри - твердая бумажная сердцевина, с бумажными чередованиями. Глаз в стену и Глаз в небо, оба в порядке.

Области применения: Превосходная формуемость, свариваемость и коррозионная стойкость. В основном используется для изготовления электрических материалов в обмотках высокого и низкого давления для сухих трансформаторов и масляных трансформаторов.

Алюминий и медь: проводники в низковольтных трансформаторах сухого типа

Введение

В Северной Америке алюминий является преобладающим материалом для обмоток низковольтных сухих трансформаторов мощностью более 15 киловольт-ампер (кВА).В большинстве других регионов мира медь является преобладающим материалом для обмоток. Основная причина выбора алюминиевых обмоток - их более низкая начальная стоимость. Исторически доказано, что стоимость основного металла меди гораздо более изменчива, чем стоимость алюминия, поэтому закупочная цена медного проводника обычно является наиболее дорогим выбором. Кроме того, поскольку алюминий обладает большей пластичностью и его легче сваривать, это более дешевый производственный выбор. Однако надежные алюминиевые соединения требуют большей дисциплины и опыта от монтажников трансформаторов, чем те, которые необходимы для медных соединений.
Технические аргументы о плюсах и минусах алюминия по сравнению с медью обсуждались в электротехнической промышленности в течение многих лет. Большинство этих аргументов несущественны, а некоторые могут быть классифицированы просто как дезинформация. Цель этого краткого описания применения - обсудить некоторые общие проблемы, связанные с выбором между этими двумя материалами обмотки.

1: Общие причины выбора материала обмотки для низковольтных сухих трансформаторов

Различия между медью и алюминием

Наибольшие опасения по поводу выбора материала обмотки отражают пять характерных различий между медью и алюминием:

2: Пять характерных отличий между медью и алюминием

Характеристика Алюминий Медь
Коэффициент расширения на ° C x 10-6 при 20 ° C 23 16.6
Теплопроводность БТЕ / фут / час / фут2 / ° F при 20 ° C 126 222
Электропроводность,% IAS при 20 ° C 61 101
Предел прочности на разрыв, мб / дюйм2 (мягкий) 12 000 32 000

Возможности подключения

Оксиды, хлориды или сульфиды основного металла обладают гораздо большей проводимостью для меди, чем для алюминия.Этот факт делает очистку и защиту стыков алюминиевых соединений более важной задачей. Некоторые считают, что соединения меди с алюминием несовместимы. Также сомнительны переходные соединения между алюминиевыми трансформаторами и медным строительным проводом.

Коэффициент расширения

Алюминий расширяется почти на треть больше, чем медь при изменении температуры. Это расширение, наряду с пластичностью алюминия, вызвало некоторые проблемы при неправильной установке болтовых соединений.Во избежание расшатывания соединения необходимо какое-либо пружинное соединение. Использование чашеобразных или разрезных шайб обеспечивает необходимую эластичность стыка без сжатия алюминия. При использовании надлежащего оборудования алюминиевые соединения могут быть равны по качеству медным соединениям.

Теплопроводность

Некоторые утверждают, что теплопроводность меди превосходит теплопроводность алюминия в плане снижения повышения температуры горячих точек в обмотках трансформатора. Это справедливо только при сравнении медных и алюминиевых обмоток с одинаковым размером провода, геометрией и конструкцией.Следовательно, для трансформатора любого размера, кВА, характеристики теплопроводности алюминия могут быть очень близки к характеристикам меди. Чтобы алюминиевые катушки имели такую ​​же токонесущую способность, что и медные, алюминиевая катушка должна быть примерно на 66% больше по площади поперечного сечения. Ответственные производители разрабатывают и тестируют характеристики горячих точек своих конструкций и используют площадь охлаждающей поверхности, геометрию змеевика, воздуховоды и форму проводника для получения приемлемых градиентов горячих точек независимо от обмоточный материал.

Электропроводность

Часто аргументы указывают на низкую проводимость алюминия, ссылаясь на тот факт, что алюминий имеет только 61% проводимости меди, что вызывает более высокие потери энергии в алюминиевых трансформаторах. Дизайнеров всегда заботит температура обмотки. Чтобы поддерживать температуру ниже номинальной, в алюминиевых трансформаторах используются алюминиевые проводники с большим поперечным сечением, чем у медных. В среднем это приводит к потерям энергии, которые для алюминия такие же, как и для меди.Следовательно, трансформаторы аналогичной конструкции с одинаковым превышением температуры имеют примерно эквивалентные потери независимо от материала проводника.

Производители трансформаторов ограничивают количество имеющихся на складе проводов. Из-за этого некоторые конструкции из алюминия могут иметь меньшие потери, чем медь, просто потому, что выбор сечения провода ограничен. В других конструкциях медь более эффективна. Немногие производители низковольтных трансформаторов сухого типа меняют размер корпуса сердечника при переходе с алюминия на медь, если таковые имеются, поэтому потери в сердечнике остаются примерно одинаковыми независимо от материала обмотки.Если одинаковый КПД может быть получен путем изменения размера провода, а потери в сердечнике остаются неизменными, нет никаких практических причин ожидать, что одна конструкция будет более эффективной, чем другая. Разница в стоимости между медью и алюминием часто позволяет использовать алюминиевые проводники большего диаметра, что приводит к более низким потерям нагрузки при меньших затратах, чем при использовании медных проводников.

Предел прочности

Более низкий предел прочности на разрыв и предел текучести алюминия вызвали некоторые опасения по поводу его использования в приложениях с циклическими нагрузками.Нагрузки, потребляющие высокие пики тока, такие как приводы постоянного тока и другие контроллеры SCR, создают электромагнитные силы, которые могут вызвать движение проводников и выводов катушек. Как показано в Таблице 2, алюминий имеет только 38% прочности на разрыв меди. Однако сравнение таблиц основано на равной площади поперечного сечения. Как отмечалось ранее, для получения равных номиналов алюминиевых трансформаторов обычно требуется на 66% больше площади поперечного сечения, чем у медных проводников. Использование проводов большего размера приводит к тому, что прочность алюминиевой обмотки почти равна прочности медных обмоток.Способность трансформатора противостоять долгосрочным механическим воздействиям «сильных ударных» нагрузок больше зависит от надлежащего баланса катушки и опоры выводов, чем от выбора проводника. Между медными или алюминиевыми низковольтными трансформаторами не наблюдалось существенной разницы в механических повреждениях.

Возможности подключения

Возможность подключения является наиболее частой причиной «предубеждения» против использования трансформаторов с алюминиевой обмоткой. Как медь, так и алюминий склонны к окислению или другим химическим изменениям при воздействии атмосферы.Проблема в том, что оксид алюминия является очень хорошим изолятором, в то время как оксид меди, хотя и не считается хорошим проводником, не так опасен для болтовых соединений. Очистка и обработка щеткой качественным герметиком для предотвращения окисления рекомендуется для любого материала и, что более важно, для алюминия. Большинство электриков хорошо обучены этим процедурам, а техника выполнения болтовых алюминиевых соединений является хорошо зарекомендовавшей себя и проверенной практикой.

В общем, не рекомендуется болтовое соединение алюминия без покрытия с медью.Хотя для соединения двух металлов можно выполнить несколько надежных сварочных процессов и методов соединения взрывом, ни один из них не используется в значительной степени в современном производстве трансформаторов. Большинство соединений алюминия с медью выполняются путем нанесения серебряного или луженого покрытия на один или оба металла проводника в болтовом соединении. В большинстве кабельных соединений с трансформаторами с алюминиевой обмоткой используются алюминиевые наконечники с луженым покрытием. Эти наконечники специально рассчитаны (Al / Cu) для подключения медного строительного провода к любому металлу.Эта практика повсеместно принята и доказала свою надежность на протяжении более 30 лет использования трансформаторов с алюминиевой обмоткой.

ТЕОРИЯ VS. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ

Большинство аргументов в пользу меди основано на теориях, которые на практике не имеют ничего существенного. Также существует несколько теорий в пользу использования алюминия.

Один аргумент касается различных технологий, используемых для изготовления соединений из меди и алюминия. Внутренние соединения трансформатора, сделанные из меди, обычно паяются, тогда как те же самые соединения из алюминия свариваются с использованием инертного газа.Технически метод пайки приводит к тому, что медное соединение имеет более низкую проводимость, чем основной металл меди. Сварка алюминия в инертном газе дает сплошное алюминиевое соединение без ухудшения проводимости. Кроме того, некоторые утверждают, что со временем оксид меди продолжает образовываться, отслаивая обнаженную медь и в конечном итоге повреждая весь проводник. С другой стороны, оксид алюминия образует прочное защитное покрытие на незащищенном металле, которое останавливает окисление уже через несколько миллионных долей дюйма.Да, это могут быть действительные точки, которые могут иметь влияние в необычно агрессивной атмосфере или экстремальных условиях нагрузки. Однако рядовому пользователю не стоит слишком беспокоиться об этих теоретических соображениях, поскольку и медные, и алюминиевые трансформаторы имеют отличные показатели за долгие годы практического использования.

Единственной веской инженерной причиной выбора меди вместо алюминия, по-видимому, является недостаток места. Неопровержимым фактом является то, что трансформатор с медной обмоткой может быть меньше алюминиевого.Преимущественно OEM-клиенты, которые приобретают трансформаторы с открытым сердечником и катушкой для установки в свои собственные устройства, пользуются преимуществом экономии места. Большинство закрытых трансформаторов общего назначения продаются с одинаковым размером корпуса для алюминия или меди, поэтому даже это небольшое преимущество для меди не реализуется.

ЗАКЛЮЧЕНИЕ

Выбор между алюминиевыми или медными обмотками трансформатора зависит от личных предпочтений. Повышенная цена на медь часто требует обоснования покупки, но в данном бюллетене эти аргументы опровергнуты.По правде говоря, отраслевой опыт просто не подтверждает ни одну из обычно заявленных причин выбора меди вместо алюминия. Трансформаторы низкого напряжения с алюминиевой обмоткой, вероятно, будут продолжать получать все большее распространение из-за их значительного преимущества по стоимости по сравнению с медью. По мере того как некоторые старые мифы исчезают из-за огромного успеха алюминия, все больше пользователей будут чувствовать себя комфортно с относительно незначительным дополнительным вниманием к деталям, необходимым для создания надежных алюминиевых соединений.Предполагается, что дополнительное внимание, уделяемое алюминиевым соединениям, способствует улучшению соединений в алюминии, чем в меди. Однако передовые методы выполнения электрических подключений являются преимуществом для всех в отрасли, независимо от того, используется ли алюминий или медь. Прежде чем вкладывать средства в дополнительные расходы на медные трансформаторы, изучите причины предпочтения меди в спецификациях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *