Отличие тиристора от диода – , , , , —

Содержание

что это, принцип работы, свойства, применение

Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих. 

Содержание статьи

Что такое тиристор, его устройство и обозначение на схеме

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

Так выглядят тиристоры

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из технических характеристик).

В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.

После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)

То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:

  • Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод,  выше чем неотпирающее напряжение (эти данные есть в технических характеристиках).  Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
  • После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.

Если говорить о внутреннем устройстве, то это три перехода P-N-P-N

Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

    Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между катодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:

  • Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
  • Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
  • Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
  • Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает.

    Пример характеристик

  • Удерживающий ток. Если ток, протекающий через анод-катод ниже этого значения, устройство переходит в запертое состояние.
  • Минимальный ток управляющего сигнала. При подаче тока ниже этого значения, элемент не откроется.
  • Максимальный ток управления. Если превысить этот параметр, p-n переход выйдет из строя.
  • Рассеиваемая мощность. Определяет величину подключаемой нагрузки.

Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.

elektroznatok.ru

Что такое тиристор, как работает, типы, применения, преимущества и недостатки

В этом посте мы попытаемся понять, что такое тиристор, как он работает, его характеристики, режимам работы, применения, преимущества и недостатки.

Тиристор в основном представляет собой двухпозиционный переключатель для управления выходной мощностью электрической цепи путем включения и выключения цепи нагрузки в определенные промежутки времени.

Что такое тиристор

Тиристор представляет собой однонаправленное полупроводниковое твердотельное устройство с четырьмя слоями чередующегося материала P и N-типа. Он состоит из трех электродов: анода, катода и затвора. Анод — это положительный конец, а катод — это отрицательный конец.

Вход контролируют поток тока между анодом и катодом. Он используется в электронных устройствах и оборудовании для контроля электроэнергии или тока. Он действует как выпрямитель и может передавать ток только в одном направлении.

Первый тиристор был выпущен в 1956 году. Самым распространенным типом тиристоров является кремниевый управляемый выпрямитель (SCR).

Купить тиристор на Алиэкспресс вы можете нажав на картинку ниже:

Как работает тиристор

Тиристор действует как диод. Он состоит из двух слоев полупроводников, а именно p-типа и n-типа, расположенных между собой для образования соединения. Анод соединен с внешним p-слоем, катод с внешним n-слоем и затвором с внутренним p-слоем. Он имеет 3 соединения, а именно J1, J2, J3.

Когда анод имеет положительный потенциал относительно катода, на затвор не подается напряжение. Соединения J1, J3 смещены в прямом направлении, а J2 — в обратном. Так что никакой проводимости здесь не происходит.

Теперь, когда положительный потенциал увеличивается за пределами напряжения пробоя, происходит пробой соединения J2, и он начинает проводить ток. Как только происходит пробой, он продолжает проводить независимо от напряжения на затворе, пока потенциал на аноде не будет удален или ток через устройство не станет меньше, чем ток удержания.

Теперь, когда положительный потенциал приложен к клемме затвора по отношению к катоду, происходит пробой соединения J2. Чтобы быстро включить тиристор, необходимо выбрать соответствующее значение потенциала.

Вход действует как управляющий электрод. Когда небольшое напряжение, известное как импульс затвора, подается на его затвор, устройство переключается в состояние проводимости. Это продолжается до тех пор, пока напряжение на устройстве не изменится или не будет снято.

Ток запуска затвора изменяется обратно пропорционально напряжению затвора, и для его запуска требуется минимальный заряд затвора. Таким образом, переключением тиристоров можно управлять через его импульс затвора.

Двухтранзисторная аналогия тиристора

Ток коллектора от NPN-транзистора подается непосредственно на базу PNP-транзистора, а ток коллектора PNP-транзистора подается на базу NPN-транзистора. Эти соединенные транзисторы полагаются друг на друга для проводимости.

Таким образом, для проведения одного из транзисторов требуется базовый ток. Когда анодный вывод тиристора является отрицательным по отношению к катоду, NP-переход становится смещенным вперед, а PN-переход становится обратным смещением.

Два транзисторных аналога тиристора

Здесь поток обратного тока блокируется до тех пор, пока не будет приложено напряжение пробоя. После пробивного напряжения оно начинает проводить без подачи сигнала затвора. Это одна из отрицательных характеристик тиристоров, так как она запускает проводимость при обратном разрыве напряжения.

Когда анодный вывод сделан положительным по отношению к катоду, внешние переходы смещены в прямом направлении, а центральный переход NP смещен в обратном направлении и блокирует прямой ток. Таким образом, чтобы вызвать его в проводимости, положительный ток прикладывается к базе транзисторов.

Два транзистора соединены в регенеративном контуре, и это заставляет транзистор проводить насыщение. Таким образом, можно сказать, что тиристоры блокируют ток как в направлении источника переменного тока в выключенном состоянии, так и могут включаться путем приложения положительного тока к базе транзистора.

Характеристики Тиристора

Тиристоры могут иметь прямое или обратное смещение. Посмотрим, как это работает в обоих направлениях.

Тиристоры в состоянии смещения вперед

Когда анод становится положительным, PN-соединения на концах смещены вперед, а центральное соединение (NP) становится смещенным назад. Он будет оставаться в заблокированном (ВЫКЛ) режиме (также известном как этап прямой блокировки) до тех пор, пока он не будет вызван импульсом тока затвора или приложенное напряжение не достигнет напряжения прямого отключения.

Запуск по импульсу тока затвора  Когда он запускается импульсом тока затвора, он начинает проводить и будет действовать как переключатель замыкания. Тиристоры остаются во включенном состоянии, то есть остаются в заблокированном состоянии. Здесь вход теряет контроль, чтобы выключить устройство.

Запуск по напряжению прямого отключения — Когда подается прямое напряжение, ток утечки начинает протекать через блокировку (J2) в среднем соединении тиристоров. Когда напряжение превышает прямое отключение перенапряжения или критического предела, то J2 выходит из строя и достигает состояния ON.

Когда ток затвора (Ig) увеличивается, он уменьшает площадь блокировки и, таким образом, уменьшается прямое отключающее напряжение. Он включится, когда будет поддерживаться минимальный ток, называемый запирающим током.

Когда ток затвора Ig = 0 и ток анода падают ниже определенного значения, называемого удерживающим током, во время состояния ВКЛ, он снова достигает своего состояния прямой блокировки.

Тиристоры в обратном смещенном состоянии

Если анод является отрицательным по отношению к катоду, то есть с приложением обратного напряжения, оба PN-перехода на конце, то есть J1 и J3, становятся смещенными в обратном направлении, и центральное соединение J2 становится смещенным в прямом направлении. Через него протекает только небольшой ток утечки. Это режим блокировки обратного напряжения или выключенное состояние тиристора.

Когда обратное напряжение увеличивается еще больше, то при определенном напряжении происходит лавинный пробой J1 и J2, и он начинает проводить в обратном направлении. Максимальное обратное напряжение, при котором тиристор начинает проводить ток, называется обратным напряжением пробоя.

  • Тиристор блокирует напряжение как в прямом, так и в обратном направлении, и, таким образом, образуется симметричная блокировка.
  • Тиристор включается при приложении положительного тока затвора и выключается, когда напряжение на аноде падает до нуля.
  • Небольшой ток от затвора к катоду может запустить тиристор, изменив его с разомкнутой цепи на короткое замыкание.

Режимы работы тиристора

Тиристор имеет три режима работы:

  • Блокировка вперед
  • Обратная блокировка
  • Прямая проводимость
Блокировка вперед

В этом состоянии или режиме прямая проводимость тока блокируется. Верхний диод и нижний диод смещены в прямом направлении, а соединение в центре — в обратном направлении. Таким образом, тиристор не включается, поскольку затвор не срабатывает, и через него не протекает ток.

Обратная блокировка

В этом режиме соединение анода и катода меняется на обратное, и через него по-прежнему не протекает ток. Тиристоры могут проводить ток только в одном направлении, и он блокирует в обратном направлении, поэтому поток тока блокируется.

Прямая проводимость

При подаче тока на затвор срабатывает тиристор, и он начинает проводить ток. Он остается включенным до тех пор, пока прямой ток не упадет ниже порогового значения, и этого можно достичь, отключив цепь.

Типы тиристоров

Основываясь на возможностях включения и выключения и физической структуре, тиристоры классифицируются как:

  • Тиристоры с силиконовым управлением (SCR)
  • Тиристор отключения эмиттера (ETO)
  • Тиристоры с быстрым переключением (SCR)
  • Светоактивированные кремниевые выпрямители (LASCR)
  • Ворота отключают тиристоры (GTO)
  • Тиристоры с обратной проводимостью (RCT)
  • Тиристоры с управлением FET (FET-CTH)
  • MOS-контролируемый тиристор (MTO)
  • Двунаправленные фазово-управляемые тиристоры (BCT)

Применение тиристора

Тиристор используется в различных применениях, таких как:

  • В основном используется в двигателях с переменной скоростью.
  • Используется для управления электроприводом высокой мощности.
  • Используется в основном в двигателях переменного тока, светильниках, сварочных аппаратах и ​​т. Д.
  • Используется в ограничителе тока короткого замыкания и выключателе.
  • Быстрая скорость переключения и низкая проводимость возможны в тиристоре ETO.
  • Используется в качестве диммеров на телевидении, в кинотеатрах.
  • Используется в фотографии для вспышек.
  • Может использоваться в охранной сигнализации.
  • Используется в регулировании скорости вращения электрического вентилятора.
  • Используется в автомобильных зажиганиях.

Преимущества тиристора

Преимущества тиристора включают в себя:

  • Бюджетный.
  • Может быть защищен с помощью предохранителя.
  • Может обрабатывать большое напряжение / ток.
  • Способен контролировать мощность переменного тока.
  • Очень легко контролировать.
  • Легко включить.
  • Тиристор GTO или Gate Turnoff обладает высокой эффективностью.
  • Занимает меньше времени на работу.
  • Тиристорные выключатели могут работать с большой частотой.
  • Требует меньше места по сравнению с механическими переключателями.
  • Может использоваться для надежных операций.
  • Стоимость обслуживания тиристора очень меньше.
  • Очень прост в использовании для сложного управления.
  • Грузоподъемность очень хорошая.
  • Может использоваться в качестве генератора в цифровых цепях.
  • Может быть подключен параллельно и последовательно для обеспечения электронного управления на высоких уровнях мощности.
  • Тиристоры проводят ток только в одном направлении.
  • Он может использоваться как защитное устройство, как предохранитель в линии электропередачи.

Недостатки тиристора

К недостаткам тиристора можно отнести:

  • Не может использоваться для более высоких частот.
  • В цепи переменного тока тиристор должен быть включен на каждом цикле.
  • SCR требуется время для включения и выключения. Это вызывает задержку или повреждение в нагрузке.
  • Он может остановить двигатель при подключении, но не может удерживать его в неподвижном состоянии.
  • Скорость отклика тиристора очень низкая.
  • Не часто используется в цепях постоянного тока, так как тиристор нельзя отключить, просто сняв привод затвора.
  • Низкая эффективность.
  • Ток фиксации и удержания больше в тиристоре GTO.
  • Возможность обратной блокировки напряжения меньше возможности прямой блокировки.
  • Надежность тиристора TRIAC меньше, чем SCR.
  • TRIAC имеют более низкий рейтинг dv / dt по сравнению с SCR.

meanders.ru

Тиристоры для чайников / Habr

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно тут.

Классификация


В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.

К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров


1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение


Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Источники:
ru.wikipedia.org
electricalschool.info

habr.com

Диоды, выпрямление тока, стабилитроны, тиристоры.

Разновидности диодов.


Помимо способности пропускать ток только в одном направлении, p-n переход обладает рядом других интересных особенностей. Например, способностью излучать(в т. ч. и в видимом диапазоне) при протекании тока в прямом направлении и генерировать эл. ток под воздействием излучения. Эта особенность используется при реализации таких электронных элементов как светодиоды, фотодиоды и фотоэлементы.
Кроме того, любой p-n переход обладает еще и электрической емкостью, а кроме того, возможностью ее изменять с помощью напряжения приложенного в обратном направлении. Используя ее удалось создать такие полезные элементы как ВАРИКАПЫ.

Варикапы.

Итак, p-n переход обладает электрической емкостью, величина которой зависит от его площади и ширины. Если подавать напряжение в обратном направлении - переход смещается, площадь остается неизменной, но ширина увеличивается. Емкость, при этом соответственно - уменьшается. Появляется возможность, изменяя величину приложенного напряжения, эту емкость регулировать. Электронные элементы(диоды, по сути) созданные на этом принципе называют - варикапами.

Варикапы используются в радиоаппаратуре вместо обычных конденсаторов переменной емкости для перестройки частоты колебательных контуров. Приемущество Применение варикапов позволило значительно снизить габариты и повысить эффективность блоков селекции радиоприемных устойств, относительно просто и недорого реализовать автоматизацию процессов настройки(проводимых ранее вручную).

Диоды Шоттки.

Диод Шоттки(диод с барьером Шоттки) — полупроводниковый диод с малым падением напряжения(0,2—0,4 вольт) при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В диодах Шоттки в отличие от обычных диодов,вместо p-n перехода используется переход металл-полупроводник. Это дает ряд особых преимуществ - пониженное падение напряжения при прямом включении, очень маленький заряд обратного восстановления.

Последнее объясняется тем, что в отличии от обычных диодов диоды Шоттки работают только на основных носителях, а их быстродействие ограничивается лишь барьерной емкостью. Диоды Шоттки наиболее целесообразно использовать в быстродействующих импульсных цепях, для выпрямления малых напряжений высокой частоты, в высокочастотных смесителях, в ключах и коммутаторах.

Светодиоды.

При протекании прямого тока через любой p-n переход(любого диода!) происходит генерация фотонов. Это является следствием циклической рекомбинации - восстановления атомов вещества в процессе перемещения основных носителей тока.
Электронные элементы служащие для генерации света и основанный на этом принципе называется соответственно - светодиодами. Светодиоды используют для индикации, передачи информации, в составе таких электронных приборов как оптопары.

К.П.Д. и яркость современных светодиодов настолько высоки, что на настоящий момент они являются наиболее перспективными источниками искуственного освещения. В зависимости от материала выбранного в качестве полупроводника светодиоды излучают на разных длинах волн.
ИК - диоды излучают в инфракрасной области, индикаторные и осветительные светодиоды в видимой части спектра(зеленые, красные, желтые и т. п.). Наиболее высоким К.П.Д. отличаются светодиоды излучающее в ультрафиолетовой области. Интересно, что как раз этот тип наиболее часто применяется для освещения. Белый свет получается при использовании специального люминофора, преобразующего ультрафиолет.

Интенсивность излучения светодиода возрастает при увеличении тока протекающего через p-n переход, до определенного предела. После его достижения сетодиод выходит из строя. Поэтому, для нормальной работы необходимо ограничивать ток.
Как правило, это реализуется с помощью последовательного подключения резистора.

Стабисторы.

Существующие стабилитроны имеют ограничение по минимальному напряжению стабилизации(около 3 В).
Что делать, если необходим источник стабилизированного напряжения до 3-х вольт? Использовать прямую ветвь Вольт - Амперной Характеристики диода(ВАХ). В области прямого смещения p-n-перехода напряжение на нем может иметь значение 0,7...2 В(в зависимости от материала полупроводника) и мало зависит от тока.
Диоды специально используемые в этом качестве, называют - СТАБИСТОРАМИ.

Фотодиоды.

Фотодиод — это светочувствительный полупроводниковый элемент с одним p-n переходом, обратный ток которого меняется в зависимости от уровня освещенности. Величина на которую происходит его изменение при этом, называется фототоком.

Фотодиоды используют для преобразования сигналов передаваемых в оптическом режиме в электрическую форму. Малая инерционость фотодиодов способствует приему передачи информации, с большой плотностью, например, в при передаче ее по оптоволоконным линиям. Кроме того фотодиоды могут использоваться в фотоприемниках дистанционного управления и т. д.

На главную страницу

elektrikaetoprosto.ru

принцип действия, обозначение, основные характеристики и применение

В электронике существует такое понятие, как «электронные ключи». Это приборы, имеющие два устойчивых состояния. Одним из их представителей является тиристор, представляющий, по сути, полупроводниковый элемент. Его работа задаётся с помощью тока или напряжения, поступающего на специальный вывод. Применение устройства позволяет управлять мощной нагрузкой, используя слаботочные цепи. При этом его конструкция проста, а принцип работы довольно понятен.

История изобретения

Изобретение тиристора стало возможным после открытия полупроводников и исследования их свойств. После обнаружения в 1600 году английским физиком Уильямом Гилбертом электричества многие инженеры и ученые посвятили себя изучению этого явления. Выдающими людьми, изучающими электромагнетизм в разное время, были: Эрстед, Ампер, Вольт, Фарадей, Максвелл, Кюри, Яблочков. Благодаря их исследованиям и теоретическим догадкам было установлено, что все окружающие твёрдые тела можно разделить на три группы:

  • проводники — вещества, обладающие большим количеством свободных носителей зарядов и способные практически без потерь проводить электрический ток;
  • диэлектрики — физические тела, плохо проводящие ток;
  • полупроводники — материалы, у которых в кристаллической решётке концентрация подвижных зарядов намного ниже, чем количество атомов.

Типичным признаком полупроводников является зависимость их проводимости от изменения температуры или другого внешнего воздействия, например, света, электромагнитного поля.

В 1947 году американцы Бардин, Бреттейн и Шокли создали первый транзистор, что и послужило толчком к бурному развитию полупроводниковой техники. В разных странах начались исследования этих материалов. Так, русским инженером Лошкарёвым была выявленная биполярная диффузия. А Красиловым и Мадояном разработаны образцы германиевых элементов.

В 60-х годах полученные исследования позволили создать чипы, которые содержали несколько объединённых транзисторов. Начали создаваться компании и заводы, выпускающие серийно электронные компоненты. В процессе изучения свойств полупроводников было установлено, что структура монокристаллов, то есть тел, имеющих непрерывную кристаллическую решётку, может иметь три и более p-n переходов. В зависимости от уровня напряжения, подаваемого на один из них, изменялись состояния других.

Изучая монокристаллы полупроводников, учёные компании Белла выявили их технические характеристики. В дальнейшем её инженеры смогли создать прибор, имеющий третий вывод. С помощью его и происходило управление процессом прохождения тока через весь элемент. Через некоторое время в Дженерал Электроникс анонсировали устройство, получившее название «триак» (thyristor).

Суть устройства

Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:

  • закрытое — соответствующее низкой проводимости;
  • открытое — неоказывающее сопротивление прохождению тока.

То есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).

Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.

Принцип работы

Тиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.

В результате получится, что крайние зоны будут являться эмиттерными переходами, а средние — коллекторными. Область базы же первого элемента будет совпадать с коллектором второго и наоборот. Исходя из этого коллекторный ток транзисторов, одновременно будет являться и базовым.

Физические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда. Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится. В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.

Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.

Повышение напряжения приводит к инжекции носителей в управляемый переход. В итоге, с одной стороны, увеличивается его сопротивление из-за обеднения основными носителями, так как переход получается включённым в обратном направлении, а с другой — обогащение, связанное с поступлением в его область новых зарядов.

При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.

Характеристики и параметры

Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:

  • тиристор по подобию диода пропускает ток только в одном направлении, то есть работает как выпрямитель;
  • прибор переключается из одного состояния в другое при помощи напряжения;
  • величина тока, необходимая для переключения тиристора, составляет порядка нескольких миллиампер, при этом он может пропускать через себя десятки ампер;
  • изменяя время приложенного сигнала к управляющему выводу, можно регулировать среднее значение тока, протекающего через нагрузку, другими словами — управлять мощностью.

Главной же функцией, описывающей работу прибора, является вольт-амперная характеристика (ВАХ). Представляет она из себя плоскую систему координат по оси Y, на которой откладывается ток нагрузки, а по оси X — напряжение на управляющем электроде. По виду нелинейности соответствия этих двух величин ВАХ относится к S-типу устройств.

На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.

Тиристорный прибор, кроме ВАХ, характеризуется рядом параметров:

  1. Наибольшее постоянное обратное напряжение — значение, при превышении которого наступает пробой перехода.
  2. Напряжение включения — величина сигнала, при достижении которой происходит отпирание элемента.
  3. Допустимый ток — максимальное значение, которое может через себя пропустить радиоприбор без изменения своих характеристик.
  4. Ток удержания — это ток, текущий через анод и провоцирующий запирание элемента.
  5. Падение напряжения — показывает величину энергии, которая рассеивается на приборе (0,5 -1 В).
  6. Максимальна мощность — определяется допустимым током и максимально возможным напряжением, приложенным к управляемым выводам, то есть характером нагрузки.
  7. Время отключения — промежуток времени, за который тиристор полностью закроется. Составляет микросекунды.
  8. Отпирающий постоянный ток управления — обозначает значение, которое необходимо для поддержания устройства в открытом состоянии (анод-катод). Обычно составляет порядка 100 мА.

Конструкция прибора

Любой тиристорный прибор имеет как минимум три вывода: анод, катод и вход. Выпускаются они различными производителями и могут иметь форму таблетки или штыря. Как правило, материалом для их изготовления служит кремний. Он обеспечивает хорошую теплопроводность и может выдерживать большую мощность.

Эмиттерные переходы выполняются по сплавной технологии, а коллекторные — методом диффузии. Используется также и планарная технология. Концентрация примесей в эмиттерных областях делается значительно большей, чем в базовых. При этом самым толстым слоем является центральный. Эти два фактора — толщина и низкая концентрация — позволяют прибору выдерживать довольно большое обратное напряжение (порядка сотен вольт). Анод прибора соединяется с корпусом изделия, что в итоге положительно сказывается на отводе тепла.

Немного другую конструкцию имеют асимметричные тиристоры. В их конструкции катод соединяется с n+ и p зоной, а анод с p+ и n областью. Такие соединения называются анодным или катодным коротким замыканием. Их использование приводит к появлению дополнительного сопротивления межу переходами. Такое подключение уменьшает переходные процессы и время жизни основных носителей.

В простейшую конструкцию тиристора входит основание, соединённое с полупроводниковым кристаллом и являющееся анодом, вывода катода и управляющего электрода. Сверху кристалл накрывается изолятором и крышкой, способствующей защите прибора от механических повреждений и одновременно служащей теплоотводом.

Маркировка радиодетали

Согласно системе, указанной в ГОСТ 10862–72, для обозначения тиристора используется буквенно-цифровой код, состоящий из четырёх символов. Первый элемент кода указывает на вид материала, из которого сделано устройство. Например, Г — германий, К — кремний, А — арсенид галлия. Второй обозначает принадлежность устройства — Н-динистор, У-триак. Третий элемент характеризует функциональность, возможности и номер партии.

Так, числа с 101 до 199 обозначают диодные и незапираемые триодные тиристоры малой мощности, а интервал от 401 до 499 — триодные запираемые тиристоры средней мощности. Последняя буква указывает на тип устройства.

Но после 1989 года была принята новая система обозначений. Поэтому тиристоры, выпускаемые с начала 1989 года, маркировались уже согласно ГОСТ 20859.1.89. В основе этого обозначения используется многозначный код, состоящий из следующих элементов:

  1. На первом месте стоит буква, указывающая тип устройства. Например, ТО — оптотиристор, ТЗ — тиристор запираемый и так далее.
  2. На втором — буква, определяющая тип цепи, в которой может работать тиристор (Ч — высокочастотная, Б — быстродействующая, И — импульсная).
  3. Третья цифра — обозначает порядковый номер.
  4. Четвёртый знак — характеризует габариты корпуса прибора.
  5. Пятый — конструктивное исполнение.
  6. Шестой — допустимый ток.
  7. Седьмой — полярность. Так, буква Х указывает на то, что катод соединён с корпусом.
  8. Восьмой — класс устройства, соответствующий импульсной разности потенциалов для закрытого состояния.
  9. Последующие цифры образуют сочетание классификационных параметров.

На схемах и в литературе тиристор подписывается латинскими буквами VS. Графически же изображается наподобие диода, то есть равностороннего треугольника с вертикальной полосой у его вершины. Через середину основания и вершину проходит линия, символизирующая электрическую цепь. Но в отличие от диода у тиристора от нижней стороны треугольника дополнительно отводится прямая линия, обозначающая управляющий электрод (У).

Классификация и различия

Выпускаемые тиристоры различаются не только по тому, как выглядят, и своим характеристикам, но и по виду проводимости, а также количеству выводов. Существует довольно большое их количество, но при этом их можно классифицировать по следующим признакам:

  1. Способу управления. Разделяют на приборы, управление которыми происходит путём подачи импульса напряжения на анод-катод (динисторы) или тока на управляющей вывод (тринисторы). В свою очередь, последние можно разделить на управляющиеся по аноду или катоду. А также существует ещё один тип приборов, управляемый квантами света (оптотиристор).
  2. Типом обратной проводимо

rusenergetics.ru

Что такое диод, стабилитрон, варикап, тиристор, их типы и применение

 

   Полупроводниковые приборы применялись в радиотехнике еще до изобретения электронных ламп. Изобретатель радио А. С. Попов использовал для обнаружения электромагнитных волн вначале когерер (стеклянную трубку с металличеокими опилками), а затем контакт стальной иглы с угольным электродом. Это был первый полупроводниковый диод — детектор. Позже были созданы детекторы с использованием естественных и искусственных кристаллических полупроводников (галена, цинкита, халькопирита и т. д.). Такой детектор состоял из кристалла полупроводника, впаянного в чашечку-держатель, и стальной или вольфрамовой пружинки с заостренным концом (рис. 117). Положение острия на кристалле находили опытным путем, добиваясь наибольшей громкости передачи-радиостанции.

   В 1922 г. сотрудник Нижегородской радиолаборатории О. В. Лосев обнаружил замечательное явление: кристаллический детектор, оказывается, может генерировать и усиливать электрические колебания. Это было настоящей сенсацией, но недостаточность научных познаний, отсутствие нужного экспериментального оборудования не позволили в то время глубоко исследовать суть процессов, происходящих в полупроводнике, и создать полупроводниковые приборы, способные конкурировать с электронной лампой.

 

 

 Рис. 117

 

 

Рис. 118

   Полупроводниковые диоды обозначают символом, сохранившимся в общих чертах со времен первых радиоприемников (рис. 118,6). Вершина треугольника в этом символе указывает направление наибольшей проводимости (треугольник символизирует анод диода, а короткая черточка, перпендикулярная линиям-выводам,— его катод). Этим же символом обозначают полупроводнико

 

 

Рис. 119.

   вые выпрямители, состоящие, например, из нескольких последовательно, параллельно или смешанно соединенных диодов (выпрямительные столбы и т. п.).

   Для питания радиоаппаратуры часто используют мостовые выпрямители. Начертание тажой схемы соединения диодов (квадрат, стороны которого образованы символами диодов) давно уже стало общепринятым, поэтому для обозначения таких выпрямителей стали иополикшать упрощенный символ — квадрат с  символом одного диода внутри (рис. 119). В зависимости от значения выпрямленного нтрмжгннн к»жд

   На основе символа диода построены условные обозначения полупроводниковых диодов с особыми свойствами. ДлЯ получения нужного символа используют специальные знаки, изВбражаемые либо на самом базовом символе, либо в непосредственной близости от него, а чтобы акцентировать внимание на некоторых из них, базовый символ помещают в круг — условное обозначение корпуса полупроводникового прибора.

   Туннельные диоды. Знаком, напоминающим прямую скобку, обозначают катод туннельных диодов, (рис. 121,а). Их изготовляют из полупроводниковых материалов с очень большим содержанием примеси, в результате чего полупроводник превращается в полуметалл. Благодаря необычной форме вольт-амперной характеристики (на ней имеется участок отрицательного сопротивления) туннельные диоды используют для усиления и генерирования электрических сигналов и в переключающих устройствах. Важным достоинством этих диодов является то, что они могут работать на очень высоких частотах (до 10″ Гц).

 

 

 Рис. 121

 

 

Рис. 122

   Разновидность туннельных диодов — обращенные диоды, у которых при малом напряжении на р-п переходе проводимость в обратном направлении больше, чем в прямом. Используют такие диоды в обратном включении. В условном обозначении обращенного диода черточку-катод изображают с двумя штрихами, касающимися ее своей’серединой (рис. 121,6).

   Стабилитроны. Прочное место в источниках питания, особенно низковольтных, завоевали полупроводниковые стабилитроны, работающие также на обратной ветви вольт-амперной характеристики. Это плоскостные кремниевые диоды, изготовленные по особой технологии. При включении их в обратном направлении и определенном напряжении -на переходе последний «пробивается», и в дальнейшем, несмотря на увеличение тока через- переход напряжение на нем остался почти неизменным. Благодари этому свойству стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений в стабилизаторах на транзисторах. Для получения малых образцовых напряжений стабилитроны включают в прямом направлении, при этом напряжение стабилизации одного стабилитрона равно 0,7… 0,8 В. Такие же результаты получаются при включении в прямом направлении обычных кремниевых диодов.

   Для стабилизации низких напряжений разработаны и широко применяются специальные полупроводниковые диоды — стабисторы. Отличие их от стабилитронов в том, что они работают на прямой ветви вольт-амперной характеристики, т. е. при включении в прямом (проводящем) направлении.

   Чтобы показать на схеме стабилитрон, черточку-катод базового символа дополняют коротким штрихом, направленным в сторону символа анода (рис. 122,а). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения условного обозначения стабилитрона на схеме. Это в полной мере относится и к символу двух-анодного (двустороннего) стабилитрона (рис. 122,6), который можно включать в электрическую цепь в любом направлении (по сути, это два встречно включенных одинаковых стабилитрона).

   Варикапы. Электронно-дырочный переход, к которому приложено обратное напряжение, обладает свойствами конденсатора. При этом роль диэлектрика играет сам р-п переход, в котором свободных носителей зарядов мало, а роль обкладок — прилежащие слои полупроводника с электрическими зарядами разного -знака — электронами и дырками. Изменяя напряжение, приложенное

 

 

Рис. 123

 

 

Рис. 124

   к р-п переходу, можно изменять его толщину, а следовательно, и емкость между слоями полупроводника. Это явление использовано в специальных полупроводниковых приборах — варикапах [от английских слов vari(able) — переменный и cap(acitor) — конденсатор]. Их широко применяют для настройки колебательных контуров, в устройствах автоматической подстройки частоты, а также в качестве частотных модуляторов в различных генераторах.

   Условное графическое обозначение варикапа (см. рис. 123,а), наглядно отражает их суть: дне параллельные черточки воспринимаются как символ конденсаторе. Кик и конденсаторы переменной емкости, варикапы часто изготовляют и виде блоков (их называют матрицами) с общим катодом и раздельными анодами. Для примера на рис. 123,6 показано обозначение матрицы из двух варикапов, а на рис. 123,в — из трех.

   Тиристоры. На основе базового символа диода построены и условные обозначения тиристоров (от греческого thyra — дверь и английского (resi)stor — резистор). Это диоды, представляющие собой чередующиеся слои кремния с электропроводностью типов р и п. Таких слоев в тиристоре четыре, т. е. он имеет три р-п перехода (структура р-п-р-п). Тиристоры нашли широкое применение в различных регуляторах переменного напряжения, в релаксационных генераторах, коммутирующих устройствах и т. д.

   Тиристоры с выводами только от крайних слоев структуры называют динисторимн и обозначают символом диода, перечеркнутым отрезком линии, паралельной черточке-катоду (рис 124,а). Такой же прием использован и при

   построении обозначения симметричного динистора (рис.  124, б), проводящего ток (после включения) в обоих направлениях.

   Тиристоры с дополнительным (третьим) выводом (от одного из внутрених слоен структуры) называют тринисторами. Управление по катоду в обозначении этих приборов показывают ломаной линией, присоединенной к символу катода (рис. 124,в), по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод (рис. 124,г). Условное обозначение симметричного (двунаправленного) трииистора получают из символа симметричного динистора добавлением третьего вывода (рис. 124,(5).

   Фотодиоды. Основной частью фотодиода является переход, работающий при обратном смещении. В его корпусе имеется окошко, через которое освещается кристалл полупроводника. В отсутствие света ток через р-п переход

 

 

 Рис. 126

 

 

Рис. 125

   очень мал — не превышает обратного тока обычного диода. При освещении кристалла обратное сопротивление перехода резко падает, ток через него растет. Чтобы показать такой полупроводниковый диод на схеме, базовый символ диода помещают в кружок, а рядом с ним (слева сверху, независимо от положения символа) изображают знак фотоэлектрического эффекта — две наклонные параллельные стрелки, направленные в сторону символа (рис. 125,а). Подобным образом нетрудно построить и условнбе обозначение любого другого полупроводникового прибора, изменяющего свои свойства под действием оптического излучения. В качестве примера на рис. 125,6 показано обозначение фотодинистора.

   Светодиоды и светодиодные индикаторы. Полупроводниковые диоды, излучающие свет при прохождении тока через р-n переход, называют светодио-дами. Включают такие диоды в прямом направлении. Условное графическое обозначение светодиода похоже на символ фотодиода и отличается от него тем, что стрелки, обозначающие оптическое излучение, помещены справа от кружка и направлены в противоположную сторону (рис. 126).

   Для отображения цифр, букв и других знаков в низковольтной аппаратуре часто применяют светодиодные знаковые индикаторы, представляющие собой наборы светоизлучающих кристаллов, расположенных определенным образом и залитых прозрачной пластмассой. Условных обозначений для подобных изделий стандарты ЕСКД не предусматривают, но на практике часто используют символы, подобные показанному на рис. 127 (символ семисегмент-ного индикатора для отображения цифр и запятой). Как видно, такое графическое обозначение наглядно отражает реальное расположение светоизлучающих ‘элементов (сегментов) в индикаторе, хотя и не лишено недостатка: оно не несет информации о полярности включения выводов индикатора в электрическую цепь (индикаторы выпускают как с общим для всех сегментов выводом анода, так и с общим выводом катода). Однако особых затруднений это обычно не вызывает, поскольку подключение общего вывода индикатора (как, впрочем, и микросхем) оговаривают на схеме.

   Оптроны. Светоизлучающие кристаллы широко используют в оптронах — специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, когда необходима их гальваническая развязка. На схемах оптроны изображают, как показано на рис. 128. Оптическую связь излучателя света (светодиода) с фотоприемником показывают двумя параллельными стрелками, перпендикулярными линиям-выводам оптрона. Фотоприемником

 

 

 

Рис. 127

 

 

Рис. 128

   в оптроне могут быть не только фотодиод (рис. 128,а), но и фоторезистор (рис. 128,6), фотодинистор (рис. 128,в) и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется.

   При необходимости составные части оптрона допускается изображать раздельно, но в этом случае знак оптической связи следует заменить знаками оптического излучения и фотоэффекта, а принадлежность частей к оптрону показать в позиционном обозначении (рис. 128,г).

Литература:
В.В. Фролов, Язык радиосхем, Москва, 1998

nauchebe.net

4 Принцип действия тиристоров,диодов и обл.их применения

4. Принцип действия тиристоров, диодов и область их применения

Тиристор — полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или более p-n переходов, который может переключаться из закрытого состояния в открытое и наоборот. В зависимости от количества электродов и формы ВАХ тиристоры называются: динисторы; тринисторы; симмисторы.

Рис. 1. Схематическое обозначение тиристоров: а — динистор; б — динистор, изображенный в виде сочетания 2-х транзисторов; в — тринистор.

Крайние p-n переходы j1 и j3 называют эмиттерными, а средний j2 — коллекторным (соответственно области р1 и n2 называют эмиттерными, а области n1 и р2 — базами). Выводы от крайних областей называют эмиттерными, а от одной из средних базовым или управляющим. Вывод, от которого прямой ток течет во внешнюю цепь, называют катодным, а к которому ток течет из цепи — анодным. Анализ процессов, происходящих в тиристоре, упрощается, если представить его в виде сочетания двух транзисторов типа p-n-р и n-p-n (рис. 1, б).

Существует несколько вариантов объяснения работы тиристоров. Рассмотрим один из них. Если к тиристору приложить напряжение, как показано на рисунке, то переход j1 и j3 окажутся смещенными в прямом направлении, а переход j2 — в обратном. Следовательно, эмиттеры обоих транзисторов будут инжектировать неосновные носители в области базы. В результате диффузии (дрейфа) неосновные носители достигают коллекторного перехода и полем перехода затягиваются в область коллектора. Некоторая часть носителей инжектированных эмиттерами рекомбинирует в базовых областях с основными носителями заряда. Обычно в транзисторах рекомбинационный ток основных носителей поступает от внешнего источника через базовый электрод. В рассматриваемом приборе базовый электрод отсутствует. В этом случае рекомбинационный ток каждой из баз образуется из обратного тока коллекторного перехода и тока противоположного эмиттера. Тогда ток коллекторного перехода где a = a1 + a2 — суммарный коэффициент передачи тока. Таким образом, переключение тиристора в открытое состояние с резким увеличением тока будет происходить при условии a = 1. Напомним, что коэффициент передачи тока эмиттера транзистора возрастает с увеличением тока эмиттера в результате уменьшения рекомбинационной составляющей тока эмиттера и появления электрического поля в базе транзистора. Коэффициент передачи тока эмиттера так же растет при увеличении напряжения на коллекторе из-за уменьшения толщины базы и увеличения коэффициента умножения в коллекторном переходе. Все эти процессы происходят и в тиристорной структуре при увеличении прямого напряжения.

Вольт-амперная характеристика динистора. На рис. 2 изображена ВАХ динистора. Для тиристора, находящегося в состоянии, соответствующем переходному участку характеристики (точка А на рис. 2), суммарный коэффициент передачи тока стремится возрасти из-за увеличения проходящего тока. Но суммарный коэффициент передачи тока для переходного участка характеристики равен единице. Дальнейшее возрастание суммарного коэффициента передачи тока предотвращается уменьшением напряжения на коллекторном переходе и, следовательно, на всем тиристоре.

Тиристоры изготавливаются только из кремния, т.к. при этом обеспечиваются меньший ток утечки Iкбо в запертом состоянии, большее напряжение и большая зависимость суммарного коэффициента передачи тока от тока и напряжения.

Рис. 2. Вольт-амперная характеристика динистора

Для уменьшения начальных величин коэффициента передачи тока, и, следовательно, увеличения напряжения переключения, одну из баз тиристора делают довольно толстой по сравнению с диффузионной длиной соответствующих носителей. Если к p-n-p-n структуре приложить обратное напряжение, т.е. минус на р1 и плюс на n2 (рис. 1), то центральный переход j2 будет смещен в прямом направлении, а крайние переходы j1 и j3 — в обратном направлении. ВАХ тиристора при обратном напряжении аналогична обратной характеристике полупроводникового диода. Ввиду того, что напряжения пробоя переходов j1 и j3 различны, обратная ветвь характеристики будет определятся обратной характеристикой одного из переходов j1 и j3 (более высоковольтного).

Вольт-амперные характеристики тринистора и симмистора. Значительно расширяется область использования тиристоров, снабженных управляющим базовым электродом — тринисторов (рис. 1, в).

Рис. 3. Вольт-амперная характеристика тринистора

При подаче на управляющий электрод напряжения такой полярности, чтобы прилегающий к этой базе эмиттерный переход был включен в прямом направлении, через него потечет ток управления IУ. При этом увеличится инжекция из n-эмиттера, что приведет к накоплению избыточных зарядов в базовых областях тиристора и к переключению его в открытое состояние при общем напряжении на тиристоре менее напряжения переключения. Следовательно, с помощью тока управления можно изменить напряжение переключения тиристора (рис. 3).

Применение тиристоров: Тиристоры широко применяются в устройствах автоматики и электроники в качестве мощных электронных ключей. Они могут выполнять функции: высоковольтных электронных ключей; управляемых выпрямителей; усилителей импульсов; регуляторов мощности в цепях переменного тока; регуляторов скорости вращения электродвигателей; инверторов (преобразователей постоянного тока в переменный) и др.

Важным достоинством тиристорных устройств является очень высокий КПД (более 90%), т.к. тиристор обладает малыми потерями. Падение напряжения на нем не превышает 1,5 В при любом прямом токе. Мощные силовые тиристоры выпускаются на токи до 2000 А и напряжение до 3000 В.

Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом.

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др.. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Полупроводниковый диод, двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие "П. д." объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов. В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.

Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (р—n-перехода). Если к р—n-переходу диода (рис. 1) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер, соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р-области в n-область и электронов из n-области в р-область — течёт большой прямой ток (рис. 2). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р—n-переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д.

Применение диодов:

1)Диодные выпрямители:

2 )Диодные детекторы:

Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются почти во всех[источник не указан 20 дней] радиоприёмных устройствах: радиоприёмниках, телевизорах и т. п.. Используется квадратичный участок вольт-амперной характеристики диода.

3) Диодная защита

Диоды применяются также для защиты разных устройств от неправильной полярности включения и т. п.

Известна схема диодной защиты схем постоянного тока с индуктивностями от скачков при выключении питания. Диод включается параллельно катушке так, что в «рабочем» состоянии диод закрыт. В таком случае, если резко выключить сборку, возникнет ток через диод и сила тока будет уменьшаться медленно (ЭДС индукции будет равна падению напряжения на диоде), и не возникнет мощного скачка напряжения, приводящего к искрящим контактам и выгорающим полупроводникам.

4) Диодные переключатели:

Применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала с помощью конденсаторов и индуктивностей.

5) Диодная искрозащита

Основная статья: Барьер искрозащиты

studfile.net

Отправить ответ

avatar
  Подписаться  
Уведомление о