Отличие синхронного и асинхронного двигателя: «Чем отличается синхронный двигатель от асинхронного?» – Яндекс.Кью

Содержание

Синхронные и асинхронные электродвигатели: в чём разница?

В основе классификации электродвигателей на синхронный и асинхронный тип лежит конструкция мотора и особенности ротора. Так, синхронные функционируют на переменном источнике тока, а частота вращения ротора совпадает с частотой магнитного поля. Электродвигатели асинхронные иногда называют индукционными, и у них частота магнитного поля и вращений ротора не совпадают.

Особенности конструкции синхронных и асинхронных электродвигателей

В синхронных электродвигателях ключевые элементы — это индуктор и якорь. Индуктор располагается на роторе и имеет два полюса — постоянные магниты. Якорь находится на стартере, представлен одной или несколькими обмотками. Благодаря такой конструкции, синхронные двигатели могут функционировать как генераторы и как электродвигатели.

Главные конструктивные элементы асинхронных двигателей — магнитопровод и обмотка. Также в строении устройств есть ротор и статор, и другие элементы, влияющие на прочность и эффективность работы.

Отличия синхронного двигателя от асинхронного

Первое отличие — это соотношение частот вращения ротора с магнитным полем. В синхронных агрегатах эти показатели равные, а в асинхронных — отличаются. Второй тип, к слову, встречается гораздо чаще и имеет больше модификаций. Связано это с явными преимуществами асинхронных электродвигателей:

  • невысокая стоимость;
  • простота эксплуатации;
  • надёжность;
  • может работать без преобразователей, на собственных ресурсах сети.

Но асинхронные двигатели не лишены и недостатков:

  • имеют большой пусковой ток и маленький пусковой момент;
  • у них пониженный коэффициент мощности;
  • низкая управляемость.

Среди достоинств синхронных устройств выделим следующие:

  • стабильность вращения независимо от нагрузок на ротор;
  • не сильно чувствительны к перепадам напряжения.

Недостатками синхронных двигателей можно считать сложность конструкции и пуска в ход ротора.

Из всего вышесказанного можно сделать вывод, что асинхронные типы целесообразно использовать для двигателей, мощностью от 100 кВт. В остальных случаях проще обойтись асинхронными агрегатами.

 

Сравнение сервоприводов и шаговых двигателей

Рисунок 1 — Сервопривод

Физика процесса

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту. Электрические машины преобразуют механическую энергию в электрическую и наоборот, электрическую энергию в механическую. Машина, преобразующая механическую энергию в электрическую, называется генератором. Преобразование электрической энергии в механическую осуществляется двигателями.Принцип действия электрических машин основан на использовании законов электромагнитной индукции и электромагнитных сил. Если в магнитном поле полюсов постоянных магнитов или электромагнитов поместить проводник и под действием какой-либо силы F1 перемещать его, то в нем возникает Э. Д.С. равная:

E=B×I×vE= B times I times v

где В — магнитная индукция в месте, где находится проводник,

l — активная длина проводника (та его часть, которая находится в магнитном поле),
v — скорость перемещения проводника в магнитном поле.

Если этот проводник замкнуть на какой-либо приемник энергии, то в замкнутой цепи под действием Э.Д.С. будет протекать ток, совпадающий по направлению с Э.Д.С. в проводнике. В результате взаимодействия тока I в проводнике с магнитным полем полюсов создается электромагнитная сила Fэ, направление которой определяется по правилу левой руки; эта сила будет направлена навстречу силе, перемещающей проводник в магнитном поле. При равенстве сил F1 = Fэ проводник будет перемещаться с постоянной скоростью. Следовательно, в такой простейшей электрической машине механическая энергия, затрачиваемая на перемещение проводника, преобразуется в энергию электрическую, отдаваемую сопротивлению внешнего приемника энергии, т. е. машина работает генератором. Та же простейшая электрическая машина может работать двигателем. Если от постороннего источника электрической энергии через проводник пропустить ток, то в результате взаимодействия тока в проводнике с магнитным полем полюсов создается электромагнитная сила Рэ, под действием которой проводник начнет перемещаться в магнитном поле, преодолевая силу торможения какого-либо механического приемника энергии.

Рисунок 2 — Физика процесса

Таким образом, рассмотренная машина так же, как и любая электрическая машина, обратима, т. е. может работать как генератором, так и двигателем. Для увеличения Э.Д.С. и электромеханических сил электрические машины снабжаются обмотками, состоящими из большого числа проводов, которые соединяются между собой так, чтобы Э.Д.С. в них имели одинаковое направление и складывались. Э.Д.С. в проводнике будет индуктирована также и в том случае, когда проводник неподвижен, а перемещается магнитное поле полюсов.

Асинхронные двигатели

Наиболее распространенные электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.Асинхронный двигатель имеет статор (неподвижная часть) и ротор (подвижная часть), разделенные воздушным зазором, ротор крепится на подшипниках. Активными частями являются обмотки; все остальные части — конструктивные, обеспечивающие необходимую прочность, жесткость, охлаждение, возможность вращения и т. п. По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным. Фазный ротор используют когда необходимо создать большой пусковой момент. К ротору подводят ток и в результате уже возникает магнитный поток необходимый для создания момента.

На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на стержни ротора и по закону магнитной индукции возникает электрический ток т. к. изменяется магнитный поток, проходящий через замкнутый контур ротора. Токи в стержнях ротора создают собственное магнитное поле стержней, которые вступают во взаимодействие с вращающимся магнитным полем статора. В результате на каждый стержень действует сила, которая складываясь по окружности создает вращающийся электромагнитный момент ротора из-за того, что индукционный ток, возникающий в замкнутом контуре ротора, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. Следовательно и возникает вращение.Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора Э.Д.С. и, в свою очередь, создавать крутящий момент.

Рисунок 3 — Вид асинхронной машины с короткозамкнутым ротором в разрезе

На рисунке приведен вид асинхронной машины с короткозамкнутым ротором в разрезе:

  • 1 — станина,
  • 2 — сердечник статора,
  • 3 — обмотка статора,
  • 4 — сердечник ротора с короткозамкнутой обмоткой,
  • 5 — вал.

Синхронные двигатели

Синхронный двигатель не имеет принципиальных конструктивных отличий от асинхронных. На статоре синхронного двигателя помещается трехфазная обмотка, при включении которой в сеть трехфазного переменного тока будет создано вращающееся магнитное поле, число оборотов в минуту которого n = 60f/p, где f — частота напряжения питания привода. На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Либо ротор выполнен из постоянного магнита. Ток возбуждения создает магнитный поток полюсов или в случае с постоянным магнитом, магнитный поток уже создан. Вращающееся магнитное поле, полученное токами обмотки статора, увлекает за собой полюса ротора. При этом ротор может вращаться только с синхронной скоростью, т. е. со скоростью, равной скорости вращения поля статора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.

Достоинством синхронных двигателей является меньшая, чем у асинхронных, чувствительность к изменению напряжения питающей сети. У синхронных двигателей вращающий момент пропорционален напряжению сети в первой степени, тогда как у асинхронных — квадрату напряжения. Вращающий момент синхронного двигателя создается в результате взаимодействия магнитного поля статора с магнитным полем полюсов. От напряжения питающей сети зависит только магнитный поток поля статора.

Шаговые двигатели

Шаговые двигатели — это электромеханические устройства, преобразующие сигнал управления в угловое (или линейное) перемещение ротора с фиксацией его в заданном положении без устройств обратной связи. По сути шаговый двигатель является синхронным, но отличается подходом управления. Рассмотрим самые распространенные.

Двигатели с постоянными магнитами

Рисунок 4 — Ротор

Двигатели с постоянными магнитами состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты. Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и, как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением. Такой двигатель имеет величину шага 30°. При включении тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Для осуществления непрерывного вращения нужно включать фазы попеременно. На практике двигатели с постоянными магнитами обычно имеют 48—24 шага на оборот (угол шага 7,5—15°). Двигатели с постоянными магнитами подвержены влиянию обратной Э.Д.С. со стороны ротора, котрая ограничивает максимальную скорость.

Гибридные двигатели

Рисунок 5 — Устройство гибридных двигателей

Являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3,6…0,9°). Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделен на две части, между которыми расположен цилиндрический постоянным магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи. Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. Обычно используются 4 основных полюса для 3,6° двигателей и 8 основных полюсов для 1,8…0,9° двигателей. Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определенных положениях ротора, что улучшает статический и динамический момент.

Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть между ними. Зависимость между числом полюсов ротора, числом эквивалентных полюсов статора и числом фаз определяет угол шага S двигателя:

S=360/(Nph×Ph)=360/NS= 360 / ( Nph times Ph ) = 360 / N

где Nph — число эквивалентных полюсов на фазу, равное числу полюсов ротора,
Ph — число фаз,
N — полное количество полюсов для всех фаз вместе.

Сервопривод

Рисунок 6 — График зависимости момента от скорости вращения двигателя

Сервопривод — общее название привода, синхронного, асинхронного либо любого другого, с отрицательной обратной связью по положению, моменту и др. параметрам, позволяющего точно управлять параметрами движения. Сервопривод – это комплекс технических средств. Состав сервопривода: привод – например, электромотор, датчик обратной связи – например, датчик угла поворота выходного вала редуктора (энкодер), блок питания и управления (он же преобразователь частоты\сервоусилитель\инвертор\servodrive). Мощность двигателей: 0,05…15 кВт. Существует понятие «вентильный двигатель». Это всего лишь названия для двигателя, управление которым осуществляется через «вентили» – ключи, переключатели и т. п. коммутационные элементы. Современными «вентилями» являются IGBT-транзисторы использующиеся в блоках управления приводами. Никакого конструктивного отличия нет. Основным достоинством сервоприводов является наличие обратной связи, благодаря которой такая система может поддерживать точность позиционирования на высоких скоростях и высоких моментах. Также систему отличает низкоинерционность и высокие динамические характеристики, например время переключения от скорости –3 000 об/мин до достижения 3 000 об/мин составляет всего 0,1 с. Современные блоки управления являются высокотехнологическими изделиями со сложной системой управления и могут обеспечить выполнение практически любой задачи.

Характеристики системы сервопривода рассмотрим основываясь на сервоприводах фирмы Delta elc. Серии блока управления ASDA-A и двигателем 400 Вт. Как видно поддержание момента линейное на всем диапазоне скоростей. Это достигается благодаря использованию синхронного двигателя в высококачественном исполнении. Величина шага перемещения определяется разрешающей способностью датчика обратной связи, энкодера, а так же блоком управления. Стандартные сервоприводы могут обеспечить шаг в 0,036° т. е. 1/10 000 от оборота, и это на скоростях до 5 000 об/мин.

Самые современные сервоприводы отрабатывают шаг в 1/2 500 000.

Внешний вид

Шаговый двигатель Серводвигатель
Рисунок 7 — Шаговый двигатель Рисунок 8 — Серводвигатель

Надежность

Шаговые двигатели обладают высокой надежностью, так как в их конструкции отсутствуют изнашивающиеся детали. Рабочий ресурс двигателя зависит только от ресурса примененных в нем подшипников. Большинство современных бесколлекторных сервоприводов от известных производителей (Mitsubishi, Siemens, Omron, Delta) отличаются высокой надежностью, порой сравнимой с надежностью шаговых двигателей, даже несмотря на значительно более сложное устройство сервопривода.

Эффект потери шагов

Всем шаговым двигателям присуще свойство потери шагов. Данный эффект проявляется в некотором неконтролируемом смещении траектории перемещения инструмента, от необходимой траектории. При изготовлении простых деталей, имеющих малую длину траектории перемещения инструмента и при невысоких требованиях к изделию, в большинстве случаем данным эффектом можно пренебречь. Но при обработке сложных изделий (пресс-формы, резьба и т. п.), где длина траектории может достигать километров!, данный эффект в большинстве случаев будет приводить к неисправимому браку. Данный эффект проявляется при выходе за допустимые характеристики двигателя, при неправильном управлении двигателем, а также при «проблемах» с механикой. Применение современных технологий управления шаговыми двигателями, с применением современной электроники, позволяет полностью устранить данный эффект, но стоимость возрастает. Эффект потери шагов у сервоприводов полностью отсутствует. Потому, что в каждом сервоприводе имеется датчик положения (энкодер), который постоянно отслеживает положение ротора двигателя и при необходимости выдает команды коррекции положения, на основании которых управляющая электроника, проанализировав данные, полученные с энкодера, вырабатывает необходимые сигналы управления на двигатель. Данный механизм называется обратной связью.

Скорость перемещения

При использовании шаговых двигателей в приводах подач в станках с ЧПУ можно добиться скорости 150…300 мм/сек (бывает и больше, но это уже «экзотика»). При максимальных скоростях и при превышении допустимой нагрузки возможно проявление эффекта потери шагов. Приводы подач станков с ЧПУ на основе серводвигателей позволяют достигать высоких скоростей. Скорость холостого перемещения 0,5…1 м/c является нормальным явлением для сервоприводов.

Динамическая точность


(Динамическая точность — максимальное отклонение реальной траектории перемещения инструмента от запрограммированной).
Динамическая точность является определяющей характеристикой при обработке сложноконтурных изделий (пресс-формы, резьба и т. п.). Шаговые двигатели отличаются высокой динамической точностью, которая является следствием принципов работы шагового двигателя. Обычно, на хорошей механике, рассогласование не превышает 20 мкм (1 мкм = 0,001 мм). Высококачественные сервоприводы имеют высокую динамическую точность до 1…2 мкм и выше! (1 мкм = 0,001 мм). Для получения высокой динамической точности необходимо применять сервоприводы, предназначенные для контурного управления, которые точно отрабатывают заданную траекторию.

Стоимость

В шаговых двигателях применяются дорогостоящие редкоземельные магниты, а также ротор и статор изготавливаются с прецизионной точностью, и поэтому по сравнению с общепромышленными электродвигателями шаговые двигатели имеют более высокую стоимость. Применение дорогостоящего датчика положения ротора, а также применение достаточно сложного блока управления обуславливает значительно более высокую стоимость, чем у шагового двигателя.

Стоимость систем для создания момента в 2 Нм.

Гибридный шаговый двигатель с шагом 1,8° – 12 000 р.
Блок управления – 9 600 р.
Привод с энкодером обеспечивающий шаг в 0,036°, максимальную скорость 3 000 об/мин — 12 704 р.
Блок управления – 13 000 р.

Ремонтопригодность

шагового двигателя может выйти из строя только обмотка статора, а ее замену может произвести только производитель двигателя, так как если двигатель даже только разобрать и снова собрать, он уже не будет работать! Потому, что при разборке двигателя происходит разрыв магнитных цепей внутри двигателя и происходит размагничивание магнитов. Поэтому после сборки двигателя требуется намагничивание внутренних магнитов на специальной установке. Поврежденный серводвигатель в большинстве случаев проще заменить, чем ремонтировать. Ремонту в основном подвергают только мощные двигатели, имеющие весьма высокую стоимость.

Столкновение с препятствием

Столкновение подвижных узлов станка с препятствием, в результате которого происходит остановка шагового двигателя, не взывает у него каких-либо повреждений. В станке на базе сервоприводов, при столкновении подвижных узлов с препятствием, управляющая электроника определяет, что произошло повышение нагрузки и для компенсации повышенной нагрузки повышает уровень тока, подаваемый на двигатель. При полной принудительной остановке на серводвигатель подается максимальный ток. Поэтому, если управляющая электроника не отслеживает подобную ситуацию, то возможно сгорание двигателя.

Преимущества

  • Высокая надежность
  • Относительно низкая цена
  • Высокие динамические характеристики
  • Отсутствие эффекта потери шагов
  • Высокая перегрузочная способность

Недостатки

  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность
  • Возможность эффекта потери шагов
  • Высокая цена, следствие использования сложной системы управления
  • Низкая ремонтопригодность
  • Требуется более бережное отношение к двигателю

Вывод

Сервопривод и шаговый двигатель не являются конкурентами, а каждый занимает свою определенную нишу. Сравним их на основе рынка станков с ЧПУ. Применение шаговых двигателей полностью оправданно для применения в недорогих станках с ЧПУ (в ценовой категории до 10—12 тыс. USD), предназначенных для обработки дерева, пластиков, ДСП, МДФ, легких металлов и других материалов средней скорости.Применение высококачественных сервоприводов необходимо в высокопроизводительном оборудовании, где главным критерием является производительность. Единственный «недостаток» хорошего сервопривода – это его высокая стоимость. К примеру, станок ATS-760 на шаговых приводах стоит 11 000 $, а эта же модель, но на сервоприводах стоит 17 500 $. Однако возможности получения высокостабильного или точного управления, широкий диапазон регулирования скорости, высокая помехоустойчивость, малые габариты и вес часто являются решающими факторами их применения. Добившись одинаковых качеств от сервопривода и шагового их стоимости станут соизмеримыми при однозначном лидерстве сервопривода.

★ Синхронный и асинхронный двигатель в чем разница

Пользователи также искали:

чем отличается синхронный двигатель от асинхронного видео, применение синхронных и асинхронных двигателей, принцип работы синхронного двигателя видео, сравнение синхронного и асинхронного двигателей, отличается, как работает электродвигатель, сравнение синхронного, применение, электродвигатель физика, назначение электродвигателя, применение синхронных, принцип работы синхронного двигателя видео, чем отличается синхронный двигатель от асинхронного видео, сравнение синхронного и асинхронного двигателей, асинхронный двигатель применение, применение синхронных и асинхронных двигателей, отличие, синхронного, асинхронного двигателя, двигатель, синхронный двигатель, асинхронного, синхронного и асинхронного двигателя, синхронные и асинхронные двигатели, асинхронные двигатели, синхронные и асинхронные, разница, асинхронный двигатель, разница асинхронного, синхронного двигателя, синхронный и асинхронный двигатель, синхронный, асинхронный, двигатели,

Типы электродвигателей

Типы электродвигателей

Электрический двигатель – так называют электрическую машину (электромеханический преобразователь энергии), в которой энергия электричества преобразуется в механическую. При этом выделяется тепло.

Принцип действия

 Рабочая схема электродвигателя очень проста. В основе функционирования электрической машины существует принцип электромагнитной индукции. Электрический механизм состоит из статора (неподвижного), который устанавливается в синхронных или асинхронных машинах переменного тока или индуктора (электродвигатели постоянного тока) и ротора (подвижной части, устанавливаемого в синхронных или асинхронных машинах переменного тока) или якоря (в машине тока постоянного). В качестве индуктора на маломощном двигателе постоянного тока используются магниты.

 Роторы бывают:

 - Короткозамкнутые

 - Фазные (имеющие обмотку). Применяются в случае уменьшения пускового тока и для регуляции частоты вращения асинхронного электродвигателя.

 В основном, представлены крановым электродвигателем серии МТКН (который по большей части применяется в крановых установках).

 Якорем называют подвижную часть машины постоянного тока (генератора или двигателя) или же функционирующего по данному принципу универсального двигателя (который часто встречается в электрических инструментах). Универсальным двигателем называют ДПТ (двигатель постоянного тока), который имеет последовательное возбуждение (когда обмотки индуктора и якоря

включены последовательно). Различие только в расчете обмоток. На постоянном токе нет реактивного (емкостного или индуктивного) сопротивления. Именно поэтому любая болгарка, если вынуть электронный блок, будет в рабочем состоянии, особенно на постоянном токе и при меньшем сетевом напряжении.

 Принцип функционирования асинхронного трехфазного электродвигателя

 При включении питания в статоре возникает вращающееся круговое магнитное поле. Оно пронизывает короткозамкнутую обмотку ротора и появляется ток индукции. Согласно закону Ампера (на проводник, находящийся под током, помещенный при этом в магнитное поле, действует ЭДС сила), ротор начинает вращаться.

 Частота его вращения зависит от частоты напряжения, а также от числа пар полюсов магнитов. Разность между частотой вращения ротора и частотой вращения поля магнитного статора характеризуется скольжением. Электродвигатель асинхронный называется асинхронным, потому что частота вращения поля магнитного статора не совпадает с частотой ротора.

 Синхронный двигатель отличается от него конструкцией ротора. Ротор в подобном двигателе выполнен либо электромагнитом, либо постоянным магнитом. Также может иметь в себе частичку беличьей клетки (для запуска). В роторе непременно содержатся электромагниты или постоянные магниты. Частота вращения поля магнитного статора в синхронном двигателе совпадает с частотой ротора. Для запуска в данной конструкции применяют ротор с обмоткой короткозамкнутой или асинхронные вспомогательные электродвигатели.

 Асинхронные двигатели широко применяются во многих отраслях техники. Это особенно характерно для обычных по конструкции и трехфазных прочных асинхронных двигателей, которые имеют коротко-замкнутые роторы. Такие двигатели дешевле и надежнее обычных электрических двигателей и не нуждаются в особом уходе. Название «асинхронный» указывает на то, что в подобном двигателе ротор вращается с вращающимся полем статора не синхронно. В отсутствие трехфазной сети асинхронный двигатель включают в сеть однофазного тока.

 Устройство статора асинхронного электродвигателя очень простое. Он состоит из пакета лакированных листов стали электротехнической толщиной 0,5 мм. В пазах пакета, такого же, как в синхронной машине, уложена обмотка. Статор трехфазного асинхронного двигателя имеет три фазы обмотки. Обмотка смещена на 120°. Между собой фазы соединены треугольником или звездой.

Схема двухполюсной машины

 Схема двухполюсной машины выглядит очень просто. В машине содержатся четыре паза из расчета на каждую фазу. При поступлении питания на обмотки статора от трехфазной сети получается особое вращающееся поле. Это получается потому, что токи в фазах обмотки смещены в пространстве на 120° относительно друг друга и сдвинуты по фазе на 120°. При синхронной частоте вращения nc поля электродвигателя с р парами полюсов верно при частоте токов в f: nc=f/p. Так, при частоте 50 Гц получается для р = 1, 2, 3 (двух-, четырех или шести машин полюсных) получаются синхронные частоты вращения в nc = 3000, 1500 и 1000 об/мин.

 Ротор асинхронного электродвигателя  состоит из листов электротехнической стали. Он может выполняться в виде ротора с контактными кольцами (фазный ротор) или короткозамкнутого ротора (с беличьей клеткой). В короткозамкнутом роторе обмотка выглядит в виде стержней из металла (бронзы, меди или алюминия). Стержни располагаются в пазах и соединяются между собой на концах особыми закорачивающими кольцами. Соединение стержней осуществляет при помощи пайки сваркой или твердым припоем. При использовании сплавов из алюминия или алюминия стержни ротора, а также закорачивающие кольца и лопасти вентилятора, располагающиеся на них, производят при помощи литья под давлением. 

 Прямо у ротора электрического двигателя с контактными кольцами в пазах располагается трехфазная обмотка. По внешнему виду она походит на обмотку статора, включенную звездой. Начала фаз данной обмотки соединены с тремя контактными кольцами, которые закреплены на валу. В процессе запуска двигателя можно выполнить регулировку частоты вращения. Для этого подсоединяют к фазам обмотки ротора реостаты (делается это через щетки и контактные кольца). После успешного разбега кольца контактов замыкаются накоротко. Это значит, что обмотка двигателя ротора выполняет те же самые функции, что и обмотка короткозамкнутого ротора.

Классификация электрических двигателей

 По природе возникновения вращающего момента электрические двигатели делятся на магнитоэлектрические и гистерезисные. У гистерезисных двигателей вращающийся момент создается за счет гистерезиса при перемагничивании ротора. Подобные устройства считаются нетрадиционными и мало распространены в промышленности.

 Самым распространенным товаром считаются магнитоэлектрические двигатели. По типу потребляемой энергии они подразделяются на две группы – двигатели тока постоянного и двигатели тока переменного. Также существуют так называемые двигатели универсальные, которые питаются обоими видами токов.

 Двигатель постоянного тока

 Двигателем постоянного тока называют электродвигатель, чье питание происходит за счет постоянного тока. Данный тип двигателей также принято подразделять по наличию щёточно-коллекторного узла на две группы:

 - бесколлекторные

 - коллекторные

 Щёточно-коллекторный узел отвечает за качественное электрическое соединение цепей неподвижной и вращающейся части машины. Он является самым сложнейшим в обслуживании и ненадежным конструктивным элементом.

 Коллекторные двигатели по типу возбуждения подразделяются на:

 - двигатель с самовозбуждением

 - двигатель с независимым возбуждением (от постоянных магнитов и электрических магнитов).

 Двигатель с самовозбуждением подразделяется на:

 - двигатель, имеющий параллельное возбуждение (обмотка якоря в этом случае включается строго параллельно обмотке возбуждения)

 - двигатель, имеющий последовательное возбуждение (обмотка якоря в данном случае якоря включается строго последовательно обмотке возбуждения)

 - двигатель, имеющий смешанное возбуждение (обмотка возбуждения в данном случае включается последовательно частично и параллельно частично обмотке якоря).

 Вентильные двигатели (бесколлекторные) – это электрические двигатели, которые выполняются в виде замкнутой системы с применением датчика, определяющего положение ротора, преобразователя координат (системы управления), а также инвертора (силового полупроводникового преобразователя). Принцип функционирования подобных двигателей схож с принципом работы системы синхронных двигателей.

Двигатель переменного тока

Трехфазный асинхронный двигатель

 Электродвигатели переменного тока - это электрические двигатели, питание которых осуществляется при помощи переменного тока. По принципу функционирования подобные двигатели подразделяются на асинхронные и синхронные двигатели. Принципиальное отличие заключается в том, что в синхронном двигателе первая гармоника силы магнитодвижущей статора перемещается со скоростью вращения ротора. Сам ротор перемещается со скоростью перемещения магнитного поля в статоре. У асихронного двигателя всегда присутствует разница между скоростью перемещения ротора и скоростью магнитных полей в статоре (ротор вращается медленнее поля). 

 Синхронный электродвигатель - это электрический двигатель тока переменного. Ротор синхронно вращается с полем магнитным питающего напряжения. Подобные устройства применяются для обеспечения больших мощностей (более сотни киловатт). Синхронные двигатели бывают с угловым дискретным перемещением ротора (так называемые шаговые двигатели). У подобных устройств положение ротора прочно фиксируется подачей питания на обмотки. Переход в иное положение осуществляется при помощи снятия напряжения питания с первых обмоток и передачи на вторые (и так далее). Помимо этого существует и еще один вид синхронного двигателя - реактивный вентильный двигатель электрический. Питание обмоток данного двигателя формируется за счет элементов полупроводниковых.

 Асинхронный электродвигатель - это электрический двигатель переменного тока. Частота вращения ротора в данном двигателе существенно отличается от вращения полей магнита, которые создаются от питающего напряжения. Подобные устройства наиболее распространены. 

 По количеству фаз двигатель тока переменного принято подразделять на:

 - Однофазные электродвигатели. Запуск подобных устройств производится вручную. Они могут иметь пусковую обмотку или фазосдвигающую цепь.

 - Двухфазный (сюда входят и конденсаторные)

 - Электродвигатель трехфазный

 - Многофазный

Коллекторный универсальный электродвигатель

 Коллекторный универсальный электродвигатель – это электрический коллекторный двигатель, который может функционировать как на переменном, так и на постоянном токе. Производится с последовательной обмоткой возбуждения строго на мощности электродвигателя около 200 Вт. Статор двигателя выполнен шихтованным из особой электрической технической стали. Обмотка возбуждения полностью включается при постоянном токе и частично включается при переменном токе. Номинальные напряжения для переменного тока - 127,220, для тока постоянного номинальные напряжения- 110.220. Двигатели такого плана используются в электроинструментах и бытовых аппаратах.

 Двигатель переменного тока, питающийся от промышленной сети 50 ГЦ, не может обеспечить частоту вращения более 3000 об/мин. Именно поэтому для получения высочайших частот следует использовать коллекторный электродвигатель. Такой двигатель получается меньше и легче, в сравнении с двигателем тока переменного такой же мощности. Также применяются особые передаточные механизмы, которые позволяют изменять кинематические параметры механизмов до нужных вам (так называемые мультипликаторы). При использовании преобразователей частоты или сети частоты повышенной (в 100, 200 или 400 Гц) двигатель переменного тока оказывается меньше и легче, в сравнении с коллекторным двигателем (поскольку иногда коллекторный узел занимает ½ объема). Ресурс асинхронного двигателя переменного тока выше в сравнении с коллекторным. Он определяется состоянием изоляции обмоток и подшипников.

 Синхронный двигатель, имеющий датчик положения ротора и инвертор, считается электронным аналогом обычного коллекторного постоянного тока. Коллекторный универсальный двигатель считается электродвигателем коллекторным постоянного тока, имеющим последовательно включенные обмотки статора (возбуждения). Подключение электродвигателя такого типа не вызывает сложностей. Он также оптимизирован для функционирования на переменном токе электрической бытовой сети. Подобный тип двигателя вне зависимости от полярности поданного напряжения вращается строго в одну сторону. Это происходит потому, что обмотки ротора и статора соединены последовательно и смена полюсов полей магнитных данных устройств происходит одновременно, а значит, результирующий момент направлен в одну сторону. Если необходима работа на переменном токе, применяют статор из мягкого магнитного материала, имеющий малый гистерезис (малое сопротивление перемагничиванию).

 Если необходимо уменьшение потерь на вихревые токи, берут наборный статор, изготовленный из изолированных пластин. Достоинством функционирования подобного двигателя считается то, что в режиме пуска и перегрузки индуктивное сопротивление обмоток ограничивает ток и максимальный момент двигателя до 5 – 3 от номинального.

Электрический синхронный двигатель возвратно-поступательного движения

 Принцип его функционирования прост. Подвижная часть выполняется в виде магнитов, которые крепятся на штоке. Переменный ток электродвигателя проходит через неподвижные обмотки. Под действием этого процесса постоянные магниты перемещают шток.  

Лось Анастасия
Специально для Двигатель.инфо

43907 просмотров

Какак разница между короткозамкнутым и фазным ротором

Какак разница между короткозамкнутым и фазным ротором

Ротор — вращающаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела или отдающие её рабочему телу.

Как вы знаете, асинхронные электродвигатели имеют трехфазную обмотку (три отдельные обмотки) статора, которая может формировать разное количество пар магнитных полюсов в зависимости от своей конструкции, что влияет в свою очередь на номинальные обороты двигателя при номинальной частоте питающего трехфазного напряжения. При этом роторы двигателей данного типа могут отличаться, и у асинхронных двигателей они бывают короткозамкнутыми или фазными. Чем отличается короткозамкнутый ротор от фазного ротора — об этом и пойдет речь в данной статье.

Короткозамкнутый ротор

Представления о явлении электромагнитной индукции подскажут нам, что произойдет с замкнутым витком проводника, помещенным во вращающееся магнитное поле, подобное магнитному полю статора асинхронного двигателя. Если поместить такой виток внутри статора, то когда ток на обмотку статора будет подан, в витке будет индуцироваться ЭДС, и появится ток, то есть картина примет вид: виток с током в магнитном поле. Тогда на такой виток (замкнутый контур) станет действовать пара сил Ампера, и виток начнет поворачиваться вслед за движением магнитного потока.

Так и работает асинхронный двигатель с короткозамкнутым ротором, только вместо витка на его роторе расположены медные или алюминиевые стержни, замкнутые накоротко между собой кольцами с торцов сердечника ротора. Ротор с такими короткозамкнутыми стержнями и называют короткозамкнутым или ротором типа «беличья клетка» поскольку расположенные на роторе стержни напоминают беличье колесо.

Проходящий по обмоткам статора переменный ток, порождающий вращающееся магнитное поле, наводит ток в замкнутых контурах «беличьей клетки», и весь ротор приходит во вращение, поскольку в каждый момент времени разные пары стержней ротора будут иметь различные индуцируемые токи: какие-то стержни — большие токи, какие-то — меньшие, в зависимости от положения тех или иных стержней относительно поля. И моменты никогда не будут уравновешивать ротор, поэтому он и будет вращаться, пока по обмоткам статора течет переменный ток.

К тому же стержни «беличьей клетки» немного наклонены по отношению к оси вращения — они не параллельны валу. Наклон сделан для того, чтобы момент вращения сохранялся постоянным и не пульсировал, кроме того наклон стержней позволяет снизить действие высших гармоник индуцируемых в стержнях ЭДС. Будь стержни без наклона — магнитное поле в роторе пульсировало бы.

Скольжение s

Для асинхронных двигателей всегда характерно скольжение s, возникающее из-за того, что синхронная частота вращающегося магнитного поля n1 статора выше реальной частоты вращения ротора n2.

Скольжение возникает потому, что индуцируемая в стержнях ЭДС может иметь место только при движении стержней относительно магнитного поля, то есть ротор всегда вынужден хоть немного, но отставать по скорости от магнитного поля статора. Величина скольжения равна s = (n1-n2)/n1.

Если бы ротор вращался с синхронной частотой магнитного поля статора, то в стержнях ротора не индуцировался бы ток, и ротор бы просто не стал вращаться. Поэтому ротор в асинхронном двигателе никогда не достигает синхронной частоты вращения магнитного поля статора, и всегда хоть чуть-чуть (даже если нагрузка на валу критически мала), но отстает по частоте вращения от частоты синхронной.

Скольжение s измеряется в процентах, и на холостом ходу практически приближается к 0, когда момент противодействия со стороны ротора почти отсутствует. При коротком замыкании (ротор застопорен) скольжение равно 1.

Вообще скольжение у асинхронных двигателей с короткозамкнутым ротором зависит от нагрузки и измеряется в процентах. Номинальное скольжение — это скольжение при номинальной механической нагрузке на валу в условиях, когда напряжение питания соответствует номиналу двигателя.

Фазный ротор

Асинхронные двигатели с фазным ротором, в отличие от асинхронных двигателей с короткозамкнутым ротором, имеют на роторе полноценную трехфазную обмотку. Подобно тому, как на статоре уложена трехфазная обмотка, так же и в пазах фазного ротора уложена трехфазная обмотка.

Выводы обмотки фазного ротора присоединены к контактным кольцам, насаженным на вал, и изолированным друг от друга и от вала. Обмотка фазного ротора состоит из трех частей — каждая на свою фазу — которые чаще всего соединены по схеме «звезда».

К обмотке ротора через контактные кольца и щетки присоединяется регулировочный реостат. Краны и лифты, например, пускаются под нагрузкой, и здесь необходимо развивать существенный рабочий момент. Невзирая на усложненность конструкции, асинхронные двигатели с фазным ротором обладают лучшими регулировочными возможностями касательно рабочего момента на валу, чем асинхронные двигатели с короткозамкнутым ротором, которым требуется промышленный частотный преобразователь.

Обмотка статора асинхронного двигателя с фазным ротором выполняется аналогично тому, как и на статорах асинхронных двигателей с короткозамкнутым ротором, и аналогичным путем создает, в зависимости от количества катушек (три, шесть, девять или более катушек), два, четыре и т. д. полюсов. Катушки статора сдвинуты между собой на 120, 60, 40 и т. д. градусов. При этом на фазном роторе делается столько же полюсов, сколько и на статоре.

Регулируя ток в обмотках ротора, регулируют рабочий момент двигателя и величину скольжения. Когда регулировочный реостат полностью выведен, то для уменьшения износа щеток и колец их закорачивают при помощи специального приспособления для подъема щеток.

Ранее ЭлектроВести писали, что в Атлантическом океане первый в мире телескопический ветрогенератор обеспечивает электроэнергией 5000 домохозяйств на одном из Канарских островов - Гран-Канария.

По материалам: electrik.info.

Синхронный или асинхронный двигатель что лучше. Синхронный и асинхронный двигатель: отличия, принцип работы, применение

Принципиальное отличие синхронного двигателя от асинхронного заключается в исполнении ротора. Последний у синхронного двигателя представляет собой магнит, выполненный (при относительно небольших мощностях) на базе постоянного магнита или на основе электромагнита. Поскольку разноименные полюсы магнитов притягиваются, то вращающееся магнитное поле статора, которое можно интерпретировать как вращающийся магнит, увлекает за собой магнитный ротор, причем их скорости равны. Это объясняет название двигателя - синхронный.

В заключение отметим, что в отличие от асинхронного двигателя, у которого обычно не превышает 0,8…0,85, у синхронного двигателя можно добиться большего значения и сделать даже так, что ток будет опережать напряжение по фазе. В этом случае, подобно конденсаторным батареям, синхронная машина используется для повышения коэффициента мощности.

Асинхронные двигатели имеют простую конструкцию и надежны в эксплуатации. Недостатком асинхронных двигателей является трудность регулирования их частоты вращения.

Чтобы реверсировать трехфазный асинхронный двигатель (изменить направление вращения двигателя на противоположное), необходимо поменять местами две фазы, то есть поменять местами два любых линейных провода, подходящих к обмотке статора двигателя.

Т.е это достаточно дешевый двигатель, который применяется везде, синхронную машину найти крайне тяжело.

В отличие от асинхронного двигателя частота вращения синхронного двигателя постоянная при различных нагрузках. Синхронные двигатели находят применение для привода машин постоянной скорости (насосы, компрессоры, вентиляторы) ими легко управлять.

Отличить можно по кол-ву оборотов на табличке (если там явно не указан тип машины), у асинхронного не круглое число оборотов, 950 об/мин у синхронной машины 1000 об/мин.

Синхронные двигатели управляются также сложно как и асинхронные, т.к. требуют управления частотой подводимого напряжения. Они имеют абсолютно жесткую механическую характеристику, это означает, что как бы не менялась нагрузка на валу двигателя, он будет иметь одну и ту же частоту вращения. Естественно, нагрузка должна меняться в разумных пределах, есть значение критического момента нагрузки, при котором двигатель "выпадает" из синхронного режима, что чревато его поломкой. К основным недостаткам относится то, что обмотку возбуждения необходимо питать постоянным током, также наличие скользящего контакта "щетка-контактное кольцо", сложность пуска.

Чаще всего синхронные машины используют в качестве генераторов, вообще подавляющее большинство генераторов - синхронные, начиная с тех, которые устанавливаютс на автомобилях, и заканчивая теми, которые стоят на АЭС. Из всех других они наиболее надежны, имеют наибольший КПД, проще других в обслуживании.

КПД машины не зависит от косинуса фи электрической машины. КПД зависит восновном только от потерь в обмотке (потери в меди), в магнитопроводе (потери в стали), механических потерь и дополнительных потерь. Также КПД машины зависит от ее нагрузки, при этом максимум (КПД) наблюдается в точке, когда потери в стали и в меди равны, как правило это наблюдается, когда нагрузка составляет 75-80% от номинальной мощности машины.

Учитывая особенности производства электрических машин имеем что с ростом мощности выпущенной машины, потери растут не пропорционально, поэтому мощные электрические машины могут иметь КПД достигающий 99%.

Асинхронные двигатели — это двигатели, в процессе работы которых под нагрузкой наблюдается явление скольжения, то есть «отставание» вращения ротора от вращения магнитного поля статора. Другими словами, вращение ротора происходит не синхронно с вращением намагниченности статора, а асинхронно по отношению к этому движению. Вот почему такого рода двигатели называются асинхронными (не синхронными) двигателями.

В большинстве случаев, произнося словосочетание «асинхронный двигатель», имеют ввиду именно бесколлекторный двигатель переменного тока. Величина скольжения асинхронного двигателя может быть разной в зависимости от нагрузки, а также от параметров питания и способа управления токами обмотки статора.

Если мы имеем дело с обычным двигателем переменного тока, наподобие АИР712А, то при синхронной частоте вращения магнитного поля в 3000 оборотов в минуту, в условиях номинальной механической нагрузки на валу в 750 ватт, мы будем иметь реальную частоту вращения 2840 оборотов в минуту, а значит величина скольжения составит 0,053.

Это нормальное явление для асинхронного двигателя. И мы не увидим круглых цифр оборотов, вроде 3000 или 1500, вместо них там будет указано 2730 или 1325. Вместо 1000 может быть написано например 860, несмотря на то, что магнитное поле во время работы двигателя вращается с частотой 1000 оборотов в минуту, как и должно быть в электрической машине с 3 парами магнитных полюсов, предназначенной для питания переменным током частотой 50 Гц.

Что касается двигателей постоянного тока, то в большинстве случаев так называют коллекторные двигатели, на скорость вращения ротора у которых влияет не частота тока, а его средняя величина. Датчик скорости может помочь электронной системе управления установить правильную величину тока для получения заданной скорости вращения, однако связь тока и оборотов здесь будет отнюдь не линейной, так как при разной нагрузке токи разной величины дадут очень разные частоты вращения ротора.

На роторе двигателя постоянного тока может располагаться многосекционная обмотка возбуждения или постоянные магниты. Но сегодня ротор с магнитами характерен скорее для шаговых двигателей, которые тоже относятся к двигателям постоянного тока, однако коллекторно-щеточных узлов не имеют. Как вариант разновидности конструкции мотора постоянного тока — магниты на статоре, а обмотка — на роторе.

Так или иначе, асинхронный бесколлекторный двигатель имеет мощную рабочую обмотку на статоре, которая в процессе работы разогревается от прохождения по ней рабочего тока, и передает тепло на корпус двигателя. Поэтому и обмотку и корпус двигателя необходимо все время активно охлаждать.

В связи с этой особенностью, большинство асинхронных двигателей по умолчанию имеют на своих валах крыльчатки вентиляторов, а на корпусах - выступы, вдоль которых вентилятор, как через радиатор, гонит свежий воздух, охлаждая таким образом статор. Поэтому, если перед вами двигатель, на валу которого установлен вентилятор (обычно под крышкой, закрепленной на корпусе двигателя), вдоль корпуса имеются ребра (как на радиаторе), а на шильдике указана конкретная величина оборотов в минуту и величины переменного напряжения 220/380 — пред вами типичный асинхронный двигатель переменного тока.

В двигателях постоянного тока, с коллекторно-щеточными узлами и с многосекционными многовитковыми обмотками на якарях, выведенными на ламели коллектора, в качестве рабочих обмоток выступают - и обмотка статора, и обмотка ротора (якоря).

Здесь фактически получается, что рабочая обмотка как-бы разделена на две части: рабочий ток идет и через якорную обмотку, и через статорную обмотку, поэтому проблема нагрева только статора отсутствует, и вентилятор здесь не нужен.

Для охлаждения достаточно вентиляционных отверстий, через которые можно разглядеть ротор с якорной обмоткой на нем. Поэтому, если перед вами двигатель с коллекторно-щеточным узлом, где коллектор имеет множество ламелей (блестящих пластинок) с выводами от обмоток, и вентилятора словно бы и не предусмотрено — перед вами двигатель постоянного тока.

Статор двигателя постоянного тока может представлять собой набор постоянных магнитов. Большинство двигателей постоянного тока, рассчитанных на сетевое напряжение, будут легко работать и от переменного тока (пример такого универсального мотора - мотор болгарки).

Основывается на разных параметрах. По одному из них, различают синхронный и асинхронный двигатель. Отличия приборов, общая характеристика и принцип работы описаны в статье.

Синхронный двигатель

Этот тип двигателя способен работать одновременно и в качестве генератора, и как, собственно, двигатель. Его устройство сродни Характерной особенностью двигателя является неизменяемая частота роторного вращения от нагрузки.

Эти виды двигателей широко применяются во многих сферах, например, для электрических проводов, которым необходима постоянная скорость.

Принцип работы синхронного двигателя

В основу его функционирования положено взаимодействие вращающегося магнитного поля якоря и магнитных полей индукторных полюсов. Обычно якорь находится в статоре, а индуктор распологается в роторе. Для мощных моторов используются электрические магниты для полюсов, а для слабых — постоянные.

Преимущества и недостатки

Основными минусами этого вида двигателя являются:

  • необходимость питания обмотки постоянным током;
  • сложность запуска;
  • скользящий контакт.

Большинство генераторов, где бы они ни использовались, являются синхронными. Преимуществами таких двигателей в целом являются:

  • самая высокая надежность;
  • самый большой ;
  • простота обслуживания.

Асинхронный двигатель

Данный вид устройста представляет механизм, направленный на трансформацию электрической энергии в механическую. Из самого названия «асинхронный» можно сделать вывод, что речь идет о неодновременном процессе. И действительно, частота вращения магнитного поля статора здесь выше роторной всегда.
Такое устройство состоит из статора цилиндрической формы и ротора, в зависимости от вида которого асинхронные двигатели короткозамкнутые могут быть и с фазным ротором.

Принцип действия

Работа двигателя осуществляется на основе взаимодействия магнитного статорного поля и наводящихся этим же полем токов в роторе. Вращающий момент появляется тогда, когда имеется разность частоты вращения полей.

Резюмируем теперь, чем отличается от асинхронного. Чем объясняется широкое применение одного типа и ограниченное — другого?

Синхронный и асинхронный двигатель: отличия

Отличие работы двигателей - в роторе. У синхронного типа он заключается в постоянном или электрическом магните. Благодаря притягиванию разноименных полюсов вращающееся поле статора влечет и магнитный ротор. Их скорость получается одинаковой. Отсюда и название — синхронный.

В нем можно добиться, в отличие от асинхронного, даже опережения напряжения по фазам. Тогда устройство, подобно батареям конденсатора, может применяться для увеличения мощности.

Асинхронные двигатели, в свою очередь, просты и надежны, но их недостатком является трудность регулировки частоты вращения. Для реверсирования трехфазного асинхронного двигателя (то есть изменения направления его вращения в противоположную сторону) меняют расположение двух фаз или двух линейных проводов, приближающихся к обмотке статора.

Если рассматривать частоту вращения, то имеют и здесь синхронный и асинхронный двигатель отличия. В синхронном типе этот показатель является постоянным, в отличие от асинхронного. Поэтому первый используют там, где необходима постоянная скорость и полная управляемость, например, в насосах, вентиляторах и компрессорах.

Выявить на том или ином устройстве наличие рассматриваемых типов приборов очень просто. На асинхронном двигателе будет не круглое число оборотов (например, девятьсот тридцать в минуту), в то время как на синхронном — круглое (например, тысяча оборотов в минуту).

И те, и другие моторы управляются достаточно сложно. Синхронный тип имеет жесткую характеристику механики: при любой меняющейся нагрузке на вал мотора частота вращения будет одной и той же. При этом нагрузка, конечно, должна меняться с учетом того, чтобы двигатель способен ее выдержать, иначе это приведет к поломке механизма.

Так устроен синхронный и асинхронный двигатель. Отличия обоих видов обуславливают сферу их использования, когда один вид справляется с задачей оптимальным образом, для другого это будет проблематичным. В то же время можно встретить и комбинированные механизмы.


В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.

Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные)

Двигатели постоянного тока

По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.
Простой двигатель имеет 2 положения ротора (2 "мёртвые точки"), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).

Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные - электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Бесколекторные - замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Двигатели переменного тока

По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный - двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).
Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.

Асинхронный - двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин - индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:

Однофазный асинхронный двигатель с короткозамкнутым ротором

Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Двухфазный асинхронный двигатель с короткозамкнутым ротором

Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.

Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.

Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.

Трехфазный асинхронный двигатель с фазным ротором

Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков, шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.

Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

Прежде чем разобраться, в чём их отличие, необходимо выяснить, что такое электродвигатель? Электродвигатель – это электрическая машина, которая приводится в действие от электроэнергии и служит приводом для других механизмов.

Объяснение принципа работы синхронного электродвигателя для «чайников»

С детства мы помним, что два магнита, если их приблизить друг к другу, в одном случае притягиваются, а в другом отталкиваются. Происходит это, в зависимости от того, что какими сторонами магнитов мы их соединяем, разноимённые полюса притягиваются, а одноимённые отталкиваются. Это – постоянные магниты, у которых магнитное поле присутствует постоянно. Существуют и переменные магниты.

В школьном учебнике по физике есть рисунок, где изображён электромагнит в виде подковы и рамка с полукольцами на концах, которая расположена между его полюсами.

При расположении рамки в горизонтальном положении в пространстве между полюсами магнитов, из-за того, что магнит притягивает разноимённые полюса и отталкивает одноимённые, на рамку подаётся ток, одинакового знака. Вокруг рамки появляется электромагнитное поле (вот пример переменного магнита!), полюса магнитов притягивают рамку, и она поворачивается в вертикальное положение. При достижении вертикали, на рамку подаётся ток противоположного знака, электромагнитное поле рамки меняет полюсность, и полюса постоянного магнита начинают отталкивать рамку, вращая её до горизонтального положения, после чего цикл вращения повторяется.

В этом заключается принцип работы электродвигателя. Причём, примитивного синхронного электродвигателя!

Итак, примитивный синхронный электродвигатель работает, когда на рамку подаётся ток. У настоящего синхронного электродвигателя, роль рамки выполняет ротор с катушками проводов, называемых обмотками, на которые подаётся ток (они служат источниками электромагнитного поля). А роль подковообразного магнита выполняет статор, изготовленный либо из набора постоянных магнитов, либо тоже из катушек проводов (обмоток), которые, при подаче тока являются также источниками электромагнитного поля.

Ротор синхронного электродвигателя будет вращаться с такой же частотой, с какой меняется ток, подаваемый на клеммы обмотки, т.е. синхронно. Отсюда название этого электродвигателя.

Объяснение принципа работы асинхронного электродвигателя для «чайников»

Вспоминаем описание рисунка в предыдущем примере. Та же рамка, расположенная между полюсами подковообразного магнита, только её концы не имеют полуколец, они соединены между собой.

Теперь начинаем вращать вокруг рамки подковообразный магнит. Вращаем его медленно и наблюдаем за поведением рамки. До некоторых пор рамка остаётся неподвижной, а потом, при повороте магнита на определённый угол, рамка начинает вращение вслед за магнитом. Вращение рамки запаздывает по сравнению со скоростью вращения магнита, т.е. она вращается не синхронно с ним – асинхронно. Вот и получается, что это примитивный асинхронный электродвигатель.

Вообще-то роль магнитов в настоящем асинхронном двигателе служат обмотки, расположенные в пазах статора, на которые подаётся ток. А роль рамки, выполняет ротор, в пазы которого вставлены металлические пластины, соединённые между собой на коротко. Поэтому такой ротор называется короткозамкнутым.

В чём же отличия синхронного и асинхронного электродвигателей?

Если поставить рядом два современных электродвигателя одного и другого типа, то по внешним признакам их отличить трудно даже специалисту.

По существу, их главное отличие рассмотрено в приведённых примерах принципов работы этих электродвигателей. Они отличаются по конструкции роторов . Ротор синхронного электродвигателя состоит из обмоток, а ротор асинхронного представляет собой набор пластин.

Статоры одного и другого электродвигателей почти неотличимы и представляют собой набор обмоток, однако, статор синхронного электродвигателя может быть набран из постоянных магнитов.

Обороты синхронного двигателя соответствуют частоте подаваемого на него тока, а обороты асинхронного несколько отстают от частоты тока.

Отличаются они и по сферам применения . Например, синхронные электродвигатели ставят для привода оборудования, которое работает с постоянной скоростью вращения (насосы, компрессоры и т.д.) не снижая её с увеличением нагрузки. А вот асинхронные электродвигатели снижают частоту вращения при увеличении нагрузки.

Синхронные электродвигатели конструктивно сложней, а значит, и дороже асинхронных электродвигателей.

Какие бывают двигатели? Типы электродвигателей. Асинхронные двигатели



В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.

Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные)

Двигатели постоянного тока

По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.
Простой двигатель имеет 2 положения ротора (2 "мёртвые точки"), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).

Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные - электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Бесколекторные - замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Двигатели переменного тока

По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный - двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).
Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.

Асинхронный - двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин - индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:

Однофазный асинхронный двигатель с короткозамкнутым ротором


Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Двухфазный асинхронный двигатель с короткозамкнутым ротором


Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.

Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Трехфазный асинхронный двигатель с короткозамкнутым ротором


Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.

Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.

Трехфазный асинхронный двигатель с фазным ротором


Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков,  шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.

Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

Вопрос: В чем основное различие между асинхронным двигателем и синхронным двигателем?

Синхронный двигатель - это машина с двойным возбуждением, тогда как асинхронный двигатель - это машина с одним возбуждением.

В случае синхронного двигателя его обмотка якоря питается от источника переменного тока, а его обмотка возбуждения - от источника постоянного тока, тогда как в случае асинхронного двигателя его обмотка статора питается от источника переменного тока.

Какой асинхронный двигатель лучше или синхронный двигатель?

Коэффициент мощности синхронного двигателя можно настроить на отстающий, единичный или опережающий, изменяя возбуждение, тогда как асинхронный двигатель всегда работает с отстающим коэффициентом мощности.Синхронные двигатели обычно более эффективны, чем асинхронные. Синхронные двигатели дороже.

В чем разница между синхронным двигателем и асинхронным двигателем?

Синхронный двигатель - это машина, скорость ротора которой равна скорости магнитного поля статора. Асинхронный двигатель - это машина, ротор которой вращается со скоростью меньше синхронной. Асинхронный двигатель переменного тока известен как асинхронный двигатель. Синхронный двигатель не имеет пробуксовки.

В чем разница между асинхронным двигателем и синхронным двигателем PDF?

Обмотка статора асинхронного двигателя питается от источника переменного тока.Синхронный двигатель всегда работает с синхронной скоростью, и скорость двигателя не зависит от нагрузки, но асинхронный двигатель всегда работает с меньшей синхронной скоростью. Если нагрузка увеличилась, скорость асинхронного двигателя уменьшается.

Что означает асинхронный двигатель?

Асинхронный двигатель или асинхронный двигатель - это электродвигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора.

Почему он называется синхронным двигателем?

Это связано с тем, что двигатель называется синхронным двигателем. Это двигатель с постоянной скоростью, потому что, несмотря на увеличение нагрузки, двигатель работает с той же синхронной скоростью. Как следует из названия, синхронная машина работает с синхронной скоростью (Synch.

Каковы преимущества синхронного двигателя?

) Одним из основных преимуществ использования синхронного двигателя является возможность контролировать коэффициент мощности.Синхронный двигатель с избыточным возбуждением может иметь опережающий коэффициент мощности и может работать параллельно с асинхронными двигателями и другими нагрузками с отстающим коэффициентом мощности, тем самым улучшая коэффициент мощности системы.

Для чего нужен двигатель?

Электродвигатель - это электрическая машина, преобразующая электрическую энергию в механическую. Большинство электродвигателей работают за счет взаимодействия магнитного поля электродвигателя и электрического тока в проволочной обмотке, создавая силу в виде вращения вала.

Какие типы двигателей?

Типы двигателей для промышленных электроприводов

  • Двигатель постоянного тока.
  • Параллельный двигатель постоянного тока.
  • Накопительный составной двигатель.
  • Трехфазный синхронный двигатель.
  • Асинхронный двигатель с короткозамкнутым ротором.
  • Двигатель с двойным короткозамкнутым ротором.
  • Асинхронный двигатель с контактным кольцом.
  • Однофазный синхронный двигатель.

Какие типы синхронных двигателей?

Существует два основных типа синхронных двигателей: без возбуждения и с возбуждением от постоянного тока.Двигатели без возбуждения изготавливаются с реактивным сопротивлением, гистерезисом или с постоянными магнитами. Эти двигатели используют схему самозапуска и не требуют внешнего источника возбуждения.

Что подразумевается под асинхронным двигателем?

Определение асинхронного двигателя. : двигатель переменного тока, в котором крутящий момент создается за счет реакции между изменяющимся магнитным полем, создаваемым в статоре, и током, индуцируемым в катушках ротора.

Сколько существует типов двигателей переменного тока?

По конструкции ротора асинхронные двигатели переменного тока бывают двух типов, а именно с контактным кольцом и с короткозамкнутым ротором.Вы можете найти эти двигатели в водяных насосах, небольших настольных вентиляторах, миксерах-измельчителях, соковыжималках для фруктов и многих других устройствах, которые работают от источника переменного тока 230 вольт.

Что означает двигатель переменного тока?

Двигатель переменного тока - это электродвигатель, приводимый в действие переменным током (AC). Двигатель переменного тока обычно состоит из двух основных частей: внешнего статора с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и внутреннего ротора, прикрепленного к выходному валу, создающего второе вращающееся магнитное поле.

Какой крутящий момент у мотора?

Движущей силой электродвигателя является крутящий момент, а не мощность. Крутящий момент - это крутящая сила, которая заставляет двигатель работать, а крутящий момент активен от 0% до 100% рабочей скорости.

Почему мы используем синхронные двигатели?

Электростанции почти всегда используют синхронные генераторы, потому что важно поддерживать постоянную частоту, на которой подключен генератор. Приложения с низким энергопотреблением включают в себя позиционирующие машины, где требуется высокая точность, и приводы роботов.Сетевые синхронные двигатели используются для электрических часов.

В чем разница между двигателем и асинхронным двигателем?

Синхронный двигатель - это машина с двойным возбуждением, тогда как асинхронный двигатель - это машина с одним возбуждением. В случае синхронного двигателя его обмотка якоря питается от источника переменного тока, а его обмотка возбуждения - от источника постоянного тока, тогда как в случае асинхронного двигателя его обмотка статора питается от источника переменного тока.

Разница между синхронным двигателем и асинхронным двигателем

Двигатели переменного тока

делятся на два типа: синхронные двигатели и асинхронные двигатели, которые также называются асинхронными двигателями.Самая большая разница между синхронными двигателями и асинхронными двигателями (асинхронными двигателями) заключается в том, соответствует ли скорость ротора скорости вращающегося магнитного поля в статоре. Если скорость вращения ротора и скорость возбуждения статора одинаковы, это называется синхронным двигателем; в противном случае это асинхронный двигатель. Кроме того, между ними есть большие различия, связанные с параметрами производительности и приложениями.

Различия в конструкции
Обмотки статора синхронных и асинхронных двигателей похожи, и основное различие заключается в конструкции ротора.В роторе синхронного двигателя имеются обмотки возбуждения постоянного тока, на которые необходимо подавать внешнюю мощность возбуждения, вводимую через контактное кольцо. Однако в обмотках ротора асинхронного двигателя имеется короткое замыкание, которое производит ток за счет электромагнитной индукции. Напротив, синхронные двигатели более сложны и дороги.

  • Статор
    Компоненты статора синхронного двигателя в основном такие же, как и у асинхронных двигателей, они принимают, выводят электрическую энергию и создают вращающееся магнитное поле.По форме результата особой разницы нет. Статоры синхронного и асинхронного двигателей состоят из магнитного сердечника статора, проводящих трехфазных обмоток переменного тока, основания для фиксирующего сердечника, крышки зажимов и т. Д.
  • Ротор
    Синхронный двигатель: полюсный сердечник ротора покрыт стальными листами, в которые вставлены стальные пластины. На полюсный сердечник надеваются обмотки возбуждения, намотанные изолированными медными проводами. Для синхронного двигателя с постоянными магнитами постоянный магнит на роторе является ключевым фактором, отличающим его от других двигателей.
    Асинхронный двигатель: ротор состоит из стального сердечника и обмоток, он изготовлен из ламинированных стальных листов и установлен на вращающемся валу. Ротор бывает двух типов: с короткозамкнутым ротором и намотанный. Асинхронный двигатель с обмоткой также оснащен контактным кольцом и щеточным механизмом.

Разница в работе
1. Синхронный двигатель
Синхронный двигатель вращается за счет взаимодействия между вращающимся магнитным полем, создаваемым включенными обмотками статора, и магнитным полем, создаваемым ротором.В синхронном двигателе с постоянными магнитами он вращается за счет крутящего момента, создаваемого взаимодействием между вращающимся магнитным полем статора и вторичным магнитным полем ротора. Что касается обмотки ротора, то она не наводит ток при нормальном вращении двигателя, а также не участвует в работе. Он служит только для запуска мотора.
Во время установившейся работы синхронного двигателя существует постоянная зависимость между скоростью вращения ротора и частотой сети:
N = Ns = 120f / p
f - частота сети, p - число полюсов двигателя, Ns - синхронная скорость.
2. Асинхронный двигатель
Сердечник статора трехфазного асинхронного двигателя заделан трехфазными симметричными обмотками. После включения между статором и ротором возникает вращающееся магнитное поле, которое вращается с синхронной скоростью. Стержень ротора разрезается вращающимся магнитным полем, в котором возникает индуцированный ток. На стержень включенного ротора воздействует электромагнитная сила во вращающемся магнитном поле, таким образом, ротор преодолевает вращение момента нагрузки и ускоряет свое вращение.Когда электромагнитный момент равен моменту нагрузки, двигатель вращается с постоянной скоростью. Скорость вращения асинхронного двигателя
(скорость статора) ниже, чем скорость вращения магнитного поля, и эта разница называется «скольжением» и выражается в процентах от синхронной скорости:
S = (Ns-N) / Ns.
S - скольжение, Ns - скорость магнитного поля, N - скорость ротора.

Разница в применении
Синхронные двигатели в основном используются в больших генераторах, в то время как асинхронные двигатели почти используются в качестве двигателей для привода машин.
Для синхронного двигателя коэффициент мощности можно гибко регулировать возбуждением. Однако коэффициент мощности асинхронного двигателя не регулируется, поэтому на некоторых крупных заводах для более применяемых асинхронных двигателей можно добавить синхронный двигатель в качестве модификатора фазы, чтобы отрегулировать коэффициенты мощности завода и интерфейса сети. Однако из-за высокой стоимости синхронных двигателей и большого объема технического обслуживания в настоящее время обычно используются конденсаторы для компенсации коэффициента мощности. Синхронный двигатель
работает не так просто, как асинхронный двигатель, потому что синхронный двигатель имеет обмотку возбуждения и контактное кольцо, требующие высокоуровневого управления возбуждением.Кроме того, по сравнению с необслуживаемым асинхронным двигателем, работа по обслуживанию синхронного двигателя велика. Поэтому в качестве двигателя чаще всего выбирают асинхронный двигатель.

Как выбрать синхронный двигатель и асинхронный двигатель.

Синхронные двигатели 1 、 в основном используются в больших генераторах.

С другой стороны, асинхронные двигатели почти все используются в двигателях.

Синхронный двигатель может гибко регулировать фазу напряжения и тока на входе через возбуждение, то есть коэффициент мощности; коэффициент мощности асинхронного двигателя не может быть отрегулирован, обычно между 0.75 ~ 0,85, поэтому на некоторых крупных заводах, когда широко используется асинхронный двигатель, дополнительный синхронный двигатель может использоваться в качестве тюнера для регулировки коэффициента мощности на стыке между заводом и электросетью.

Однако из-за высокой стоимости и тяжелого обслуживания синхронного двигателя обычно используется конденсаторный компенсационный коэффициент мощности.

2 、 КПД синхронного двигателя немного выше, чем у асинхронного. При выборе двигателей мощностью более 2000 кВт, как правило, необходимо учитывать, следует ли выбирать синхронный двигатель или нет.

Однако, поскольку синхронные машины имеют обмотки возбуждения и контактные кольца, операторы должны иметь более высокий уровень управления возбуждением. Кроме того, по сравнению с асинхронными двигателями, не требующими обслуживания, объем работ по техническому обслуживанию выше; поэтому двигатели мощностью менее 2500 кВт в настоящее время в основном являются асинхронными двигателями.

При низкой мощности разница в эффективности становится незначительной.

3 、 Асинхронный двигатель широко используется из-за его простой, низкой стоимости и простоты установки, использования и обслуживания.

Недостатком является то, что низкий КПД и низкий коэффициент мощности являются невыгодными для энергосистемы.

Высокий КПД синхронного двигателя обусловлен емкостной нагрузкой, которая может улучшить коэффициент мощности энергосистемы.

4 、 синхронная машина нуждается в регулировании напряжения возбуждения и тока, а асинхронная машина - нет; синхронная машина может компенсировать реактивную мощность системы, а асинхронная машина требует специального оборудования для увеличения компенсации мощности.

5 、 существует три основных режима работы синхронного двигателя: генератор, двигатель и компенсатор.

Поскольку работа генератора является наиболее важным режимом работы синхронного двигателя, а работа двигателя - еще одним важным режимом работы синхронного двигателя.

Коэффициент мощности синхронного двигателя можно регулировать. Когда регулирование скорости не требуется, применение большого синхронного двигателя может повысить эффективность работы.

В последние годы малые синхронные двигатели широко используются в системах частотно-регулируемого регулирования скорости.

Синхронный двигатель также может быть подключен к электросети в качестве синхронного компенсатора.

В это время, без какой-либо механической нагрузки, двигатель передает требуемую индуктивную или емкостную реактивную мощность в электросеть, регулируя ток возбуждения в роторе, чтобы улучшить коэффициент мощности или отрегулировать напряжение в электросети.

В общих приложениях вы можете выбрать асинхронный двигатель в качестве драйвера устройства.

Если вам нужно приобрести асинхронные двигатели или узнать больше об асинхронных двигателях, нажмите «Асинхронный двигатель».

Если вам необходимо приобрести синхронные двигатели или узнать больше о них, нажмите «Синхронные двигатели».

Или свяжитесь с нами в любое время: [email protected]

Разница между асинхронным двигателем и синхронным двигателем

Основное отличие - асинхронный двигатель от синхронного двигателя

Асинхронные двигатели и синхронные двигатели - это два разных типа двигателей переменного тока. Оба они содержат статор, который создает вращающееся магнитное поле, и ротор, который вращается в ответ.Основное различие между асинхронным двигателем и синхронным двигателем заключается в том, что в синхронных двигателях роторы вращаются с той же скоростью, с которой вращается магнитное поле , тогда как роторы асинхронных двигателей вращаются со скоростью, меньшей, чем у асинхронных двигателей. вращающееся магнитное поле .

Что такое синхронный двигатель

Синхронный двигатель состоит из статора (неподвижная часть), обмотки которого питаются от трехфазного переменного источника питания.Обмотки подключены к источнику питания таким образом, что при изменении фазных переменных токов вокруг статора образуется вращающееся магнитное поле. На ротор (вращающуюся часть) синхронного двигателя подается постоянный ток, так что он образует электромагнит, магнитное поле которого не меняется со временем. Когда двигатель работает, магнитное поле ротора взаимодействует с вращающимся магнитным полем статора, а сам ротор вращается, так что его магнитные полюса «заблокированы» притягивающим магнитным полюсом в статоре.

Однако вначале магнитное поле, создаваемое статором, вращается так быстро, что ротор не может успевать за вращением из-за своей собственной инерции. Другими словами, синхронные двигатели не являются самозапускающимися . Чтобы решить эту проблему, можно использовать ротор с короткозамкнутым ротором . Когда эти роторы помещаются во вращающееся магнитное поле, в структуре с короткозамкнутым ротором индуцируются токи. Эти токи создают собственное магнитное поле, которое взаимодействует с вращающимся магнитным полем , заставляя клетку испытывать силу.В результате «беличья клетка» тоже начинает вращаться. Поскольку ротор прикреплен к беличьей клетке, ротор также начинает вращаться. Когда ротор начинает вращаться со скоростью, близкой к скорости вращения магнитного поля, на статоре включается постоянный ток. Теперь ротор движется с достаточно высокой скоростью, которая позволяет его магнитному полю блокироваться с магнитным полем статора. Как только они заблокированы, ротор может продолжать вращаться вместе с вращающимся магнитным полем.

Другой способ заставить ротор вращаться со скоростью, близкой к скорости магнитного поля, - это подсоединить ротор к внешнему двигателю. И снова, когда ротор достигает достаточно близкой скорости, его ток включается, так что его магнитное поле может блокироваться с вращающимся магнитным полем статора.

Ротор синхронного двигателя вращается с той же скоростью, что и скорость вращающегося магнитного поля, поэтому двигатель называется синхронным .Число оборотов, которое магнитное поле вращает в минуту, называется синхронной скоростью () и выражается в терминах частоты переменного тока и числа полюсов статора, подключенного к одной из трех фаз посредством :

Видео ниже дает хорошее объяснение того, как работает синхронный двигатель.

Что такое асинхронный двигатель

Установка асинхронного двигателя имеет некоторые сходства с установкой синхронного двигателя.Как и синхронные двигатели, асинхронные двигатели также состоят из набора обмоток статора, подключенных к трехфазному источнику переменного тока. Как мы упоминали ранее, это создаст вращающееся магнитное поле.

Ротор асинхронного двигателя - короткозамкнутый. Как упоминалось ранее, когда ротор с короткозамкнутым ротором помещается во вращающееся магнитное поле, он создает ток через клетку. Ток создает собственное магнитное поле, которое, в свою очередь, взаимодействует с вращающимся магнитным полем.В результате ротор с короткозамкнутым ротором также начинает вращаться.

Асинхронные двигатели

В отличие от синхронного двигателя, ротор асинхронного двигателя вращается с меньшей скоростью, чем скорость вращения магнитного поля. Это связано с тем, что, если бы ротор вращался с той же скоростью, что и магнитное поле, магнитный поток через ротор перестанет изменять , изменяя , и, таким образом, согласно закону Фарадея внутри ротора больше не будет тока.Следовательно, когда ротор начинает вращаться со скоростью, близкой к скорости вращения магнитного поля, сила, действующая на него, уменьшится, и он начнет замедляться. Когда он начинает замедляться, магнитный поток через него будет меняться с большей скоростью, поэтому теперь он будет испытывать большую силу. Таким образом, ротор никогда не останавливается, но и никогда не достигает скорости вращающегося магнитного поля. По этой причине считается, что асинхронные двигатели относятся к типу асинхронных двигателей типа .

Разница между скоростью ротора и скоростью вращающегося магнитного поля называется скольжением . Величина скольжения больше, когда к ротору подключена большая нагрузка. Видео ниже объясняет, как работает асинхронный двигатель.

Разница между асинхронным двигателем и синхронным двигателем

Скорость ротора

Роторы синхронного двигателя вращаются с той же скоростью, с которой вращается магнитное поле, создаваемое статором.

Ротор асинхронного двигателя вращается медленнее по сравнению с магнитными полями, создаваемыми статорами.

Самозапуск

Синхронные двигатели не запускаются автоматически.

Асинхронные двигатели самозапускаются.

Текущее требование

Синхронным двигателям требуется постоянный ток для создания статического магнитного поля на роторе. Обычно это производится переменным током с помощью контактных колец и щеток.

Асинхронные двигатели не требуют подачи постоянного тока на ротор.

Изображение предоставлено:

«Трехфазные асинхронные электродвигатели (соединение треугольником)…» от Zureks (собственная работа) [CC BY-SA 3.0], через Wikimedia Commons

Серводвигатели

- синхронные и асинхронные

Мы также предлагаем модульную концепцию двигателя для динамических и точных сервоприводов. Выберите лучший серводвигатель для своего применения из трех синхронных и одной асинхронной серий: компактных, малоинерционных и мощных.Двигатели многих размеров и длины гарантируют широкий спектр применения и обеспечивают надежный крутящий момент в состоянии покоя.

Что такое серводвигатели?

Серводвигатель - это двигатель, который позволяет контролировать точное положение вала двигателя, а также скорость и / или ускорение. Для этой цели также используются соответствующие датчики и регулирующая техника. Раньше серводвигатели были вспомогательными приводами, предназначенными для использования в станках.Между прочим, серводвигатель получил свое название от латинского слова servus, что в переводе с английского означает «сервер». Серводвигатели состоят из асинхронного двигателя , синхронного двигателя или двигателя постоянного тока . Таким образом, разница между двигателями заключается не в самом принципе привода, а только в их возможностях регулирования.

Какие типы серводвигателей доступны?

Серводвигатели

можно разделить на синхронные и асинхронные серводвигатели .Однако двигатель всегда представляет собой привод, работающий с электронным управлением позиционированием, скоростью или крутящим моментом - или их комбинацией. К ним предъявляются очень высокие требования к динамике, диапазонам настройки и / или точности движения. Серводвигатели в основном используются в сочетании с решениями для автоматизации и управления , например, в упаковочных машинах.

Что мы предлагаем: Синхронные и асинхронные серводвигатели

Асинхронные серводвигатели

Асинхронные серводвигатели

подходят для использования в приложениях, в которых необходимо перемещать с высокой внешней инерцией в установках и машинах и безопасно управлять ими.Имея это в виду, SEW ‑ EURODRIVE DRL. серия двигателей обеспечивает подходящие приводные решения.

Синхронные серводвигатели

Синхронные серводвигатели - это приводы, в которых ротор синхронно приводится в движение вращающимся полем в статоре с использованием приложенных постоянных магнитов. Синхронный двигатель совершает движение, синхронное с частотой приложенного вращающегося поля .

Эта конструкция привода работает от преобразователя частоты, который обеспечивает соответствующий регулируемый трехфазный ток .Для этого в портфолио SEW ‑ EURODRIVE есть несколько различных конструкций. Оптимизированные серводвигатели серии CMP .. могут быть адаптированы к высокой динамике или высоким нагрузкам в зависимости от области применения . Классические области применения включают пищевую промышленность и производство предметов роскоши, а также строительство, автомобилестроение, упаковку и деревообработку.

Для синхронных серводвигателей серии CM .. упор делается на оптимальные характеристики управления, силу крутящего момента и динамику. Идеальные области применения этих двигателей можно найти в логистике, например, в качестве приводов для порталов X-Y-Z или систем хранения / поиска.

1-3-3. Двигатель переменного тока | Корпорация Nidec

Термин «двигатель переменного тока» часто кратко описывают как «двигатель переменного тока». Поэтому в этой книге мы будем следовать этому соглашению.

Электродвигатели переменного тока

условно подразделяются на коллекторные, синхронные и асинхронные.

Синхронные и асинхронные двигатели представляют собой двигатели переменного тока, скорость вращения которых определяется вращающимся магнитным полем.

Здесь вращающееся магнитное поле относится к явлению, когда магнитное поле, которое создается при подаче трехфазного, двухфазного или другого многофазного переменного тока к обмотке статора, вращается со скоростью, определяемой частотой кратного -фазный переменный ток (= синхронная скорость).Вращающееся магнитное поле притягивает ротор, заставляя его вращаться. Двигатели переменного тока классифицируются по разнице в способе вращения.

Двигатели переменного тока с вращающимся магнитным полем (общий термин для синхронных и асинхронных двигателей) грубо подразделяются на двигатели, которые работают от 100 В переменного тока (питание, подаваемое в дом через двухпроводные линии обслуживания), и двигатели, которые используют мощность 200 В переменного тока (распределяется между фабрики и др. по трехпроводным линиям).

Первый называется однофазным двигателем, а второй - трехфазным.

В последнее время трехфазные двигатели все чаще приводятся в действие схемой инвертора мощности с использованием полупроводникового устройства, называемого инвертором. Задача этой конфигурации драйвера состоит в том, чтобы управлять двигателем с частотой вращения и крутящим моментом, предназначенными для данного приложения, путем управления напряжением и частотой с помощью инвертора.

[3] - (1) Коммутаторный двигатель

Коллекторный двигатель - это общее описание двигателей, в которых используется коллекторный ротор, как показано на рис. 1.12.Тип, который в настоящее время все еще используется в большом количестве, - это так называемый универсальный двигатель (также называемый двигателем серии переменного тока или электродвигателем с последовательной обмоткой переменного тока).

Основное применение этого двигателя - пылесосы, электроинструменты и соковыжималки. Другими словами, он используется в областях, где требуется, чтобы двигатель вращался с высокой скоростью за счет использования однофазного источника питания переменного тока.

Слово «универсальный» здесь означает, что двигатель вращается от источника переменного или постоянного тока (то есть от двигателя переменного / постоянного тока).

В принципе, он имеет ту же конструкцию, что и двигатели серии постоянного тока, но при использовании переменного тока необходимо учитывать следующие моменты:

Наклонный тип / тип с прямой канавкой
Рис. 1.12 Ротор коммутатора
Он имеет обмотку и коммутатор, сконфигурированный с несколькими медными пластинами
.

<1> В случае постоянного тока поток статора постоянный, но в случае переменного тока он изменяется. Следовательно, необходимо уменьшить любой вихревой ток, генерируемый изменяющимся потоком, с помощью изолированного сердечника.

<2> Падение напряжения было вызвано только сопротивлением в случае постоянного тока, но с переменным током, помимо падений напряжения, вызванных сопротивлением, выходная мощность также снижается из-за ухудшенного коэффициента мощности из-за фазового сдвига в результате электромагнитной индукции .

[3] - (2) Синхронный двигатель

Под синхронным двигателем понимаются двигатели, скорость вращения которых равна синхронной скорости. К ним относятся следующие три типа:

[3] - (2) -

<1> Реактивный двигатель

В реактивном двигателе используется статор с распределенной обмоткой (рис.1.13 слева) и явнополюсный ротор с короткозамкнутым ротором (рис. 1.14 справа).

Вначале он вращается как асинхронный двигатель, а затем вращается синхронно с частотой источника питания во время работы. Скорость его вращения различается в диапазоне от 50 Гц до 60 Гц. Этот двигатель обладает сравнительно большим пусковым моментом. Его еще называют реактивным двигателем.

Рис. 1.13 Статор распределенной обмотки (слева) и статор с шестикатушкой сосредоточенной обмотки
(справа) Инжир.1.14 (Слева) Ротор с короткозамкнутым ротором (для асинхронного двигателя с короткозамкнутым ротором)
(Справа) Ротор с короткозамкнутым ротором с явным полюсом (для реактивного двигателя)
В качестве проводников используются медь, латунь и алюминий.

[3] - (2) -

<2> Двигатель с гистерезисом Рис. 1.15 Ротор из полутвердой стали
Сталь со слабым постоянным магнитом
, не вызывающая намагничивания

В гистерезисном двигателе используется статор с распределенной обмоткой (рис.1.13 Слева) и ротор из полутвердой стали (рис. 1.15).

Поскольку этот двигатель вращается с использованием гистерезисных характеристик, он имеет небольшие неравномерности вращения или вибрации. Кроме того, поскольку нет разницы между пусковым и остановочным моментами, в идеале он должен работать в условиях постоянной нагрузки. Этот мотор могут выпускать только производители, у которых есть специальное кольцо гистерезиса.

[3] - (2) -

<3> Двигатель индукционного типа

Принцип работы синхронных двигателей индукторного типа заключается в синхронизации движения ротора с частотой тока, подаваемого на катушку статора (электромагнита), и преобразование входной мощности во вращательное движение посредством многократного притяжения и отталкивания.

Другими словами, скорость вращения ротора будет обратной целому числу скорости вращения (синхронной скорости), однозначно определяемой частотой тока. Двигатели можно разделить на два типа в зависимости от конструкции ротора.

  • ・ Электродвигатели с кулачковыми полюсами
  • ・ Гибридные шаговые двигатели (медленно-синхронные двигатели).

Электродвигатели с кулачковыми полюсами различной номинальной скорости доступны за счет комбинации конструкции двигателя и головки редуктора.

Электродвигатели с кулачковыми полюсами используются в различных приложениях, включая игровые автоматы (автоматы для игры в пинбол), копировальные машины, драйверы камер видеонаблюдения, записывающие счетчики, автоматические шторы и устройства открытия / закрытия клапанов. Гибридные шаговые двигатели в основном используются в производственном оборудовании.

[3] - (3) Асинхронный двигатель

Обычно его называют асинхронным двигателем, но иногда его называют асинхронным двигателем.

Это общее название двигателей, скорость вращения которых немного ниже синхронной скорости.Существуют следующие три типа. В любом случае используется статор с распределенной обмоткой (рис. 1.13 слева).

[3] - (3) -

<1> Асинхронный двигатель с короткозамкнутым ротором Рис. 1.16 Когда железо растворяется в азотной кислоте, остается только алюминиевая клетка.
Слева находится ротор асинхронного двигателя с короткозамкнутым ротором типа
, а справа - ротор реактивного двигателя
.

Ротор с короткозамкнутым ротором (рис.1.14 слева) используется для асинхронного двигателя с короткозамкнутым ротором.

К этому типу относятся силовые двигатели общего назначения для промышленного использования. Когда ротор с короткозамкнутым ротором погружают в азотную кислоту для растворения содержания железа, остается только алюминиевая «клетка», как показано на рис. 1.16. Можно аккуратно отрегулировать характеристическую кривую, отрегулировав форму и материал клеточного проводника ротора.

[3] - (3) -

<2> Вихретоковый двигатель Инжир.1.17 Ротор из мягкой стали
Основной материал - цилиндрическая масса из железа.
Для вихретоковых двигателей

Ротор из мягкой стали (рис. 1.17) используется для роторов вихретоковых двигателей. Он создает большой крутящий момент в начале работы, который падает с увеличением скорости.

[3] - (3) -

<3> Асинхронный двигатель с фазным ротором Рис. 1.18 Обмотка ротора
Он оснащен тремя контактными кольцами для возбуждения ротора
с помощью щетки.

Роторы с обмотками (рис. 1.18) используются в асинхронных двигателях с фазным ротором. Характеристики двигателя можно изменить с помощью переменного резистора, подключенного через контактные кольца. Этот ротор специально используется в больших двигателях.

[3] - (3) -

<4> Однофазный асинхронный двигатель

Мы описали многофазные (трехфазные) асинхронные двигатели в пунктах с <1> по <3> выше.

В нашей повседневной жизни источником питания, с которым знакомо большинство людей, является однофазный источник питания переменного тока.Следовательно, удобны практические двигатели, работающие на однофазном переменном токе. Однофазный асинхронный двигатель соответствует этому требованию. Небольшие двигатели этого типа с диапазоном мощности от нескольких ватт до нескольких сотен ватт широко используются в быту, небольших промышленных и сельскохозяйственных приложениях. Конденсаторные двигатели и однофазные асинхронные двигатели с экранированными полюсами являются типичными однофазными асинхронными двигателями.

[3] - (3) -

<4> -a) Конденсаторный двигатель Инжир.1.19 Соотношение фаз конденсаторного двигателя
Рис. 1.20 Конденсаторный двигатель промышленного назначения

Как показано на рис. 1.19, конденсаторные двигатели конфигурируются путем включения конденсатора в фазу A, так что VA становится ведущей фазой для VM.

Конденсаторные двигатели подразделяются на двигатели с конденсаторным пуском, в которых конденсатор C вставляется только при запуске, двигатели с конденсаторным приводом, в которых постоянный конденсатор C остается вставленным с момента запуска и далее, и двигатели с двоичными конденсаторами, которые уменьшают емкость путем переключения конденсатора, когда двигатель переходит в устойчивое рабочее состояние.

Помимо того, что конденсаторный двигатель предпочтительно используется в бытовых приборах со сравнительно меньшими пусковыми моментами, в промышленности, конденсаторный двигатель используется в небольших приводах ленточных конвейеров и машинах FA (автоматизация производства) из-за простоты использования и высокой экономической эффективности.

[3] - (3) -

<4> -b) Однофазный асинхронный двигатель с расщепленными полюсами

Однофазный асинхронный двигатель с экранированными полюсами представляет собой асинхронный двигатель с короткозамкнутой вспомогательной обмоткой, расположенной в положении, смещенном от основной обмотки на электрический угол менее 90 °.

Вспомогательная обмотка индуцирует напряжение, используя эффект трансформатора основной обмотки для подачи тока короткого замыкания, и создает вращающееся магнитное поле, используя магнитодвижущую силу вспомогательной и основной обмоток.

Будучи менее эффективным из-за потерь, возникающих в затемненной катушке, этот двигатель используется в вентиляторах и других устройствах малой мощности из-за своей простой конструкции.

В чем разница между асинхронным двигателем и синхронным двигателем? -Jiangmen fengheng Electric Co., Ltd

Принцип работы асинхронных и синхронных двигателей основан на законе электромагнитной индукции. Отличие состоит в том, что симметричные трехфазные обмотки асинхронного двигателя подключены к источнику переменного тока. Даже если статор не катится, из-за источника переменного тока будет возникать вращающееся магнитное поле. В этот момент в замкнутой цепи обмотки возникнет ток. Следовательно, в соответствии с правилом левого винта, влияние силы на проводник с током во вращающемся магнитном поле может быть определено, что обмотка ротора подвергается действию направленной электромагнитной силы и электромагнитного крутящего момента (обычно по часовой стрелке), поэтому что обмотка ротора вращается с вращающимся магнитным полем статора со скоростью n;

Однако обмотки статора синхронного двигателя распределены симметрично в пазу сердечника статора с разницей в пространстве 120 °.Обмотка ротора имеет возбуждение постоянным током. Когда постоянный ток входит в обмотку ротора через щетку и контактное кольцо, магнитная цепь выходит из полюса N, проходит через воздушный зазор, сердечник статора и затем входит в полюс S через воздушный зазор. Когда синхронный двигатель приводится в действие первичным двигателем и вращается в определенном направлении со скоростью N, трехфазная обмотка в статоре последовательно обрезает линию магнитной индукции и индуцирует потенциал того же размера и фазы 120 °. разница.Это принцип синхронного двигателя.

Общее понимание разницы между синхронным двигателем и асинхронным двигателем заключается в том, соответствует ли скорость их ротора вращающемуся магнитному полю статора. Если скорость ротора двигателя такая же, как у вращающегося магнитного поля статора, он называется синхронным двигателем, в противном случае он называется асинхронным двигателем.

Кроме того, обмотка статора синхронного двигателя и асинхронного двигателя одинакова, разница заключается в конструкции ротора двигателя.Ротор асинхронного двигателя представляет собой короткозамкнутую обмотку, генерирующую ток за счет электромагнитной индукции. Однако структура ротора синхронного двигателя относительно неупорядочена и имеет обмотку возбуждения постоянного тока, поэтому для подачи тока через контактное кольцо требуется дополнительный источник питания возбуждения; поэтому конструкция синхронного двигателя относительно беспорядочная, а стоимость и стоимость ремонта относительно высоки.

Скорость синхронного двигателя синхронна с электромагнитной скоростью, в то время как скорость асинхронного двигателя ниже, чем скорость электромагнитного.Независимо от того, насколько велика или мала нагрузка, скорость синхронного двигателя не изменится до тех пор, пока он не потеряет шаг. Скорость асинхронного двигателя изменяется с изменением величины нагрузки.

Синхронный двигатель отличается высокой точностью, но изготовление беспорядочно, стоимость высока, а ремонт относительно затруднен. Хотя асинхронный двигатель реагирует медленно, его легко установить и использовать, а цена невысока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *