Обратноходовый импульсный блок питания схема: Импульсный источник питания для УМЗЧ

Содержание

Импульсные блоки питания.Виды и работа.Особенности и применение

Практически в каждом электронном приборе есть блок питания – важный элемент монтажной схемы. Блоки применяются в устройствах, требующих пониженного питания. Базовой задачей блока питания считается уменьшение сетевого напряжения. Первые импульсные блоки питания сконструированы после изобретения катушки, которая работала с переменным током.

Применение трансформаторов дало толчок развития блоков питания. После выпрямителя тока осуществляется выравнивание напряжения. В блоках с преобразователем частоты этот процесс проходит по-другому.

В импульсном блоке основу составляет инверторная система. После выпрямления напряжения образуются прямоугольные импульсы с высокой частотой, подаются на фильтр выхода низкой частоты. Импульсные блоки питания преобразовывают напряжение, отдают мощность на нагрузку.

Рассеивание энергии от импульсного блока не происходит. От линейного источника идет рассеивание на полупроводниках (транзисторах). Его компактность и малый вес также дает превосходство над трансформаторными блоками при одинаковой мощности, поэтому часто линейные блоки заменяют импульсными.

Принцип действия

Работа ИБП простой конструкции следующая. Если входной ток является переменным, как в большинстве бытовых приборах, то сначала происходит преобразование напряжения в постоянное. Некоторые конструкции блоков имеют переключатели, удваивающие напряжение. Это делается для того, чтобы подключаться к сети с разным номиналом напряжения, например, 115 и 230 вольт.

Выпрямитель выравнивает переменное напряжение и на выходе отдает постоянный ток, который поступает в фильтр конденсаторов. Ток от выпрямителя выходит в виде малых импульсов высокой частоты. Сигналы обладают высокой энергией, за счет которой снижается коэффициент мощности трансформатора импульсов. Благодаря этому габариты импульсного блока небольшие.

Чтобы скорректировать уменьшение мощности в новых блоках питания применяют схему, в которой ток на входе получается в виде синуса. По такой схеме смонтированы блоки в компьютерах, видеокамерах и других устройствах. Импульсный блок работает от постоянного напряжения, проходящего через блок, не изменяясь. Такой блок называют обратноходовым. Если он служит для 115 В, для работы на постоянном напряжении необходимо уже 163 вольта, это рассчитывается как (115 × √2).

Для выпрямителя такая схема вредна, так как половина диодов не используется в работе, это вызывает перегрев рабочей части выпрямителя. Долговечность в этом случае снижается.

После выпрямления напряжения сети в действие вступает инвертор, который преобразовывает ток. Пройдя через коммутатор, имеющий большую энергию выхода, из постоянного получается переменный ток. С обмоткой трансформатора в несколько десятков витков и частотой сотни герц блок питания работает в качестве усилителя низкой частоты, она получается больше 20 кГц, она не доступна слуху человека. Коммутатор изготовлен на транзисторах с многоступенчатым сигналом. Такие транзисторы имеют низкое сопротивление, высокую возможность прохода токов.

Схема работы ИБП

В сетевых блоках вход и выход изолируют между собой, в импульсных блоках ток применяется для первичной обмотки высокой частоты. На вторичной обмотке трансформатор создает нужное напряжение.

Для напряжения выхода более 10 В применяют кремниевые диоды. На низких напряжениях ставят диоды Шоттки, которые имеют достоинства:
  • Быстрое восстановление, что дает возможность иметь малые потери.
  • Малое падение напряжения. Для снижения напряжения выхода применяют транзистор, в нем выпрямляется основная часть напряжения.

Далее напряжение сглаживается фильтром, в него входят конденсатор, дроссель. Для частот коммутации выше требуются составляющие с малой индуктивностью и емкостью.

Схема импульсного блока минимального размера

В простой схеме ИБП вместо трансформатора применен дроссель. Это преобразователи для понижения или повышения напряжения, относятся к самому простому классу, применяется один переключатель и дроссель.

Некоторые виды ИБП
  • Простой ИБП на IR2153, распространен в России.
  • Импульсные блоки питания на TL494.
  • Импульсные блоки питания на UC3842.
  • Гибридного типа, из энергосберегающей лампы.
  • Для усилителя с повышенными данными.
  • Из электронного балласта.
  • Регулируемый ИБП, механическое устройство.
  • Для УМЗЧ, узкоспециализированный блок питания.
  • Мощный ИБП, имеет высокие характеристики.
  • На 200 В – на напряжение не более 220 вольт.
  • Сетевой ИБП на 150 ватт, только для сети.
  • Для 12 В – нормально работает при 12 вольтах.
  • Для 24 В – работает только на 24 вольта.
  • Мостовой – применена мостовая схема.
  • Для усилителя на лампах – характеристики для ламп.
  • Для светодиодов – высокая чувствительность.
  • Двухполярный ИБП, отличается качеством.
  • Обратноходовый, имеет повышенные напряжение и мощность.
Особенности

Простой ИБП может состоять из трансформаторов малых размеров, так как при повышении частоты эффективность трансформатора выше, требования к размерам сердечника меньше. Такой сердечник изготовлен из ферромагнитных сплавов, а для низкой частоты используется сталь.

Напряжение в блоке питания стабилизируется путем обратной связи отрицательной величины. Осуществляется поддержка напряжения выхода на одном уровне, не зависит от нагрузки и входных колебаний. Обратная связь создается разными методами. Если в блоке есть гальваническая развязка от сети, то применяется связь одной обмотки трансформатора на выходе или с помощью оптрона. Если развязка не нужна, то используют простой резистивный делитель. За счет этого напряжение выхода стабилизируется.

Особенности лабораторных блоков

Принцип действия осуществлен на активном преобразовании напряжения. Для удаления помех ставят фильтры в конце и начале цепи. Насыщение транзисторов положительно отражается на диодах, имеется регулировка напряжения. Встроенная защита блокирует короткие замыкания. Кабели питания применены немодульной серии, мощность достигает 500 ватт.

В корпусе установлен вентилятор охлаждения, скорость вентилятора регулируется. Наибольшая нагрузка блока составляет 23 ампера, сопротивление 3 Ом, наибольшая частота 5 герц.

Применение импульсных блоков

Сфера их использования постоянно растет как в быту, так и в промышленном производстве.

Импульсные блоки питания применяются в источниках бесперебойного питания, усилителях, приемниках, телевизорах, зарядных устройствах, для низковольтных линий освещения, компьютерной, медицинской технике и других различных приборах, и устройствах широкого назначения.

Достоинства и недостатки
ИБП имеет следующие преимущества и достоинства:
  • Небольшой вес.
  • Увеличенный КПД.
  • Небольшая стоимость.
  • Интервал напряжения питания шире.
  • Встроенные защитные блокировки.

Уменьшенная масса и размеры связано с применением элементов с радиаторами охлаждения линейного режима, импульсного регулирования вместо тяжелых трансформаторов. Емкость конденсаторов уменьшена за счет увеличения частоты. Схема выпрямления стала проще, самая простая схема – однополупериодная.

У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

Стоимость ИБП снижена из-за унификации элементов широкого ассортимента на роботизированных предприятиях. Силовые элементы из управляемых ключей состоят из полупроводников меньшей мощности.

Технологии импульсов дают возможность применять сеть питания с разной частотой, что расширяет применение блоков питания в различных сетях энергии. Модули на полупроводниках с небольшими габаритами с цифровой технологией имеют защиты от короткого замыкания и других аварий.

Недостатки

Импульсные блоки питания функционируют с помощью преобразования импульсов высокой частоты, создают помехи, уходящие в окружающую среду. Возникает необходимость подавления и борьбы с помехами разными методами. Иногда подавление помех не дает эффекта, и применение импульсных блоков становится невозможным для некоторых типов устройств.

Импульсные блоки питания не рекомендуется подключать как с низкой нагрузкой, так и с высокой. Если на выходе резко упадет ток ниже установленного предела, то запуск может оказаться невозможным, а питание будет с искажениями данных, которые не подходят к диапазону работ.

Похожие темы:

Принцип работы импульсных блоков питания. Схема импульсного блока питания

Блоки питания всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается ограничение тока. Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Работа блоков на 12 вольт

Импульсный блок питания (12 вольт) включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

импульсные блоки питания схемы

От параметров источника питания  качество    звучания зависит не чуть не меньше,   чем   от самого усилителя и относится халатно к его изготовлению не следует.   Описаний   методик расчетов типовых трансформаторов более чем достаточно.      Поэтому здесь предлагается описание импульсного источника   питания,   который может использоваться не только с усилителями на базе TDA7293 (TDA7294), но и с любым другим усилителем мощности 3Ч.

Основой данного блока питания (БП) служит полумостовой драйвер с внутренним генератором IR2153 (IR2155), предназначенный для управления транзисторами технологий MOSFET и IGBT в импульсных источниках питания. Функциональная схема микросхем приведена на рисунке 1, зависимость выходной частоты от номиналов RC-задающей цепочки на рисунке 2. Микросхема обеспечивает паузу между импульсами «верхнего» и «нижнего» ключей в течении 10% от длительности импульса, что позволяет не опасаться «сквозных» токов в силовой части преобразователя.

Рис. 1

Рис. 2

Практическая реализация БП приведена на рисунке 3. Используя данную схему можно изготовить БП мощностью от 100 до 500Вт, необходимо лишь пропорционально увеличивать емкость конденсатора фильтра первичного питания С2 и использовать соответствующий силовой трансформатор TV2.

Рис. 1

Емкость конденсатора С2 выбирается из расчета 1... 1,5 мкФ на 1 Вт выходной мощности, например при изготовлении БП на  150 Вт следует использовать конденсатор на 150...220 мкФ. Диодный мост первичного питания VD можно использовать в соответствии с установленным конденсатором фильтра первичного питания, при емкостях до 330 мкФ можно использовать диодные мосты на 4. ..6 А, например RS407 или RS607. При емкости конденсаторов 470... 680 мкФ нужны уже более мощные диодные мосты, например RS807, RS1007.
Об изготовлении трансформатора можно разговаривать долго, однако вникать в глубокую теорию расчетов слишком долго и далеко не каждому нужно. Поэтому расчеты по книге Эраносяна для самых ходовых типоразмеров ферритовых колец М2000НМ1 просто сведены в таблицу 1.
Как видно из таблицы габаритная мощность трансформатора зависит не только от габаритов сердечника, но и от частоты преобразования. Изготавливать трансформатор для частот ниже 40 кГц не очень логично - гармониками можно создать не преодолимые помехи в звуковом диапазоне. Изготовление трансформаторов на частоты выше 100 кГц уже непозволительно по причине саморазогрева феррита М2000НМ1 вихревыми токами. В таблице приведены данные по первичным обмоткам, из которых легко вычисляются отношения витков/вольт и дальше уже вычислить, сколько витков необходимо для того или иного выходного напряжения труда не составит. Следует обратить внимание на то, что подводимое к первичной обмотке напряжение составляет 155 В - сетевое напряжение 220 В после выпрямителя и слаживающего фильтра будет составлять 310 В постоянного напряжения, схема полу мостовая, следовательно к первичной обмотке будет прилагаться половина этого значения. Так же следует помнить, что форма выходного напряжения будет прямоугольной, поэтому после выпрямителя и слаживающего фильтра величина напряжения от расчетной отличаться будет не значительно.
Диаметры необходимых проводов рассчитываются из отношения 5 А на 1 кв мм сечения провода. Причем лучше использовать несколько проводов меньшего диаметра, чем один, более толстый провод. Это требование относится ко всем преобразователям напряжения, с частотой преобразования выше 10 кГц, так как начинает уже сказываться скинэффект - потери внутри проводника, поскольку на высоких частотах ток течет уже не по всему сечению, а по поверхности проводника и чем выше частота, тем сильнее сказываются потери в толстых проводниках. Поэтому не рекомендуется использовать в преобразователях с частотой преобразования выше 30 кГц проводники толще 1 мм. Следует так же обратить внимание на фазировку обмоток - неправильно сфазированные обмотки могут либо вывести силовые ключи из строя, либо снизить КПД преобразователя. Но вернемся к БП, приведенному на рисунке 3. Минимальная мощность данного БП практически ни чем не ограничена, поэтому можно изготовить БП и на 50 Вт и меньше. Верхний же предел мощности ограничен некоторыми особенностями элементной базы.
Для получения больших мощностей требуются транзисторы MOSFET более мощные, а чем мощнее транзистор, тем больше емкость его затвора. Если емкость затвора силового транзистора довольно высокая, то для её заряда-разряда требуется значительный ток. Ток транзисторов управления IR2153 довольно не велик (200 мА), следовательно, эта микросхема не может управлять слишком мощными силовыми транзисторами на больших частотах преобразования.
Исходя из вышесказанного становится ясно, что максимальная выходная мощность преобразователя на базе IR2153 не может быть более 500. ..600 Вт при частоте преобразования 50...70 кГц, поскольку использование более мощных силовых транзисторов на этих частотах довольно серьезно снижает надежность устройства. Список рекомендуемых транзисторов для силовых ключей VT1, VT2 с краткими характеристиками сведен в таблицу 2.
Выпрямительные диоды вторичных цепей питания должны иметь наименьшее время восстановления и как минимум двукратный запас по напряжению и трехкратный току. Последние требования обоснованы тем, что выбросы напряжения самоиндукции силового трансформатора составляют 20...50 % от амплитуды выходного напряжения. Например при вторичном питании в 100 В амплитуда импульсов самоиндукции может составлять 120... 150 В и не смотря на то, что длительность импульсов крайне мала ее достаточно чтобы вызвать пробой в диодах, при использовании диодов с обратным напряжением в 150 В. Трехкратный запас по току необходим для того, чтобы в момент включения диоды не вышли из строя, поскольку емкость конденсаторов фильтров вторичного питания довольно высокая, и для их заряда потребуется не малый ток. Наиболее приемлемые диоды VD4-VD11 сведены в таблицу 3.

Емкость фильтров вторичного питания (С11, С12) не следует увеличивать слишком сильно, поскольку преобразование производится на довольно больших частотах. Для уменьшения пульсаций гораздо актуальней использование большой емкости в первичных цепях питания и правильный расчет мощности силового трансформатора. Во вторичных же цепях конденсаторов на 1000 мкФ в плечо вполне достаточно для усилителей до 100 Вт (конденсаторы по питанию, установленные на самих платах УМЗЧ должны быть не менее 470 мкФ) и 4700 мкФ для усилителя на 500 Вт. На принципиальной схеме изображен вариант выпрямителей вторичного силового питания, выполненный на диодах Шотки, под них и разведена печатная плата (рисунок 4). На диодах VD12, VD13 выполнен выпрямитель для вентилятора принудительного охлаждения теплоотводов, на диодах VD14-VD17 выполнен выпрямитель для низковольтного питания (предварительные усилители, активные регуляторы тембра и т.д.). На том же рисунке приведен чертеж расположения деталей и схема подключения. В преобразователе имеется защита от перегрузки, выполненная на трансформаторе тока TV1, состоящая из кольца К20х12х6 феррита М2000 и содержащего 3 витка первичной обмотки (сечение такое же как и первичная обмотка силового трансформатора и   3 витка вторичной обмотки, намотанной двойным проводом диаметром 0,2...0,3 мм. При перегрузке напряжение на вторичной обмотке трансформатора TV1 станет достаточным для открытия тиристора VS1 и он откроется, замкнув питание микросхемы IR2153, тем самым прекратив ее работу. Порог срабатывания защиты регулируется резистором R8. Регулировку производят без нагрузки начиная с максимальной чувствительности и добиваясь устойчивого запуска преобразователя. Принцип регулировки основан на том, что в момент запуска преобразователя он нагружен максимально, поскольку требуется зарядить емкости фильтров вторичного питания и нагрузка на силовую часть преобразователя максимальная.

Об остальных деталях: конденсатор С5 - пленочный на 0,33... 1 мкФ 400В; конденсаторы С9, С10 - пленочные на 0,47. ..2,2 мкФ минимум на 250В; индуктивности L1...L3 выполнены на ферритовых кольцах К20х12х6 М2000 и наматываются проводом 0,8... 1,0 мм до заполнения виток к витку в один слой; С14, С15 - пленочные на 0,33...2,2 мкФ на напряжение не менее 100 В при выходном напряжении до 80 В; конденсаторы С1, С4, С6, С8 можно керамические, типа К10-73 или К10-17; С7 можно и керамический, но лучше пленочный, типа К73-17.

Простая схема импульсного блока питания - Moy-Instrument.Ru

Схема импульсного блока питания

Схема импульсного блока питания — 4 рабочие схемы

Схема импульсного блока питания, но не одна, а сразу четыре. В этом материале будет представлено вам несколько схем импульсных источников питания, выполненных на популярной и надежной микросхеме IR2153. Все эти проекты были разработаны известным пользователем Nem0. Поэтому я здесь буду писать от его имени. Показанные здесь все схематические решения были пару лет назад лично автором собраны и протестированы.

Но вот сейчас, в середине 2018 года, автор решил вновь предложить их вам для повторения, схемы абсолютно рабочие. В данной статье к сожалению не каждая схема имеет для наглядности фото уже готового прибора, но это пока все, что есть.

В общем начнем пока с так называемого «высоковольтного» блока питания:

Схема традиционная, которую использует Nem0 в большинстве своих конструкций импульсников. Драйвер получает питание напрямую от электросети через сопротивление. Это в свою очередь способствует уменьшению рассеиваемой на этом сопротивлении мощности, сравнительно с подачей напряжения от цепи 310v. Схема импульсного блока питания располагает функцией плавного включения напряжения, что существенно ограничивает пусковой ток. Модуль плавного пуска запитывается через конденсатор С2 понижающий сетевое напряжение 230v.

В блоке питания предусмотрена эффективная защита предотвращения короткого замыкания и пиковой нагрузки во вторичном силовом тракте. Роль датчика тока выполняет постоянный резистор R11, а регулировку тока срабатывания защиты выполняется с помощью подстроечника R10. Во время отсечки тока защитой, начинает светится светодиод, сигнализирующий о том, что защита сработала. Выходное двух полярное выпрямленное напряжение составляет +/-70v.

Трансформатор выполнен с одной первичной обмоткой, состоящей из пятидесяти витков, а 4 вторичные обмотки, содержат по двадцать три витка. Диаметр медной жилы и магнитопровод трансформатора расчитываются в зависимости от заданной мощности определенного блока питания.

Теперь рассмотрим следующий блок питания:

Эта версия блока питания во много схожа с описанной выше схемой, хотя в ней имеется существенное отличие. Дело в том, что здесь напряжение питания на драйвер поступает от специальной обмотки трансформатора, через балластный резистор. Все остальные компоненты в конструкции практически одинаковы.

Мощность на выходе этого источника питания обусловлено как характеристикой трансформатора и параметрами микросхемы IR2153, но и ресурсом диодов в выпрямителе. В данной схеме были задействованы диоды КД213А, у которых обратное максимальное напряжение 200v и прямой максимальный ток 10А. Для обеспечения корректной работы диодов при больших токах, их нужно устанавливать на радиатор.

Отдельного внимания заслуживает дроссель Т2. Наматывают его на совместном кольцевом магнитопроводе, в случае необходимости можно использовать другой сердечник. Намотка делается эмаль-проводом с сечением рассчитанным согласно току в нагрузке. Также и мощность импульсного трансформатора определяется в зависимости от того, какую выходную мощность вы хотите получить. Очень удобно делать расчеты трансформаторов с помощью специальных компьютерных калькуляторов.

Теперь третья схема импульсного блока питания на мощных полевых транзисторах IRFP460:

Этот вариант схемы уже имеет конкретную разницу относительно предыдущих моделей. Главные отличия, это система защиты от КЗ и перегруза здесь собрана с использованием трансформатора по току. И есть еще одна разница, это наличие в схеме пары предвыходных транзисторов BD140. Именно эти транзисторы дают возможность отрезать большую входную емкость мощных полевых ключей, относительно выхода драйвера.

Есть еще маленькое отличие, это гасящий напряжение резистор, относящейся к модулю плавного включения, установлен он в цепи 230v. В предыдущей схеме он расположен в силовом тракте +310v. Кроме этого в схеме имеется ограничитель перенапряжения, служащий для гашения остаточного импульса трансформатора. Во всем остальном никаких различий между приведенными выше схемами у этой больше нет.

Четвертая схема импульсника:

В этой схеме все упрощено до придела, здесь нет защиты от короткого замыкания, но собственно она не особо и нужна. В этом варианте блока питания, ток на выходе вторичной цепи 260v уменьшается на сопротивлении R6. Резистор R1 обрезает пиковый ток при пуске, а также сглаживает сетевые искажения.

Простая схема импульсного блока питания

Представляю самый простой миниатюрный импульсный блок питания, который может быть успешно повторён начинающим радиолюбителем. Он отличается надежностью, работает в широком диапазоне питающих напряжений, имеет компактные размеры.

Блок питания обладает относительно небольшой мощностью, в пределах 2-х ватт, зато он буквально неубиваемый, не боится даже долговремнных коротких замыканий.

Схема проще даже самых простых импульсных источников питания, к которым относятся зарядные устройства для мобильных телефонов.

Блок питания представляет собой маломощный импульсный источник питания автогенераторного типа, собранный всего на одном транзисторе. Автогенератор запитывается от сети через токоограничительный резистор R1 и однополупериодный выпрямитель в виде диода VD1.

Импульсный трансформатор имеет три обмотки , коллекторная или первичная , базовая обмотка и вторичная.

Важным моментом является намотка трансформатора, и на печатной плате и на схеме указаны начала обмоток, так , что проблем возникнуть не должно. Расчетов не делал, а количество витков обмоток позаимствованы от трансформатора для зарядки сотовых телефонов, так как схематика почти та же, количество обмоток тоже. Первой мотается первичная обмотка, которая состоит из 200 витков, диаметр провода от 0,08 до 0,1 мм, затем ставиться изоляция и таким же проводом мотается базовая обмотка, которая содержит от 5 до 10 витков. Поверх мотаем выходную обмотку, количество ее витков зависит от того, какое напряжение вам нужно, по моим скромным подсчетам получается около 1 вольта на один виток.

Сердечник для трансформатора можно найти в нерабочих блоках питания от мобильных телефонов, светодиодных драйверов и прочих маломощных источников питания, которые как правило построены именно на базе однотактных схем, в состав которых входит нужный трансформатор.

Один момент — блок однотактный и между половинками сердечника должен быть немагнитный зазор, такой зазор имеется у сердечников с зарядных устройств сотовых телефонов. Зазор относительно небольшой (пол миллиметра хватит сполна), Если не находите трансформаторов с зазором, его можно сделать искусственным образом, подложив между половинками сердечника один слой офисной бумаги.

Готовый трансформатор собирают обратно, половинки сердечника стягиваются скажем скотчем либо намертво склеиваются суперклеем.

Схема не имеет стабилизации выходного напряжения и узлов защиты от коротких замыканий, но как не странно ей не страшны никакие короткие замыкания. При коротких замыканиях естественно повышается ток в первичной цепи, но он ограничивается ранее упомянутым резистором, и все лишнее рассеивается на резисторе в виде тепла, так что блок можно смело замыкать, даже долговременно. Такое решение снижает КПД источника питания в целом, но зато делает его буквально неубиваемым, в отличии от тех же самых зарядок для мобильных телефонов.

Резистор указанного номинала ограничивает входной ток на уровне 14, 5 мА, по закону ома, зная напряжение в сети легко можно рассчитать мощность, которая составляет в районе 3,3 ватт, это мощность на входе, с учетом кпд преобразователя выходная мощность будет процентов на 20-30 меньше этого. Увеличить мощность можно, для этого достаточно снизить сопротивление указанного резистора.

Силовой транзистор — это маломощный высоковольтный биполярный транзистор обратной проводимости, подойдут ключи типа MJE13001, 13003, 13005, более мощные ставить нет смысла, первого варианта вполне хватает.

На выходе схемы установлен выпрямитель на базе импульсного диода, для снижения потерь советую использовать диод шоттки, рассчитанный на ток 1А. Далее фильтрующий конденсатор, светодиодный индикатор включения и пара резисторов.

О недостатках схемы:

  • Ограничительный резистор на входе снижает кпд, не на много, но снижает , взамен он гарантирует безопасную работу блока;
  • Ограниченная выходная мощности — для того, чтобы на этой основе построить блок питания скажем ватт на 10-20, нужно снизит его сопротивление и увеличит мощност, чтобы нагрев не выходил за рамки, а это неудобно и увеличивает размеры блока питания в целом.

Но с другой стороны, схожие схемы применяются там, где нужна мощность в пределах 3-5 ватт, например в моем случае блок предназначен для питания небольшого кулера, поэтому мощность ограничена в пределах 2-х ватт.

Области применения — их очень много, так, как блок имеет гальваническую развязку от сети, следовательно, он безопасен и его выходное напряжение никак не связано с сетью. Отличный вариант для запитки светодиодов, вентиляторов охлаждения, питания каких-то маломощных схем и многое другое.

Как работает простой и мощный импульсный блок питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Простая схема импульсного блока питания

Всем привет! После сборки усилителя на ТДА7294, сделал еще и инвертор, чтобы можно было питать от 12 В, то есть автомобильный вариант. После того как все сделал в плане УНЧ, был поставлен вопрос: чем теперь его питать? Даже для тех же тестов, или чтобы просто послушать? Думал обойдется все АТХ БП, но при попытке «навалить», БП надежно уходит в защиту, а переделывать как-то не очень хочется. И тут осенила мысль сделать свой, без всяких «прибамбасов» БП (кроме защиты разумеется). Начал с поиска схем, присматривался к относительно не сложным для меня схем. В итоге остановился на этой:

Схема ИБП для УМЗЧ

Нагрузку держит отлично, но замена некоторых деталей на более мощные позволит выжать из неё 400 Вт и более. Микросхема IR2153 — самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое потребление тока и может питаться через ограничительный резистор.

Сборка устройства

Начнем с травления платы (травление, зачистка, сверление). Архив с ПП скачайте тут.

Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).

Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:

Далее внимательно распаиваем детали на плате согласно схеме и ПП.

Теперь самое интересное в ИИП — трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это – ExcellentIT. В ней мы и будем рассчитывать наш трансформатор.

Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

Примечания и советы

  1. Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
  2. Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
  3. В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева – 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
  4. Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.

Вот конечные фото проекта блока питания:

Всем удачи! Специально для Радиосхем — с вами был Alex Sky.

Простая схема импульсного блока питания

Импульсный блок питания (60Вт).

Автор:
Опубликовано 01.01.1970

Схема представляет собой классический обратноходовый БП на базе ШИМ UC3842. Поскольку схема базовая, выходные параметры БП могут быть легко пересчитаны на необходимые. В качестве примера для рассмотрения выбран БП для ноутбука с питанием 20В 3А. При необходимости можно получить несколько напряжений, независимых или связанных.

Выходная мощность на открытом воздухе 60Вт (длительно). Зависит главным образом от параметров силового трансформатора. При их изменении можно получить выходную мощность до 100Вт в данном типоразмере сердечника. Рабочая частота блока выбрана 29кГц и может быть перестроена конденсатором С1. Блок питания рассчитан на неизменяющуюся или мало меняющуюся нагрузку, отсюда отсутствие стабилизации выходного напряжения, хотя оно стабильно при колебаниях сети 190. 240вольт. БП работает без нагрузки, есть настраиваемая защита от к/з. КПД блока — 87%. Внешнего управления нет, но можно ввести с помощью оптопары или реле.

Силовой трансформатор (каркас с сердечником), выходной дроссель и дроссель по сети заимствованы с компьютерного БП. Первичная обмотка силового трансформатора содержит 60витков, обмотка на питание микросхемы — 10витков. Обе обмотки наматываются виток к витку проводом 0,5мм с одинарной межслойной изоляцией из фторопластовой ленты. Первичная и вторичная обмотки разделяются несколькими слоями изоляции. Вторичная обмотка пересчитывается из расчета 1,5вольта на виток. К примеру, 15вольтовая обмотка будет 10витков, 30вольтовая — 20 и т.д. Поскольку напряжение одного витка достаточно велико, при малых выходных напряжениях потребуется точная подстройка резистором R3 в пределах 15. 30кОм.

Настройка
При необходимости получить несколько напряжений можно воспользоваться схемами (1), (2) или (3). Числа витков считаются отдельно для каждой обмотки в (1), (3), а (2) — иначе. Поскольку вторая обмотка является продолжением первой, то число витков второй обмотки определяется как W2=(U2-U1)/1.5, где 1.5 — напряжение одного витка. Резистор R7 определяет порог ограничения выходного тока БП, а также максимальный ток стока силового транзистора. Рекомендуется выбирать максимальный ток стока не более 1/3 паспортного на данный транзистор. Ток можно высчитать по формуле I(Ампер)=1/R7(Ом).

Сборка
Силовой транзистор и выпрямительный диод во вторичной цепи устанавливаются на радиаторы. Их площадь не приводится, т.к. для каждого варианта исполнения (в корпусе, без корпуса, высокое выходное напряжение, низкое, и.т.д.) площадь будет отличаться. Необходимую площадь радиатора можно установить экспериментально, по температуре радиатора во время работы. Фланцы деталей не должны нагреваться выше 70градусов. Силовой транзистор устанавливается через изолирующую прокладку, диод — без неё.

ВНИМАНИЕ.
. Соблюдайте указанные значения напряжений конденсаторов и мощностей резисторов, а также фазировку обмоток трансформатора. При неверной фазировке блок питания заведется, но мощности не отдаст.
. Не касайтесь стока (фланца) силового транзистора при работающем БП. На стоке присутствует выброс напряжения до 500вольт.

Замена элементов.
Вместо 3N80 можно применить BUZ90, IRFBC40 и другие. Диод D3 — КД636, КД213, BYV28 на напряжение не менее 3Uвых и на соответствующий ток.

Запуск
Блок заводится через 2-3 секунды после подачи сетевого напряжения. Для защиты от выгорания элементов при неверном монтаже первый запуск БП производится через мощный резистор 100 Ом 50Вт, включенный перед сетевым выпрямителем. Также желательно перед первым запуском заменить сглаживающий конденсатор после моста на меньшую емкость (около 10. 22мкФ 400В). Блок включают на несколько секунд, потом выключают и оценивают нагрев силовых элементов. Далее время работы постепенно увеличивают, и в случае удачных запусков блок включается напрямую без резистора со штатным конденсатором.

Ну и последнее.
Описываемый БП собран в корпусе МастерКит BOX G-010. В нем держит нагрузку 40Вт, на большей мощности необходимо позаботиться о дополнительном охлаждении. В случае выхода БП из строя вылетает Q1, R7, 3842, R6, могут погореть C3 и R5.

Импульсный источник питания для зарядного устройства.

Довольно компактное и легкое зарядное устройство можно изготовить в случае замены трансформаторного блока питания на импульсный блок питания. Простой ИИП можно изготовить с внедрением микросхемы IR2153, которая довольно неплохо работает в схемах сетевых иип.

Представленная схема отличается от аналогичных там, что питание идет не от шины 310 Вольт, т.е вместо двух конденсаторов подключенных со средней точкой, у нас всего один электролит после диодного моста. Мой вариант был рассчитан на относительно небольшую мощность, хотя с заменой некоторых компонентов на более мощные, спокойно можно получить импульсный блок питания с мощностью 500 и выше ватт, но мне нужен был блок с мощность- не более 100-150 ватт.

Полевые ключи использовал серии 8N50 – ключи с изолированным корпусом, следовательно, в случае использования общего теплоотвода отпадает нужда в слюдяных прокладках. Выбор ключей не критичен, отлично работают ключи типа IRF740/840 (в случае этих транзисторов обязательно использовать дополнительные прокладки, если оба ключа собираетесь усадить на единый теплоотвод), при выборе ключей обратите внимание на рсчетное напряжение (выше 400 Вольт) и на допустимый ток (выше 5 Ампер, зависит от расчетной мощности блока питания).

Диодный мост – тут выбор большой, можно взять готовые мосты от комповых БП, можно собрать из 4-х выпрямительных диодов, обратное напряжение выше 400 Вольт, ток диода в принципе от 1-3 Ампер, в моем варианте стоят самые обычные выпрямители на 100 вольт с током 1 Ампер, для мощности до 200 ватт сполна хватит и их, хотя желательно иметь запас по току, поскольку в момент включения бп в сеть 220 Вольт конденсатор заряжается запредельным током и диоды могут не выдержать. Советую диоды IN5408 как дешевый и хороший вариант.

Далее идет цепочка питания микросхемы. Питание берется с переменки, резистор для токогашения на 18кОм, номинал придется подобрать опытным путем, в зависимости от значения напряжения на выводах 1 и 4 микросхемы. После резистора стоит простой выпрямитель на одном диоде и питание поступает на саму микросхему. На питании также стоит небольшой электролит с параллельно подключенным пленочным или керамическим конденсатором, для наилучшего сглаживания пульсаций и помех.

Затворные резисторы могут иметь номинал от 15 до 33 Ом, мощность 0,25 ватт.
Силовой трансформатор можно использовать готовый, от компьютерного бп, как раз отлично подходит для наших целей и обеспечивает несколько выходных напряжений и довольно приличный ток на выходе.

Выходные выпрямительные диоды – обязательно импульсные, обычные тут не будут работать из-за повышенной частоты. Тут выбор падает на наши КД213 – до 100кГц работают адекватно, обратное напряжение 200 Вольт и ток допустимый через кристалл до 10 Ампер, как раз то, что нам нужно. Собрать мостик из 4-х выпрямителей не составит труда. Не стоит злоупотреблять выходным электролитом – емкости 1000-220 мкФ полна хватит. Учитывайте, что после электролита напряжение будет чуть выше.

На счет входной части – сетевой фильтр в лице пар емкостей и дросселя – можно и не ставить, хотя фильтр желателен. На входе до фильтра для снижения бросков можно также использовать термистор Ом на 5, легко выдрать из компьютерного блока питания.

Электролитический конденсатор в идеале подбирается с учетом 1ватт-1мкФ, хотя некий допуск есть, к примеру если использовать для мощности 100 ватт кондер на 68мкФ, ничего страшного не будет. Напряжение данного конденсатора обязательно должно быть 400 вольт.

ВНИМАНИЕ! схема лишена защит, не попытайтесь замкнуть выходные провода, взорвете бп. Поэтому при конструировании зарядного устройства обязательно нужно организовать защиту по току на управляющей части.

Ну что ж, желаю успехов во время сборки, а на сегодня все.

Как сделать импульсные блоки питания своими руками? :: SYL.ru

На сегодняшний день импульсные блоки питания устанавливаются во многих электроприборах. Основным их элементом принято считать катушку индуктивности. По своим параметрам она может довольно сильно отличаться, и в первую очередь это связано с пороговым напряжением в сети.

Дополнительно следует учитывать мощность самого прибора. Сделать простой блок питания в домашних условиях довольно просто. Однако в данном случае необходимо уметь рассчитывать показатель частотной модуляции. Для этого учитывается вектор прерывания в сети и параметр интеграции.

Как сделать блок для компьютера?

Для того чтобы собирать импульсные блоки питания своими руками для компьютеров, потребуются катушки индуктивности средней мощности. Частотный сдвиг в данном случае будет полностью зависеть от типа используемых конденсаторов. Дополнительно перед началом работы следует рассчитать показатель модуляции. При этом важно учесть пороговое напряжение в системе.

Если параметр модуляции находится в районе 80 %, то конденсаторы можно использовать с емкостью менее 4 пФ. Однако следует позаботиться о наличии мощных транзисторов. Основной проблемой данных блоков принято считать перегрев обмотки катушки. При этом человек может наблюдать небольшую задымленность. Ремонт импульсного блока питания в данном случае следует начинать с отключения в первую очередь всех конденсаторов. После этого контакты необходимо тщательно зачистить. Если в конечном счете проблема будет не устранена, катушку индуктивности придется полностью заменить.

Модель на 3 В

Сделать импульсные блоки питания своими руками на 3 В можно используя обычные катушки индуктивности серии РР202. Показатели проводимости у них находятся на среднем уровне. В данной ситуации параметр модуляции в системе не должен превышать 70 %. В противном случае пользователь может столкнуть с частотным сдвигом, который будет происходить в блоке.

Дополнительно важно подбирать конденсаторы с емкостью не менее 5 пФ. Принцип работы импульсного блока питания данного типа основывается на смене фазы. При этом нередко специалистами дополнительно устанавливаются преобразователи. Все это необходимо для того, чтобы промежуточная частота была как можно меньше. Кулеры на блоки данного типа монтируются крайне редко.

Устройство на 5 В

Чтобы сделать импульсные блоки питания своими руками, необходимо обязательно подобрать выпрямитель, исходя из мощности электроприбора. Конденсаторы в данном случае используются с емкостью до 6 пФ. При этом дополнительно в приборе устанавливаются попарно транзисторы. Это необходимо для того, чтобы показатель модуляции как минимум вывести на уровень 80 %.

Все это позволит повысить также параметр индуктивности. Проблемы данных блоков чаще всего связаны именно с перегревом конденсаторов. При этом на катушку особого напряжения не оказывается. Ремонт импульсного блока питания в данном случае следует начинать стандартно - с зачистки контактов. Только после этого устанавливается более мощный преобразователь.

Что понадобится для блока на 12 В?

Стандартная схема импульсного блока питания данного типа включает в себя катушку индуктивности, конденсаторы, а также выпрямитель вместе с фильтрами. Параметр модуляции в этом случае значительно зависит от показателя предельной частоты. Дополнительно важно учитывать скорость интегрального процессора. Транзисторы для блока данного типа в основном подбираются полевого вида.

Конденсаторы необходимы только с емкостью на уровне 5 пФ. Все это в конечном счете позволит значительно понизить риск термального повышения в системе. Катушки индуктивности устанавливаются, как правило, средней мощности. При этом обмотки для них обязательно должны использоваться медные. Регулируется импульсный блок питания 12В за счет специальных контролеров. Однако многое в данной ситуации зависит от типа электроприбора.

Блоки с фильтрами ММ1

Схема импульсного блока питания с фильтрами данной серии включает в себя, помимо катушки индуктивности, выпрямитель, конденсатор и резистор вместе с преобразователем. Использование фильтров в устройстве позволяет значительно сократить риск термального повышения. При этом чувствительность модели повышается. Коэффициент модуляции в этом случае напрямую зависит от прерывания сигнала.

Для повышения порогового напряжения специалисты резисторы рекомендуют применять только полевого типа. При этом емкость конденсатора минимум должна быть на уровне 4 Ом. Основной проблемой таких устройств принято считать повышение отрицательного сопротивления. В результате все резисторы на плате довольно быстро выгорают. Ремонт блока в такой ситуации необходимо начинать с замены внешней обмотки катушки индуктивности. Дополнительно следует проверить полярность резисторов. В некоторых случаях повышение отрицательного сопротивления в цепи связано с увеличением диапазона частоты. В данном случае целесообразнее поставить более мощный преобразователь.

Как собрать блок с выпрямителем?

Чтобы сделать импульсные блоки питания своими руками с выпрямителем, транзисторы понадобятся закрытого типа. При этом конденсаторов в системе должно быть предусмотрено как минимум четыре единицы. Минимальная их емкость обязана находиться на уровне 5 пФ. Принцип работы импульсного блока питания данного типа основывается на изменении фазы тока. Происходит данный процесс непосредственно за счет преобразователя. Фильтры у таких моделей устанавливаются довольно редко. Связано это в большей степени с тем, что пороговое напряжение вследствие их использования значительно повышается.

Модели со сглаживающими фильтрами

Схема импульсного блока питания 12В со сглаживающими фильтрами конденсаторы предусматривает с емкостью как минимум в 4 пФ. За счет этого показатель модуляции должен находится на уровне 70 %. Для того чтобы стабилизировать процесс преобразования, многие используют резисторы только закрытого типа. Пропускная способность у них довольно малая, однако проблему они решают. Принцип импульсного блока питания основывается на изменении фазы устройства. Фильтры у него чаще всего устанавливаются сразу возле катушки.

Блоки повышенной стабилизации

Сделать блок данного типа можно используя катушку индуктивности только большой мощности. При этом конденсаторов в системе должно быть как минимум пять единиц. Также следует заранее подсчитать количество необходимых резисторов. Если преобразователь используется в блоке низкочастотный, то резисторов необходимо использовать только два. В противном случае они устанавливаются также и на выходе. Фильтры для данных систем применяются самые разнообразные.

В этой ситуации многое зависит от показателя модуляции. Основной проблемой таких систем принято считать перегрев резисторов. Происходит это из-за резкого повышения порогового напряжения. При этом преобразователь также выходит из строя. Ремонт блока в такой ситуации необходимо начинать также с зачистки контактов. Только после этого можно проверить уровень отрицательного сопротивления. Если данный параметр превышает 5 Ом, то необходимо полностью заменить все конденсаторы в устройстве.

Модели с конденсаторами РС

Сделать блоки с конденсаторами данной серии можно довольно просто. Резисторы для них используются только закрытого типа. При этом полевые аналоги значительно снизят параметр модуляции до 50 %. Катушки индуктивности с конденсаторами применяются средней мощности. Прерывание сигнала в данном случае напрямую зависит от скорости возрастания предельного напряжения. Преобразователи в устройствах используются довольно редко. В данном случае интегрирование происходит за счет изменения положения резистора.

Устройства с конденсаторами СХ

Сделать блоки данного типа можно только на резисторах закрытого типа. Катушки индуктивности на них можно устанавливать различной мощности. В данном случае параметр модуляции зависит исключительно от порогового напряжения. Если рассматривать модели для телевизоров, то блок лучше всего делать сразу с системой фильтрации. В данном случае низкочастотные помехи будут отсеиваться сразу на входе. Конденсаторов в устройстве должно быть предусмотрено как минимум пять. Емкость их в среднем обязана составлять 5 пФ.

Если устанавливать их непосредственно возле катушки индуктивности, то лучше всего использовать дополнительно многослойный конденсатор. Контролеры в данном случае устанавливаются только поворотного типа. При этом регулировка импульсного блока питания будет происходить довольно плавно.

Как сделать блок с синазным дросселем?

Схема импульсного блока питания 12В с синазным дросселем включает в себя катушку, конденсатор, а также преобразователь. Последний элемент подбирается исходя из уровня отрицательного сопротивления в цепи. Также важно заранее рассчитать параметр предельной частоты. В среднем он должен быть не ниже 45 Гц. За счет этого стабильность системы значительно повысится. Работа импульсного блока питания данного типа основывается на изменении фазы за счет повышения модуляции.

Блоки с применением керамических конденсаторов

Сделать мощный импульсный блок питания с керамическими конденсаторами довольно сложно из-за высокого сопротивления цепи. В результате встретить такие модификации на сегодняшний день проблематично. Как правило, они изредка применяются на различном аудиоборудовании. Резисторы в данном случае подходят только полевого типа. Также следует заранее подбирать качественный преобразователь. Обмотка на нем должна быть только медная.

При этом витки обязаны быть направлены как сверху вниз, так и снизу вверх. Прерывание сигнала в данном случае напрямую зависит от скорости процесса преобразования. Если температура в системе повышается довольно быстро, в первую очередь страдают именно конденсаторы. При этом дымок над платой появляется довольно часто. В таком случае ремонт блока следует начинать с замены конденсаторов. После этого проверяется пороговое напряжение на внешней обмотке катушки индуктивности. Завершать работы следует с зачистки контактов.

Модели с каплевидными конденсаторами

Принцип работы блоков с каплевидными конденсаторами стандартно заключается в изменении фазы. При этом преобразователь в процессе играет ключевую роль. Для стабильной работы системы параметр отрицательного сопротивления должен находиться на уровне не ниже 5 Ом. В противном случае конденсаторы перегружаются. Катушку индуктивности в данном случае можно использовать любую. При этом параметр модуляции обязан находиться в районе 70 %. Резисторы для таких блоков используются только векторные. Проходимость тока у них довольно высокая. При этом стоят они на рынке дешево.

Применение варисторов

Варисторы в маломощных блоках используются крайне редко. При этом они способны значительно повысить стабильность работы прибора. Устанавливаются данные элементы, как правило, возле катушки индуктивности. Скорость процесса интегрирования в данном случае зависит напрямую от типов конденсаторов. Если использовать их с предельной емкостью на уровне 5 пФ, то коэффициент модуляции будет находиться на уровне 60 %.

Прерывание сигнала в данном случае может происходить из-за сбоев преобразователя. Ремонт блока необходимо начинать с обследования состояния контактов. Только после этого проверяется целостность обмотки катушки индуктивности. Контролеры для таких блоков подходят самые разнообразные. Кнопочные варианты следует рассматривать в последнюю очередь. Регулирование блока при этом будет зависеть во многом от проводимости контактов.

Импульсный источник питания из лампочки КЛЛ своими руками


Как за час сделать импульсный блок питания из сгоревшей лампочки?

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов. https://oldoctober.com/

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.


Самые интересные ролики на Youtube


Близкие темы.

Как намотать импульсный трансформатор для сетевого блока питания?

Самодельный импульсный преобразователь напряжения из 1,5 в 9 Вольт для мультиметра.

Как разобрать энергосберегающую лампу (КЛЛ)?

Энергосберегающие лампы “Vitoone” - технические данные и схема.

Схема и техническая информация по энергосберегающим лампам Osram.


Оглавление статьи.

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностю 20 Ватт.
  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.https://oldoctober.com/


В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Вернуться наверх к меню


Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Вернуться наверх к меню


Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Вернуться наверх к меню


Импульсный трансформатор для блока питания.

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Вернуться наверх к меню


Ёмкость входного фильтра и пульсации напряжения.

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.


Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Вернуться наверх к меню


Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.


На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.


Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!


Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.


Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.


Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.


На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

Вернуться наверх к меню


Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.


Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.


Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.



Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!


На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.


  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Вернуться наверх к меню


Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.

2. Схема со средней (нулевой) точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема со средней (нулевой) точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы со средней (нулевой) точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Вернуться наверх к меню


Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.


А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Вернуться наверх к меню


Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Вернуться наверх к меню


Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Вернуться наверх к меню


15 Март, 2011 (18:25) в Источники питания, Сделай сам Принципиальная схема обратного преобразователя

В электронике регулятор - это устройство или механизм, который может постоянно регулировать выходную мощность. В области электроснабжения доступны различные типы регуляторов. Но в основном, в случае преобразования постоянного тока в постоянный, доступны два типа регуляторов: Linear или Switching .

Линейный регулятор регулирует выход с помощью резистивного падения напряжения. Из-за этого линейные регуляторы имеют меньший КПД и теряют мощность в виде тепла.В импульсном стабилизаторе используются индуктор, диод и переключатель питания для передачи энергии от источника к выходу.

Типы импульсных регуляторов

Доступны три типа импульсных регуляторов.

1. Повышающий преобразователь (Boost Regulator)

2. Понижающий преобразователь (понижающий регулятор)

3. Обратный преобразователь (изолированный регулятор)

Мы уже объяснили схему повышающего регулятора и понижающего регулятора.В этом руководстве мы опишем схему Flyback Regulator .

Разница между понижающим и повышающим стабилизаторами заключается в том, что в понижающем регуляторе расположение индуктора, диода и схемы переключения отличается от повышающего регулятора. Кроме того, в случае повышающего регулятора выходное напряжение выше, чем входное, но в понижающем стабилизаторе выходное напряжение будет ниже, чем входное. Понижающая топология или понижающий преобразователь - одна из наиболее часто используемых базовых топологий, используемых в SMPS .Это популярный выбор, когда нам нужно преобразовать более высокое напряжение в более низкое выходное напряжение.

Помимо этих регуляторов, существует еще один регулятор, который является популярным выбором среди всех разработчиков, а именно регулятор Flyback или обратный преобразователь . Это универсальная топология, которую можно использовать там, где требуется несколько выходов от одного источника питания. Более того, обратная топология позволяет разработчику одновременно изменять полярность вывода.Например, мы можем создать выход + 5В, + 9В и -9В из одного модуля преобразователя. В обоих случаях эффективность преобразования высока.

Другая особенность обратноходового преобразователя - это электрическая изоляция как на входе, так и на выходе. Зачем нужна изоляция? В некоторых особых случаях, для минимизации шума питания и операций, связанных с безопасностью, нам нужна изолированная операция, когда входной источник полностью изолирован от выходного источника. Давайте рассмотрим базовую операцию обратного хода с одним выходом.

Схема работы обратного преобразователя

Если мы увидим базовый обратноходовой дизайн с одним выходом, как на изображении ниже, мы определим основные основные компоненты, необходимые для его создания.

Базовый обратный преобразователь требует переключателя, который может быть полевым транзистором или транзистором, трансформатором, выходным диодом, конденсатором.

Главное это трансформатор . Нам нужно понять, как правильно работает трансформатор, прежде чем понимать фактическую работу схемы.

Трансформатор состоит как минимум из двух катушек индуктивности, известных как вторичная и первичная обмотки, намотанных в формирователь катушки с сердечником между ними. Сердечник определяет плотность потока, который является важным параметром для передачи электрической энергии от одной обмотки к другой. Еще одна важная вещь - это трансформатор , фазировка , точки показаны на первичной и вторичной обмотках.

Также, как мы видим, сигнал ШИМ подается через транзисторный ключ.Это связано с частотой выключения и временем включения переключателя. PWM означает метод широтно-импульсной модуляции.

В обратном регуляторе работают две схемы: Одна - это фаза включения , когда первичная обмотка трансформатора заряжена, и , другая - выключение, или фаза переключения трансформатора, когда электрическая энергия передается от первичный к вторичному и, наконец, к нагрузке.

Если предположить, что переключатель был выключен в течение длительного времени, ток в цепи равен 0 и напряжение отсутствует.

В этой ситуации Если переключатель включен , тогда ток будет увеличиваться, и катушка индуктивности создаст падение напряжения, которое является отрицательным, поскольку напряжение на первичном конце, обозначенном точками, более отрицательное. В этой ситуации энергия перетекает во вторичную обмотку из-за потока, генерируемого в сердечнике. На вторичной катушке создается напряжение той же полярности, но оно прямо пропорционально отношению витков вторичной катушки к первичной. Из-за отрицательного напряжения точки диод отключается, и ток во вторичной обмотке не течет.Если конденсатор был заряжен в предыдущем цикле включения-выключения, выходной конденсатор будет обеспечивать только выходной ток на нагрузку.

На следующем этапе, , когда переключатель выключен , ток через первичную обмотку уменьшается, что делает конец вторичной точки более положительным. Как и на предыдущем этапе включения, полярность первичного напряжения создает такую ​​же полярность и на вторичной, тогда как вторичное напряжение пропорционально соотношению первичной и вторичной обмоток.Благодаря положительному концу точки, диод включается, а вторичная катушка индуктивности трансформатора обеспечивает ток на выходной конденсатор и нагрузку. Конденсатор потерял заряд в цикле включения, теперь он снова заправлен и способен обеспечить ток заряда на нагрузку во время включения.

В течение всего цикла включения и выключения не было электрических соединений между входным источником питания и выходным источником питания. Таким образом, трансформатор изолирует вход и выход.

Есть два режима работы в зависимости от времени включения и выключения. Обратный преобразователь может работать в непрерывном режиме или прерывистом режиме .

В непрерывном режиме , перед первичной зарядкой, ток падает до нуля, цикл повторяется. С другой стороны, в прерывистом режиме следующий цикл начинается только тогда, когда ток первичной катушки индуктивности достигает нуля.

КПД обратного преобразователя

Теперь, если мы исследуем эффективность, которая представляет собой отношение выходной мощности к входной:

  (выступ / штифт) x 100%  

Поскольку энергия не может быть создана или уничтожена, ее можно только преобразовать, большинство электрических энергий теряют неиспользованные силы в тепло.Также не существует идеальной ситуации в практической сфере. КПД - важный фактор при выборе регуляторов напряжения.

Одним из основных факторов потерь мощности импульсного стабилизатора является диод. Прямое падение напряжения, умноженное на ток (Vf x i), представляет собой неиспользованную мощность, которая преобразуется в тепло и снижает эффективность схемы импульсного регулятора. Кроме того, это дополнительные затраты на схему для техники управления температурой / теплом, например, использование радиатора или вентиляторов для охлаждения схемы от рассеянного тепла.Не только прямое падение напряжения, обратное восстановление кремниевых диодов также приводит к ненужным потерям мощности и снижению общей эффективности.

Один из лучших способов избежать использования стандартного восстанавливающего диода - это использовать диоды Шоттки, которые имеют низкое прямое падение напряжения и лучшее обратное восстановление. В другом аспекте переключатель был изменен на современный дизайн MOSFET, в котором эффективность повышена в компактном и меньшем корпусе.

Несмотря на то, что импульсные регуляторы имеют более высокий КПД, стационарную конструкцию, меньший размер, они шумнее, чем линейные регуляторы, но все же они широко популярны.

Пример конструкции обратного преобразователя с использованием LM5160

Мы будем использовать обратную топологию от Texas Instruments. Схема может быть доступна в даташите.

Модель LM5160 состоит из следующих функций:

  • Широкий диапазон входного напряжения от 4,5 В до 65 В
  • Встроенные переключатели высокого и низкого давления
    • Внешний диод Шоттки не требуется
  • Максимальный ток нагрузки 2 А
  • Адаптивное постоянное управление по времени
    • Без компенсации внешнего контура
    • Быстрая переходная характеристика
  • Выбор принудительного режима ШИМ или DCM
    • FPWM поддерживает Multi-output Fly-Buck
  • Почти постоянная частота переключения
    • Резистор, регулируемый до 1 МГц
  • Время плавного пуска программы
  • Запуск с предварительным смещением
  • ± 1% Обратная связь Опорное напряжение
  • LM5160A Допускает внешнее смещение VCC
  • Элементы внутренней защиты для прочной конструкции
    • Защита от пикового тока
    • Регулируемый вход UVLO и гистерезис
    • Защита VCC и привода затвора UVLO
    • Защита от теплового отключения с гистерезисом
  • Создание индивидуального дизайна с помощью LM5160A с WEBENCH® Power Designer

Поддерживает широкий диапазон входного напряжения от 4 до 4.5–70 В на входе и обеспечивает выходной ток 2 А. Мы также можем выбрать принудительные операции PWM или DCM.

Распиновка LM5160

Микросхема не доступна в корпусе DIP или в версии, легко поддающейся пайке, хотя это проблема, но микросхема экономит много места на печатной плате, а также обеспечивает более высокие тепловые характеристики по сравнению с радиатором печатной платы. Схема контактов показана на изображении выше.

Абсолютные максимальные рейтинги

Мы должны быть осторожны с абсолютным максимальным рейтингом IC.

Выводы SS и FB имеют допуск по низкому напряжению.

Схема обратного преобразователя и работа

Используя этот LM5160, мы смоделируем изолированный источник питания 12 В на основе следующей спецификации. Схему выбрали, так как все есть на сайте производителя.

В схеме используется множество компонентов, но ее нетрудно понять.C6, C7 и C8 на входе используются для фильтрации входящего питания. В то время как R6 и R10 используются для целей, связанных с блокировкой пониженного напряжения. Резистор R7 предназначен для включения по времени. Этот вывод программируется с помощью простого резистора. Конденсатор C13, подключенный к выводу SS, является конденсатором плавного пуска. AGND (аналоговое заземление) и PGND (заземление питания) и PAD соединены с заземлением источника питания. С правой стороны, конденсатор C5 емкостью 0,01 мкФ является конденсатором начальной загрузки, который используется для смещения драйвера затвора.R4, C4 и C9 - это фильтр пульсаций, тогда как R8 и R9 обеспечивают напряжение обратной связи на выводе обратной связи LM5160. Это соотношение двух резисторов определяет выходное напряжение. C10 и C11 используются для первичной неизолированной выходной фильтрации.

Главный компонент - T1. Это спаренный индуктор с индуктором 60 мкГн с обеих сторон, первичной и вторичной. Мы можем выбрать любой другой сопряженный индуктор или отдельный индуктор со следующей спецификацией -

  1. Коэффициент витков SEC: PRI = 1.5: 1
  2. Индуктивность = 60 мкГн
  3. Ток насыщения = 840 мА
  4. Сопротивление постоянному току ПЕРВИЧНОЕ = 0,071 Ом
  5. Сопротивление постоянному току ВТОРИЧНОЕ = 0,211 Ом
  6. Freq = 150 кГц

C3 используется для обеспечения устойчивости к электромагнитным помехам. D1 - прямой диод, который преобразует выходной сигнал, C1, C2 - конденсаторы фильтра, R2 - минимальная нагрузка, необходимая для запуска.

Тем, кто хочет изготовить источник питания по индивидуальным спецификациям и рассчитать стоимость, производитель предоставляет отличный инструмент Excel, в который вы просто помещаете данные, а Excel рассчитает стоимость компонентов в зависимости от формул, приведенных в таблице данных.

Производитель также предоставил спайсовую модель, а также полную схему, которую можно смоделировать с помощью собственного инструмента моделирования TINA-TI Texas Instrument на основе SPICE. Ниже представлена ​​схема, нарисованная с помощью инструмента TINA-TI, предоставленного производителем.

Результат моделирования может быть показан на следующем изображении, где могут быть показаны идеальные ток и напряжение нагрузки -

Импульсный источник питания

с общими топологиями

Для приложений малой мощности, таких как бортовые источники питания, часто используется линейный источник питания из-за его простоты и низкой стоимости.Однако, когда возникает необходимость в конструкциях с высокой плотностью мощности, линейный источник питания просто исчезает с изображения. Это потому, что линейный источник питания очень менее эффективен. Поставляется импульсный блок питания. Импульсный источник питания исправил недостаток линейного источника питания с точки зрения эффективности и высокой удельной мощности. Однако это сложнее и может стоить дорого. Я не совсем говорю, что импульсный источник питания по умолчанию дороже, чем линейный источник питания, это зависит от обстоятельств.В приложениях с низким энергопотреблением, таких как бортовая сеть, да и коммутационное решение стоит дорого. Однако для применения с высокой мощностью, например, 500 Вт, стоимость трансформатора 50/60 Гц может быть выше, чем стоимость импульсного источника питания.

Блок-схема линейного источника питания переменного тока

Типичный линейный источник питания ACDC имеет понижающий трансформатор, выпрямитель, фильтр и регулятор. Понижающий трансформатор 50/60 Гц является громоздким и дорогим для приложений с большой мощностью.Требуется понижающий трансформатор рядом с линией переменного тока, потому что диапазон напряжения линейных регуляторов обычно ниже 50 В. Секция выпрямителя преобразует переменный ток в пульсирующий постоянный ток. Секция фильтра приводила пульсирующий выход постоянного тока выпрямителя к форме волны с низким уровнем пульсаций. Регулятор сделает последнюю работу по точной настройке формы волны, чтобы она стала прямой.

Линейный регулятор поддерживает уровень выходного напряжения, поглощая разницу между входным и выходным напряжениями.Например, на приведенной выше диаграмме отфильтрованное напряжение, которое подается на вход регулятора, составляет 17 В, а выходное напряжение регулятора поддерживается на уровне 12 В, это означает, что на регуляторе будет измеряться падение напряжения 5 В. Это падение напряжения, умноженное на ток нагрузки, представляет собой рассеиваемую мощность линейного регулятора. Таким образом, большая разница между входом и выходом означает огромные потери для регулятора.

Линейный DCDC Блок-схема источника питания

Для линейного источника питания DCDC схема прямолинейная и очень простая.Он будет состоять только из входных и выходных конденсаторов и самого регулятора.

Как работает импульсный источник питания?

Сердце и душа импульсных блоков питания - это импульсные преобразователи. Существует несколько типов импульсных преобразователей, которые можно использовать в зависимости от области применения. Некоторые из них мы обсудим позже.



Импульсный преобразователь работает либо в режиме насыщения, либо в режиме отключения полупроводникового переключателя. В режиме насыщения в идеале имеется нулевое сопротивление, что приводит к нулевым потерям мощности.Когда переключатель отключен, в идеале возникает бесконечное сопротивление, приводящее к нулевому току, а затем снова к нулевым потерям мощности. Переключатель в переключающем преобразователе модулируется ШИМ-сигналом и управляется специальной ИС. Работа этой ИМС усложняется тем, что линейный регулятор.

Блок-схема импульсного источника питания переменного тока постоянного тока

Выше представлена ​​базовая схема импульсного источника питания переменного тока постоянного тока. Фильтр электромагнитных помех обязателен для соответствия международным стандартам (для личного или некоммерческого использования им можно пренебречь).Он также имеет мостовой выпрямитель для преобразования переменного тока в пульсирующий постоянный ток. Он также имеет фильтр для обработки формы сигнала, так что на вход преобразователя постоянного тока подается почти чистый постоянный ток. Конвертер DCDC преобразует постоянный ток высокого напряжения в постоянный ток низкого напряжения. Как вы заметили, трансформатор помещен в эту секцию в отличие от линейного режима, который находится рядом с линией переменного тока. Благодаря такому расположению трансформатор может работать на очень высокой частоте, что делает его физический размер очень маленьким и дешевым. Q1 - это переключатель с широтно-импульсной модуляцией (ШИМ), поэтому он будет работать только в режиме насыщения и отсечки.В режиме насыщения потери в идеале равны нулю, так как сопротивление в идеале равно нулю. С другой стороны, при отключении также отсутствуют потери, поскольку ток в идеале равен нулю. Преобразователь DCDC выдает напряжение прямоугольной или прямоугольной формы, а выходной выпрямитель обрабатывает его до постоянного тока. Конкретная диаграмма выше фактически представляет собой импульсный источник питания ACDC с обратноходовой топологией.

Базовая топология импульсного преобразователя постоянного тока

Существует несколько топологий для построения импульсного источника питания.Топология означает, какой тип коммутирующего преобразователя используется. Например, на приведенной выше блок-схеме; это обратный ход, используемый в секции преобразователя постоянного тока постоянного тока. Можно выбрать несколько топологий, и мы разберемся с каждым приложением.

1. Повышающий преобразователь

Повышающий преобразователь состоит из катушки индуктивности, переключателя (MOSFET, BJT или IGBT), диода и выходного накопительного конденсатора. Коммутатор модулируется ШИМ-сигналом для генерации желаемого выходного напряжения таким образом, чтобы переключатель имел в идеале нулевые потери.

Повышающий преобразователь - это повышающий преобразователь постоянного тока. Другими словами, его выход выше, чем его вход. Выход и вход связаны коэффициентом заполнения. Идеальный рабочий цикл для повышающего преобразователя -

Рабочий цикл, наддув = 1 - (Vin / Vout)

Например, на выходе 20 В, на входе 5 В, рабочий цикл 75%.

Работа повышающего преобразователя при включенном переключателе

Когда переключатель находится в положении ON, индуктор заряжается.Диод будет смещен в обратном направлении. Выходной конденсатор будет обеспечивать требуемую мощность нагрузки.

Работа повышающего преобразователя при выключенном выключателе

Когда переключатель находится в положении ВЫКЛ, катушка индуктивности меняет полярность, что приводит к прямому смещению диода. Это позволит конденсатору перезарядиться. Потребляемая мощность нагрузки будет обеспечиваться входом в это время.

2. Понижающий преобразователь

Понижающий преобразователь - это понижающий преобразователь.Другими словами, выход ниже, чем вход. Понижающий преобразователь - это обычно используемый DCDC, особенно те, которые установлены на борту. Он состоит из переключателя (MOSFET, BJT или IGBT), диода, катушки индуктивности и выходного накопительного конденсатора. Переключатель модулируется ШИМ-сигналом для достижения целевого выходного напряжения с идеально нулевыми потерями со стороны переключателя.

Как и в случае повышающего преобразователя, входное и выходное напряжение понижающего преобразователя связаны коэффициентом заполнения. Идеальный коэффициент продолжительности включения:

Рабочий цикл, buck = Vout / Vin

Предположим, что входное напряжение составляет 20 В, а выходное - 5 В, рабочий цикл составляет 25%.

Работа понижающего преобразователя при включенном переключателе

Когда переключатель находится в положении ON, диод обратного смещения. Индуктор зарядится. Конденсатор тоже будет заряжаться. На этот раз потребляемая мощность нагрузки обеспечивается входным источником.

Понижающий преобразователь Работа при выключенном выключателе

Когда переключатель находится в положении ВЫКЛ, катушка индуктивности меняет полярность и переключает диод в прямом направлении.На этот раз потребность в мощности нагрузки будет обеспечиваться за счет энергии, накопленной в катушке индуктивности и конденсаторе.

3. Бак - буст

Понижающий-повышающий преобразователь представляет собой комбинацию повышающего и понижающего преобразователей. Он может работать как на выходе, так и ниже, чем на входе. Есть два способа получить функцию повышения-понижения; первый инвертирующий, второй - неинвертирующий. Инвертирование понижающего-повышающего требует меньшего количества деталей и дешевле. С другой стороны, неинвертирующий понижающий импульс требует большего количества деталей и затрат.Анализ неинвертирующего понижающего и повышающего топологий может быть таким же, как для понижающей и повышающей топологий, когда вы разбиваете операцию на понижение или повышение. С другой стороны, инвертирующий понижающий сигнал будет анализироваться иначе.

4. Обратный преобразователь

Обратный преобразователь

- это очень распространенное решение для использования в автономном импульсном источнике питания. Это очень распространено для адаптеров и зарядных устройств для ноутбуков. Это обычно используемая топология для зарядных устройств телефонов и планшетов. Он может работать с высоким диапазоном входного напряжения, поскольку доступные контроллеры обратного хода рассчитаны на очень высокое напряжение.Обратный преобразователь эффективен в диапазоне мощностей менее 150-200 Вт. Выше этого значения flyback может вообще не подходить. Топология обратного хода обеспечивает изоляцию между входом (сторона переменного тока) и выходом.

Обратный трансформатор

Fly Back Transformer не является обычным трансформатором. Обычный трансформатор передает мощность или энергию от первичной обмотки к вторичной в идеальном режиме в реальном времени и идеально. Обратный трансформатор накапливает энергию в первичном магнитном поле и по прошествии определенного периода времени подает на вторичную сторону.

Переключатель

Переключатель обеспечивает время включения и выключения, что позволяет намагничивать и размагничивать трансформатор.

Выпрямитель и фильтр

Выпрямитель и фильтр сглаживают сигнал вторичной обмотки. Конденсатор служит элементом накопления энергии.

Выпрямитель и фильтр приводят к тому, что выход является чистым постоянным током.

Обратный преобразователь Основные операции

Переключатель включен

Когда переключатель находится в положении ON (состояние насыщения), первичная обмотка обратноходового трансформатора будет просто действовать как индуктор и заряжаться.Ток от Vin к земле проходит через переключатель S, который на этот раз действует как путь короткого замыкания. Диод на вторичной стороне смещен в обратном направлении, открывая вторичную обмотку. Нагрузка питается энергией, накопленной в выходном конденсаторе Cout.

Выключатель выключен

Когда переключатель выключается, энергия, запасенная в первичной обмотке трансформатора обратного хода, будет передана нагрузке. Полная доставка будет достигнута, если обратный ход работает в режиме постоянного тока или прерывистой проводимости.Частичная передача энергии будет наблюдаться, если обратный ход работает в режиме CCM или просто в режиме непрерывной проводимости. Практически в DCM работает обратный ход. В этот период времени будет наблюдаться обратное движение в первичной обмотке, особенно на стоке коммутатора, как указано Vds. Диод на вторичной стороне будет проводить, когда вторичная обмотка изменит свою полярность. На этот раз Cout будет заряжаться, и нагрузка будет обеспечиваться вторичной обмоткой.

5. Прямой преобразователь

Прямой преобразователь также обычно используется для автономного источника питания переменного тока постоянного тока.Для прямого преобразователя существует несколько подходов, например, с одним переключателем вперед, с двумя переключателями вперед или с чередованием с одним переключателем или с двумя переключателями вперед. Мы не будем вдаваться в подробности каждого, так как основные принципы общие. На схеме ниже показан простой прямой преобразователь с одним переключателем. Взгляните на точку на обмотке трансформатора; они находятся в фазе, в отличие от обратного хода.



Зажим УЗО

В простом и маломощном прямом преобразователе зажима УЗО достаточно для разряда трансформатора в каждый период переключения.В прямом преобразователе обязательно должен быть механизм для разряда пустого сердечника трансформатора в каждый период переключения, чтобы избежать явления, называемого «блужданием потока», которое приведет к насыщению трансформатора и приведет к катастрофическому отказу.

В системах с более высокой мощностью требуется обмотка сброса трансформатора, что приводит к громоздкому и дорогому трансформатору. Другой подход - использовать метод с двумя переключателями, чтобы избавиться от обмотки сброса.

Flyback также нуждается в зажиме УЗО для сброса энергии утечки, которая вызовет выбросы высокого напряжения на переключающем MOSFET.Впрочем, это неплохо, так как вперед нужен разгрузочный тракт.

Трансформатор

Это обычный трансформатор, который передает всю энергию из первичной обмотки во вторичную в режиме реального времени, в отличие от обратного тока, который накапливает энергию до ее передачи во вторичную. Трансформатор прямого преобразователя может быть громоздким (но достаточно маленьким по сравнению с трансформатором 50/60 Гц в линейном источнике питания, поскольку частота переключения высока), если в качестве механизма разряда используется обмотка сброса.

Переключатель

Это может быть MOSFET, BJT или IGBT. Он приводится в действие сигналом ШИМ для генерации прямоугольного напряжения на вторичной обмотке трансформатора.

Прямой диод

Это называется прямым диодом, так как этот диод будет следовать за действием первичной стороны. Если первичный переключатель включен, трансформатор будет под напряжением, и этот диод будет проводить.

Диод свободного хода

Диод свободного хода проводит только тогда, когда переключатель находится в положении ВЫКЛ, так что ток будет продолжать течь через индуктор к нагрузке.

Прямой преобразователь также может использоваться при высоком входном напряжении, таком как обратный ход, поскольку имеющиеся контроллеры рассчитаны на высокое напряжение. Прямой преобразователь более эффективен, чем обратный преобразователь, поскольку его трансформатор не накапливает энергию намеренно, как обратный преобразователь. При мощности более 150 Вт обратный ход является хорошей топологией. Его по-прежнему можно использовать для мощности менее 150 Вт, но обратный ход по-прежнему эффективен ниже этого уровня мощности, а обратный ход проще и дешевле, поэтому лично я выберу обратно для номинальной мощности до 150 Вт и выше этой мощности.Прямой преобразователь также обеспечивает изоляцию между входом (сторона переменного тока) и выходом.

Работа прямого преобразователя при включенном переключателе

Когда переключатель находится в положении ON, ток будет течь от входного напряжения VIN к первичной обмотке трансформатора и к переключателю. Прямой диод D5 на этот раз будет смещен в прямом направлении. Диод свободного хода с другой стороны имеет обратное смещение. Дроссель L1 и выходной конденсатор C2 будут заряжаться, и на выход будет подаваться ток от вторичной обмотки.

Работа прямого преобразователя при выключенном переключателе

Во время выключения ток не будет поступать со входа, но ток первичной обмотки будет по-прежнему течь по зажимам УЗО, пока энергия на сердечнике не исчезнет. Когда сердечник пуст с энергией утечки, диод на УЗО (D2) будет иметь обратное смещение. Поскольку от VIN источника входного сигнала не поступает ток, прямой диод будет иметь обратное смещение.С другой стороны, обратный диод будет направлять смещение. Как катушка индуктивности L1, так и конденсатор C2 будут обеспечивать потребляемую мощность нагрузки, используя свою энергию заряда.

Существует больше топологий для использования в коммутационном преобразователе постоянного тока постоянного тока, например полумост, полный мост, резонансный (например, LLC) или двухтактный. Все эти топологии обладают высокой эффективностью за счет переключения. Импульсный источник питания может быть выполнен из нескольких переключающих преобразователей, объединяющих описанные выше преобразователи.

Связанные

Texas Instruments (Unitrode) Конструкция импульсного источника питания.• Цепи

Семинары

Texas Instruments (ранее Unitrode) являются частью технического обучения TI по ​​аналоговым устройствам, в ходе которого они также знакомятся с новыми контроллерами и другими интегральными схемами управления питанием. Они сочетают в себе учебный обзор основных принципов и практические примеры проектирования по различным темам преобразования энергии. Со временем они охватили практически все важные темы проектирования импульсных источников питания, а их архивы предоставляют отличную справочную информацию для разработчиков SMPS.Здесь вы найдете книги для семинаров с 1984 года по настоящее время.

SEM300 (1984)

Обзор топологии импульсного источника питания

Замыкание обратной связи

Приложение A: Проект сети усилителя ошибок и компенсации

Приложение B: Графики Боде

Приложение C: Обратный ход - прерывистый ток индуктора - постоянный рабочий цикл Продолж.

Обзор конструкции импульсного источника питания

- обратный стабилизатор мощностью 60 Вт

Приложение I: Конструкция трансформатора

Приложение II: Эффективные RL и C в контуре обратной связи

SEM400 (1985)

Управление импульсным источником питания в токовом режиме

Конструкция обратноходовых трансформаторов и фильтрующих индукторов

Моделирование характеристик импульсного источника питания с помощью персонального компьютера

Обзор конструкции

: обратный ход 150 Вт в режиме тока

Руководство по проектированию преобразователей мощности

SEM500 (1986)

Практические рекомендации по источникам питания в токовом режиме

Влияние индуктивности утечки на обратные цепи с несколькими выходами

Спаренные индукторы с фильтром в понижающих регуляторах с несколькими выходами

Полумостовой преобразователь, 300 Вт, 300 кГц, токовый режим, с несколькими выходами

Ноль в правой полуплоскости - упрощенное объяснение

Управление магнитным усилителем для простого и недорогого вторичного регулирования

SEM600 (1988)

Топологии преобразователя резонансного режима

Обзор конструкции резонансного преобразователя 1 МГц 150 Вт

Предрегулятор

с высоким коэффициентом мощности для автономных источников питания

Определение индуктивности утечки и проводки в модели высокочастотной цепи

SEM700 (1990)

Импульсное преобразование мощности с переключением нулевого напряжения

Изоляция контура управления

Управление режимом среднего тока импульсных источников питания

Топологии преобразователя

с резонансным режимом - Дополнительные темы

Оптимизация конструкции пререгулятора переключения с высоким коэффициентом мощности

SEM800 (1991)

Распределение нагрузки с параллельными источниками питания

Метод коррекции коэффициента мощности с переключением при нулевом токе с контролируемым временем включения

ШИМ с фиксированной частотой, резонансной коммутацией и фазовым сдвигом

Особенности высокопроизводительных MOSFET, IGBT и MCT Gate Drive Ckts.

Конструкция контура управления

SEM900 (1993)

Распределенные энергосистемы

Демпферные цепи

: теория, конструкция и применение

Разработка преобразователя мощности с переходным нулевым напряжением со сдвигом фазы

Обзор конструкции

: Преобразователь мощности ZVT с фазовым сдвигом 500 Вт, 40 Вт / дюйм 3

Пререгулятор

с высоким коэффициентом мощности с преобразователем SEPIC

Конструкция контура управления Пример предварительного регулятора SEPIC

Конструкция спаренного индуктора

SEM1000 (1994)

250 кГц, 500 Вт коррекция коэффициента мощности Ckt.Использование переходов при нулевом напряжении

Portable Power - Руководство разработчика по управлению питанием

Метод активного зажима и сброса повышает производительность прямого преобразователя

Модель электрической цепи для магнитных сердечников

SEM1100 (1996)

Заправка мегапроцессоров - расширение возможностей динамического управления энергией

100 Вт, 400 кГц, постоянный / постоянный ток, конв. w / I Doubler Sync. Исправление достигает 92%

Конструктивные особенности техники активного зажима и сброса

Поваренная книга контура управления

SEM1200 (1997)

Решения по измерению тока для разработчиков источников питания

Повышающий преобразователь малой мощности для портативных устройств с батарейным питанием

Уникальный четырехквадрантный обратный преобразователь

Обзор конструкции

: 140 Вт, несколько выходов, преобразователь постоянного тока очень высокой плотности

SEM1300 (2000)

Топология каскадного преобразователя мощности для приложения с сильным током и низким выходным напряжением.

Управление питанием с горячей заменой

Прямой преобразователь мощностью 50 Вт с синхронизацией. Выпрямление и вторичный контроль

Измерение частотной характеристики импульсных источников питания

Более точная модель управления в режиме тока

SEM1400 (2001)

Аналитическое сравнение альтернативных методов контроля

Руководство по проектированию и применению высокоскоростных схем управления затвором на полевых МОП-транзисторах

Приложение A: Оценка параметров полевого МОП-транзистора из таблицы данных

Оценка магнитного поля в трансформаторах и индукторах

Высокоэффективные регулируемые зарядные насосы для сильноточных приложений

Проектирование стабильных контуров управления

Внутренняя компенсация - Благо или проклятье

Значение Sync.Выпрямители в изолированном, несимметричном, прямом конв.

SEM1500 (2003)

Тема 1: Понимание и оптимизация электромагнитной совместимости в…

Тема 2: Проектирование автономных источников питания с высоким коэффициентом мощности

Тема 3: Достижение высокой эффективности с помощью обратного источника питания CCM с несколькими выходами…

Тема 4: Конструкция трансформатора и индуктора для оптимальной работы схемы

Тема 5: Под капотом низковольтных преобразователей постоянного тока в постоянный

Тема 6: Распараллеливание мощности - выбор и применение наилучшего метода для…

SEM1600 (2004)

Тема 1: Вопросы безопасности при проектировании источников питания

Тема 2: Блоки питания последовательного включения в средах с несколькими шинами напряжения

Тема 3: Обзор конструкции: Пошаговый подход к преобразователям переменного тока с питанием от сети

Тема 4: Сборка источника питания - рекомендации по компоновке

Тема 5: Чередование обеспечивает уникальные преимущества для прямого и обратного конвертера

Тема 6: Практическое введение в цифровое управление блоком питания

Тема 7: Компенсирующие преобразователи постоянного тока в постоянный с керамическими выходными конденсаторами

SEM1700 (2006/07)

ТЕМА 1: Повышение эффективности энергоснабжения - глобальная перспектива

ТЕМА 2: Энергия зеленого режима в милливаттах

ТЕМА 3: Обратная связь в быстром моделировании токового режима управления в высокочастотном режиме

ТЕМА 4: Проектирование планарных магнитов

ТЕМА 5: Пререгулятор PFC с чередованием для преобразователей большой мощности

ТЕМА 6: Разработка программного обеспечения для цифрового питания - Программирование 101 для аналогового дизайна

ТЕМА 7: Разработка цифрового телекоммуникационного выпрямителя

SEM1800 (2008/09)

Тема 1 - Высокий коэффициент мощности и высокая эффективность… Вы можете иметь и то, и другое

Тема 2 - Понимание методов распространения шума и их эффектов

Тема 3 - Под капотом повышающего преобразователя постоянного тока в постоянный

Тема 4 - Повышение эффективности системы с новым Interm.-Автобусная архитектура

Тема 5 - Высоковольтные накопители энергии: ключ к эффективному удержанию

Тема 6 - Использование PMBus ™ для улучшенного управления питанием на уровне системы

Тема 7 - Применение цифровых технологий в схемах контуров управления ШИМ

Это конец страницы

Оцените статью: [оценки]

Какая топология импульсного источника питания подходит для вашего приложения питания постоянного тока? | Блог о проектировании печатных плат

Altium Designer

| & nbsp 16 февраля 2018 г.

Нам часто приходится благодарить наших старожилов-первопроходцев за то, что они заложили основу для нашего постоянного успеха и будущего роста.У этих дизайнеров старой школы не было ничего, кроме теории и уверенности, чтобы управлять своими проектами или, точнее, управлять своими неудачами. Но, как утверждают многие мудрые люди, каждая неудача - не более чем открытие того, как что-то не делать. Однако с открытиями неудач приходят и открытия успеха!

Потратив много часов, дней или даже месяцев на разработку печатной платы, вы, возможно, пропустили важную часть постоянно развивающейся, постоянно меняющейся головоломки печатной платы; мощность.Что касается сложной головоломки, то мы рассматриваем всю конструкцию печатной платы, распределение мощности может быть совершенно уникальной и столь же сложной головоломкой само по себе. Ниже мы обсудим, как добиться регулируемого источника питания с использованием системы питания постоянного тока.

Источники питания постоянного тока и импульсные источники питания: что нужно знать

Рассмотрим топологию импульсных источников питания. Следует отметить, что есть определенные случаи, в которых линейный источник питания может иметь больше преимуществ, чем переключение, но в наш век технического прогресса конструкция импульсного источника питания значительно снизилась по стоимости и сложности, что позволяет нам, простым смертным, включать эти сети. в наши проекты.

Импульсные источники питания обычно состоят из нескольких ступеней. Эти каскады включают в себя входной каскад, отвечающий за фильтрацию и выпрямление на входе постоянного тока, инвертирующий каскад, который принимает этот вход постоянного тока и преобразует его обратно в более высокочастотный вход переменного тока, и выходной каскад, который фильтрует и выпрямляет выходной. Трансформатор можно разместить между выпрямителем и выходным каскадом, если требуется изолированная конструкция.

Теперь, когда у нас есть определение импульсного источника питания на уровне поверхности, мы рассмотрим различные топологии, из которых вы, вероятно, выберете для питания своей собственной печатной платы!

Типы топологий для импульсных источников питания

Вы можете выбрать одну из нескольких топологий в зависимости от конкретных потребностей вашей печатной платы, каждая из которых имеет свои собственные затраты и преимущества.Знакомство с ними по отдельности и их сильными сторонами даст вам возможность лучше выбрать топологию импульсного источника питания, которая подходит для ваших проектных потребностей.

Buck: понижающий преобразователь - одна из самых дешевых, самых простых и доступных конструкций. Хотя он не подходит для изолированных источников питания, он идеален для понижения постоянного и постоянного тока. Благодаря своему высокому уровню эффективности, он хорошо подходит для приложений с высокой мощностью и требует использования только одного индуктора (для однофазных приложений), хотя специальные индукторы могут быть интегрированы в конструкцию для многофазных приложений.

Обратной стороной этой топологии является прерывистый входной ток, который может создавать электромагнитные помехи, превышающие желаемые. Однако это можно уменьшить с помощью соответствующих компонентов фильтрации, таких как режим и дроссели фильтра.

Boost: Подобно понижающей топологии, повышающие цепи не подходят для изолированных источников питания, когда их основной функцией является повышение мощности DC-DC, а не ее уменьшение. Однако, в отличие от понижающих топологий, повышающие мощности имеют постоянную входную мощность, что делает их более идеальными для схем коррекции коэффициента мощности.Опять же, использование специальных индукторов может быть реализовано для обслуживания многофазных проектов.

Buck-Boost : Как можно понять из названия, повышение / понижение - это сочетание двух вышеупомянутых топологий, позволяющих повышать или понижать мощность постоянного тока. Это идеально подходит для приложений с батарейным питанием, которым требуются входные сети переменного напряжения. Обратной стороной этой топологии является тот факт, что выходное напряжение инвертировано, но с помощью небольшой магии можно внести изменения в конструкцию.Кроме того, сложности в схеме возбуждения возникают из-за отсутствия заземления в переключателе, что, очевидно, требует большей осторожности.

Ваш источник питания может быть таким же разнообразным, как и потребности вашей конкретной конструкции.

SEPIC и Cuk: Опять же, идеальная для приложений с питанием от батарей, эта сеть может увеличивать или уменьшать мощность постоянного тока, но в отличие от топологии Buck-Boost, топологии SEPIC и Cuk не инвертируют выходной каскад. Конденсаторы, а также две катушки индуктивности используются для хранения энергии.Эти катушки индуктивности могут быть либо двумя отдельными компонентами, либо одной связанной катушкой индуктивности. Кроме того, конденсаторы могут действовать как ограниченная изолированная конструкция, обеспечивающая некоторую защиту.

Обратный ход : По сути, действуя как изолированная версия пониженно-повышающей конструкции, в топологии обратного хода используется трансформатор в качестве индуктора накопителя. Интегрирование трансформатора в конструкцию также может регулировать выходное напряжение, «просто» регулируя коэффициент трансформации вторичной обмотки (ов). Тогда возможно несколько выходов, если на трансформаторе достаточно места.

Этот простой и изолированный источник питания постоянного тока идеально подходит для приложений с низким энергопотреблением. Поскольку трансформатор здесь действует как накопительный индуктор, нет необходимости в дополнительных индукторах, что делает его очень популярным и экономичным.

Прямой: Прямой источник питания постоянного тока представляет собой простую понижающую конструкцию с использованием изолированного трансформатора. Но опять же, эта конструкция лучше подходит для приложений с низким энергопотреблением. Использование отдельного дросселя на выходном каскаде, конструкция не очень подходит для выходов с более высоким напряжением.Хотя они и не подходят для высоких напряжений, когда требуются приложения с высоким постоянным током, непульсирующие выходы намного лучше подходят для постоянного тока, превышающего 15 А.

Push-Pull : с использованием двух первичных обмоток, которые образуют схему с двойным возбуждением, двухтактный источник питания постоянного тока обеспечивает большую эффективность, чем конструкция обратного или прямого действия. Эту топологию можно масштабировать до приложений с более высоким энергопотреблением, но следует уделять больше внимания управлению переключением.Если оба переключателя включены одновременно, очень большой постоянный ток может пробить конструкцию, что в противном случае может повредить или разрушить (никогда не слова, которые вы хотите услышать в дизайне печатной платы). Однако при правильной реализации коммутационные нагрузки все еще очень высоки, что делает конструкцию нежелательной для схем высокого напряжения и коррекции коэффициента мощности.

Полумост : Подобно двухтактным схемам, полумостовые топологии можно масштабировать и для приложений с более высоким энергопотреблением (и основаны на прямых топологиях), могут возникать аналогичные проблемы с переключением.Однако, что выгодно, коммутационные факторы стресса равны входному напряжению, что делает его гораздо лучше подходящим для приложений с более высоким напряжением. С другой стороны, выходные токи намного выше, чем при двухтактной топологии, что делает ее менее подходящей для сильноточных приложений.

Resonant LLC: Используя резонансные методы для уменьшения коммутационных потерь, резонансная топология LLC хорошо масштабируется с более высокими уровнями мощности. Хотя он не подходит для приложений в режиме ожидания из-за того, что резонансный резервуар должен постоянно находиться под напряжением, преимущество заключается в диапазоне входных напряжений.Однако недостатком этой конструкции является увеличение сложности, а также связанная с этим стоимость.

Будь то высокое напряжение или низкое, высокомощное или низкое, сильноточное или низкое, выбор правильной топологии для вашего проекта может заключаться в знании всех требований вашего проекта в дополнение к требованиям вашего производства и производственные цели.

Убедитесь, что ваши более мощные конструкции имеют правильный источник питания, чтобы они продолжали работать.

Конструкция печатной платы и факторы питания

Какую бы топологию вы ни выбрали для реализации проекта печатной платы, очевидные факторы вступают в игру внутри самой топологии.Общие соображения по поводу платы, такие как пространство, стоимость, сложность изготовления и приобретения, тестирование, требования к шасси и т. Д., Должны быть включены в дополнение к «простому» акту требований к питанию.

Если вы испытываете особый энтузиазм в своем дизайне и видите себя пионером современного дизайна, то я настоятельно рекомендую вам взяться за дело и найти свои собственные успехи (помимо неудач). Самое приятное то, что с современным программным обеспечением для проектирования печатных плат у вас будет надежная поддерживающая система для резервного копирования рисков проектирования.Благодаря встроенной в вашу компоновку интеллектуальной проверке правил проектирования и анализу электросетей Altium Designer® является отличным выбором для ваших проектных нужд.

Если вы хотите закрепить свой успех в будущем и хотите обсудить возможные варианты со специалистом, поговорите с экспертом по Altium Designer сегодня.

Импульсные источники питания

Введение

Импульсные источники питания

(часто сокращенно SMPS) значительно сложнее, чем линейные регулируемые источники питания, описанные в модуле источников питания 2.Основное преимущество этой дополнительной сложности состоит в том, что работа в коммутируемом режиме дает регулируемые источники постоянного тока, которые могут обеспечивать большую мощность для данного размера, стоимости и веса блока питания.

Конструкции с переключением режимов

Используются несколько различных типов дизайна. Если входом является сеть переменного тока (линия), переменный ток выпрямляется и сглаживается накопительным конденсатором перед обработкой тем, что фактически является преобразователем постоянного тока в постоянный, для получения регулируемого выхода постоянного тока на требуемом уровне.Следовательно, SMPS можно использовать как преобразователь переменного тока в постоянный для использования во многих цепях с питанием от сети или как преобразователь постоянного тока в постоянный, повышая или понижая напряжение постоянного тока по мере необходимости, в системах с батарейным питанием.

Блок-схема переключаемого режима

Рис. 3.0.1 Типовая блок-схема SMPS

На рис. 3.0.1 показан пример блок-схемы типичного SMPS с входом сети переменного тока (линейным) и регулируемым выходом постоянного тока. Выходное выпрямление и фильтр изолированы от секции высокочастотного переключения высокочастотным трансформатором, а обратная связь по управлению напряжением осуществляется через оптоизолятор.Блок схемы управления типичен для специализированных ИС, содержащих высокочастотный генератор, широтно-импульсную модуляцию, управление напряжением и током и секции отключения выхода.

Независимо от назначения SMPS, общей особенностью (после преобразования переменного тока в постоянный, если требуется) является использование высокочастотной прямоугольной волны для управления электронной схемой переключения питания. Эта схема используется для преобразования источника постоянного тока в высокочастотный сильноточный переменный ток, который различными способами, в зависимости от конструкции схемы, преобразуется в регулируемый выход постоянного тока.Причина этого процесса двойного преобразования заключается в том, что при изменении постоянного тока или частоты сети переменного тока на высокочастотный переменный ток компоненты, такие как трансформаторы, катушки индуктивности и конденсаторы, необходимые для обратного преобразования в стабилизированный источник постоянного тока, могут быть намного меньше и дешевле, чем те, которые необходимы для выполнения той же работы на частоте сети (сети).

Высокочастотный переменный ток, генерируемый в процессе преобразования, представляет собой прямоугольную волну, которая обеспечивает средство управления выходным напряжением посредством широтно-импульсной модуляции.Это позволяет регулировать выходную мощность намного эффективнее, чем это возможно в линейно регулируемых источниках питания.

Комбинация прямоугольного генератора и переключателя, используемая в импульсных источниках питания, также может использоваться для преобразования постоянного тока в переменный. Таким образом, метод переключения режимов также может использоваться в качестве «инвертора» для создания источника переменного тока с потенциалом сети от источников постоянного тока, таких как батареи, солнечные панели и т. Д.

Регулировка напряжения

В большинстве импульсных источников питания обычно обеспечивается регулировка как линии (входное напряжение), так и нагрузки (выходное напряжение).Это достигается изменением отношения метки к пространству формы волны генератора перед ее применением к переключателям. Контроль отношения метки к пространству достигается путем сравнения обратной связи по напряжению на выходе источника питания со стабильным опорным напряжением. Используя эту обратную связь для управления отношением метки к пространству генератора, можно управлять рабочим циклом и, следовательно, средним выходным постоянным током схемы. Таким образом может быть обеспечена защита как от перенапряжения, так и от перегрузки по току.

Там, где важно поддерживать электрическую изоляцию от сети, это обеспечивается с помощью трансформатора либо на входе переменного тока, где он также может использоваться для изменения напряжения переменного тока перед выпрямлением, либо между блоками управления мощностью секции питания и выхода, где, помимо обеспечения изоляции, трансформатор с несколькими вторичными обмотками может выдавать несколько различных выходных напряжений.

Для обеспечения хорошо регулируемого выходного сигнала образец выходного напряжения постоянного тока обычно подается обратно в схему управления и сравнивается со стабильным опорным напряжением. Любая возникшая ошибка используется для контроля выходного напряжения. Для поддержания гальванической развязки между входом и выходом обратная связь обычно осуществляется через такое устройство, как оптоизолятор.

ВЧ переключение

Использование высокой частоты для импульсного привода дает несколько преимуществ:

• Трансформатор будет ВЧ-типа, который намного меньше стандартного сетевого трансформатора.

• Частота пульсаций будет намного выше (например, 100 кГц), чем при линейном питании, поэтому требуется меньшее значение сглаживающего конденсатора.

• Кроме того, использование прямоугольной волны для управления переключающими транзисторами (режим переключения) гарантирует, что они рассеивают гораздо меньше энергии, чем обычный транзистор последовательного стабилизатора. Опять же, это означает, что для заданной выходной мощности можно использовать меньшие и более дешевые транзисторы, чем в линейных источниках питания аналогичного номинала.

• Использование небольших трансформаторов и сглаживающих конденсаторов делает импульсные источники питания более легкими и менее громоздкими.Добавленная стоимость сложной схемы управления также компенсируется меньшими и, следовательно, более дешевыми трансформаторами и сглаживающими конденсаторами, что делает некоторые конструкции с переключением режимов менее дорогими, чем эквивалентные линейные источники питания.

Хотя линейные источники питания могут обеспечить лучшее регулирование и лучшее подавление пульсаций на низких уровнях мощности, чем источники с импульсным режимом, вышеуказанные преимущества делают SMPS наиболее распространенным выбором для блоков питания в любом оборудовании, где требуется стабилизированный источник питания для доставки средних и больших объемов. власти.

Недостатком использования такой высокочастотной прямоугольной волны в мощной цепи, такой как SMPS, является то, что создается много мощных высокочастотных гармоник, так что без очень эффективного RF-экранирования и фильтрации существует опасность того, что SMPS создаст радиочастотные помехи.

Руководство по источникам питания Switchmode

Книга

Название: Руководство по источникам питания Switchmode
Книга

Автор: Кейт Биллингс и Тейлор Мори

Формат: PDF

Объем: 849 страниц

Размер файла: 19 МБ

Содержание:

Часть 1: Функции и требования, общие для большинства импульсных источников питания с прямым отключением
  • 1.Общие требования: обзор
  • 2. Защита от перенапряжения в линии переменного тока
  • 3. Электромагнитные помехи (Emi) в импульсных источниках питания
  • 4. Экраны Фарадея
  • 5. Выбор предохранителя
  • 6. Линейные выпрямительные и конденсаторные входные фильтры для “ Прямое отключение от сети »импульсные источники питания
  • 7. Управление пусковым током
  • 8. Способы запуска
  • 9. Плавный пуск и блокировка низкого напряжения
  • 10. Предотвращение превышения напряжения при включении
  • 11.Защита от перенапряжения
  • 14. Ограничение выходного тока Foldback (возвратное)
  • 15. Требования к основному приводу для высоковольтных биполярных транзисторов
  • 16. Пропорциональные схемы возбуждения для биполярных транзисторов
  • 17. Методы антинасыщения для высоковольтных транзисторов
  • 18. Демпферные сети
  • 19. Перекрестная проводимость
  • 20. Выходные фильтры
  • 21. Цепи предупреждения об отключении питания
  • 22. Центрирование (регулировка по центру) вспомогательных выходных напряжений на преобразователях с несколькими выходами
  • 23.Системы вспомогательного питания
  • 24. Параллельная работа источников питания со стабилизированным напряжением
Часть 2 Конструкция: теория и практика
  • 1. Импульсные источники питания обратного хода с несколькими выходами
  • 2. Конструкция обратного трансформатора
  • 3. Понижающий транзистор коммутационная нагрузка
  • 4. Выбор силовых компонентов для обратноходовых преобразователей
  • 5. Диагональный полумостовой обратноходовой преобразователь
  • 6. Автоколебательные обратноходовые преобразователи прямого автономного режима
  • 7.Применение управления в режиме тока к обратноходовым преобразователям
  • 8. Несимметричные прямые преобразователи с прямым отключением
  • 9. Конструкция трансформатора для прямых преобразователей
  • 10. Диагональные полумостовые прямые преобразователи
  • 11. Конструкция трансформатора для диагональной половины -мостовые прямые преобразователи
  • 12. Двухтактные полумостовые преобразователи с регулируемой скважностью
  • 13. Мостовые преобразователи
  • 14. Маломощные автоколебательные вспомогательные преобразователи
  • 15. Однотрансформаторные двухтранзисторные автопреобразователи преобразователи осциллирующие
  • 16.Двухтрансформаторные автоколебательные преобразователи
  • 17. Концепция преобразователя постоянного тока в постоянный
  • 18. Составные регулирующие системы с несколькими выходами
  • 19. Двухтактные преобразователи с регулируемой продолжительностью включения
  • 20. DC-to-DC преобразователи Импульсные регуляторы постоянного тока
  • 21. Регулятор мощности высокочастотного реактора с насыщением (управление магнитной скважностью)
  • 22. Источники постоянного тока
  • 23. Переменные линейные источники питания
  • 24. Переменные импульсные источники питания 25.Конструкция импульсного трансформатора источника питания с регулируемым напряжением
Часть 3 Прикладная конструкция
  • 1. Индукторы и дроссели в импульсных источниках питания
  • 2. Сильноточные дроссели с сердечниками из порошкового железа
  • 3. Конструкция дросселя с использованием тороидальных сердечников из железного порошка
  • 4 Конструкция коммутационного трансформатора (общие принципы)
  • 5. Пример оптимальной конструкции трансформатора мощностью 150 Вт с использованием номограмм
  • 6. Насыщение трансформаторной лестницы
  • 7.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *