Обозначения радиодеталей на схемах: Страница не найдена

Содержание

Обозначения радиодеталей. Маркировка радиодеталей и радиоэлементов Цоколевка радиоэлементов

При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения — это вполне оправдано.

Резистор на схеме обозначается латинской буквой «R», цифра — условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора — мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.


Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей — европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры — для широкого применения. Три буквы и две цифры — для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа.

Первая буква — код материала:

А — германий;
В — кремний;
С — арсенид галлия;
R — сульфид кадмия.

Вторая буква — назначение:

А — маломощный диод;
В — варикап;
С — маломощный низкочастотный транзистор;
D — мощный низкочастотный транзистор;
Е — туннельный диод;
F — маломощный высокочастотный транзистор;
G — несколько приборов в одном корпусе;
Н — магнитодиод;
L — мощный высокочастотный транзистор;
М — датчик Холла;
Р — фотодиод, фототранзистор;
Q — светодиод;
R — маломощный регулирующий или переключающий прибор;

S — маломощный переключательный транзистор;
Т — мощный регулирующий или переключающий прибор;
U — мощный переключательный транзистор;
Х — умножительный диод;
Y — мощный выпрямительный диод;
Z — стабилитрон.

кликните по картинке чтобы увеличить

При практической работе, связанной в первую очередь с ремонтом электронной техники, возникает задача определить тип электронного компонента, его параметры, расположение выводов, принять решение о прямой замене или использовании аналога. В большинстве существующих справочников приводится информация по отдельным типам радиокомпонентов (транзисторы, диоды и т. д.). Однако ее недостаточно, и необходимым дополнением к таким книгам служит данное справочное пособие. Представляемая читателю книга по маркировке электронных компонентов содержит в отличие от издававшихся ранее подобных изданий, больший объем информации. В ней приведены данные по буквенной, цветовой и кодовой маркировке компонентов, по кодовой маркировке зарубежных полупроводниковых приборов для поверхностного монтажа (SMD), приведены данные по маркировке некоторых ранее не освещавшихся типов зарубежных компонентов, даны рекомендации по использованию и проверке исправности электронных компонентов.


Предисловие

1. Резисторы
1.1. Общие сведения
1.2. Обозначение и маркировка резисторов
Система обозначения
Маркировка резисторов отечественного производства
Маркировка резисторов зарубежного производства
Маркировка резисторных сборок
1.3. Технические данные и маркировка бескорпусных SMD резисторов
Общие сведения
Маркировка SMD резисторов
1.4. Особенности применения и маркировки переменных резисторов
Переменные и подстроечные резисторы фирмы BOURNS
1.5. Резисторы с особыми свойствами
Термисторы
Варисторы
2. Конденсаторы
2.1. Общие сведения
2.2. Обозначение и маркировка конденсаторов
Отечественная система обозначения

Маркировка конденсаторов
Кодовая цифровая маркировка
Цветовая маркировка
2.3. Особенности маркировки некоторых типов SMD конденсаторов
Керамические 5МЭ конденсаторы
Оксидные SMD -конденсаторы
Танталовые SMD -конденсаторы
Маркировка электролитических конденсаторов фирмы ТRЕС
Конденсаторы фирмы HITANO
Советы по практическому применению
2.4. Подстроечные конденсаторы зарубежных фирм
2.5. Другие типы конденсаторов
3. Катушки индуктивности
3.1. Общие сведения
3.2. Маркировка катушек индуктивности
Маркировка катушек индуктивности для поверхностного монтажа
3.3. Дроссели серий Д, ДМ, ДП, ДПМ
4. Маркировка кварцевых резонаторов и пьезофильтров
4.1. Маркировка резонаторов и фильтров отечественного производства
4.2. Особенности маркировки резонаторов и фильтров зарубежного производства…
4.3. Особенности маркировки фильтров производства фирмы Murata
5. Маркировка полупроводниковых приборов

5.1. Отечественная и зарубежные системы маркировки
полупроводниковых приборов
Маркировка R-МОП транзисторов Harris (Intersil)
Маркировка IGBT транзисторов Harris (Intersil)
Маркировка транзисторов фирмы International Rectifier
Маркировка полупроводниковых приборов фирмы Мо1ого1а
5.2. Диоды общего назначения
Типы корпусов и расположение выводов диодов
Цветовая маркировка отечественных диодов
Цветовая маркировка зарубежных диодов
Цветовая маркировка отечественных стабилитронов и стабисторов
Цветовая маркировка отечественных варикапов
Буквенно-цифровая кодовая маркировка SMD диодов зарубежного
производства
Цветовая маркировка SMD диодов в корпусах SOD-80,DO-213АА, DО-213АВ
Фотодиоды
Транзисторы
Особенности кодовой и цветовой маркировки отечественных транзисторов
6. Маркировка полупроводниковых SMD радиокомпонентов
6.1. Идентификация SMD компонентов по маркировке
6.2. Типы корпусов SMD транзисторов
6.3. Как пользоваться системой
Эквиваленты и дополнительная информация
7. Особенности тестирования электронных компонентов
7.1. Тестирование конденсаторов
7.2. Тестирование полупроводниковых диодов
7.3. Тестирование транзисторов
7.4. Тестирование одноперeходных и программируемых однопереходных
транзисторов
7.5. Тестирование динисторов, тиристоров, симисторов
7.6. Определение структуры и расположения выводов транзисторов,
тип которых неизвестен
7.7. Тестирование полевых МОП-транзисторов
7.8. Тестирование светодиодов
7.9. Тестирование оптопар
7.10. Тестирование термисторов
7.11. Тестирование стабилитронов
7.12. Расположение выводов транзисторов
Приложение 1. Краткие справочные данные по зарубежным диодам
Приложение 2. Краткие справочные данные по зарубежным транзисторам
Приложение 3. Типы корпусов СВЧ транзисторов

В сборнике собраны книги по цветовой и кодовой маркировке радиоэлементов импортного и отечественного производства по номиналам, рабочему напряжению, допускам и другим характеристикам. В них вы найдете данные по буквенной, цветовой и кодовой маркировке компонентов, по кодовой маркировке зарубежных полупроводниковых приборов для поверхностного монтажа, логотипы и буквенные сокращения при маркировке микросхем ведущих зарубежных производителей, а также рекомендации по использованию и проверке исправности электронных компонентов.

Список книг:

Нестеренко И.В., Панасенко В.Н. Цветовые и кодовые обозначения радиоэлементов
В.В.Мукосеев, И.Н.Сидоров. Маркировка и обозначение радиоэлементов. Справочник
Садченков Д.А. Маркировка радиодеталей отечественных и зарубежных. Справочное пособие

Нестеренко И.И. Маркировка радиоэлектронных компонентов. Карманный справочник
Перебаскин А.В. Маркировка электронных компонентов. 9-е издание
Маркировка электронных компонентов
Нестеренко И.И. Цвет, код, символика радиоэлектронных компонентов

Нестеренко И.И. Цветовая и кодовая маркировка радиоэлектронных компонентов, отечественных и зарубежных

Авторы: разные
Издательство: Запорожье: ИНТ, ЛТД; М.: Горячая Линия — Телеком; М.: Солон-Пресс; М: Додэка- XXI;
Год издания: 2001-2008
Страниц: 2677
Формат: pdf
Размер: 259 мб
Язык: русский

Скачать Маркировка радиодеталей и радиоэлементов. Сборник книг

Здравствуйте посетители сайта 2 Схемы . Многие не понимают, как определить номинал советской радиодетали по коду, написанному на каком-либо радиоэлементе. А ведь многие устройства или приборы ещё тех времён успешно эксплуатируются до сих пор. Сейчас мы расскажем про определение номинала основных деталей производства СССР.

Резисторы

Начнём, конечно, с самой часто используемой детали — резистора. И начнём именно с советских резисторов. Почти на всех таких резисторах есть буквенная маркировка. Для начала изучим буквы, которые используются на данной детали:

  • Буква «Е», «R» — означает Омы
  • Буква «К» — означает Килоом
  • Буква «М» — означает Мегаом

И сама загвоздка заключается в расположении буквы между, перед или после цифры. Вообще ничего сложного нет. Если буква стоит между цифрами, например:

1К5 – это означает 1,5Килоома. Просто в Советском Союзе чтобы не возиться с запятой, вставили туда букву номинала. Если же написано 1R5 или 1Е5 — это значит что сопротивление 1,5 Ома или 1М5 — это 1,5 Мегаом. Если буква стоит перед цифрами, значит вместо буквы мы подставляем «0» и продолжаем строчку из цифр, которые стоят после буквы.

Например: К10 = 0,10 К, значит если в килооме 1000 Ом, то умножаем эту цифру (0,10) на 1000 и получаем 100 Ом. Или просто подставляем к цифрам нолик, при этом меняем в уме сопротивление на самое ближнее, меньшее этого.

И если буква стоит после цифр, значит ничего не меняется — так и вычисляем что написано на резисторе, например:

  • 100к = 100 килоом
  • 1М = 1 Мегаом
  • 100R или 100Е = 100 Ом

Можно определять номиналы вот по такой таблице:

Есть ещё и цветовая маркировка резисторов, самая основная, но при этом используют чаще всего онлайн калькуляторы или можно просто его .

Ещё на схемах где есть резисторы, на графических обозначениях резистора пишутся «палки». Эти «палки» обозначают мощность по такой таблице:

А мощность у резисторов определяется по размерам и надписям на них. На советских мощностью 1-3 Ватта писали мощность, а на современных уже не пишут. Но тут мощность определяют уже опытом или по справочникам.

Конденсаторы

Далее берём конденсаторы. В них немного другая маркировка. На современных конденсаторах идёт только цифровая маркировка, поэтому на все буквы кроме «p», «n» не обращаем внимания, все посторонние буквы обычно обозначают допуск, термостойкость и так далее. У них обычно кодовая маркировка состоит из 3 цифр. Первые три мы оставляем как есть, а третья показывает количество нулей, и эти нули мы выписываем, после чего емкость получается в

пикофарадах .

Пример: 104 = 10 (выписываем 4 ноля, так как цифра после первых двух 4) 0000 Пикофарад = 100 Нанофарад или 0,1 микрофарад. 120 = 12 пикофаррад.

Но есть и с количеством менее 3 цифр (два или один). Значит емкость в указанных уже нам пикофарадах. Пример:

  • 3 = 3 пикофарада
  • 47 = 47 пикофарад

Тут емкость 18 пикофарад.

Если есть буквы «n» или «p», значит емкость в пикофардах или нанофарадах, например:

  • Буква «n» — нанофарады
  • Буква «p» — пикофарады

На первом (большом) написано «2n7» — в этом случае как и на резисторе 2,7 нанофарад. На втором конденсаторе написано 58n, то есть емкость у него 58 нанофарад. Но если все-таки это не понимаете лучше купить мультиметр, у него есть функция измерения емкости. Там есть специальный разъём, куда вставляется конденсатор и под него нужно выбрать необходимый диапазон измерения (в пикофарадах, нанофарадах, микрофарадах). У данного мультиметра емкость измеряется до 20 микрофарад.

Транзисторы

Теперь советские транзисторы, так как их сейчас всё равно много, хоть не всех их продолжают делать. Маркировка у них обозначается цветными точками двух типов, такие:

Есть ещё вот такие, с кодовой маркировкой:

Конечно можно не запоминать эти таблицы, а использовать программку-справочник, что в общем архиве по ссылке выше. Надеемся эти сведения об основных деталях отечественного производства вам очень пригодятся. Автор материала — Свят.

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных — резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей — транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы

Конденсаторы — это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости — это Фарад. Она очень большая. На практике, как правило, используются которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S — это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости — начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр — максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

на схемах

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения — минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном — 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное — суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное — в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное — в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается — одна часть содержит только параллельно соединенные элементы, вторая — только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции — хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода — в частности, сажи). Впрочем, можно нанести даже графит — эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя

Основная характеристика резистора — это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие — сокращенно МЛТ.
  2. Влагостойкие сопротивления — ВС.
  3. Углеродистые лакированные малогабаритные — УЛМ.

У резисторов два основных параметра — мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор — это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем — порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные — три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго — в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение — сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение — произведение сопротивлений делится на сумму.
  3. Смешанное — разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы — полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы — это один кристалл, на котором может находиться великое множество радиоэлементов — и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник — это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам — в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода — катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах — в виде треугольника, а у его вершины — черта, перпендикулярная высоте.

Транзисторы

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме У транзисторов три электрода:

  1. База (сокращенно буквой «Б» обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором — в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой — это корпус. Основная характеристика транзисторов — коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора — вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

Радиодетали и их предназначение

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных – резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей – транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы

Конденсаторы ­– это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, переменный ток через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости – это Фарад. Она очень большая. На практике, как правило, используются конденсаторы, емкость которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S – это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Одна из разновидностей переменных конденсаторов – подстроечные. Они активно применяются в схемах, в которых имеется сильная зависимость от паразитных емкостей. И если установить конденсатор с постоянным значением, то вся конструкция будет работать неправильно. Следовательно, нужно установить универсальный элемент, который после окончательного монтажа можно настроить и зафиксировать в оптимальном положении. На схемах обозначаются точно так же, как и постоянные, но только параллельные пластины перечеркнуты стрелкой.

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости – начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр – максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

Обозначения конденсаторов на схемах

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения – минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном – 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное – суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное – в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное – в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается – одна часть содержит только параллельно соединенные элементы, вторая – только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции – хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода – в частности, сажи). Впрочем, можно нанести даже графит – эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя нихромовая проволока.

Основная характеристика резистора – это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие – сокращенно МЛТ.
  2. Влагостойкие сопротивления – ВС.
  3. Углеродистые лакированные малогабаритные – УЛМ.

У резисторов два основных параметра – мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор – это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем – порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные – три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго – в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение – сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение – произведение сопротивлений делится на сумму.
  3. Смешанное – разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы – полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы – это один кристалл, на котором может находиться великое множество радиоэлементов – и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник – это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам – в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода – катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах – в виде треугольника, а у его вершины – черта, перпендикулярная высоте.

Транзисторы

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме детекторного приемника). У транзисторов три электрода:

  1. База (сокращенно буквой «Б» обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором – в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой – это корпус. Основная характеристика транзисторов – коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора – вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т.п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже.

Конденсатор.

Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор — это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.

У конденсатора основной параметр — это ёмкость.

Единица ёмкости — микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица — пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше — в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф). А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф = 15 000 пф).

Типы конденсаторов.

Конденсаторы бывают постоянной и переменной емкости.

У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов — подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный — он более дешевле и доступнее.

Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов — не полярные. Другая разновидность конденсаторов — электролитические (полярные). Такие конденсаторы выпускают большой ёмкости — от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать. Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.

Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 10 — 240 свидетель­ствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом — 240 пФ. При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно — от 240 до 10 пФ.

Резистор.

Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить. Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.

Резисторы бывают постоянные и переменные.

Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных — СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.

Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более — до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.

В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.

Полупроводниковые приборы.

Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы. Одни из них — медь, железо, алюминий и другие металлы — хорошо проводят электрический ток — это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

Диоды.

У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс — к аноду, минус — к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое. Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну — это будет хоть и пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.

Стабилитроны.

Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток. А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения. Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.

Транзисторы.

Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор — усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор. Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое — за выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это и есть показатель усилительных способностей рупора, его коэффициент усиления.

Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.

Но вернемся к транзистору. Если пропустить через участок база — эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор — эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов. В зависимости от наибольшего тока, который можно пропускать через коллектор, транзис­торы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три). Усиление транзистор не зависит от его структуры.

Литература: Б. С. Иванов, «ЭЛЕКТРОННЫЕ САМОДЕЛКИ»

П О П У Л Я Р Н О Е:

Уже довольно давно вошли в нашу жизнь полипропиленовые трубы. Они заменили собой металлические и другие водопроводные системы. Хочу рассказать как паять полипропиленовые трубы самому.

Когда я делал дома отопление решил использовать полипропиленовые трубы, они достаточно недороги и очень просты в монтаже. Но прежде чем заняться пайкой труб необходимо приобрести нужный инструмент.

PodR >Велосипед — хорошо, а с крышей да ещё и с мотором — это вообще круто! Лёгкий, удобный, экономичный и палаткой крытый сверху для защиты от дождя и ветра… много только положительного можно сказать об разработке от JMK-Innovation — PodRide.

Много похожих самоделок, как показано на фото изготавливается по всему миру и даже встречаются проекты мелкосерийного выпуска.

Простые настольные станки для домашней мастерской

Когда у домашнего мастера есть станки, тиски, различные приспособления и конечно, весь необходимый инструмент — то и работу выполнять приятней и быстрее. Поэтому сегодня речь пойдёт именно о них — наших помощниках! 🙂

РАДИОДЕТАЛИ И ИХ НАЗНАЧЕНИЕ

Не всегда удается приобрести именно те детали и именно с теми номиналами, которые указаны на принципиальной схеме. Поэтому мы расскажем о возможных допусках номиналов этих деталей и о взаимозаменяемости полупроводниковых приборов.

Резисторы (R). В современных радиоустройствах самой распространенной деталью, пожалуй, является сопротивление, которое в настоящее время стали называть «резистором». Это сделано для того, чтобы отличить «сопротивление» — деталь, как радиотехническое изделие, от «сопротивления» — физической величины. Их основное назначение состоит в регулировании и распределении электрической энергии между цепями и элементами схем. Например, резисторы используются в качестве нагрузок, делителей напряжения, фильтров, шунтов.

На корпусе малогабаритных резисторов номинальное сопротивление обозначают с помощью цифр и букв: Е, К, М (Ом, кОм, МОм). Буквы ставятся вместо запятой, например, 5к1 (5 кОм и 100 Ом). Если после цифры нет буквы, то сопротивление измеряется в Ом.

Система обозначения номинального сопротивления резисторов имеет некоторое различие при написании на схеме и на корпусе детали. Например, на схеме номинал резистора 4,7к, а на его корпусе может быть нанесено 4 К7.

К тому же система маркировки резисторов несколько раз менялась, в результате чего можно встретить некоторые различия в обозначении между резисторами последних выпусков и резисторами устаревших типов. На схемах резисторы обозначаются буквой R и порядковым номером с указанием номинального сопротивления: R1 6, 8к.

Конденсаторы (С). В любых радиоэлектронных устройствах, не исключая приемники, применяются конденсаторы самых различных типов. Конденсаторы постоянной емкости необходимы в основном для разделения токов разных частот, используются они также в RC-фильтрах и в цепях питания. Конденсаторы переменной емкости (КПЕ) служат для настройки колебательных контуров.

Главный параметр конденсатора — номинальная емкость, которая проставляется на его корпусе. Заметим, что при включении оксидных конденса

торов (раньше их называли «э л е-ктролитическим и») следует особо соблюдать соответствие полярности конденсатора, указанной в схеме, и полярности конденсатора, обозначенной на его корпусе.

Непременная деталь в радиоприемнике — конденсатор переменной емкости (КПЕ), который состоит из изолированных друг от друга пластин. Каждая из групп пластин — подвижных (ротор) и неподвижных (статор) — имеет свои выводы (контакты).

Совместно с индуктивной катушкой L магнитной антенны КПЕ образует колебательный контур и служит для настройки приемника на частоту сигнала той или иной радиостанции.

В простых приемниках прямого усиления применяются односекционные КПЕ. Маркировка их производится цифрами минимальной и максимальной емкости.

Необходимо отметить, что очень часто радиолюбители стараются использовать подстроечный конденсатор КПК-2 в качестве КПЕ во входном контуре приемника. Такую замену необходимо считать неравноценной. И вот почему. Имеющийся серебряный сектор на статоре КПК-2 за очень короткий срок переносится на рабочую поверхность ротора. Образовавшийся тонкий налет серебра в виде кольца не даст «перекрытия», емкость становится постоянной и КПК-2 как конденсатор переменной емкости перестает работать. Допустимо устанавливать КПК-2 вместо КПЕ только на время налаживания приемника.

Основной единицей измерения емкости является фарада (Ф). Это очень большая величина емкости. Интересно, что емкостью меньше 1 Ф обладает вся наша планета Земля. На практике используются довольно малые единицы емкости: микрофарада (мкФ) — миллионная доля фарады;

нанофарада (нФ) — тысячная доля микрофарады;

пикофарада (пФ) — миллионная доля микрофарады.

На корпусах конденсаторов и на принципиальных схемах емкость указывают в сокращенном виде, то есть применяют кодированное обозначение. Так, вместо пФ пишут П. Для удобства пользования емкости конденсаторов от 100 до 91 ООО пФ указывают в нанофарадах (1 нФ = 1000 пФ = 0,001 мкФ) и обозначаются буквой «Н». Емкость от 0,1 мкФ и выше — в микрофарадах и обозначается буквой «М».

Радиодетали и электронные компоненты | Go-radio.ru

С чего начинается практическая электроника? Конечно с радиодеталей! Их разнообразие просто поражает. Здесь вы найдёте статьи о всевозможных радиодеталях, познакомитесь с их назначением, параметрами и свойствами. Узнаете, где и в каких устройствах применяются те или иные электронные компоненты.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Как купить радиодетали через интернет?

Как купить радиодетали через интернет? Этим вопросом задаются многие радиолюбители. В статье рассказывается о том, как можно заказать радиодетали в интернет-магазине радиодеталей с доставкой по почте.

Как покупать радиодетали на AliExpress.com?

В данной статье я расскажу о том, как покупать радиодетали и электронные модули в одном из крупнейших интернет-магазинов AliExpress.com за весьма небольшие деньги:)

Резисторная сборка.

Резисторная сборка (она же Resistor Array или Resistor Networks) активно применяется в цифровой электронике. Здесь вы узнаете, как устроена резисторная сборка, а также познакомитесь с её маркировкой и применением.

SMD резисторы (Surface Mount Chip Resistors).

Так ли много мы знаем об SMD-резисторах? Спешите узнать: устройство, конструкция и технология производства чип-резисторов разных типов.

MELF резисторы.

Кроме широко распространённых плоских SMD-резисторов в электронике применяются MELF-резисторы в корпусе цилиндрической формы. Каковы их достоинства и недостатки? Где они применяются и как определить их мощность?

Размеры SMD-резисторов. Таблица типоразмеров.

Размеры корпусов SMD-резисторов стандартизированы, и многим они, наверняка, известны. Но так ли всё просто? Здесь вы узнаете о двух системах кодирования размеров SMD-компонентов, научитесь определять реальный размер чип-резистора по его типоразмеру и наоборот. Познакомитесь с самыми маленькими представителями SMD-резисторов, которые сейчас существуют. Кроме этого представлена таблица типоразмеров SMD-резисторов и их сборок.

Мощность SMD резистора. Как узнать?

При конструировании и ремонте электроники довольно часто возникает вопрос, а как же узнать мощность SMD-резистора?

Здесь приводится методика определения мощности чип-резистора исходя из его размеров, приводится таблица соответствия типоразмера и мощности чип резистора. Кроме этого, вы научитесь определять мощность резисторов в составе чип-сборок, а также познакомитесь с высокомощными SMD-резисторами.

Приведённая информация является сжатой и компактной «выжимкой», полученной в результате изучения десятков даташитов, рекламных буклетов производителей и технических описаний на современные изделия для поверхностного монтажа.

ТКС резистора (TCR resistor).

Здесь вы узнаете, что такое температурный коэффициент сопротивления резистора (ТКС), а также каким ТКС обладают разные типы постоянных резисторов. Приводится формула расчёта ТКС, а также пояснения насчёт зарубежных обозначений вроде T.C.R и ppm/°C.

Какие бывают переменные резисторы?

Кроме постоянных резисторов в электронике активно применяются переменные и подстроечные резисторы. О том, как устроены переменные и подстроечные резисторы, об их разновидностях и пойдёт речь в предлагаемой статье. Материал подкреплён большим количеством фотографий разнообразных резисторов, что непременно понравится начинающим радиолюбителям, которые смогут легче ориентироваться во всём многообразии этих элементов.

Параметры переменных резисторов.

Как и у любой радиодетали, у переменных и подстроечных резисторов есть основные параметры. Оказывается их не так уж и мало, а начинающим радиолюбителям не помешает ознакомиться с такими интересными параметрами переменных резисторов, как ТКС, функциональная характеристика, износоустойчивость и др.

Фоторезистор.

Так ли прост фоторезистор? Загляните на страничку и проверьте свои знания!

Терморезисторы.

Здесь вы узнаете о терморезисторах — электронных компонентах для измерения и контроля температуры. NTC-термисторы и позисторы. Применение термисторов в качестве устройств защиты.

Катушка индуктивности.

Что такое катушка индуктивности и зачем она используется в электронике? Здесь вы узнаете не только о том, какими параметрами обладает катушка индуктивности, но и узнаете, как обозначаются разные катушки индуктивности на схеме. Статья содержит множество фотографий и изображений.

Диод Шоттки. Особенности и обозначение на схеме.

В современной импульсной технике активно применяется диод Шоттки. Чем он отличается от обычных выпрямительных диодов? Как он обозначается на схемах? Каковы его положительные и отрицательные свойства? Обо всём этом вы узнаете в статье про диод Шоттки.

Стабилитрон.

Стабилитрон – один из самых важных элементов в современной электронике. Не секрет, что полупроводниковая электроника очень требовательна к качеству электропитания, а если быть точнее, к стабильности питающего напряжения. Тут на помощь приходит полупроводниковый диод – стабилитрон, который активно применяется для стабилизации напряжения в узлах электронной аппаратуры.

Варикап

Что такое варикап и где он применяется? Из этой статьи вы узнаете об удивительном диоде, который используется в качестве переменного конденсатора.

Устройство динамика.

Как устроен динамик? Здесь вы узнаете об устройстве динамической головки прямого излучения, а также о том, как обозначается динамик на принципиальных схемах, а также познакомитесь с основными параметрами динамиков.

Как соединять динамики?

Если вы занимаетесь электроникой, то наверняка сталкивались с задачей соединения нескольких динамиков или акустических колонок. Это может потребоваться, например, при самостоятельной сборке акустической колонки, подключении нескольких колонок к одноканальному усилителю и так далее. Рассмотрено 5 наглядных примеров. Много фото.

Транзистор.

Транзистор является основой современной электроники. Его изобретение произвело революцию в радиотехнике и послужило основой для миниатюризации электроники – создания микросхем. Как обозначается транзистор на принципиальной схеме? Как необходимо впаивать транзистор в печатную плату? Ответы на эти вопросы вы найдёте в этой статье.

Составной транзистор.

Составной транзистор или по-другому транзистор Дарлингтона является одной из модификаций биполярного транзистора. О том, где применяются составные транзисторы, об их особенностях и отличительных свойствах вы узнаете из этой статьи.

Параметры MOSFET транзисторов.

При подборе аналогов полевых МДП-транзисторов приходиться обращаться к технической документации с параметрами и характеристиками конкретного транзистора. Из данной статьи вы узнаете об основных параметрах мощных MOSFET транзисторов.

Обозначение полевого транзистора.

В настоящее время в электронике всё активнее применяются полевые транзисторы. На принципиальных схемах полевой транзистор обозначается по-разному. В статье рассказывается об условном графическом обозначении полевых транзисторов на принципиальных схемах.

IGBT транзистор.

Что такое IGBT-транзистор? Где применяется и как он устроен? Из данной статьи вы узнаете о преимуществах биполярных транзисторов с изолированным затвором, а также о том, как обозначается данный тип транзисторов на принципиальных схемах.

Динистор. Принцип работы и свойства.

Среди огромного количества полупроводниковых приборов существует динистор. Узнать о том, чем динистор отличается от полупроводникового диода, вы сможете, прочитав эту статью.

Варистор.

Что такое варистор и каковы его основные параметры? Здесь вы узнаете, как варистор обозначается на схеме, а также о том, где применяется варистор.

Супрессор.

Что такое супрессор? Защитные диоды или супрессоры всё активней применяются в радиоэлектронной аппаратуре для её защиты от высоковольтных импульсных помех. О назначении, параметрах и способах применения защитных диодов вы узнаете из этой статьи.

Самовосстанавливающийся предохранитель.

Самовосстанавливающиеся предохранители всё чаще применяются в электронной аппаратуре. Их можно обнаружить в приборах охранной автоматики, компьютерах, портативных устройствах… На зарубежный манер самовосстанавливающиеся предохранители называются PTC Resettable Fuses. Каковы свойства и параметры «бессмертного» предохранителя? Об этом вы узнаете из предложенной статьи.

Электромагнитное реле.

Электромагнитное реле. Устройство, принцип работы и основные параметры электромагнитного реле.

Твёрдотельное реле.

В настоящее время в электронике всё активней стали применяться твёрдотельные реле. В чём преимущество твёрдотельных реле перед электромагнитными и герконовыми реле? Устройство, особенности и типы твёрдотельных реле.

Кварцевый резонатор.

В литературе посвящённой электронике кварцевый резонатор незаслуженно лишён внимания, хотя данный электромеханический компонент чрезвычайно сильно повлиял на активное развитие техники радиосвязи, навигации и вычислительных систем.

Разновидности конденсаторов по типу диэлектрика. Электролитические конденсаторы.

Кроме всем известных алюминиевых электролитических конденсаторов в электронике используется большое количество всевозможных электролитических конденсаторов с разным типом диэлектрика. Среди них например танталовые smd конденсаторы, неполярные электролитические и танталовые выводные. Данная статья поможет начинающим радиолюбителям распознать различные электролитические конденсаторы среди всевозможных радиоэлементов.

Устройство танталового конденсатора.

Кроме алюминиевых электролитических конденсаторов в электронике активно используются конденсаторы с танталовым диэлектриком. Здесь вы познакомитесь с устройством танталового конденсатора, его отличительными особенностями и свойствами.

Свойства электролитических конденсаторов.

Наряду с другими конденсаторами, электролитические конденсаторы обладают некоторыми специфическими свойствами, которые необходимо учитывать при их применении в самодельных электронных устройствах, а также при проведении ремонта электроники.

Конденсаторы Low ESR и Low Impedance. В чём разница?

В настоящее время в продаже имеется огромный ассортимент электролитических конденсаторов, в том числе и низкоимпедансных или же с низким ЭПС. В чём отличие обычных конденсаторов от конденсаторов Low ESR и Low Impedance?

Химические источники тока.

Химические источники тока активно используются в электронике. По-другому химический источник тока называют батарейкой или аккумулятором. В чём разница между батарейкой и аккумулятором? Как обозначаются химические источники тока на принципиальной схеме? На эти и другие вопросы вы получите ответы, прочтя статью про химические источники тока.

Литиевые аккумуляторы.

Здесь вы узнаете о том, какие типы литиевых аккумуляторов нашли широкое применение. Рассказано об устройстве и особенностях аккумуляторов на основе лития, которые должен знать каждый пользователь данного класса вторичных источников тока.

Ионистор.

В последнее время в продаже появились ионисторы. Как устроен ионистор? Каковы его свойства и электрические характеристики? Подробнее об этом читайте здесь.

Электронный трансформатор.

Электромагнитные трансформаторы стали всё чаще заменяться электронными трансформаторами. В данной статье рассматривается устройство рядового электронного трансформатора для галогенных ламп. Представлена схема реального устройства.

Температурные датчики и реле KSD.

Термоуправляемые выключатели получили широкое применение в бытовой электронике. Их можно встретить практически в любом бытовом приборе, служащим для нагрева чего-либо. Также они встречаются и в довольно сложных приборах вроде СВЧ-печей. Знание о температурных датчиках и реле (в данном случае серии KSD) помогут в ремонте бытовых электронагревательных приборов и при конструировании самодельных электронных устройств.

ИК-приёмник.

Устройство и особенности приёмников инфракрасного излучения (ИК-модулей) для систем с дистанционным управлением.

 

 

 

Графические условные обозначения радиоэлементов | Презентация к уроку:

Слайд 1

Графические условные обозначения радиоэлементов, наиболее часто применяемых в радиолюбительских принципиальных схемах

Слайд 2

Провода, кабели, экраны Провод электрический Ответвление от провода, соединение проводов Провода пересекаются без электрического контакта между ними Экранированный провод Частично экранированный провод

Слайд 3

Провода, кабели, экраны Коаксиальный кабель Соединение с корпусом прибора Соединение с землёй Экран элемента или группы элементов Антенна

Слайд 4

Коммутационные устройства Контакт коммутационного устройства (выключателя, электрического реле) замыкающий. Выключатель однополюсный То же самое, с механической связью с другим элементом Герметизированный контакт замыкающий, магнитоуправляемый (геркон) Контакт коммутационного устройства размыкающий Контакт коммутационного устройства переключающий. Однополюсный переключатель на два направления

Слайд 5

Коммутационные устройства Переключатель однополюсный трёхпозиционный с нейтральным положением Кнопочный выключатель однополюсный, замыкающий, с самовозвратом Переключатель кнопочный однополюсный нажимной с возвратом вторичным нажатием кнопки Переключатель однополюсный шестипозиционный (галетный переключатель) Разъёмное однополюсное соединение

Слайд 6

Коммутационные устройства Штырь разъёмного соединения Гнездо разъёмного соединения Реле электромагнитное, с замыкающим и размыкающим контактами Гнездо штепсельное телефонное, двухпроводное Штепсель телефонный, двухпроводный

Слайд 7

Резисторы Резистор постоянный То же, с отводами Варистор Терморезистор Фоторезистор

Слайд 8

Резисторы Переменный резистор, реостат Переменный резистор с отводами Переменный резистор совмещенный с замыкающим контактом Переменный резистор сдвоенный Подстроечный резистор-потенциометр

Слайд 9

Конденсаторы Конденсатор постоянной ёмкости Постоянной ёмкости, поляризованный Оксидный поляризованный Оксидный неполяризованный Переменной ёмкости Подстроечный Вариконд

Слайд 10

Полупроводниковые приборы, диоды Диод выпрямительный Диод туннельный Стабилитрон, опорный диод Стабилитрон с двусторонней проводимостью Варикап ( варактор )

Слайд 11

Полупроводниковые приборы, диоды Светодиод Фотодиод Двунаправленный диод Выпрямительный однофазный диодный мост (схема Герца)

Слайд 12

Полупроводниковые приборы, Тиристоры Тиристор триодный, запираемый в обратном направлении, с управлением по аноду То же, с управлением по катоду Триодный симметричный ( симистор )

Слайд 13

Полупроводниковые приборы, Транзисторы Транзистор структуры n — p — n Транзистор структуры p — n — p Полевой с p — n переходом и n — каналом Полевой с p — n переходом и р — каналом

Слайд 14

Другие приборы Электрические лампы накаливания Кварцевый резонатор Тиратрон с холодным катодом, триодный Лампа тлеющего разряда Гальванический или аккумуляторный элемент питания

Слайд 15

Другие приборы Батарея из гальванических или аккумуляторных элементов питания Катушка индуктивности (дроссель) без сердечника Катушка индуктивности, подстраиваемая магнитодиэлектрическим сердечником Трансформатор

Слайд 16

Другие приборы Громкоговоритель (динамик) Наушник головной Микрофон Предохранитель плавкий Прибор электроизмерительный. Для указания назначения прибора в центре вписывают буквенные обозначения единиц измерения или измеряемых величин

Слайд 17

Видео по теме можно посмотреть по ссылке: https:// www.youtube.com/watch?v=qMg7e5qcrIw

✅ Как разобраться в микросхемах

Для начинающих электронщиков важно понимать, как работают детали, как их рисуют на схеме и как разобраться в схеме электрической принципиальной. Для этого нужно сперва ознакомиться с принципом работы элементов, а как читать схемы электроники я расскажу в этой статье на примерах популярных устройств для начинающих.

Схема настольной лампы и фонарика на светодиоде

Схема – это рисунок на которых с помощью определенных символов изображаются детали схемы, линиями – их соединения. При этом, если линии пересекаются – то контакта между этими проводниками нет, а если в месте пересечения присутствует точка – это узел соединения нескольких проводников.

Кроме значков и линий на схеме изображены буквенные обозначения. Все обозначения стандартизированы, в каждой стране свои стандарты, например в России придерживаются стандарта ГОСТ 2.710-81.

Начнем изучение с простейшего – схемы настольной лампы.

Схемы не всегда читают слева направо и сверху вниз, лучше идти от источника питания. Что мы можем узнать из схемы, посмотрите в правую её часть.

— значит питание переменным током.

Рядом написано «220» — напряжением в 220 В. X1 и X2 – предполагается подключение в розетку с помощью вилки. SW1 – так изображается ключ, тумблер или кнопка в разомкнутом состоянии. L – условное изображение лампочки накаливания.

Краткие выводы:

На схеме изображено устройство, которое подключается к сети 220 В переменного тока с помощью вилки в розетку или других разъёмных соединений. Есть возможность отключения с помощью переключателя или кнопки. Нужно для питания лампы накаливания.

С первого взгляда кажется очевидным, но специалист должен уметь сделать такие выводы глядя на схему без пояснений, это умение даст возможность выносить диагноз неисправности и устранять её или же собирать устройства с нуля.

Перейдем к следующей схеме. Это фонарик с питанием от батарейки, в качестве излучателя в нём установлен светодиод.

Взгляните на схему, возможно, вы увидите новые для себя изображения. Справа изображен источник питания, так выглядит батарейка или аккумулятор, длинный вывод это плюс другое название – Катод, короткий – минус или Анод. У светодиода к аноду (треугольная часть обозначения) подключается плюс, а к катоду (на УГО выглядит как полоска) – минус.

Это нужно запомнить, что у источников питания и потребителей названия электродов наоборот. Две исходящие от светодиода стрелки дают вам понять, что этот прибор ИЗЛУЧАЕТ свет, если бы стрелки наоборот указывали на него – это был бы фотоприемник. Диоды имеют буквенное обозначение VDx, где х- порядковый номер.

Важно:

Нумерация деталей на схемах идет столбцами сверху вниз, слева направо.

Резистор – это сопротивление. Преобразует электрический ток в тепло, препятствую его движению, выглядит как прямоугольник, обычно на схемах имеет буквенное обозначение «R».

Как читать электронные схемы: увеличиваем уровень сложности

Когда вы уже разобрались с базовым набором элементов, пора ознакомится с более сложными схемами, давайте рассмотрим схему трансформаторного блока питания.

Главным средством преобразователя на схеме является трансформатор TV1, это новый для вас элемент. Предлагаю рассмотреть ряд подобных изделий.

Трансформаторы используются повсеместно, либо в сетевом (50 гц), либо в импульсном (десятки кГц) исполнении. Катушки индуктивности используются в генераторах, радиопередающих устройствах, фильтрах частот, сглаживающих и стабилизирующих приборах. Она выглядит следующим образом.

Второй незнакомый элемент на схеме – это конденсатор, здесь используется для сглаживания пульсаций выпрямленного напряжения. Вообще основная его функция – это накапливать энергию в качестве заряда на его обкладках. Изображается следующим образом.

Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора, напряжение блока питания будет стабилизировано. При этом только от повышения питающего напряжения, при просадках ниже, чем Uстабилизации напряжение будет пульсирующем в такт с просадками. VD1 – это стабилитрон, они включаются в обратном смещении (катодом к точке с положительным потенциалом). Различаются по величине тока стабилизации (Iстаб) и напряжения стабилизации (Uстаб).

Краткие итоги:

Что мы можем понять из этой схемы? То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе. Подключается первичной стороной (входом) к сети переменного тока с напряжением 220 Вольт. На его выходе имеет два разъёмных соединения – «+» и «-» и напряжение 12 В, нестабилизорванное.

Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей.

Как читать схемы с транзисторами?

Транзисторы – это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Данные свойства позволяют их применять, как в ключевом, так и линейном режимах, что позволяет их использовать в огромном спектре схемных решений.

Давайте рассмотрим популярную среди новичков схему – симметричный мультивибратор. Это по сути генератор, который на своих выходах выдаёт симметричные импульсы. Может применяться, как основа для простых мигалок, в качестве источника частоты для пищалки, в качестве генератора для импульсного преобразователя и во многих других цепях.

Пройдемся по знакомым деталям сверху вниз. Вверху мы видим 4 резистора, средние два – времязадающие, а крайние – задают ток резистора, также влияют на характер выходных импульсов.

Далее HL – это светодиоды, а ниже два электролита – это полярные конденсаторы, когда будете их монтировать оставайтесь внимательны – неправильное подключение электролитического конденсатора чревато выходом его из строя вплоть до взрыва с выделением тепла.

Интересно:

На графическом обозначении электролитического конденсатора всегда помечается «положительная» обкладка конденсатора, а на настоящих элементах – чаще всего есть пометка отрицательной ножки, не перепутайте!

VT1-VT2 – это новые для вас элементы, таким образом обознаются биполярные транзисторы обратной проводимости (NPN), ниже указана модель транзистора – «КТ315». У них обычно 3 ножки:

При этом на корпусе их назначение не указывается. Чтобы определить назначение выводов, нужно воспользоваться одним из поисковых запросов:

1. «Название элемента» — цоколевка.

2. «Название элемента» — распиновка.

3. «Название элемента» datsheet.

Это справедливо, как для радиоламп, так и для современных микросхем. Запросы имеют почти одинаковый смысл. Вот таким образом я нашел цоколевку транзистора КТ315.

На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод.

Интересно:

У биполярных транзисторов стрелка на эмиттере обозначается направление протекания тока (от плюса к минусу), если стрелка ОТ базы – это транзистор обратной проводимости (NPN), а если К базе то прямой проводимости (PNP), часто вы можете заменить все NPN транзисторы на PNP, как в схеме мультивибратора, тогда нужно будет и поменять полярность источника питания (плюс и минус местами) ведь, повторюсь, стрелка на эмиттере указывает направление протекания тока.

На приведенной схеме положительный контакт источника питания подключен к верхней части схемы, а отрицательный к нижней. Так и на транзисторе стрелка указывает сверх-вниз – по направлению протекания тока!

В элементах с большим количеством ног имеет значение куда подключать, так же, как и в диодах и светодиодах, если вы перепутаете ножки – в лучшем случае схема не заработает, а в худшем – убьете детали.

Что мы смогли узнать, прочитав схему мультивибратора:

В этой схеме используются транзисторы и электролитические конденсаторы, питается она напряжением в 9 В (хотя может и больше, и меньше, например 12 В не повредят схеме, как и 5 В).

Стало ясно о способе соединения деталей и включения транзисторов. А также о том, что схема представляет собой прибор, работающий на принципе автогенератора основанного на процессе перезаряда транзисторов, которое вызвано попеременным открытием и закрытием транзисторов каждого по очереди, когда первый открыт, второй закрыт.

Проследив пути протекания тока (от плюса к минусу) и использовав знания о том, как работает биполярный транзистор мы делаем выводы о характере работы.

Тиристоры – полууправляемые ключи, учимся читать схемы

Давайте рассмотрим схему с не менее важным и распространенным элементом – тиристором. Я выбрал слово «полууправляемый» потому что, в отличие от транзистора, вы можете только открыть его, ток в нем прервется либо при прерывании питания, либо при смене полярности приложенного к нему напряжения. Открывается с помощью подачи на управляющий электрод напряжения.

Симисторы – содержат два тиристора соединённых встречно-параллельно. Таким образом, одним компонентом можно коммутировать переменный ток, при прохождении верхней части (положительной) полуволны синусоиды, при условии наличия сигнала на управляющем, электроде откроется один из внутренних тиристоров. Когда полуволна сменит свой знак на отрицательный – он закроется и в работу вступит второй тиристор.

Динисторы – разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения. Часто используются в импульсных блоках питания, как пороговый элемент для запуска автогенераторов и в устройствах для регулировки напряжения.

Вот так, собственно это выглядит на схеме.

Внимательно смотрим на подключение. Схема предназначена для подключения к сети переменного тока, например 220 В, в разрыв одного из питающих проводов, например фазного (L). Симистор VS1 – основной силовой элемент цепи, справа внизу дана его распиновка из даташита, 3 вывод – управляющий. На него через двунаправленный динистор VD1 модели DB3 рассчитанный на напряжение включения порядка 30 вольт, подаётся управляющий сигнал.

Так как все полупроводниковые приборы в этой конкретной схеме двунаправленные, регулировка осуществляется по обеим полуволнам синусоиды. Динистор открывается, когда на конденсаторе C1 появляется необходимой величины потенциал (напряжение), а скорость его заряда, следовательно, момент открытия ключей, задаётся RC цепью, состоящей из R1, переменного резистора (потенциометра) R2 и С1.

Эта простая схем имеет огромное значение и прикладное применение.

Выводы

Благодаря умению читать схемы электрические принципиальные, вы можете определить:

1. Что делает это устройство, для чего оно предназначено.

2. При ремонте – номинал вышедшей из строя детали.

3. Чем питать это устройство, каким напряжением и родом тока.

4. Примерную мощность электронного устройства, исходя из номиналов компонентов силовых цепей.

Важно не только знать условные графические обозначения элементов, но и принцип их работы. Дело в том, то не всегда те или иные детали могут использоваться в привычной роли. Но в пределах сегодняшней статьи рассмотреть все распространенные элементы довольно сложно, так как это займет очень большой объем.

Как быстро научиться электронике?

Как быстро научиться электронике!? “А не сбрендил ли автор?” – подумаете вы. Кто-то может за пару лет научиться программировать микроконтроллеры, а кто-то до сих пор будет собирать пищалки и фонарики. Это уже зависит, конечно, от самого человека. Но давайте вернемся к вопросу… Реально ли можно быстро научиться понимать схемы, собирать по ним электронные безделушки и научиться программировать микроконтроллеры?

Итак, начнем издалека… Жил да был один итальянец. Звали его Вильфредо Парето. И был он очень наблюдательный, любил за всем наблюдать. Вот как-то наблюдал он за всем и всея и понял одну важную вещь во всей Вселенной. А звучит эта вещь как-то так: 20% усилий дают 80% результата, а остальные 80% лишь 20% результата. Хм, звучит неплохо, но так ли это? И соблюдается ли этот закон во всей нашей Вселенной? А давайте проверим! Вот некоторые статистические данные:

20 процентов стран, в которых проживает меньше 20 процентов населения земного шара, потребляют 70 процентов мировых запасов энергии, 75 процентов металла и 85 процентов древесины.

• Менее 20 процентов общей площади Земли дают 80 процентов всех минеральных ресурсов.

• Менее 20 процентов войн приносят более 80 процентов человеческих потерь.

• Где бы вы ни жили, 20 процентов облаков производят 80 процентов дождя.

• Меньше 20 процентов записанной музыки исполняется более 80 процентов времени.

• В большинстве художественных музеев 20 процентов сокровищ демонстрируются 80 процентов времени.

• Менее 20 процентов изобретений оказывают более 80 процентов влияния на нашу жизнь. В двадцатом веке атомная энергия и компьютеры обладали большим влиянием, чем, вероятно, сотни тысяч прочих изобретений и новых технологий.

20 процентов земли дают более 80 процентов продуктов питания.

20 процентов статей “Практической электроники” просматриваются 80 процентами читателей :-).

В действительности весь жизненный цикл, от желудя до гигантского дуба, от маленького зернышка до обширных пшеничных полей, является отражением принципа 80/20, взятом в самом масштабном значении. Незначительные причины — колоссальные результаты. Вскоре это принцип был назван 80/20 или принципом Парето, в честь наблюдательного итальянца.

Чтобы научиться электронике я ходил на радиокружок, читал книжки по электронике, закончил вуз по специальности “Радиотехника”, но про себя я не могу сказать, что я супер-пупер электронщик… Пять лет вуза – сплошная теория, которая вообще нахрен никому не нужна. Зачем надо было заучивать все эти трехэтажные формулы и теоремы? После окончания вуза они все равно выветрились, как семена одуванчика при легком дуновении ветерка, но все таки я благодарен вузу за то, что там меня научили быстро понимать материал и быстро соображать.

Где-то случайно на страницах Рунета я прочитал про принцип Парето и про себя подумал: “Где же зарыты эти 20% в изучении электроники?” Проанализировав время, в течение которого я изучал эту сферу, я все так понял: 20% – это

– сидение по вечерам с паяльником и паяние схем

– радиофорумы и сайты без копипаста с учебников и энциклопедий

– общение с такими же чайниками в электронике

– практика, практика и еще раз ПРАКТИКА!

Ох, а сколько сейчас в Рунете книжек по электронике… “Радиоэлектроника для чайников”, “Занимательная электроника”, “Электроника от А до Я”.

Сколько я их только не перечитал. Да, согласен, есть хорошие книжки, но в основном книжки по электронике написаны каким-нибудь профессором с пятиэтажными формулами и с логарифмическими графиками. Читать книги по электронике? Думаю, это на любителя. Опять же напрашивается принцип 80/20. 20% книг дают 80% знаний. Но эти книги еще надо найти. От себя добавлю, не тратьте зря время, если книжка по электронике вас ну никак не устраивает. Начните читать другую. И все таки, я больше склоняюсь к практической части электроники. Электроника на практике как раз и относится к тем 20%. Вы все еще сидите? А ну-ка бегом паяльник в руки!

Как читать принципиальные схемы?

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО. Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика. Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора.

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n. Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните.

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт».

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT, BA, C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1; постоянные резисторы R1, R2, R3, R4; выключатель питания SA1, электролитические конденсаторы С1, С2; конденсатор постоянной ёмкости С3; высокоомный динамик BA1; биполярные транзисторы VT1, VT2 структуры n-p-n. Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.

Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор, то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой *. Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2*. При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5*), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод. В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому «-» выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем «общий провод» или «корпус» указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и «земля». «Земля» — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите «Далее«.

Радиоэлектроника для новичка

Первый шаг — он самый сложный.

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел «Старт«.

На страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Если Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Ну, а для начала, рекомендуем научиться паять.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Обзор характеристик и особенностей выбора мультиметра для начинающего радиолюбителя.

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Омметр – прибор для измерения сопротивления. Здесь вы узнаете о том, как омметр можно использовать в своей радиолюбительской практике.

Здесь вы познакомитесь с тем, как устроен и работает осциллограф. Научитесь разбираться в органах управления осциллографа. Осциллограф является одним из самых мощных инструментов для изучения процессов, происходящих в электронной технике.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Как проверить ИК-приёмник? Методика проверки исправности инфракрасного приёмника с помощью мультиметра и пульта ДУ.

Как узнать мощность трансформатора, не производя сложных расчётов? Здесь вы узнаете о простой методике определения мощности силового трансформатора.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

Несколько рекомендаций и советов начинающим радиолюбителям по правильному измерению сопротивления цифровым мультиметром. Общие правила по проверке работоспособности цифрового мультитестера и подготовки его к работе.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) — это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Таблица значений ESR конденсаторов разной ёмкости поможет вам определить качество электролитического конденсатора.

Здесь вы узнаете, как правильно соединять конденсаторы и рассчитывать общую ёмкость при их последовательном и параллельном включении.

Узнайте, как правильно соединять резисторы и рассчитывать их общее сопротивление при последовательном и параллельном включении.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Простой апгрейд мультиметра DT — 830B. Встраиваем светодиодный фонарик в цифровой мультиметр.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Вторая часть рассказа о чтении принципиальных схем. Соединения и разъёмы, повторяющиеся элементы, механически связанные элементы, экранированные детали и проводники. Обо всём этом читайте здесь.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя — это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2. 32V на базе готового модуля DC-DC преобразователя.

Собираем радиоуправляемое реле на базе готового радиомодуля.

Здесь я расскажу об универсальном зарядном устройстве, которым можно заряжать/разряжать практически любые аккумуляторы (Pb, Ni-Cd, Ni-Mh, Li-Po, Li-ion, LiFe).

Портативные USB-колонки для ноутбука являются достаточно востребованным атрибутом компьютерной периферии. Из каких электронных компонентов состоят данные устройства? В статье приводится принципиальная схема усилителя портативных компьютерных колонок с питанием от USB-порта.

Модернизация USB-колонок SVEN PS-30 на базе микросхемы-декодера CM6120-S.

Что такое мультивибратор и зачем он нужен? Здесь вы узнаете, как собрать мультивибратор на транзисторах. Познакомитесь с формулой расчёта его колебаний.

Для преобразования переменного тока в постоянный применяется так называемый выпрямитель. Здесь вы узнаете о типах диодных выпрямителей, а также об их особенностях и сферах применения. Материал будет интересен начинающим радиолюбителям и тем, кто хочет больше узнать о том, какие схемы выпрямителей применяются в электронике и электротехнике.

Здесь вы узнаете, как собрать мигалку на светодиодах из доступных радиодеталей. Много фоток и пояснений гарантируется.

Здесь показана схема маячка на микросхеме к155ла3. Подробно рассказано о подборе деталей для светодиодного маячка на микросхеме.

Как собрать мультивибратор на микросхеме? Здесь вы узнаете, как собрать мультивибратор на логических микросхемах серии К561, К176 и др.

Организуем рабочее место радиолюбителя-новичка. Собираем многофункциональную розетку.

Непременным атрибутом современного музыкального устройства служит вход внешнего сигнала AUX IN. Как использовать столь полезную функцию? Музыка налету.

Узнайте как можно переделать проводную гарнитуру мобильного телефона и максимально использовать возможности сотового телефона Sony Ericsson. В статье приводиться принципиальная схема проводной гарнитуры сотового телефона и методика её доработки.

Трёхцветную светодиодную ленту можно использовать по-разному: фоновая и декоративная подсветка, световое оформление, мягкое освещение и пр. Но после приобретения RGB-ленты возникает вопрос: «А как управлять этой лентой?». Здесь я расскажу о личном опыте применения RGB контроллера с радиоуправлением. Кроме того, разберёмся в том, как подобрать блок питания для светодиодной ленты.

Как научиться электронике? Конечно, на самых простых вещах! Например, на обычном аккумуляторном фонарике. Показана схема аккумуляторного фонаря, а также даны пояснения о назначении радиоэлементов.

Как читать принципиальные схемы и радиодетали (УГО)

Принципиальные схемы — это основа радиолюбительства и электроники. Схемы помогают собирать устройства и разбираться в работе радиодеталей. Без них была бы полная неразбериха, если бы детали рисовали на схемах так, как они выглядят на самом деле.

Особенности чтения схем

В принципиальных схемах проводники (или дорожки) обозначаются линиями.

А вот так они выглядят, если между ними есть соединение. Черная точка — это узел в схеме. Узел — это соединение нескольких проводников или деталей вместе. Они электрически друг с другом связаны.

Общая точка

Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?


Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:
Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.

Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.

Двуполярное питание и общая точка

В двуполярном питании общая точка — это средний контакт между плюсом и минусом.

Заземление

Примером заземления может послужить фильтр в компьютерных блоках питания.


С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.

Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.

Например, на этой схеме есть два резистора.

По умолчанию сопротивление без приставки пишется только числом. У R2 сопротивление равно 220 Ом. А у R3 после числа есть буква. Сопротивление этого резистора читается как 2,2 кОм (2 200 Ом).

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Нанофарады обозначаются как nF.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

Что такое даташит и для чего он нужен

Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.

Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.

Документация на микросхему NE555. Нарисован корпус и внешний вид детали.


Здесь подробно описывается микросхема, ее параметры и условия работы.

Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.

Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.

Как научиться читать принципиальные схемы

На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.

Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.

Например простая схема усилителя на одном транзисторе.

Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.

Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.

Еще сложнее дело обстоит с цифровой техникой.

Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.

Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике. Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот. Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.

Принципиальные схемы это своего рода язык, у которого есть разные диалекты.

Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.

Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.

Обозначения радиодеталей на принципиальных схемах

УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.

Например, в США обозначение резисторов отличается от СНГ и Европы.

Из-за этого меняется восприятие схемы.

Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.

U В Электрической Схеме — tokzamer.ru

Для изображения защитного проводника также имеется отдельный значок Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Но за последнее время наблюдается тенденция применения ЭРЭ и комплектующих изделий зарубежного производства.


С — отображение катушки устройства с механической блокировкой. Часто тут же проставлены расстояния и номиналы.

Схема условных обозначений измерительных приборов вольтметра, амперметра и др. Блок — понятие общее, в его состав может входить как небольшое, так и значительное количество деталей.
Элементы электрических схем. Реле.

Обозначения строят из комбинации букв и цифр.

Если полярность отсутствует, обе обкладки обозначаются узкими прямоугольниками. Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один.

B Аппаратура для преобразования неэлектрических величин в электрические без генераторов и источников питания , аналоговые и многозарядные преобразователи, датчики для указаний или измерений Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.

Так, без обозначения остались диммеры светорегуляторы и кнопочные выключатели. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Электролитические конденсаторы устанавливаются в фильтрах электропитания низкочастотных и импульсных устройств. Характерная особенность такой схемы — минимальная детализация.

Чертим гидравлическую схему [2] в САПР Компас3D

Нормативные документы

Однобуквенная символика элементов Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Названия и условные обозначения этих радиодеталей на схеме регламентируются ГОСТом 2.

Как обозначаются различные радиодетали на схемах Как ранее было сказано, для обозначения радиодеталей каждого типа существует определенный графический символ. Направления прохождения сигнала обозначаются стрелками.

На функциональной схеме указаны блоки и связи между ними Принципиальные.

На чертеже отображается неизменяющееся номинальное сопротивление.

E- Символ батареи, состоящей из нескольких элементов питания. Есть функции, которые выполняют только подвижные контакты.

Все они также имеют условное обозначение и наносятся на соответствующие контакты. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три: Функциональная, на ней представлены узловые элементы изображаются как прямоугольники , а также соединяющие их линии связи.

Применяемые покупные комплектующие или самостоятельно изготавливаемые ЭРЭ обязательно находят свое отражение на принципиальных и монтажных электрических схемах устройств, в чертежах и другой ТД, которые выполняются в соответствии с требованиями стандартов ЕСКД. Обозначения на чертежах и схемах элементов общего применения относятся к квалификационным, устанавливающим род тока и напряжения,.
как научиться читать схемы

Смотрите также: Быстро составить смету на электромонтажные работы

Буквенные обозначения из двух символов

Эти сведения впервые публикуются в таком объеме.

Буквенные обозначения элементов на схемах: основные и дополнительные В таблице выше приведены международные обозначения.

На чертеже отображается неизменяющееся номинальное сопротивление.

Это дубликат более раннего документа — ГОСТ 2. Как правило, сведения о применяемых ЭРЭ указываются в справочниках и спецификации — перечне этих элементов. При этом обозначения координат следует разделять в соответствии с п.

Образец примитивной, но понятной и читаемой монтажной схемы для электроразводки частного дома, который можно составить самостоятельно, пользуясь ограниченным набором условных обозначений Требования по всем видам схематической документации изложены в ГОСТ 2. Конечный вывод одной детали соединяется с начальным выводом другой. Есть принципиальные схемы устройств, есть — электросетей.


Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом Все они отображаются латинскими символами в виде одной или двух букв. B Аппаратура для преобразования неэлектрических величин в электрические без генераторов и источников питания , аналоговые и многозарядные преобразователи, датчики для указаний или измерений Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.

Этот радиоэлемент обозначается в виде треугольника анода , вершина которого направлена в сторону протекания тока. Сами компоненты, входящие в группу, представлены микрофонами, громкоговорителями, звукоснимателями, детекторами ионизирующих излучений, термоэлектрическими чувствительными элементами и т. Например, С41 — конденсатор С4, используемый как интегрирующий. Для них характерна одинаковая электропроводность коллектора и эмиттера.

Начальные выводы всех сопротивлений соединяются в одной точке, конечные — в другой. Пример построения конструктивного обозначения приведен на черт. Принципиальная схема детализирует устройство Монтажная. Но начнем немного издалека При координатном методе конструктивное обозначение составляют из нескольких частей, каждая из которых указывает одну координату части объекта и условной системе координат, принятой для данной конструкции.
Как читать Элекрические схемы

Зарубежные обозначения радиодеталей

Согласно им, УГО имеет форму прямоугольника. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Прямо в схеме можно расставить номиналы и длину цепей.

Если нужно отразить только силовые линии, достаточно начертить линейную схему, а для изображения всех видов цепей с приборами контроля и управления понадобится полная. Позиционные обозначения на электрических схемах Обозначения буквенно-цифровые на электрических схемах должны соответствовать ГОСТ 2. Переменные резисторы изображение переменных резисторов на схемах В их конструкцию входит подвижный контакт, которым изменяют величину сопротивления.

Стабилизирует приложенное к выводам напряжение обратной полярности. В первом случае работает то одна цепь, то другая. Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации.

Читайте дополнительно: Как соединить двухклавишный выключатель

Содержание статьи

Карты напряжений и сопротивлений Картой диаграммой напряжений называют чертеж, на котором рядом с отдельными деталями и их выводами указывают величины напряжений, характерных для нормальной работы прибора. Вариант принципиальной схемы для электроснабжения дома с обозначением розеток, выключателей, разъема подключения электроплиты, звонка и его кнопки, светильников, автоматических предохранителей Тип 3 — монтажная схема Монтажная схема — документ, которым удобно пользоваться при установке сетей. Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому.

Большое количество информации содержат буквенные обозначения элементов в электрических схемах, определяемые различными нормативными документами. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов.

Обозначение элемента позиционное обозначение. На схемах используется также дополнительная часть обозначения позиции ЭРЭ, указывающая функцию элемента, в виде буквы. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Пример принципиальной схемы фрезерного станка Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то — полной. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Это и будет полная принципиальная схема.
Как читать электрические схемы

Распиновка и маркировка советских радиодеталей

Здравствуйте посетители сайта 2 Схемы. Многие не понимают, как определить номинал советской радиодетали по коду, написанному на каком-либо радиоэлементе. А ведь многие устройства или приборы ещё тех времён успешно эксплуатируются до сих пор. Сейчас мы расскажем про определение номинала основных деталей производства СССР.

Резисторы

Начнём, конечно, с самой часто используемой детали – резистора. И начнём именно с советских резисторов. Почти на всех таких резисторах есть буквенная маркировка. Для начала изучим буквы, которые используются на данной детали:

  • Буква «Е», «R» – означает Омы
  • Буква «К» – означает Килоом
  • Буква «М» – означает Мегаом

И сама загвоздка заключается в расположении буквы между, перед или после цифры. Вообще ничего сложного нет. Если буква стоит между цифрами, например:

1К5 – это означает 1,5Килоома. Просто в Советском Союзе чтобы не возиться с запятой, вставили туда букву номинала. Если же написано 1R5 или 1Е5 – это значит что сопротивление 1,5 Ома или 1М5 – это 1,5 Мегаом. Если буква стоит перед цифрами, значит вместо буквы мы подставляем “0” и продолжаем строчку из цифр, которые стоят после буквы.

Например: К10 = 0,10 К, значит если в килооме 1000 Ом, то умножаем эту цифру (0,10) на 1000 и получаем 100 Ом. Или просто подставляем к цифрам нолик, при этом меняем в уме сопротивление на самое ближнее, меньшее этого.

И если буква стоит после цифр, значит ничего не меняется – так и вычисляем что написано на резисторе, например:

  • 100к = 100 килоом
  • 1М = 1 Мегаом
  • 100R или 100Е = 100 Ом

Можно определять номиналы вот по такой таблице:

Есть ещё и цветовая маркировка резисторов, самая основная, но при этом используют чаще всего онлайн калькуляторы или можно просто его скачать по ссылке.

Ещё на схемах где есть резисторы, на графических обозначениях резистора пишутся «палки». Эти «палки» обозначают мощность по такой таблице:

А мощность у резисторов определяется по размерам и надписям на них. На советских мощностью 1-3 Ватта писали мощность, а на современных уже не пишут. Но тут мощность определяют уже опытом или по справочникам.

Конденсаторы

Далее берём конденсаторы. В них немного другая маркировка. На современных конденсаторах идёт только цифровая маркировка, поэтому на все буквы кроме «p», «n» не обращаем внимания, все посторонние буквы обычно обозначают допуск, термостойкость и так далее. У них обычно кодовая маркировка состоит из 3 цифр. Первые три мы оставляем как есть, а третья показывает количество нулей, и эти нули мы выписываем, после чего емкость получается в пикофарадах.

Пример: 104 = 10 (выписываем 4 ноля, так как цифра после первых двух 4) 0000 Пикофарад = 100 Нанофарад или 0,1 микрофарад. 120 = 12 пикофаррад.

Но есть и с количеством менее 3 цифр (два или один). Значит емкость в указанных уже нам пикофарадах. Пример:

  • 3 = 3 пикофарада
  • 47 = 47 пикофарад

Вот фото:

Тут емкость 18 пикофарад.

Если есть буквы «n» или «p», значит емкость в пикофардах или нанофарадах, например:

  • Буква «n» – нанофарады
  • Буква «p» – пикофарады

На первом (большом) написано «2n7» – в этом случае как и на резисторе 2,7 нанофарад. На втором конденсаторе написано 58n, то есть емкость у него 58 нанофарад. Но если все-таки это не понимаете лучше купить мультиметр, например UT-61, у него есть функция измерения емкости. Там есть специальный разъём, куда вставляется конденсатор и под него нужно выбрать необходимый диапазон измерения (в пикофарадах, нанофарадах, микрофарадах). У данного мультиметра емкость измеряется до 20 микрофарад.

Транзисторы

Теперь советские транзисторы, так как их сейчас всё равно много, хоть не всех их продолжают делать. Маркировка у них обозначается цветными точками двух типов, такие:

И такие:

Есть ещё вот такие, с кодовой маркировкой:

Конечно можно не запоминать эти таблицы, а использовать программку-справочник, что в общем архиве по ссылке выше. Надеемся эти сведения об основных деталях отечественного производства вам очень пригодятся. Автор материала – Свят.

Основы проектирования цифрового радиоприемника (Radio 101)

В этой статье представлены основы проектирования цифрового радиоприемника. Благодаря множеству новых достижений в области преобразователей данных и радиотехники сложная конструкция приемника была значительно упрощена. В этой статье делается попытка объяснить, как рассчитать чувствительность и избирательность такого приемника. Это ни в коем случае не исчерпывающее изложение, а скорее всего лишь для начинающих по многим методам и расчетам, задействованным в таких конструкциях.

Многие достижения в дизайне и архитектуре радиостанций позволяют быстро вносить изменения в конструкцию радиоприемников. Эти изменения позволяют уменьшить размер, стоимость, сложность и улучшить производство за счет использования цифровых компонентов для замены ненадежных и неточных аналоговых компонентов. Для того, чтобы это произошло, потребовалось множество достижений в области проектирования и производства полупроводников, которые были реализованы за последние несколько лет. Некоторые из этих достижений включают улучшенные интегрированные смесители, малошумящий усилитель, улучшенные фильтры на ПАВ, более дешевые высокопроизводительные АЦП и программируемые цифровые тюнеры и фильтры.В этой статье кратко излагаются вопросы проектирования и взаимодействия этих устройств с полными радиосистемами.

Что такое радио?

Традиционно радио считалось «коробкой», которая подключается к антенне и всему, что за ней находится, однако многие конструкции систем разделены на две отдельные подсистемы. Радио и цифровой процессор. При такой сегментации целью радиостанции является преобразование с понижением частоты и фильтрация полезного сигнала, а затем оцифровка информации.Точно так же цель цифрового процессора — принимать оцифрованные данные и извлекать желаемую информацию.

Важно понимать, что цифровой приемник — это не то же самое, что цифровое радио (модуляция). Фактически, цифровой приемник отлично справится с приемом любого аналогового сигнала, такого как AM или FM. Цифровые приемники могут использоваться для приема любого типа модуляции, включая любые стандарты аналоговой или цифровой модуляции. Кроме того, поскольку ядром цифрового процессора является процессор цифровых сигналов (DSP), это позволяет управлять многими аспектами всего радиоприемника с помощью программного обеспечения.Таким образом, эти DSP можно перепрограммировать с помощью обновлений или новых функций в зависимости от сегментации клиентов, и все это с использованием одного и того же оборудования. Однако это полное обсуждение само по себе, а не в центре внимания данной статьи.

Основное внимание в этой статье уделяется радио и тому, как прогнозировать / проектировать производительность. Будут обсуждены следующие темы:

  1. Доступная мощность шума
  2. Рисунок каскадного шума
  3. Коэффициент шума и АЦП
  4. Коэффициент преобразования и чувствительность
  5. Паразитные сигналы и дизеринг АЦП
  6. Точка пересечения третьего порядка
  7. Джиттер тактового сигнала АЦП
  8. Фазовый шум
  9. IP3 в разделе РФ

Single-Carrier vs.Multi-Carrier

Обсуждаются два основных типа радиоприемников. Первый называется приемником с одной несущей, а второй — приемником с несколькими несущими. Их название подразумевает очевидное, однако их функция может быть не полностью ясна. Приемник с одной несущей — это традиционный радиоприемник, обеспечивающий избирательность в аналоговых фильтрах каскадов ПЧ. Приемник с несколькими несущими обрабатывает все сигналы в пределах полосы с помощью одной аналоговой полосы RF / if и получает избирательность в цифровых фильтрах, которые следуют за аналого-цифровым преобразователем.Преимущество такого приемника заключается в том, что в приложениях с несколькими приемниками, настроенными на разные частоты в одном и том же диапазоне, можно добиться меньшей конструкции системы и снижения стоимости за счет устранения избыточных цепей. Типичное применение — базовая станция сотовой / беспроводной локальной сети. Другим приложением могут быть приемники наблюдения, которые обычно используют сканеры для контроля нескольких частот. Это приложение позволяет одновременно контролировать множество частот без необходимости последовательного сканирования.

Типовой однополосный приемник

Типовой приемник с несколькими несущими

Преимущества внедрения цифрового радиоприемника

Перед тем, как подробно обсудить разработку цифрового радиоприемника, необходимо обсудить некоторые технические преимущества. К ним относятся передискретизация, усиление обработки, недостаточная выборка, частотное планирование / размещение побочных эффектов. Многие из них обеспечивают технические преимущества, недостижимые иным способом при использовании традиционной конструкции радиоприемника.

Передискретизация и технологическое усиление

Критерий Найквиста компактно определяет частоту дискретизации, необходимую для любого данного сигнала. Часто частота Найквиста цитируется как частота дискретизации, которая в два раза больше, чем у самого высокочастотного компонента. Это означает, что для приложения выборки ПЧ на частоте 70 МГц потребуется частота дискретизации 140 MSPS. Если наш сигнал занимает всего 5 МГц около 70 МГц, то выборка со скоростью 140 MSPS будет потрачена впустую. Вместо этого Найквист требует, чтобы сигнал был дискретизирован в два раза больше полосы пропускания сигнала.Следовательно, если полоса пропускания нашего сигнала составляет 5 МГц, то выборки на частоте 10 МГц вполне достаточно. Все, что выходит за рамки этого, называется передискретизацией. Передискретизация — очень важная функция, поскольку она позволяет эффективно увеличить принимаемое SNR в цифровой области.

В отличие от избыточной выборки — это недостаточная выборка. Недостаточная выборка — это процесс выборки с частотой, намного меньшей, чем половина фактической частоты сигнала (см. Раздел ниже о недостаточной выборке). Следовательно, возможна передискретизация и недостаточная выборка одновременно, так как одно определяется относительно ширины полосы, а другое — интересующей частоты.

В любом процессе оцифровки, чем быстрее сигнал дискретизируется, тем ниже минимальный уровень шума, поскольку шум распространяется по большему количеству частот. Общий интегрированный шум остается постоянным, но теперь он распределен по большему количеству частот, что дает преимущества, если за АЦП следует цифровой фильтр. Минимальный уровень шума соответствует уравнению:

Это уравнение представляет уровень шума квантования внутри преобразователя и показывает взаимосвязь между шумом и частотой дискретизации FS.Следовательно, каждый раз, когда частота дискретизации удваивается, эффективный минимальный уровень шума улучшается на 3 дБ!

Цифровая фильтрация удаляет все нежелательные шумы и паразитные сигналы, оставляя только полезный сигнал, как показано на рисунках ниже.

Типичный спектр АЦП до цифровой фильтрации

Типичный спектр АЦП после цифровой фильтрации

SNR АЦП может быть значительно улучшено, как показано на диаграмме выше. Фактически, отношение сигнал / шум можно улучшить, используя следующее уравнение:

Как показано, чем больше соотношение между частотой дискретизации и шириной полосы сигнала, тем выше выигрыш от процесса.Фактически достижимо усиление до 30 дБ.

Недодискретизация и преобразование частоты

Как указывалось ранее, под дискретизацией понимается процесс дискретизации с частотой, намного меньшей, чем половина фактической частоты сигнала. Например, сигнал 70 МГц, дискретизированный со скоростью 13 MSPS, является примером недостаточной дискретизации.

Недостаточная выборка важна, потому что она может выполнять функцию, очень похожую на смешивание. Когда сигнал недостаточно дискретизирован, частоты накладываются на основную полосу или первую зону Найквиста, как если бы они изначально находились в основной полосе частот.Например, наш вышеупомянутый сигнал 70 МГц при выборке с частотой 13 MSPS будет отображаться на частоте 5 МГц. Математически это можно описать как:

Это уравнение дает результирующую частоту в первой и второй зоне Найквиста. Поскольку АЦП присваивает всю информацию первой зоне Найквиста, результаты, полученные с помощью этого уравнения, должны быть проверены, чтобы увидеть, не превышают ли они f SampleRate /2. Если да, то частота должна быть возвращена в первую зону Найквиста путем вычитания результата из f SampleRate .

В таблице ниже показано, как сигналы могут быть наложены на полосу модулирующих частот и их спектральная ориентация. Хотя процесс выборки (наложения) отличается от смешивания (умножения), результаты очень похожи, но периодичны в зависимости от частоты дискретизации. Другое явление — это обращение спектра. Как и в миксерах, некоторые продукты меняют местами в процессе выборки, например, реверсирование верхней и нижней боковой полосы. В таблице ниже также показано, какие случаи вызывают инверсию спектра.

Входной сигнал Диапазон частот Сдвиг частоты Spectral Sense

1 st Найквист

Зона

DC — FS / 2 Вход Нормальный

2 nd Найквист

Зона

ФС / 2 — ФС FS-вход перевернутая

3 rd Найквист

Зона

ФС — 3 ФС / 2 Ввод — FS Нормальный

4 Найквист

Зона

3FS / 2 — 2FS 2FS — ввод перевернутая

5 Найквист

Зона

2FS — 5FS / 2 Вход — 2FS Нормальный

Планирование частот и размещение ответвлений

Одна из самых больших проблем при проектировании радиоархитектуры — это размещение ПЧ частот.Проблема усугубляется тем, что усилители возбуждения и АЦП имеют тенденцию генерировать нежелательные гармоники, которые проявляются в цифровом спектре преобразования данных в виде ложных сигналов. Независимо от того, является ли приложение широкополосным или нет, тщательный выбор частот дискретизации и частот ПЧ может разместить эти паразиты в местах, которые сделают их безвредными при использовании с цифровыми тюнерами / фильтрами, такими как AD6620, которые могут выбрать интересующий сигнал и отклонить все другие. Все это хорошо, потому что при тщательном выборе диапазона входных частот и частоты дискретизации, усилитель возбуждения и гармоники АЦП фактически могут быть выведены за пределы полосы частот.Передискретизация только упрощает дело, предоставляя больше спектра для безвредных гармоник.

Например, если определено, что вторая и третья гармоники являются особенно высокими, путем тщательного выбора места падения аналогового сигнала относительно частоты дискретизации, эти вторая и третья гармоники могут быть размещены вне полосы. Для случая скорости кодирования, равной 40,96 MSPS, и ширины полосы сигнала 5,12 МГц, размещение ПЧ между 5,12 и 10,24 МГц помещает вторую и третью гармоники вне полосы, как показано в таблице ниже.Хотя этот пример очень прост, его можно адаптировать для множества различных приложений.

Как видно, вторая и третья гармоники выходят за пределы интересующей полосы и не создают помех для основных составляющих. Следует отметить, что секунды и трети действительно перекрываются друг с другом, а псевдоним третей вокруг FS / 2. В табличной форме это выглядит, как показано ниже.

Скорость кодирования: 40.96 MSPS
Фундаментальный 5,12 — 10,24 МГц
Вторая гармоника: 10,24 — 20,48 МГц
Третья гармоника: 15,36 — 10,24 МГц

Другой пример частотного планирования можно найти в недостаточной выборке.Если диапазон аналогового входного сигнала составляет от DC до FS / 2, тогда комбинация усилителя и фильтра должна соответствовать требуемым характеристикам. Однако, если сигнал помещается в третью зону Найквиста (от FS до 3FS / 2), от усилителя больше не требуется соответствие гармоническим характеристикам, требуемым спецификациями системы, поскольку все гармоники будут выходить за пределы полосы пропускания фильтра. Например, диапазон частотного фильтра может быть от FS до 3FS / 2. Вторая гармоника будет охватывать от 2FS до 3FS, что выходит далеко за пределы диапазона фильтров полосы пропускания.Затем нагрузка перекладывается на конструкцию фильтра при условии, что АЦП соответствует основным спецификациям на интересующей частоте. Во многих приложениях это выгодный компромисс, поскольку многие сложные фильтры могут быть легко реализованы с использованием методов ПАВ и LCR на этих относительно высоких частотах ПЧ. Хотя этот метод снижает гармонические характеристики усилителя возбуждения, нельзя жертвовать характеристиками интермодуляции.

Использование этой техники для выхода гармоник за пределы интересующей зоны Найквиста позволяет легко фильтровать их, как показано выше.Однако, если АЦП по-прежнему генерирует собственные гармоники, можно использовать ранее описанный метод для тщательного выбора частоты дискретизации и аналоговой частоты, чтобы гармоники попадали в неиспользуемые участки полосы пропускания и подвергались цифровой фильтрации.

Ожидаемые характеристики приемника

Имея в виду эти мысли, как можно определить производительность радио и какие компромиссы можно сделать. Как показано ниже, можно использовать многие методы традиционного проектирования радио. На протяжении всего обсуждения, приведенного ниже, существует некоторая разница между многоканальным и одноканальным радио.На них будет указано. Имейте в виду, что это обсуждение не завершено, и многие области остались незатронутыми. Дополнительную информацию по этому вопросу можно найти в одной из ссылок в конце этой статьи. Кроме того, это обсуждение касается только данных, доставленных в DSP. Многие приемники используют собственные схемы для дальнейшего повышения производительности за счет дополнительного подавления шума и устранения гетеродина.

Для дальнейшего обсуждения типовая конструкция приемника показана выше.Рассмотренное в этом разделе обсуждение начинается с антенны и заканчивается цифровым тюнером / фильтром в конце. За этой точкой находится цифровой процессор, который выходит за рамки данного обсуждения.

Анализ начинается с нескольких предположений. Во-первых, предполагается, что приемник ограничен по шуму. Это значит, что внутри полосы отсутствуют шпоры, которые в противном случае ограничили бы производительность. Разумно предположить, что выбор LO и IF может быть таким, что это правда. Кроме того, позже будет показано, что паразиты, генерируемые внутри АЦП, обычно не являются проблемой, поскольку их часто можно устранить с помощью дизеринга или разумного использования передискретизации и размещения сигнала.В некоторых случаях это может быть нереалистичным предположением, но они предоставляют отправную точку, с помощью которой можно определить пределы производительности.

Второе предположение состоит в том, что полоса пропускания входного каскада приемника — это наша полоса Найквиста. Хотя наша фактическая выделенная полоса пропускания может составлять всего 5 МГц, использование полосы Найквиста упростит вычисления на этом пути. Следовательно, частота дискретизации 65 MSPS даст полосу Найквиста 32,5 МГц.

Доступная мощность шума

Чтобы начать анализ, необходимо учесть шум на порте антенны.Поскольку правильно подобранная антенна, очевидно, является резистивной, для определения напряжения шума на согласованных входных клеммах можно использовать следующее уравнение.

Доступная мощность от источника, в данном случае антенны, составляет:

Что упрощается, если предыдущее уравнение подставить в:

Таким образом, в действительности доступная мощность шума от источника в этом случае не зависит от импеданса для ненулевых и конечных значений сопротивления.

Это важно, потому что это точка отсчета, с которой будет сравниваться наш приемник. Когда речь идет о коэффициенте шума сцены, часто говорят, что она показывает уровень шума на «x» дБ выше «kT». Это источник этого выражения.

При прохождении каждого каскада через приемник этот шум уменьшается за счет коэффициента шума каскада, как описано ниже. Наконец, когда канал настраивается и фильтруется, большая часть шума удаляется, остается только то, что находится внутри интересующего канала.

Рисунок каскадного шума

Коэффициент шума — это показатель качества, используемый для описания того, сколько шума добавляется к сигналу в цепи приема радиостанции. Обычно он указывается в дБ, хотя при вычислении коэффициента шума используется числовое отношение (не логарифмическое). Не логарифмический коэффициент называется шумовым фактором и обычно обозначается как F , где он определяется, как показано ниже.

После того, как каждому каскаду в радиостанции назначен коэффициент шума, его можно использовать для определения их каскадных характеристик.Общий коэффициент шума, относящийся к входному порту, можно вычислить следующим образом.

Вышеупомянутые F — это коэффициенты шума для каждого из последовательных каскадов, а G — коэффициенты усиления каскадов. На данный момент ни коэффициент шума, ни коэффициенты усиления не представлены в логарифмической форме. Когда применяется это уравнение, все составляющие шума отражаются на порте антенны. Таким образом, имеющийся шум из предыдущего раздела может быть снижен непосредственно с помощью коэффициента шума.

Например, если доступный шум составляет -100 дБмВт, вычисленный коэффициент шума составляет 10 дБ, а коэффициент преобразования равен 20 дБ, то общий эквивалентный шум на выходе составляет -70 дБмВт.

При применении этих уравнений следует учитывать несколько моментов. Во-первых, пассивные компоненты предполагают, что коэффициент шума равен их потерям. Во-вторых, пассивные компоненты в серии можно суммировать до применения уравнения. Например, если два фильтра нижних частот включены последовательно, каждый с вносимыми потерями 3 дБ, они могут быть объединены, и потери одного элемента предположительно равны 6 дБ.Наконец, смесители часто не имеют коэффициента шума, установленного для них производителем. Если не указано иное, можно использовать вносимые потери, однако, если коэффициент шума поставляется вместе с устройством, его следует использовать.

Коэффициенты шума и АЦП

Хотя коэффициент шума можно назначить АЦП, часто проще работать с АЦП по-другому. АЦП — это устройства измерения напряжения, тогда как коэффициент шума на самом деле является проблемой мощности шума. Поэтому часто бывает проще обработать аналоговые части АЦП с точки зрения коэффициента шума, а затем преобразовать в напряжение на АЦП.Затем преобразуйте шум АЦП во входное опорное напряжение. Затем шум аналогового сигнала и АЦП можно суммировать на входе АЦП, чтобы найти общий эффективный шум.

Для этого приложения был выбран 12-битный аналого-цифровой преобразователь AD9042 или AD6640. Эти продукты могут выполнять выборку со скоростью до 65 MSPS, что подходит для оцифровки AMPS всего диапазона и поддерживает опорную тактовую частоту GSM 5x. Этого более чем достаточно для приложений AMPS, GSM и CDMA. Согласно таблице, типичный SNR составляет 68 дБ.Следовательно, следующим шагом является расчет снижения шума в приемнике из-за шумов АЦП. Опять же, самый простой метод — это преобразовать как отношение сигнал / шум, так и шум приемника в среднеквадратичное значение. вольт, а затем суммируйте их для получения общего среднеквадратичного значения. шум. Если АЦП имеет входной диапазон от пика до пика 2 В:

Это напряжение отражает все шумы АЦП, тепловые и квантовые. Полный диапазон АЦП составляет 0,707 В (действующее значение).

После вычисления эквивалентного входного шума АЦП следующее вычисление — это шум, генерируемый самим приемником.Поскольку мы предполагаем, что полоса пропускания приемника равна полосе пропускания Найквиста, частота дискретизации 65 MSPS дает полосу пропускания 32,5 МГц. Исходя из имеющихся уравнений мощности шума, мощность шума от аналогового входного каскада составляет 134,55E15 Вт или -98,7 дБмВт. Это шум, присутствующий в антенне, который должен быть увеличен коэффициентом преобразования и уменьшен коэффициентом шума. Если усиление преобразования составляет 25 дБ, а коэффициент шума составляет 5 дБ, то шум, представленный входной цепи АЦП, составляет:

на 50 Ом (134.9e-12 Вт). Поскольку входной импеданс АЦП составляет около 1000 Ом, мы должны либо согласовать с ним стандартное сопротивление ПЧ 50 Ом, либо уменьшить сопротивление АЦП. Разумный компромисс — уменьшить диапазон до 200 Ом с помощью параллельного резистора, а затем использовать трансформатор 1: 4 для согласования с остальными. Трансформатор также служит для преобразования несимметричного входа в сбалансированный сигнал, необходимого для АЦП, а также для обеспечения некоторого усиления по напряжению. Поскольку имеется скачок импеданса 1: 4, в процессе также происходит усиление по напряжению, равное 2.

Из этого уравнения, наше напряжение, возведенное в квадрат на 50 Ом, составляет 6,745e-9 или на 200 Ом, 26,98e-9.

Теперь, когда мы знаем шум от АЦП и РЧ-интерфейса, общий шум в системе можно вычислить как квадратный корень из суммы квадратов. Таким образом, полное напряжение составляет 325,9 мкВ. Теперь это общий шум, присутствующий в АЦП из-за шума приемника и шума АЦП, включая шум квантования.

Коэффициент преобразования и чувствительность

Как это шумовое напряжение влияет на общую производительность АЦП? Предположим, что в полосе пропускания приемника присутствует только один радиочастотный сигнал.Тогда отношение сигнал / шум будет:

.

Поскольку это приложение с передискретизацией и фактическая ширина полосы сигнала намного меньше, чем частота дискретизации, шум будет значительно уменьшен после цифровой фильтрации. Поскольку полоса пропускания входного каскада такая же, как у нашего АЦП, и шум АЦП, и шум ВЧ / ПЧ будут улучшаться с той же скоростью. Поскольку многие стандарты связи поддерживают узкую полосу пропускания канала, мы примем канал 30 кГц. Таким образом, мы получаем 33,4 дБ от технологического усиления.Следовательно, наше исходное SNR 66,7 дБ теперь составляет 100,1 дБ. Помните, что отношение сигнал / шум увеличилось из-за фильтрации лишнего шума, что является источником усиления технологического процесса.

Рисунок 13 Восемь равных силовых карданов

Если это радиомодуль с несколькими несущими, динамический диапазон АЦП должен использоваться совместно с другими РЧ несущими. Например, если имеется восемь несущих одинаковой мощности, каждый сигнал не должен превышать 1/8 общего диапазона, если рассматриваются сигналы от пика к пику. Однако, поскольку обычно сигналы в приемнике не совпадают по фазе (поскольку пульты дистанционного управления не синхронизированы по фазе), сигналы будут синхронизироваться редко, если вообще когда-либо.Следовательно, требуется намного меньше требуемых 18 дБ. Поскольку на самом деле не более 2 сигналов могут быть синхронизированы одновременно, и поскольку они являются модулированными сигналами, только 3 дБ будут зарезервированы для целей запаса. В том случае, если сигналы действительно выравниваются и приводят к ограничению преобразователя, это произойдет всего за небольшую долю секунды, прежде чем условие перегрузки будет устранено. В случае радиосвязи с одним несущим не требуется места для головы.

В зависимости от схемы модуляции для адекватной демодуляции требуется минимальное отношение C / N.Если схема цифровая, то следует учитывать коэффициент ошибок по битам (BER), как показано ниже. Предполагая, что требуется минимальное отношение C / N, равное 10 дБ, наш уровень входного сигнала не может быть настолько малым, чтобы оставшееся отношение сигнал / шум было меньше 10 дБ. Таким образом, наш уровень сигнала может упасть на 90,1 дБ от текущего уровня. Поскольку полный диапазон АЦП составляет +4 дБм (200 Ом), уровень сигнала на входе АЦП составляет –86,1 дБмВт. Если бы в тракте ВЧ / ПЧ было усиление 25 дБ, то чувствительность приемника на антенне была бы –86,1 минус 25 дБ или –111.1 дБм. Если требуется более высокая чувствительность, то на этапах ВЧ / ПЧ можно использовать большее усиление. Однако коэффициент шума не зависит от усиления, и увеличение коэффициента усиления также может отрицательно сказаться на шумовых характеристиках дополнительных каскадов усиления.

Рис.14.Частота ошибок по битам в зависимости от отношения сигнал / шум

АЦП, паразитные сигналы и дизеринг

Пример с ограничением шума недостаточно полно демонстрирует истинные ограничения приемника. Другие ограничения, такие как SFDR, более жесткие, чем SNR и шум.Предположим, что аналого-цифровой преобразователь имеет спецификацию SFDR -80 дБFS или -76 дБм (полная шкала = + 4 дБм). Также предположим, что допустимое отношение несущей к источнику помех, C / I (отличное от C / N) составляет 18 дБ. Это означает, что минимальный уровень сигнала составляет -62 дБ полной шкалы (-80 плюс 18) или -58 дБм. На антенне это -83 дБмВт. Следовательно, как можно видеть, SFDR (однотональный или многотональный) ограничит производительность приемника задолго до того, как будет достигнуто фактическое ограничение шума.

Однако метод, известный как дизеринг, может значительно улучшить SFDR.Как показано в примечании к применению AN410 компании Analog Devices, добавление внеполосного шума может значительно улучшить SFDR до минимального уровня шума. Хотя величина дизеринга зависит от преобразователя, этот метод применим ко всем АЦП, пока статический DNL является ограничением производительности, а не проблемы переменного тока, такие как скорость нарастания. В AD9042, описанном в примечании к применению, добавленный шум составляет всего -32,5 дБмВт или 21 код среднеквадратичного значения. Как показано ниже, графики до и после дизеринга дают представление о потенциале улучшения.Проще говоря, дизеринг работает, беря когерентные паразитные сигналы, генерируемые АЦП, и рандомизирует их. Поскольку энергия паразитов должна быть сохранена, дизеринг просто заставляет их проявляться как дополнительный шум в нижней части преобразователя. Это можно наблюдать на графиках до и после дизеринга как небольшое увеличение среднего минимального уровня шума преобразователя. Таким образом, компромисс, достигнутый за счет использования внеполосного дизеринга, заключается в том, что буквально все генерируемые внутри паразитные сигналы могут быть удалены, однако есть небольшой удар в общем SNR преобразователя, который на практике составляет менее 1 дБ. потери чувствительности по сравнению с примером с ограничением шума и намного лучше, чем пример с ограничением SFDR, показанный ранее.

АЦП без дизеринга

АЦП с дизерингом

Два важных момента о дизеринге перед закрытием темы. Во-первых, в приемнике с несколькими несущими нельзя ожидать, что ни один из каналов будет коррелирован. Если это так, то часто множественные сигналы будут служить самосмешиванием для канала приемника. Хотя иногда это так, иногда потребуется добавить дополнительный дизеринг для заполнения при слабой силе сигнала.

Во-вторых, шума, вносимого одним только аналоговым входным каскадом, недостаточно для дизеринга АЦП.В приведенном выше примере было добавлено 32,5 дБм дизеринга, чтобы обеспечить оптимальное улучшение SFDR. Для сравнения, аналоговый входной каскад обеспечивает мощность шума только –68 дБм, что далеко от того, что необходимо для обеспечения оптимальной производительности.

Точка пересечения третьего порядка

Помимо преобразователя SFDR, РЧ-часть способствует ложным характеристикам приемника. Эти шпоры не подвержены влиянию таких методов, как дизеринг, и их необходимо устранять, чтобы предотвратить нарушение работы приемника.Перехват третьего порядка является важной мерой, поскольку уровни сигнала в цепочке приема увеличиваются за счет конструкции приемника.

Чтобы понять, какой уровень производительности требуется от широкополосных радиочастотных компонентов, мы рассмотрим спецификацию GSM, возможно, самого требовательного из приложений приемника.

Приемник GSM должен уметь восстанавливать сигнал с уровнем мощности от -13 до -104 дБм. Предположим также, что полная шкала АЦП составляет 0 дБмВт, а потери через фильтры приемника и смесители составляют 12 дБ.Кроме того, поскольку несколько сигналов должны обрабатываться одновременно, не следует использовать АРУ. Это снизит чувствительность к радиочастоте и приведет к пропаданию более слабого сигнала. Используя эту информацию, рассчитывается усиление RF / IF, равное 25 дБ (0 = -13-6-6 + x).

Рекомендации по перехвату входных данных 3-го порядка

Требуемое усиление 25 дБ распределяется, как показано. Хотя полная система будет иметь дополнительные компоненты, это послужит нашему обсуждению. Исходя из этого, при полномасштабном сигнале GSM на уровне -13 дБм, на входе АЦП будет 0 дБм.Однако при минимальном сигнале GSM -104 дБм, сигнал на АЦП будет -91 дБм. С этого момента приведенное выше обсуждение можно использовать для определения пригодности АЦП с точки зрения шумовых характеристик и характеристик паразитных помех.

Теперь, с этими сигналами и необходимыми коэффициентами усиления системы, теперь можно проверить характеристики усилителя и смесителя при возбуждении полномасштабным сигналом -13 дБмВт. Решение для продуктов 3-го порядка по натурному сигналу:

Предполагая, что общие паразитные характеристики должны быть больше 100 дБ, решение этого уравнения для входного усилителя показывает, что входной усилитель третьего порядка с IIP> +37 дБмВт.В смесителе уровень сигнала был увеличен на 10 дБ, а новый уровень сигнала составляет -3 дБм. Однако, поскольку микшеры указаны на их выходе, этот уровень снижается как минимум на 6 дБ до –9 дБм. Следовательно, для смесителя OIP> +41 дБм. Так как на их выходе указаны смесители. На последнем этапе усиления сигнал будет ослаблен до -9 дБмВт (как на выходе смесителя). Для усилителя ПЧ IIP> +41 дБмВт. Если эти характеристики соблюдены, то производительность должна быть равна

.

Джиттер тактовой частоты АЦП

Одной из динамических характеристик, которая жизненно важна для хороших характеристик радиосвязи, является джиттер тактовой частоты АЦП.Несмотря на то, что низкий джиттер важен для превосходных характеристик основной полосы частот, его влияние усиливается при дискретизации сигналов с более высокой частотой (более высокая скорость нарастания), например, в приложениях с недостаточной дискретизацией. Общий эффект плохой спецификации джиттера — уменьшение отношения сигнал / шум при увеличении входных частот. Термины апертурный джиттер и апертурная неопределенность часто меняются местами в тексте. В этом приложении они имеют то же значение. Неопределенность апертуры — это изменение от образца к образцу в процессе кодирования.Неопределенность апертуры имеет три остаточных эффекта: первый — это увеличение системного шума, второй — неопределенность фактической фазы самого дискретизированного сигнала и третий — межсимвольные помехи. При отборе ПЧ для достижения требуемых шумовых характеристик требуется погрешность апертуры менее 1 пс. С точки зрения фазовой точности и межсимвольной интерференции влияние апертурной неопределенности невелико. В худшем случае 1 пс среднеквадратичное значение. при ПЧ 250 МГц погрешность фазы равна 0.09 градусов среднеквадратичное. Это вполне приемлемо даже для требовательных спецификаций, таких как GSM. Поэтому основное внимание в этом анализе будет уделено общему вкладу шума из-за неопределенности диафрагмы.

В синусоиде максимальная скорость нарастания приходится на переход через нуль. В этот момент скорость нарастания определяется первой производной синусоидальной функции, вычисленной при t = 0:

.

оценивается при t = 0, функция косинуса оценивается как 1, а уравнение упрощается до:

Единицами скорости нарастания являются вольты в секунду, они показывают, насколько быстро сигнал проходит через нулевой переход входного сигнала.В системе дискретизации опорные часы используются для дискретизации входного сигнала. Если тактовые импульсы выборки имеют апертурную погрешность, генерируется напряжение ошибки. Это напряжение ошибки может быть определено умножением входной скорости нарастания на «джиттер».

Анализируя единицы, можно увидеть, что это дает единицу вольт. Обычно неопределенность апертуры выражается в среднеквадратичных секундах. и, следовательно, напряжение ошибки будет в среднеквадратичном вольтах. Дополнительный анализ этого уравнения показывает, что с увеличением частоты аналогового входа среднеквадратичное значение.напряжение ошибки также увеличивается прямо пропорционально неопределенности апертуры.

В преобразователях ПЧ чистота тактовой частоты имеет огромное значение. Как и в процессе микширования, входной сигнал умножается на гетеродин или, в данном случае, тактовую частоту дискретизации. Поскольку умножение во времени является сверткой в ​​частотной области, спектр тактовой частоты дискретизации свертывается со спектром входного сигнала. Поскольку апертурная неопределенность представляет собой широкополосный шум на тактовом сигнале, он также проявляется как широкополосный шум в дискретизированном спектре.А поскольку АЦП — это система дискретизации, спектр является периодическим и повторяется в зависимости от частоты дискретизации. Таким образом, этот широкополосный шум снижает минимальный уровень шума АЦП. Теоретическое соотношение сигнал / шум для АЦП, ограниченное неопределенностью апертуры, определяется следующим уравнением.

Если это уравнение оценивается для аналогового входа с частотой 201 МГц и 0,7 пс (среднеквадратичное значение). «Джиттер», теоретическое SNR ограничено 61 дБ. Следует отметить, что это то же самое требование, которое требовалось бы, если бы использовалась другая ступень смесителя.Следовательно, системы, которые требуют очень высокого динамического диапазона и очень высоких аналоговых входных частот, также требуют источника кодирования с очень низким «джиттером». При использовании стандартных модулей тактовых генераторов TTL / CMOS, 0,7 пс среднеквадратичное значение. был проверен как для АЦП, так и для генератора. Лучших показателей можно достичь с помощью модулей с низким уровнем шума.

При рассмотрении общей производительности системы можно использовать более обобщенное уравнение. Это уравнение основано на предыдущем уравнении, но включает эффекты теплового шума и дифференциальной нелинейности.

Хотя это простое уравнение, оно дает хорошее представление о шумовых характеристиках, которые можно ожидать от преобразователя данных.

Фазовый шум

Хотя фазовый шум синтезатора похож на джиттер на тактовой частоте кодирования, он немного по-другому влияет на приемник, но, в конце концов, эффекты очень похожи. Основное различие между джиттером и фазовым шумом состоит в том, что джиттер — это широкополосная проблема с однородной плотностью вокруг тактовой частоты дискретизации, а фазовый шум — это неравномерное распределение вокруг гетеродина, которое обычно становится лучше по мере удаления от тона.Как и в случае с джиттером, чем меньше фазового шума, тем лучше.

Поскольку гетеродин смешивается с входящим сигналом, шум гетеродина будет влиять на полезный сигнал. Процесс смесителя в частотной области — это свертка (процесс смесителя во временной области — это умножение). В результате смешения фазовый шум от гетеродина заставляет энергию из соседних (и активных) каналов интегрировать в желаемый канал как увеличенный минимальный уровень шума. Это называется взаимным перемешиванием. Чтобы определить количество шума в неиспользуемом канале, когда альтернативный канал занят сигналом полной мощности, предлагается следующий анализ.

Опять же, поскольку GSM — сложная спецификация, это будет примером. В этом случае верно следующее уравнение.

, где шум — это шум в желаемом канале, вызванный фазовым шумом, x (f) — фазовый шум, выраженный в формате, отличном от логарифма, а p (f) — это функция спектральной плотности функции GMSK. В этом примере предположим, что мощность сигнала GSM составляет -13 дБмВт. Кроме того, предположим, что гетеродин имеет постоянный фазовый шум по частоте (чаще всего фазовый шум уменьшается со смещением несущей).При этих предположениях, когда это уравнение интегрируется по ширине полосы канала, выпадает простое уравнение. Поскольку x (f) предполагалось постоянным (PN — фазовый шум), а интегрированная мощность полномасштабного канала GSM составляет -13 дБмВт, уравнение упрощается до:

Так как цель состоит в том, чтобы требовать, чтобы фазовый шум был ниже теплового шума. Предполагая, что шум на смесителе такой же, как на антенне, можно использовать -121 дБмВт (шум в 200 кГц на антенне — P a = kTB ).Таким образом, фазовый шум гетеродина должен быть ниже -108 дБмВт при смещении 200 кГц.

использованная литература

Цифровая обработка ПЧ, Клей Олмстед и Майк Петровски, TBD, сентябрь 1994 г., стр. 30 — 40.

Методы недискретизации упрощают цифровое радио, Ричард Грошонг и Стивен Рускак, ​​Electronic Design, 23 мая 1991 г., стр. 67 — 78.

Оптимизация АЦП для расширенной обработки сигналов, Том Гратцек и Фрэнк Мёрден, Микроволны и ВЧ перепечатка.

Использование преобразователей с широким динамическим диапазоном для широкополосных радиоприемников, Брэд Брэннон, RF Design, май 1995 г., стр. 50 — 65.

Exact FM Detection of Complex Time Series, Фред Харрис, факультет электротехники и вычислительной техники, Государственный университет Сан-Диего, Сан-Диего, Калифорния

.

Введение в радиочастотный дизайн, W.H. Хейворд, Прентис-Холл, 1982.

Solid State Radio Engineering, Krauss, Bostian and Raab, John Wiley & Sons, 1980.

Радио и цифровое радио | Как это работает

Бесплатная музыка, новости и чат, где бы вы ни находились идти! Пока не появился Интернет, ничто не могло сравниться с охватом радио — даже телевидение. Радио — это коробка, заполненная электронными компонентами, которая улавливает радиоволны, плывущие по воздуху, немного напоминающие перчатку бейсбольного ловца, и преобразовывает их обратно в звуки, которые слышат ваши уши. Радио было впервые разработано в конце 19 века и дошло до пик его популярности спустя несколько десятилетий.Хотя радиовещание не так популярно, как раньше, основная идея беспроводная связь остается чрезвычайно важной: за последние несколько лет радио стало сердцем новых технологий, таких как беспроводная Интернет, сотовые телефоны (мобильные телефоны), и чипы RFID (радиочастотная идентификация). Между тем, само радио недавно обрело новую жизнь с появлением поступление более качественных цифровых радиоприемников комплектов.

На фото: антенна для улавливания волн, немного электроники, чтобы снова превратить их в звуки, и громкоговоритель, чтобы вы слышать их — это почти все, что есть в таком простом радиоприемнике.Что внутри кейса? Проверить фото в коробке внизу!

Что такое радио?

Вы можете подумать, что «радио» — это гаджет, который вы слушаете, но это также означает кое-что еще. Радио означает посылку энергии волнами. Другими словами, это способ передачи электрической энергии от из одного места в другое без использования какого-либо прямого проводного соединения. Вот почему его часто называют беспроводной . Оборудование, которое излучает радиоволны, известно как передатчик ; в радиоволна, посланная передатчиком, проносится по воздуху — может быть, с одной стороны мир к другому — и завершает свое путешествие, когда достигает второй единицы оборудования, называемой приемником .

Когда вы выдвигаете антенну на радиоприемнике, она улавливает часть электромагнитной энергии. проходя мимо. Настройте радио на станцию ​​и электронную схему внутри радио выбирает только ту программу из всех, что вещание.

Иллюстрация: Как радиоволны распространяются от передатчика к приемнику. 1) Электроны устремляются вверх и вниз по передатчику, испуская радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света.3) Когда радиоволны попадают в приемник, они заставляют электроны внутри него вибрировать, воссоздавая исходный сигнал. Этот процесс может происходить между одним мощным передатчиком и множеством приемников, поэтому тысячи или миллионы людей могут принимать один и тот же радиосигнал одновременно.

Как это происходит? Электромагнитная энергия, которая является смесь электричества и магнетизма, проходит мимо вас в волны как те, что на поверхности океана. Это называется радиоволнами.Нравится океанские волны, радиоволны имеют определенную скорость, длину и частоту. Скорость — это просто скорость распространения волны между двумя местами. В длина волны — это расстояние между одним гребнем (пик волны) и следующий, а частота — это количество волн которые прибывают каждый второй. Частота измеряется единицей под названием герц , так что если семь волны прибывают через секунду, мы называем это семью герцами (7 Гц). Если ты когда-нибудь смотрели океанские волны, катящиеся к пляжу, вы знаете, что они путешествуют с скорость, может быть, один метр (три фута) в секунду или около того.Длина волны океана волны, как правило, составляют десятки метров или футов, а частота около одна волна каждые несколько секунд.

Когда ваше радио стоит на книжной полке, пытаясь поймать прибывающие волны в свой дом, это немного похоже на то, как если бы вы стояли на пляже и смотрели вкатываются выключатели. Радиоволны много однако быстрее, дольше и чаще, чем океанские волны. Их длина волны обычно составляет сотни метров — это расстояние между гребнем одной волны и другой. Но их частота может быть в миллионы герц — так что миллионы этих волн приходят каждая второй.Если волны длиной в сотни метров, как могут миллионы они прибывают так часто? Это просто. Радиоволны распространяются на невероятно быстро — на в скорость света (300 000 км или 186 000 миль в секунду).

Фото: Радиостудия — это, по сути, звукоизоляционная коробка, преобразующая звуки в высококачественные сигналы, которые можно транслировать с помощью передатчика. Предоставлено: фотографии в журнале Кэрол М. Архив Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Аналоговое радио

Океанские волны переносят энергию, заставляя вода движется вверх и вниз.Таким же образом радиоволны переносят энергия как невидимое, восходящее и нисходящее движение электричества и магнетизм. Он передает программные сигналы от огромного передатчика. антенны, которые подключаются к радиостанции, на меньшую антенна на вашем радиоприемнике. Программа передается путем добавления ее в Радиоволна назвала носителем . Этот процесс называется модуляцией . Иногда радиопрограмма добавляется на носитель таким образом, что программный сигнал вызывает колебания несущей частоты.Это называется частотной модуляцией (FM) . Другой способ посылки радиосигнала — сделать пики несущей волны больше или меньше. Поскольку размер волны называется ее амплитудой, это процесс известен как амплитудная модуляция (AM) . Частотная модуляция — это то, как транслируется FM-радио; амплитудная модуляция — это метод используется радиостанциями AM.

Почему не смешиваются все радиоволны?

Радиоволны передают любую полезную информацию по воздуху, от телепередач до спутниковой навигации GPS, так что вам может быть интересно, почему эти очень разные сигналы не смешиваются полностью? Теперь у нас есть цифровое вещание, намного проще отделить радиосигналы друг от друга с помощью сложных математических кодов; именно так люди могут использовать сотни мобильных телефонов одновременно на одной городской улице, не слыша звонков друг друга.Но вернемся на несколько десятилетий назад, в то время, когда существовало только аналоговое радио, и единственный разумный способ не дать различным типам сигналов мешать друг другу — это разделить весь спектр радиочастот на разные полосы с минимальным перекрытием или без него. Вот несколько примеров основных диапазонов радиовещания (не принимайте их как точные; определения несколько различаются по всему миру, некоторые из диапазонов частично совпадают, и я также округлил некоторые цифры):

Лента / использовать Длина волны Частота
LW (длинноволновый) 5 км – 1 км 60–300 кГц
AM / MW (амплитудная модуляция / средние волны) 600–176 м 500 кГц – 1.7 МГц
SW (коротковолновый) 188–10 м 1,6–30 МГц
VHF / FM (Очень высокая частота / частотная модуляция) 10–6 мес 100–500 МГц
FM (частотная модуляция) 3,4–2,8 м 88–125 МГц
Самолет 2,7–2,2 м 108–135 МГц
Мобильные телефоны 80–15 см 380–2000 МГц
Радар 100 см – 3 мм 0.3–100 ГГц

Если вы посетите веб-сайт Национального управления по телекоммуникациям и информации США, вы можете найти очень подробный плакат. называется «Распределение частот в США: диаграмма радиоспектра», в которой показаны все различные частоты и то, для чего они используются.

Если вы посмотрите на таблицу, вы заметите, что длина волны и частота движутся в противоположных направлениях. Чем меньше длины радиоволн (движутся вниз по таблице), тем больше их частота (выше).Но если вы умножите частоту и длину волны любой из этих волн, вы обнаружите, что всегда получаете один и тот же результат: 300 миллионов метров в секунду, более известную как скорость света.

Краткая история радио

Фото: пионер итальянского радио Гульельмо Маркони. Фото любезно предоставлено Библиотекой Конгресса США

.
  • 1888: немецкий физик Генрих Герц (1857–1894) сделал первые электромагнитные радиоволны в его лаборатории.
  • 1894: прислал британский физик сэр Оливер Лодж (1851–1940). первое сообщение с использованием радиоволн в Оксфорде, Англия.
  • 1897: Физик Никола Тесла (1856–1943) подал патенты, объясняющие как электрическая энергия может передаваться без проводов (Патент США 645 576 и Патент США 649 621) и позже (после работы Маркони) понял, что они могут быть адаптированы и для беспроводной связи (другими словами, радио). В следующем году Tesla получила патент США 613809 на радиоуправляемую лодку. (Утверждения, что он «изобрел» радио, однако, оспариваются, поскольку Томас Х. Уайт подробно обсуждает в «Никола Тесла: парень, который не изобрел радио».)
  • 1899: итальянский изобретатель Гульельмо Маркони (1874–1937) послал радиоволны через Ла-Манш. К 1901 году Маркони прислал радио волны через Атлантику, от Корнуолла в Англии до Ньюфаундленда.
  • 1902–1903: американский физик, математик и изобретатель Джон Стоун Стоун (1869–1943) использовал свои знания в области электрических телеграфов, чтобы добиться важных успехов в настройке радио. что помогло преодолеть проблему помех.
  • 1906: инженер канадского происхождения Реджинальд Фессенден (1866–1932) стал первым человеком, передавшим человеческий голос с помощью радиоволн.Он отправил сообщение в 11 милях от передатчика в Брант-Рок, Массачусетс для кораблей с радиоприемниками в Атлантическом океане.
  • 1906: американский инженер Ли Де Форест (1873–1961) изобрел триодный (звуковой) клапан, электронный компонент, который делает радиоприемники меньше и практичнее. Это изобретение принесло Де Форесту прозвище «отец радио».
  • 1910: Первая публичная радиопередача из Метрополитен-опера в Нью-Йорке.
  • 1920-е годы: радио начало превращаться в телевидение.
  • 1947: Изобретение транзистора Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Shockley (1910–1989) из Bell Labs позволил усилить радиосигналы. с гораздо более компактными схемами.
  • 1954: Regency TR-1, выпущенный в октябре 1954 года, был первым в мире коммерчески производимым транзистором. радио. В первый год было продано около 1500 экземпляров, а к концу 1955 года объем продаж достиг 100000 штук.
  • 1973: Мартин Купер из Motorola сделал первый в истории телефонный звонок с мобильного телефона.
  • 1981: Немецкие радиоинженеры начали разработку того, что сейчас называется DAB (цифровое аудиовещание) в Institut für Rundfunktechnik в Мюнхене.
  • 1990: Радиоэксперты разработали оригинальную версию Wi-Fi (способ подключения компьютеров друг к другу и к Интернету без проводов).
  • 1998: Разработан Bluetooth® (беспроводная связь на короткие расстояния для гаджетов).

Radar Systems — обзор

20.7 Частотно-модулированное непрерывное формирование луча

Радиолокационная система, описанная до сих пор, может обнаруживать дальность и скорость или цели, но не может предоставить никакой информации о направлении цели, кроме как она находится впереди транспортного средства в пределах ширины луча антенны.Направленность может быть определена, если система имеет возможность качать или управлять направленностью приемной или передающей антенны радара и отслеживать изменения отраженного эхо-сигнала от цели в ходе развертки.

Предполагается, что в описываемой системе используются параболические антенны. Параболическая антенна фокусирует передаваемую или принимаемую электромагнитную волну в определенном направлении. Степень фокусировки зависит в первую очередь от площади антенны и длины волны. Использование радара миллиметрового диапазона позволяет использовать небольшие антенны.

Параболическая антенна может быть «нацелена» путем механического ориентирования ее в желаемом направлении, которое ограничено скоростью механического движения, а также проблемами надежности и стоимости. Вместо этого используется электронное управление лучом. Антенна становится либо линейной, либо прямоугольной решеткой отдельных приемных или передающих антенн. Посредством когерентного комбинирования сигналов отдельных антенн эффекты конструктивного и деструктивного комбинирования волнового фронта приведут к максимальному усилению в определенном направлении и минимальному усилению в других направлениях.

В случае автомобильного радара управление по высоте (вверх и вниз) радара обычно не требуется, поэтому двумерная антенная решетка не требуется. Линейная решетка или линия антенн позволяет управлять антенной по азимуту (из стороны в сторону). Компромисс — стоимость и сложность. В этом случае управление направлением приема является более простым из-за цифровой обработки принимаемого сигнала. Каждый приемник должен индивидуально изменять фазу принимаемого сигнала.

Эта регулировка фазы обеспечивает регулируемую направленность антенного луча.Только когда принимаемый сигнал поступает синфазно через все антенные элементы, достигается максимальная мощность сигнала. Решетчатая антенна дает возможность «направить» главный лепесток антенны в желаемом направлении. Каждый антенный элемент должен иметь задержку или настройку фазы, чтобы после этой настройки все элементы имели общую фазу сигнала. Если угол θ = 0, то все элементы будут получать сигнал одновременно, и регулировка фазы не требуется. При ненулевом угле каждый элемент будет иметь задержку для выравнивания волнового фронта по антенной решетке, как показано на рис.20.6.

Рисунок 20.6. Электронные управляемые антенны.

Электронная управляемая антенна требует дублирования схем аналогового приемника для каждого из N приемных узлов антенны. К счастью для миллиметровых радаров, большая часть схем, включая антенные накладки, фильтры и согласующие схемы, может быть реализована непосредственно на печатной плате. МШУ, квадратурные демодуляторы и АЦП также должны быть реплицированы для каждого из N узлов.

В цифровом виде каждый набор входов I и Q из пары АЦП каждого антенного узла должен иметь синфазную задержку.Эта задержка достигается комплексным умножителем с N отдельными комплексными коэффициентами W i для каждого из N принимающих узлов. Управляющий процессор «просматривает» приемную антенну, периодически обновляя N комплексных коэффициентов и отслеживая изменения в амплитудах отраженных сигналов от цели.

В автомобильном радаре дальнего обзора желаемый угол поворота по азимуту может составлять всего 5–10 градусов от осевой линии автомобиля. С точки зрения рентабельности можно использовать параболическую передающую антенну с достаточной шириной лепесткового луча и использовать приемную антенну с более узким лепестком, чтобы обеспечить возможность различать цели по разным азимутам.В качестве альтернативы можно использовать более сложную передающую и передающую антенну, формирующую луч, чтобы обеспечить больший коэффициент усиления в желаемом азимутальном направлении передачи, но с большей стоимостью и сложностью.

Списки электронных компонентов и условные обозначения

При создании новой электроники дизайнеры и инженеры должны иметь общий язык для описания компонентов, которые входят в их новый проект. Этот язык представлен в виде схематических символов электронных компонентов, которые однозначно описывают положение, тип и функцию компонента в проекте.

Опытным конструкторам могут даже не понадобиться текстовые описания компонентов, если у них есть надежная память для схематических символов электронных компонентов. Схематические символы могут незначительно отличаться в зависимости от области мира, в которой они находятся, поэтому дизайнерам иногда необходимо знать, что несколько символов могут означать одно и то же. Существует широкий спектр условных обозначений электронных компонентов, и в этой статье рассматриваются только 50 наиболее распространенных символов.

Что такое схематический символ электронного компонента?

Схематический символ электронного компонента — это графическое изображение электронного компонента, обычно стандартизованное международным органом электронной промышленности.К таким организациям по стандартизации относятся:

Исторически сложилось так, что библиотекарям САПР приходилось запоминать многие из этих символов или обращаться к отраслевой справочной литературе при создании или каталогизации компонентов. Сегодня они широко доступны на многих авторитетных веб-сайтах вместе со следами дизайна и схемами.

Схематические символы включают в себя широкий спектр типов компонентов и схем. Большинство людей, которые видели простые электрические схемы, знакомы с символами резисторов, переключателей, предохранителей и других пассивных элементов.Однако символы электронных компонентов могут включать в себя более сложные элементы схемы, такие как батареи с одним или несколькими элементами, катушки индуктивности, конденсаторы и трансформаторы.

Есть даже схематические символы для некоторых простых машин, которые могут быть интегрированы в цепь, например, зуммеров, громкоговорителей, реле и двигателей. На чрезвычайно сложных машинах может оказаться ненужным, отнимать слишком много времени или слишком сложно изобразить все компоненты, которые они содержат, в схеме. Таким образом, условные обозначения могут упростить проект за счет использования одного символа для сложных машин.

Таблица условных обозначений

Разработчикам важно знать многие из этих старых схематических символов, если они обновляют или анализируют старую технологию. Если дизайнер или инженер создает только совершенно новые проекты электроники, знание старых символов не так важно (но может быть полезно время от времени). Поскольку использование технологий быстро растет, новый стандарт IPC, который регулирует создание новых схематических символов, может быть особенно полезным для дизайнеров.

Если для данного компонента присутствуют два символа, первый символ является международным вариантом, а второй — вариантом США.Показанные ниже символы соответствуют спецификациям IEEE / ANSI, так как они чаще всего используются в схемных редакторах в программном обеспечении ECAD. Однако многие разработчики и некоторые программы ECAD с открытым исходным кодом используют символы IEC или смесь символов IEEE / ANSI. Из-за популярности символов IEEE / ANSI на основных платформах ECAD они перечислены ниже для справки.

Разработчикам печатных плат нужны полные библиотеки со схематическими обозначениями

Современные инструменты ECAD обычно включают большинство или все символы, показанные выше, в свои встроенные библиотеки.Кроме того, большинство дизайнеров не ссылаются ни на один из перечисленных выше стандартов при добавлении условных обозначений в библиотеку компонентов. Вместо этого наиболее распространенные компоненты обозначаются специальным префиксом обозначения (R = резистор, C = конденсатор, L = катушка индуктивности, U = интегральная схема). Часто схематический символ будет сопровождаться примечанием, описывающим номер детали или тип компонента. Пока схематический символ содержит соответствующий префикс позиционного обозначения или не требует пояснений, многие дизайнеры не будут беспокоиться о том, какому стандарту следует этот символ.

Для интегральных схем и соединителей схематический символ должен соответствовать распиновке, показанной в техническом описании компонентов. Затем его нужно добавить в библиотеку компонентов с посадочными местами печатной платы и 3D-моделями. Вместо того, чтобы создавать каждый компонент с нуля, разработчики печатных плат могут использовать поисковую систему электронных компонентов, чтобы найти необходимые им данные о компонентах, включая данные об источниках, спецификации и таблицы данных для компонентов.

Если вам нужно найти схематические символы электронных компонентов, посадочные места на печатной плате, данные о поставщиках и таблицы данных, вам следует использовать функции поисковой системы, предоставляемые Ultra Librarian .Работа с Ultra Librarian избавит вас от лишних догадок при подготовке к следующему отличному устройству и направит ваши идеи на путь успеха. Зарегистрируйтесь сегодня бесплатно.

Средства навигации

Обозначение SSV

Границы высоты и диапазона

Т (Терминал)

От 1000 футов ATH до 12000 футов ATH включительно на радиальных расстояниях до 25 морских миль.

л (малая высота)

От 1000 футов ATH до 18 000 футов ATH включительно на радиальных расстояниях до 40 морских миль.

H (большая высота)

От 1000 футов ATH до 14 500 футов ATH включительно на радиальных расстояниях до 40 морских миль. От 14 500 ATH до 60 000 футов включительно на радиальных расстояниях до 100 морских миль.От 18 000 футов ATH до 45 000 футов ATH включительно на радиальных расстояниях до 130 морских миль.

VL (VOR Low)

От 1000 футов ATH до 5000 футов, но не включая ATH на радиальных расстояниях до 40 морских миль. От 5000 футов ATH до 18000 футов, но не включая ATH на радиальных расстояниях до 70 морских миль.

VH (VOR High)

От 1000 футов ATH до 5000 футов, но не включая ATH на радиальных расстояниях до 40 морских миль.От 5000 футов ATH до 14 500 футов, но не включая ATH на радиальных расстояниях до 70 морских миль. От 14 500 ATH до 60 000 футов включительно на радиальных расстояниях до 100 морских миль. От 18 000 футов ATH до 45 000 футов ATH включительно на радиальных расстояниях до 130 морских миль.

DL (низкий уровень DME)

Для высот до 12 900 футов ATH на радиальном расстоянии, соответствующем LOS до NAVAID. От 12 900 футов ATH до 18 000 футов ATH, но не включая ATH на радиальных расстояниях до 130 морских миль

DH (DME High)

Для высот до 12 900 футов ATH на радиальном расстоянии, соответствующем LOS до NAVAID.От 12 900 ATH до 60 000 футов включительно на радиальных расстояниях до 100 морских миль. От 12 900 футов ATH до 45 000 футов ATH включительно на радиальных расстояниях до 130 морских миль.

RSS-Gen — Общие требования к соответствию радиоаппаратуре

Выпуск 5
Апрель 2018

Предисловие

Спецификация радиостандартов RSS-Gen, выпуск 5, Общие требования для соответствия радиоаппаратуре заменяет RSS-Gen, выпуск 4, от ноября 2014 года.

Ниже перечислены основные изменения:

  1. В новом разделе 1.1 добавлено положение о переходном периоде в отношении RSS-Gen.
  2. Новый раздел 2.5 добавляет положение о переходном периоде в отношении применимых RSS.
  3. Раздел 2.7.1 добавляет требование о том, чтобы сертифицированные устройства были перечислены в списке радиооборудования (REL) до того, как они могут быть сданы в аренду, выставлены на продажу или проданы.
  4. Новый раздел 2.8 добавляет положение о радиоаппаратуре, используемой в демонстрационных целях.
  5. Раздел 2.9 обновляет положение о запросе специального разрешения.
  6. Раздел 4 включает спецификации маркировки из RSP-100, Сертификация радиоаппаратуры .
  7. В разделе 5.3
  8. разъясняется, что в случае автономных приемников, не работающих в полосе частот 30–960 МГц, содержащих компоненты, подпадающие под действие Стандартов на оборудование, вызывающее помехи (ICES), применяется соответствующий ICES, включая его требования к маркировке.
  9. Раздел 6.2 добавляет ссылку на документы REC-LAB, Процедура для признания зарубежных испытательных лабораторий и DES-LAB, , Процедура определения и признания канадских испытательных лабораторий , для требований, касающихся оборудования испытательных площадок.
  10. Раздел 6.6 добавляет применимые ограничения при измерении напряженности поля выше 30 МГц на расстоянии более 30 м от тестируемого оборудования.
  11. Раздел 6.8 изменяет раздел передающей антенны для применения как к лицензированному, так и к оборудованию, не подлежащему лицензированию.
  12. Раздел 6.9 разъясняет требования к тестовым частотам по сравнению с рабочими полосами частот.
  13. Раздел 6.10 добавляет требование к детекторам средних значений соответствовать характеристикам, указанным в Публикации № 16 Международного специального комитета по радиопомехам (CAN / CSA-CISPR) 16-1-1: 15.
  14. В разделе 6.11 разъясняются требования к напряжению источника питания, используемому при измерении стабильности частоты передатчика.
  15. Раздел 6.13.2 расширяет частотный диапазон для измерения нежелательных излучений до 200 ГГц и добавляет положение об измерениях для оборудования, содержащего цифровые устройства на более высокой частоте.
  16. В разделе 8.7
  17. разъясняются условия освобождения пассивных RFID-меток от требований сертификации, тестирования и маркировки ISED.
  18. Раздел 8.9 добавляет полосы частот 0,495–0,505 МГц, 8,41425–8,41475 МГц, 149,9–150,05 МГц, 162,0125–167,17 МГц, 167,72–173,2 МГц и 2483,5–2500 МГц в Таблицу ограниченных диапазонов частот.
  19. Раздел 8.11 разъясняет требования к стабильности частоты нелицензированных устройств, для которых не указан предел стабильности частоты.
  20. Раздел 9 больше не включает определения, относящиеся к конкретным RSS.
  21. Сделаны редакционные обновления и улучшения.

Выдано на основании постановления
Министра инноваций, науки и экономического развития

____________________________________
Мартин Пру
Генеральный директор
Отделение проектирования, планирования и стандартов


Содержание

  1. Объем
    1.1 Переходный период
  2. Общие
    2.1 Назначение и применение
    2.2 Запросы, связанные со спецификациями радиостандартов
    2.3 Запросы, связанные с лицензированием
    2.4 Орган по сертификации
    2.5 Переходный период для применимых RSS
    2.6 Категории радиооборудования
    2.7 Исключения
    2.8 Радиоаппаратура, используемая для целей разработки
    2.9 Радиоаппаратура со специальным разрешением
    2.10 Определение помех
  3. Нормативные публикации и сопутствующие документы
    3.1 Общие положения
    3.2 Методы измерений, измерительные приборы и валидация на испытательных площадках
    3.3 Процедура радиостандартов RSP-100
    3.4 Соответствие радиочастотному воздействию
    3.5 Радиосвязные антенные системы
    3.6 Прочие сопутствующие документы
  4. Требования к маркировке
    4.1 Общие положения
    4.2 Маркировка сертифицированной продукции
    4.3 Требования к маркировке модуля (Категория I) и основного продукта
    4.4 Электронная маркировка (электронная маркировка)
  5. Приемники
    5.1 Сканерные приемники
    5.2 Автономные приемники, работающие в диапазоне 30–960 МГц
    5.3 Прочие приемники
  6. Общие административные и технические требования
    6.1 Вспомогательное оборудование и принадлежности
    6.2 Требования испытательной лаборатории
    6.3 Отчет об испытаниях
    6.4 Внешние элементы управления
    6.5 Метод измерения ближнего поля для частот ниже 30 МГц
    6.6 Расстояние измерения для частот выше 30 МГц
    6.7 Занятая полоса пропускания (или ширина полосы излучения 99%) и ширина полосы x дБ
    6.8 Передающая антенна
    6.9 Рабочие полосы и выбор тестовых частот
    6.10 Квазипиковые детекторы CISPR и детекторы средних значений CISPR
    6.11 Стабильность частоты передатчика
    6.12 Выходная мощность передатчика
    6.13 Нежелательные излучения передатчика
  7. Пределы излучения приемника
    7.1 Общие положения
    7.2 Пределы кондуктивного излучения линии электропередачи переменного тока
    7.3 Пределы излучаемого излучения приемника
    7.4 Пределы кондуктивного излучения приемника
  8. Радиоаппаратура без лицензии
    8.1 Измерение ширины полосы и функции детектора
    8.2 Импульсный режим
    8.3 Запрещение усилителей
    8.4 Уведомление о руководстве пользователя
    8.5 Измерение безлицензионных устройств на месте (на месте)
    8.6 Рабочий диапазон частот устройств в главных / ведомых сетях
    8.7 Устройства радиочастотной идентификации (RFID)
    8.8 Ограничения на кондуктивные излучения линии электропередачи переменного тока
    8.9 Пределы излучения передатчика
    8.10 Ограниченные полосы частот
    8.11 Стабильность частоты
  9. Глоссарий общеупотребительных терминов и определений RSS

1.Область применения

Спецификация стандартов радиосвязи RSS-Gen, Общие требования к соответствию радиоаппаратуре, устанавливает общие и сертификационные требования для лицензированной и не требующей лицензии радиоаппаратуры. Сноска 1 , используемая для радиосвязи, кроме радиовещания. «Радиовещание» относится к любой радиосвязи, передачи которой предназначены для прямого приема широкой публикой. Если иное не указано в применимой спецификации радиостандартов (RSS) (и / или в уведомлении о нормативных стандартах), радиоаппаратура должна соответствовать спецификациям и методам, предписанным в RSS-Gen.

1,1 Переходный период

Этот документ вступает в силу с момента его публикации на веб-сайте Канады по инновациям, науке и экономическому развитию (ISED). Однако будет предоставлен переходный период в шесть (6) месяцев после его публикации, в течение которого будет принято соответствие RSS-Gen, выпуск 4 или выпуск 5. По истечении этого срока будут приниматься только заявки на сертификацию оборудования, соответствующего требованиям RSS-Gen, выпуск 5.

2.Общий

2.1 Назначение и применение

RSS-Gen должен использоваться вместе с другими RSS, в зависимости от конкретного типа радиоаппаратуры, для оценки его соответствия требованиям ISED.

2.2 Запросы, связанные со спецификациями радиостандартов

Запросы можно отправлять онлайн, используя форму общего запроса. Выберите радиокнопку Regulatory Standards Branch и укажите «RSS-Gen» в поле General Inquiry.

Запросы также можно отправить по электронной почте или по почте на следующий адрес:

Инновации, наука и экономическое развитие Канада
Отдел разработки, планирования и стандартов
235 Queen Street
Оттава, Онтарио, K1A 0H5
Канада

Внимание: Управление нормативных стандартов

Комментарии и предложения по изменению RSS могут быть отправлены онлайн, используя стандартную форму запроса на изменение, или по почте на указанный выше адрес.

2.3 Запросы, связанные с лицензированием

Запросы, связанные с лицензированием, можно направлять через региональные или районные отделения ISED. Контактная информация этих офисов указана в Информационном радио-циркуляре RIC-66, адресах и телефонных номерах региональных и районных офисов .

2.4 Сертификационный орган

Орган по сертификации (CB) — это независимая национальная или иностранная организация, уполномоченная правительством Канады на сертификацию радиооборудования в соответствии с нормативными требованиями Канады.Органы по сертификации признаны в соответствии с условиями соглашений / договоренностей о взаимном признании Сноска 2 и перечислены на веб-сайте соглашений / договоренностей о взаимном признании ISED.

2.5 Переходный период для применимых RSS

Переходный период, указанный в применимых RSS, должен применяться для соответствия оборудования.

2,6 Категории радиооборудования

Радиоаппаратура классифицируется как оборудование Категории I или Категории II.

2.6.1 Оборудование категории I

Оборудование категории I состоит из радиоаппаратуры, для которой требуется сертификат технической приемки (TAC), выданный Бюро сертификации и проектирования ISED, или сертификат, выданный признанным CB, в соответствии с подразделом 4 (2) Закона о радиосвязи и 21 (1) Регламента радиосвязи , соответственно.

Сертифицированное оборудование категории I должно быть указано в списке радиооборудования ISED (REL).

Никто не должен импортировать, распространять, сдавать в аренду, предлагать на продажу или продавать радиоаппаратуру Категории I в Канаде, если они не указаны в REL ISED. Сноска 3

2.6.2 Оборудование категории II

В рамках данного RSS оборудование Категории II состоит из радиоаппаратуры, освобожденной от сертификации (т. Е. Не требующей TAC или сертификата, выданного CB). Однако производитель, импортер и / или дистрибьютор должны гарантировать, что оборудование Категории II соответствует всем применимым процедурам и стандартам ISED.Отчет об испытаниях должен храниться до тех пор, пока модель будет произведена, импортирована, распространена, продана, выставлена ​​на продажу и / или сдана в аренду в Канаде. Отчет об испытаниях должен быть предоставлен ISED по запросу.

2.7 Исключения

2.7.1 Вещательное оборудование
RSS

не применяются к вещательному оборудованию, включая приемники вещания и спутниковые приемники вещания. Такое оборудование регулируется Процедурой стандартов радиосвязи ISED RSP-100, Сертификация радиоаппаратуры и Техническими стандартами на радиовещательное оборудование (BETS), где это применимо.

Вышеупомянутое исключение также распространяется на компоненты радиоаппаратуры, которые используются для радиовещания. Другие радиомодули, включенные в радиоаппаратуру, по-прежнему подпадают под действие RSS-Gen и применимых RSS.

2.7.2 Оборудование, создающее помехи

Оборудование, вызывающее помехи, которое относится к любому оборудованию, кроме радиоаппаратуры, которое способно создавать помехи для радиосвязи, подпадает под действие Стандартов ISED для оборудования, вызывающего помехи (ICES).

2.7.3 Радиоаппаратура, содержащая компоненты, подпадающие под действие стандарта ICES

Любое радиоаппаратура, подпадающая под действие RSS и содержащая компоненты, охватываемые ICES, не нуждается в проверке на соответствие соответствующим требованиям ICES при условии, что эти компоненты используются только для обеспечения работы радиоаппаратуры и не контролировать или создавать дополнительные функции или возможности. В противном случае применяется соответствующий ICES в дополнение к применимому RSS.В любом случае устройство не обязательно должно соответствовать требованиям к маркировке применимого ICES; однако он должен соответствовать применимым требованиям к маркировке, указанным в RSS-Gen.

2.8 Радиоаппаратура, используемая в целях развития

Радиоаппаратура, используемая исключительно для целей исследований и разработок, экспериментов, демонстрации или оценки конкурентоспособности, освобождается от требований сертификации и маркировки, но может подлежать лицензии на разработку (см. Раздел 2.3 данного документа). Эти радиоаппараты нельзя сдавать в аренду, продавать или предлагать для продажи в Канаде.

Лицензии на разработку выдаются новаторам, если их проект соответствует всем следующим критериям:

  • относится к исследованиям и разработкам
  • фокусируется на развитии технологий
  • ограничен по времени
  • не будет мешать текущим или ожидаемым системам
  • не будет использоваться в коммерческих испытаниях, предполагающих возмещение финансовых затрат с пользователей.

2.9 Радиоаппаратура со специальным разрешением

Процедура соблюдения стандартов радиосвязи RSP-102, Специальная процедура авторизации для оконечного, радио-, радиовещательного и создающего помехи оборудования, которое должно быть сертифицировано, зарегистрировано или признано соответствующим стандартам на техническое оборудование , заменяет раздел 2.9 этого документа.

2.10 Определение помех

В соответствии с ЧАСТЬЮ VI Регламента радиосвязи нижеследующее применяется ко всему оборудованию радиосвязи.

Если ISED определяет, что модель оборудования вызывает или может вызвать помехи для радиосвязи, или страдает или может пострадать от неблагоприятных воздействий электромагнитной энергии, ISED должен уведомить об этом решении лиц, которые могут быть затронуты Это. Никто не может производить, импортировать, распространять, сдавать в аренду, предлагать на продажу, продавать, устанавливать или использовать оборудование, в отношении которого было сделано такое уведомление.

Если ISED определяет, что блок оборудования вызывает или страдает от помех или неблагоприятных воздействий электромагнитной энергии, ISED может приказать лицу (лицам), которые владеют или контролируют оборудование, прекратить или изменить работу оборудования до тех пор, пока он не сможет работать, не вызывая и не подвергаясь влиянию таких помех или неблагоприятных воздействий.

3. Нормативные публикации и сопутствующие документы

3.1 Общие

Этот нормативный стандарт (RSS-Gen) ссылается и нормативно принимает, в зависимости от обстоятельств, публикации в разделе 3. Если такая ссылка сделана, она должна относиться к указанному изданию, для датированных ссылок, или к последнему изданию, для недатированные ссылки.

3.2 Методы измерения, измерительная аппаратура и валидация испытательного полигона

Требования, изложенные в RSS-Gen и в соответствующем RSS, имеют преимущественную силу, если есть расхождения между требованиями, изложенными в этих стандартах, и теми, которые указаны в публикациях, упомянутых в этом разделе.Принятые редакции стандартов ANSI, перечисленные ниже, будут размещены на веб-сайте Бюро сертификации и проектирования (CEB).

Методы, указанные в ANSI C63.26, Американском национальном стандарте процедур для проверки соответствия лицензионных передатчиков и ANSI C63.10, Американском национальном стандарте для тестирования нелицензированных беспроводных устройств , должны использоваться для методов измерения, применимых к лицензированным и безлицензионная радиоаппаратура соответственно.

ANSI C63.4, Американский национальный стандарт для методов измерения излучения радиошума от низковольтного электрического и электронного оборудования в диапазоне от 9 кГц до 40 ГГц , должен использоваться только для валидации испытательных площадок и испытаний приемников.

Время от времени ISED может выпускать уведомления, связанные с требованиями соответствия радиоаппаратуры. Эти уведомления будут размещены на веб-сайте CEB.

Альтернативные методы измерения, не охваченные RSS или справочной публикацией, могут рассматриваться ISED для демонстрации соответствия радиоаппаратуры при условии, что они признаны приемлемыми CEB.Альтернативные методы измерения могут быть отправлены по электронной почте в CEB, который определит приемлемость этих методов.

Список приемлемых процедур Федеральной комиссии по связи (FCC) и других приемлемых процедур, связанных с измерениями для применимых RSS, публикуется и поддерживается на веб-сайте CEB.

3.3 Процедура радиостандартов RSP-100

RSP-100, Сертификация радиоаппаратуры , который устанавливает требования к сертификации, должен использоваться вместе с RSS-Gen.Соответствие требованиям RSP-100 является обязательным для получения сертификата оборудования.

3.4 Соответствие радиочастотному воздействию

В дополнение к RSS-Gen, должны выполняться требования RSS-102, Соответствие радиочастотному (РЧ) воздействию радиочастотного (РЧ) устройства радиосвязи (все диапазоны частот) .

3.5 Антенные системы радиосвязи

При установке или модификации антенной системы для радиооборудования, для которой может потребоваться использование внешней антенной системы или поддерживающей конструкции, процесс, описанный в Циркуляре процедур клиента CPC-2-0-03, Системы радиосвязи и радиовещания , будет применен.

3,6 Прочие сопутствующие документы

Спецификация радиостандартов (RSS-HAC), Совместимость со слуховыми аппаратами и регулятор громкости , устанавливает требования соответствия для совместимости со слуховыми аппаратами и функций регулировки громкости для конкретных радиоустройств. RSS-HAC должен использоваться вместе с применимыми RSS, перечисленными на веб-сайте ISED Certification and Engineering Bureau.

документов ISED доступны в разделе официальных публикаций на веб-сайте Spectrum Management and Telecommunications.При необходимости обратитесь к следующим документам:

RIC-66 Адреса и телефоны областных и районных отделений

TRC-43 Обозначение выбросов, класс станции и характер обслуживания

4. Требования к маркировке

4.1 Общие

Помимо соответствия применимым RSS и RSP-100, каждая единица модели продукта (то есть радиоаппаратуры) должна соответствовать требованиям к маркировке, изложенным в этом разделе, до того, как она будет продана в Канаде или импортирована в Канаду.

Если размеры продукта очень малы или нецелесообразно размещать этикетку или маркировку на продукте, и если электронная маркировка не может быть реализована, этикетка должна быть помещена на видном месте в руководстве пользователя, поставляемом с продуктом. , как согласовано с ISED до подачи заявки на сертификацию. Руководство пользователя может быть в электронном формате; если оно не предоставляется пользователю, руководство пользователя должно быть легко доступно.

4.2 Маркировка сертифицированной продукции

Торговое название продукта (PMN), Идентификационный номер версии оборудования (HVIN), Идентификационный номер версии микропрограммы (FVIN) и Маркетинговое имя хоста (HMN) определены в разделе 9 этого документа.

Каждая единица сертифицированной модели продукта, предназначенная для сбыта и использования в Канаде, должна быть идентифицирована в соответствии со следующими требованиями:

  1. Сертификационные номера HVIN и ISED должны быть постоянно указаны на внешней стороне продукта или отображаться в электронном виде в соответствии с требованиями к электронной маркировке (см. Раздел 4.4) следующим образом:
    1. Сертификационные номера HVIN и ISED могут быть размещены на этикетке, которая должна быть постоянно прикреплена к продукту.
    2. Номер сертификации ISED должен предшествовать «IC:»
    3. HVIN может быть указан или размещен с любым префиксом или без него (HVIN :, Номер модели, M / N :, P / N: и т. Д.)
    4. Не требуется, чтобы номера сертификатов HVIN и ISED располагались рядом друг с другом
  2. PMN должен отображаться в электронном виде (см. Раздел 4.4), или указываться на внешней стороне продукта или на упаковке продукта, или в документации по продукту, которая должна поставляться вместе с продуктом или быть легко доступной в Интернете.
  3. Сертификационные номера PMN, HVIN и ISED могут быть выгравированы, выгравированы, проштампованы, напечатаны на продукте или размещены на этикетке, постоянно прикрепляемой к постоянно прикрепленной части продукта.
  4. Сертификационный номер PMN, HVIN и ISED, указанный на любом продукте (в том числе с помощью электронного дисплея) на канадском рынке, должен быть указан в REL.
  5. Когда FVIN является единственным отличием версий продукта (т.е. PMN и HVIN остаются одинаковыми для всех версий), перечисленных в REL в рамках сертификации семейства, FVIN должен отображаться в электронном виде или храниться в электронном виде с помощью продукта и быть легко доступным.
  6. Во всех случаях текст сертификационных номеров PMN, FVIN, HVIN и ISED должен быть четким.

Не требуется, чтобы номера сертификации PMN, HVIN, ISED и применимый FVIN находились рядом друг с другом.

Номер сертификации состоит из номера компании (CN), присвоенного CEB ISED, за которым следует уникальный номер продукта (UPN), присвоенный заявителем. Формат номера сертификата:

.

IC: XXXXXX-YYYYYYYYYYY

Компоненты номера сертификации объясняются следующим образом:

  1. «IC:» означает, что это номер сертификата ISED, но не является его частью.XXXXXX-YYYYYYYYYYY — это номер сертификата ISED.
  2. XXXXXX — это CN, присвоенный ISED. Вновь назначенные CN будут состоять из пяти цифровых символов (например, «20001»), тогда как существующие CN могут состоять из пяти числовых символов, за которыми следует буквенный знак (например, «21A» или «15589J»).
  3. YYYYYYYYYY — это UPN, присвоенный заявителем, состоящий максимум из 11 буквенно-цифровых символов.
  4. CN и UPN могут содержать только числовые (0–9) и заглавные буквы (A – Z).Использование знаков препинания или других символов, включая «подстановочные» символы, не допускается.
  5. HVIN может содержать знаки препинания или символы, но они не должны представлять какие-либо неопределенные («подстановочные») символы.

Пример 1 : Компании был присвоен CN «21A» и она желает использовать UPN «WILAN3» для одного из своих продуктов. Таким образом, полный номер сертификата ISED для этого продукта: IC: 21A-WILAN3.

Пример 2 : Компании назначен CN «20001» и она хочет использовать UPN «WILAN3» для одного из своих продуктов.Таким образом, полный номер сертификата ISED для этого продукта: IC: 20001-WILAN3.

Пример 3 : Производитель желает использовать символы «XX» в качестве подстановочных знаков, чтобы указать, что эти два символа не являются фиксированными, а представляют диапазон символов, определенный производителем, где HVIN будет 47XP-820K / A21XX или Сертификационный номер ISED будет IC: 21A-WILANXX. Такая практика не разрешена. Однако эту же последовательность символов можно использовать в качестве действительного HVIN, если она идентифицирует одну версию продукта.

4.3 Требования к маркировке модуля (Категория I) и основного продукта

Любой продукт, для которого запрашивается модульное одобрение (MA) или ограниченное модульное одобрение (LMA), должен соответствовать требованиям к маркировке в разделе 4.2.

Маркетинговое название хоста (HMN) должно отображаться в соответствии с требованиями к электронной маркировке раздела 4.4, или указываться на внешней стороне основного продукта, или на упаковке продукта, или в документации по продукту, которая должна поставляться с основным продуктом. или легко доступны в Интернете.

Хост-продукт должен быть должным образом промаркирован, чтобы идентифицировать модули в хост-продукте.

Сертификационная этикетка ISED модуля должна быть четко видна в любое время, когда она установлена ​​в главном продукте; в противном случае основной продукт должен быть помечен, чтобы отображать номер сертификации ISED для модуля, которому предшествует слово «содержит» или аналогичная формулировка, выражающая то же значение, а именно:

Содержит IC: XXXXXX-YYYYYYYYYYY

В этом случае XXXXXX-YYYYYYYYYYY — это номер сертификата модуля.

Для каждого сертифицированного модуля заявитель должен предоставить пользователю этикетку хоста, как описано выше, или описание требований к маркировке продукта хоста.

4.4 Электронная маркировка (e-labeling)

Устройства со встроенным экраном дисплея могут иметь требуемую информацию на этикетке, представленную в электронном виде на электронной этикетке, а не на физической этикетке или паспортной табличке.

Устройства без встроенного экрана дисплея могут иметь информацию маркировки, представленную в виде звукового сообщения или экрана дисплея главного устройства, подключенного через физическое соединение, Bluetooth, Wi-Fi или другое, если подключение к устройству с дисплеем является обязательным для использовать.

Устройства, использующие электронную маркировку, должны соответствовать требованиям, указанным в приложении B к настоящему стандарту .

5. Ресиверы

5.1 Сканер-приемник

Аналоговые и цифровые сканерные приемники требуют сертификации оборудования и подпадают под действие специального RSS.

5.2 Автономные приемники, работающие в диапазоне 30–960 МГц

Автономный приемник определяется как любой приемник, который постоянно не совмещен с передатчиком в одном случае.(В приемопередатчике приемник является составной частью приемопередатчика и, следовательно, не является автономным приемником). Автономные приемники классифицируются как оборудование Категории II.

Автономные приемники, работающие в полосе частот 30–960 МГц, должны соответствовать ограничениям на побочные излучения приемника и излучения линий электропередачи переменного тока, изложенным в разделе 7 настоящего стандарта. Сертификация оборудования для этих приемников не требуется. Однако каждое устройство должно иметь этикетку «CAN RSS-Gen / CNR-Gen» и соответствовать требованиям раздела 4.1 и 4.4, если применимо.

5.3 Прочие приемники

Все приемники, не подпадающие под разделы 5.1 и 5.2, освобождаются от каких-либо требований сертификации, маркировки и отчетности ISED, но должны соответствовать ограничениям на выбросы, изложенным в разделе 7 настоящего стандарта. Более того, в случае автономных приемников, не работающих в полосе 30–960 МГц, содержащих компоненты, которые охвачены ICES, применяется соответствующий ICES, включая его требования к маркировке.

6. Общие административные и технические требования

Соответствие RSS-Gen и ограничениям, установленным в применимом RSS, должно быть продемонстрировано с использованием методов измерения, указанных в разделе 3.

6.1 Дополнительное оборудование и принадлежности

Вспомогательное оборудование и аксессуары, которые обычно используются с передатчиком и / или приемником, должны быть подключены до испытания оборудования.

Испытания на выбросы должны проводиться с устройством, вспомогательным оборудованием и принадлежностями, сконфигурированными таким образом, чтобы обеспечить максимальный уровень выбросов, который можно ожидать при нормальных условиях эксплуатации.

6.2 Требования к испытательной лаборатории

Испытательные лаборатории, выполняющие измерения для RSS, должны быть признаны и перечислены на веб-сайте ISED. Процедура признания и внесения в список испытательных лабораторий описана в DES-LAB и REC-LAB для канадских и зарубежных лабораторий соответственно. Испытательные центры, которые в настоящее время включены в программу регистрации испытательных центров CEB, и вновь зарегистрированные испытательные центры будут оставаться зарегистрированными в течение 12 месяцев с 15 марта 2018 г. По истечении этого времени в программе подачи заявок на участие в испытательных центрах CEB будет сохраняться только список признанных испытательных лабораторий.

Испытательные лаборатории, используемые для измерений соответствия, должны соответствовать всем требованиям к конструкции и / или валидации, содержащимся в нормативных эталонных методах испытаний, за исключением того, что ISED принимает только метод проверки коэффициента стоячей волны напряжения на месте (Svswr) по CISPR 16-1. -4: 2010 в диапазоне частот от 1 ГГц до 18 ГГц.

6.3 Отчет об испытаниях

Отчет об испытаниях, показывающий соответствие применимым RSS, должен быть составлен, чтобы перечислить проведенные тесты и предоставить описание каждого теста, с результатами, демонстрирующими соответствие техническим требованиям в RSS-Gen и применимых RSS.

В отчете об испытаниях должно быть четко указано, какие стандарты (например, RSS, ANSI) использовались для методов измерения. Содержание отчета об испытаниях должно соответствовать приложению A к настоящему документу и применимым стандартам (например, RSS, ANSI).

Для сертификации оборудования отчет об испытаниях не должен быть датирован более чем за 12 месяцев до подачи заявки на сертификацию оборудования. Испытания в отчете об испытаниях могут быть проведены более чем за 12 месяцев до этой даты, но должны оставаться действительными в соответствии с применимыми требованиями.Кроме того, отчет об испытаниях должен включать номер компании испытательной лаборатории, присвоенный ISED, или идентификатор органа по оценке соответствия (CABID).

6.4 Внешнее управление

Устройство не должно иметь никаких внешних элементов управления, доступных пользователю, которые позволяют его настраивать, выбирать или программировать для работы с нарушением нормативных требований, включая RSS-Gen и применимые RSS. Кроме того, информация о внутренних настройках, реконфигурации или программировании устройства, которая каким-либо образом может позволить или привести к тому, что оборудование будет работать с нарушением требований ISED, должна быть доступна только для сервисных центров и агентов поставщика оборудования, а не для общественности. .

6.5 Метод измерения ближнего поля для частот ниже 30 МГц

Ниже 30 МГц должны проводиться измерения напряженности магнитного поля (H-поля) с использованием рамочной антенны. Стержневые антенны не разрешены ниже 30 МГц. Допустимые пределы указаны в микроампер на метр. Коэффициенты антенны рамочной антенны должны быть откалиброваны относительно напряженности магнитного поля, т. Е. В единицах дБ (См / м), дБ [(Ом · м) -1 ] или в линейном эквиваленте.

Если измерения напряженности поля указаны для частот ниже 30 МГц, напряженность поля может быть измерена в ближнем поле (т. Е. На расстоянии менее двух длин волн). Измеренная напряженность поля должна быть экстраполирована на расстояние, указанное с помощью формулы, указывающей, что напряженность поля изменяется как квадрат, обратный квадрату расстояния (40 дБ на декаду расстояния). Также допустимо проводить измерения минимум на двух расстояниях по крайней мере на одном радиальном направлении для определения фактической формулы экстраполяции вместо использования 40 дБ на декаду расстояния; однако в этом случае радиальный (е) радиус (ы), выбранный для измерений, должен включать в себя места, где измеряются самые высокие выбросы от испытуемого оборудования.

6.6 Расстояние измерения для частот выше 30 МГц

На частотах 30 МГц или выше измерения не должны проводиться в ближнем поле, за исключением случаев, когда можно показать, что измерения в ближнем поле подходят из-за характеристик устройства или где можно продемонстрировать, что уровни сигнала не могут быть обнаруженным измерительным оборудованием на расстоянии, указанном в соответствующих RSS.

Измерения не должны выполняться на расстоянии более 30 метров, если в отчете об испытаниях не указано, что измерения, выполненные на расстоянии 30 метров или меньше, нецелесообразны.В таком случае в отчете об испытаниях должно быть дополнительно продемонстрировано, что измерительный прибор (приемник или анализатор спектра) способен обнаруживать излучения испытуемого оборудования (EUT) с достаточным соотношением сигнал / шум и что минимальный уровень шума измерительного прибора находится на уровне минимум на 10 дБ ниже применимого предела.

При выполнении измерений на расстоянии, отличном от указанного, результаты должны быть экстраполированы на указанное расстояние с использованием коэффициента экстраполяции 20 дБ на декаду расстояния (обратно пропорционально расстоянию для измерений напряженности поля).

Окончательные измерения должны выполняться в соответствии с нормативной справочной публикацией из раздела 3 настоящего стандарта и применимыми RSS.

6.7 Ширина занимаемой полосы (или 99% ширины полосы излучения) и ширина полосы x дБ

Ширина занимаемой полосы или «99% ширины полосы излучения» определяется как частотный диапазон между двумя точками, одна выше, а другая ниже несущей частоты, в пределах которого содержится 99% общей передаваемой мощности основного передаваемого излучения.Информация о занимаемой полосе пропускания должна сообщаться для всего оборудования в дополнение к указанной ширине полосы пропускания, требуемой в применимых RSS.

В некоторых случаях требуется «ширина полосы x дБ», которая определяется как частотный диапазон между двумя точками, одна на самой низкой частоте ниже, а другая на самой высокой частоте выше несущей частоты, при которой максимальный уровень мощности передаваемое излучение ослабляется на x дБ ниже максимального уровня внутриполосной мощности модулированного сигнала, где две точки находятся на окраине внутриполосного излучения.

При измерении ширины занимаемой полосы и ширины полосы x дБ должны соблюдаться следующие условия:

  • Передатчик должен работать с максимальной несущей мощностью, измеренной в нормальных условиях испытаний.
  • Полоса обзора анализатора спектра должна быть установлена ​​достаточно большой, чтобы улавливать все продукты процесса модуляции, включая границы излучения, вокруг несущей частоты, но достаточно малой, чтобы избежать других излучений (e.г. на соседних каналах) в пределах пролета.
  • Детектор анализатора спектра должен быть установлен на «Образец». Однако вместо детектора выборки может использоваться пик или удержание пика, поскольку это обычно дает более широкую полосу пропускания, чем фактическая ширина полосы (измерение наихудшего случая). Использование удержания пикового значения (или «удержания максимального значения») может потребоваться для определения ширины занимаемой полосы частот / x дБ, если устройство не передает непрерывно.
  • Ширина полосы разрешения (RBW) должна находиться в диапазоне от 1% до 5% от фактической занимаемой полосы / ширины полосы x дБ, а ширина полосы видеосигнала (VBW) не должна быть меньше трехкратного значения RBW.Усреднение видео запрещено.

Примечание: Может потребоваться повторить измерение несколько раз, пока полоса разрешения и полоса разрешения не будут соответствовать вышеуказанному требованию.

Для 99% ширины полосы излучения точки данных трассировки восстанавливаются и напрямую суммируются в единицах линейного уровня мощности. Восстановленные точки данных амплитуды, начиная с самой низкой частоты, помещаются в текущую сумму до тех пор, пока не будет достигнуто 0,5% от общего значения, и эта частота записывается.Процесс повторяется для точек данных наивысшей частоты (начиная с самой высокой частоты с правой стороны диапазона и с понижением частоты). Затем эта частота записывается. Разница между двумя записанными частотами — это занимаемая ширина полосы (или 99% ширины полосы излучения).

6.8 Передающая антенна

Заявитель на сертификацию оборудования должен предоставить список всех типов антенн, которые могут использоваться с передатчиком, где это применимо (т.е. для передатчиков со съемной антенной) с указанием максимально допустимого усиления антенны (в дБи) и необходимого импеданса для каждой антенны. Отчет об испытаниях должен продемонстрировать соответствие передатчика пределу максимальной эквивалентной изотропно излучаемой мощности (э.и.и.м.), указанному в применимом RSS, когда передатчик оборудован антенной любого типа, выбранного из этого списка.

Для ускорения тестирования измерения могут быть выполнены с использованием только антенны с наивысшим усилением для каждой комбинации передатчика и типа антенны, с максимальной выходной мощностью передатчика.Однако передатчик должен соответствовать применимым требованиям во всех условиях эксплуатации и в сочетании с любым типом антенны из списка, приведенного в отчете об испытаниях (и в примечании, которое должно быть включено в руководство пользователя, приведенное ниже).

Когда измерения на порте антенны используются для определения выходной мощности РЧ, необходимо указать эффективное усиление антенны устройства на основе измерения или данных производителя антенны.

В отчете об испытаниях должна быть указана мощность РЧ, установка выходной мощности и измерения побочных излучений для каждого типа антенны, которая используется с тестируемым передатчиком.

Для оборудования со съемными антеннами, не подлежащего лицензированию, руководство пользователя также должно содержать следующее примечание на видном месте:

Этот радиопередатчик [введите номер сертификата ISED устройства] был одобрен Министерством инноваций, науки и экономического развития Канады для работы с антеннами, перечисленными ниже, с указанием максимального допустимого усиления.Типы антенн, не включенные в этот список, которые имеют усиление, превышающее максимальное усиление, указанное для любого из перечисленных типов, строго запрещены для использования с этим устройством.

Сразу после вышеупомянутого уведомления производитель должен предоставить список всех типов антенн, которые могут использоваться с передатчиком, с указанием максимально допустимого усиления антенны (в дБи) и необходимого импеданса для каждого типа антенны.

6.9 Рабочие диапазоны и выбор тестовых частот

Если не указано иное, измерения должны выполняться для каждого рабочего диапазона частот, при этом устройство должно работать на частотах в каждом рабочем диапазоне, как показано в таблице 1.Частоты, выбранные для измерений, должны быть задокументированы в протоколе испытаний.

Таблица 1 — Тестовые частоты в каждом рабочем диапазоне
Диапазон частот, в котором работает устройство Примечание 1 в каждом рабочем диапазоне Количество необходимых тестовых частот Расположение тестовых частот внутри диапазона рабочих частот Примечание 1,2
≤ 1 МГц 1 возле центра
> 1 МГц и ≤ 10 МГц 2 1 около высокого уровня,
1 около нижнего конца
> 10 МГц 3 1 около верхнего уровня, 1 около центра,
и 1 около нижнего конца
Примечание 1
Частотный диапазон, в котором устройство работает в заданном рабочем диапазоне, представляет собой разницу между самой высокой и самой низкой частотами, на которые устройство может быть настроено в данном рабочем диапазоне.Диапазон частот может быть меньше или равен рабочей полосе, но не может быть больше рабочей полосы.
Примечание 2
В третьем столбце таблицы 1 «близко» означает как можно ближе к центру / нижнему пределу / верхнему пределу частотного диапазона, в котором работает устройство, или на них.

6.10 Квазипиковые детекторы CISPR и детекторы средних значений CISPR

Квазипиковый детектор CISPR (также известный как квазипиковый детектор) и детектор среднего значения CISPR должны соответствовать характеристикам, приведенным в CAN / CSA-CISPR 16-1-1: 15.

В качестве альтернативы квазипиковому или среднему измерению CISPR соответствие ограничениям выбросов может быть продемонстрировано с помощью измерительного прибора, использующего функцию пикового детектора, должным образом отрегулированную для таких факторов, как снижение чувствительности импульса, при необходимости, с полосой измерения, равной или больше, чем применимая квазипиковая полоса пропускания CISPR или полоса пропускания 1 МГц для измерений ниже или выше 1 ГГц, соответственно.

6.11 Стабильность частоты передатчика

Стабильность частоты — это мера дрейфа частоты из-за колебаний температуры и напряжения питания относительно частоты, измеренной при соответствующей эталонной температуре и номинальном напряжении питания.

Если метод измерения стабильности частоты передатчика не указан в применимых RSS или справочных стандартах, применяются следующие условия:

  1. Эталонная температура для радиопередатчиков составляет + 20 ° C (+ 68 ° F).
  2. Переносное устройство, которое может работать только от внутренних батарей, должно быть испытано при номинальном напряжении батареи, а затем при рабочем конечном напряжении батареи, которое должно быть указано изготовителем оборудования.Для этого теста можно использовать аккумулятор или внешний источник питания.
  3. Рабочая несущая частота должна быть установлена ​​в соответствии с опубликованным производителем руководством по эксплуатации и эксплуатации до начала этих испытаний. Никакая регулировка какого-либо элемента схемы определения частоты не должна производиться после этой первоначальной настройки.

Если передатчик установлен в испытательной камере для окружающей среды, немодулированная несущая частота и стабильность частоты должны быть измерены в условиях, указанных ниже для лицензированных и не требующих лицензирования устройств, если иное не указано в применимом RSS.Перед каждым измерением частоты следует использовать достаточный период стабилизации при каждой температуре.

Для лицензированных устройств применяются следующие условия измерения:

  1. при температурах -30 ° C (-22 ° F), + 20 ° C (+ 68 ° F) и + 50 ° C (+ 122 ° F) и номинальном напряжении питания, указанном изготовителем.
  2. при температуре + 20 ° C (+ 68 ° F) и ± 15% от номинального напряжения питания производителя

Для устройств, не подлежащих лицензированию, применяются следующие условия:

  1. при температурах -20 ° C (-4 ° F), + 20 ° C (+ 68 ° F) и + 50 ° C (+ 122 ° F) и номинальном напряжении питания, указанном изготовителем.
  2. при температуре + 20 ° C (+ 68 ° F) и ± 15% от номинального напряжения питания производителя

Если пределы стабильности частоты соблюдаются только в диапазоне температур, который меньше диапазона, указанного в (a) для лицензированных или не требующих лицензии устройств, требование стабильности частоты будет считаться выполненным, если передатчик автоматически предотвращает работа за пределами этого меньшего температурного диапазона, и если опубликованные рабочие характеристики оборудования пересмотрены, чтобы отразить этот ограниченный температурный диапазон.

Если устройство содержит как лицензионные, так и не требующие лицензии модули передатчика, стабильность частоты устройства должна быть измерена при самых строгих условиях, указанных в применимом RSS модуля передатчика.

Кроме того, если немодулированная несущая недоступна, метод, используемый для измерения стабильности частоты, должен быть описан в отчете об испытаниях.

6.12 Выходная мощность передатчика

Перед выполнением этого измерения мощность EUT должна быть установлена ​​или отрегулирована на максимальное значение диапазона, для которого запрашивается сертификация или проверка оборудования.

Если не указано иное, испытания должны проводиться при температуре окружающей среды, при номинальном напряжении питания изготовителя и с модулирующим сигналом передатчика, репрезентативным (т. Е. Типичным) из тех, которые встречаются в реальной работе системы.

Анализатор спектра должен быть настроен с полосой разрешения, которая охватывает всю занимаемую полосу пропускания (см. Раздел 6.7) EUT. Если наибольшая доступная полоса разрешения анализатора спектра меньше, чем занимаемая полоса пропускания EUT, разрешается использовать более узкую полосу разрешения плюс численное интегрирование в единицах линейной мощности по занимаемой полосе пропускания передатчика для измерения его выходной мощности. , кроме случаев, когда излучение представляет собой широкополосный шумоподобный сигнал и измеряется пиковая мощность.Для передатчиков с постоянной модуляцией огибающей измерения выходной мощности РЧ и напряженности поля, выполняемые на основной частоте, могут выполняться с немодулированной несущей. Используемый метод должен быть описан в протоколе испытаний.

Если антенна съемная, выходная мощность передатчика может быть измерена на порте антенны с помощью кондуктивных измерений.

Если антенна несъемная, измерения напряженности поля следует проводить с использованием испытательного полигона, соответствующего соответствующим нормативным документам.2} {30 \ times G} \]

, где D — расстояние в метрах между измерительной антенной и передающей антенной (EUT), а G — числовое усиление передающей антенны, относительно изотропного усиления, в дБи.

Примечание 1
При выполнении измерений излучаемого излучения на открытой площадке или на альтернативной испытательной площадке, влияние металлической заземляющей пластины на максимальное значение напряженности поля следует учитывать перед расчетом TP.
Примечание 2
Приведенная выше формула действительна только в том случае, если измерение выполняется в условиях дальнего поля.

6.13 Нежелательные излучения передатчика

6.13.1 Детектор

Когда пределы нежелательных излучений определены в относительных единицах, один и тот же параметр, пиковая мощность или средняя мощность, должен использоваться в качестве эталона как для выходной мощности передатчика, так и для измерений нежелательных излучений.

Если пределы нежелательных излучений выражены в абсолютном выражении, если иное не указано в применимом RSS, применяются следующие условия:

  1. Ниже 1 ГГц соответствие ограничениям должно быть продемонстрировано с помощью квазипикового детектора CISPR и соответствующей ширины полосы измерения (см. Раздел 6.10).
  2. На частотах выше 1 ГГц соответствие ограничениям должно быть продемонстрировано с помощью линейного детектора среднего значения (см. Раздел 6.10) с минимальной разрешающей способностью 1 МГц.
6.13.2 Диапазон частот для измерения нежелательного излучения

При измерении нежелательных излучений следует исследовать спектр от 30 МГц или от сигнала самой низкой радиочастоты, генерируемого или используемого в оборудовании, в зависимости от того, что ниже, но не ниже 9 кГц, по крайней мере до соответствующей частоты, указанной ниже:

  1. Если оборудование работает ниже 10 ГГц: до десятой гармоники наивысшей основной частоты или до 40 ГГц, в зависимости от того, что ниже.
  2. Если оборудование работает на частотах 10 ГГц и ниже и ниже 30 ГГц: до пятой гармоники наивысшей основной частоты или до 100 ГГц, в зависимости от того, что ниже.
  3. Если оборудование работает на частоте 30 ГГц или выше: до пятой гармоники наивысшей основной частоты или до 200 ГГц, в зависимости от того, что ниже, если иное не указано в применимом RSS.
  4. Если оборудование содержит цифровое устройство, которое используется исключительно для обеспечения работы радиоаппаратуры: спектр должен быть исследован в соответствии с условиями, указанными в параграфах (a) — (c) данного раздела, или диапазоном, применимым к цифровым устройствам. устройства, как показано в таблице 2, в зависимости от того, какой диапазон частот исследования выше.
Таблица 2 — Диапазон частот для измерения излучаемого излучения для оборудования с цифровым устройством
Самая высокая частота, генерируемая, работающая или используемая в оборудовании (МГц) Верхняя граница диапазона измерения частоты (МГц)
<1,705 30
1.705-108 1000
108-500 2000
500-1000 5000
> 1000 5-я гармоника наивысшей частоты или 40 ГГц, в зависимости от того, что ниже

Нет необходимости сообщать об амплитуде побочных излучений, ослабленных более чем на 20 дБ ниже допустимого значения.

7. Пределы выбросов приемника

7.1 Общие

Соответствие ограничениям, установленным в этом разделе, должно быть продемонстрировано с использованием метода измерения, описанного в ANSI C63.4 в соответствии с разделом 3.2 настоящего стандарта.

Для излучений на частотах ниже 1 ГГц измерения должны выполняться с использованием квазипикового детектора CISPR и соответствующей ширины полосы измерения (см. Раздел 6.9). На частотах выше 1 ГГц измерения должны выполняться с использованием линейного детектора среднего значения с минимальной полосой разрешения 1 МГц (см. Раздел 6.10). Для кондуктивных излучений от линий электропередачи переменного тока должны использоваться как квазипиковые, так и средние детекторы, имеющие характеристики, указанные в CAN / CSA-CISPR 16-1-1: 15 для диапазона частот от 150 кГц до 30 МГц, согласно таблице 4.

7.2 Пределы кондуктивных помех от линий электропередачи переменного тока

Приемник должен соответствовать ограничениям на кондуктивные излучения, указанным в разделе 8.8, на входном кабеле (кабелях) линии питания переменного тока или на кабеле (ах) входа линии питания переменного тока устройства, питающего тестируемый приемник, когда приемник не имеет условий для прямого подключения к сети переменного тока и вместо этого получает питание от другого устройства.

7.3 Пределы излучения приемника

Измерения излучаемого излучения должны выполняться с антенной приемника, подключенной к портам антенны приемника. Поиск побочных излучений должен осуществляться от самой низкой частоты, генерируемой внутри или используемой в приемнике (например, гетеродина, промежуточной или несущей частоты), или 30 МГц, в зависимости от того, что выше, по крайней мере до пятикратной максимальной частоты настраиваемого или гетеродина. в зависимости от того, что выше, но не более 40 ГГц.

Побочные излучения от приемников не должны превышать пределов излучаемых излучений, указанных в таблице 3.

Таблица 3 — Пределы излучения приемника
Частота (МГц) Напряженность поля (мкВ / м на расстоянии 3 м) Примечание 1
30 — 88 100
88 — 216 150
216–960 200
Свыше 960 500

Примечание 1: Измерения на соответствие ограничениям в таблице 3 могут выполняться на расстоянии, отличном от 3 метров, в соответствии с разделом 6.6.

7,4 Пределы кондуктивного излучения приемника

Если приемник имеет съемную антенну с известным импедансом, измерение паразитных излучений, проводимых антенной, разрешается в качестве альтернативы измерению излучаемого излучения. Однако предпочтительнее использовать излучаемый метод, описанный в разделе 7.3. Сноска 4

Испытание на кондуктивность антенны должно проводиться с отключенной антенной и с антенным портом приемника, подключенным к измерительному прибору, имеющему входное сопротивление, равное тому, которое указано для антенны.Радиочастотный кабель, соединяющий тестируемый приемник с измерительным прибором, также должен иметь такое же полное сопротивление, что и антенна приемника.

Побочные излучения приемника на любой дискретной частоте, измеренные в порте антенны антенно-проводимым методом, не должны превышать 2 нВт в диапазоне частот 30–1000 МГц и 5 нВт выше 1 ГГц.

8. Безлицензионная радиоаппаратура

Помимо соответствия требованиям других разделов этого стандарта, радиоаппаратура без лицензии в RSS серий 200 и 300 должна соответствовать требованиям этого раздела 8, где это применимо.

8.1 Ширина полосы измерения и функции детектора

Если не указано иное, для всех частот, равных или менее 1 ГГц, пределы излучения для радиооборудования без лицензии, указанные в применимых RSS (включая RSS-Gen), основаны на измерениях с использованием функции квазипикового детектора CISPR с за исключением диапазонов частот 9–90 кГц и 110–490 кГц, где пределы излучения основаны на измерениях с использованием линейного детектора среднего значения.Полоса пропускания, которая будет использоваться для измерения, зависит от измеряемой частоты и должна соответствовать спецификации CAN / CSA-CISPR 16-1-1: 15 для требуемого типа детектора, который будет использоваться для измерений.

Если для EUT указан средний предел, то пиковое излучение также должно быть измерено с помощью приборов, должным образом отрегулированных с учетом таких факторов, как импульсная десенсибилизация, чтобы гарантировать, что пиковое излучение будет менее чем на 20 дБ выше среднего предела.

Если для полезных излучений указано среднее измерение, для проведения измерения должен использоваться детектор линейного среднего значения, имеющий полосу пропускания, равную или превышающую ширину занимаемой полосы.

8,2 Импульсный режим

Если напряженность поля или мощность огибающей непостоянны или выражены в импульсах, а для использования указан детектор среднего значения, значение напряженности поля или мощности должно определяться усреднением по одной полной серии импульсов, в течение которой напряженность поля или мощность находится на максимальном значении, включая интервалы гашения в последовательности импульсов, при условии, что последовательность импульсов не превышает 0,1 секунды. В случаях, когда последовательность импульсов превышает 0.1 секунду, среднее значение напряженности поля или выходной мощности должно определяться в течение 0,1-секундного интервала, в течение которого напряженность или мощность поля достигают своего максимального значения.

Точный метод расчета средней напряженности поля должен быть описан в протоколе испытаний.

Для устройств с импульсной модуляцией с частотой повторения импульсов 20 Гц или менее и для которых указаны квазипиковые измерения CISPR, соответствие должно быть продемонстрировано с использованием измерительных приборов, использующих функцию пикового детектора, должным образом отрегулированную для таких факторов, как снижение чувствительности импульса, с использованием те же значения ширины полосы измерения, которые указаны для квазипиковых измерений CISPR.

8.3 Запрещение усилителей

Если иное не указано в применимом RSS, производство, импорт, распространение, аренда, продажа или предложение на продажу РЧ-усилителей мощности для использования с радиоаппаратурой, не подлежащей лицензированию, запрещены.

8.4 Уведомление о руководстве пользователя

В дополнение к другим обязательным заявлениям, указанным в другом месте в этом стандарте или в применимом RSS, руководства пользователя для радиоаппаратуры, освобожденной от лицензии, должны содержать следующий текст или эквивалентное уведомление, которое должно отображаться на видном месте, либо в руководство пользователя или на устройстве, или и то, и другое:

Это устройство содержит не требующие лицензии передатчики / приемники, которые соответствуют требованиям RSS Innovation, Science and Economic Development Канады.Эксплуатация возможна при следующих двух условиях:

  1. Это устройство не должно вызывать помех.
  2. Это устройство должно принимать любые помехи, включая помехи, которые могут вызвать сбои в работе устройства.

8.5 Измерение безлицензионных устройств на месте (на месте)

В случае устройств, не подлежащих лицензированию, для которых измерения должны выполняться на территории конечного пользователя или производителя, таких как системы защиты периметра и датчики уровня, метод измерения на месте / на месте в ANSI C63.10 должны использоваться.

8.6 Диапазон рабочих частот устройств в сетях ведущий / ведомый

Ведущее устройство — это устройство, которое может работать в режиме, в котором оно может передавать без предварительного получения разрешающего сигнала, а также выбирать канал и инициировать сеть, отправляя разрешающие сигналы другим устройствам. Подчиненное устройство — это устройство, работающее в режиме, в котором передачи устройства находятся под управлением ведущего устройства. Устройство в ведомом режиме не может инициировать сеть.

Подчиненные устройства могут быть сертифицированы за пределами выделенной не подлежащей лицензированию полосы частот, указанной в применимом RSS, при условии, что они работают только под управлением ведущего устройства. Это положение не распространяется на главные устройства. Подчиненные устройства, которые также могут действовать как ведущие, должны соответствовать требованиям ведущего устройства.

Ведущие устройства, использующие технологию определения местоположения, такую ​​как GPS, или устройства, которые могут подключаться к устройству GPS или использовать удаленные технологии, такие как защищенная база данных, для автоматической настройки сертифицированного устройства на правильную частоту и уровни мощности — и все это без взаимодействие с пользователем — также разрешено пройти сертификацию.Такие конфигурации должны быть способны «фиксировать» правильные частоты и работать на соответствующих уровнях мощности без необходимости вмешательства пользователя.

8.7 Устройства радиочастотной идентификации (RFID)

Активные RFID-метки, которые работают от собственного источника питания и активно передают идентификационные данные, должны соответствовать применимым RSS.

Пассивные RFID-метки, которые не используют собственный источник энергии для передачи, но отправляют идентификационные данные, пассивно возвращая энергию, полученную от опрашивающего сигнала считывателя RFID, освобождаются от любых требований ISED по сертификации, тестированию и маркировке.Чтобы иметь право на это исключение, RFID-метка не должна иметь батареи или другого источника питания, или, если таковая имеется, она не должна использовать свой собственный источник питания для своей функции радиопередачи (т. Е. Пассивная RFID-метка разрешена. использовать собственный источник питания для других функций, таких как мониторинг температуры или управление памятью, или для повышения чувствительности приема).

8,8 Пределы кондуктивных помех от линий электропередачи переменного тока

Если иное не указано в применимом RSS, для радиоаппаратуры, которая предназначена для подключения к электросети переменного тока общего пользования, радиочастотное напряжение, которое передается обратно в линию питания переменного тока на любой частоте или частотах в диапазоне от 150 кГц до 30 МГц не должны превышать пределы, указанные в таблице 4, при измерении с использованием цепи стабилизации полного сопротивления линии 50 мкГн / 50 Ом.Это требование применяется к высокочастотному напряжению, измеренному между каждой линией электропередачи и клеммой заземления каждого сетевого кабеля линии электропередачи переменного тока ИО.

Для EUT, которое подключается к линиям питания переменного тока косвенно, через другое устройство, требование соответствия ограничениям, указанным в таблице 4, должно применяться на клеммах сетевого кабеля линии питания переменного тока типичного опорного устройства, пока оно обеспечивает питание. к EUT. Нижний предел применяется на границе между частотными диапазонами.Устройство, используемое для питания EUT, должно соответствовать типичным приложениям.

Таблица 4 — Пределы кондуктивных помех от линий электропередачи переменного тока
Частота (МГц) Предел кондуктивной мощности (дБмкВ)
Квазипиковый Среднее значение
0,15 — 0,5 66-56 Примечание 1 56-46 Примечание 1
0.5–5 56 46
5-30 60 50

Примечание 1: Уровень линейно уменьшается с логарифмом частоты.

Для EUT с постоянной или съемной антенной, работающей в диапазоне от 150 кГц до 30 МГц, кондуктивные излучения линии электропередачи переменного тока должны быть измерены с использованием следующих конфигураций:

  1. Выполните тест на кондуктивное излучение линии электропередачи переменного тока с подключенной антенной, чтобы определить соответствие ограничениям таблицы 4 за пределами основной полосы излучения передатчика.
  2. Проведите повторное испытание с фиктивной нагрузкой вместо антенны, чтобы определить соответствие ограничениям таблицы 4 в пределах основной полосы излучения передатчика. В случае съемной антенны снимите антенну и подключите подходящую фиктивную нагрузку к разъему антенны. В случае постоянной антенны удалите антенну и ограничьте выход RF с помощью фиктивной нагрузки или сети, которая имитирует антенну в основной полосе частот.

8.9 Пределы излучения преобразователя

Если иное не указано в применимом RSS, излучаемые излучения должны соответствовать пределам напряженности поля, указанным в таблицах 5 и 6.Кроме того, уровень нежелательного излучения любого передатчика не должен превышать уровень основного излучения передатчика.

Таблица 5 — Общие пределы напряженности поля на частотах выше 30 МГц
Частота (МГц) Напряженность поля (мкВ / м на расстоянии 3 м)
30 — 88 100
88 — 216 150
216–960 200
Свыше 960 500

Таблица 6 — Общие пределы напряженности поля на частотах ниже 30 МГц
Частота Напряженность магнитного поля (H-Field) (мкА / м) Расстояние измерения (м)
9 — 490 кГц Примечание 1 6.37 / F (F в кГц) 300
490 — 1705 кГц 63,7 / F (F в кГц) 30
1.705 — 30 МГц 0,08 30

Примечание 1: Пределы излучения для диапазонов 9–90 кГц и 110–490 кГц основаны на измерениях с использованием линейного детектора среднего значения.

8.10 Ограниченные полосы частот

Ограниченные полосы частот, указанные в таблице 7, предназначены в первую очередь для служб безопасности жизни (вызов в случае бедствия и определенная авиационная деятельность), определенных спутниковых линий связи, радиоастрономии и некоторых государственных нужд. Если не указано иное, применяются следующие условия, относящиеся к ограниченным полосам частот:

  1. Частота передачи, включая основные компоненты модуляции, радиоаппаратуры, не имеющей лицензии, не должна попадать в ограниченные полосы частот, перечисленные в таблице 7, за исключением устройств, совместимых с RSS-287, Радиомаяки-указатели аварийного положения (EPIRB), Аварийные Передатчики-локаторы (ELT), персональные маяки-локаторы (PLB) и устройства обнаружения выживших на море (MSLD) .
  2. Нежелательные излучения, попадающие в ограниченные полосы частот, перечисленные в таблице 7, должны соответствовать ограничениям, указанным в таблице 5 и таблице 6.
  3. Нежелательные излучения, которые не попадают в ограниченные полосы частот, перечисленные в таблице 7, должны соответствовать либо ограничениям, указанным в применимом RSS, либо ограничениям, указанным в таблице 5 и таблице 6.
Таблица 7 — Ограниченные полосы частот Примечание 1
МГц МГц ГГц
0.090–0,110 149,9 — 150,05 9,0 — 9,2
0,495 — 0,505 156,52475 — 156,52525 9,3 — 9,5
2,1735 — 2,1905 156,7 — 156,9 10,6 — 12,7
3,020 — 3,026 162.0125 — 167.17 13,25 — 13.4
4,125 — 4,128 167,72 — 173,2 14,47 — 14,5
4,17725 — 4,17775 240–285 15,35 — 16,2
4.20725 — 4.20775 322 — 335,4 17,7 — 21,4
5,677 — 5,683 399,9 — 410 22.01 — 23.12
6,215 — 6,218 608–614 23,6 — 24,0
6,26775 — 6,26825 960–1427 31,2 — 31,8
6.31175 — 6.31225 1435–1626,5 36,43 — 36,5
8,291 — 8,294 1645,5 — 1646.5 Выше 38,6
8,362 — 8,366 1660–1710
8,37625 — 8,38675 1718,8 — 1722,2
8.41425 — 8.41475 2200–2300
12,29 — 12,293 2310–2390
12.51975 — 12,52025 2483,5 — 2500
12,57675 — 12,57725 2655–2900
13,36 — 13,41 3260–3267
16,42 — 16,423 3332–3339
16,69475 — 16,69525 3345.8 — 3358
16.80425 — 16.80475 3500–4400
25,5 — 25,67 4500–5150
37,5 — 38,25 5350–5460
73 — 74,6 7250–7750
74.8 — 75,2 8025–8500
108 — 138

Примечание 1: Некоторые диапазоны частот, перечисленные в таблице 7, и диапазоны выше 38,6 ГГц предназначены для приложений, не требующих лицензирования. Эти полосы частот и требования, которые применяются к соответствующим устройствам, изложены в RSS серии 200 и 300.

8.11 Стабильность частоты

Если стабильность частоты не требующей лицензии радиоаппаратуры не указана в применимой RSS, основные излучения радиоаппаратуры следует удерживать в пределах, по крайней мере, центральных 80% разрешенной полосы рабочих частот, чтобы свести к минимуму возможность внеполосная работа.Кроме того, его занимаемая полоса частот должна полностью выходить за пределы ограниченных полос и запрещенных телевизионных полос 54–72 МГц, 76–88 МГц, 174–216 МГц и 470–602 МГц, если не указано иное.

9. Глоссарий часто используемых терминов и определений RSS

Этот список терминов и определений охватывает обычно используемую терминологию измерений во всех спецификациях радиостандартов.

Срок
Определение
Разрешенная полоса пропускания
Максимальная ширина полосы частот, используемой для получения спектральных масок.
Средняя мощность (передатчик)
Значение мощности, подаваемой передатчиком в линию передачи антенны, усредненное за период модуляции. Это мощность, которую показывает измеритель тепловой мощности.
Цифровая аппаратура класса A / оборудование информационных технологий (ITE)
Цифровое устройство или ITE, которое в силу своих характеристик маловероятно для использования в жилых помещениях, включая домашний бизнес.Характеристики, рассматриваемые в этой оценке, включают цену, методологию маркетинга и рекламы, степень, в которой функциональный дизайн препятствует применению приложений, подходящих для жилых помещений, или любую комбинацию функций, которая может эффективно препятствовать использованию такого оборудования в жилой среде.
Цифровое устройство класса B / ITE
Цифровое устройство или ITE, которое не может быть отнесено к классу A.
Эффективная излучаемая мощность (ERP или e.r.p.)
Произведение мощности, подаваемой на антенну, и ее усиления относительно полуволнового диполя в заданном направлении.
Эмиссия
Электромагнитная передача излучаемыми средствами электрического или электронного устройства или проводимая таким устройством через присоединенные к нему проводные интерфейсы. Эти выбросы могут быть преднамеренными или непреднамеренными.
Обозначение выбросов
Обозначение набора характеристик преднамеренного излучаемого излучения радиопередатчика стандартными символами (т.е.г. тип модуляции основной несущей, модулирующий сигнал, тип передаваемой информации, а также, при необходимости, любые дополнительные характеристики сигнала). Например, обозначение 20K0FID означает необходимую полосу пропускания (или занимаемую полосу пропускания) 20,0 кГц, использует частотную модуляцию, является одноканальным и имеет формат данных / цифровой.
Мощность огибающей (передатчик)
Значение мощности, подаваемой на линию передачи антенны передатчиком, усредненное за период несущей.Мощность огибающей изменяется во времени с частотой модуляции.
Эквивалентная изотропно излучаемая мощность (ЭИИМ или э.и.и.м.)
Произведение мощности, подаваемой на антенну, и коэффициента усиления антенны в заданном направлении относительно изотропной антенны.
Идентификационный номер версии микропрограммы (FVIN)
FVIN определяет версию прошивки, используемую продуктом, которая контролирует / влияет на радиочастотные характеристики продукта.
Идентификационный номер версии оборудования (HVIN)
HVIN определяет аппаратные характеристики версии продукта. HVIN заменяет номер модели в устаревшей системе электронной регистрации. HVIN требуется для всех продуктов для приложений сертификации.
Гармоническое излучение
Излучения, расположенные на частотах, кратных основной частоте излучения передаваемого сигнала.
Маркетинговое имя хоста (HMN)
HMN — это название или номер модели конечного продукта, который содержит сертифицированный радиомодуль.
Преднамеренный радиатор
Устройство, которое намеренно генерирует и излучает радиочастотную энергию посредством излучения, индукции или теплопроводности.
Средняя мощность (радиопередатчика)
Средняя мощность, подаваемая передатчиком в линию передачи антенны в течение достаточно длительного промежутка времени по сравнению с самой низкой частотой, встречающейся при модуляции, принятой в нормальных рабочих условиях.
Ограничение отклонения модуляции
Способность схемы передатчика предотвращать создание передатчиком отклонения модуляции, превышающего номинальное отклонение системы.
Необходимая полоса пропускания
Ширина полосы частот, достаточная для обеспечения передачи информации со скоростью и качеством, требуемыми в определенных условиях для данного класса преднамеренного излучения.
Занятая полоса пропускания
Ширина полосы частот, при которой ниже нижнего и выше верхнего пределов частоты каждая излучаемая средняя мощность равна 0,5% от общей излучаемой мощности.Это также известно как «ширина полосы излучения 99%». Для передатчиков, в которых имеется несколько несущих, смежных или несмежных по частоте, занимаемая ширина полосы должна быть суммой занимаемых полос частот отдельных несущих.
Внеполосное излучение
Излучения на частоте или частотах, непосредственно выходящих за пределы необходимой ширины полосы, которые возникают в результате процесса модуляции, но не включают побочные излучения.
Паразитарные выбросы
Побочные излучения, случайно генерируемые на частотах, которые не зависят от несущей или характеристической частоты излучения и частот колебаний, возникающих в результате генерации несущей или характеристической частоты.
Пиковая мощность огибающей
Максимальное значение мощности огибающей для всех возможных нормальных условий работы передатчика.
Спектральная плотность мощности
Мощность на единицу полосы пропускания.
Маркетинговое название продукта (PMN)
PMN — это название или номер модели, под которой продукт будет продаваться / предлагаться для продажи в Канаде. Если у продукта есть PMN, он должен быть предоставлен.
Радиация
Выходящий поток электромагнитной энергии от любого источника в виде радиоволн.
Модуль радиоаппаратуры
Радиоаппаратура, которая не может работать сама по себе и должна быть включена в другое (главное) устройство, чтобы иметь возможность работать. Такой модуль может быть изготовлен, продан и сертифицирован (если он относится к Категории I) третьей стороной.
Узел / подсхема радиоаппаратуры
Схема или узел, который обеспечивает функцию радиоаппаратуры более сложному устройству (т.е. который также включает в себя функции, отличные от радиосвязи) и является неотъемлемой и неотъемлемой частью этого устройства (например, на той же печатной плате, что и остальная часть схемы устройства).
Приемник побочных излучений
Радиочастотные сигналы, генерируемые или используемые в приемнике, которые могут создавать помехи другому оборудованию при всех нормальных рабочих условиях, включая период, в течение которого приемник сканирует или переключает каналы.
Кондуктивное излучение приемника
Те излучения, которые генерируются или используются в приемнике и появляются в порте антенны приемника. Производитель может включать или не включать оборудование приемника с множественной связью, фильтрацию и предварительное усиление в измерения, в зависимости от того, должен ли приемник быть сертифицирован как автономный компонент или как часть общей системы множественной связи / предварительного усиления. система усиления.
Излучаемые побочные излучения приемника
Те излучения, которые генерируются или используются в приемнике и излучаются приемником через его антенну, из его корпуса и / или через управляющие, силовые, аудиокабели или любые другие кабели, подключенные к проводным интерфейсам приемника.
Сканер-приемник
Приемники, которые сканируют полосу или полосы частот и демодулируют и / или декодируют сигналы. Приемники, используемые в некоторых устройствах (например, устройствах с функцией «послушай перед разговором») с целью обнаружения существующей РЧ-энергии, чтобы избежать передачи на занятых частотах, не классифицируются как приемники сканера.
Побочные излучения
Излучение на частоте или частотах, которые выходят за пределы необходимой полосы пропускания и уровень которых может быть уменьшен, не влияя на соответствующую передачу информации.Побочные излучения включают гармонические излучения, паразитные излучения, продукты интермодуляции и продукты преобразования частоты, но исключают внеполосные излучения.
Стандартная входная оконечная нагрузка
Стандартная входная оконечная нагрузка состоит из оконечной нагрузки, равной нагрузке, на которую рассчитан приемник.
Стандартная выходная оконечная нагрузка
Стандартная выходная оконечная нагрузка состоит из оконечной нагрузки, равной нагрузке, на которую рассчитан преобразователь.
Стандартное испытательное напряжение
Первичное напряжение, приложенное к входному концу силового кабеля, обычно подключенного к оборудованию. Нормальное рабочее напряжение должно быть в пределах ± 2% от значения, указанного изготовителем.
Переходная частотная характеристика
Мера разницы, как функция времени, между фактической частотой передатчика и назначенной частотой передатчика, когда переданная выходная мощность РЧ включается или выключается.
Выходная мощность передатчика
ВЧ-мощность, рассеиваемая в стандартной выходной оконечной нагрузке при работе с максимальной мощностью и во всех типичных рабочих условиях, как заявлено заявителем на утверждение.
Непреднамеренный радиатор
Устройство, генерирующее РЧ-энергию, не предназначенную для излучения для приема радиоприемником.
Уникальный номер продукта (UPN)
UPN присваивается заявителем и состоит максимум из 11 буквенно-цифровых символов (A – Z, 0–9).
Нежелательные выбросы
Состоит из внеполосных излучений (т. Е. Излучений на частоте или частотах, непосредственно выходящих за пределы необходимой ширины полосы) и побочных излучений.

Сноски

Сноска 1

Термин «радиоаппаратура» может также называться «устройством» или «оборудованием».

Вернуться к сноске 1 реферер

Сноска 2

Соглашения / договоренности подписаны Global Affairs Canada (GAC) или ISED и доступны на веб-сайте GAC в разделе Trade Negotiations and Agreement .

Вернуться к сноске 2 реферер

Сноска 3

Устройства, для которых заявка на отложенную дату включения в список REL была одобрена ISED, могут быть импортированы и распространены.

Вернуться к сноске 3 реферер

Сноска 4

Аудиторские испытания, проводимые ISED для подтверждения соответствия, будут использовать излучаемый метод для измерения побочных излучений приемника.Если пределы излучения превышены или в результате жалобы на помехи установлено, что побочные излучения устройства вызывают вредные помехи другим авторизованным пользователям спектра, ISED может потребовать от стороны, ответственной за соблюдение требований, предпринять корректирующие действия. Поэтому рекомендуется использовать излучаемый метод.

Вернуться к сноске 4 реферер


Приложение А (обязательное) — Содержание отчета об испытаниях

Протокол испытаний должен содержать, как минимум, следующие компоненты:

  1. название, идентифицирующее оборудование, версию продукта (PMN, HVIN, FVIN, HMN, если применимо) и применимые RSS
  2. дата составления отчета
  3. наименование, идентификатор органа по оценке соответствия (CABID), почтовый адрес испытательного центра и место (почтовый адрес), где фактически проводились испытания
  4. наименование и почтовый адрес производителя EUT
  5. имя (я), функция (и) и подпись (и) или эквивалентная идентификация лица (лиц), ответственного (ых) за отчет об испытаниях
  6. уникальный идентификатор в отчете об испытаниях (например, номер отчета об испытаниях)
  7. оглавление, идентификатор на каждой странице, указывающий, что страница является частью отчета о тестировании, и четкое упоминание на последней странице отчета о тестировании, указывающее конец
  8. описание вместе с однозначной идентификацией EUT, т.е.е. модели и серийные номера (Если по какой-либо причине требуется более одного образца, каждое конкретное испытание должно определять, какой блок был протестирован.)
  9. для каждого EUT, описание его физической конфигурации (например, подключенные проводные интерфейсы и соответствующая компоновка во время тестирования) и работы (например, внешний и внутренний методы тестирования, включая конфигурацию программного обеспечения и номер прошивки — см. Также пункт (12) ниже)
  10. — сводка всех тестов, перечисленных в RSS, и ссылка на метод тестирования, который применяется к конкретному EUT.В сводке также должно быть указано, прошло или не прошло EUT каждое применимое требование, в частности, в следующих областях:
    1. Номинальная мощность передатчика
    2. тип модуляции с кратким описанием, дающим любую полезную информацию, чтобы помочь потенциальным пользователям понять устройство, например, но не ограничиваясь этим, скорость передачи данных и скорость передачи символов
    3. все диапазоны частот работы
    4. занимаемая (ые) полоса (ые), полоса (ые) канала (ов) и указатель (а) излучения
    5. , если устройство работает в импульсном режиме, должно быть представлено графическое представление, изображающее типичную закодированную серию импульсов, показывающую ширину и амплитуду импульсов во временной области, а также метод расчета мощности и тип детектора, использованного во время тестирования.
    6. Стабильность частоты и вспомогательная информация
    7. список всех антенн, включая соответствующую информацию, такую ​​как, помимо прочего, тип антенны, усиление антенны и входной импеданс антенны, предназначенных для использования с устройством.В отчете об испытаниях также должна быть четко указана конкретная антенна (по описанию, модели и серийным номерам), используемая для каждого испытания.
  11. фотографий EUT и любых принадлежностей, поставляемых производителем, которые используются с EUT в нормальных условиях эксплуатации и имеют отношение к цели проведения испытаний EUT
  12. любые процедуры настройки или регулировки, использованные во время тестирования EUT, наряду с идентификацией и описанием любого рабочего программного обеспечения / встроенного программного обеспечения, используемого как в нормальном рабочем режиме, так и в специальных режимах тестирования для проверки соответствия
  13. неопределенность измерения для каждого тестового случая, если применимо
  14. следующую информацию для каждого условия тестирования, если оно считается применимым:
    1. все требования, по которым тестируется устройство
    2. условия эксплуатации EUT (включая микропрограммное обеспечение, специальные настройки программного обеспечения и уровни входных / выходных сигналов в / из EUT)
    3. описание микропрограммного обеспечения или программного обеспечения, используемого для работы EUT в целях тестирования
    4. результаты каждого теста в виде таблиц, графиков анализатора спектра, диаграмм, расчетов образцов и т. Д., В зависимости от ситуации
    5. используемое испытательное оборудование, идентифицируемое по типу, производителю, серийному номеру или другому идентификатору и дате следующей калибровки или сервисной проверки
    6. любые модификации, внесенные в прибор
    7. описание и блок-схема испытательной установки
    8. фотографий испытательной установки, если они имеют отношение к возможности воспроизведения результатов испытаний; предоставленная информация должна четко указывать конфигурацию всего EUT и всего вспомогательного оборудования, используемого во время тестирования
    9. имя (имена) человека (лиц), который (проводил) тесты
  15. , если не указано иное, измерения должны выполняться для каждой полосы частот, для которой радиоаппаратура должна быть сертифицирована или в которой она работает (для аппаратуры категории II), с устройством, работающим на частотах в каждой рабочей полосе. согласно требованиям раздела 6.9, таблица 1. Частоты, выбранные для измерений, должны быть указаны в протоколе испытаний
  16. .
  17. дополнительные требования, указанные в применимых RSS или в применимом стандарте метода испытаний согласно разделу 3

Приложение B (обязательное) — Требования к электронной маркировке (электронной маркировке)

В разделах ниже подробно описаны требования, предъявляемые к электронной маркировке.

В1. Информация для отображения

На электронной этикетке должна быть указана следующая нормативная информация:

  1. Сертификационный номер ISED и идентификационный номер модели радиооборудования
  2. любая другая информация, которая должна быть размещена на поверхности устройства, если только такая информация не разрешена для включения в руководство пользователя или другие упаковочные вкладыши

B2.Доступность электронной этикетки

Пользователям должны быть предоставлены четкие инструкции о том, как получить доступ к нормативной информации, хранящейся в электронном виде (электронная этикетка). Эти инструкции должны соответствовать следующим требованиям:

  1. должны быть указаны в руководстве пользователя, инструкциях по эксплуатации или на упаковочном материале (например, на пакетах, используемых для упаковки устройства, или на сопроводительных листовках), или на веб-сайте, относящемся к продукту
  2. не требует использования специальных кодов доступа или аксессуаров (например,г. SIM / USIM-карты)
  3. не может включать более трех шагов из главного меню устройства

Электронная этикетка должна соответствовать следующим требованиям:

  1. быть легко доступным для пользователя
  2. не может быть изменен пользователем (например, если он сохранен в меню прошивки или программного обеспечения)

В заявке на авторизацию оборудования должны быть четко указаны инструкции по доступу к нормативной информации, хранящейся в электронном виде, согласно разделу B1.

В3. Этикетка для ввоза и закупки

Продукты с электронными этикетками должны иметь физическую этикетку на упаковке продукта во время импорта, маркетинга и продаж. Применяются следующие условия:

  1. Для устройств, импортируемых оптом (не упакованных по отдельности), съемная клейкая этикетка или, для устройств в защитных пакетах, этикетка на пакетах является приемлемой для удовлетворения требований к физической этикетке.
  2. Любая используемая съемная этикетка должна выдерживать нормальную транспортировку и обращение и должна быть снята покупателем только после покупки. Для устройств, уже импортированных в отдельных упаковках, готовых к продаже, в качестве альтернативы информация может быть указана на упаковке и должна содержать:
    1. Сертификационный номер ISED и идентификационный номер модели
    2. Любая другая информация, которую необходимо разместить на поверхности продукта, за исключением случаев, когда такая информация разрешена для включения в руководство пользователя или другие упаковочные вкладыши.

В4. Безопасность

Информация, отображаемая на электронной этикетке согласно разделу B1, должна соответствовать следующим требованиям безопасности:

  1. программируется ответственным лицом (например, изготовителем)
  2. не может быть изменен или удален в ходе обычных разрешенных действий третьей стороной (т. Е. Обычным пользователем), таких как установка приложений или доступ к меню

В5.Инструкция по эксплуатации и упаковка

Должна быть предоставлена ​​вся информация, которая должна быть на упаковке или в руководстве пользователя в соответствии с применимыми стандартами (например, RSS), даже если руководство пользователя и компоненты упаковки предоставлены в электронном виде. Такая информация может быть указана на электронной этикетке устройства. При предоставлении такой информации на электронной этикетке необходимо учитывать следующие соображения:

  1. Если руководство пользователя предоставлено другим электронным (например,g., на компакт-диске или в Интернете), то в качестве опции требуемая информация также может быть предоставлена ​​как часть электронной этикетки.
  2. Формат электронной этикетки должен четко различать информацию, которая должна быть на поверхности устройства, и информацию, которая должна быть в руководстве пользователя или на упаковке.

В6. Устройства, утвержденные как сертифицированные модули передатчика

Устройства, утвержденные как сертифицированные модули передатчиков, могут иметь электронный номер сертификата ISED, если модуль или хост, в который он интегрирован, имеет экран дисплея.В таких случаях применяются все требования к электронной маркировке.

Если сертифицированный модуль передатчика обеспечивает безопасный интерфейс электронного обмена с аутентификацией между хостом со встроенным дисплеем и модулем для определения правильной сертификации ISED, тогда хост может отображать номер сертификата ISED модуля на встроенном дисплее хоста. В таких случаях применяются следующие условия:

  1. Модуль может устанавливаться пользователем или устанавливаться на заводе.
  2. Заявка на авторизацию оборудования для таких модулей должна включать описание защищенного протокола электронного обмена и безопасности такой схемы.
  3. Модуль должен иметь физическую этикетку с собственным номером сертификата ISED, если он также не имеет встроенного дисплея.

Если сертифицированный модуль передатчика не обеспечивает безопасный интерфейс электронного обмена с аутентификацией, производитель хоста может в электронном виде отобразить номер сертификата ISED модуля на хосте, закодировав заводской код сертификата ISED модуля.В таких случаях применяются следующие условия:

  1. Заводская кодировка должна быть защищена и заблокирована производителем хоста и не подлежит изменению третьими лицами.
  2. Запрограммированная информация должна отображать номер сертификата ISED модуля, которому предшествуют слова «содержит модуль передатчика», или слово «содержит», или аналогичную формулировку, выражающую то же значение, а именно:
    «Содержит IC модуля передатчика: XXXXXX-YYYYYYYYYYY»
    В этом случае XXXXXX-YYYYYYYYYYY — это номер сертификата модуля.

Несколько модулей в хосте могут отображаться в электронном виде как «Содержит модули передатчика IC: XXXXXX-YYYYYYYYYYY1, XXXXXX-YYYYYYYYYYY2» и т. Д.

Схема реле W164

w164 схема реле pdf W164 — Schéma pojistkové skříňky bateriového prostoru ML350 2011 Английский w164 предохранители мл. Как показано, источник питания подается на электромагнит через переключатель управления и через контакты на нагрузку.2. Откройте перчаточный ящик, нажмите на боковые стороны внутрь и поверните перчаточный ящик вниз. Конструкция реле. pdf W164 — schéma canbus interiéru 2005-2011 Номер документа pe54. Реле BOSCH. C. 940 внедорожник. включает и выключает питание предохранителя 13, таким образом мигая задние фонари прицепа. RBM 90-63 Потенциальное реле Постоянное напряжение катушки 170 Минимум срабатывания 140 Максимум 153 Максимальное отключение 65 90-64 Потенциальное реле Постоянное напряжение катушки 395 Максимальное срабатывание 245 Максимум 275 Отключение Максимум 140 90-65 Потенциальное реле непрерывное катушка 86, реле цепь переключения / управления «вход» (+) 85, цепь переключения / управления реле «выход» (-) 30, цепь питания «вход» (от источника питания) 87, цепь питания «выход» (на лампу или что-то еще другое электрическое устройство находится под напряжением).Электрические схемы Mercedes-Benz ML-класса W Mercedes-Benz M-Class Автомобиль был разработан специально для североамериканского рынка и является первым продуктом подразделения Mercedes-Benz U. Лучшие реле для установки цепи фары имеют двойные 87 клемм. Когда переключатель высокого уровня размыкается, реле двигателя P размыкается, останавливая электродвигатель, и замыкающееся реле A размыкается. wavetel. Схема подключения W164. 3 ноября 2018 г. · Все электрические схемы для автомобилей mercedes benz ml350 4matic 2010 2008 ml class w164 схема модели заднего блока предохранителей mbworld org форумы x164 sam ml320 w163 электрическая схема автомобиля 2004 бесплатные ресурсы mb medic 05 11 установка блока предохранителей прицепа m руководство по ремонту 2005 2011 a предохранители 2006 расположение ml500 ml550 w166 система рабочих фар ml450 ml300… Читать дальше »Английский w164 плата компонентов электрической системы.in. logothetis. ПРИМЕЧАНИЕ: R8 R8 — одноходовое реле, у него всего 4 контакта. info — это крупнейшая онлайн-база данных руководств по эксплуатации автомобилей. ML 500 ML 550 ML 63 AMG M Class Главный блок предохранителей и реле находится в моторном отсеке. 11/10 для WiriNG DiaGraMS 2011 ПРИМЕЧАНИЕ. Схема подключения 7-контактного прицепа представляет собой схему контактов транзистора BC548. Цепь переменного тока ML320 W163, электрические схемы модуля управления вентилятором охлаждающей жидкости. Что происходит при выходе из строя датчика давления в топливном баке. Блок предохранителей возле аккумулятора.125) 01/2006 -. Схема подключения реле. Mercedes-Benz R-Class W251 советы, хитрости, свечи зажигания, ремень, натяжитель, разное техническое обслуживание. через управляющую катушку). Схемы стандартного оборудования можно найти на схемах распределения питания и заземления или по названию компонента в указателе главной схемы на схемах уровня транспортного средства. 2018 3 комментария к записи W164 Wiring Diagram. Серебряный мост представляет собой ленточный предохранитель. Схема подключения мерседес бенц мл350 2015 года выпуска. ) (104 двигателя) Схема Открытые электрические схемы MERCEDES ML320 W163.08. Компоненты электрической системы платы английской версии w164. Электрические компоненты, такие как фонарь для карты, радио, сиденья с подогревом, дальний свет, электрические стеклоподъемники, имеют предохранители, и если они внезапно перестанут работать, скорее всего, у вас перегорел предохранитель. Осторожно при неправильных подключениях. 31 октября 2021 г. 1 ноября 2021 г. Двигатель вентилятора охлаждения радиатора двигателя Adam. MERCEDES-BENZ ML350 2008 W164 Руководство пользователя Загрузить PDF. Номер документа pe54. Блок предохранителей в моторном отсеке. 0 VVDI MB Tool и схема подключения W164 W251 W169 EIS V4.Я действительно думаю, что в настоящее время вы заинтересованы в товарах двигателя вентилятора охлаждения радиатора двигателя, так что вы знакомы с Руководством по ремонту Mercedes W164 Mercedes Benz Ml320 Руководство по ремонту Mercedes ML Class Руководство по ремонту Совместимо со всеми операционными системами ПК Windows 10, 8. W164 Comand Manual 2015 Fuse R-Class 2006-2015 Расположение блока предохранителей, таблица, схема W 251 Где находится блок предохранителей на Mercedes-Benz R-Class? Ищете ли вы место расположения предохранителя прикуривателя, радио, системы COMAND или навигационной системы, здесь вы найдете подъемник для всех предохранителей вашего R-класса.Руководство по эксплуатации Mercedes-Benz Vito Service. 8 сек Discovery I (LJ) V8-3. 9. Катушка фиксирующего реле потребляет энергию только тогда, когда реле включено. pdf W164 Elektrický systém and palubní komponenty 2005-2008 Czech w164 telefon. pdf W164 — Схема поиска 5. Предохранитель прикуривателя на 12 В в Mercedes-Benz R350. Блок управления двигателем, например, переключается реле. Сделать закладку на этой странице 13 мая 2019 г. · Схема подключения стереоаудио автомагнитолы Mercedes Схема подключения проводов разъема автомагнитолы Esquema De Conexiones Stecker Konr Connecteur Cable Shema.57-64 GM (сочетание 2-ходового, 4-ходового и 6-ходового) — Рисунок A D. Вот лишь несколько систем, для которых требуются нормально замкнутые реле. Реле скрыты во всевозможных устройствах. Либо контакт 87, либо контакт 87a будет отсутствовать, в зависимости от предполагаемой функциональности схемы. На «лестничной» диаграмме два полюса 15 мая 2019 г. · Блок предохранителей Freightliner Cascadia. Электрические реле (рисунок LC-2) имеют схему управления и один или несколько наборов выходов. Сзади, со стороны пассажира в багажнике. 1. Топливные насосы. Реле топливных насосов. Дизель-электрические.Придется залезть внутрь и открыть дверь вручную, прежде чем поднимать заднюю дверь. См. Схему для инструкций по подключению. mercedes benz m / gl class w164 / x164 поперечный рычаг левый передний нижний sca-bz054702l. Когда ваш компрессорный насос выходит из строя таким образом, это верный признак того, что где-то в пневмоподвеске есть утечка. Прежде чем приступить к замене компрессора пневмоподвески, осмотрите провода, идущие к воздушному компрессору, на предмет повреждений. Схема 5 Реле постоянного тока в виде H-моста Реле постоянного тока также очень часто используются в конфигурации H-моста для управления направлением двигателя постоянного тока.Принципиальная схема модуля всех операций ML320 W163. Также проверьте наличие неисправного разъема на воздушном компрессоре. 3 Схема подключения W164. 2Ah W221 W212 W164 НОВИНКА. 25 PDF 220VAC 2PDT 5A Пенсионный — — QM4N1-A220 $ 9. mercedes benz m / gl класс. Назначение предохранителей и реле Mercedes W164 2006-2011 Расположение предохранителей на Mercedes-Benz M-Class W164 2006-2011. Номинальный ток предохранителя. 14 января 2015 г. Кондиционеры: нормально замкнутые реле используются для поддержания работы нагнетателей кондиционеров даже после отключения воздушного компрессора, позволяя системе продолжать генерировать остаточный холодный воздух без запуска компрессора.Главный блок предохранителей и реле находится в Mercedes-Benz ML-Class (2006-2011) W164 Выключатели, двигатели, реле, предохранители и проводка — Стартеры Стартеры Стартер включает зубчатый венец на маховике, чтобы вращать его и запускать. цикл сгорания. Схема защиты от кражи ML320 W163, со схемой вспомогательной сигнализации. de / rnid Где находятся предохранители на моем Mercedes-Benz M-Class 2006-2011 W164? Расположение предохранителей на Mercedes-Benz M-Class W164 2006-2011 гг. ). Если вы производили ремонт подвески, убедитесь, что датчик уровня на передней пневматической стойке не установлен назад.Таблицы синхронизации реле. 2004-2010) Volkswagen — Beetle — Электросхема — 2004 — 2008 PEUGEOT ВСЕ МОДЕЛИ СХЕМЫ ПРОВОДОВ — ОБЩАЯ Схема блока предохранителей Mercedes-Benz M-Class (W164; 2006-2011) Датчик положения распределительного вала P3008 — aeb. ) (104 двигателя) Схема Открыть Скачать бесплатно V4. стоимость доставки, Номинальный ток [A]: 30. Состав бортовой электросети W164 W251. 945 миль на автобусе. Недавно обновленный. У вас есть выбор между различными многофункциональными реле для производителей марки MERCEDES-BENZ W164 M-Class или покупка другой качественной автомобильной запчасти.ИНСТРУКЦИИ ПО ПОДКЛЮЧЕНИЮ РЕЛЕ (240 В) 0 — Линия 1 (черная) от разъема управляющего реле Номер детали Цена Ссылка для чертежа QM2N1-A220 $ 5. Он может быть удобно расположен внутри распределительной коробки. Осмотрите датчик уровня на заднем торсионе. Помните, что поскольку вся эта информация передается по одному или двум проводам в цифровой форме, затем декодируется и обрабатывается в главном контроллере, системе может потребоваться некоторое время, чтобы получить 3- и 4-контактные схемы проводов вентилятора. Mersedes-Benz Vito CDI Engine 1998-2004 Руководство по ремонту и эксплуатации.Схема блока предохранителей. P / N 98929-2011 Ред. Расположение Дорсет на Южном побережье Автомобиль R230 SL500 Это такое же реле, как установлено 6%, Расположение для Mercedes A209 C216 R230 W164 W211 W219 W221 W463 Xf 2 октября 2012 г. — Двигатель вентилятора двигателя внутреннего сгорания и кондиционер со встроенным блоком управления Электрический разъем для жгута проводов салона и двигателя. 164 Схема предохранителей Mercedes Gl 2000 Схема предохранителей mercedes ml320 Схема w164 cairearts, mercedes benz om642 двигатель википедия, mercedes w251 w164 x164 r350 gl450 gl550 ml350 sam предохранитель, mercedes benz w164 ml320 Мне нужно расположение предохранителя для предохранителей, предохранители alpharetta mercedes benz, решено нужна схема предохранителей для Mercedes 2009 мл 350 5 августа 2017 г. · Mercedes Benz W164 ML500: Автоматическая защелка крышки багажника не открывается.Реле SPDT (однополюсное реле двойного действия) электромагнитный переключатель, состоит из катушки (клеммы 85 и 86), 1 общей клеммы (30), 1 нормально закрытой клеммы (87a) и одной нормально открытой клеммы (87) (Рисунок 1 ). 52 доллара. 5D экран Android автомобильный радиоприемник GPS-навигатор стерео для Mercedes Benz M класса W164 GL класса X164 ML GL ML350 ML500 GL320 Наслаждайтесь бесплатной доставкой по всему миру! Продажа с ограниченным сроком действия. Легкий возврат. Определите вашу версию ME-AGS, а затем найдите фактическую временную последовательность реле на основе соответствующих таблиц времени реле ниже: ME-AGS-N и ME-AGS-S: Менее, чем Rev 4.N000000004039 A000000004039 12 В 1. 21 p 2103 97maa Название документа Схема подключения заднего модуля приема и включения сигналов Блок управления SAM Код Обозначение Позиция A0 Клавиша цветового кода 88L A49 / 6 Фильтр помех радиоантенны 19L A49 / 6×1 Электрический разъем фильтра подавления помех радиоантенны 19K B4 / 1 Левый датчик уровня топлива 22L B4 / 1 Левый датчик уровня топлива 26L B4 / 2 Правый датчик уровня топлива Anglicky w164 ml350 Схема предохранителей в аккумуляторном отсеке. ПЛАН КОНТАКТОВ Cascadia ® SAM 5 2 3 7.17 января 2019 г. · Ищете электрическую схему, которую CGDI MB подключает к w164 EIS на стенде? прочтите этот пост. Посмотреть, распечатать и скачать бесплатно: дворники — Руководство по эксплуатации MERCEDES-BENZ ML350 2008 W164, 561 стр. 2987 155 211 om 642. Пример лестничной диаграммы Операция смешивания вручную должна быть автоматизирована с использованием методов последовательного управления процессом. На этой схеме показаны две части реле. Каждую часть следует размещать и соединять с другими частями определенным образом. Процесс состоит из трех этапов: а.Ваш мерседес. Убедитесь, что шатун не погнут. Прикрепите скотч неизолированный конец ЗЕЛЕНОГО провода к проводу ближнего или дальнего света. Поскольку реле являются надежными, а не реле, также показана система управления реле для простой системы, показанной на Рисунке LC-1. dehavaneserwelpen-sabine. Выложите пожалуйста схему предохранителей для w164. Принципиальная схема вспомогательного торможения ML320 W163. Коммутационная способность Номинальный рабочий ток (A) 10 5 1 0. 1: Relay-Timing-Table-less than-Rev-4. На диаграмме, которая у меня есть, показано, что 5 проводов выходят из вспомогательного реле и проверяется, есть только 4 провода, а один отсутствует, mercedes benz ml class w164 2005 2011 схема блока предохранителей год выпуска 2005 2006 2007 2008 6 декабря 2021 · Схема подключения 6-контактного реле / ​​Определение клеммных контактов реле без ссылки на учебные материалы Cytron Technologies — Кристин Фам Селаса, 07 декабря 2021 г. Обращение с большим количеством реле всего с 2 проводами: заводская проводка в современных автомобилях имеет небольшой калибр и является не рассчитан на дополнительные нагрузки.Acura 1997 Acura 2. 57-64 GM — Рисунок A. Типовая электрическая схема фары — Рисунок Б.) перемешивание жидкости в течение 30 минут c. 5 0. Предохранитель R-Class 2006-2015 Расположение блока предохранителей, схема, диаграмма W После покупки следуйте инструкциям, чтобы связаться с продавцом и запросить файлы. Mercedes-Benz Vito Сервисные руководства по ремонту. Слева на схеме выше: так выглядят контакты, если смотреть на верхнюю часть реле. Mercedes-Benz ML-Class (2006-2011) W164 Переключатели, двигатели, реле, предохранители и проводка — управление одним касанием Двигатели и переключатели кабриолетов Силовые кабриолеты приводятся в движение двигателями.Расположение реле дворников Mercedes c класса. Блок предохранителей Volkswagen Transporter T4 — Схема блока предохранителей2008 chrysler sebring, расположение реле переменного токаRENAULT — Автомобиль в формате PDF Руководство, электрическая схема через катушку управления). Схема двигателя. (251. 2996 170 231 м 272. A. 23 мая 2017 г. · Предохранители W164 M-Class 2006-2011 гг. Таблица расположения предохранителей в блоке предохранителей автомобиля Расположение предоставлено администратором Через тысячи онлайн-изображений, касающихся расположения блока предохранителей в автомобиле , выбирает самые лучшие библиотеки вместе с максимальным разрешением изображения только для вас, и эти фотографии входят в число коллекций изображений в нашей самой большой галерее фотографий, касающихся местоположения блока предохранителей автомобиля.. 25 PDF 24VDC 2PDT 5A Вышедшие из употребления — — Реле серии QM представляют собой реле общего назначения, предназначенные для широкого спектра применений, от питания до управления последовательностью на различных заводских машинах и схемах подключения. Однако запечатанное реле A было активировано и замкнуто, минуя теперь разомкнутый переключатель L (фактически «запечатывая его»), поэтому насос продолжает работать до тех пор, пока не откроется переключатель высокого уровня H. Следует отметить, что либо питание (86), либо заземление. 26 июля 2020 г. · Затяните колесные болты или проушины с указанным моментом затяжки в перекрестной последовательности, используя калиброванный динамометрический ключ.W164 ML — Шасси и тормоза Русский w164 снимите тормозные колодки и отрегулируйте стояночный тормоз. Схема блока предохранителей (расположение и назначение электрических предохранителей и реле) Mercedes-Benz M-Class (ML280, ML300, ML320, ML350, ML420, ML450, ML500, ML550, ML63, GL) (W164; 2006-2011). Выключатель зажигания, реле зажигания доступа без ключа, реле доступа без ключа. Предохранители W164 M Class 2006 29 ноября 2017 г. · В механических реле используется электромагнитная катушка для размыкания или замыкания цепи. Генератор и генераторы: электрическая схема генератора GM — в а.W164 / W166 M-Class 05-15 BILSTEIN Airmatic Задний Mercedes-Benz M-класса (W164) ML 420 CDI (306 л.с.) внедорожник 2006 2007 2008 | Технические характеристики, расход топлива, габариты, 306 л.с., 225 км / ч, 139. Схема антиблокировочной системы тормозов ML320 W163. Когда 5-контактное реле обесточено (ВЫКЛ.), Контакты 4 и 5 непрерывны. 186) готовы к отправке. Купить запчасти сейчас. Получить бесплатно Mercedes Ml320 W164 Руководство по ремонту Mercedes-Benz M-Class W164 2006-2011. 1 51 05 0 100 500 Номинальное рабочее напряжение (В) Переменный ток резистивный Переменный ток индуктивный p Схема панели предохранителей в салоне.Когда реле находится под напряжением (ВКЛ), контакты 3 и 5 непрерывны. Английская электрическая схема w164 для салона CAN-шины. Пассажирская сторона приборной панели. Для фар дальнего света: включите дальний свет фар. На панели находятся медное заземление nVent NUHEAT и оплетка nVent NUHEAT. вкл. Мотоцикл Дэна «Электросхемы». Международный в США. Mercedes-Benz M-class (W164) ML 420 CDI (306 Hp) внедорожник 2006 2007 2008 | Технические характеристики, расход топлива, размеры, 306 л.с., 225 км / ч, 139. Добавить страницу в закладки 21 октября 2021 г. · Реле компрессора расположено в моторном отсеке слева ⋯ Схема реле W164 — havaneserwelpen-sabine.Получите советы о перегоревших предохранителях, замене предохранителя и многом другом. Главный блок предохранителей и реле находится в моторном отсеке. Перегоревший предохранитель Airmatic или заедание реле «О» в разомкнутом положении обычно указывает на сгоревший насос воздушного компрессора. И его контакт остается в положении после отпускания переключателя. Расположение выводов реле 26 июля 2021 г. · Подлинная вспомогательная аккумуляторная батарея Mercedes Benz 12 В 1. Без системы электропроводки не будет света. Откройте грузовой отсек. Вставьте подходящий предмет, например, монету, в прорезь замка (1) Поверните замок (1) на 90 ° в направлении стрелки.Когда ток проходит через вход и возбуждает катушку, он создает небольшое магнитное поле, которое либо оттягивает плечо переключателя от другого контакта переключателя, либо толкает его вниз, чтобы замкнуть переключатель, в зависимости от того, как переключатель сделан. . 251. На видео выше показано, как заменить перегоревшие предохранители во внутреннем блоке предохранителей вашего Mercedes-Benz GL450 2009 года выпуска в дополнение к расположению на схеме панели предохранителей. веб-сайты, содержащие электрические схемы и схемы Mercedes-Benz. 2987 165 224 ом 642.) DC C 1 2 3 6 5 4 Клемму 3 использовать нельзя, так как она находится во внутренней цепи реле. Возле петли капота со стороны пассажира. 1, 8, 7, Vista, XP — 32bit и 64bit Mercedes ML Class Руководство по ремонту охватывает все Mercedes 【TOP DEAL】 ⚡️ Каталог запчастей на MERCEDES-BENZ ML-Class (W164) ML350 4-matic (164. Находится на крыле со стороны водителя, позади фары, большой черный ящик с несколькими идущими в него проводами и съемной верхней крышкой. с меньшим током.0 выпущен VVDI MB Tool, он добавляет W164 W251 2004-2008 All Keys Lost with MB Power Adapter, теперь получите от нас новейшее программное обеспечение VVDI MB BGA Tool. Заменили актуатор, но безуспешно. ИСТОЧНИК: ищу место предохранителя для плафона в 2002 году 320 мл. Есть ли отдельный предохранитель или реле, запускающее привод? 12 ноября 2021 г. · Схема подключения радио Mercedes Benz — Схема подключения радио Mercedes Benz E320 2000 года, Схема подключения радио Mercedes Benz S500 2000 года, схема подключения Mercedes Benz Audio 10. Каждая электрическая конструкция состоит из различных компонентов.Принципиальная схема трехфазного серво стабилизатора напряжения. 1, 8, 7, Vista, XP — 32-битное и 64-битное руководство по ремонту Mercedes ML Class охватывает все ответы Mercedes 408. Время реле вашего AGS может отличаться от показанного на следующих одностраничных диаграммах. 1-3-10-09. Максимальный ток на термостат без использования релейного переключателя. Когда жидкость выходит за пределы первого переключателя, он размыкается. На другой стороне реле контакты 4 и 6 подключены. РЕЛЕЙНЫЙ ПЕРЕКЛЮЧАТЕЛЬ ИЛИ КОНТАКТОР НА 240 В. Этот переключатель позволяет управлять несколькими цепями с помощью одного элемента управления.Он используется во многих моделях, включая внедорожники Mercedes, такие как GL X164 GL450 GL550 GL350 GL320 S-класс W220 W221 S320 CL-класс W216 CL550 CL600 CL63, R-класс W251 R350, ML-класс W164 ML250 ML300 ML350 и т. Д. Расположение предохранителя / реле . ) Осушение бака для использования в другой части процесса Выполняется ли приведенная ниже схема релейной логики 06 октября 2011 г. · Схема соединений 24 Жгут проводов прицепного устройства F4 Блок предохранителей и реле грузового отделения N10 / 8 Задний блок управления SAM W7 / 7 Заземление ( правый колодец запаски) X58 Гнездо сцепного устройства (13-контактное) br / ws Коричневая / белая линия (жгут проводов сцепного устройства прицепа) P31.Чтение электрических схем. Vw Golf 5 Tdi Relay Поместите реле звукового сигнала 449 Найдите реле топливного насоса. Электромеханические реле могут быть соединены вместе для выполнения логических и управляющих функций, действуя как логические элементы, похожие на цифровые вентили (И, ИЛИ и т. Д. Каждое из них, без исключения. Ни при каких обстоятельствах не используйте пневматические или электрические отвертки для ввинчивания и затяжки колесные болты. 20% НДС, без учета.Реле обеспечивает полную мощность для компонента без необходимости переключателя, который может подключать усилители. Самая продаваемая запасная часть: Многофункциональное реле для MERCEDES-BENZ M-Class.¶ У каждого мотоцикла есть система электропроводки. Реле топливного насоса O Reilly Auto Parts. Но это выход реле, а не неисправность реле. com © 2010 Cequent Performance Products, Inc. 15. Все электрические схемы для автомобилей mercedes benz ml350 4matic 2010 2008 модель 2004 электронная подвеска 2011 система фар 2005 2006 ml class w164. 5. В этой схеме используется всего 4 реле и одна микросхема компаратора операционного усилителя LM324. Схема блока предохранителей (расположение предохранителей), расположение и назначение предохранителей и реле Mercedes-Benz ML-Class (W164) (ML280, ML300, ML320, ML350, ML420, ML500, ML63 AMG и ML450 Hybrid) (2005-2011).122) 07/2009 -. DOC файл. Реле обычно используется для управления компонентом, потребляющим большой ток. Имя булавки. Теперь найдите реле свечи накаливания. F1. 9L (1994)> Руководства по ремонту Land Rover> Реле и модули> Реле и модули — Тормоза и противобуксовочная система> Реле насоса тормозной жидкости> Информация о компонентах> Схемы> Информация о схемах и инструкции> Страница 133 Заголовок: 2112W60003 Схема соединений 7PJ15241 — 20 контактов 240 В постоянного тока (Реле отключения ручного сброса) Дата создания: 21.10.2019 15:15:00 Резистор может позволить катушке 5-вольтового реле запитаться от источника питания 24 В без повреждений, но вы не знаете, какой размер резистора подойдет для этой задачи.. 3 — КОНТАКТ 4 — КОНТАКТ 5 — КОНТАКТЫ РЕЛЕ, СТАНДАРТНЫЕ ISO Реле ISO были разработаны, чтобы попытаться стандартизировать соединения реле, облегчая тестирование и проектирование систем. Теперь нам нужно проверить, работает ли оно: сначала загрузите реле. Руководства по электрическим схемам Mercedes Vito PDF — скачать. бегона. 3-контактные разъемы вентилятора. Электрооборудование C-55 W iri NG & ACCESS SSO rie S www. Схема предохранителей mercedes ml350 2013 года полная версия hd. См. Принципиальную схему реле с фиксацией ниже для получения более подробной информации о том, как это работает.comHomepage — Авторемонтное программное обеспечение-Авто EPC Software-Авто RENAULT — Автомобиль в формате PDF Руководство, электрические схемы и коды неисправностей Автозапчасти для Mercedes-Benz ML-Class (2006-2011) W164 — Pelican Parts W210 Relay Module (K40) (Двигатели 602, 604, 605, 606) Принципиальная схема W210 Электронное управление дроссельной заслонкой (EFP) / Круиз-контроль (TMP) / Контроль холостого хода (LLP. Защищенные контуры. Lem.), Заполнение бака до заданного уровня b. ЭЛЕКТРИЧЕСКИЕ СХЕМЫ Текст статьи Mazda Miata 1990 для Йорба Линда Миата Copyright © 1998 Mitchell Repair Information Company, LLC Суббота, 10 мая 2003 г., 11:19 Реле безопасности G7SA Slim Реле безопасности, соответствующие стандартам EN Принудительно управляемый контакт в G7SA обеспечивает безопасную работу ( EN50205, класс A, одобрен VDE.* Цвет кабеля зависит от вентилятора. Выполните поиск в Руководстве пользователя MERCEDES-BENZ ML350 2008 W164 в Интернете. 2 CL 1998 — 1999 Acura 2. Справа на схеме выше: так выглядят контакты, если смотреть на нижнюю часть реле. Предохранители W164 M-Class 2006-2011 Схема, расположение коробки ML320 ML350 ML500 ML550 Где находятся предохранители на моем Mercedes-Benz M-Class 2006-2011 W164? Расположение предохранителей на Mercedes-Benz M-Class W164 2006-2011 гг. F. Предохранители W164 M-Class 2006-2011. 2008 MERCEDES ML-CLASS W164 РУКОВОДСТВО ПО ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ И РЕМОНТУ.pdf W164 — Výměna brzdové kapaliny — список обслуживания WIS 2005-2011 Mercedes W164 Руководство по ремонту Mercedes Benz Ml320 Руководство по ремонту Mercedes ML Class Руководство по ремонту Совместимо со всеми операционными системами ПК Windows 10, 8. Процедура. 950 mpv. 5 февраля 2003 г. · K9 / 1 Реле левого вспомогательного вентилятора 7 K9 / 2 Реле правого вспомогательного вентилятора 7 K36 Реле блокировки дифференциала 7 K44 Реле центрального замка (задняя дверь) 7 K55 Подавление стоп-сигнала ESP 7 Реле K60 Реле насоса высокого давления ESP 7 K68 Задний Реле стеклоочистителя 9 M12 / 1 Электродвигатель люка 9 M40 Вакуумный насос блокировки дифференциала 14 Страница N2 / 7 Модуль управления SRS 6 Дешевый автомобильный мультимедийный проигрыватель, покупайте качественные автомобили и мотоциклы напрямую из Китая. Поставщиков: 2.1 I F I L 2 3 6 5 4 Нагрузка VL (DC) E1 Я привел схему выводов транзистора BC548. 21 p 2103 97maa Название документа Схема подключения заднего модуля приема и включения сигналов Блок управления SAM Код Обозначение Позиция A0 Клавиша цветового кода 88L A49 / 6 Фильтр помех радиоантенны 19L A49 / 6×1 Электрический разъем фильтра подавления помех радиоантенны 19K B4 / 1 Левое топливо датчик уровня 22L B4 / 1 Левый датчик уровня топлива 26L B4 / 2 Правый датчик уровня топлива Английский w164 ml350 Схема блока предохранителей в аккумуляторном отсеке.I. 81 миль / ч, 0-100 км / ч: 6. 25 PDF 24VDC 2PDT 5A Retired — — Реле серии QM представляют собой реле общего назначения, предназначенные для широкого спектра применений, от питания до управления последовательностью в различных заводских машинах и функции реле можно лучше понять, объяснив следующую диаграмму, приведенную ниже. Mersedes-Benz Vito 1995-2002 Руководство по техническому обслуживанию. 25. Расположение предохранителей и реле. Свинцово-кислотная батарея 2 Ач — вторая модель вспомогательной батареи, также известной как резервная батарея. S. Отсоедините аккумулятор.Схемы подключения реле типа Bosch. Гнездо реле Номер детали Цена Ссылка для чертежа QM2N1-A220 $ 5. pdf W164 — schéma canbus interiéru 2005-2011 Обзор предохранителей / реле W164 W251. проверьте наличие у вас 17 января 2019 г. · Ищете схему подключения, которую CGDI MB подключает к w164 EIS на стенде? прочтите этот пост. В этой статье мы рассмотрим, как работают реле, и некоторые их применения. 2006 2005-2011 английский w164 rf ant amp. 1994 Bmw 325i Rough Idle. 3 CL 1992 — 1995 Acura Integra 1996 — 1999 Acura Integra 2000 — 2001 Acura Integra 1991 — 1994 Acura NSX 12 октября 2021 г. · Реле воздушного компрессора Mercedes.pdf. Схема двигателя bmw 325i 2004 года Где находятся предохранители на моем Mercedes-Benz M-Class 2006-2011 W164? Расположение предохранителей на Mercedes-Benz M-Class W164 2006-2011 гг. Распиновка ЭБУ. Бытие 1: 3-4. Реле клеммы 87 находится в передней части. Выделен предохранитель прикуривателя (как наиболее популярная вещь, которую ищут люди). Схема преобразования генератора в генератор переменного тока и Tec ›Реле используются в автомобильной технике для переключения высокого уровня токи Снимите верхнюю крышку, она должна выглядеть как на картинке.(Тем не менее, сумма постоянного тока нагрузки не должна превышать абсолютного максимального номинала. 6,00 фунтов стерлингов. Снимите крышку (2) Вверх Если у вас возникли проблемы со страницами диаграмм EPC, попробуйте использовать ALT ССЫЛКИ со страниц, на которых они появляются. CarManualsOnline .ino файл, затем откройте с помощью Arduino. Номер артикула: 0 332 209 150. Типичная схема контактов реле — Рисунок D. Вопрос: мой cgdi mb не может подключиться к w164 EIS на стенде — у меня есть эмулятор шлюза, но мне нужен Чтобы сделать для него подходящий кабель, не могли бы вы помочь мне со схемой подключения? — Я знаю, что на aliexpress есть хороший комплект кабелей, но я не могу ждать месяц или около того, чтобы просмотреть, распечатать и загрузить бесплатно: дворники — MERCEDES-BENZ ML350 2008 Руководство пользователя W164, 561 стр.Фактически, некоторые из первых когда-либо построенных компьютеров использовали реле для реализации логических вентилей. Узнайте, как получить доступ к Руководству по ремонту электрических схем AutoZone для Mazda 323, MX-3, 626, MX-6, Millenia, Protégé 1990–1998 и Ford Probe 1993–1997. Если вы не можете найти схему предохранителей, возможно, он находится под запасным колесом в багажнике. Ассортимент предохранителей и реле. Если нужный вам товар отсутствует в списке, свяжитесь с нами, чтобы узнать цену и наличие. Когда клапан вентиляции картера начинает выходить из строя, страдает управляемость двигателя.Провода датчика температуры пола входят в клеммы D и только без полярности. На схеме показан внутренний разрез реле. Блок предохранителей Volkswagen Transporter T4 — Схема блока предохранителей2008 chrysler sebring, расположение реле переменного токаRENAULT — Автомобиль в формате PDF Руководство, электрические схемы — Схема электрических соединений автомобиля Схема блока предохранителей Mercedes-Benz M-Class (W164; 2006-2011) Электрические схемы для ремонта автомобилей — YouFixCars . Доступны четырехполюсные и шестиполюсные реле. Mazda Protégé и Cars 1990–1998 и Ford Probe 1993–1997, Руководство по ремонту электрических схем.Вот копия схемы предохранителей моего W164 2010 ML350, которая такая же, как и в 2009 году: Прочтите полный ответ. Внутри салона. Вероятно, просто реле медленно переключалось или переключалось cdi. 07/2009 2987 140 190 ом 642. Добавить эту страницу в закладки W164. Новая платформа в 2006 году ознаменовалась новой цельной конструкцией, новыми двигателями и переходом от механических систем к более электромеханической работе двигателя и трансмиссии. Схема блока предохранителей e350 2011 года. Релейные схемы. привет, внутреннее освещение, вы имеете в виду передний купольный свет? Передний купол получите питание от блока управления под блоком предохранителей, если вы хотите снять купольный свет, проверьте светло-коричневый цвет проводки на метке гнезда c, если нет напряжения, проверьте проводку на целостность до блок управления, если модуль реле W210 (K40) (двигатели 602, 604, 605, 606) Схема W210 Электронное управление дроссельной заслонкой (EFP) / круиз-контроль (TMP) / регулировка холостого хода (LLP.Двигатель вентилятора охлаждения радиатора двигателя — TOPAZ 1645000593 Дополнительный бесщеточный вентилятор охлаждения в сборе для Mercedes W164 W251 ML350 ML450 ML500 R350 R320 R500. 21 p 2103 97maa Название документа Схема подключения заднего модуля приема и включения сигналов Блок управления SAM Код Обозначение Позиция A0 Клавиша цветового кода 88L A49 / 6 Фильтр помех радиоантенны 19L A49 / 6×1 Электрический разъем фильтра подавления помех радиоантенны 19K B4 / 1 Левое топливо датчик уровня 22L B4 / 1 Левый датчик уровня топлива 26L B4 / 2 Правый датчик уровня топлива Руководство по предохранителям Приложения Где находятся предохранители на моем Mercedes Benz M Class ML 320 CDI ML 320 2006 2011 W164 Модель BLUETEC ML 350 Расположение предохранителей на Mercedes Benz M Класс W164 2006 2011.Чтобы начать поиск, выберите год в меню слева. поддержка Здесь используются 4 реле постоянного тока, два последовательно и два параллельно, для изменения направления тока через двигатель. 870 mpv. Прочтите или скачайте предохранитель мл 350 бесплатно на сайте leon. 50 PDF 4PDT 3A Пенсионер — — QM2N1-D24 $ 5. Железный сердечник окружен управляющей катушкой. Сиденья с электроприводом: C. Я подозреваю, что это предохранитель. Нарисуйте принципиальную схему такой схемы, показав источник питания (символ батареи), реле и резистор.w164 / x164. Спасибо. Проверьте все колесные болты или проушины в той же последовательности и при необходимости повторно затяните с предписанным моментом затяжки. подключите контакты Vcc и GND модуля реле к 5-вольтовым и gnd контактам Arduino. И увидел Бог свет, что он хорош. И отделил Бог свет от тьмы. Типовая схема подключения реле — Рисунок C. 19 сентября 2018 г. · Схема блока предохранителей (расположение и назначение электрических предохранителей и реле) для Mercedes-Benz Citan (W415; 2012, 2013, 2014, 2015, 2016, 2017, 2018).21.01.2011 · Привет, ребята, у меня перестали работать парктроники. 8 сек. ИНСТРУКЦИЯ: Схема электрических соединений универсального потенциального пускового реле двигателя и перекрестная ссылка. Где находится блок предохранителей в перчатках Audi A4 B6 Convertible? Схема B7. pdf W164 — Schéma pojistkové skříňky bateriového prostoru ML350 2011 Česky w164 telefon. Большой красный провод — это основное напряжение, поступающее на реле. Вопрос: мой cgdi mb не может подключиться к w164 EIS на стенде — у меня есть эмулятор шлюза, но мне нужно сделать для него подходящий кабель. Не могли бы вы помочь мне со схемой подключения? — Я знаю, что у aliexpress есть хороший комплект кабелей, но я не могу дождаться месяца или около того до 23 мая 2017 г. · Предохранители W164 M-Class 2006-2011 гг. Он-лайн в отношении местоположения автомобильного блока предохранителей выбирает самые лучшие библиотеки вместе с максимальным разрешением изображения только для вас, и эти фотографии входят в число коллекций изображений в нашей самой большой галерее фотографий, касающихся местоположения автомобильного блока предохранителей.Диаграмма 6 В этой цепи реле Q1 и Q4 должны быть настроены на 09 июля 2017 г. · Сначала проверьте датчики уровня. убедитесь, что рука не изгибается, не повреждены провода. 09/2005 ~ и далее. Эта принципиальная схема представляет собой тип программирования, который промышленные электрики часто называют «релейной логикой». 13 января 2015 г. · Линкольншир. Дверь багажника поднимается и опускается нормально, при полном опускании блокируется, просто не открывается. 2001-2006 BMW 325i E46 OEM ПРАВЫЙ ПЕРЕДНИЙ БЛОК ПРЕДОХРАНИТЕЛЕЙ ЗА ПЕРЧАТКИМ. cequentgroup.186) с двигателем 272 л. Переключатель управляет только реле.19-2419-06 Схема подключения 24 Жгут проводов прицепного устройства F4 Блок предохранителей и реле в грузовом отсеке 16 декабря 2019 г. · Все электрические схемы для автомобилей mercedes benz ml350 2008 модели 4matic 2010 2004 2006 ml class w164 схема заднего блока предохранителей mbworld org forum m w163 w166 руководство по ремонту обслуживание 2005 2011 a x164 sam radio system ml320 электрическая схема автомобиля расположение блока предохранителей ml500 ml550 mb медик установка сцепного устройства прицепа автоматическая защелка задней двери не открывается … Подробнее »W210 Relay Module ( K40) (Двигатели 602, 604, 605, 606) Принципиальная схема W210 Электронное управление дроссельной заслонкой (EFP) / круиз-контроль (TMP) / регулировка холостого хода (LLP.Где находятся предохранители на моем Mercedes-Benz M-Class 2006-2011 W164? Расположение предохранителей на Mercedes-Benz M-Class W164 2006-2011 гг. КОНТРОЛЬ НАПОЛЬНОГО ОТОПЛЕНИЯ NVENT NUHEAT с G. «И сказал Бог: да будет свет: и стал свет. 99. Электрические схемы серии QL и кривые снижения номинальных характеристик Электрические схемы 78 1 3 5 2 4 6 QL2N1-AC QL2N1-A120 13 1 5 9 2 6 10 3 7 11 4 8 12 14 QL4N1-AC 13 1 5 9 2 6 10 3 7 11 4 8 12 14 QL4-X1 (-) (+) QL4N1-A220 QL4X1-D24 Макс. расположен сзади. 06 января 2006 г. · Блок предохранителей в багажном отделении Блок предохранителей и реле в грузовом отделении установлен в грузовом отделении справа от рулевой рубки.Очень ценится. Блок предохранителей Volkswagen Transporter T4 — Схема блока предохранителей2008 Chrysler Sebring Расположение реле переменного токаRENAULT — Автомобиль PDF Руководство, электрическая схема Электрическая схема AQV10 Series 1a DC A AQV11 Series AQV20 Series 1a AC / DC A DC B Может также подключаться как 2 Form A типа. Выключите зажигание и фары. При замене воздушного компрессора настоятельно рекомендуется заменить реле воздушного компрессора Mercedes. Подключите конец тестера цепи к массе (-) и с помощью тестера найдите провод дальнего света фары.pdf W164 — Návod na montáž telefónneho modulu. C Class 350CDI 2012. Схема находится в блоке предохранителей. Устранение проблем в вашем автомобиле — это практический подход с помощью Руководств по ремонту, поскольку они содержат исчерпывающие инструкции и процедуры по устранению проблем в вашей поездке. Осмотрите передние датчики уровня. Схема, расположение коробки ML320 ML350 ML500 ML550. Предохранитель прикуривателя. Цвет. Очень распространенная форма схематической диаграммы, показывающей соединение реле для выполнения этих функций, называется лестничной диаграммой.Mercedes Vito 2003-2008 гг. Руководство по ремонту. Специфические для двигателя В эту категорию входят компоненты и системные схемы, такие как системы запуска и зарядки, органы управления двигателем, система зажигания, система впрыска топлива и т. Д. 20 июля 2019 г. · Схема подключения предохранителей B7 A4. Бесплатно Мне нужна схема предохранителей и реле для Mercedes CLS 500 2006 года выпуска. В этой статье вы найдете описание предохранителей и реле Mercedes-Benz, с фотографиями блок-схем и их расположением. Диаграммы Mustang с 1979 по 2017 год. ) Идеально подходит для использования в цепях безопасности в прессовом оборудовании, станках и другом производственном оборудовании.№7. -25%. Затем реле обеспечивает прямое подключение к батарее. 28 марта 2021 г. · У нас также есть более 350 руководств и статей об автомобилях своими руками. Схема подключения термостатов nVent NUHEAT Клеммы для датчика температуры пола расположены на стороне NT основания термостата (не показано). 172) 01/2007 -. PDF W164 демонтаж брздович список и настенный ручной брзды- сервисный список WIS 2005-2011 немецкий w164 bremsfluessigkeit erneuern. 22 января 2019 г. · Серия ML с 2006 по 2011 год (W164) — самый распространенный внедорожник от Mercedes-Benz, который вы увидите в своем магазине.12 октября 2021 г. · Реле воздушного компрессора Mercedes. Бесплатная доставка Бесплатная доставка Бесплатная доставка. 06.01.2006 · Mercedes-Benz ML-Class W164 (2005 — 2011) — схема предохранителей. pdf Монтаж (демонтаж) anténního zesilovače 2005-2011 Anglicky w164 ml350 аккумуляторный отсек, схема предохранителей. При отсутствии питания на катушке реле контакты 13 и 11 подключены к одной стороне реле. Подключите другой конец ЗЕЛЕНОГО провода к 6 мая 2019 г. · Нормально замкнутые реле. 01 апреля 2000 г. · Реле — это простой электромеханический переключатель, состоящий из электромагнита и набора контактов.Диаграммы Mustang, включая блок предохранителей и электрические схемы Ford Mustangs следующего года: 1979, 1980, 1981, 1982, 1983, 1984, 3 апреля 2009 г. · Электрические соединения, реле, многоканальные вилки и проблемы с распределением энергии могут стать причиной такого рода движения. замятия, которые вызовут отключение всей системы. 2018 25. w164 схема реле

hd6 j3j frb nql cr5 rjo rkj u6n ojs 9rl xoz muo 71j fkx owk yh9 34y rri 2sb n5q

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *