Номинал автоматических выключателей: Номиналы автоматических выключателей по току

Содержание

Номиналы автоматических выключателей по току: таблица

Чтобы понимать основы электродинамики, сделать дома качественную, пожаробезопасную электрическую разводку, нужны минимальные знания в этой области. Не последнюю роль в этом играют номиналы автоматических выключателей по току. О том, какие они бывают и в чем заключается принцип их работы, рассказано в этой статье.

Номиналы автоматических выключателей по току

Автоматическими выключателями называются устройства, которые защищают электрические сети от перегруза, блуждающих токов, короткого замыкания. Поскольку они надежны и просты в использовании, их используют повсеместно в бытовой электросети.

Что такое номиналы

Поскольку все электрические приборы потребляют разную мощность, то их рабочий ток неодинаковый. Поэтому автоматический защитный выключатель подбирается под номинал.

Автоматические выключатели нужны в каждой сети

Обратите внимание! Мощные промышленные оборудования потребляют множество ампер, поэтому для них есть свои показатели.

Какая стандартная линейка автоматических выключателей по току

По ПУЭ в каждом аппарате есть надпись, которая указывает на номинальное значение электрической энергии. Чтобы получить такую информацию, нужно просто рассмотреть корпус устройства. На нем есть буква и число. Всего для маркировки используются обычно три буквы — В, С и D. Числа обозначают количество заряда. Буква показывает временную характеристику или период, за который срабатывает прибор.

Маркировка оборудования

Для дома используются аппараты с первыми двумя буквами. В промышленности нужны защитные устройства D. Также применяются более мощные агрегаты, обозначенные буквами L, Z и K. У них номинальные значения выше, чем в бытовых, квартирных устройствах.

Стандартная линейка включает в себя мини-автоматы, воздушные автоматы, закрытые выключатели, устройства защитного отключения и дифференциальные автоматы.

Обратите внимание! В маркировке указываются также серия, рабочее напряжение, полюса и отключающая способность.

Показатели номинального тока на автоматических выключателям

В мини-моделях стандартные номиналы автоматов 25-32 А, поскольку они имеют минимальный функционал работы. Они оцениваются в низкую стоимость и не могут быть настроены вручную. Воздушные автоматы обладают большими размерами, открытым негерметичным корпусом и повышенной номинальной мощностью от 400 А. Закрытые выключатели используются для силовых потребителей. У них закрытый герметичный корпус, сравнительно небольшие габариты. Они работают с сетями до 3,2 кА. Их можно использовать в экстремальном влажном климате.

Значения на корпусе аппаратов

К сведению! УЗО — самые популярные защитники бытовых электрических сетей. Они защищают квартирную электропроводку и жильцов от удара током. Они имеют номинальный ток от 10 А. Как и ряд других устройств, УЗО бывает однофазным, двухфазным и трехфазным.

Дифавтомат — гибридный аппарат, имеющий свойства УЗО. Им защищается проводка и обеспечивается защита от перегрузки. Его номинальное токовое значение 6-63 А.

Таблица номиналов автоматических выключателей

Главным критерием выбора электропроводки и защитного выключателя — номинальное и предельно допустимое значение тока в линии. Его можно определить как по конструкции оборудования, так и по таблице.

Таблица номиналов

Номиналы автоматических выключателей по току более 100 А или менее указанного значения — это допустимые показатели коммутационных электронных аппаратов, способных включать, проводить и отключать электричество при нормальном условии в цепи. Согласно таблице, значения отличаются в зависимости от устройств, параметров сети. На них нужно обязательно опираться при покупке автоматов, чтобы надежно обезопасить сеть.

Примеры расчета автоматических выключателей в электрической цепи

Вводная часть

Любая электрическая цепь в квартире и доме, должна защищаться автоматом защиты от перегрузок и сверхтоков короткого замыкания. Эту нехитрую истину можно наглядно продемонстрировать в любом электрическом щите квартиры, этажном щите, вводно-распределительном щите дома и т.п. электрическим шкафам и боксам.

Вопрос не в том, ставить автомат защиты или нет, вопрос, как рассчитать автомат защиты, чтобы он правильно выполнял свои задачи, срабатывал, когда нужно и не мешал стабильной работе электроприборов.

Примеры расчета автоматических выключателей

Теорию расчетов автоматических выключателей вы можете почитать в статье: Расчет автоматов защиты. Здесь несколько практических примеров расчета автоматических выключателей в электрической цепи дома и квартиры.

Пример 1. Расчет вводного автомата дома

Примеры расчета автоматических выключателей начнем с частного дома, а именно рассчитаем вводной автомат. Исходные данные:

  • Напряжение сети Uн = 0,4 кВ;
  • Расчетная мощность Рр = 80 кВт;
  • Коэффициент мощности COSφ = 0,84;

1-й расчет:

Чтобы выбрать номинал автоматического выключателя считаем номинал тока нагрузки данной электросети:

Iр = Рр / (√3 × Uн × COSφ) Iр = 80 / (√3 × 0,4 × 0,84) = 137 А

2-й расчет

Чтобы избежать, ложное  срабатывание автомата защиты, номинальный ток автомата защиты (ток срабатывания теплового расцепителя) следует выбрать на 10% больше планируемого тока нагрузки:

  • Iток. расцепителя = Iр × 1,1
  • Iт.р = 137 × 1,1 = 150 А

Итог расчета: По сделанному расчету выбираем автомат защиты (по ПУЭ-85 п. 3.1.10) с током расцепителя ближайшим к расчетному значению:

  • I ном.ав = 150 Ампер (150 А).

Такой выбор автомата защиты позволит стабильно работать электрической цепи дома в рабочем режиме и срабатывать, только в аварийных ситуациях.

Пример 2. Расчет автоматического выключателя групповой цепи кухни

примеры расчета автоматических выключателей

Во втором примере посчитаем, какой автоматический выключатель нужно выбрать для кухонной электропроводки, которую правильно называть розеточная групповая цепь электропроводки кухни. Это может быть кухня квартиры или дома, разницы нет.

Аналогично первому примеру расчет состоит из двух расчетов: расчет тока нагрузки электрической цепи кухни и расчет тока теплового расцепителя.

Расчет тока нагрузки

Исходные данные:

  • Напряжение сети Uн = 220 В;
  • Расчетная мощность Рр = 6 кВт;
  • Коэффициент мощности COSφ = 1;

1.

Расчетную мощность считаем, как сумму мощностей всех бытовых приборов кухни, умноженной на коэффициент использования, он же коэффициент использования бытовой техники.

2. Коэффициент использования бытовой техники это поправочный коэффициент, уменьшающий расчетную (полную) потребляемую мощность электроцепи и учитывающий количество одновременно работающих электроприборов.

То есть, если на кухне установлено 10 розеток для 10 бытовых приборов (стационарных и переносных), нужно учесть, что все 10 приборов одновременно работать не будут.

Коэффициент использования

Рассчитать коэффициент использования для простой группы можно самостоятельно.

  • Выпишите на листок планируемые бытовые приборы.
  • Рядом с прибором поставьте его мощность по паспорту.
  • Просуммируйте все мощности приборов по паспорту. Это Pрасчет.
  • Подумайте, какие приборы могут работать одновременно: чайник+ тостер, микроволновка+блендер, чайник+микроволновка+тостер, и т. д.
  • Посчитайте суммарные мощности этих групп. Рассчитайте среднюю суммарную мощность групп одновременно включаемых приборов. Это будет Pноминал (номинальная мощность).
  • Разделите  Pрасчет на Pноминал, получите коэффициент использования кухни.

На самом деле, в теории расчетов коэффициент использования внутри дома (без инженерных сетей) и квартиры принимается равным, единице, если количество розеток не больше 10. Это так, но на практике, именно коэффициент использования позволяет работать современным бытовым приборам кухни на старой электропроводке.

Примечание:

В теории расчетов 1 бытовая розетка планируется на 6 кв. метров квартиры (дома). При этом:

  • коэффициент использования=0,7 –для розеток от 50 шт.;
  • коэффициент использования=0,8 –розеток 20-49 шт.;
  • коэффициент использования=0,9 –розеток от 9 до 19шт.;
  • коэффициент использования=1,0 –розеток ≤10шт.

Вернемся к автоматическому выключателю кухни. Считаем номинал тока нагрузки кухни:

  • Iр = Рр / 220В;
  • Iр = 6000 / 220= 27,3 А.

Ток расцепителя:

  • Iрасчет.= Iр×1,1=27,3×1,1=30А

По сделанному расчету выбираем номинал автомата защиты для кухни в 32 Ампер.

Вывод

Приведенный пример расчета кухни получился несколько завышенным, обычно для электропроводки кухни хватает 16 ампер если учесть, что плиту, стиральную машину, посудомоечную машину выводят в отдельные группы.

Эти примеры расчета автоматических выключателей для групповых цепей, лишь показывают общий принцип расчетов, причем не включают расчет инженерных цепей включающий работу насосов, станков и других двигателей частного дома.

Фотогалерея автоматов защиты

©Ehto.ru

Статьи по теме

Поделиться ссылкой:

Похожее

Автоматический выключатель. Внутреннее устройство, характеристики

Пожароопасные последствия разрушения электропроводки легче и дешевле предупредить, чем горько сетовать о непринятых мерах. Профилактика возгорания электросети заключается в установке средств защиты. В прошлом веке функция защиты от коротких замыканий и от опасности перегрузки была доверена фарфоровым предохранителям со сменными плавкими вставками, затем автоматическим пробкам. Однако из-за существенного роста нагрузки на силовые магистрали ситуация изменилась. Пришло время менять устаревшие устройства на надежный и хорошо зарекомендовавший себя автоматический выключатель. Чтобы выбор автоматического выключателя завершился приобретением аппарата с надлежащими характеристиками, необходимы сведения о ряде электротехнических нюансов.  

Общие сведения.

Автоматический выключатель, или, говоря проще, автомат – это электротехническое устройство, знакомое практически всем. Все знают, что автомат отключает сеть при возникновении в ней каких-то проблем. Если не мудрить, то эти проблемы – слишком большой электрический ток. Чрезмерный электрический ток опасен выходом всех проводников и бытовой электротехники из строя, возможным перегревом, возгоранием и, соответственно, пожаром. Поэтому защита от высоких токов – это классика электрических схем, и существовала она еще на заре электрификации.

У любого аппарата максимально-токовой защиты есть две важных задачи:

1) вовремя и безошибочно распознать слишком высокий ток
2) разорвать цепь до того, как этот ток сможет нанести какие-либо повреждения

При этом высокие токи можно поделить на две категории:

1) большие токи, вызванные перегрузкой сети (например, включением большого количества бытовых электроприборов, или неисправностью некоторых из них)
2) сверхтоки короткого замыкания, когда нулевой и фазный проводник напрямую замыкаются между собой, минуя нагрузку

Кому-то, может быть, это покажется странным, но именно со сверхтоками короткого замыкания все обстоит предельно просто. Современные электромагнитные расцепители без труда и совершенно безошибочно определяют КЗ и отключают нагрузку за доли секунды, не допуская даже малейшего повреждения проводников и аппаратуры.

С токами перегрузки все сложнее. Такой ток ненамного отличается от номинального, в течение какого-то времени он может протекать по цепи совершенно без последствий. Поэтому нет необходимости отключать такой ток мгновенно, тем более что он мог и возникнуть очень кратковременно. Ситуация отягощается тем, что каждая сеть имеет свой предельный ток перегрузки. И даже не один.

Есть целый ряд токов, для каждого из которых теоретически можно определить свое максимальное время отключения сети, составляющее от нескольких секунд до десятков минут. Но и ложные срабатывания тоже необходимо исключить: если ток для сети безвреден, то отключение не должно происходить ни через минуту, ни через час – вообще никогда.

Получается, что уставку срабатывания защиты от перегрузок необходимо регулировать под конкретную нагрузку, изменять ее диапазоны. И, разумеется, перед установкой аппарата защиты от перегрузок его необходимо прогружать и проверять.     

Зачем нужен автоматический выключатель?

Автоматический выключатель – аппарат, предназначенный для защиты силового кабеля, точнее, его изоляции от оплавления и нарушения целостности. Автоматы не защищают владельцев техники от ударов и не оберегают само оборудование. Для этих целей электросеть оснащают УЗО. Задача автоматов предотвратить перегрев, сопровождающий поступление сверхтоков на вверенный участок цепи. Благодаря их использованию не будет оплавлена и повреждена изоляция, значит, проводка будет действовать в нормальном режиме без угроз возгорания.

Работа автоматических выключателей заключается в размыкании электрической цепи в случае:

  • появления ТКЗ (в дальнейшем токов короткого замыкания)
  • перегрузки, т.е. прохождения по защищаемому участку сети токов, сила которых превышает допустимое эксплуатационное значение, но не является ТКЗ
  • ощутимого снижения или полного исчезновения напряжения

Автоматический выключатель охраняет следующий за ними участок цепи. Проще говоря, устанавливается на вводе. Несколько автоматов в сборе, оберегают линии освещения и розеток, магистрали подключения бытового оборудования и электродвигателей в частных домах. Линии эти прокладываются кабелем различного сечения, ведь питается от них техника разной мощности. Следовательно, для защиты участков сети с неравнозначными параметрами нужны устройства защиты с неравнозначными возможностями.

Казалось бы, можно без лишней мороки приобрести самые мощный автоматический выключатель для установки на каждую из линий. Шаг в корне неверный! А результат его проложит прямую «тропинку» к пожару. Защита от причуд электротока – дело тонкое. Потому лучше узнать, как выбрать автоматический выключатель, и установить аппарат, разрывающий цепь, когда в этом возникает реальная потребность.

Внимание. Автоматический выключатель с завышенными характеристиками будет пропускать токи, критические для проводки. Он своевременно не отключит защищаемый участок цепи, из-за чего будет плавиться или гореть изоляция кабеля.

Автоматы с заниженными характеристиками тоже преподнесут немало сюрпризов. Будут бесконечно разрывать линию при запуске техники и в итоге сломаются из-за многократного воздействия на них слишком больших токов. Контакты спаяются, что называется «залипнут».

Конструкция и принцип работы автомата

Сложно будет определиться с выбором, не разобравшись с устройством автоматического выключателя. Давайте посмотрим, что скрыто в миниатюрной коробочке из тугоплавкого диэлектрического пластика.

Расцепители: их типы и назначение.

Основные рабочие органы автоматических выключателей – расцепители, осуществляющие разрыв цепи в случае превышения нормативных эксплуатационных параметров. Расцепители различаются по специфике действия и по диапазону токов, на поступление которых они обязаны реагировать. В их рядах числятся:

  • механический – для ручного включения и выключения
  • электромагнитные расцепители, практически моментально реагирующие на возникновение ТКЗ и «отсекающие» защищаемый участок сети в сотые или тысячные доли секунды. Состоят они из катушки с пружиной и сердечником, который втягивается от воздействия сверхтоков. Втягиваясь, сердечник напрягает пружину, а она заставляет работать расцепляющее устройство
  • тепловые биметаллические расцепители, выполняющие роль барьера от перегрузок. На ТКЗ они вне сомнений тоже реагируют, но обязаны выполнять несколько другую функцию. Задача тепловых собратьев заключается в разрыве сети в случае прохождения по ней токов, превышающих предельные рабочие параметры кабеля. Например, если по проводке, предназначенной для транспортировки 16А, пойдет ток 35А, состоящая из двух металлов пластина изогнется и заставит автомат отключиться. Причем 19А она мужественно «держать» будет больше часа. А вот 23А «терпеть» целый час не сможет, сработает раньше
  • полупроводниковые расцепители в бытовых автоматах редко употребляются. Однако могут служить рабочим органом защитного выключателя на вводе в частный дом или на линии мощного электродвигателя. Измерение и фиксацию аномального тока в них осуществляют трансформаторы, если аппарат устанавливается на сеть переменного тока, или дроссельные усилители, если устройство включают в линию постоянного тока. Расцепление производится блоком полупроводниковых реле

Есть еще нулевые или минимальные расцепители, применяемые чаще всего в качестве дополнения. Они разъединяют сеть при снижении напряжения до какого-либо предельного значения, указанного в техпаспорте. Неплохой опцией бывают дистанционные расцепители, позволяющие отключать и включать автомат, не открывая шкаф управления, и замки, фиксирующие позицию «выкл». Стоит учесть, что оснащение данными полезными дополнениями, ощутимо отражается на цене аппарата.

Применяемые в быту автоматы чаще всего оснащаются слаженно работающей комбинацией электромагнитного и теплового расцепителя. Значительно реже встречаются и используются аппараты с одним из данных устройств. Все же автоматические выключатели комбинированного типа практичней: два в одном во всех смыслах выгоднее.

Крайне важные дополнения

В конструкции автоматического выключателя нет бесполезных составляющих. Все компоненты старательно трудятся во имя общего предохранительного дела, это:

  • дугогасительное устройство, монтируемое на каждый полюс автомата, коих бывает от одного до четырех штук. Оно представляет собой камеру, в которой по определению гасится электрическая дуга, возникающая при вынужденном размыкании силовых контактов. В камере параллельно расположены омедненные стальные пластины, делящие дугу на мелкие части. Раздробленная угроза плавким деталям автомата в дугогасительной системе остывает и напрочь исчезает. Продукты горения выводятся через газоотводные каналы. Дополнением бывает искрогаситель
  • система контактов, подразделяющихся на неподвижные, вмонтированные в корпус, и подвижные, шарнирно прикрепленные к полуосям рычагов размыкающих механизмов
  • калибровочный винт, с помощью которого в заводских условиях производится юстировка теплового расцепителя
  • механизм с традиционной надписью «вкл/выкл» с соответствующей функцией и с предназначенной для осуществления рукояткой
  • клеммы подключения и прочие приспособления для подсоединения и установки

Слегка задержимся на силовых контактах. Неподвижная разновидность напаивается электромеханическим серебром, оптимизирующим электрическую износостойкость выключателя. При применении недобросовестным производителем дешевого серебряного сплава вес изделия уменьшается. Иногда используется латунь с серебряным напылением. «Заменители» легче нормативного металла, потому качественный прибор авторитетной марки весит несколько больше, чем «левый» аналог. Важно заметить, что при замене серебра напайки неподвижных контактов на дешевые сплавы сокращается ресурс автомата. Циклов отключения и последующего включения он выдержит меньше.

Определимся с количеством полюсов.

Уже упоминалось, что полюсов у данного прибора защиты может быть от 1 до 4 шт. Выбрать количество полюсов автомата проще простого, т.к. все зависит от его цели применения:

  • однополюсный автомат превосходно справится с защитой линий освещения и розеток. Монтируется только на фазу, никаких нолей!
  • двухполюсный выключатель защитит кабель, питающий электроплиты, стиральные машины и водонагреватели. Если мощной бытовой техники в доме нет, его ставят на линию от щитка до ввода в квартиру
  • трехполюсный прибор необходим для оборудования трехфазной проводки. Это уже полупромышленные масштабы. В быту может быть линия мастерской или скважинного насоса. Трехполюсный аппарат нельзя подключать к заземляющему проводу. Он всегда должен быть в полной боеготовности
  • четырехполюсные автоматические выключатели применяются для предохранения от возгорания четырехпроводной проводки

Если запланировано защитить проводку квартиры, бани, дома с помощью двухполюсных и однополюсных автоматических выключателей, сначала устанавливается двухполюсной аппарат, затем однополюсной с максимальным номиналом, далее по убыванию. Принцип «ранжира»: от более мощного компонента к слабому, но чувствительному.

Маркировка автоматических выключателей

   Автоматический выключатель легранд, маркировка

Разобрались с устройством и принципом действия автоматов. Узнали, что зачем. Теперь смело приступим к разбору маркировки, проставленной на каждом автоматическом выключателе независимо от логотипа и страны происхождения.

Номинал автоматических выключателей

Т.к. цель приобретения и установки автомата заключается в предохранении проводки, то в первую очередь ориентироваться нужно на ее характеристики. Ток, текущий по проводам нагревает кабель пропорционально сопротивлению его токоведущей жилы. Короче говоря, чем толще жила, тем большего значения ток может пройти по ней, не расплавляя изоляцию. В соответствии с максимальным значением силы тока, транспортируемого кабелем, подбирается номинал прибора автоматического отключения. Рассчитывать ничего не нужно, взаимозависимые значения электроустановочных устройств и проводки заботливыми электриками давно сведены в таблице:

Таблица выбора сечения кабеля:

 Проложенные открытоПроложенные в трубе
Сеч. МедьАлюминийМедьАлюминий
каб.,ТокW, кВтТокW, кВтТокW, кВтТокW, кВт
мм2А220в380вА220в380вА220в380вА220в380в
0,5112,4          
0,75153,3          
1,0173,76,4   143,05,3   
1,5235,08,7   153,35,7   
2,0265,79,8214,67,9194,17,214,03,05,3
2,5306,611,0245,29,1214,67,916,03,56,0
4,0419,015,0327,012,0275,910,021,04,67,9
6,05011,019,0398,514,0347,412,026,05,79,8
10,08017,030,06013,022,05011,019,038,08,314,0
16,010022,038,07516,028,08017,030,055,012,020,0
25,014030,053,010523,039,010022,038,065,014,024,0
35,017037,064,013028,049,013529,051,075,016,028,0

   

Табличные сведения следует несколько корректировать согласно отечественным реалиям. Преобладающее количество бытовых розеток рассчитано на подключение провода с жилою 2,5 мм², что предполагает согласно таблице возможность установки автомата с номиналом 25А (выделено в таблице красным цветом). Реальный номинал самой розетки всего лишь 16А, значит купить нужно автоматический выключатель с номиналом, равным номиналу розетки. Аналогичную корректировку следует провести, если есть сомнения в качестве имеющейся проводки. Если есть подозрения в том, что сечение кабеля могло не соответствовать указанному производителем размеру, лучше перестраховаться и взять автомат, номинал которого на позицию меньше табличного показателя. Например: по таблице для защиты кабеля подходит автомат на 18А, а возьмем мы на 16А, потому что провод покупали у Васи на рынке.

Автоматический выключатель, выбор по мощности и виду подключения

Вид подключения ОднофазноеОднофазное вводныйТрехфазное треугольникомТрехфазное звездой
Полюсность автоматаОднополюсный автоматДвухполюсный автоматТрехполюсный автоматЧетырехполюсный автомат
Напряжение питания220 Вольт220 Вольт380 Вольт220 Вольт
Автомат  VVVV
Автомат 1А 0. 2 кВт0.2 кВт1.1 кВт0.7 кВт
Автомат 2А 0.4 кВт0.4 кВт2.3 кВт1.3 кВт
Автомат 3А 0.7 кВт0.7 кВт3.4 кВт2.0 кВт
Автомат 6А 1.3 кВт1.3 кВт6.8 кВт4.0 кВт
Автомат 10А 2.2 кВт2.2 кВт11.4 кВт6.6 кВт
Автомат 16А 3.5 кВт3.5 кВт18.2 кВт10.6 кВт
Автомат 20А 4.4 кВт4.4 кВт22.8 кВт13.2 кВт
Автомат 25А 5.5 кВт5.5 кВт28.5 кВт16.5 кВт
Автомат 32А 7.0 кВт7.0 кВт36. 5 кВт21.1 кВт
Автомат 40А 8.8 кВт8.8 кВт45.6 кВт26.4 кВт
Автомат 50А 11 кВт11 кВт57 кВт33 кВт
Автомат 63А 13.9 кВт13.9 кВт71.8 кВт41.6 кВт

 

Калибруемая характеристика номинала аппарата

Эта характеристика – рабочие параметры теплового расцепителя или его полупроводникового аналога. Представляет собой коэффициент, умножая на который мы получаем силу тока при перегрузке, которую прибор может держать или не держать в течение определенного периода времени. Устанавливается значение калибруемой характеристики в процессе производства, корректировки в домашних условиях не подлежит. Подбирают ее из стандартного ряда.

Калибруемая характеристика указывает на то, как долго и перегрузку какого силы сможет выдержать автомат, не отключая участок цепи от питания. Обычно это две цифры:

  • наименьшее значение повествует о том, что автомат будет пропускать ток с превышающими стандарт параметрами более часа. Например: автомат на 25А будет более часа пропускать ток силой в 33А, не отключая защищаемый отрезок проводки
  • наибольшее значение – лимит, за пределами которого отключение произойдет меньше, чем через час. Указанный в примере прибор быстро отключится при токе 37 и более Ампер

Если проводка проходит в штробе, сформированной в стене с внушительной изоляцией, кабель при перегрузе и сопровождающем его перегреве охлаждаться практически не будет. Значит, за час проводка может изрядно пострадать. Может, сразу результат превышения никто и не заметит, но сроки службы проводов существенно сократятся. Следовательно, для скрытой проводки будем искать выключатель с минимальными калибровочными характеристиками. Для открытого варианта можно особо не зацикливаться на данной величине.

Уставка – показатель моментального срабатывания

Значение величины силы тока, при котором срабатывает защита, называется Уставка.

Данная цифра на корпусе — характеристика работы электромагнитного расцепителя. Она обозначает предельную величину аномальной силы тока, которая при многократных отключениях не повлияет на работоспособность прибора. Нормируется она в единицах тока, а указывается цифрами или латинскими литерами. С цифрами все предельно просто: это номинал. А вот скрытый смысл буквенных обозначений стоит выяснить.

Буквы проставляются на автоматах, выполненных по DIN-стандартам. Обозначают они кратность максимального тока, возникающего при включении оборудования. Тока, который в разы превышает рабочие характеристики цепи, но не становится причиной отключения и не приводит в непригодность прибор. Проще, во сколько раз ток включения оборудования может превысить номинал аппарата и кабеля без угрожающих последствий.

Характеристики модульных автоматических выключателей

Ниже перечислим характеристики модульных автоматических выключателей, расскажем о том, чем они отличаются друг от друга и для чего предназначены автоматы, имеющие их. Все характеристики представляют собой зависимости между током нагрузки и временем отключения на этом токе.

1) Характеристика MA

Отсутствие теплового расцепителя.

На самом деле, он действительно не всегда бывает нужен. Например, защиту электродвигателей часто осуществляют при помощи максимально-токовых реле, а автомат в подобном случае нужен лишь для защиты от токов короткого замыкания.

2) Характеристика А

Тепловой расцепитель автомата этой характеристики может сработать уже при токе, составляющем 1,3 от номинального. При этом время отключения составит около часа. При токе, превышающем номинальный в два раза, в действие может вступить электромагнитный расцепитель, срабатывающий примерно за 0,05 секунды. Но если при двукратном превышении тока соленоид еще не сработает, то тепловой расцепитель по-прежнему остается «в игре», отключая нагрузку примерно через 20-30 секунд. При токе, превышающем номинальный в три раза, гарантированно срабатывает электромагнитный расцепитель за сотые доли секунды.

Автоматические выключатели характеристики А устанавливаются в тех цепях, где кратковременные перегрузки не могут возникнуть в нормальном рабочем режиме. Примером могут служить цепи, содержащие устройства с полупроводниковыми элементами, способными выйти из строя при небольшом превышении тока.

3) Характеристика В

Характеристика этих автоматов отличается от характеристики А тем, что электромагнитный расцепитель может сработать только при токе, превышающем номинальный не в два, а в три и более раз. Время срабатывания соленоида составляет всего 0,015 секунды. Тепловой расцепитель при трехкратной перегрузке автомата В сработает через 4-5 секунд. Гарантированное срабатывание автомата происходит при пятикратной перегрузке для переменного тока и при нагрузке, превышающей номинальную в 7,5 раз в цепях постоянного тока.

Автоматические выключатели характеристики В применяются в осветительных сетях, а также прочих сетях, в которых пусковое повышение тока либо невелико, либо отсутствует вовсе.

4) Характеристика С

Это самая известная характеристика для большинства электриков. Автоматы С отличаются еще большей перегрузочной способностью по сравнению с автоматами В и А. Так, минимальный ток срабатывания электромагнитного расцепителя автомата характеристики С составляет пятикратный номинальный ток. При этом же токе тепловой расцепитель срабатывает через 1,5 секунд, а гарантированное срабатывание электромагнитного расцепителя наступает при десятикратной перегрузке для переменного тока и при 15-тикратной перегрузке для цепей тока постоянного.

Автоматические выключатели С рекомендуются к установке в сетях со смешанной нагрузкой, предполагающей умеренные пусковые токи, благодаря чему бытовые электрощиты содержат в своем составе именно автоматы этого типа.

5) Характеристика D

Отличается очень большой перегрузочной способностью. Минимальный ток срабатывания электромагнитного соленоида этого автомата составляет десять номинальных токов, а тепловой расцепитель при этом может сработать за 0,4 секунды. Гарантированное срабатывание обеспечено при двадцатикратной перегрузке по току.

Автоматические выключатели характеристики D предназначены, прежде всего, для подключения электродвигателей, имеющих большие пусковые токи.

6) Характеристика K 

Отличается большим разбросом между максимальным током срабатывания соленоида в цепях переменного и постоянного тока. Минимальный ток перегрузки, при котором может сработать электромагнитный расцепитель, для этих автоматов составляет восемь номинальных токов, а гарантированный ток срабатывания той же защиты составляет 12 номинальных токов в цепи переменного тока и 18 номинальных токов в цепи постоянного тока. Время срабатывания электромагнитного расцепителя составляет до 0,02 секунды. Тепловой расцепитель автомата К может сработать при токе, превышающем номинальный всего в 1,05 раз.

Из-за таких особенностей характеристики K эти автоматы применяют для подключения чисто индуктивной нагрузки.

7) Характеристика Z 

Также имеет различия в токах гарантированного срабатывания электромагнитного расцепителя в цепях переменного и постоянного тока. Минимальный возможный ток срабатывания соленоида для этих автоматов составляет два номинальных, а гарантированный ток срабатывания электромагнитного расцепителя составляет три номинальных тока для цепей переменного тока и 4,5 номинальных тока для цепи постоянного тока. Тепловой расцепитель автоматов Z, как и у автоматов K, может срабатывать при токе в 1,05 от номинального.

Автоматический выключатель Z, применяется только для подключения электронных устройств.

Класс токоограничения и его значение.

Об этом кратко, ведь большинство предложенных торговлей приборов относится к 3-му классу токоограничения. Изредка встречается 2-ой. Это показатель скорости действия аппарата. Чем он выше, тем быстрее отреагирует прибор на ТКЗ. 

Информации много, но без нее будет сложно правильно выбрать автоматический выключатель и защитить имущество от нежелательных возгораний. Нужны сведения и тем, кто будет заказывать установку приборов защиты. Ведь не каждому электрику, позиционирующему себя в качестве великого специалиста, стоит безоговорочно доверять.

 

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Как рассчитать номинал автоматического выключателя? | ЭлектроАС

Дата: 11 мая, 2009 | Рубрика: Вопросы и Ответы, Электромонтаж
Метки: Автоматический выключатель, Расчёт мощности, Электромонтаж

Этот материал подготовлен специалистами компании «ЭлектроАС».
Нужен электромонтаж или электроизмерения? Звоните нам!

Андрей
Я проживаю в коттеджном поселке. С недавнего времени электрики обслуживающей электромонтажной организация, из-за дефицита мощности, пытается ограничить мой дом в потреблении электроэнергии путем электромонтажа на вводе автоматического выключателя ниже по току, чем есть сейчас. На неоднократные мои попытки объяснить им незаконность этой меры, только усиливают прессинг. Скажите пожалуйста, как рассчитать на какой ток должен быть автоматический выключатель, с точки зрения электротехнического расчета — если суммарная нагрузка электроприборов в доме 12 кВт (в том числе по техническим условиям на подключение) при трехфазном питании, ведь это считается с учетом коэффициента одновременности, включая электрооборудование и cos ф для трехфазного подключения?

Заранее благодарен!

Если у Вас есть разрешение на присоединение мощности 12 кВт 380 В , то никто не имеет право ограничивать Вам потребление электроэнергии. Есть четыре выхода:
1.Выполнить электромонтаж своего аппарата защиты, в соответствии с однолинейной схемой, которая выдавалась Вам с разрешением на подключение электроэнергии.
2.Пойти в суд и подать иск на обслуживающую энергетическую компанию.
3.Дать битой тому, кто незаконно решил урезать Вам электроэнергию.
4.Ждать, когда выполнят электромонтажные работы по установки нового более мощного трансформатора и исчезнет дефицит электроэнергии.
Мы приводим Вам расчёт номинала автоматического выключателя, который должен быть установлен у Вас в силовом щите (щит учёта)

Py = 12,0 кВт
Pp= 12,0 кВт
Ip=19,2 А
cos ф= 0,95
Кс= 1 (коэффициент спроса)
Pp = Py x Kc = 12000 x 1 = 12,0 кВт
Ip = Pp : 380 : 1,73 : cos ф = 12000 : 380 : 1,73 : 0,95 = 19,2 А (номинал аппарата защиты)
При коэффициенте спроса 1 номинал аппарата защиты равен 20 А (16 А)

Py = 12 кВт
Pp= 10,8 кВт
Ip= 17,3 А
cos ф= 0,95
Кс= 0,9
Pp = Py x Kc = 12000 x 0,9 = 10,8 кВт
Ip = Pp : 380 : 1,73 : cos ф = 10800 : 380 : 1,73 : 0,95 = 17,3 А
При коэффициенте спроса 0,9 номинал аппарата защиты равен 16 А

Расчёт потребляемой мощности, сечения кабеля и номинала автоматического выключателя

Как расчитать сечение кабеля

Прочая и полезная информация

Прочая и полезная информация

Номинальные характеристики автоматических выключателей

Класс автоматического выключателя дается в соответствии с выполняемыми им функциями. Полные технические характеристики, стандартные характеристики и различные испытания выключателей и автоматических выключателей IS 375/1951 можно найти в.

Автоматический выключатель необходим для выполнения следующих трех основных функций.

  • Он должен обеспечивать размыкание неисправной цепи и отключение тока повреждения. Это описывается как отключающая способность автоматического выключателя
  • .
  • Должна быть предусмотрена возможность замыкания на неисправность.Имеется в виду включающая способность автоматического выключателя
  • .
  • Он должен быть способен пропускать ток повреждения в течение короткого времени, пока другой автоматический выключатель устраняет неисправность. Это относится к кратковременной мощности автоматического выключателя.

В дополнение к указанным выше номинальным значениям, автоматический выключатель должен быть указан как

.
  • Номинальное напряжение : Номинальное максимальное напряжение автоматического выключателя — это максимальное действующее напряжение, превышающее номинальное напряжение системы, для которого автоматический выключатель разработан и является верхним пределом срабатывания. Номинальное напряжение выражается в кВ среднеквадратического значения и относится к фазному напряжению для трехфазной цепи.
  • Номинальный ток: Номинальный нормальный ток автоматического выключателя — это действующее значение тока, который автоматический выключатель должен выдерживать при номинальной частоте и номинальном напряжении непрерывно при определенных условиях.
  • Номинальная частота: Номинальная частота выключателя — это частота, на которой он рассчитан на работу.
  • Рабочий режим : рабочий режим автоматического выключателя состоит из заданного количества операций блока с заданными интервалами.

Отключающая способность:

Ток отключения — это действующее значение тока, которое автоматический выключатель должен отключить в момент размыкания контактов. Симметричный ток отключения — это действующее значение его симметричной составляющей. Однако, если в момент разъединения контактов волна все еще остается асимметричной, это называется асимметричным током отключения.

Отключающая способность (МВА) = Номинальный симметричный ток отключения (кА) × Номинальное рабочее напряжение (кВ) × √3

Включающая способность:

Автоматический выключатель может полностью завершить короткое замыкание при включении. Это известно как включающая способность.

Включающая способность = 1,8 × √2 × Симметричная отключающая способность.

Кратковременный рейтинг:

Автоматический выключатель должен быть способен выдерживать высокие токи безопасно и без чрезмерного напряжения в течение определенного короткого периода времени в замкнутом положении.Это называется краткосрочным рейтингом.

Это происходит в случае кратковременной неисправности, такой как возраст птицы на линиях передачи, и неисправность автоматически устраняется и сохраняется только в течение 1 или 2 секунд. По этой причине автоматические выключатели рассчитаны на короткое время и срабатывают только тогда, когда неисправность сохраняется в течение более длительного времени, чем указанный предел времени.

Прочие факторы

Обычно ток короткого замыкания на различных ожидаемых уровнях напряжения стандартизируется при производстве автоматического выключателя с учетом увеличения токов замыкания в будущем из-за добавления различных источников.Уровень напряжения и ожидаемый ток короткого замыкания приведены ниже.

220кВ 40кА

110 кВ 31,5 кА

66кВ

11кВ 250МВА

433В 25МВА

240 В 5 мВА

Различными типами автоматических выключателей являются масляные автоматические выключатели (BOCB), минимальные масляные выключатели (MOCB), воздушные автоматические выключатели (ABCB), вакуумные выключатели (VCB), газовые выключатели SF6 и т. Д.

SF6 CB и VCB превосходят по производительности по сравнению с другими типами и, следовательно, выбраны для этой конкретной конструкции подстанции для стороны 220 и 110 кВ и стороны 11 кВ соответственно.

Почему мощность автоматического выключателя была оценена в МВА, а теперь в кА?

Номинальные параметры автоматического выключателя — отключающая способность, включающая способность, номинальное напряжение и ток, рабочий цикл и кратковременная работа выключателя

Пожалуйста, не убивайте меня, чтобы упомянуть неожиданный рейтинг MVA автоматического выключателя, который есть у всех нас слышал про автоматические выключатели на 500 или 1000 МВА. Эти рейтинги не будут отображаться на последних моделях, поскольку это была старая логика, и сейчас все изменилось.Чтобы прояснить основную концепцию и узнать, что именно произошло с правилами, давайте рассмотрим следующее объяснение. Фактически это отключающая способность (а не ток отключения) выключателя, которая теперь выражается в кА, а не в МВА (как было раньше).

Прежде чем мы углубимся в детали, давайте узнаем, что именно делает автоматический выключатель и каковы различные типы номиналов автоматических выключателей.

Автоматический выключатель — это устройство управления и защиты, используемое для механизма переключения и защиты системы, которое:

  • Замыкает и размыкает цепь вручную или автоматически в нормальных и аварийных условиях.
  • Разомкните цепь автоматически и закройте путь к короткому замыканию и токам, протекающим через него.
  • Перенести ток короткого замыкания в течение очень короткого времени, пока другой последовательно подключенный автоматический выключатель устраняет замыкание, происходящее в подключенной цепи.

Исходя из трех функций автоматического выключателя, упомянутых выше, существует шесть следующих номиналов автоматического выключателя:

  • Отключающая способность
  • Включающая способность
  • Рабочий цикл автоматического выключателя ( Номинальная рабочая последовательность)
  • Номинальное напряжение
  • Кратковременная рабочая мощность
  • Нормальный номинальный ток

Отключающая способность (ранее МВА, теперь кА)

Отключающая способность — максимальная неисправность или ток короткого замыкания (RMS), который автоматический выключатель может выдержать или прервать путем размыкания замкнутых контактов при номинальном восстанавливающемся напряжении без повреждения автоматического выключателя и подключенных устройств.

Отключающая способность автоматического выключателя выражается в среднеквадратичном значении из-за симметричных и асимметричных факторов из-за наличия пульсаций и составляющих постоянного тока во время короткого замыкания в течение очень короткого времени.

Отключающая способность выключателя ранее была рассчитана в МВА с учетом номинального тока отключения и номинального рабочего напряжения выключателя. Ее можно рассчитать следующим образом:

Отключающая способность = √3 x V x I x 10 -6 … MVA

или

Отключающая или отключающая способность = √3 x номинальное напряжение сети x номинальный ток сети x 10 -6 … MVA

Пример:

Что такое ток отключения или отключения выключателя с номинальной отключающей способностью 100 МВА и номинальным рабочим напряжением 11 кВ.

Решение:

Ток отключения = 100 x 10 -6 / (√3 x 11 кВ) = 52,48 кА

Почему отключающая способность выражается в кВт, а не в МВА?

Очевидно нелогично выражать мощность автоматического выключателя в МВА, потому что во время короткого замыкания возникает очень низкое напряжение и самый высокий ток. Когда выключатель размыкает контакты для устранения токов повреждения, на контактах выключателя появляется номинальное напряжение.Короче говоря, одинаковые номинальные величины не появляются постоянно во время токов короткого замыкания. Вот почему номинальная отключающая способность автоматического выключателя не может быть выражена в МВА.

По этим причинам производители следуют последним и пересмотренным международным стандартам, чтобы выразить номинальную отключающую способность выключателя в симметричном токе отключения в кА при номинальном напряжении, а не в МВА. За номинальной отключающей способностью автоматического выключателя в амперах или кА следуют ток отключения и переходное восстанавливающееся напряжение (TRV), поскольку оно может быть как симметричным, так и асимметричным во время короткого замыкания.

Включающая способность

Включающая способность автоматического выключателя — это пиковое значение тока, включая кратковременные коэффициенты пульсаций и составляющие постоянного тока во время первого цикла волны тока повреждения после замыкания контактов автоматического выключателя.

Имейте в виду, что номинальная включающая способность выключателя в кА выражается в пиковом значении, а не в среднеквадратичном значении (отключающая способность оценивается в действующем значении). Это связано с возможностью успешного замыкания контактов выключателя во время токов короткого замыкания при одновременном управлении электромагнитными силами, а также возникновении и гашении дуги без повреждения выключателя и цепи.

Эти вредные силы прямо пропорциональны квадрату максимального мгновенного значения тока при замыкании. Вот почему включающая способность указывается в пиковом значении по сравнению с отключающей способностью, которая выражается в среднеквадратичном значении.

Значение токов короткого замыкания является максимальным в первой фазе или волнах в случае максимальной асимметрии в фазе, подключенной к выключателю. Проще говоря, включающий ток равен максимальному значению асимметричного тока, то есть включающая способность выключателя всегда больше, чем отключающая способность выключателя .

Номинальный ток включения при коротком замыкании принимается равным 2,5 x среднеквадратичное значение составляющих переменного тока номинального тока отключения, поскольку теоретически ток короткого замыкания может возрасти в два раза по сравнению с уровнем симметричного замыкания на начальной стадии.

Включающую способность выключателя можно рассчитать следующим образом.

Чтобы преобразовать симметричный ток отключения из среднеквадратичного значения в пиковое значение:

Включающая способность выключателя = симметричный ток отключения x √2

Умножьте приведенное выше выражение на 1.8, чтобы включить эффект удвоения максимальной асимметрии. то есть влияние тока короткого замыкания с учетом небольшого падения тока в течение первой четверти цикла.

Включающая способность выключателя = √2 x 1,8 x Симметричный ток отключения = 2,55 x Симметричный ток отключения

Включающая способность выключателя = 2,55 x Симметричный ток отключения

Рабочий цикл автоматического выключателя или номинальная рабочая последовательность

Это показывает механические требования к механизму переключения выключателя.

Рабочий цикл или номинальная рабочая последовательность выключателя можно выразить следующим образом:

O — t — CO — t ‘- CO

Где:

  • O = Отключение выключателя
  • t = 0,3 секунды для первого автоматического повторного включения, если не указано
  • t ‘= Время между двумя операциями (восстановить исходное состояние и предотвратить несоответствующий нагрев контактов выключателя
  • CO = Операция замыкания сразу после операции размыкания без задержки по времени

Связанные сообщения :

Номинальное напряжение

Значение безопасного максимального предела напряжения, при котором выключатель может работать без каких-либо повреждений, называется номинальным напряжением выключателя.

Величина номинального напряжения выключателя зависит от толщины изоляции и изоляционного материала, используемого в конструкции выключателя. Номинальное напряжение выключателя связано с самым высоким напряжением в системе из-за повышения напряжения из-за отсутствия нагрузки или внезапного изменения нагрузки до более низкого значения. Таким образом, он может справиться с повышением напряжения в системе до максимальной номинальной мощности. Например, автоматический выключатель должен выдерживать 10% номинального напряжения системы в случае системы 40 кВ, где предел на 5% выше напряжения системы 400 кВ.Сюда. автоматический выключатель, который будет использоваться на линии 6,6 кВ, должен иметь номинальное значение около 7,2 кВ и т. д. из-за соответствующего наивысшего напряжения системы

С другой стороны, автоматический выключатель с номинальным напряжением 400 В переменного тока не должен работать при более высоком напряжении, т. е. 1000 В или более того, выключатель с номинальным напряжением 1000 В переменного тока может использоваться при напряжении системы 400 В. Если использовать выключатель на номинальном уровне напряжения, он сможет погасить дугу, возникающую в контактах выключателя. Если мы используем прерыватель на более высоких уровнях напряжения вместо номинального напряжения, переходное восстанавливающееся напряжение (TVR) по сравнению с диэлектрической прочностью среды гашения дуги.В этом случае дуга может все еще существовать, поскольку гаситель дуги не может ее успешно различить, что приводит к повреждению автоматического выключателя или изоляции выключателя.

Обычно номинальное напряжение автоматического выключателя выше, чем номинальное напряжение шины и нагрузки в энергосистеме. Как правило, существует два типа автоматических выключателей, связанных с уровнями напряжения, то есть низковольтные выключатели и высоковольтные выключатели, имеющие следующие особенности.

  • Выключатели низкого напряжения могут использоваться для 1кВ переменного тока и 1.2кВ постоянного тока, при этом уровень высокого напряжения больше, чем у выключателей низкого напряжения.
  • Высоковольтные автоматические выключатели используются как для внутреннего, так и для наружного управления в высоковольтных системах, а низковольтные автоматические выключатели используются внутри помещений.
  • Выключатели низкого напряжения более сложны и срабатывают чаще, чем выключатели высокого напряжения из-за меньших межфазных зазоров и межфазных зазоров. Методы испытаний различаются для обоих типов выключателей уровня напряжения.

Связанное сообщение: Автоматический выключатель Smart WiFi — Строительство, установка и работа

Ожидая вышеуказанного номинального напряжения, два дополнительных номинала напряжения могут быть приняты во внимание при рассмотрении уровня напряжения для автоматических выключателей для различных операций.

  1. Номинальное импульсное напряжение
  2. Номинальное выдерживаемое напряжение промышленной частоты

Номинальное импульсное напряжение автоматического выключателя показывает способность выдерживать переходные импульсы от молнии или коммутационных импульсов. Продолжительность импульсного или переходного напряжения автоматического выключателя выражается в микросекундах. По этой причине его контакты относительно изоляции рассчитаны на то, чтобы выдерживать переходное пиковое напряжение в течение очень короткого времени или периода.

Выдерживаемое напряжение промышленной частоты Номинальное значение автоматического выключателя показывает способность справляться с внезапным повышением напряжения, которое очень высоко, чем более высокое напряжение в системе. Это происходит из-за резких изменений нагрузки или одновременного отключения большой части нагрузки.

Это напряжение, вызванное промышленной частотой, составляет очень короткое время, обычно 60 секунд, но автоматический выключатель должен выдерживать перенапряжение промышленной частоты.

В следующей таблице показаны различные номинальные уровни напряжения выключателя i.е. Номинальное напряжение системы, максимальное напряжение системы, выдерживаемое напряжение промышленной частоты и уровни импульсного напряжения.

Связанное сообщение:

Кратковременная рабочая емкость

Кратковременная емкость автоматического выключателя — это определенный короткий период, в течение которого автоматический выключатель пропускает ток повреждения, оставаясь замкнутым.

Для уменьшения нежелательного срабатывания автоматического выключателя, такого как ток короткого замыкания в течение очень короткого времени или внезапного изменения или уменьшения нагрузки, автоматический выключатель не должен отключать и отключать цепь, если сбой исчезает автоматически, и обрабатывать электромагнитную силу и температуру. повышаться.Если оно превышает указанное время в секундах или миллисекундах, выключатель размыкает контакты, чтобы обеспечить максимально возможную защиту подключенной части нагрузки и оборудования.

Используются различные классы, такие как B, C, D и класс 1, класс 2 и класс 3 с соответствующими кривыми. Лучше всего подходит класс 3, который позволяет тестировать максимум 1,5 л джоуля в секунду в соответствии с IS 60898. Например, масляный контур прерыватель имеет выдержку времени 3 секунды, и она не должна превышать точных 3 секунд при прохождении тока короткого замыкания. Номинальная кратковременная токовая нагрузка должна равняться номинальной отключающей способности автоматического выключателя . Следовательно, необходимо проявлять осторожность в отношении чувствительного устройства, учитывая номинальную временную нагрузку выключателей.

Связанные сообщения:

Нормальный номинальный ток

Нормальный номинальный ток автоматического выключателя — это среднеквадратичное значение тока, который он способен непрерывно проводить при номинальном напряжении и частоте без изменений в работе из-за повышения по температуре во время нормальной работы.

Нормальный ток должен составлять 125% номинального тока цепи. Например, если ток нагрузки составляет 24 А, номинал автоматического выключателя должен быть следующим.

= 24A x 125%

= 24A x 1,25

Номинальный ток автоматического выключателя = 30 A

Другой способ, чтобы определить ток нагрузки, ток выключателя может быть увеличен на 0,8. то есть выключатель на 25 А может использоваться для осветительной нагрузки 20 А и т. д.

Ток нагрузки = Номинальный ток выключателя x 0,8

Ток нагрузки = 25A x 0.8 = 20А.

Похожие сообщения:

Защита от перегрузки по току, часть 2 — журнал IAEI

Часть I, вышедшая в мартовском / апрельском выпуске, предоставила читателям информацию об основных принципах работы и основных время-токовых характеристиках распределительных цепей, низковольтных предохранителей и автоматических выключателей. В этой статье рассматриваются три номинальных значения устройств защиты от сверхтоков, их применение в конструкции и аспекты соответствия требованиям NEC для низковольтных предохранителей и автоматических выключателей.Эти устройства защиты от сверхтоков (OCPD) обычно используются в главных разъединителях, фидерах и ответвленных цепях жилых, коммерческих, институциональных и промышленных электрических систем. Существуют и другие OCPD, используемые в электрических распределительных системах с напряжением 600 В или менее, которые эта статья не рассматривает напрямую. Однако многие из этих представленных принципов применимы и к устройствам другого типа. В этой статье основное внимание уделяется основам, и, как вы, вероятно, уже знаете, Кодекс всеобъемлющий и сложный.Как следствие, нельзя предполагать, что информация в этой статье применима для всех типов приложений и ситуаций подключения.

Почему так важна максимальная токовая защита

Таблица 1. Максимальный номинал или настройка защитных устройств *

Слишком часто установка небезопасна из-за неправильного выбора, применения или обслуживания устройств защиты от сверхтоков. Неправильное использование номинального напряжения устройства, номинального тока или номинального тока прерывания может привести к повреждению оборудования, травмам и / или смерти.Например, если выбран предохранитель или автоматический выключатель с неправильным номиналом тока, электрическое оборудование может оказаться незащищенным в условиях перегрузки или короткого замыкания, что приведет к разрушению оборудования, возникновению опасности возгорания и возможной травме персонала. Если предохранитель или автоматический выключатель не имеют соответствующего номинального напряжения, он может взорваться при попытке прервать перегрузку по току. Наконец, как предохранители, так и автоматические выключатели могут резко взорваться, пытаясь прервать токи короткого замыкания, превышающие их номинальные значения отключения.Как отрасль, нам необходимо лучше определять, устанавливать, проверять и поддерживать надлежащие характеристики устройств защиты от перегрузки по току для приложения. Он начинается с понимания рейтингов OCPD, способов их применения и требований Кодекса.

Номинальный ток

Рисунок 1

Рискуя упрощения, номинальная сила тока предохранителя или автоматического выключателя — это максимальная сила тока, которую он может безопасно выдерживать без размыкания в стандартных условиях испытаний.Предохранители и автоматические выключатели имеют ряд номиналов в амперах. В NEC 240.6 перечислены стандартные номинальные значения тока для предохранителей и автоматических выключателей с обратнозависимой выдержкой времени. Стандартные значения силы тока согласно Кодексу: 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350. , 400, 450, 500, 600, 700, 800, 1000, 1200, 1600, 2000, 2500, 3000, 4000, 5000 и 6000. Дополнительные стандартные номинальные значения тока для предохранителей: 1, 3, 6, 10 и 601. Производители предоставляют Допускается использование OCPD с другими значениями силы тока и использование этих нестандартных значений силы тока.На рисунке 1 показан предохранитель на 200 А, а на рисунке 2 — автоматический выключатель на 225 А.

Рисунок 2

При выборе подходящего номинального тока OCPD для приложения необходимо учитывать тип нагрузки и требования Кодекса. Интересно то, что в Кодексе очень много разных правил для определения максимального номинального тока предохранителя или автоматического выключателя для различных цепей. Всего:

  • Статические нагрузки, такие как нагрев, когда нормальный ток остается в пределах диапазона тока полной нагрузки или меньше, и не имеет пусковых токов, превышающих номинальный ток цепи.
  • Устройства с мгновенными пусковыми токами, например трансформаторы, у которых ток включения значительно превышает нормальный полный ток трансформатора.
  • Нагрузки с высокими пусковыми токами, например, двигатели переменного тока с пуском по сети, пусковые токи которых в четыре-шесть раз превышают номинальный ток, который может сохраняться в течение нескольких секунд.
  • Разрешенные правила для отводных проводов, когда проводники отводятся от проводов с большей допустимой нагрузкой без OCPD в этой конкретной точке отвода.

Рисунок 3

Требования Кодекса нацелены на защиту проводников и компонентов цепей до предела их допустимой нагрузки. Вы обнаружите, что предохранители и автоматические выключатели либо предназначены для обеспечения:

  1. как для защиты от перегрузки, так и для защиты от короткого замыкания, и расположены на стороне линии защищаемой цепи. (Примерами могут быть ответвленные цепи отопления и освещения.) Или
  2. только для защиты от короткого замыкания и расположены на стороне линии защищаемой цепи.В этих случаях обычно требуется другое устройство, предназначенное для защиты от перегрузки, которое может быть расположено дальше по потоку. (Примером может служить параллельная цепь двигателя.)

NEC 240.4 (2005) требует, чтобы проводники, кроме гибких шнуров и крепежных проводов, были защищены от перегрузки по току в соответствии с их допустимыми токами, указанными в 310.15, если иное не разрешено или не требуется в пунктах (A) — (G). В цепи могут быть другие компоненты, такие как разъединители и контакторы, а для других разделов Кодекса требуются соответствующие номинальные характеристики, чтобы для этих других компонентов была обеспечена защита от перегрузки.

Общее правило, для которого существует множество различий, заключается в том, что номинальный ток предохранителя или автоматического выключателя не должен превышать допустимую нагрузку по току проводов. Как правило, номинальный ток предохранителя или автоматического выключателя выбирается равным 125% от продолжительного тока нагрузки. Поскольку проводники также обычно выбираются на 125% от постоянного тока нагрузки, допустимая нагрузка на проводники обычно не превышается. Например, для продолжительной нагрузки 40 А, провод должен быть рассчитан на 50 ампер (125% от 40 А), а предохранитель или автоматический выключатель на 50 ампер — это самый большой предохранитель, который следует использовать (см. Рисунок 3).

Рисунок 4

Как упоминалось ранее, существуют особые обстоятельства, при которых допустимая сила тока предохранителя или автоматического выключателя превышает допустимую нагрузку по току цепи. Типичный пример — схемы двигателя; двухэлементные предохранители с выдержкой времени, как правило, разрешается иметь номинал до 175 процентов (или следующего стандартного размера, если 175 процентов не соответствуют предохранителю стандартного размера) от силы тока полной нагрузки двигателя. Например, схема двигателя на рисунке 4 допускает использование предохранителей с номиналом 1.75 х 34 А = 59,5 ампер. Следующий стандартный размер — 60 А. Размер проводов (согласно 430,22) должен составлять 34 x 1,25 = 42,5 А. минимум. Будет выбран провод 8 AWG, 75 ° C (допустимая нагрузка 50 А согласно 310.15 и таблице 310.16), при условии, что заделки рассчитаны на проводники 75 ° C. Этот предохранитель с выдержкой времени на 60 А допускается, потому что требуемое реле перегрузки или «нагреватель» будет иметь номинал 125 процентов или меньше (при условии, что двигатель 1,15 SF) от тока полной нагрузки двигателя и обеспечивает защиту цепи от перегрузки. Поскольку проводник также рассчитан на 125 процентов от силы тока полной нагрузки двигателя, реле перегрузки предназначено для защиты проводника от перегрузок, поскольку его размер не превышает допустимую нагрузку проводника.Таблица 1 представляет собой сводку максимальных номиналов стандартных предохранителей и автоматических выключателей для однофазных и трехфазных двигателей, разрешенных в соответствии с NEC 430.52 и таблицей 430.52. В этом примере предохранители без временной задержки могут иметь номинал 110 А, а автоматический выключатель с обратнозависимой выдержкой времени — 90 А (для той же схемы электродвигателя с проводом 8 AWG, 50 А) [см. Рисунок 4].

Рисунок 5

Существуют дополнительные исключения, например, когда комбинация предохранитель-выключатель или автоматический выключатель одобрены для непрерывной работы на 100 процентов от своего номинала.

Предлагаем читателям ознакомиться с 240,4 (A) — (G), чтобы узнать о других допустимых требованиях к защите проводников. Вот несколько примеров.

Рисунок 6

NEC 240.4 (A) не требует защиты от перегрузки проводов для цепей пожарных насосов (см. Рисунок 5).

NEC 240.4 (B) (издание 2005 г.) позволяет использовать следующий более высокий стандартный рейтинг OCPD (выше допустимой токовой нагрузки защищаемых проводников) для OCPD, которые не превышают 800 А, если допустимая токовая нагрузка проводника еще не соответствует стандартному OCPD. размер и при соблюдении некоторых других условий (см. рисунок 6).

Рисунок 7

NEC 240.4 (C) требует, чтобы допустимая токовая нагрузка проводника была равной или превышающей номинальную величину OCPD для устройств максимального тока с номиналом более 800 А (см. Рисунок 7). Если в процессе Кодекса 2008 для этого элемента не будет никаких дальнейших изменений, это требование будет изменено, допуская следующие стандартные размеры с определенными ограничениями.

NEC 240.4 (D) требует, чтобы сопротивление OCPD не превышало 15 А для 14 AWG, 20 А для 12 AWG и 30 А для меди 10 AWG; или 15 А для 12 AWG и 25 А для алюминия 10 AWG и алюминия с медным покрытием после применения поправочных коэффициентов для температуры окружающей среды и количества проводников.Это требуется, если это специально не разрешено в 240.4 (E) — (G) [см. Рисунок 8].

Рисунок 8

Одно предупреждение. Выбор номинального значения силы тока OCPD в соответствии с правилами определения допустимой нагрузки, указанными в Кодексе, не гарантирует защиту от короткого замыкания для всех компонентов схемы. Бывают обстоятельства, когда в игру вступают дополнительные требования к защите от короткого замыкания. Однако данная статья не может адекватно осветить эту тему.

Номинальное напряжение

Проще говоря, номинальное напряжение предохранителя или автоматического выключателя — это максимальное напряжение, которое предохранитель или автоматический выключатель способен безопасно отключать при всех условиях перегрузки и короткого замыкания, при которых он рассчитан на отключение, в стандартных условиях испытаний.Правильное применение устройства защиты от перегрузки по току в соответствии с его номинальным напряжением требует, чтобы номинальное напряжение устройства было равным или превышающим напряжение системы. Например, предохранитель или автоматический выключатель на 600 В можно использовать в цепи 575 В, 480 В, 208 В или 120 В. Однако 250-вольтный предохранитель или автоматический выключатель не подходят для 480-вольтовых или 277-вольтных систем.

Существует два физических аспекта правильных OCPD с номинальным напряжением:

  1. Достаточные пути утечки и зазоры, чтобы гарантировать отсутствие токопроводящего пути или перекрытия между токопроводящими частями разных фаз, фаза-нейтраль или фаза-земля.На рисунке 9 показаны пути утечки и зазоры на концах разъединителя. Для автоматических выключателей и держателей / разъединителей предохранителей требуется минимальное расстояние для определенных уровней напряжения. Надлежащая проверка пути утечки и зазоров, гарантирующая, что продукт правильно внесен в список для применения, подтверждается отметкой NTRL, свидетельствующей о том, что продукт соответствует определенному стандарту продукта, который подходит для данного приложения.
  2. Номинальное напряжение OCPD также является функцией его способности размыкать цепь в условиях перегрузки по току.В частности, номинальное напряжение определяет способность OCPD подавлять и гасить внутреннюю дугу, которая возникает во время размыкания состояния перегрузки по току. Если OCPD используется с номинальным напряжением ниже, чем напряжение в цепи, гашение дуги и способность гасить дугу будут ухудшены, и, при некоторых условиях перегрузки по току, OCPD не может безопасно сбросить перегрузку по току.

OCPD могут быть рассчитаны на переменное напряжение, постоянное напряжение или и то, и другое. Часто OCPD с номинальным напряжением переменного / постоянного тока будет иметь номинальное напряжение переменного тока, отличное от номинального напряжения постоянного тока.Например, некоторые предохранители рассчитаны на 600 В переменного тока и 300 В постоянного тока. При обращении к таблицам данных производителя, если номинальное значение указано как 600 В, обычно предполагается, что это номинальное напряжение переменного тока. Однако маркировка продукта должна быть явной, например, 600 В переменного тока или 600 В постоянного тока.

Рисунок 9

Существует два типа номинального напряжения переменного тока OCPD: номинальное прямое напряжение и номинальное наклонное напряжение. Правильное применение устройств защиты от перегрузки по току с прямым номинальным напряжением (т.е.е., 600 В, 480 В, 250 В), которые были оценены на предмет надлежащей работы с полным межфазным напряжением, используемым во время испытаний, листинга и маркировки. Например, все предохранители рассчитаны на прямое напряжение, и нет необходимости беспокоиться о номинальных значениях косой черты. Однако некоторые автоматические выключатели и другие механические устройства защиты от перегрузки по току имеют номинальное напряжение (т.е. 480/277 В, 240/120 В, 600/347 В). Устройства с номинальным наклонным напряжением ограничены в своих приложениях, и при их рассмотрении для использования требуется дополнительная оценка.Это будет обсуждаться в разделе «Номинальное напряжение — автоматические выключатели».

Номинальное напряжение — предохранители

Большинство предохранителей для низковольтных распределительных устройств рассчитаны на 250 или 600 В. Другие номиналы предохранителей: 125, 300 и 480 В. Согласно стандарту NEC 240.60 (C) номинальное напряжение патронных предохранителей должно быть четко указано на предохранителе. NEC 240.61 допускает использование предохранителей на 600 В или менее при напряжении ниже их номинального. NEC 240.60 (A) (2) допускает использование патронных предохранителей на 300 В в однофазных цепях фаза-нейтраль, питаемых от 3-фазного, 4-проводного источника с глухозаземленной нейтралью, где напряжение между фазой и нейтралью не соответствует норме. не более 300 В.Это позволяет использовать патронные предохранители на 300 В в однофазных цепях освещения 277 В. Некоторые предохранители класса T рассчитаны на 300 В.

Номинальное напряжение — автоматические выключатели

Большинство автоматических выключателей, используемых в низковольтных системах распределения электроэнергии, имеют номинальное напряжение 125 В, 250 В, 480 В или 600 В. Согласно NEC 240.83 (E) номинальное напряжение автоматических выключателей должно быть маркировано и не должно быть меньше чем номинальное напряжение системы.

Рисунок 10

НЭК 240.85 подробно описывает особые требования к номинальному напряжению автоматических выключателей, такие как номинальные значения косой черты. Некоторые автоматические выключатели и другие многополюсные механические устройства защиты от перегрузки по току, такие как самозащищенные пускатели и ручные контроллеры двигателей, могут иметь номинальное напряжение косой черты, а не прямое напряжение. Устройство защиты от перегрузки по току с номинальным напряжением косой черты — это устройство с двумя номинальными значениями напряжения, разделенными косой чертой, и имеет маркировку 480Y / 277 В или 480/277 В (см. Рисунок 10). Сравните это с устройством защиты от перегрузки по току, рассчитанным на прямое напряжение, которое не имеет предельного номинального напряжения, например 480 В.

Рисунок 11

Для устройства с косой чертой нижний из двух номиналов предназначен для сверхтоков при напряжении между фазой и землей, предназначенных для отключения одним полюсом устройства. Самый высокий из двух номиналов предназначен для сверхтоков при линейном напряжении, предназначенного для отключения двумя или тремя полюсами автоматического выключателя или другого механического устройства защиты от сверхтоков. Устройства максимальной токовой защиты с номинальным косым напряжением не предназначены для размыкания межфазных напряжений только на одном полюсе.Там, где полное межфазное напряжение может появляться только на одном полюсе, необходимо использовать полное или прямолинейное устройство защиты от перегрузки по току. Пример приложения, в котором автоматический выключатель на 480 В может отключать перегрузку по току при 480 В только с одним полюсом, — это когда фаза A уходит на землю в системе треугольником с заземленной вершиной треугольника 480 В, фаза B. Номинальные значения напряжения косой черты для автоматических выключателей рассматриваются в NEC 240.85, ограничивая их использование в глухозаземленных системах, в которых напряжение между фазой и землей не превышает меньшее из двух значений, а линейное напряжение не превышает более высокое значение.

Устройства защиты от сверхтоков, номинальные значения которых могут быть сокращены, включают, но не ограничиваются:

  • Автоматические выключатели в литом корпусе — UL 489
  • Контроллеры двигателей с ручным управлением — UL 508
  • Комбинированные пускатели типа E с самозащитой — UL 508
  • Дополнительные защитные устройства — UL 1077

Рисунок 12

Два других специальных требования подробно описаны в NEC 240.85:

для номинального напряжения автоматических выключателей.
  1. Автоматический выключатель с номинальным напряжением прямой цепи, например 240 В или 480 В, разрешается применять в цепи, в которой номинальное напряжение между любыми двумя проводниками не превышает номинальное напряжение автоматического выключателя (см. Рисунок 12). .
  2. Двухполюсный автоматический выключатель не должен использоваться для защиты трехфазной треугольной цепи с заземленной вершиной треугольника, если автоматический выключатель не имеет маркировки 1Φ – 3Φ (см. Рисунок 13).

Рейтинг прерывания

NEC Статья 100 определяет отключающую способность как «наивысший ток при номинальном напряжении, который устройство должно отключать в стандартных условиях испытаний».

Рисунок 13

Рейтинг, который определяет способность устройства защиты от перегрузки по току сохранять свою целостность при отключении тока короткого замыкания, называется его рейтингом отключения.Номинальное значение прерывания для аварийного прерывания в первую очередь связано с целостностью предохранителя или автоматического выключателя для прерывания тока повреждения; это не показатель, обеспечивающий защиту всех компонентов цепи ниже по потоку.

NEC 110.9 требует, чтобы устройства, прерывающие ток, имели достаточный отключающий рейтинг для тока, который должен быть прерван. Раздел 110.9 определяет разницу между током отключения и током отключения. Автоматические выключатели и предохранители — это устройства, предназначенные для отключения тока на уровнях КЗ и 110.9 требует, чтобы они имели отключающую способность, достаточную для имеющегося тока короткого замыкания на их линейных клеммах. Оборудование, такое как разъединители и контроллеры двигателей, предназначенное для прерывания рабочего тока, должно быть рассчитано на ток, который должен быть прерван, такой как ток нагрузки или ток заблокированного ротора двигателя. Эта статья касается прерывания тока повреждения предохранителями и автоматическими выключателями.

Рисунок 14

На рис. 14 показаны четыре последовательных фотографии, снятые во время высокоскоростной видеосъемки испытания пары одноразовых предохранителей на 600 В, когда ток короткого замыкания превышал номинал размыкания предохранителей.Эти предохранители имеют отключающую способность 10 000 А при 600 В. Однако испытательная схема была способна выдать 50 000 А тока короткого замыкания при 480 В. Это неправильное применение, поскольку предохранители не имеют достаточной отключающей способности для применения. Обратите внимание на большое количество разрушительной энергии, выделяемой этими устройствами при их сильном разрыве.

Минимальный рейтинг прерывания

В NEC 240,60 (C) указано, что минимальная отключающая способность предохранителей в патроне ответвительной цепи составляет 10 000 А.В стандарте NEC 240.83 (C) указано, что минимальная отключающая способность выключателя параллельной цепи составляет 5000 А. Предохранитель параллельной цепи или автоматический выключатель параллельной цепи должны быть надлежащим образом маркированы, если номинальная мощность отключения превышает эти минимальные значения, соответственно. Эти минимальные отключающие характеристики и маркировка не применяются к дополнительным защитным устройствам, таким как плавкие предохранители со стеклянной трубкой или мини-выключатели (дополнительные предохранители — UL 1077).

На рис. 1 показан предохранитель, имеющий в списке UL номинальные отключающие характеристики 300 кА при 600 В переменного тока и 100 кА при 300 В постоянного тока.Номинальное значение отключения для данного автоматического выключателя обычно зависит от напряжения в системе. На рисунке 2 показан автоматический выключатель с разными номинальными характеристиками отключения, соответствующими различным уровням напряжения в приложении.

Рисунок 15

Какую отключающую способность должен иметь предохранитель в схеме на рис. 15?
Ответ: не менее 50 000 ампер. Предохранители классов R, J, T, L и CC имеют отключающую способность не менее 200 000 ампер.

Вопрос: На рисунке 16 какой отключающий рейтинг должен иметь автоматический выключатель?
Ответ: Некоторое значение больше или равно 50 000 ампер.Важно понимать, что автоматические выключатели бывают самых разных номиналов отключения. Например, автоматический выключатель может быть рассчитан на 10 000 A, 14 000 A, 18 000 A, 22 000 A, 25 000 A, 30 000 A, 35 000 A, 42 000 A, 50 000 A, 65 000 A, 100 000 A или 200 000 A. Кроме того, автоматический выключатель номинальные характеристики прерывания зависят от напряжения. Таким образом, автоматический выключатель на 480 В может иметь отключающую способность 65000 А при 240 В и 25000 А при 480 В.

Рисунок 16

Является ли правильное прерывание рейтинга проблемой в отрасли? Много раз у автора были люди, которые видели маркированный щит на 42 кА с автоматическим выключателем на 10 кА, установленным среди автоматических выключателей на 42 кА.Или установлены предохранители 10-A IR класса H, если имеется ток короткого замыкания более 10 кА. Эти два примера представляют серьезную угрозу безопасности. Многие промышленные предприятия проводят исследования опасности возникновения дугового разряда на своих объектах, чтобы обеспечить более безопасное рабочее место для своих рабочих. Фирма автора проводит исследования опасности вспышки для промышленных, коммерческих и институциональных объектов, и результаты немного сбивают с толку. Выявлено множество ситуаций, когда доступный ток короткого замыкания превышает отключающую способность установленных автоматических выключателей и предохранителей.Другая отраслевая ситуация: коммунальные предприятия регулярно заменяют трансформаторы из-за большей мощности, необходимой для расширения мощностей, или из-за того, что предыдущий блок вышел из строя. Часто результатом являются более высокие доступные токи короткого замыкания в оборудовании, что может привести к тому, что установленные OCPD будут иметь неадекватные отключающие характеристики.

Рисунок 17

Для обеспечения соответствия электрической системы требованиям NEC 110.9 требуется знание доступного тока короткого замыкания на линии каждого устройства защиты от сверхтоков.Как показано на рисунке 17, становится необходимым определить доступные токи короткого замыкания в месте расположения каждого защитного устройства. Токи короткого замыкания в электрической системе можно легко рассчитать, если известна достаточная информация об электрической системе. Однако в этой статье не рассматривается, как рассчитать доступные токи короткого замыкания. Существуют простые в использовании табличные методы, методы ручного расчета, а также программные приложения, которые можно использовать для определения доступных токов короткого замыкания в системе.Кроме того, существуют простые в использовании практические правила, которые можно использовать в определенных ситуациях.

Рейтинг серии

Рисунок 18

Как будто этого недостаточно знать, есть еще кое-что о прерывании рейтинга. Как правило, автоматический выключатель не следует применять, если доступный ток короткого замыкания на его выводах на стороне сети превышает отключающую способность автоматического выключателя. Это требование по 110.9. Тем не менее, 240.86 имеет допуск на предохранители или автоматические выключатели для защиты автоматических выключателей, расположенных ниже по цепочке, когда доступный ток короткого замыкания превышает номинальное значение отключения выключателя ниже по цепи.Термин, используемый для этого, представляет собой серию номинальных комбинаций, серийных рейтингов или серийных комбинационных рейтингов. Применение серийных рейтингов имеет множество технических ограничений и дополнительных требований Кодекса, которые должны быть соблюдены для правильного применения. Комбинации, рассчитанные на серию, разрешенные согласно 240.86, следует использовать с осторожностью. Наиболее подходящее и часто единственное правильное применение комбинаций с последовательным номиналом — это ответвленная цепь, осветительные панели. Заинтересованные читатели могут получить информацию о рейтингах сериалов из различных отраслевых источников; На сайте компании автора есть пояснительные и прикладные материалы по рейтингам серий, в том числе контрольный список соответствия.Рисунок 18 иллюстрирует эту концепцию.

Однополюсное отключение, возможность

Рисунок 19

Однополюсная отключающая способность автоматического выключателя, пускателя с самозащитой и других подобных механических устройств защиты от сверхтоков — это его способность отключать сверхток при заданном напряжении, используя только один полюс многополюсного устройства (см. Рисунок 19). . Многополюсные механические устройства защиты от сверхтоков обычно маркируются номиналом отключения.Этот отмеченный отключающий рейтинг применяется ко всем трем полюсам, прерывающим трехфазное короткое замыкание для трехполюсного устройства. Маркированные отключающие характеристики трехполюсного устройства не относятся к одному полюсу, который должен отключать ток короткого замыкания при номинальном напряжении.

Существуют электрические системы со специальными методами заземления, для которых может потребоваться трехполюсный автоматический выключатель для прерывания тока короткого замыкания при полном напряжении только на одном полюсе. NEC 110.9 требует, чтобы устройство защиты от перегрузки по току имело отключающую способность, равную или превышающую ток короткого замыкания, доступный на его линейных выводах.Это включает в себя, отключает ли устройство короткое замыкание через однополюсный или многополюсный. Примечания мелким шрифтом были добавлены к 240,85 NEC 2002 г. и 430,52 (C) (6) NEC 2005 г. Эти мелкие примечания предупреждают пользователей о том, что механические устройства, такие как автоматические выключатели и самозащищенные комбинированные контроллеры, имеют однополюсные отключающие способности, которые необходимо учитывать для надлежащего применения. Хотя большинство электрических систем спроектировано с устройствами максимального тока, имеющими соответствующие характеристики отключения трехфазного тока, возможности однополюсного отключения легко упускаются из виду.Электрические системы, в которых это должно быть исследовано, — это незаземленные системы, системы с заземлением с высоким импедансом и системы треугольника с заземлением в углу. Эти типы систем давно стали обычным явлением для непрерывных технологических процессов и все чаще используются для других приложений, чтобы снизить вероятность возникновения опасности вспышки. На сайте компании автора есть пояснительные материалы по возможностям однополюсного отключения.

Заключение

Информация в этой статье Основы защиты от перегрузки по току, часть II предоставила информацию о трех важных номиналах предохранителей и автоматических выключателей: номинальном токе, номинальном напряжении и номинальном отключении.Эти важные критерии закладывают основу для лучшего понимания защиты от сверхтоков и соответствия нормам.

Стандартные номинальные значения тока

автоматических выключателей


12 февраля 2020 г. Без категории


Автоматические выключатели производятся стандартных размеров с использованием системы предпочтительных чисел для охвата диапазона номиналов. Автоматические выключатели имеют фиксированную уставку отключения; изменение значения рабочего тока требует замены всего автоматического выключателя.Автоматические выключатели большего размера могут иметь регулируемые настройки отключения, что позволяет применять стандартные элементы, но с настройкой, предназначенной для улучшения защиты. Например, автоматический выключатель с «размером корпуса» 400 ампер может иметь детектор перегрузки по току, настроенный на работу всего лишь на 300 ампер, чтобы защитить питающий кабель.

Международные стандарты

, МЭК 60898-1 и европейский стандарт EN 60898-1 определяют номинальный ток I n автоматического выключателя для низковольтных распределительных устройств как максимальный ток, который выключатель рассчитан на непрерывную работу. (при температуре окружающего воздуха 30 ° С).Обычно доступные предпочтительные значения номинального тока: 1 А, 2 А, 4 А, 6 А, 10 А, 13 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А, 63 А, 80 А. А, 100 А и 125 А (аналогично серии R10 Renard, но с использованием 6, 13 и 32 вместо 6,3, 12,5 и 31,5 — это включает ограничение тока 13 А для розеток британской BS 1363). На автоматическом выключателе указан номинальный ток в амперах, но без обозначения единицы A. Вместо этого перед цифрой в амперах стоит буква B , C или D , что указывает на мгновенное отключение . ток — то есть минимальное значение тока, при котором автоматический выключатель срабатывает без намеренной задержки по времени (т.е.е. менее чем за 100 мс), выраженное в терминах I n :

99 включительно
Тип Мгновенный ток отключения
B Выше 3 I n C Выше 5 I n до 10 I n
D Выше 10 I n до 20 I
K Выше 8 I n до 12 I n Для защиты нагрузок, которые вызывают частые кратковременные (приблизительно от 400 мс до 2 с) пики тока при нормальной работе.
Z Сверху 2 I n до 3 I n включительно на периоды порядка десятков секунд Для защиты таких нагрузок, как полупроводниковые приборы или измерительные цепи с использованием тока трансформаторы.

Автоматические выключатели также рассчитаны на максимальный ток короткого замыкания, который они могут отключить; это позволяет использовать более экономичные устройства в системах, которые вряд ли будут развивать высокий ток короткого замыкания, например, в большой распределительной системе коммерческого здания.

В США Underwriters Laboratories (UL) сертифицирует рейтинги оборудования, называемые серийными рейтингами (или «рейтингами интегрированного оборудования»), для оборудования выключателей, используемого в зданиях. Силовые выключатели и выключатели среднего и высокого напряжения, используемые для промышленных или электроэнергетических систем, спроектированы и испытаны в соответствии со стандартами ANSI или IEEE в серии C37.

Информация из Википедии

Все автоматические выключатели созданы равными?

% PDF-1.6 % 45 0 объект > эндобдж 41 0 объект [/ CalGray>] эндобдж 42 0 объект [/ CalRGB>] эндобдж 56 0 объект > поток 11.08.5102018-08-20T01: 42: 52.694-04: 00Acrobat PDFWriter 3.02 для WindowsEaton7dda000a14f3ba4def4f6b83141ca513bfa530ec128501Microsoft Word 2017-12-13T10: 26: 41.000-05: 002017-12-13T10: 002017-12-05-13 26: 41.000-05: 00application / pdf2018-08-20T01: 55: 43.188-04: 00

  • Eaton
  • Все автоматические выключатели одинаковы?
  • uuid: c6a4378f-7283-42e7-a948-4bdf62e9b313uuid: 0cce7b16-c15a-48f0-a34c-d1b4324aa662 Среда, 19 февраля 2003 г. 2:38:31 PMAcrobat PDFWriter 3.02 для Windows, среда, 19 февраля 2003 г., 14:38:31
  • eaton: супермаркеты / рынки / здравоохранение / центр знаний
  • eaton: ресурсы / маркетинговые ресурсы / официальные документы
  • eaton: страна / северная америка / сша
  • eaton: супермаркеты / рынки / здравоохранение
  • eaton: language / en-us
  • конечный поток эндобдж 38 0 объект > эндобдж 39 0 объект > эндобдж 40 0 объект > эндобдж 17 0 объект > / ProcSet 34 0 R >> / Повернуть 0 / Тип / Страница >> эндобдж 19 0 объект > / ProcSet 34 0 R >> / Повернуть 0 / Тип / Страница >> эндобдж 21 0 объект > / ProcSet 34 0 R >> / Повернуть 0 / Тип / Страница >> эндобдж 23 0 объект > / Повернуть 0 / Тип / Страница >> эндобдж 24 0 объект > поток HVRHíf = ;, h @ -yZ ~ n / 8B * m ߾9 jp) Coa4S`sh3Al ײ Q0WWzR0 $

    ρ: `Mfѿ0xF2 & # w (at Z’v ^ ~ vXfHMeS3Aw ߮͟ k2, «IQF0 = D $ fSOӽo99bY.& semC? lze # kau4LO സ s ~ | / r3XdML8j [‘ۢ cҵkИgDw; G4 \ ZU% HX6 «k8iV% zuQiG? dV 8nmT70 [6nk4ͪ, 6g> d | (v%

    (PDF) Номинальные характеристики автоматических выключателей — Праймер для инженеров по защите

    во время разъединения контактов, и тем сложнее будет для выключателя

    . В то же время, чем медленнее выключатель, тем Чем меньше

    значение постоянного тока во время разъединения контактов, тем легче будет процесс прерывания тока

    и тем меньше влияние времени срабатывания реле

    на этот процесс.

    Мы разработали простую формулу снижения номинальных характеристик выключателя, в которой

    учитывает время срабатывания реле и постоянную времени постоянного тока

    , которые отличаются от обычно используемых эталонных значений

    0,5 цикла и 45 мс, соответственно.

    Чтобы применить формулу снижения номинальных характеристик, необходимо оценить или найти

    механическое время выключателя. Мы включили информацию о том, как

    приблизительно рассчитать механическое время на основе других имеющихся данных о выключателе

    .

    Время срабатывания реле в «наихудшем случае» 0,5 цикла, которое стандарты

    для выключателя используют в качестве эталона для определения номинала асимметричного выключателя

    , является произвольным значением. Мы описали несколько схем защиты

    , а также новые принципы защиты линии

    (основанные на инкрементных величинах и бегущих

    волн), которые обеспечивают время работы значительно меньше, чем

    0,5 цикла. Специалисты по автоматическим выключателям знают, как снизить номинальные характеристики выключателя

    для условий эксплуатации, отличных от стандарта IEEE

    Standard C37.04 ссылка. Сегодня, при использовании сверхбыстрых реле

    , эти расчеты снижения номинальных характеристик могут включать время срабатывания реле

    .

    Если мы буквально следуем языку стандарта IEEE C37.04,

    , мы заключаем, что есть небольшая «потеря» асимметричного номинала прерывателя

    из-за срабатывания реле быстрее, чем 0,5 цикла. Время срабатывания

    2 мс в системе 60 Гц с X / R 17 снижает номинал асимметричного выключателя

    всего на 3 процента (для медленных выключателей

    ) и на 7 процентов (для очень быстрых выключателей).Эти числа

    ниже половины рекомендуемой 20-процентной маржи прерывателя. В системах

    с большим отношением X / R потеря номинала очень мала

    , поскольку выключатель подвергается большому смещению постоянного тока независимо от того, насколько

    «быстро» или «медленно» срабатывает.

    Учитывая механическую инерцию выключателя, типичный выключатель

    имеет дело только с третьим пиком тока с точки зрения

    наихудшего сценария для асимметричного номинала.Типичный выключатель

    разъединяет свои контакты для третьего пика тока, если

    приводится в действие от 0,5-тактового реле или от более быстрого реле.

    Следовательно, мы подозреваем, что снижение номиналов асимметричного выключателя

    для времени срабатывания реле менее 0,5 цикла не является необходимым, если только выключатель не работает очень быстро. Очень быстрый выключатель

    при срабатывании сверхвысокоскоростного реле может вызвать искрение контакта

    , когда ток незадолго до первого пика.Мы настаиваем на том, чтобы в будущих версиях стандартов

    для выключателей

    были даны разъяснения в этом отношении.

    Тем не менее, мы настоятельно рекомендуем придерживаться 20-процентной маржи

    в рейтингах выключателей. Выключатели являются дорогостоящим активом, и их отказы имеют серьезные последствия для энергосистемы.

    VII. ССЫЛКИ

    [1] C37.04-1999 (R2006) Стандартная номинальная структура IEEE для автоматических выключателей высокого напряжения переменного тока

    .

    [2] МЭК 62271-100, изд.2.0 Международный стандарт высокого напряжения

    Распределительное устройство и аппаратура управления. Часть 100: Цепи переменного тока —

    выключатели.

    [3] SEL-T400L Руководство по защите линии во временной области.

    Доступно: https://selinc.com.

    [4] Р. Д. Гарсон, Высоковольтные автоматические выключатели. Дизайн и применение,

    Марсель Деккер, Нью-Йорк, Нью-Йорк, 1997.

    [5] Е.О. Швейцер, III, Б. Кастенни, А. Гусман, В. Скендзич и MV

    Mynam, «Скорость защиты линии — Можем ли мы освободиться от ограничений Phasor

    ? » материалы 41-й ежегодной конференции Western Protective Relay

    , Спокан, Вашингтон, октябрь 2014 г.

    [6] М. Томпсон, «Мощность современных реле делает возможными фундаментальные

    изменения в конструкции систем защиты и управления», материалы 60-й ежегодной конференции

    60-й ежегодной конференции инженеров защитных реле, Колледж-Стейшн,

    , Техас, март 2007 г.

    [7] А. Гусман, К. Лабушагне, Б.-Л. Цинь, «Надежная защита шин и выключателей

    от отказов

    с расширенным выбором зоны», материалы 31-й ежегодной западной конференции по реле защиты

    , Спокан, Вашингтон,

    , октябрь 2004 г.

    [8] М. Томпсон, Б. Кастенни, Д. Тейлор, «Элементы временной области

    Оптимизация безопасности и производительности защиты трансформатора»,

    , материалы 71-й ежегодной конференции по реле защиты

    Инженеры, Колледж Station, TX, март 2018 г.

    [9] B. Kasztenny, A. Guzmán, N. Fischer, MV Mynam, and D. Taylor,

    «Практические рекомендации по настройке защитных реле, использующих

    инкрементных величин и бегущих волн. , ”Труды 43-й ежегодной западной конференции по реле защиты

    , Спокан, Вашингтон, октябрь

    2016.

    VIII. БИОГРАФИИ

    Богда-н-Кастенный специализируется и работает в области защиты энергосистем и управления

    с 1989 года. За свою десятилетнюю академическую карьеру д-р Кастенный преподавал

    курсов по энергетике и обработке сигналов в нескольких университетах, а

    проводил прикладные исследования. для нескольких производителей реле. С 1999 года

    Богдан разрабатывает, применяет и поддерживает устройства для защиты, контроля и обнаружения неисправностей

    с их глобальной установленной базой, насчитывающей

    установок.С 2009 года Богдан работает в Schweitzer Engineering

    Laboratories, Inc., где он занимается исследованиями и разработками продуктов.

    Богдан является научным сотрудником IEEE, старшим научным сотрудником программы Фулбрайта, канадским представителем

    Исследовательского комитета CIGRE B5 и зарегистрированным профессиональным инженером

    в провинции Онтарио. Богдан работал в программном комитете

    Западной конференции по реле защиты с 2011 года, а

    — в программном комитете

    конференции по развитию энергетических систем с 2015 года.Богдан является автором более 200 технических работ и имеет более 30 патентов на

    .

    Джо Рострон, P.E., старший член, пожизненный член, IEEE, имеет 48-летний опыт

    в области передовых высоковольтных технологий и имеет 48 патентов. Он

    , в настоящее время старший В.П. отдела развития технологий в Southern States LLC,

    Хэмптон, Джорджия, США. В 2008 году Джо был признан выдающимся изобретателем

    Южными штатами. Ранее он работал в Westinghouse, ABB и

    Siemens на различных должностях, связанных с проектированием и разработкой.Джо также является

    членом ASME. Джо в прошлом был заместителем председателя подкомитета IEEE Switchgear по качеству и надежности

    . Он получил степень бакалавра медицины в университете штата Вашингтон

    и степень магистра делового администрирования в Университете Питтсбурга.

    Он зарегистрированный профессиональный инженер в штате Пенсильвания.

    20180302 • TP6849

    Номинальные параметры автоматического выключателя

    Номинальные параметры автоматического выключателя

    Номинальный ток выключателя включает,

    9000) .

    2) Номинальный ток включения при коротком замыкании.

    3) Номинальная последовательность срабатывания выключателя.

    4) Номинальный кратковременный ток.

    Ток отключения при коротком замыкании автоматического выключателя

    Это максимальный ток короткого замыкания, который может выдержать автоматический выключатель.Наконец очистил, открыв его контакты. Когда короткое замыкание протекает через автоматический выключатель, в токоведущих частях выключателя могут возникать тепловые и механические напряжения. Если площадь контакта и поперечное сечение токопроводящих частей автоматического выключателя недостаточно велики, существует вероятность необратимого повреждения изоляции, а также токопроводящих частей выключателя. Ток короткого замыкания имеет определенное значение в момент размыкания контактов. Ток отключения относится к значению тока в момент размыкания контактов.Номинальные значения переходного восстанавливающегося напряжения указаны для различных номинальных напряжений автоматических выключателей. Для определенных условий номинального TRV и номинального восстанавливающегося напряжения промышленной частоты автоматический выключатель имеет определенный предел тока отключения. Этот предел определяется путем проведения испытаний автоматического выключателя на короткое замыкание. Осциллограммы тока короткого замыкания получаются во время испытания на разрыв. Оценка тока отключения поясняется на рис. 3. Ток отключения выражается двумя значениями.Среднеквадратичные значения переменного тока. компоненты выражены в КА. стандартные значения 8, 10, 12,5, 16, 20, 25, 31,5, 40, 45, 63, 80 и 100KA. Ранее практиковалось выражать номинальную отключающую способность автоматического выключателя в МВА, выраженную следующим образом: Номинальная отключающая способность МВА = √3 x KV x KA, где MVA = Отключающая способность автоматического выключателя, кВ KV = Номинальное напряжение KA = Номинальное отключение Текущий.

    Такая практика определения отключающей способности в МВА удобна при расчете уровней неисправности.Однако в соответствии с пересмотренными стандартами отключающая способность выражается в кА для определенных условий TRV, и этот метод учитывает как ток отключения, так и TRV. Отключающая способность может быть как симметричной, так и асимметричной. При асимметричной отключающей способности добавляется постоянная составляющая тока. При выборе автоматического выключателя для конкретного места в энергосистеме определяется уровень неисправности в этом месте. Затем номинальный ток отключения можно выбрать из стандартного диапазона.

    Номинальная включающая способность при коротком замыкании

    Включающая способность автоматического выключателя выражается в пиковом значении, а не в среднеквадратичном значении, как отключающая способность. существующая неисправность. В таких случаях ток увеличивается до максимального значения на пике первой токовой петли. Автоматический выключатель должен иметь возможность замыкаться без задержки при прикосновении. Автоматический выключатель должен выдерживать высокие механические нагрузки во время такого замыкания.Эти возможности подтверждаются проведением текущих испытаний. Номинальный ток включения короткого замыкания автоматического выключателя — это пиковое значение первого токового контура тока короткого замыкания (I pk), которое автоматический выключатель способен создать при своем номинальном напряжении. Номинальный ток включения короткого замыкания должен быть не менее 2,5-кратного среднеквадратичного значения. значение переменного тока составляющая номинального тока отключения. Номинальный ток включения = 1,8 x √2 x Номинальный ток отключения при коротком замыкании = 2,5 x Номинальный ток отключения при коротком замыкании В приведенном выше уравнении коэффициент √2 преобразует r.от значения m.s до пикового значения. Коэффициент 1,8 учитывает эффект удвоения тока короткого замыкания с учетом небольшого падения тока в течение первой четверти цикла.

    Номинальная рабочая последовательность или рабочий цикл выключателя

    Это механические требования к рабочему механизму выключателя. Последовательность номинального рабочего режима автоматического выключателя определена как O — t — CO — t — CO, где O указывает на размыкание выключателя.CO представляет операцию закрытия, за которой сразу следует операция открытия без какой-либо преднамеренной задержки по времени. t ‟- время между двумя операциями, которое необходимо для восстановления начальных условий и / или предотвращения чрезмерного нагрева токопроводящих частей выключателя. t = 0,3 с для автоматического выключателя, предназначенного для первого автоматического повторного включения, если не указано иное. Предположим, что номинальный рабочий цикл автоматического выключателя составляет 0 — 0,3 с — CO — 3 мин — CO. Это означает, что за операцией отключения автоматического выключателя следует операция включения через интервал времени, равный 0.3 секунды, затем автоматический выключатель снова откроется без какой-либо преднамеренной выдержки времени. После этой операции размыкания выключатель снова замыкается через 3 минуты, а затем мгновенно отключается без какой-либо преднамеренной задержки по времени.

    Номинальный кратковременный ток

    Это предел тока, который автоматический выключатель может безопасно выдерживать в течение определенного определенного времени без каких-либо повреждений.

    Автоматические выключатели не сбрасывают ток короткого замыкания, как только в системе возникает какая-либо неисправность.Между моментом возникновения неисправности и моментом устранения неисправности выключателем всегда существуют преднамеренные и преднамеренные задержки по времени. Эта задержка присутствует из-за времени срабатывания реле защиты, времени срабатывания автоматического выключателя, а также может быть некоторая преднамеренная задержка времени, наложенная в реле для надлежащей координации защиты энергосистемы. Следовательно, после неисправности автоматический выключатель должен выдержать короткое замыкание в течение определенного времени. Суммирование всех временных задержек не должно превышать 3 секунд, следовательно, автоматический выключатель должен быть способен выдерживать максимальный ток короткого замыкания, по крайней мере, в течение этого короткого периода времени.

    Ток короткого замыкания может иметь два основных эффекта внутри автоматического выключателя.

    1. Из-за высокого электрического тока может возникнуть высокая термическая нагрузка в изоляции и проводящих частях выключателя.

    2. Большой ток короткого замыкания вызывает значительные механические напряжения в различных токоведущих частях выключателя.

    Автоматический выключатель спроектирован так, чтобы выдерживать эти нагрузки. Но ни один автоматический выключатель не должен выдерживать ток короткого замыкания не более короткого периода в зависимости от координации защиты. Таким образом, достаточно сделать выключатель способным выдерживать воздействие тока короткого замыкания в течение определенного короткого периода времени.

    Номинальный ток короткого замыкания автоматического выключателя по крайней мере равен номинальному току отключения при коротком замыкании автоматического выключателя.

    Номинальное напряжение автоматического выключателя

    Номинальное напряжение автоматического выключателя зависит от его системы изоляции. Для систем ниже 400 кВ автоматический выключатель рассчитан на то, чтобы выдерживать напряжение на 10% выше нормального напряжения системы. Для системы выше или равной 400 кВ изоляция автоматического выключателя должна выдерживать на 5% превышающее нормальное напряжение системы. Это означает, что номинальное напряжение автоматического выключателя соответствует максимальному напряжению в системе.Это связано с тем, что при отсутствии нагрузки или в условиях небольшой нагрузки уровень напряжения системы питания может повышаться до максимального номинального напряжения системы.

    Автоматический выключатель также подвержен двум другим состояниям высокого напряжения.

    1) Внезапное отключение большой нагрузки по любой другой причине, напряжение, приложенное к выключателю, а также между контактами, когда выключатель разомкнут, может быть очень высоким по сравнению с более высоким системным напряжением.Это напряжение может быть промышленной частоты, но не сохраняется в течение очень длительного периода, так как это высокое напряжение должно быть устранено с помощью защитного распределительного устройства. Но автоматический выключатель может выдерживать перенапряжение этой промышленной частоты в течение его нормального срока службы.

    Автоматический выключатель должен быть рассчитан на выдерживаемое напряжение промышленной частоты только в течение определенного времени. Обычно время составляет 60 секунд. Обеспечение выдерживаемой частоты промышленной частоты более 60 секунд неэкономично и нецелесообразно с практической точки зрения, поскольку все нештатные ситуации в электроэнергетической системе определенно устраняются за гораздо меньший период, чем 60 секунд.

    2) Как и другие устройства, подключенные к энергосистеме, автоматический выключатель может также сталкиваться с импульсами молнии и импульсами переключения в течение своего срока службы.

    Система изоляции выключателя должна выдерживать эти формы импульсов напряжения. Таким образом, автоматический выключатель рассчитан на то, чтобы выдерживать это импульсное пиковое напряжение только в микросекундном диапазоне.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *