Млт резисторы расшифровка – Маркировка резисторов | Цветовая, SMD, советских резисторов.

Содержание

описание, схема включения и как должна работать в составе различных устройств

Схемы включения и практическое применениеОперационный усилитель LM358 стал одним из самых популярных типов компонентов аналоговой электроники. Этот небольшой компонент может быть использован в самых разнообразных схемах, осуществляющих усиление сигналов, в различных генераторах, АЦП и прочих полезных устройствах.

Все радиоэлектронные компоненты следует разделять по мощности, диапазону рабочих частот, напряжению питания и прочим параметрам. А операционный усилитель LM358 относится к среднему классу устройств, которые получили самую широкую сферу применения для конструирования различных устройств: приборы контроля температуры, аналоговые преобразователи, промежуточные усилители и прочие полезные схемы.

Описание микросхемы LM358

Подтверждением высокой популярности микросхемы являются ее рабочие характеристики, позволяющие создавать много различных устройств. К основным показательным характеристикам компонента следует отнести нижеследующие.

Приемлемые рабочие параметры: в микросхеме предусмотрено одно и двухполюсное питание, широкий диапазон напряжений питания от 3 до 32 В, приемлемая скорость нарастания выходного сигнала, равная всего 0,6 В/мкс. Также микросхема потребляет всего 0,7 мА, а напряжение смещения составит всего 0,2мВ.

Описание выводов

Микросхема реализована в стандартных корпусах DIP, SO и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4, 8) используются в качестве выводов двухполярного и однополярного питания в зависимости от типа источника или конструкции готового устройства. Входы микросхемы 2, 3 и 5, 6. Выходы 1 и 7.

В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.

Микросхема является популярной и используется в бытовых приборах, эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.

Аналоги микросхемы

Являясь средним по параметрам, операционный усилитель LM358 имеет аналоги по техническим характеристикам. Компонент без буквы может быть заменен на OP295, OPA2237, TA75358P, UPC358C, NE532, OP04, OP221, OP290. А для замены LM358D потребуется использовать KIA358F, NE532D, TA75358CF, UPC358G. Интегральная микросхема выпускается в серии с другими компонентами, которые имеют отличия лишь в температурном диапазоне, предназначенные для работы в суровых условиях.

Встречаются операционные усилители с максимальной температурой до 125 градусов и с минимальной до 55. Из-за чего сильно разнится и стоимость устройства в различных магазинах.

К серии микросхем относятся LM138, LM258, LM458. Подбирая альтернативные аналоговые элементы для применения в устройствах важно учитывать рабочий температурный диапазон. Например, если LM358 с пределом от 0 до 70 градусов недостаточно, то можно использовать более приспособленные к суровым условиям LM2409. Также довольно часто для изготовления различных устройств требуется не 2 ячейки, а 1, тем более, если место в корпусе готового изделия ограничено. Одними из самых подходящих для использования при конструировании небольших устройств являются ОУ LM321, LMV321, у которых также есть аналоги AD8541, OP191, OPA337.

Особенности включения

Существует много схем подключения операционного усилителя LM358 в зависимости от необходимых требований и выполняемых функций, которые будут к ним предъявлены при эксплуатации:

  • неинвертирующий усилитель;
  • преобразователь ток-напряжение;
  • преобразователь напряжение-ток;
  • дифференциальный усилитель с пропорциональным коэффициентом усиления без регулировки;
  • дифференциальный усилитель с интегральной схемой регулирования коэффициента;
  • схема контроля тока;
  • преобразователь напряжение-частота.

Популярные схемы на lm358

Существуют различные устройства, собранные на LM358 N , выполняющие определенные функции. При этом это могут быть всевозможные усилители как УМЗЧ, так и в промежуточных цепях измерений различных сигналов, усилитель термопары LM358, сравнивающие схемы, аналого-цифровые преобразователи и прочее.

Неинвертирующий усилитель и источник опорного напряжения

Как работать с ОУ LM358

Это самые популярные типы схем подключения, применяемые во многих устройствах для выполнения различных функций. В схеме неинвертирующего усилителя выходное напряжения будет равно произведению входного на пропорциональный коэффициент усиления, сформированный отношением двух сопротивлений, включенных в инвертирующую цепь.

Схема источника опорного напряжения пользуется высокой популярностью благодаря своим высоким практическим характеристикам и стабильности работы в различных режимах. Схема отлично удерживает необходимый уровень выходного напряжения. Она получила применение для построения надежных и высококачественных источников питания, аналоговых преобразователей сигналов, в устройствах измерения различных физических величин.

Генератор синусоидальных сигналов

Усилитель на lm358

Одной из самых качественных схем синусоидальных генераторов является устройство на мосте Вина. При корректном подборе компонентов генератор вырабатывает импульсы в широком диапазоне частот с высокой стабильностью. Также микросхема LM 358 часто используется для реализации генератора прямоугольных импульсов различной скважности и длительности. При этом сигнал является стабильным и высококачественным.

Усилитель

Основным применением микросхемы LM358 являются усилители и различная усилительная аппаратура. Что обеспечивается за счет особенностей включения, выбора прочих компонентов. Такая схема применяется, например, для реализации усилителя термопары.

Усилитель термопары на LM358

Очень часто в жизни радиолюбителя требуется осуществлять контроль температуры каких-либо устройств. Например, на жале паяльника. Обычным градусником это не сделаешь, тем более, когда необходимо изготовить автоматическую схему регулирования. Для этого можно использоваться ОУ LM 358. Эта микросхема имеется малый тепловой дрейф нуля, поэтому относится к высокоточным. Поэтому она активно используется многими разработчиками для изготовления паяльных станций, прочих в устройствах.

Схема включения теплоаккумулятора

Схема позволяет измерять температуру в широком диапазоне от 0 до 1000 оС с достаточно высокой точностью до 0,02 оС. Термопара изготовлена из сплава на основе никеля: хромаля, алюмеля. Второй тип металла имеет более светлый цвет и меньше подвержен к намагничиванию, хромаль темнее, магнитится лучше. К особенностям схемы стоит отнести наличие кремниевого диода, который должен быть размещен как можно ближе к термопаре. Термоэлектрическая пара хромаль-алюмель при нагреве становится дополнительным источником ЭДС, что может внести существенные коррективы на основные измерения.

Простая схема регулятора тока

Схема включает кремниевый диод. Напряжения перехода с него используется как источник опорного сигнала, поступающий через ограничивающий резистор на неинвертирующий вход микросхемы. Для регулировки тока стабилизации схемы использован дополнительный резистор, подключенный к отрицательному выводу источника питания, к неивертирующему входу МС.

Генератор на LM358

Схема состоит из нескольких компонентов:

  • Резистора, подпирающего ОУ минусовым выводом и сопротивлением 0,8 Ом.
  • Резистивного делителя напряжения, состоящего из 3 сопротивлений с диодом, выступающего источником опорного напряжения.

Резистор номиналом 82 кОм подключен к минусу источника и положительному входу МС. Опорное напряжение формируется делителем, состоящим из резистора 2,4 кОм и диода в прямом включении. После чего ток ограничивается резистором 380 кОм. ОУ управляет биполярным транзистором, эмиттер которого подключен непосредственно к инвертирующему входу МС, образовав отрицательную глубокую связь. Резистор R 1 выступает измерительным шунтом. Опорное напряжение формируется при помощи делителя, состоящего из диода VD 1 и резистора R 4.

В представленной схеме при условии использования резистора R 2 сопротивлением 82 кОм ток стабилизации в нагрузке составляет 74мА при входном напряжении 5В. А при увеличении входного напряжения до 15В ток увеличивается до 81мА. Таким образом, при изменении напряжения в 3 раза ток изменился не более, чем на 10%.

Зарядное устройство на LM 358

Схемы включения lm358

С использованием ОУ LM 358 часто изготавливают зарядные устройства с высокой стабилизацией и контролем выходного напряжения. Как пример, можно рассмотреть зарядное устройство для Li — ion с питанием от USB . Эта схема представляет собой автоматический регулятор тока. То есть, при повышении напряжения на аккумуляторе зарядный ток падает. А при полном заряде АКБ схема прекращает работать, полностью закрывая транзистор.

instrument.guru

Описание и применение операционного усилителя LM358. Схемы включения, аналог, datasheet

Микросхема LM358 в одном корпусе содержит два независимых маломощных операционных усилителя с высоким коэффициентом усиления и частотной компенсацией. Отличается низким потреблением тока. Особенность данного усилителя – возможность работать в схемах с однополярным питанием от 3 до 32 вольт. Выход имеет защиту от короткого замыкания.

Описание  операционного усилителя LM358

Область применения — в качестве усилительного преобразователя, в схемах преобразования постоянного напряжения, и во всех стандартных схемах, где используются операционные усилители, как с однополярным питающим напряжением, так и двухполярным.

Технические характеристики LM358

  • Однополярное питание: от 3 В до 32 В.
  • Двухполярное питание: ± 1,5 до ± 16 В.
  • Ток потребления: 0,7 мА.
  • Синфазное входное напряжение: 3 мВ.
  • Дифференциальное входное напряжение: 32 В.
  • Синфазный входной ток: 20 нА.
  • Дифференциальный входной ток: 2 нА.
  • Дифференциальный коэффициент усиления по напряжению: 100 дБ.
  • Размах выходного напряжения: от 0 В до VCC — 1,5 В.
  • Коэффициент гармонических искажений: 0,02%.
  • Максимальная скорость нарастания выходного сигнала: 0,6 В/мкс.
  • Частота единичного усиления (с температурной компенсацией): 1,0 МГц.
  • Максимальная рассеиваемая мощность: 830 мВт.
  • Диапазон рабочих температур: 0…70 гр.С.

Габаритные размеры и назначения выводов LM358 (LM358N)

Аналоги LM358

Ниже приведен список зарубежных и отечественных аналогов операционного усилителя LM358:

  • GL358
  • NE532
  • OP221
  • OP290
  • OP295
  • TA75358P
  • UPC358C
  • AN6561
  • CA358E
  • HA17904
  • КР1040УД1 (отечественный аналог)
  • КР1053УД2 (отечественный аналог)
  • КР1401УД5 (отечественный аналог)

Примеры применения (схемы включения) усилителя LM358

Простой неинвертирующий усилитель

 Компаратор с гистерезисом

Допустим, что потенциал, поступающий на инвертирующий вход, плавно возрастает. При достижении его уровня чуть выше опорного (Vh -Vref), на выходе компаратора возникнет высокий логический уровень. Если после этого входной потенциал начнет медленно снижаться, то выход компаратора переключится на низкий логический  уровень при значении немного ниже опорного (Vref – Vl). В данном примере разница между (Vh -Vref) и (Vref – Vl)  будет значение гистерезиса.

Генератор синусоидального сигнала с мостом Вина

Мостовой генератор Вина (Wien bridge oscillator) — является одним из видов электронного генератора, который генерирует волны синусоидальной формы. Он может генерировать широкий спектр частот. Генератор основан на мостовой схеме, изначально разработанной Максом Виеном в 1891 году. Класический генератор Вина состоит из четырех резисторов и двух конденсаторов. Генератор можно также рассматривать в качестве прямого усилителя в сочетании с полосовым фильтром, который обеспечивает положительную обратную связь.

 Дифференциальный усилитель на LM358

Назначение данной схемы — усиление разности двух входящих сигналов, при этом каждый из них умножается на определенную постоянную величину.

Дифференциальный усилитель — это хорошо известная электрическая схема, применяемая для усиления разности напряжений 2-х сигналов, поступающих на его входы. В теоретической модели дифференциального усилителя величина выходного сигнала не зависит от величины каждого отдельного входного сигнала, а зависит строго от их разности. 

Функциональный генератор

Данный функциональный генератор вырабатывает сигналы треугольной и прямоугольной формы.

Генератор прямоугольных импульсов на LM358

В качестве примера использования  приведем схему микрофонного усилителя на LM358:

Скачать datasheet LM358 (808,0 Kb, скачано: 12 078)

www.joyta.ru

LM358 схема включения | Практическая электроника

Говоря операционный усилитель, я зачастую подразумеваю LM358. Так как если нету каких-то особых требований к быстродействию, очень широкому диапазону напряжений или большой рассеиваемой мощности, то LM358 хороший выбор.

Какие же характеристики LM358 принесли ему такую популярность:

  • низкая стоимость;
  • никаких дополнительных цепей компенсации;
  • одно или двуполярное питание;
  • широкий диапазон напряжений питания от 3 до 32 В;
  • Максимальная скорость нарастания выходного сигнала: 0,6 В/мкс;
  • Ток потребления: 0,7 мА;
  • Низкое входное напряжение смещения: 0,2 мВ.

LM358 цоколевка

Так как LM358 имеет в своем составе два операционных усилителя, у каждого по два входа и один выход (6 — выводов) и два контакта нужны для питания, то всего получается 8 контактов.

LM358 корпусируются как в корпуса для объемного монтажа (LM358N — DIP8), так и в корпуса для поверхностного монтажа (LM358D — SO8). Есть и металлокерамическое исполнение для особо тяжелых условий работы.
Я применял LM358 только для поверхностного монтажа – просто и удобно паять.

Аналоги LM358

Полные аналоги LM358 от разных производителей NE532, OP04, OP221, OP290, OP295, OPA2237, TA75358P, UPC358C.
Для LM358D — KIA358F, NE532D, TA75358CF, UPC358G.

Вместе с LM358 выпускается большое количество похожих операционных усилителей. Например LM158, LM258, LM2409 имеют аналогичные характеристики, но разный температурный диапазон работы.

Тип Минимальная температура, °C Максимальная температура, °C Диапазон питающих напряжений, В
LM158 -55 125 от 3(±1,5) до 32(±16)
LM258 -25 85 от 3(±1,5) до 32(±16)
LM358 0 70 от 3(±1,5) до 32(±16)
LM358 -40 85 от 3(±1,5) до 26(±13)

Если диапазона 0..70 градусов не хватает, то стоит применить LM2409, однако следует учитывать что у неё диапазон питания уже:

Кстати если нужен только один операционный усилитель в компактном 5 выводном корпусе SOT23-5 то вполне можно применить LM321, LMV321 (аналоги AD8541, OP191, OPA337).
Наоборот, если нужно большое количество рядом расположенных операционных усилителей, то можно применить счетверенные LM324 в 14 выводном корпусе. Можно вполне сэкономить пространство и конденсаторы по цепям питания.

LM358 схема включения: неинвертирующий усилитель

Коэффициент усиления этой схемы равен (1+R2/R1).
Зная сопротивления резисторов и входное напряжение можно посчитать выходное:
Uвых=Uвх*(1+R2/R1).
При следующих значениях резисторов коэффициент усиления будет равен 101.

  • DA1 – LM358;
  • R1 – 10 кОм;
  • R2 – 1 MОм.

LM358 схема включения: мощный неинвертирующий усилитель

  • DA1 – LM358;
  • R1 – 910 кОм;
  • R2 – 100 кОм;
  • R3 – 91 кОм.

Для этой схемы коэффициент усиления по напряжению равен 10, в общем случае коэффициент усиления этой схемы равен (1+R1/R2).
Коэффициент усиления по току определяется соответствующим коэффициентом транзистора VT1.

LM358 схема включения: преобразователь напряжение — ток


Выходной ток этой схемы будет прямо пропорционален входному напряжению и обратно пропорционален значению сопротивления R1.
I=Uвх/R, [А]=[В]/[Ом].
Для сопротивления резистора R1 равного 1 Ом, каждый Вольт входного напряжения будет давать, один Ампер выходного напряжения.

LM358 схема включения: преобразователь ток — напряжение


А эта схема нужна для преобразования малых токов в напряжение.
Uвых = I * R1, [В]= [А]*[Ом].
Например при R1 = 1 МОм, ток через 1 мкА, превратиться в напряжение 1В на выходе DA1.

LM358 схема включения: дифференциальный усилитель

Эта схема дифференциального усилителя с высоким входным сопротивление, может применятся для измерения напряжении источников с высоким внутренним сопротивлением.
При условии, что R1/R2=R4/R3, выходное напряжение можно рассчитать как:
Uвых = (1+R4/R3)(Uвх1 – Uвх2).
Коэффициент усиления соответственно будет равен: (1+R4/R3).
Для R1 = R2 = R3 = R4 = 100 кОм, коэффициент усиления будет равен 2.

LM358 схема включения: дифференциальный усилитель с регулируемым коэффициентом усиления

Стоит отметить, что предыдущая схема не позволяет подстраивать коэффициент усиления, так как требует одновременного изменения двух резисторов. Если необходимо иметь возможность регулировки коэффициента усиления в дифференциальном усилителе, то можно воспользоваться схемой на трех операционных усилителях.
В данной схеме подстройка коэффициента усиления осуществляется за счет регулировки резистора R2.
Для этой схемы нужно соблюсти условия равенства значений сопротивлений резисторов: R1 = R3 и R4 = R5 = R6 = R7.
Тогда коэффициент усиления будет равен: (1+2*R1/R2).
Uвых = (1+2*R1/R2)(Uвх1 – Uвх2).

LM358 схема включения: монитор тока

Еще одна интересная схема позволяющая измерять ток в питающем проводе и состоящая из шунта R1, операционного усилителя npn – транзистора и двух резисторов.

  • DA1 – LM358;
  • R1 – 0,1 Ом;
  • R2 – 100 Ом;
  • R3 – 1 кОм.

Напряжение питания операционного усилителя должно быть минимум на 2 В, выше напряжения нагрузки.

LM358 схема включения: преобразователь напряжение – частота

И напоследок схема которую можно использовать в качестве аналого-цифрового преобразователя. Нужно только подсчитать период или частоту выходных сигналов.

  • C1 – 0,047 мкФ;
  • DA1 – LM358;
  • R1 – 100 кОм;
  • R2 – 50 кОм;
  • R3,R4,R5 – 51 кОм;
  • R6 — 100 кОм;
  • R7 — 10 кОм.

hardelectronics.ru

LM358 DataSheet на русском, описание и схема включения

 

Микросхема LM358 как написано в его DataSheet является универсальным решением, так как схема включения большинства популярных устройств весьма проста, в случаях отсутствия жестких требований к высокому быстродействию, рассеиваемой мощности и нестандартному питающему напряжению. Небольшая стоимость, отсутствие необходимости подключения дополнительных элементов частотной коррекции, возможность использования во всем диапазоне стандартных питающих напряжений (до +32В) и низкий потребляемый ток, делают его кандидатом номер один для электронных проектов с ОУ.

LM358 цоколевка

LM358 состоит из двух ОУ, каждый имеет по 4 вывода, имеющих свое назначение. Всего получается 8 контактов. Производятся в нескольких видах корпусного исполнения, для объемного DIP и поверхностного монтажа на плату SO. Так же могут встречается в усовершенствованных корпусах SOIC, VSSOP, TSSOP.

 LM358 распиновка

Назначение контактов для всех видов корпусов совпадает: 2,3, 5,6, — входы, 1,7 – выходы, 4 – минус источника питания, 8 – плюс источника питания.

Виды корпусов для LM358

Технические характеристики

Ниже указаны предельные допустимые значения условий эксплуатации для диапазона рабочих температур окружающей среды Tот 0 до +70 °C, если не указано иное.

LM358 Absolute Maximum Ratings

Основные электрические характеристики, при температуре окружающей среды TA = 25 °C.

Параметры электрические lm358

Рекомендуемые условия эксплуатации в диапазоне рабочих температур окружающей среды, если не указано иное:

Рекомендуемый режим работы lm358

Подверженность устройства повреждению от электростатического разряда (ESD):

Подверженность ESD у lm358

Также у данного устройства есть тепловые характеристики:

Термические параметры корпусов LM358

Схемы подключения

Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.

Схема в мощном неинвертирующим усилителе.
мощный неинвертирующий усилитель

Преобразователь напряжения — ток.

преобразователь напряжения

Схема с дифференциальным усилителем.

дифференциальный усилитель

Неинвертирующий усилитель средней мощности.

неинвертирующий усилитель

 

Аналоги

Аналогами LM358 можно считать микросхемы в которых  указываются идентичные характеристики. К таким относятся: LM158, LM258, LM2904, LM2409. Эти микросхемы незначительно отличаются от описываемой своими тепловыми параметрами и подойдут в качестве замены для большинства проектов.

Для ее замены можно использовать: GL 358, NE 532, OP 04, OP 221, OP 290, OP 295, OPA 2237, TA7 5358-P, UPC 358C, AN 6561, CA 358E, HA 17904. Отечественные аналоги lm358: КР 1401УД5, КР 1053УД2, КР 1040УД1.

Для замены также может подойти аналог по электрическим параметрам, но уже c четырьмя ОУ в одной микросхеме — LM324.

Маркировка

Префикс LM сначала использовался при маркировке общего назначения компанией National Semiconductor. Цифры “358” это ее серийный номер. В 2011 году эта компания  была приобретена другим производителем электроники Texas Instruments. С этого года префикс “LM” является кодом производителя Texas Instruments, но несмотря на это, этот код используют и другие производители при маркировке своей продукции.
Микросхемы LM358, LM358-N и LM358-P имеют одинаковые технические параметры. У большинства компаний-производителей символами “-N” , “-P” обозначаются пластиковые корпуса PDIP.
Вид микросхемы LM358P

В технических описания встречается такие виды: LM358A, LM358B, LM358BA. Так указывается версии следующего поколения промышленного стандарта LM358. Устройства «B» могут быть доступны в более современных микрокорпусах TSOT и WSON.

Применение

Lm358 широко используется в:

  • устройствах типа «мигающий маяк»;
  • блоках питания и зарядных устройствах;
  • схемах управления двигателем;
  • материнских платах;
  • сплит системах внутреннего и наружного применения;
  • бытовой технике: посудомоечные, стиральные машины, холодильные установки;
  • различных видах инверторов;
  • источниках бесперебойного питания;
  • контроллерах и др.

Возможности применения микросхемы производители обычно указывают в технических описаниях на свои устройства.

DataSheet на LM358

Texas Instrument;
STMicroelectronics.

 

shematok.ru

LM358 и LM358N datasheet, описание, схема включения

Самый популярный двухканальный операционный усилитель LM358, LM358N. Операционник относится к серии LM158, LM158A, LM258, LM258A, LM2904, LM2904V. Имеет множество схем включения, аналогов и datasheet.

Микросхемы LM358 и LM358N идентичны по параметрам и отличаются только корпусом.

Вам будут интересны даташиты и характеристики других ИМС LM317T, TL431, LM494. Они применяются совместно с импульсными стабилизаторами и блоках питания.

Содержание

  • 1. Характеристики, описание
  • 2. Таблица характеристик.
  • 3. Цоколёвка, распиновка
  • 4. Аналог
  • 5. Типовые схемы включения
  • 6. Datasheet, даташит LM358 LM358N

Характеристики, описание

Питание ИМС может быть однополярным от 3 до 32В. Операционный усилитель стабильно работает на стандартных 3,3В. Двухполярное  питание от 1,5 до 16 Вольт.  При указанной температуре  0° до 70° характеристики остаются в пределах нормы. Если количество градусов выйдет за эти пределы, то появится отклонение параметров.

Многих интересует описание на русском LM328N, но даташит большой, основная часть понятна и без перевода. Чтобы вы не искали LM358 datasheet на русском, составил таблицу основных параметров.

Несколько популярных datasheet для скачивания:

Таблица характеристик.

Параметр LM358, LM358N
Питание, вольт 3-32В
Биполярное питание ±1,5В до ±16В
Потребляемый ток 0,7мА
Напряжение смещения по входу 3мВ
Ток смещения  компенсации по входу 2нА
Входной ток смещение 20нА
Скорость нарастания на выходе 0,3 В/мсек
Ток на выходе 30 — 40мА
Максимальная частота 0,7 до 1,1 МГц
Коэффициент дифференциального усиления 100дБ
Рабочая температура 0° до 70°

Микросхемы различных производителей могут иметь разные параметры, но всё в пределах нормы. Единственное может сильно отличаться максимальная частота у одних она  0,7МГц, у других до 1,1МГц. Вариантов использования ИМС накопилось очень много, только в документации их около 20 штук. Радиолюбители расширили это количество более 70 схем.

Типовой функционал из datasheet на русском:

  1. компараторы;
  2. активные RC фильтры;
  3. светодиодный драйвер;
  4. суммирующий усилитель постоянного тока;
  5. генератор импульсов и пульсаций;
  6. низковольтный детектор пикового напряжения;
  7. полосовой активный фильтр;
  8. для усиливания с фотодиода ;
  9. инвертирующий и не инвертирующий усилитель;
  10. симметричный усилитель;
  11. стабилизатор тока;
  12. инвертирующий усилитель переменного тока;
  13. дифференциальный усилитель постоянного тока;
  14. мостовой усилитель тока.

Цоколёвка, распиновка

Аналог

..

Большая популярность определяет и большое количество аналогов LM358 LM358N. В зависимости от производителя характеристики могут немного меняться, но всё в пределах допуска.  Перед заменой проверьте электрические характеристики у изготовителя, вдруг вам не подойдёт. Схемы включения аналогичны. Аналогов  более 30 штук, покажу первую дюжину полностью схожих:по параметрам:

  1. КР1040УД1
  2. КР1053УД2
  3. КР1401УД5
  4. GL358
  5. NE532
  6. OP295
  7. OP290
  8. OP221
  9. OPA2237
  10. TA75358P
  11. UPC1251C
  12. UPC358C

Типовые схемы включения

Пришлось просмотреть несколько спецификаций от разных фабрик, чтобы найти самый полноценный. Большинство короткие и малоинформативные.  Чтобы было максимально понятно, как работают схемы включения LM358 и LM358N, ознакомитесь с типовым включением.

Светодиодный драйвер для светодиода

Datasheet, даташит LM358 LM358N

Сфера применения, указанная производителями:

  1. блюрэй плееры и домашние кинотеатры;
  2. химические и газовые сенсоры;
  3. ДВД рекордеры и плееры;
  4. цифровые мультиметры;
  5. сенсор температуры;
  6. системы управления двигателями;
  7. осциллографы;
  8. генераторы;
  9. системы определения массы.

Описание характеристик LM358N

led-obzor.ru

Ts358cd применение — Ремонт ПК

Схемы включения и практическое применениеОперационный усилитель LM358 стал одним из самых популярных типов компонентов аналоговой электроники. Этот небольшой компонент может быть использован в самых разнообразных схемах, осуществляющих усиление сигналов, в различных генераторах, АЦП и прочих полезных устройствах.

Все радиоэлектронные компоненты следует разделять по мощности, диапазону рабочих частот, напряжению питания и прочим параметрам. А операционный усилитель LM358 относится к среднему классу устройств, которые получили самую широкую сферу применения для конструирования различных устройств: приборы контроля температуры, аналоговые преобразователи, промежуточные усилители и прочие полезные схемы.

Содержание статьи:

Описание микросхемы LM358

Подтверждением высокой популярности микросхемы являются ее рабочие характеристики, позволяющие создавать много различных устройств. К основным показательным характеристикам компонента следует отнести нижеследующие.

Приемлемые рабочие параметры: в микросхеме предусмотрено одно и двухполюсное питание, широкий диапазон напряжений питания от 3 до 32 В, приемлемая скорость нарастания выходного сигнала, равная всего 0,6 В/мкс. Также микросхема потребляет всего 0,7 мА, а напряжение смещения составит всего 0,2мВ.

Описание выводов

Микросхема реализована в стандартных корпусах DIP, SO и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4, 8) используются в качестве выводов двухполярного и однополярного питания в зависимости от типа источника или конструкции готового устройства. Входы микросхемы 2, 3 и 5, 6. Выходы 1 и 7.

В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.

Микросхема является популярной и используется в бытовых приборах, эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.

Аналоги микросхемы

Являясь средним по параметрам, операционный усилитель LM358 имеет аналоги по техническим характеристикам. Компонент без буквы может быть заменен на OP295, OPA2237, TA75358P, UPC358C, NE532, OP04, OP221, OP290. А для замены LM358D потребуется использовать KIA358F, NE532D, TA75358CF, UPC358G. Интегральная микросхема выпускается в серии с другими компонентами, которые имеют отличия лишь в температурном диапазоне, предназначенные для работы в суровых условиях.

Встречаются операционные усилители с максимальной температурой до 125 градусов и с минимальной до 55. Из-за чего сильно разнится и стоимость устройства в различных магазинах.

К серии микросхем относятся LM138, LM258, LM458. Подбирая альтернативные аналоговые элементы для применения в устройствах важно учитывать рабочий температурный диапазон. Например, если LM358 с пределом от 0 до 70 градусов недостаточно, то можно использовать более приспособленные к суровым условиям LM2409. Также довольно часто для изготовления различных устройств требуется не 2 ячейки, а 1, тем более, если место в корпусе готового изделия ограничено. Одними из самых подходящих для использования при конструировании небольших устройств являются ОУ LM321, LMV321, у которых также есть аналоги AD8541, OP191, OPA337.

Особенности включения

Существует много схем подключения операционного усилителя LM358 в зависимости от необходимых требований и выполняемых функций, которые будут к ним предъявлены при эксплуатации:

  • неинвертирующий усилитель;
  • преобразователь ток-напряжение;
  • преобразователь напряжение-ток;
  • дифференциальный усилитель с пропорциональным коэффициентом усиления без регулировки;
  • дифференциальный усилитель с интегральной схемой регулирования коэффициента;
  • схема контроля тока;
  • преобразователь напряжение-частота.

Популярные схемы на lm358

Существуют различные устройства, собранные на LM358 N , выполняющие определенные функции. При этом это могут быть всевозможные усилители как УМЗЧ, так и в промежуточных цепях измерений различных сигналов, усилитель термопары LM358, сравнивающие схемы, аналого-цифровые преобразователи и прочее.

Неинвертирующий усилитель и источник опорного напряжения

Как работать с ОУ LM358

Это самые популярные типы схем подключения, применяемые во многих устройствах для выполнения различных функций. В схеме неинвертирующего усилителя выходное напряжения будет равно произведению входного на пропорциональный коэффициент усиления, сформированный отношением двух сопротивлений, включенных в инвертирующую цепь.

Схема источника опорного напряжения пользуется высокой популярностью благодаря своим высоким практическим характеристикам и стабильности работы в различных режимах. Схема отлично удерживает необходимый уровень выходного напряжения. Она получила применение для построения надежных и высококачественных источников питания, аналоговых преобразователей сигналов, в устройствах измерения различных физических величин.

Генератор синусоидальных сигналов

Усилитель на lm358

Одной из самых качественных схем синусоидальных генераторов является устройство на мосте Вина. При корректном подборе компонентов генератор вырабатывает импульсы в широком диапазоне частот с высокой стабильностью. Также микросхема LM 358 часто используется для реализации генератора прямоугольных импульсов различной скважности и длительности. При этом сигнал является стабильным и высококачественным.

Усилитель

Основным применением микросхемы LM358 являются усилители и различная усилительная аппаратура. Что обеспечивается за счет особенностей включения, выбора прочих компонентов. Такая схема применяется, например, для реализации усилителя термопары.

Усилитель термопары на LM358

Очень часто в жизни радиолюбителя требуется осуществлять контроль температуры каких-либо устройств. Например, на жале паяльника. Обычным градусником это не сделаешь, тем более, когда необходимо изготовить автоматическую схему регулирования. Для этого можно использоваться ОУ LM 358. Эта микросхема имеется малый тепловой дрейф нуля, поэтому относится к высокоточным. Поэтому она активно используется многими разработчиками для изготовления паяльных станций, прочих в устройствах.

Схема включения теплоаккумулятора

Схема позволяет измерять температуру в широком диапазоне от 0 до 1000 оС с достаточно высокой точностью до 0,02 оС. Термопара изготовлена из сплава на основе никеля: хромаля, алюмеля. Второй тип металла имеет более светлый цвет и меньше подвержен к намагничиванию, хромаль темнее, магнитится лучше. К особенностям схемы стоит отнести наличие кремниевого диода, который должен быть размещен как можно ближе к термопаре. Термоэлектрическая пара хромаль-алюмель при нагреве становится дополнительным источником ЭДС, что может внести существенные коррективы на основные измерения.

Простая схема регулятора тока

Схема включает кремниевый диод. Напряжения перехода с него используется как источник опорного сигнала, поступающий через ограничивающий резистор на неинвертирующий вход микросхемы. Для регулировки тока стабилизации схемы использован дополнительный резистор, подключенный к отрицательному выводу источника питания, к неивертирующему входу МС.

Генератор на LM358

Схема состоит из нескольких компонентов:

  • Резистора, подпирающего ОУ минусовым выводом и сопротивлением 0,8 Ом.
  • Резистивного делителя напряжения, состоящего из 3 сопротивлений с диодом, выступающего источником опорного напряжения.

Резистор номиналом 82 кОм подключен к минусу источника и положительному входу МС. Опорное напряжение формируется делителем, состоящим из резистора 2,4 кОм и диода в прямом включении. После чего ток ограничивается резистором 380 кОм. ОУ управляет биполярным транзистором, эмиттер которого подключен непосредственно к инвертирующему входу МС, образовав отрицательную глубокую связь. Резистор R 1 выступает измерительным шунтом. Опорное напряжение формируется при помощи делителя, состоящего из диода VD 1 и резистора R 4.

В представленной схеме при условии использования резистора R 2 сопротивлением 82 кОм ток стабилизации в нагрузке составляет 74мА при входном напряжении 5В. А при увеличении входного напряжения до 15В ток увеличивается до 81мА. Таким образом, при изменении напряжения в 3 раза ток изменился не более, чем на 10%.

Зарядное устройство на LM 358

Схемы включения lm358

С использованием ОУ LM 358 часто изготавливают зарядные устройства с высокой стабилизацией и контролем выходного напряжения. Как пример, можно рассмотреть зарядное устройство для Li — ion с питанием от USB . Эта схема представляет собой автоматический регулятор тока. То есть, при повышении напряжения на аккумуляторе зарядный ток падает. А при полном заряде АКБ схема прекращает работать, полностью закрывая транзистор.

Source: instrument.guru

Почитайте еще:

remont-pc.uef.ru

Ts358cd в блоке питания

Форум по электронике » РЕМОНТ » ФОРУМ ПО РЕМОНТУ КОМПЬЮТЕРОВ » БП FSP Group Inc ATX-450PNR (Нет деружки, на выходе вообще нет напряжений.)

БП FSP Group Inc ATX-450PNR

Среда, 09.11.2011, 16:55 | Сообщение # 1

Активность: 71 Offline

Добрый день.
Тихо помер данный БП. При вскрытии обнаружился убитый smd диод D6. Никаких надписей на нем не нашел. Помогите определить что это за диод. Единственное, что есть на этом диоде, это белая полоса. Я думаю это минус обозначен и к маркировке отношения не имеет. Дежурка собрана на двух силовых транзисторах D4515. Даташит на них не нашел. Слышал мнение что это "очень" китайские транзюки и даташит на них найти трудно. Может кто подскажет где э-к-б у этих транзисторов? или просто заменить их на 2SC2625? Дальше пока не смотрел, хочу решить сначала эти два вопроса. Среда, 09.11.2011, 17:52 | Сообщение # 2

Активность: 3628 Offline

Wolfness, не так не пойдет фото платы, монтажки перечень микросхем, желательно нормального качества (предварительно если нет дежурки надо проверять 28 вольт, найти оптрон проверить и тп если есть 28 то вышел из строя шим) Среда, 09.11.2011, 18:44 | Сообщение # 3

Активность: 71 Offline

ок. Дежурка em311. Силовые ключи D4515 (2 шт). TS358CD на fan Control. ШИМ 3528 на отдельном субмодуле. Оптрон 817с. За фотки извиняюсь. Качество желает лучшего, но нет фотика, снимал на телефон. К сожалению как проверить оптрон не знаю. Подскажите плиз. Пока рассматривал smd диод d6 у меня его угнал кот. Диод я так и не нашел. Прошу помочь с опознание данного диода, без него включать БП не хочется (хоть он и не звонился, но все равно заменить надо перед включением). Четверг, 10.11.2011, 10:35 | Сообщение # 4

Активность: 198 Offline


Wolfness, фото плохие, ничего нельзя разобрать, а если сканером нижнюю часть попробовать отсканировать.

Четверг, 10.11.2011, 13:08 | Сообщение # 5

Активность: 1246 Offline

Где он находиться. Твой Д6




Рекомендованные сообщения

Присоединяйтесь к обсуждению

Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

Сообщения

30в. Или два трансформатора мощностью по 150-200Вт с двумя обмотками по

30в. Экранирующая обмотка, думаю, не нужна. Сервисная — 2х12в/0.5А (не обязательно). Возьмется кто намотать такой? Или может готовый есть? Цена вопроса?

30в. Или два трансформатора мощностью по 150-200Вт с двумя обмотками по

30в. Экранирующая обмотка, думаю, не нужна. Сервисная — 2х12в/0.5А (не обязательно). Возьмется кто намотать такой? Или может готовый есть? Цена вопроса?

Модератор форума: Электродыч, Igoran
Форум радиолюбителей » СХЕМЫ » БЛОКИ ПИТАНИЯ » Переделка ATX FSP 350PN (Стабилизация по 12V, FSP3528) (Чтоб работала стабилизация на 12 вольтах)

Переделка ATX FSP 350PN (Стабилизация по 12V, FSP3528)

Чт, 13.07.2017, 15:59 | Сообщение # 11 vitaliobog1

Пришел к выводу что не нужны 5 и 3.3 вольта ведь это ни как не повлияет на суммарную мощность ? можно всю ее после снять по одной линии. Потом просто понижу выходное напряжение до необходимого ибо регуляторы имеются.

Блок планирую переделать в регулируемый по напряжению чтобы выдавал максимум тока который позволит трансформатор. Также желательно регулирование тока — но это не обязательно и видимо отдельная тема т.к. на 3528 для этого не заложен функционала.

Думаю так будет проще чтоб не искать проблемы почему сейчас просадка возникает.

Как лучше изменить схему, с чего начинать что нужно убрать или заменить ?

Фотографии добавляю. Примерную схему блока добавляю (на 300FAP ватт а у меня на 350PN)




Пт, 14.07.2017, 20:59 | Сообщение # 12 msmmmm
Вс, 16.07.2017, 20:18 | Сообщение # 13 vitaliobog1
Вс, 16.07.2017, 20:20 | Сообщение # 14 vitaliobog1
Вс, 16.07.2017, 21:43 | Сообщение # 15 msmmmm
Ср, 02.08.2017, 16:41 | Сообщение # 16 vitaliobog1

Добрый день. Начал переделку блока по схеме которая есть на одном сайте, но там далеко не полное описание. Поэтому нужна помощь.

Вот что я сделал на данном этапе —
1) переделал модуль 3528 как показано на фото. (Крестиком зачеркнуты все удаленные элементы) И ниже схемы доработанная схема человека который переделывал такой блок, это буду доделывать позже.
2) выпаял все вторичные цепи делал по фото некоторые оставил, к сожалению с обратной стороны фото оригинала нет поэтому там пока не разобрался что выпаивать.

Кстати заметил что на плате управления у меня отсутствовал резистор R8, а на схеме он есть. за что он отвечает может нужно впаять ?



Добавлено (02.08.2017, 16:41)
———————————————
Проверил работоспособность дежурки выдает 5 вольт. Пока ни где не накосячил при включении лампочка 220 вольт последовательно, загорается и гаснет.

Теперь собираюсь продолжить переделку. Разбираюсь по ходу переделки с электронными компанентами узнал много нового) Возникли еще вопросы.

1)Сейчас попытаюсь запустить блок то на выходе силового трансформатора должно появится какое то напряжение ? или без обратной связи по 12 вольтам ничего не будет ?
1.1 правильно понимаю чтосхема задает частоту работы силовых транзисторов в первичке и чем частота выше тем выше мощность на выходе трансформатора правильно ??) вообще он запустится в данном состоянии без контроля по линии 12 вольт я замыкаю зеленый провод на землю и питания на трансе не появляется это нормально или неисправность ?.
2) нужно ли впаять резистор р8 который есть на схеме шим контроллера но которого почему то изначально небыло у меня?
3) я так понимаю что судя по схеме переделанной с силового транса задействуются лишь крайние контакты ? поскольку обмотки 5 вольт(условно) это отходящие скрутки от обмотки 12 вольт, то дополнительную мощность снять не получится если подключаться еще и туда. То есть в принципе можно припаять на 12 вольт и землю 2 провода и далее делать цепь с силовыми ключами отдельно.
3) Разъясните немного схему вторичных цепей как на картинке, как нужно соединять силовые ключи вроде их там 4 штуки задействовано в связи с чем так много ? 2 шт есть не хватит ? вобще не понимаю как собрать эту часть и как они управляются от схемы шим там по даташиту 1 и 2 выход это Выходные прямоугольные импульсы, предназна-ченные для управления силовыми транзисторами блока питания. Как понять какой из них и куда подключать
5) вопрос по поводу катушки можно ли поднять мощность перемотав катушку. у меня катушка намотана на желтом кольце очень массивная. Есть также зеленое кольцо с синей боковиной с друго блока. Гдето прочитал что зеленые кольца способны работать на большей частоте и при этом не нагреваются, но кольцо меньше по диаметру. Вобще этот вопрос на будущее можно ли поднять частоту на максимум и я так понимаю это приведет к повышению тока. пока не принципиально хотя бы с стандартной катушкой сделать.
6) можно ли использовать для подключения и регулирования переменный резистор "10KOHM" или нужен только 47к это те же величины КОНМ ? на что повлияет его замена.
7)Не разобрался как подобрать вч дроссель. катушки из имеющихся возможно подойдут
8) с целью умощнения стоит ли заменить силовые ключи на входе D209L на чтото иное или их мощности достаточно ?
Фото отправляю.

schemy.ru

Подстанция проходная и тупиковая отличия

Выбор при проектировании типа понижающей подстанции выполняется с учетом существующей схемы электрических сетей района строительства (радиальная или кольцевая конфигурация сети, количества питающих подстанций), а также выбранной стратегии ее будущего развития. Наибольшее распространение получили подстанция проходная и тупиковая, отличие которых заключается, прежде всего, в способе их подключения к электрической сети.

Способы подключения подстанции

Питание тупиковой понижающей подстанции (ПС) осуществляется от головной ПС (шин более высокого напряжения) по одной или двум линиям электропередач. При этом питание других ПС от этих линий не осуществляется. Тупиковая подстанция используется в радиальных сетях, для питания промышленных предприятий, удаленных мест добычи полезных ископаемых и других подобных объектах.

Проходная (или транзитная) ПС подключается "в рассечку" между двумя головными подстанциями или «врезается» в линию с односторонним питанием. Стоимость строительства проходных ПС выше, чем ответвительных, так как для них требуется большее количество дорогостоящих коммутационных аппаратов на стороне высокого напряжения. Однако их эксплуатация удобнее, а надежность снабжения потребителей выше, чем у тупиковых ПС.

Схемы подстанций этих типов

Подстанция проходная и тупиковая, отличие которых проявляются также в схемах исполнения, должны обеспечивать:

  • надежное снабжение подключенных потребителей;
  • учитывать возможность расширения;
  • соответствовать требованиям систем защиты и противоаварийной автоматики.

Выбор схемы тупиковой подстанции зависит, прежде всего, от требуемой степени надежности питания подключенных потребителей. Чаще всего применяется упрощенная схема с двумя блоками "линия питания – понижающий трансформатор" (схема без сборных шин). Для обеспечения снабжения потребителей при отключении одной из питающих линий электропередач на стороне высокого напряжения используется рабочая перемычка (мостик) с разъединителями. Это перемычка при нормальном режиме работы сети разомкнута. Перемычка для питания подключенных потребителей, во время выполнение ремонтных работ (ремонтная перемычка) на тупиковых ПС, не требуется.

Если аналогичная блочная схема используется в транзитной ПС, то рабочая перемычка с высоковольтным выключателем в нормальном режиме работы замкнута. Такая перемычка используется для обеспечения транзита мощности во время ремонтных работ на ПС.

При выборе схемы проходных ПС также учитываются: номинальные мощности используемых силовых трансформаторов, приоритетность снабжения потребителей или обеспечения перетока мощности. После технико-экономического обоснования возможно также применение в сетях с напряжением выше 110 кВ следующих схем таких ПС: «заход-выход», треугольник, с системами шин (одной секционированной рабочей системой и полуторной цепочкой для присоединения ответственных потребителей).

etmz.ru

Тупиковая подстанция - Большая Энциклопедия Нефти и Газа, статья, страница 1

Тупиковая подстанция

Cтраница 1


Тупиковые подстанции 35 кВ выполняются по схеме блока трансформатор - линия с установкой разъединителя и предохранителя ( рис. 5.29 6), если предохранитель обеспечивает надежную защиту трансформатора и если обеспечивается селективность с защитой линий на стороне НН.  [2]

Тупиковые подстанции защищают только вентильными разрядниками на вводе.  [3]

Тупиковая подстанция - это подстанция, получающая электроэнергию от одной электроустановки по одной или нескольким параллельным линиям.  [4]

К тупиковым подстанциям относятся подстанции, получающие питание по радиальным схемам, и последние подстанции в магистральной схеме с односторонним питанием.  [6]

Защиту трансформатора тупиковой подстанции от атмосферных перенапряжений осуществляют трубчатыми, разрядниками типа РТ устанавливаемыми на ближайшей к подстанции опоре воздушной линии. При присоединении подстанции к кабельной линии разрядники не требуются. Подстанция, смонтированная по схеме ( рис. 111.11, а), может иметь н более мощный силовой трансформатор ( до 630 кВА), однако в таких случаях со стороны низкого напряжения обычно устанавливают не предохранители, а автоматы.  [7]

Установка дугогасящих реакторов на тупиковых подстанциях не допускается.  [8]

Установка дугогасящих аппаратов на тупиковых подстанциях запрещается.  [9]

Установка дугогасящих реакторов на тупиковых подстанциях запрещается.  [10]

Если дугогасящая катушка установлена на тупиковой подстанции, к шинам которой подходит одна линия, то при отключении этой линии вследствие двухполюсного короткого замыкания с землей на трансформаторе возникнет перенапряжение, вызванное наличием катушки.  [11]

Таким образом, в случае тупиковой подстанции класса напряжения 35 кВ [ / at / p и, следовательно, все грозовые волны напряжения, возникающие на ВЛ, приводят к срабатыванию разрядника, установленного на подстанции; при нескольких линиях, подключенных к подстанции, [ 7р может стать больше Ua и тогда только часть грозовых волн напряжения, набегающих с В Л на подстанцию, будет вызывать срабатывание разрядников.  [12]

Блочные схемы применяются на стороне ВН тупиковых подстанций напряжением до 500 кВ включительно, ответвительных и проходных подстанций, присоединяемых к одной или к двум линиям, до 220 кВ включительно.  [14]

Установка дугогасящих реакторов не должна производиться на тупиковых подстанциях, так как неполиофазные режимы питания трансформатора с дутогасящим реактором, возникающие при обры - ц одного или двух проводов питающей линии, приводят к неполно - Фазной компенсации емкостных токов сети и, следовательно, к появлению большого напряжения смещения нейтрали и длительным перенапряжениям феррорезонансного характера. По этой же причине запрещается подключение дугогасящих реакторов к трансформаторам, защищенным плавкими предохранителями.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Схемы электрических соединений подстанций

а) Общие сведения

Главная схема электрических соединений подстанции выбирается с учетом схемы развития электрических сетей энергосистемы или схемы электроснабжения района.

По способу присоединения к сети все подстанции можно разделить на тупиковые, ответвительные, проходные, узловые.

Тупиковая подстанция – это подстанция, получающая электроэнергию от одной электроустановки по одной или нескольким параллельным линиям.

Ответвительная подстанция присоединяется глухой отпайкой к одной или двум проходящим линиям.

Проходная подстанция включается в рассечку одной или двух линий с двусторонним или односторонним питанием.

Узловая подстанция – это подстанция, к которой присоединено более двух линий питающей сети, приходящих от двух или более электроустановок.

По назначению различают потребительские и системные подстанции. На шинах системных подстанций осуществляется связь отдельных районов энергосистемы или различных энергосистем. Как правило, это подстанции с высшим напряжением 750 - 220 кВ. Потребительские подстанции предназначены для распределения электроэнергии между потребителями.

Схема подстанций тесно увязывается с назначением и способом присоединения подстанции к питающей сети и должна:

- обеспечить надежность электроснабжения потребителей подстанции и перетоков мощности по межсистемным или магистральным связям в нормальном и в послеаварийном режиме, учитывать перспективу развития;

- допускать возможность постепенного расширения;

- учитывать требования противоаварийной автоматики;

- обеспечивать возможность проведения ремонтных и эксплуатационных работ на отдельных элементах схемы без отключения соседних присоединений.

На подстанциях рекомендуется применение простейших схем с минимальным числом выключателей высокого напряжения.

б) Схемы тупиковых и ответвительных подстанций:

Тупиковые и ответвительные подстанции выполняются по упрощенным схемам без выключателей высокого напряжения.

Однотрансформаторная подстанция может присоединяться к питающей сети по схеме блок трансформатор - линия с установкой КЗ и ОД или передачей телеотключающего импульса на опорную подстанцию (см. рис. 3.7,б).

Подстанции 35 - 110 кВ с двухобмоточными трансформаторами небольшой мощности (до 6300 кВ·А) могут иметь на стороне ВП только предохранитель и разъединитель. В этом случае необходимо проверить селективность работы предохранителей и релейной защиты линий.

Двухтрансформаторные подстанции в отличие от схемы (рис. 3.7,б) снабжаются автоматической или неавтоматической перемычкой на стороне высшего напряжения (рис. 6.12).

В автоматической перемычке (рис. 6.12, а) установлен разъединитель и отделитель двустороннего действия. Нормально РЗ включен, а ОДЗ отключен, так как режим работы двух линий на один трансформатор через включенную перемычку недопустим: при повреждении в одной из параллельных линий релейная защита отключит обе линии.

Рис. 6.12. Схемы двухтрансформаторных ответвительных подстанций:

а – с автоматической перемычкой; б – с неавтоматической перемычкой

 

Аварийное отключение линий происходит гораздо чаще, чем трансформаторов. В этом случае и используется перемычка. Так, при устойчивом к. з. на линии Л1 отключается выключатель В1 на питающем конце, защитой минимального напряжения отключается выключатель ВЗ, а затем отделитель ОД1. Для восстановления в работе трансформатора Г1 автоматически включается отделитель ОДЗ в перемычке, а затем выключатель ВЗ. Таким образом, на подстанции будут работать оба трансформатора и одно из ответвлений к транзитной линии Л2.

Если при включенной перемычке произойдет к. з. в трансформаторе Т1, то отключится ВЗ, включится короткозамыкатель К31, отключится В2, в бестоковую паузу отключится ОДЗ, затем сработает АПВ, и линия Л2 останется в работе, следовательно останется в работе и трансформатор Т2.

Как видно из описания различных режимов работы схемы, автоматические переключения возможны только при четком согласовании работы всех элементов. Например, нельзя включить ОДЗ, если не отключен ОД1 или ОД2; ОД1 и ОД2 можно отключать лишь после надежного отключения ВЗ или В4 и при отсутствии напряжения на линиях Л1, Л2; если включен КЗ1 или К32, включать ОДЗ нельзя. Соблюдение всех этих условий достигается специальными блокировками.

Возможно применение схемы с ремонтной перемычкой из двух разъединителен РЗ, Р4, один из которых в нормальном режиме отключен (рис. 6.12, б). При устойчивом повреждении на линии Л1 отключаются В1 и ВЗ и действием АВР на стороне 6 - 10 кВ включается ВС, обеспечивая питание потребителей от Т2. Если линия выводится в ремонт, то действиями дежурного персонала подстанции или оперативной выездной бригадой отключается Р1, включается перемычка РЗ, Р4 и трансформатор Т1 ставится под нагрузку включением ВЗ с последующим отключением ВС. В этой схеме возможно питание Т1 от линии Л2 при ремонте Л1 (или Т2 от линии Л1).

Для увеличения надежности работы таких подстанций отделители и короткозамыкатели открытого исполнения заменяются отделителями и короткозамыкателями с элегазом..

Дальнейшим развитием упрощенных схем будет внедрение выключателей нагрузки высокого напряжения на одно, два и три направления. Такие выключатели позволят не только присоединить подстанцию к проходящей линии, но и секционировать последнюю.

в) Схемы проходных подстанций:

Если подстанция включена в рассечку линии с двусторонним питанием, то в цепях трансформаторов устанавливаются отделители, а в перемычке — выключатель (рис. 3.23). В нормальном режиме выключатель В1 включен, ремонтная перемычка разомкнута разъединителем РЗ или Р4.

 

Рис. 6.13. Схема проходной подстанции с выключателем в перемычке.

 

При повреждении Т1 включается К31, отключается В1, а затем В2 на опорной подстанции А. В бестоковую паузу отключится отделитель ОД1, затем включаются В1 и В2. Переток мощности не нарушен, трансформатор отключен.

При повреждении на одной линии, например Л2, отключится В2, затем В3 на опорной подстанции Б. Если АПВ линии оказалось неуспешным, отключится В5, и действием АВР будет включен выключатель ВС. Таким образом, электроснабжение потребителей не нарушится.

При необходимости ревизии выключателя В1 включается перемычка РЗ, Р4, через которую осуществляется переток мощности.

Значительная экономия средств может быть достигнута внедрением схем подстанций с выключателями нагрузки 110 - 220 кВ. Выключатели нагрузки с элегазом на одно, два и три направления (ВНЭ I, ВНЭ II, ВНЭ III) позволяют создать схемы автоматического секционирования сети. На подстанции 1 (рис. 6.14) установлены три выключателя нагрузки на одно направление каждый, на подстанции 2 - один выключатель нагрузки на три направления (третья камера использована для установки трансформатора тока) и один - на два направления. Подстанцию можно оборудовать одним выключателем нагрузки на три направления, что еще больше упростит ее конструкцию и снизит капитальные затраты.

 

Рис. 6.14. Схема проходной подстанции с выключателями нагрузки:

а – с ВНЭ I, б – с ВНЭ II и ВНЭ III.

 

Линия между опорными подстанциями А и Б разделена на три участка. При повреждении на Л2 отключатся В1, В2, автоматически отключатся ВН2 и ВН4 в сторону линии Л2, а затем АПВ включит В1, В2. Работа подстанций не нарушена.

Если подстанцию 1 присоединить глухой отпайкой , то при повреждении Л2 она потеряет питание на время, необходимое для прибытия персонала, отыскания места повреждения, и отсоединения поврежденного участка. Ущерб от недоотпуска электроэнергии в этом случае может быть значительным.

Для двухтрансформаторных подстанций, присоединяемых к двухцепным линиям, секционирование линий с помощью выключателей нагрузки также целесообразно.

Освоение выпуска таких выключателей позволит широко применить секционирование сетей, автоматизировать работу сетевых подстанций и увеличить надежность электроснабжения.

На проходных подстанциях возможно также применение схем мостика с выключателями (см. рис. 3.8). В сетях 220 - 330 кВ применяют также кольцевые схемы, обеспечивающие более высокую надежность и оперативную гибкость. В отличие от схемы по рис. 3.9, а трансформаторы (автотрансформаторы) присоединяются через отделители в вершинах четырехугольника (рис. 3.25): АТ1 соединен в блок с Л1, АТ2 - в блок с Л4. Линии Л1, Л4 - радиальные, линии Л2, ЛЗ - транзитные. В цепях линий могут устанавливаться отделители или разъединители с дистанционным приводом.

 

Рис. 6.14. Схема расширенного четырехугольника.

 

Это позволит восстановить работу схемы на стороне 220 - 330 кВ после отключения поврежденной линии.

г) Схемы мощных узловых подстанций:

На шинах 330 - 750 кВ узловых подстанций осуществляется связь отдельных частей энергосистемы или связь двух систем, поэтому к схемам на стороне ВН предъявляют повышенные требования в отношении надежности. Как правило, в этом случае применяют схемы с многократным присоединением линий: кольцевые схемы, схемы 3/2 выключателя на цепь и схема шины - трансформатор.

На рис. 6.15 показана схема мощной узловой подстанции. На стороне 330 - 500 кВ применена схема шины - автотрансформатор. В цепи каждой линии - два выключателя, автотрансформаторы присоединяются к шинам без выключателя (устанавливаются разъединители с дистанционным приводом или отделители). При повреждении АТ1 отключаются все выключатели, присоединенные к 1СШ, работа линий 330 - 500 кВ при этом не нарушается. После отключения АТ1 со всех сторон отключается дистанционно разъединитель Р1 и схема со стороны ВН восстанавливается включением всех выключателей 1СШ.

В зависимости от числа линий 330 - 500 кВ возможно применение кольцевых схем или схемы 3/2 выключателя на цепь.

На стороне среднего напряжения 110 - 220 кВ мощных подстанций применяется схема с одной рабочей и обходной системой шин при количестве одиночных линий до шести, а параллельных до десяти. При большем числе линий применяется схема с двумя рабочими и обходной СШ.

При выборе схемы на стороне НН в первую очередь решается вопрос об ограничении тока к. з. Для этой цели можно применять трансформаторы с повышенным значением UК, трансформаторы с расщепленной обмоткой НН или устанавливать реакторы в цепи трансформатора. В схеме, показанной на рис. 3.26, на стороне НН установлены сдвоенные реакторы. Синхронные компенсаторы с пусковыми реакторами присоединены непосредственно к выводам НН автотрансформаторов. Присоединение мощных СК к шинам 6 –

10 кВ привело бы к недопустимому увеличению токов к. з.

Рис. 6.15. Схема узловой подстанции.

 

Контрольные вопросы

 

6.1. Как изображаются аппараты в оперативных схемах?

6.2. Какие требования предъявляются к главным схемам электроустановок?

6.3. Какие показатели оценивают экономическую целесообразность структурных схем электроустановки?

6.4. Как выбирается число и мощность трансформаторов связи на ТЭЦ?

6.5. Сравните схемы блоков генератор-трансформатор с генераторным выключателем и без него в режиме отключения блока и включения его в работу.

6.6. В каких целях применяются схемы укрупненных блоков: два генератора и более на один трансформатор?

 



infopedia.su

ЭлектрО - Общие сведения

ОБЩИЕ СВЕДЕНИЯ

 

Главная схема электрических соединений подстанции выбира­ется с учетом схемы развития электрических сетей энергосистемы или схемы электроснабжения района.

По способу присоединения к сети вес подстанции можно раз­делить на тупиковые, ответвительные, проходные, узловые.

Тупиковая подстанция — это подстанция, получающая электроэнергию от одной электроустановки по одной или несколь­ким параллельным линиям (на рис. 1 — подстанция Г).

Ответвительная подстанция присоединяется глухой отпайкой к одной или двум проходящим линиям (на рис. 1 — подстанция Д).

Проходная подстанция включается в рассечку одной или двух линий с двусторонним или односторонним питанием (на рис. 1 — подстанция Ж).

Узловая подстанция — это подстанция, к которой при­соединено более двух линий питающей сети, приходящих от двух или более электроустановок (на рис. 1 — подстанции А, Б, В).


Рис. 1. Принципиальная схема энергосистемы.

 

По назначению различают потребительские и системные подстанции. На шинах системных подстанций А, Б (см. рис. 1) осуще­ствляется связь отдельных районов энергосистемы или различных энергосистем. Как правило, это подстанции с высшим напряжени­ем 750 — 220 кВ. Подстанции Е, В, Д (см. рис. 1) предназначены для распределения электроэнергии между потребителями.

Схема подстанций тесно увязывается с назначением и спосо­бом присоединения подстанции к питающей сети и должна:

обеспечивать надежность электроснабжения потребителей под­станции и перетоков мощности по межсистемным или магист­ральным связям в нормальном и в послеаварийном режимах;

учитывать перспективу развития;

допускать возможность постепенного расширения РУ всех на­пряжений;

учитывать требования противоаварнйной автоматики;

обеспечивать возможность проведения ремонтных и эксплуата­ционных работ на отдельных элементах схемы без отключения соседних присоединений.

Число одновременно срабатывающих выключателей должно быть не более:

двух — при повреждении линии;

четырех — при повреждении трансформаторов напряжением до 500 кВ, трех - 750 кВ.

В соответствии с этими требованиями разработаны типовые схемы распределительных устройств подстанций 6 — 750 кВ, которые должны применяться при проектировании подстанций.

Нетиповая главная схема должна быть обоснована технико-эко­номическим расчетом.

ellectroi.ucoz.ru

КТП тупикового типа

КТП тупикового типа это электрическая установка которая предназначена для работы на прием трехфазного электрического переменного тока частотой в 50 Гц, номинальным напряжением в 6-10 киловольт, и с последующим преобразованием его в электрическую энергию напряжением равным в 0,4 киловольта, с дальнейшем доставкой и распределением преобразованного тока конечному потребителю, которыми являются в основном населенные пункты и промышленные объекты.

Тупиковая трансформаторная подстанция разделяется на два вида по вводу электрического тока:

  • КТП тупикового типа с воздушным вводом (КТП ТВ)
  • КТП тупикового типа с кабельным вводом (КТП ТК)

Мощность применяемого силового трансформатора на подстанции может варьироваться от 25 до 2500 кВа.

Корпус КТП тупикового типа представляет собой металлический модуль, выполненный из оцинкованной стали. Окрашен модуль преимущественно в серый цвет специальной огнеупорной порошковой краской. Стороны модуля тупиковой КТП скреплены между собой по средствам анкерных болтовых соединений или с использованием сварочного оборудования. При необходимости модуль КТП утепляется минеральной ватой. В качестве дополнительно оборудования на КТП тупикового типа (при желании заказчика) устанавливается следующее оборудование:

  • антивандальная защита от взлома
  • звуковая и (или) световая сигнализация
  • система дополнительной вентиляции
  • система обогрева
  • счетчики учета электрической энергии и другое

Основными составляющими КТП тупикового типа являются:

  • распределительное устройство
  • устройство высшего напряжения (УВН)
  • силовой трансформатор

Для обеспечения безопасности обслуживающего персонала на КТП тупикового типа предусмотрены все необходимые виды блокировок, также КТП  имеет следующие виды защит:

  • защита от коротких замыканий
  • защита цепей обогрева от коротких замыканий
  • защита от перегрузки силового трансформатора
  • защита линии низшего напряжения от перегрузки и короткого замыкания
  • защита от атмосферных перенапряжений

Технические характеристики

  • мощность силового трансформатора — от 25 до 2500 кВа
  • количество применяемых трансформаторов — один, два
  • номинальное напряжение — 6-10 киловольт
  • наименьшее напряжение — 0,4 киловольта
  • степень защиты — IP 34
  • виды вводов — кабельный, воздушный

Условия эксплуатации

  • высота монтажа по отношению к уровню моря — не более 1000 метров
  • температура окружающего воздуха — +40 С, -40 С
  • отсутствие в воздухе химических газов, паров и испарений пагубно действующих на корпус и изоляцию подстанции, а также отсутствие взрывоопасных паров и токопроводящей пыли
  • запрещен ввод питания со стороны НН
  • относительная влажность воздуха не более 80% при 20С

Установка

КТП тупикового типа устанавливается за заранее подготовленную поверхность: ленточный фундамент или специальную утрамбованную площадку. Фундамент должен быть заранее составлен сторонней проектной организацией или организацией исполнителем, если данная услуга предусмотрена.

Доставка и установка КТП тупикового типа осуществляется при помощи специальной техники. Все дальнейшие работы проводятся строго с правилами пожарной и технической безопасности, опираясь на прилагаемую документацию.

tr-ktp.ru

Главные схемы подстанции | Главные схемы электростанций и подстанций | Навчання

Подробности
Категория: Навчання

Содержание материала

Страница 3 из 3

5. ГЛАВНЫЕ СХЕМЫ ПОДСТАНЦИИ
5.1. Общие сведения

Главная схема электрических соединений подстанции выбирается с учетом схемы развития электрических сетей энергосистемы или схемы электроснабжения района.
По способу присоединения к сети все подстанции можно разделить на тупиковые, ответвительные, проходные, узловые.
Тупиковая подстанция — это подстанция, получающая электроэнергию от одной электроустановки по одной или нескольким параллельным линиям.
Ответвительная подстанция присоединяется глухой отпайкой к одной или двум проходящим линиям.
Проходная подстанция включается в рассечку одной или двух линий с двусторонним или односторонним питанием.
Узловая подстанция — это подстанция, к которой присоединено более двух линий питающей сети, приходящих от двух или более электроустановок.
По назначению различают потребительские и системные подстанции. На шинах системных подстанций А, Б (см. рис. 1.1, лекция 1) осуществляется связь отдельных районов энергосистемы или различных энергосистем. Как правило, это подстанции с высшим напряжением 750—220 кВ. Подстанции З, И Д, Е (см. рис. 1.1) предназначены для распределения электроэнергии между потребителями.
Схема подстанций тесно увязывается с назначением и способом присоединения подстанции к питающей сети и должна:
1) обеспечивать надежность электроснабжения потребителей подстанции и перетоков мощности по межсистемным или магистральным связям в нормальном и в послеаварийном режиме;                       
2) учитывать перспективу развития;                               
3) допускать возможность постепенного расширения РУ всех напряжений;
4) учитывать требования противоаварийной автоматики;           
5) обеспечивать возможность проведения ремонтных и эксплуатационных работ на отдельных элементах схемы без отключения соседних присоединений.                                                         
В соответствии с этими требованиями разработаны типовые схемы распределительных устройств подстанций 6—750 кВ, которые должны применяться при проектировании подстанций.                    
Нетиповая главная схема должна быть обоснована технико-экономическим расчетом.
На стороне ВН 35—220 кВ должны широко применяться упрощенные схемы без выключателей.

5.2. Схемы тупиковых и ответвительных подстанций

Тупиковые и ответвительные подстанции выполняются по упрощенным схемам без выключателей ВН. Тупиковые однотрансформаторные подстанции на стороне 35— 330 кВ выполняются по схеме блока трансформатор - линия без коммутационной аппаратуры или с одним разъединителем (рис. 5, а), если защита линии со стороны питающего конца имеет достаточную чувствительность к повреждениям в трансформаторе. Такая схема может также применяться, если предусмотрена передача телеотключающего импульса. Разъединитель не устанавливают, если предусмотрен кабельный ввод в трансформатор.
Схемы тупиковых однотрансформаторных подстанций
Рис. 5. Схемы тупиковых однотрансформаторных подстанций:
а — без выключателя ВН; б — с предохранителем ВН

Тупиковые подстанции 35 кВ выполняются по схеме трансформатор — линия с установкой разъединителя и предохранителя (рис. 5,б), если предохранитель обеспечивает надежную защиту трансформатора и если обеспечивается селективность с защитой линий на стороне НН.
Тупиковые двухтрансформаторные подстанции выполняются по схеме двух блоков с разъединителями, предохранителями или отделителями в зависимости от перечисленных выше условий без перемычки между блоками.
Ответвительные подстанции, присоединенные линиям 35—220 к В глухой отпайкой, выполняются по схеме двух блоков с отделителями и короткозамыкателями в цепях трансформаторов с неавтоматической перемычкой из двух разъединителей.
Если на тупиковой или ответвительной подстанции возникает необходимость присоединения одной дополнительной линии, то при напряжении 110 кВ может применяться схема моста с отделителями в цепях трансформаторов и дополнительной линией, присоединенной через два выключателя.

forca.com.ua

что это такое, функции, конструкция, опасность

Трансформаторная подстанция, будка — оборудование, предназначенное для приема, преобразования и отдачи полученной электрической энергии. Но несмотря на идентичную сферу деятельности устройства различно классифицируются. Выделают будки, применяемые по разному назначению (УПР, ГПП, ПГВ, ТП), по типу исполнения (бетонные, металлические, сэндвич-панели), по типу обслуживания (с коридором и без), по типу РУВН (тупиковые и проходные). При использовании трансформаторной будки необходимо соблюдать требования по безопасности.

Что внутри

Современное оборудование, которым пользуются граждане страны, чувствительно к скачкам напряжения сети. Понятно, что при подаче нестабильного по показателям электричества будут наблюдаться постоянные замыкания, приводящие к поломкам. Чувствительно к уровню сигнала и специфическое оборудование, которое используется на производствах, заводах, в ресторанах, в школах и больницах и любых других заведениях.

Для того, чтоб подавать им напряжение постоянное и приемлемое по показателям, требуется изначальная обработка при помощи устройств. Такие располагаются в трансформаторной будке. При этом стоит понимать, что приборы, которые находятся в подстанции, будут различаться в зависимости от назначения устройства.

Трансформаторная будка внутри

Трансформаторная станция представляет собой сооружение, в котором в комплексе хранится оборудование, предназначенное для преобразования и распределения энергии между потребителями. В частности, это:

  • силовые трансформаторы;
  • распределительные и управляющие устройства;
  • приборы контроля;
  • устройства, обеспечивающие безопасность;
  • вспомогательные конструкции и детали.

Основной элемент — это силовой трансформатор. В небольшой подстанции он один, в то время как в масштабных будках по размеру может быть несколько. В зависимости от типа тс определяется специфика работы. Если трансформатор повышающий, то он увеличивает напряжение. В таком оборудовании первичная обмотка с меньшими количеством витком, чем вторичная. В случае понижающего тс все наоборот: обмоток на первичке больше, чем на вторичке, напряжение понижается.

Трансформаторная будка

Функции

Основная сфера предназначения подстанции — это активация напряжения и передача мощности. Энергия задействована при низких напряжениях, но не факт, что она останется такой же на выходе из трансформатора. Цифры уменьшаются, и именно для этого используются кроме тс еще и другие устройства.

Подстанция простейшего типа напоминает по принципу работы силовой генератор. Устройства соединены изолированной фазой шинопровода. Учитывают дальность передачи энергетической составляющей на подстанцию возлагаются и такие функции, как уменьшение нагрева проводников и устранение случайных, вихревых токов.

Трансформаторная подстанция отличается повышенными шумовыми характеристиками при работе. На открытом воздухе в железном блоке позволяют размещать трансформаторы только в районах без людей, например, на производствах, в полях.

Но если речь идет о сооружении, предназначенном для питания жилого района, то располагается оно в ограде, со специальными шумоизоляционными характеристиками.

Электрический импульс подается на АЭС, ГЭС, ТЭС, а после на подстанцию. В зависимости от типа оборудования происходит повышение или понижении напряжения. В стандартной модели оно понижается, потом направляется к потребителям отдельно. Если требуется распространение по локальной сети различных уровней напряжения, то используется несколько агрегатов.

Полезная информация и дополнительные функции подстанции

Трансформаторные подстанции имеют несколько особенностей функционала, что позволяет выделить их в отдельный класс установок. В частности:

  • номинальные показатели напряжения установки в целом соответствуют напряжению самого крупного трансформатора;
  • сфера использования тс — это сохранение напряжения;
  • в составе сооружения должны присутствовать силовые трансформаторы и распределительные устройства.

Понятно, что основным функционалом является преобразование энергии к необходимым характеристикам, а затем безопасная ее передача потребителям. Но есть и другие функции, которые сразу незаметны.

Трансф. будка

Передача и распределение электричества

Мощность, поступающая на входы трансформатора, высокая. Естественно, такая не подается на приборы, ведь это приведет к их поломке. Показатели понижаются при помощи методики разветвления.

Переключение и выделение для обслуживания схем

Переключение — основная опция в оборудовании. Благодаря ей прибор может сам закрывать фидер, что обеспечивает безопасность. Неавтоматическое переключение тумблера напряжения опасно для специалиста, поэтому практически все подстанции оснащаются специальными автоматическими переключателями.

Отключение нагрузки

Нагрузка отключается в том случае, если напряжение получается большое и вырастает спрос потребителей. При сбросе нагрузки подача электричества оптимизируется и выравнивается до оптимальных показателей.

Рабочий у трансформаторной будки

Коррекция коэффициента мощности цепи

Устанавливается дополнительное оборудование, при помощи которого контролируется мощность цепи. Если параметры не соответствуют заявленным, то происходит автоматическая корректировка.

Классификация

Есть несколько классификаций, в зависимости от назначения и принципа действия. Подобрать оптимальную модель трансформаторной будки может только обученный специалист.

По назначению

Основное назначение идентичное, но различается функционал, благодаря которому возможно преобразование.

УРП

Узловая распределительная подстанция представляет собой центральное оборудование, показатели напряжения колеблются от 110 до 220 кВ. Распределяется же электричество при напряжениях от 35 до 220 кВ, в зависимости от вида приборов. Трансформация может происходить, а также может и отсутствовать. Основная область использования — производственные предприятия.

ГПП

Главная понизительная подстанция работает с входным напряжением от 35 до 220 кВ. Она получает энергию сразу от районной основной станции. Распределяет электричество с пониженными характеристиками далее. Следует различать ГПП с одним или двумя источниками. Первые питаются от одной двух цепной лини, а вторые по двум.

ПГВ

Подстанция глубокого ввода работает с напряжением от 35 до 220 кВ, при этом может получать питание напрямую или же от распределяющего центра. Используется для подачи электроэнергии конкретным приборам на предприятии.

Будка новая трансформаторная

ТП

Трансформаторный пункт напоминает маленький дом. Работает с напряжением ввода 230 и 400 В, подает первичное 6, 10 или 35 кВ. В России сейчас ТП выполняют из нескольких подстанций, которые относятся к комплексному типу. Расчет числа зависит от количества потребителей и требуемых показателей нагрузки.

Виды

Трансформаторные подстанции различают по их виду. Здесь присутствуют категории внешнего исполнения, типа обслуживания, типа РУВН.

По типу исполнения

По внешним данным можно определить, для чего предназначается станция, какое в ней установлено оборудование. Также исполнение влияет на степень обеспечения безопасности.

Будка для трансформатора

Из бетона

Бетонные монолитные, они не подлежат конфигурации и изменению. Обычно из бетона строят ТП. Обеспечивается высокая степень звукоизоляции и защиты.

Сэндвич-панели

Панели позволяют создать подстанцию довольно маневренного типа. Они просты в установке, хорошо защищают оборудование. Но обеспечивают меньшую безопасность и звуковую изоляцию в сравнении с бетонными.

Из металла

Металлические станки подходят только в случае установки на предприятии и вблизи производственных помещений. Должны защищаться дополнительными инструментами от высоких температур, влаги и других климатических изменений.

Трансформаторная будка из металла

По типу обслуживания

Варианты обслуживания определяются типом трансформаторной установки. Как правило, варианты большой мощности оснащены коридорами для удобства.

С коридором

Подстанции с коридором отвечают требованиям техники безопасности, даже в штатном режиме работы оборудования. Обязательная установка на территории, где соблюдается безопасная среда с отсутствием вибрации.

Без коридора

Данные подстанции более мобильны. Блоки без коридора обслуживания могут выполняться из бетона и металла, установка и проверка запчастей не предусматривает нахождение в сооружении специалиста.

Трансформаторная будка без коридора

По типу РУВН

Распределительные устройства высокого напряжения отвечают за прием энергии и подачу ее к приборам.

Проходные

Проходные отличаются тем, что они соединятся с сетью путем захода выбранной линии с питанием двумя сторонами. В проход включается выход и вход линии — это их отличительная особенность.

Тупиковые

Подача энергии проходит по одной или двум радиальным линиям, при этом нельзя следовать так, чтоб вход и выход были одинаковыми. Линия сугубо отдельная. Применяются радиальные схемы для большинства станций. Это не делается в случае, если ТП последняя в магистральной схеме.

Трансформаторная будка тупиковая

Безопасность для жизни окружающих людей

Любая трансформаторная станция, пусть даже работающая с минимальными по значениям, показателями напряжения представляет собой опасность для населения. Пока что электрическую энергию невозможно ничем заменить ввиду ее минимальной стоимости на рынке. Поэтому именно с ее помощью обеспечивается питание устройств, ежедневно используемых в быту и на производствах. В результате работы тс возникает электромагнитное поле. Медики уверяют, что невидимые заряды, которые находятся в этот момент в воздухе, влияют на человеческий организм — они колеблют клетки.

Известно, что частое влияние электрического поля приводит к возникновению проблем с кожей, онкологии.

Около трансформаторной станции жить запрещается. Кроме того, есть определенные схематические решения и одобренные законодательно правила, касаемо метража размещения дошкольных учреждений, больниц, общеобразовательных школ, развлекательных заведений к тс. В среднем расстояние от подстанции до жилого помещения должно быть не менее 300 метров.

Горящая трансформаторная будка

Источник дохода и объект субкультуры

Сооружения могут выступать, как и источником дохода граждан, так и объектом субкультуры, то есть быть государственными. На каждую подстанцию как объект недвижимости есть документация. Но в некоторых случаях возможно переоформление устройств и выдача их в частную собственность, но с соблюдением всех норм.

Перед установкой ТС делается проект, который утверждают после в государственных учреждениях. Документация проверяется, самовольное присвоение или постройка новой станции нелегально.

Стоимость

Трансформаторные подстанции сейчас на российском рынке реализует множество зарубежных и отечественных компаний. Допустима покупка приборов в комплексе или производство по определенному проекту. Ориентировочная цена подстанции минимальной по мощности с одним силовым трансформатором составляет от 1,5 — 2 тысяч долларов, а со средними показателями — от 5.

otransformatore.ru

Автономное пусковое устройство с компрессором Ring Automotive REPP165

Автономное пусковое устройство - на все руки мастер!

Компрессор, источник питания и фонарь!

Компактный дизайн, английский подход и безупречное качество делает этот прибор поистине незаменимым помощником! В производстве используются только высококачественные компоненты!

Оптимально послужит в качестве резервного устройства для запуска двигателя автомобиля в отдаленных местах и экстремальных условиях. 

Пусковое многофункциональное устройство Ring Automotive выручит холодной зимой и жарким летом — накачает шины и заведет автомобиль, мотоцикл, снегоход или другое транспортное средство, когда другие средства бессильны... 

Пусковое многофункциональное устройство английской компании "Ring Automotive": 

  • экстренный запуск двигателя автомобиля, 
  • накачка шин, 
  • зарядка электронных устройств, 
  • источник питания 12В,
  • LED фонарь.

Рекомендуется для запуска двигателя объемом до 3,0 л. 

Устройство имеет встроенные: компрессор, розетку 12В для подключения автоаксессуаров (разъем типа прикуриватель), USB разъем для подзарядки портативной техники (ток 2,1А, 5В), встроенный индикатор зарядки и LED фонарь.

Назначение и особенности: 

  • Служит для экстренного запуска двигателя транспортного средства
  • Накачки шин - встроенный компрессор с механическим манометром 
  • Зарядки портативной техники - разъём USB
  • Рекомендуется для запуска двигателей объемом до 3 л. 
  • Розетка 12В для подключения автоаксессуаров - разъем типа «прикуриватель» 
  • Встроенный индикатор зарядки и тестер состояния аккумулятора авто
  • Встроенный яркий LED фонарь
  • Зажимы типа «крокодил» - убираются внутрь прибора
  • Встроенная АКБ - свинцово-кислотная AGM
  • Зарядная станция, адаптеры для зарядки от бытовой и бортовой сети авто
  • Переходники для накачивания надувных изделий

Характеристики: 

  • Емкость встроенного АКБ 17 А/ч 
  • Пиковый пусковой ток 650 А 
  • Напряжение встроенного АКБ 12 В 
  • Тип встроенного АКБ: свинцово-кислотная AGM
  • Время зарядки : до 20 часов от сети 220 В, 4-6 часов в автомобиле.
  • Розетка типа «прикуриватель» 12В
  • Тестер и индикатор состояния АКБ авто
  • LED фонарь: 8 светодиодов
  • USB разъем (5 В/2.1 А)
  • Компрессор с механическим манометром: макс. давление до 150 psi
  • Рекомендовано для техники объемом двигателя 2,5л (бензин), 2,0л (дизель)
  • Вес: 9 кг
  • Размер упаковки (ДхШхВ): 38 x 33 x 31 см

Комплект:

  • Пусковое устройство
  • Зарядная станция
  • Адаптеры для зарядки от 12В бортовой сети, 220В бытовой сети
  • Переходники для накачивания надувных изделий 3 шт.
  • Инструкция на русском языке

Производство: Китай, под контролем компании Ring Automotive, Англия 

Гарантия: 2 года

topradar.ru

особенности обозначения, маркировка мощности и сопротивления

Маркировка советских резисторов буквенная Несмотря на то что времена СССР давно канули в Лету, радиоэлектронной техники и радиодеталей того времени ещё осталось предостаточно. Это говорит о том, что людям, занимающихся электроникой и другой сложной электротехникой, просто необходимо знать обозначения радиодеталей, принятые в те времена. Так, маркировка советских резисторов отличается от современных аналогов, однако столь же понятна и проста.

Резисторы советского производства

В отличие от современных резисторов, которые имеют принятую во всём мире маркировку, советские радиодетали имели собственные стандарты и обозначения. К примеру, чтобы понять, какая перед глазами современная деталь, придётся обращаться к таблицам или онлайн-калькуляторам.

Для советских аналогов такие сложности были ни к чему. Обозначались они просто и понятно каждому, даже начинающему радиолюбителю.

Резистор — это полупроводник, который имеет некое заданное сопротивление и применяется для того, чтобы ограничить токи в цепи. Основными характеристиками резисторов являются:

  1.  маркировка резисторов по мощностиНоминальное сопротивление — обозначается в омах, килоомах и мегаомах. На схемах всегда присутствует это значение.
  2. Рассеиваемая мощность — обозначается в ваттах. Как известно, проходя через полупроводник, ток нагревает его. При превышении некоего заданного значения он начнёт разрушаться. Это и есть рассеиваемая мощность, то есть то значение, при котором полупроводник будет работать без ущерба для себя. На схемах также обозначается это значение.
  3. Допуск номинального сопротивления — обозначается в процентах. Так как создать резистор без отклонений от оптимальных величин невозможно, то приходиться учитывать некий процент погрешности. Допуск номинального сопротивления указывает процент отклонения от заданного значения сопротивления.

Маркировка мощности

Как на современных, так и на советских деталях обозначение мощности было крайне важно, так как является одной из основных характеристик полупроводника. Но этот параметр можно определить и без маркировки, особенно если мастер опытный. Нередко бывает, что маркировка стирается, скалывается или просто плохо видна. Однако это не является преградой, чтобы определить мощность и сопротивление.

Сделать это можно по размеру резистора — чем больше корпус, тем лучше он рассеивает тепло и, следовательно, большую мощность имеет. И основы физики, в частности, закон Джоуля-Ленца, это подтверждают. Таким образом, чем меньше резистор, тем меньше его мощность.

Маркировка резисторовМощность советских резисторов МЛТ, то есть металлопленочного, лакированного, теплоустойчивого элемента, начинали обозначать с 1 Вт — МЛТ-1. Соответственно 2 Вт — МЛТ-2, 3 Вт — МЛТ -3 и так далее. У менее мощных маркировка резисторов по мощности отсутствовала, и определить её можно было лишь по размеру корпуса.

Значение сопротивления

Что же касается буквенной маркировки резисторов в плане значений сопротивления, то и здесь всё довольно просто. Как у резисторов МЛТ, так и у других советских приборов этой группы обозначение сопротивления выражается буквенно-цифровой последовательностью. Непосредственно значение отображалось цифрой, что совершенно логично, а вот омы, мегаомы и килоомы имели буквенную маркировку. Если нанесена буква R или E, то значение сопротивления считается в омах. Буква К показывает, что рассматриваются килоомы, а буква М говорит о значениях в мегаомах.

Для примера, заданное сопротивление будет 2 килоома, значит, обозначение имеет вид 2К0. Другой пример: сопротивление 33 МОм будет обозначаться как М33. И третий пример: обозначение вида 1К2 говорит о том, что это резистор на один килоом и 200 Ом.

Современные детали

Если говорить о современном обозначении резисторов, то у некоторых это вызывает определённые сложности, особенно у людей, привыкших к советским аналогам. И дело здесь не в сложности, а в трудоёмкости процесса. Ведь нужно брать таблицу, правильно определить расположение цветных полосок и после этого ещё проводить пусть и не сложные, но всё же расчёты. Хотя в этом помогают онлайн-калькуляторы, которые избавляют от множества нежелательных действий.

 обозначение резисторов

Для расшифровки цветных полосок на резисторе необходимо сначала правильно его держать. Для этого золотистая или серебристая полоска должна находиться справа. Хотя если таких полосок две или нет вообще, то к левой руке полоски располагаются таким образом, чтобы они получились сдвинутыми влево.

Полосок может быть от трёх и до шести. Каждая из них несёт в себе заданную информацию, прочитать которую можно, лишь прибегнув к таблице или онлайн-калькулятору.

Существуют ещё и SMD-резисторы. Основной их особенностью является очень маленький размер, что затрудняет чтение информации с поверхности. Да и понять, что это — транзистор, резистор или нечто другое — не всегда просто неопытному пользователю.

Как понятно, нанести полную маркировку даже цветными полосками на столь маленькие объекты не получится. Но всё же сделать это нужно. Поэтому, как правило, на очень миниатюрные ничего не наносят, а на детали чуть крупнее и имеющие допуск 10% принято наносить три цифры. Из них первые две указывают на номинал, а третья — на степень десяти.

 обозначение сопротивленияВ качестве примера можно взять обозначение 332. Первые две цифры — номинал, а третья — степень десяти. Значит, 33 умноженное на 10 в квадрате, что даёт 3300. Это число говорит о том, что взята деталь на 3300 Ом или, если привести к нормальному виду, — 3,3 кОм.

Сопротивления с допуском от одного процента и выше обозначаются четырьмя цифрами. Хотя это ни на что не влияет, так как расшифровывается по той же схеме: последняя цифра — степень, первые три — номинал.

В некоторых случаях SMD-детали могут маркироваться и двумя цифрами с буквой. И подобная маркировка действительно вызывает ряд сложностей, так как обязывает иметь таблицу, по которой можно высчитывать номинал такого полупроводника. Так, в качестве примера можно привести обозначение в следующем виде: 01С, где (согласно таблице) 01 равно 100 Ом, а буква С говорит, что множитель равен 102.

Таким образом, 100 Ом, умноженное на множитель 100, даёт 10 000 Ом, что, в свою очередь, равняется 10 кОм.

Обозначение на схемах

Понятно, что сами резисторы могут маркироваться как угодно, согласно ГОСТам или иным стандартам. Но вот на схемах они обозначаются всегда одинаково, вне зависимости от того, советские это или современные экземпляры. Так, схематическое обозначение таких деталей выглядит, как пустой прямоугольник, внутри которого:

  • Три вертикальные линии говорят о том, что установлен резистор мощностью 3 Вт.
  • Две такие же линии скажут, что здесь расположен элемент мощностью 2 Вт.
  • Одна линия говорит о мощности в 1 Вт.
  • Если линия одна и располагается горизонтально, то мощность такого резистора будет 0,5 Вт.
  • Одна диагональная линия слева направо говорит о мощности в 0,25 Вт.
  • Двумя такими наклонными линиями обозначаются детали с мощностью 0,125 Вт.

Другие данные могут располагаться в цифровом и буквенном виде где угодно, но всегда понятно для читающего схему.

В любом случае, советский это резистор, современный, отечественный или зарубежный, всегда можно прочесть его обозначения и узнать интересующие данные. Таким образом, можно сделать вывод, что как бы ни обозначили такую деталь, мастер всегда поймёт, какая она и чем её можно заменить.

220v.guru

Радиоэлементы из старой аппаратуры. Маркировка резисторов млт расшифровка. Все о резисторах. Определение, типы резисторов и их номинал Маркировка старых советских резисторов в трубочке

Радиолюбителю при сборке электрических схем часто приходится сталкиваться с определением номинала неизвестных компонентов. Резистор используется чаще всего. С его обозначениями возникают и частые вопросы. В переводе с английского это название звучит как «Сопротивление». Они различаются как по номинальному сопротивлению, так и по допустимой мощности. Для того, чтобы мастер мог выбрать элемент с нужным номиналом на их корпусах наносят обозначение. В зависимости от типа резисторов кодировка может различаться, она бывает: буквенно-цифровая, цифровая либо цветовыми полосами. В этой статье мы расскажем подробнее, какая бывает маркировка резисторов отечественного и импортного производства, а также как расшифровать обозначения, указанные производителем.

Обозначение номинала буквами и цифрами

На сопротивлениях советского производства применяется буквенно-цифровая маркировка резисторов и обозначение цветовыми полосами (кольцами). Примером можно рассмотреть резисторы типа МЛТ, на них величина сопротивления указана цифро-буквенным способом. Резисторы до сотни Ом содержат в своей маркировке букву «R», или «Е», или «Ω». Тысячи Ом маркируются буквой «К», миллионы букву М, т.е. по буквам определяют порядок величины. При этом целые единицы от дробных отделяются этими же буквами. Давайте рассмотрим несколько примеров.

На фото сверху вниз:

  • 2К4 = 2,4 кОм или 2400 Ом;
  • 270R = 270 Ом;
  • К27 = 0,27 кОм или 270 Ом.

Маркировка третьего непонятна, возможно он развернут не той стороной. Кроме этого на резисторах от 1 Вт может присутствовать маркировка по мощности. Маркировка довольно удобна и наглядна. Она может незначительно отличаться в зависимости от типа резисторов и года их производства. Также может присутствовать дополнительная буква, которая указы

www.namvd.ru

SMD резисторы: что это такое и для чего используются?

Само определение «SMD-резисторы» появилось не так уж давно. Аббревиатуру SMD (Surface Mounted Devices) дословно можно перевести на русский язык как «устройство, установленное на поверхность». Их также называют чип-резисторы и используются они при производстве печатных электронных плат.

Они имеют намного меньшие размеры по сравнению с проволочными аналогами. Могут быть самой разнообразной формы – прямоугольник, квадрат, овал или круг. Также такие резисторы отличаются низкой посадкой на печатную плату, что позволяет их размещать на схеме более компактно и существенно экономить полезную площадь.

На корпусе резистора есть контактные выводы. Они крепятся сразу на дорожку электронной схемы. Особая строение резистора позволяет их крепить даже при отсутствии отверстий в плате. В данной статье будут рассмотрены технические характеристики, правила маркировки SMD резисторов. Бонусом к статье добавлен видеоролик и учебное пособие, где рассмотрены все особенности этого вида резисторов.

smd резистор

SMD резисторы.

Маркировка

Следует сразу уточнить что чип резисторы в 0402-ом корпусе не имеют маркировки, резисторы с другими типоразмерами, отличными от 0402-ого маркируются способами описанными ниже. Если у SMD резисторов допуск сопротивления 2%, 5% или 10%, то их маркировка-код состоит из трех цифр: две первые – обозначение мантиссу, а третья – степень для десятичного основания, таким образом получится значение сопротивления резистора в Омах.

маркировка SMD резистора Маркировка SMD резистора.

Иногда к цифровой маркировке резисторов прибавляется латинская буква R – она является как-бы дополнительным множителем и ставится для обозначения десятичной точки. Резисторы SMD с типоразмером 0805 и выше, а также имеют точность 1% обозначаются кодом из четырех цифр: первые три цифры – обозначение мантиссу, а четвертая – степень для десятичного основания, таким образом получится значение сопротивления резистора в Омах. К данному коду также может прибавляться буква R – обозначение десятичной точки.

Пример с четырехзначным кодом: код резистора 4501 – первые три цифры 450 – это мантисса, 1 – степень, в итоге получаем 450*101=4,5 кОм. Кодовая маркировка резисторов SMD с допуском в 1% и типоразмером 0603 обозначаются с помощью таблицы ниже – двумя цифрами и буквой. Цифры обозначают код, по которому из таблицы выбирается значение мантиссу, а буква – множитель с десятичным основанием, таким образом получится значение сопротивления резистора в Омах.

Кодировка резисторов

Расшифровка кодов маркировки SMD-резисторов.

Пример с двухзначным кодом и буквой: код резистора 14R – первые две цифры 14 – это код, смотрим по таблице для кода 14 значение мантиссу равно 137, R – степень равная 10-1, в итоге получаем 137х10-1=13,7 Ом.

маркировка резисторов

Маркировка SMD резисторов.

Размеры и форма SMD-резисторов регламентируются нормативным документом JEDEC, где приводятся рекомендуемые типоразмеры. Обычно на корпусе нанесена маркировка SMD-резисторов, содержащая данные о габаритах резистора. К примеру, цифровой код 0804 предполагает длину, равную 0,08 дюймам, ширину – 0,04 дюйма.

Если перевести такую кодировку в систему СИ, то данный SMD-резистор будет обозначаться как 2010. Из этой маркировки видно, что длина составляет 2,0 мм, а ширина 1,0 мм (1 дюйм равен 2,54 мм).

Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD-резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили чип-резисторы по способу маркировки на три типа:

  • маркировка из трех цифр;
  • маркировка из четырех цифр;
  • маркировка из двух цифр и буквы.

Последний вариант применяется для резисторов повышенной точности с допуском 1% (прецизионных). Очень маленький размер не позволяет размещать на них маркировку с длинными кодами. Для них разработан стандарт EIA-96.

Материал в тему: устройство подстроечного резистора.

маркировка

Обозначения маркировки.

Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква «R» Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом. Расшифровка обозначения чип-резисторов – специфичное занятие. Вычислить необходимую величину можно, пользуясь старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и то же самое можно выполнить при помощи различных сайтов.

Калькулятор SMD-резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчетов. Кроме того, есть специальная программа «Резистор».

Кликнув пару раз мышкой, можно найти нужную информацию. SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска.

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для определения номинала резистора в Омах. При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки.

Например, маркировка 513 означает, что резистор имеет номинал 51×103 Ом = 51 КОм. Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для задания номинала резистора в Омах.

Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750×101 Ом = 7.5 КОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква – показатель степени по основанию 10 для определения номинала резистора в Омах.

Внутренняя структура

Основным несущим элементом резистора является подложка, изготовленная из окиси аллюминия  (Al2O3). Этот материал обладает хорошими диэлектрическими свойствами, но помимо этого имеет очень высокую теплопроводность, что необходимо для отвода тепла, выделяющегося в резистивном слое, в окружающую среду.

внутренняя структура резистора

Внутренняя структура резистора.

Основные (но не все) электрические характеристики резистора определяются резистивным элементом, в качестве которого чаще всего используется пленка металла или окисла, например, чистого хрома или двуокиси рутения, нанесенная на подложку.

SMD резисторы: что это такое и для чего используются?

Состав, технология нанесения на подложку и характер обработки этой пленки являются важнейшими элементами, определяющими характеристики резистора, и чаще всего представляют производственный секрет фирмы производителя.

Некоторые виды – резисторы проволочные – в качестве резистивного материала используют тонкую (до 10 мкм) проволоку из материала с низким температурным коэффициентом сопротивления (например, константана), намотанную на подложку. В последнем случае номинал резистора обычно не превышает 100 Ом.

Для соединения резистивного элемента с проводниками печатной платы служат несколько слоев контактных элементов. Внутренний контактный слой обычно выполнен из серебра или палладия, промежуточный слой представляет собой тонкую пленку никеля, а внешний – свинцово-оловянный припой.

Интересный материал для ознакомления: что такое вариасторы.

Такая сложная контактная конструкция предназначена для обеспечения надежной взаимной адгезии слоев. От качества выполнения контактных элементов резистора зависят такие его характеристики, как надежность и токовые шумы. Последним элементом конструкции SMD резистора является защитный слой, обеспечивающий предохранение всех элементов конструкции резистора от воздействия факторов окружающей среды и в первую очередь от влаги. Этот слой выполняется из стекла или полимерных материалов.

Характеристики

характеристики резисторов Важнейшими характеристиками резисторов являются величина номинального сопротивления, допуск на эту величину и температурный коэффициент изменения сопротивления.

С этими характеристиками тесно связаны допустимая рассеиваемая мощность и тепловое сопротивление между резистором и окружающей средой. Кроме того, в некоторых областях применения резисторов могут оказаться существенными их шумовые характеристики (особенно токовый шум).

Также временная стабильность, предельная величина рабочего напряжения, зависимость сопротивления от приложенного напряжения и частотные параметры резистора (характеристики его эквивалентной схемы на различных частотах).

Рассмотрим важнейшие из этих характеристик с точки зрения применения резисторов в аналоговых и цифроаналоговых электронных устройствах. Таковыми являются величина номинального сопротивления, допуск на эту величину и температурный коэффициент изменения сопротивления. Допуск на величину номинального сопротивления задается в процентах от номинального значения сопротивления. Номинальное значение – это величина сопротивления резистора, измеренная при фиксированных значениях факторов внешних воздействий.

Кривая нагрева и охлаждения при пайкЕ

Кривая нагрева и охлаждения при пайке SMD-резисторов.

Важнейшим среди этих факторов является температура. Обычно номинальное значение сопротивления приводится для температуры +20°С и нормального атмосферного давления. SMD резисторы выпускаются с допусками на номинальное сопротивление в пределах от ±0.05% до ±5%. Разработчикам следует иметь в виду, что самыми распространенными, доступными и дешевыми являются резисторы с допуском на номинальное значение ±5% и ±1%.

Более точные резисторы обычно требуют предварительного заказа и их стоимость возрастает в несколько раз. Температурным коэффициентом сопротивления (ТКС) называется величина, характеризующая обратимое относительное изменение сопротивление резистора при изменении его температуры на 1°С. Следует иметь в виду, что изменение температуры резистора может происходить как из-за изменения температуры окружающей среды, так и из-за его саморазогрева.

Значение ТКС определяется по формуле:

ТКС=DR/(R*DТ)

где  DR – абсолютное значение изменения сопротивления при изменении температуры резистора на величину DТ, R – номинальное значение сопротивления резистора.

SMD резисторы: что это такое и для чего используются?

Величина ТКС измеряется в 1/ °С, однако, чаще всего ее измеряют в единицах ppm (1ppm=10E-6 1/°С). Современные SMD резисторы выпускаются со значением ТКС в пределах от ±5 до ±200 ppm.

Интересно сопоставить влияние на общее отклонение от номинального значения сопротивления резистора его допуска и температурного изменения. Это сопоставление можно выполнить введением такого параметра, как критическая температура Тк, определяемая как изменение температуры резистора, при которой изменение его сопротивления, определяемое величиной ТКС, сравняется с допуском на номинальное сопротивление.

Учитывая малое значение допуска на величину номинального сопротивления резистора, можно с достаточной степенью точности утверждать, что при наихудшем сочетании допусков на резисторы допуск на значение К в два раза больше допуска на номинал резистора.

Это значит, что для применяя в данной схеме SMD резисторы наивысшей точности и без учета влияния нагрева резисторов невозможно достижение точности коэффициента передачи выше ±0.1%! Такой точности явно недостаточно для многих аналоговых устройств. К счастью, в действительности ситуация несколько легче. Дело в том, что в приведенном выражении для коэффициента передачи его точность определяется не абсолютными значениями сопротивлений резисторов R1 и R3, а их отношением.

Если для схемы используются резисторы одной фирмы и одной партии, то значения их ТКС и номинальных значений могут быть значительно ближе, чем паспортные данные на каждый резистор в отдельности. Это позволяет существенно повысить результирующую точность схемы, как при нормальной температуре, так и при ее изменении. Однако, на практике применить предложенный подход к уменьшению погрешности схем не так просто!

SMD резисторы: что это такое и для чего используются?

В рассмотренной выше схеме он хорошо работает только при К=-1, так как для этого требуются одинаковые резисторы, которые могут быть выбраны из одной партии. При других значениях К эта схема не даст требуемой точности, так как для резисторов разных номиналов вероятность расхождения параметров (особенно ТКС) существенно возрастает.

Типоразмеры

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP. Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора.

Типоразмеры SMD резисторов

Типоразмеры SMD резисторов.

Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма. Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54. Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Почитать материал по теме: что такое диодный мост.

Расчет гасящего резистора

В схемах аппаратуры связи часто возникает необходимость подать на потребитель меньшее напряжение, чем дает источник. В этом случае последовательно с основным потребителем включают дополнительное сопротивление, на котором гасится избыток напряжения источника. В видеоролике представлен простой расчет резистора для светодиода.

Такое сопротивление называется гасящим. Напряжение источника тока распределяется по участкам последовательной цепи прямо пропорционально сопротивлениям этих участков. Рассмотрим схему включения гасящего сопротивления:

  1. Полезной нагрузкой в этой цепи является лампочка накаливания, рассчитанная на нормальную работу при величине напряжения Uл= 80 в и тока I =20 ма.
  2. Напряжение на зажимах источника тока U=120 в больше Uл, поэтому если подключить лампочку непосредственно к источнику, то через нее пройдет ток, превышающий нормальный, и она перегорит.
  3. Чтобы этого не случилось, последовательно с лампочкой включено гасящее сопротивление R гас.
Схема гасящего сопротивления

Схема включения гасящего сопротивления резистора.

Расчет величины гасящего сопротивления при заданных значениях тока и напряжения потребителя сводится к следующему:

– определяется величина напряжения, которое должно быть погашено:

Uгас = Uист – Uпотр,

Uгас = 120 – 80 = 40в

определяется величина гасящего сопротивления

Rгас = Uгас / I

Rгас = 40 / 0,020 = 2000ом = 2 ком

Далее необходимо рассчитать мощность, выделяемую на гасящем сопротивлении по формуле

P = I2 * Rгас

P = 0,0202 * 2000 = 0,0004 * 2000 = 0,8вт

Зная величину сопротивления и расходуемую мощность, выбирают тип гасящего сопротивления

Перемычки или резисторы с “нулевым” сопротивлением

Многие компании выпускают в роли плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и резисторы с “нулевым” сопротивлением. Они изготавливаются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в типовом корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких компонентов лежат в диапазоне единиц или десятков миллиом (~ 0.005…0.05 Ом). В цилиндрических корпусах маркировку наносят черным кольцом посередине, в SMD корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировки либо нет, либо наносится цифры “000” (иногда просто “0”).

Как вам статья?Poll Options are limited because JavaScript is disabled in your browser.

Более подробно о работе SMD резистора можно узнать, прочитав Основы работы SMD резистора.  Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.reom.ru

www.lampagid.ru

www.www.texnic.ru

www.www.joyta.ru

www.www.radiant.su

 

electroinfo.net

Типы резисторов

Слово «резистор» произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.

Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах ( Ом ), килоомах ( кОм ) или мегаомах ( МОм ). Номинальные значения сопротивлений указываются на корпусе резисторов, однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.

Постоянные резисторы

Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:

  • I класс – на ± 5 %
  • II класс – на ± 10 %
  • III класс – на ± 20 %

Существует так же так называемые прецизионные резисторы, они выпускаются с допусками:

  • ± 2 %
  • ± 1 %
  • + 0,2 %
  • ± 0,1 %
  • ± 0,5 %
  • ± 0,02 %
  • ± 0,01 %

Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.

Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления ( ТКС ) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С . В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.

Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.

Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:

  • Е (К) – от 1 до 99 Ом
  • К – от 0,1 до 99 кОм
  • М – от 0,1 до 99 МОм

Пример обозначений номинальных сопротивлений резисторов:

  • 27Е27 Ом
  • 4Е74,7 Ом
  • К680680 Ом
  • 1К51,5 кОм
  • 43К43 кОм
  • 2М42,4 МОм
  • 3 МОм

Различают два основных вида резисторов: нерегулируемые ( постоянные ) и регулируемые ( переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭ
  • ПЭВ
  • ПЭВ-Р
  • ПЭВТ

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

Металлизированные резисторы, лакированные эмалью, теплостойкие:

  • МЛТ
  • ОМЛТ
  • МТ
  • МТЕ

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R, после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.

Обозначение постоянного резистора

Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.

Сопротивление резистора ориентировочное

 

 

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка *.

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.

Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.

Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • А – линейная зависимость
  • Б – логарифмическая
  • В – показательная зависимость

Регулируемый резистор с двумя дополнительными отводами

Сдвоенный переменный резистор

Двойной переменный резистор

Регулируемый резистор с выключателем

Подстроечные резисторы

Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.

Подстроечные резисторы

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов положительный.

Терморезисторы (термисторы)

Условное графическое обозначение варисторов

 

 

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы СН (сопротивление нелинейное) и цифры.

Первая из цифр обозначает материал

  • 1 – карбид кремния
  • 2 – селен

Вторая цифра – конструкцию

  • 1,8 – стержневая
  • 2, 10 – дисковая
  • 3 – микромодульная

Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах, например – СН-1-2-1-100.

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Фоторезисторы

Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.

Условное графическое обозначение фоторезисторов

 

Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.

Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление), за ними следует буква, обозначающая материал светочувствительного элемента:

  • А – сернистый свинец
  • К – сернистый кадмий
  • Д – селенистый кадмий

Затем идет цифра, указывающая на вид конструкции, например: ФСК-1.

В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1.

selectelement.ru

Маркировка резисторов

РезисторыРезистор (англ. resistor, от лат. resisto — сопротивляюсь), — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома: мгновенное значение напряжения на резисторе пропорционально току проходящему через него. На практике же резисторы в той или иной степени обладают также паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

 

 

 

 

Обозначение резисторов на схемах 
В России условные графические обозначения резисторов на схемах должны соответствовать ГОСТ 2.728-74. В соответствии с ним, постоянные резисторы обозначаются следующими образом:

Маркировка резисторов с проволочными выводами
Резисторы, в особенности малой мощности — чрезвычайно мелкие детали, резистор мощностью 0,125Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Прочитать на такой детали номинал с десятичной запятой невозможно. Поэтому, при указании номинала вместо десятичной точки пишут букву, соответствующую единицам измерения (К — для килоомов, М — для мегаомов, E или R для единиц Ом). Например 4K7 обозначает резистор, сопротивлением 4,7 кОм, 1R0 — 1 Ом, 120К — 120 кОм и т. д. Однако и в таком виде читать номиналы трудно. Поэтому, для особо мелких резисторов применяют маркировку цветными полосками.

Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на двузначное число, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая — десятичный множитель, пятая — точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы).

Следует отметить, что иногда встречаются резисторы с 5-ю полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья — множитель, четвёртая — точность, а пятая — температурный коэффициент.

Цвет Как
число
Как десятичный 
множитель
Как точность
в %
Как ТКС
в ppm/°C
Как %
отказов
серебристый   - 1·10-2 = 0,01 10 - -
золотой   - 1·10-1 = 0,1 5 - -
чёрный   0 1·100 = 1 - - -
коричневый   1 1·101 = 10 1 100 1%
красный   2 1·102 = 100 2 50 0,1%
оранжевый   3 1·103 = 1000 - 15 0,01%
жёлтый   4 1·104 = 10 000 - 25 0,001%
зелёный   5 1·105 = 100 000 0,5 - -
синий   6 1·106 = 1 000 000 0,25 10 -
фиолетовый   7 1·107 = 10 000 000 0,1 5 -
серый   8 1·108 = 100 000 000 - - -
белый   9 1·109 = 1 000 000 000 - 1 -
отсутствует - - 20% - -

Пример 
Допустим на резисторе видим 4 полоски коричневую, чёрную, красную, золотую. Первые две полоски дают 1 0, третья 100, четвёртая даёт точность 5 %, итого резистор сопротивлением 10·100 Ом = 1 кОм, с точностью ±5 %. 

Запомнить цветную кодировку резисторов нетрудно: после чёрной 0 и коричневой 1 идёт последовательность цветов радуги. Так как маркировка была придумана в англоязычных странах, голубой и синий цвета не различаются.

Поскольку резистор симметричная деталь, может возникнуть вопрос: «Начиная с какой стороны читать полоски?» Для четырёхполосной маркировки обычных резисторов с точностью 5 и 10 % вопрос решается просто: золотая или серебряная полоска всегда стоит в конце. Для трёхполосочного кода первая полоска стоит ближе к краю резистора, чем последняя. Для других вариантов важно, чтобы получалось значение сопротивления из номинального ряда, если не получается, нужно читать наоборот. (Для резисторов МЛТ-0,125 производства СССР с 4-мя полосками, первой является полоска, нанесённая ближе к краю; обычно она находится на металлическом стаканчике вывода, а остальные три — на более узком керамическом теле резистора).

Особый случай использования цветовой маркировки резисторов — перемычки нулевого сопротивления. Они обозначаются одной чёрной (0) полоской по центру. (Использование таких резисторо-подобных перемычек вместо дешёвых кусков проволоки объясняется желанием производителей сократить расходы на перенастройку сборочных автоматов).

radiodetali.com

SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов  – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо  две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 100 равно 45 Ом
  • 273 = 27 х 103 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 102 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 103 равно 173000 Ом (173 кОм)

 

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

Маркировка EIA-96

SMD резисторы повышенной точности (прецизионные)  в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

www.joyta.ru

Что такое резистор | Виды резисторов, соединение резисторов

Что такое резистор

Резистор – это самый распространенный радиоэлемент во всей радиоэлектронной промышленности. Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор. Резистор имеет важное свойство – он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.

Постоянные резисторы

Постоянное резисторы выглядят примерно вот так:

резисторы

Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа –  маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.

Вот так выглядит  постоянный резистор на электрических схемах:

Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят – буржуйский, используется в иностранных радиосхемах.

Вот так маркируются мощности на советских резисторах:

резисторы по мощностям

Далее мощность маркируется с помощью римских цифр. V – 5 Ватт, X – 10 Ватт, L  -50 Ватт и тд.

Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:

20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками

Что такое резистор

1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом

Что такое резистор

2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры;  SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор  в DIP корпусе

Что такое резистор

 

 

 

 

Переменные резисторы

Переменные резисторы выглядят так:

перменные резисторы

На схемах обозначаются так:

Соответственно отечественный и зарубежный вариант.

А вот  и их цоколевка (расположение выводов):

потенциометры

Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой  тока – реостатом. Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора. В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.

потенциометр и реостат

Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):

подстроечные резисторы

А вот  так  обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.

Что такое резистор

Термисторы

Термисторы – это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС – тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.

Этот коэффициент может быть как отрицательный, так и положительный.  Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором.  У термисторов  при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды  растет и сопротивление.

термисторы

Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.

Варисторы

Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения –  это варисторы. 

варисторы

Это свойство варисторов широко используют от защиты перенапряжений в цепи, а  также от импульсных скачков напряжения. Допустим  у нас “скакануло” напряжение. Все это дело “чухнул” варистор и сразу же резко изменил сопротивление в меньшую сторону. Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства. При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо

сгоревший варистор

На схемах варисторы обозначаются вот таким образом:

Фоторезисторы

Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.

фоторезисторы

На схемах они обозначаются вот таким образом:

Тензорезисторы

Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.

тензорезисторы

На схемах тензорезистор выглядит вот так:

обозначение тензорезистора на схеме

Вот анимация работы тензорезистора, позаимствованная с Википедии.

тензорезистор анимация

Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.

Последовательное и параллельное соединение резисторов

Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.

В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:

формула параллельное соединение резисторов

При последовательном соединении номиналы резисторов просто тупо суммируются

В этом случае

последовательное соединение резисторов

Резюме

Резистор – это радиокомпонент электронной промышленности, который используется абсолютно во всей радиоэлектронной аппаратуре. Он используется для создания делителей тока,  делителя напряжения, в качестве шунта и, конечно же, для ограничения силы тока.

Резистор обладает активным сопротивлением, в отличие от катушки индуктивности и конденсатора.

По конструктивному исполнению резисторы делятся на два класса: переменные и постоянные.

Существуют также подвиды резисторов – это фоторезисторы, термисторы, варисторы, тензорезисторы  и другие специфические редко используемые подвиды резисторов.

www.ruselectronic.com

Отправить ответ

avatar
  Подписаться  
Уведомление о