Магнитные пускатели: Пускатели магнитные — купить электромагнитный пускатель для двигателя по низкой цене – интернет-магазин ВсеИнструменты.ру

Содержание

цены от 2 530 рублей, отзывы, производители, поиск и каталог моделей

По популярностиПо отзывамПо возрастанию ценыПо убыванию ценыПо рейтингу  Фильтры

  • on, off
  • up, down
  • up, down, east, west
  • up, down, east, west, south, north
  • нет
  • плюс, минус
  • плюс, минус, пуск/стоп
  • пуск, стоп
  • пуск, стоп, реверс

Подобрано товаров:

Сбросить Показать

Полезная информация:

Магнитные пускатели 63а в Самаре

Поможем в выборе магнитных пускателей 63а в Самаре. На нашем сайте представлен широкий ассортимент моделей, даны основные характеристики и подробные описания. Также есть отзывы пользователей, которые помогут составить полное мнение о товаре. А если вам нужна консультация, позвоните или закажите звонок с сайта. Менеджер поможет определиться с выбором и оформит заказ на магнитные пускатели 63а . Вы получите товар в кратчайшие сроки!

Ваш город
Самара

Выбрать город Другой город Абакан Алдан Александров Алексин Анапа Ангарск Апрелевка Армавир Архангельск Асбест Астрахань Балабаново Балаково Балашиха Балашов Барнаул Батайск Бежецк Белгород Белореченск Бердск Березники Березовский Бийск Благовещенск Бор Борисоглебск Братск Бронницы Брянск Брёхово Бугульма Бугуруслан Бузулук Великие Луки Великий Новгород Верхняя Пышма Видное Владикавказ Владимир Волгоград Волгодонск Волжский Вологда Волоколамск Воронеж Воскресенск Воткинск Выборг Вышний Волочек Вязники Вязьма Геленджик Глазов Голицыно Горячий Ключ Грозный Гусь-Хрустальный Дедовск Дзержинск Димитровград Дмитров Долгопрудный Домодедово Донской Дубна Егорьевск Екатеринбург Елабуга Елец Ессентуки Железногорск Жигулевск Жуковский Звенигород Зеленоград Зеленодольск Златоуст Иваново Ивантеевка Ижевск Иркутск Истра Йошкар-Ола Казань Калуга Каменка Пензенская обл. Каменск-Уральский Каменск-Шахтинский Камышин Касимов Кашира Кемерово Кимры Кингисепп Кинешма Киржач Кириши Киров Кирово-Чепецк Кировск Клин Клинцы Ковров Коломна Кольчугино Конаково Копейск Королев Костомукша Кострома Котельники Красково Красногорск Краснодар Красноярск Кропоткин Крымск Кстово Кузнецк Курган Курск Кыштым Лабинск Липецк Лиски Лобня Луховицы Лыткарино Люберцы Магнитогорск Майкоп Малоярославец Махачкала Миасс Минеральные Воды Михайловск Мичуринск Можайск Москва Московский Мурманск Муром Мытищи Набережные Челны Нальчик Наро-Фоминск Нахабино Невинномысск Нефтекамск Нижнекамск Нижний Новгород Нижний Тагил Новая Адыгея Новокузнецк Новокуйбышевск Новомосковск Новороссийск Новосибирск Новочебоксарск Новочеркасск Ногинск Обнинск Обь Одинцово Озерск Октябрьский Омск Оренбург Орехово-Зуево Орск Орёл Остров Пенза Первоуральск Переславль-Залесский Пермь Петрозаводск Петушки Печора Подольск Покров Прокопьевск Протвино Псков Пушкино Пятигорск Раменское Реутов Ржев Россошь Ростов-на-Дону Рыбинск Рязань Салават Салехард Самара Санкт-Петербург Саранск Сарапул Саратов Саров Сасово Северодвинск Семикаракорск Сергиев Посад Серов Серпухов Славянск-на-Кубани Смоленск Солнечногорск Сортавала Сочи Ставрополь Старая Купавна Старый Оскол Стерлитамак Ступино Сургут Сходня Сызрань Таганрог Тамбов Тверь Темрюк Тимашевск Тольятти Томск Троицк Московская обл. Туапсе Тула Тюмень Ульяновск Усть-Лабинск Уфа Ухта Фрязино Химки Чайковский Чебоксары Челябинск Череповец Черкесск Чехов Шатура Шахты Шуя Щекино Щелково Щербинка Электросталь Элиста Энгельс Юрьев-Польский Ярославль Ярцево Продолжить

Контакторы и магнитные пускатели: сходства, различия

Контакторы и магнитные пускатели — электротехнические приспособления, являющиеся немаловажными составляющими электрических сетей. Они предназначаются для связи между цепями силового типа и для цепей управления. Зачастую, специалисты по наладке оборудования, не всегда могут дать обоснованный ответ, чем отличается контактор от магнитного пускателя. Оба выполняют перечень схожих назначений, но все же различия между ними существуют, так как, каждый из них, обладает своеобразными функциями и особенностями.

Контакторы

Контактор — двухпозиционное устройство электромагнитного принципа, выполняющее дистанционное воздействие на включение и выключение электрических силовых цепей, в условиях обычного режима работы.

Принцип работы

Контакторы состоят из проводных катушек, в которых расположены сердечники, присоединенные к контактам замыкания (размыкания). Контакты замыкают (размыкают) цепь, которая пропускает ток. Медный (стальной) каркас упрочняет катушку и создает условия для охлаждения элементов.

Принцип работы контакторов заложен в двух действиях противоположного характера. На катушку поступает напряжение, вследствие чего, создается магнитный импульс, и подвижная часть сердечника начинает движение в сторону неподвижной части, и замыкает цепь, благодаря чему, в цепи появляется ток и включается электрооборудование. Когда подача энергии прекращается, сердечник, при помощи пружинной системы, возвращается в разомкнутое положение, что приводит к размыканию цепи и отключению оборудования.

Включаются и выключаются контакторы благодаря двум кнопкам «Пуск» и «Стоп» на панели кнопочного устройства. Замыкание контактов кнопки «Пуск» запускает процесс, описанный чуть выше, который приводит к замыканию силовых контактов и те остаются в замкнутом положении, даже после возврата кнопки в исходное положение. Такой эффект достигается, благодаря наличию, вспомогательных блок-контактов.

Системные цепи, имеют принципиальные отличия. Питание, поступающее на катушку, приходит с цепи управление, где ток не превышает 230 В. А цепь, которую замыкают контакты, называется силовой, так как она проводит ток, с силой, превышающей силу тока в цепи управления.

Область применения

Данные устройства, коммутируют цепи реактивной мощности и применяются в управлении электрическими двигателями, имеющими высокую мощность, а так же, в области инфраструктуры электрического транспорта.

Магнитные пускатели

Магнитный пускатель — низковольтный аппарат комбинированного типа и электромагнитного принципа, который производит запуск электродвигателей, обеспечивает их непрерывное вращение, отключает от электропитания, защищает, выполняет реверсивные функции.

Принцип работы

Данный прибор, состоит из основной части, для стационарного крепления, катушки, якоря, который передвигается по направляющим механизма, пружинного механизма, стационарных и подвижных контактов и корпуса. Самые простые пускатели, предстают в виде коробки, оборудованной кнопкой и клеммами, для присоединения к силовым цепям и стационарным контактам.

Принцип действия, заключается в том, что, когда ток попадает на катушку пускателя, он срабатывает по принципу электромагнита. Под воздействием магнитного поля, якорь притягивается к сердечнику, вследствие чего происходит замыкание контактного мостика, и запускается электрооборудование. Нижнее положение якоря, влияет на работу всего прибора. В данном положении, должно быть надежное сцепление контактов, так как данная составляющая играет роль прочного соединения входных и выходных электрических проводов, в момент срабатывания схемы.

Отсутствие тока, влечет за собой, исчезновение магнитного поля вокруг катушки. Это приводит к отбрасыванию якоря вверх за счет энергии пружин, контактный мостик, находящийся на подвижной части, обеспечивает разрыв силовой цепи, что приводит к отключению питания и оборудования. В данной системе, тоже есть наличие, вспомогательных блок-контактов.

Исправность магнитных пускателей, можно проверять вручную. Если устройство исправно, то, при нажатии на якорь, должно ощущаться сопротивление от сжатия пружин. Такое ручное управление допустимо только для проверок и не применяется во время рабочего процесса.

Область применения

Основная сфера использования магнитных пускателей — запуск, остановка и реверс электрических двигателей асинхронного типа. А, так как эти устройства достаточно неприхотливы и защищены от воздействия окружающей среды, то их устанавливают для дистанционного управления осветительным оборудованием, компрессорными установками, насосами, кранами, электропечами, конвейерами, кондиционерами.

Отличия контакторов от магнитных пускателей

Габариты, конструктивные особенности и защищенность

В состав контактора входит пара силовых контактов и объемные камеры для дугового гашения, что делает это устройство достаточно тяжелым и большим. По этим причинам, он не оборудуется корпусом, что делает его опасным для посторонних лиц и незащищенным от влаги. Поэтому, они монтируются в специальных местах, коими являются специализированные щиты или электрические шкафы. Имеют от 1 до 5 полюсов.

Магнитный пускатель, в отличие от контактора, имеет пластиковый корпус и трех — парные силовые провода, не имеет камер для дугового гашения. Корпус делает его безопасным и защищенным от влаги и позволяет использовать пускатели, даже под открытым небом, но отсутствие камер защиты от дуговых зарядов, не позволяет его использование в цепях с высокими мощностями и множественными коммутациями.

Производственный фактор

Важно знать, что слаботочные контакторы не выпускаются, а значит в слаботочных цепях, возможно, устанавливать только магнитные пускатели. Именно это обстоятельство, позволяет пускателям держаться на плаву в рыночном сегменте данной сферы.

Назначение устройств

Несмотря на то, что пускатели отлично подходят для большинства электрических приборов, основным его назначением, являются трехфазные двигатели переменного тока. Пускатель выполняет функцию их запуска и отключения, а также предотвращает непроизвольный пуск. В принципе, пускатель обладает достаточно узконаправленной значимостью. Используются в сетях с напряжением до 380 В.

Контактор, в свою очередь, коммутирует, абсолютно все виды электрических цепей и применяется в конструкции сложносоставных схем, что делает его, практически универсальным. Мощные электродвигатели, цепи компенсации реактивной мощности и иные области электротехники, где присутствуют частые запуски и большие нагрузки, вот основные сферы применения контакторов. Используются в сетях с напряжением до 660 В.

Необходимые действия при эксплуатации контакторов и магнитных пускателей

  1. Перед установкой приборов, необходимо убрать смазку с рабочих поверхностей и проверить состояние, каждого электрического соединения и проверить, правильность регулировки устройств.
  2. Необходимо регулярно проверять состояние контактной группы, периодически осматривая после 50 000 срабатываний или после каждого отключения тока в аварийном режиме.
  3. Выполняя зачистку поверхности контактов, главное сохранять их первоначальную форму.
  4. Проверять расположение разрывных контактов, относительно друг друга. В помощь будет копировальная бумага.
  5. У контакторов, с несколькими полюсами, проверяется одновременное замыкание контактов всех полюсов.
  6. Необходимо проводить проверку на исправность механической блокировки.
  7. Постоянно проверять зазор между контактами. Заменяются они, когда первоначальная толщина уменьшается на 50%, а у контактов с накладками на 80%.

Заново установленные контакты, должны соприкасаться по линии, длина которой по сумме, ровняется 75% и более, ширине подвижного контакта. Допускается контактное смещение, не более 1 мм по ширине.

Основные поломки контакторов и магнитных пускателей, и их причины

Выход из строя управляющей катушки

Причины:

  • было подано напряжение, от электрической сети, не соответствующее рекомендациям. То есть, была установлена катушка под напряжение 220 вольт, а напряжение подсоединяемой сети, составляло 380 вольт;
  • подача тока на катушку, у контактов которой, образовалась перемычка. Итог — короткое замыкание и сгоревшие контакты катушки;
  • межвитковое замыкание, вследствие естественного старения изоляции на медной обмотке катушки;
  • превышенные рабочие температуры.

Сгорание главных контактов

Причины:

  • неправильный расчёт параметров нагрузки на пускатель.
  • подключение устройства, с двумя силовыми и одним дополнительным контактом, к трёхфазной нагрузке. Дополнительный контакт не рассчитан на номинальную силу тока выше 10 А, вследствие чего, происходит сгорание более слабого звена;
  • низкое напряжение на катушке, вследствие чего, возникает недостаток мощности вырабатываемой силы, необходимой для сцепления главных контактов. Причина такого недостатка, кроется в разной жесткости возвратных пружин, когда возникает дребезг и уменьшается постоянство и площадь сцепления контактов.
  • в процессе длительного срока работы, по причине воздействия, создаваемого вибрацией, ослабевает крепление проводников с контактными выводами. Уменьшение площади смыкания контактов, влечет за собой местный перегрев, что выводит контакты из строя.

Видео по теме

Пускатели серии ПМЕ, ПМА — Промтех-электро. Лампы, светодиодные светильники Navigator, автоматы IEK, ABB

предназначены для применения в стационарных установках для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором переменного напряжения 660 В частоты 50 и 60 Гц.

При наличии трехполюсных тепловых реле серий РТТ и РТЛ пускатели ПМЕ осуществляют защиту управляемых электродвигателей от перегрузок недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз.

Пускатели ПМЕ применяются для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки помехоподавляющим устройством или при тиристорном управлении.

 

Расшифровка обозначений

ПМЕ XXX

  • ПМЕ — обозначение серии магнитного пускателя
  • X — исполнение пускателя по номинальному току
  • X — степень защиты
  • X — назначение и наличие теплового реле: 
    • 1 — нереверсивный без теплового реле; 
    • 2 — нереверсивный с тепловым реле; 
    • 3 — реверсивный без теплового реле; 
    • 4 — реверсивный с тепловым реле

 

Каталог пускателей ПМА

Каталог пускателей ПМЕ

 

 

Пускатель ПМА   предназначены для остановки, пуска, реверсирования  трехфазных асинхронных низковольтных электродвигателей переменного тока.

Основные характеристики и особенности пускателей ПМА.

  • Номинальный ток главных контактов 40А.
  • Номинальное напряжение корпуса 660В, номинальное напряжение главной цепи 380В.
  • Возможно реверсивное и нереверсивное исполнение пускателей ПМА.
  • Комплектуются тепловыми реле для защиты электродвигателей от токов перегрузки, обрывы и перекоса фаз.
  • Пускатели ПМА в безкорпусном исполнении могут комплектовать реле РТТ 21ХХ на токи 10: 12,5: 16: 20: 25: 32: 40А
  • Пускатели в корпусе (степень защиты IP0) могут комплектоваться реле РТТ 141 (4-34А)
  • ПМА со степенью защиты IP 00 имеют климатическое исполнение и категорию размещения УХЛ4, со степенью защиты IP40 УХЛ3.

В зависимости от количества серебра на контактных площадках главных контактов, пускатели ПМА имеют класс износостойкости А,Б,В. По умолчанию поставляются с классом износостойкости В (0,3 млн. циклов срабатывания при режиме работы АС3).

Условия монтажа и размещения пускателей ПМА.

Монтаж производится на вертикальную поверхность при помощи монтажных винтов, с наклоном не более 15 градусов. Высота над уровнем моря не более 2000 метров (при размещении на высоте от 2000 метров до 4300 метров номинальный ток пускателя снижается на 10%).
Пускатели ПМА  устанавливаются в помещения с невзрывоопасной средой, в которой отсутствуют агрессивные газы, в концентрациях, которые могут привести к разрушению конструкции.

 

Особенности конструкции.

В зависимости от величин, пускатели имеют разную конструкцию. К примеру, контакторы пускателей 3-й величины имеют прямоходовую Ш-образную магнитную систему. Данная система состоит из якоря и сердечника, которые убраны в пластмассовый корпус.  У контакторов пускателей 4-й,5-й,6-й величин иная магнитная система – прямоходовая магнитная система  П-образного вида. Если вместе с пускателем используют тепловое реле, то его крепят к пускателю при помощи специального угольника.

 

Расшифровка

  • ПМА обозначение серии
  • 3 — обозначение номинального тока 40А
  • Обозначение пускатели по наличию тепловго реле и исполнению по реверсированию:
    • 1 пускатель без реле нереверсинвого типа
    • 2 нереверсивного типа с тепловым реле
    • 3 без теплового реле, реверсивного типа
    • 4 с тепловым реле реверсивного типа
  • Обозначение по степени защиты (наличие защитного корпуса)
    • 0 IP 00 без защитной оболочки
    • 1 IP 40 c в защитнйо оболочке
  • Обозначение по номинальному напряжению магнитной катушки
  • Обозначение по климатическому исполнению и категории размещения

 

 Габаритные и установочные размеры

ПМЕ

Рисунок 1. Пускатель серии ПМЕ нереверсивный с реле

Рисунок 2. Пускатель серии ПМЕ реверсивный с реле


Рисунок 3. Пускатель серии ПМЕ в защитном корпусе


Тип пускателя

Рисунок

L, мм

H, мм

B1, мм

B2, мм

A1, мм

A2, мм

ПМЕ-211 УХЛ4 В

1

89

116

93

75

75

ПМЕ-212 УХЛ4 В

170

ПМЕ-213 УХЛ4 В

2

200

130

130

170

100

ПМЕ-214 УХЛ4 В

170

ПМЕ-221 У3 В

3

150

154

222

100

150

ПМЕ-222 У3 В

Товары в категории

Пускатель магнитный 25А ~ 36В рев 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-214)

Пускатель магнитный 10А ~220В 2НО+1НЗ ПМА КЗЭА (ПМА-0107)

Пускатель магнитный 25А ~ 36В 2НО+2НЗ ПМЕ КЗЭА (ПМЕ-211)

Пускатель магнитный 10А ~380В IP40 2НО+1НЗ ПМА КЗЭА (ПМА-0217)

Пускатель магнитный 25А ~ 36В IP40 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-222)

Пускатель магнитный 25А ~110В 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-212)

Пускатель магнитный 25А ~110В 2НО+2НЗ ПМЕ КЗЭА (ПМЕ-211)

Пускатель магнитный 25А ~127В IP40 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-222)

Пускатель магнитный 25А ~220В 2НО+2НЗ ПМЕ КЗЭА (ПМЕ-211)

Пускатель магнитный 25А ~220В 1НО ПМЕ КЗЭА (ПМЕ-211)

Пускатель магнитный 25А ~220В 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-212)

Пускатель магнитный 25А ~220В IP40 1НО РТТ-141 25А ПМЕ КЗЭА (ПМЕ-222)

Пускатель магнитный 25А ~220В рев 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-214)

Пускатель магнитный 25А ~220В IP40 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-222)

Пускатель магнитный 25А ~220В 1НО РТТ-141 25А ПМЕ КЗЭА (ПМЕ-212)

Пускатель магнитный 25А ~220В IP40 2НО+2НЗ ПМЕ КЗЭА (ПМЕ-221)

Пускатель магнитный 25А ~380В 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-212)

Пускатель магнитный 25А ~380В рев 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-214)

Пускатель магнитный 25А ~380В IP40 2НО+2НЗ РТТ-141 25А ПМЕ КЗЭА (ПМЕ-222)

Пускатель магнитный 25А ~380В 2НО+2НЗ ПМЕ КЗЭА (ПМЕ-211)

Пускатель магнитный 25А ~380В рев 2НО+2НЗ ПМЕ КЗЭА (ПМЕ-213)

Пускатель магнитный 10А ~380В IP40 2НО+1НЗ ПМА КЗЭА (ПМА-0117)

Пускатель магнитный 10А ~380В 2НО+1НЗ ПМА КЗЭА (ПМА-0207)

Пускатель магнитный 10А ~380В IP40 3НО+2НЗ ПМА КЗЭА (ПМА-0211)

Пускатель магнитный 40А ~110В 2НО+2НЗ ПМА КЗЭА (ПМА-3100)

Пускатель магнитный 40А ~220В 2НО+2НЗ ПМА КЗЭА (ПМА-3100)

Пускатель магнитный 40А ~220В IP40 2НО+2НЗ ПМА КЗЭА (ПМА-3110)

Пускатель магнитный 40А ~220В IP40 2НО+2НЗ РТТ-141 34А ПМА КЗЭА (ПМА-3210)

Пускатель магнитный 40А ~220В рев 2НО+2НЗ ПМА КЗЭА (ПМА-3300)

Пускатель магнитный 40А ~220В 2НО+2НЗ РТТ-211 40А ПМА КЗЭА (ПМА-3200)

Пускатель магнитный 40А ~380В 2НО+2НЗ ПМА КЗЭА (ПМА-3100)

Пускатель магнитный 40А ~380В 2НО+2НЗ РТТ-141 34А ПМА КЗЭА (ПМА-3200)

Пускатель магнитный 63А ~ 36В IP40 2НО+2НЗ ПМА ЗЭТА (ПМА-4110)

ПМЕ-212, 25А, 220В, IP00

ПМЕ-212, 25А, 380В, IP00

ПМЕ-213, 25А, 220В, IP00

ПМЕ-213, 25А, 380В, IP00

ПМЕ-214, 25А, 220В, IP00

ПМЕ-214, 25А, 380В, IP00

ПМЕ-221, 25А, 220В, IP30

ПМЕ-221, 25А, 380В, IP30

ПМЕ-222, 25А, 220В, IP30

ПМЕ-222, 25А, 380В, IP30

ПМА-3100, 40А, 220В, IP00

ПМА-3100, 40А, 380В, IP00

ПМА-3110, 40А, 220В, IP40

ПМА-3110, 40А, 380В, IP40

ПМА-3200, 40А, 220В, IP00

ПМА-3200, 40А, 380В, IP00

ПМА-3210, 40А, 220В, IP40

ПМА-3210, 40А, 380В, IP40

ПМА-3300, 40А, 220В, IP00

ПМА-3300, 40А, 380В, IP00

ПМА-3400, 40А, 220В, IP00

ПМА-3400, 40А, 380В, IP00

ПМА-4100, 63А, 110В, IP00

ПМА-4100, 63А, 220В, IP00

ПМА-4100, 63А, 380В, IP00

ПМА-4110, 63А, 220В, IP40

ПМА-4110, 63А, 380В, IP40

ПМА-4120, 63А, 220В, IP54

ПМА-4120, 63А, 380В, IP54

ПМА-4130, 63А, 220В, IP40

ПМА-4130, 63А, 380В, IP40

ПМА-4140, 63А, 220В, IP54

ПМА-4140, 63А, 380В, IP54

ПМА-4200, 63А, 220В, IP00

ПМА-4200, 63А, 380В, IP00

ПМА-4210, 63А, 220В, IP40

ПМА-4210, 63А, 380В, IP40

ПМА-4220, 63А, 220В, IP54

ПМА-4220, 63А, 380В, IP54

ПМА-4230, 63А, 220В, IP40

ПМА-4230, 63А, 380В, IP40

ПМА-4240, 63А, 220В, IP54

ПМА-4240, 63А, 380В, IP54

Кронштейн оси подв. контактов КТ-5000, 100А, (левый/правый)

Механическая блокировка для КТ-5000

КТП-6013Б, 100А, 110В, 2з+2р, 3 полюса

КТП-6013Б, 100А, 220В, 2з+2р, 3 полюса

КТП-6023Б, 160А, 110В, 2з+2р, 3 полюса

КТП-6023Б, 160А, 220В, 2з+2р, 3 полюса

КТП-6033Б, 250А, 110В, 2з+2р, 3 полюса

КТП-6033Б, 250А, 220В, 2з+2р, 3 полюса

КТП-6043Б, 400А, 110В, 2з+2р, 3 полюса

КТП-6043Б, 400А, 220В, 2з+2р, 3 полюса

КТП-6053Б, 630А, 110В, 2з+2р, 3 полюса

КТП-6053Б, 630А, 220В, 2з+2р, 3 полюса

Контакторы и магнитные пускатели | Электрические аппараты

Страница 8 из 18

11 ЭЛЕКТРОМЕХАНИЧЕСКИЕ КОММУТАЦИОННЫЕ АППАРАТЫ

КОНТАКТОРЫ И МАГНИТНЫЕ ПУСКАТЕЛИ

Контактор – это двухпозиционный аппарат с самовозвратом, предназначенный для частых коммутаций токов, не превышающих токи перегрузки, и приводимый в действие приводом. Этот аппарат имеет два коммутационных положения, соответствующие включенному и отключенному его состояниям. В контакторах наиболее широко применяется электромагнитный привод. Возврат контактора в отключенное состояние (самовозврат) происходит под действием возвратной пружины, массы подвижной системы или при совместном действии этих факторов.

Пускатель – это коммутационный аппарат, предназначенный для пуска, остановки и защиты электродвигателей без выведения и введения в их цепи сопротивлений резисторов. Пускатели осуществляют защиту электродвигателей от токов перегрузки. Распространенным элементом такой защиты является тепловое реле, встраиваемое в пускатель.
Токи перегрузки для контакторов и пускателей не превышают (8-20)-кратных перегрузок по отношению к номинальному току. Для режима пуска двигателей с фазовым ротором и торможения противотоком характерны (2.5-4)-кратные токи перегрузки. Пусковые токи электродвигателей с короткозамкнутым ротором достигают (6-10)-кратных перегрузок по сравнению с номинальным током.
Электромагнитный привод контакторов и пускателей при соответствующем выборе параметров может осуществлять функции защиты электрооборудования от понижения напряжения. Если электромагнитная сила, развиваемая приводом, при снижении напряжения в сети окажется недостаточной для удержания аппарата во включенном состоянии, то он самопроизвольно отключится и осуществит таким образом защиту от понижения напряжения. Как известно, понижение напряжения в питающей сети вызывает протекание токов перегрузки по обмоткам электродвигателей, если механическая нагрузка на них будет оставаться неизменной.
Контакторы предназначены для коммутации силовых цепей электродвигателей и других мощных потребителей. В зависимости от рода коммутируемого тока главной цепи различают контакторы постоянного и переменного тока. Они имеют главные контакты, снабженные системой дугогашения, электромагнитный привод и вспомогательные контакты.Как правило, род тока в цепи управления, которая питает электромагнитный привод, совпадает с родом тока главной цепи. Однако известны случаи, когда катушки контакторов переменного тока получают питание от цепи постоянного тока.

Рисунок 1 — Конструктивная схема контактора
На рис. 1 изображена конструктивная схема контактора, отключающего цепь двигателя. В этом случае напряжение на катушке 12 отсутствует и его подвижная система под действием возвратной пружины 10, создающей силу Fв, придет в нормальное состояние.Возникающая при расхождении главных контактов дуга Д гасится в дугогасительной камере 5.
Быстрое перемещение дуги с контактов в камеру обеспечивается системой магнитного дутья. В цепь главного тока включена последовательная катушка 1, которая размещена на стальном сердечнике 2. Стальные пластины – полюса 3, расположенные по бокам сердечника 2, подводят создаваемое катушкой 1 магнитное поле к зоне горения дуги в камере. Взаимодействие этого поля с током дуги приводит к появлению сил, которые перемещают дугу в камеру.
Контактор включит цепь с током I0, если подать напряжение U на катушку 12 приводного электромагнита. Поток Ф, созданный током, протекающим через катушку электромагнита, разовьет тяговую силу и притянет якорь 9 электромагнита к сердечнику, преодолев силы противодействия возвратной 10 и Fk контактной 8 пружин.
Сердечник электромагнита оканчивается полюсным наконечником 11, поперечное сечение которого больше поперечного сечения самого сердечника. Установкой полюсного наконечника достигается некоторое увеличение силы, создаваемой электромагнитом, а также видоизменение тяговой характеристики электромагнита (зависимости электромагнитной силы от величины воздушного зазора).
Соприкосновение контактов 4 и 6 друг с другом и замыкание цепи при включении контактора произойдет раньше, чем якорь электромагнита полностью притянется к полюсу. По мере движения якоря подвижный контакт 6 будет как бы «проваливаться», упираясь своей верхней частью в неподвижный контакт 4. Он повернется на некоторый угол вокруг точки А и вызовет дополнительное сжатие контактной пружины 8. Появится провал контактов, под которым подразумевается величина смещения подвижного контакта на уровне точки его касания с неподвижным контактом в случае, если неподвижный будет удален.
Провал контактов обеспечивает надежное замыкание цепи, когда толщина контактов уменьшается вследствие выгорания их материала под. действием электрической дуги. Величина провала определяет запас материала контактов на износ в процессе работы контактора.
После соприкосновения, контактов происходит перекатывание подвижного контакта по неподвижному. Контактная пружина создает определенное нажатие в контактах, поэтому при перекатывании происходит разрушение окисных пленок и других химических соединений, которые могут появиться на поверхности контактов. Точки касания контактов при перекатывании переходят на новые места контактной поверхности, не подвергавшиеся воздействию дуги и являющиеся поэтому более «чистыми». Все это уменьшает переходное сопротивление контактов и улучшает условия их работы. В то же время перекатывание повышает механический износ контактов (контакты изнашиваются).
В момент соприкосновения подвижный контакт 6 сразу же оказывает на неподвижный контакт 4 давление, обусловленное предварительным натяжением контактной пружины 8. Вследствие этого переходное сопротивление контактов в момент их касания будет небольшим и контактная площадка не разогреется при включении до значительной температуры. Кроме того, предварительное контактное нажатие, созданное пружиной 8, позволяет снизить вибрацию (отскоки) подвижного контакта при ударе его о неподвижный контакт. Все это предохраняет контакты от приваривания при включении электрической .цепи. На контактах имеются контактные накладки, выполненные из специального материала, например серебра, чтобы улучшить условия длительного прохождения тока через замкнутые контакты во включенном состоянии. Иногда применяются накладки из дугостойкого материала для уменьшения износа контактов под воздействием электрической дуги (металлокерамика «серебро-окись кадмия» и др.). Гибкая связь 7 (для подвода тока к подвижному контакту) изготовляется из медной фольги (ленты) или тонкой проволоки.
Раствором контактов называется расстояние между подвижным и неподвижным контактами в отключенном состоянии контактора. Раствор контактов обычно лежит в пределах от 1 до 20 мм. Чем ниже раствор контактов, тем меньше ход якоря приводного электромагнита. Это приводит к уменьшению в электромагните рабочего воздушного зазора, магнитного сопротивления, намагничивающей силы, мощности катушки электромагнита и его габаритов. Минимальная величина раствора контактов определяется: технологическими и эксплуатационными условиями, возможностью образования металлического мостика между контактами при разрыве цепи тока, условиями устранения возможности смыкания контактов при отскоке подвижной системы от упора при отключении аппарата. Раствор контактов также должен быть достаточным для обеспечения условий надежного гашения дуги при малых токах.


Рисунок 2 — Прямоходовой пускатель
Изображенная на рис. 1 схема контактора поворотного типа довольно типичная. Обычно такие контакторы предназначаются для тяжелого режима работы (большая частота циклов коммутационных операций, индуктивные цепи) при относительно высоких значениях номинального тока (десятки и сотни ампер). Другой распространенный тип контакторов и пускателей — прямоходовой; он рассчитывается преимущественно на меньшие номинальные токи (десятки ампер) и более легкие условия работы. Прямоходовой пускатель (рис. 2) имеет мостиковые контакты 2 и 3, с которых дуга выдувается в дугогасительные камеры 1. Сила Fk контактной пружины создает нажатие в замкнутых контактах, возвратная пружина Fп возвращает подвижную систему аппарата в отключенное состояние, когда будет снято напряжение с катушки. Аппарат включается электромагнитом при подаче напряжения на его катушку 5. На полюсах электромагнита переменного тока устанавливаются короткозамкнутые витки 4, устраняющие вибрацию якоря во включенном положении аппарата.
В отличие от контактора постоянного тока в контакторе переменного тока для уменьшения потерь на вихревые токи применяют шихтованные магнитопроводы и короткозамкнутые витки на полюсах для устранения вибрации якоря. Контакторы переменного тока чаще изготовляют трехполюсными, постоянного тока — однополюсными и двухполюсными. В качестве дугогасительного устройства в контакторах на постоянном токе чаще применяются щелевые камеры, на переменном — чаще дугогасительная решетка.
Для гашения дуги применяют также камеры с дугогасительной решеткой. Дугогасительная решетка представляет собой пакет тонких металлических пластин 5 (рис. 1). Под действием электродинамических сил, создаваемых системой магнитного дутья, электрическая дуга попадает на решетку и рвется на ряд коротких дуг. Пластины интенсивно отводят тепло от дуги и гасят ее, но пластины дугогасительной решетки обладают значительной термической инерционностью — при большой частоте включений они перегреваются и эффективность дугогашения падает.
Мощные контакторы переменного тока имеют главные контакты, снабженные системой дугогашения — магнитным дутьем и дугогасительной камерой с узкой щелью или дугогасительной решеткой, как и контакторы постоянного тока. Конструктивное отличие заключается в том, что контакторы переменного тока выполняют многополюсными; обычно они имеют три главных замыкающих контакта. Все три контактных узла работают от общего электромагнитного привода клапанного типа, который поворачивает вал контактора с установленными на нем подвижными контактами. На том же валу устанавливают вспомогательные контакты мостикового типа. Контакторы имеют достаточно большие габаритные размеры. Их применяют для управления электродвигателями значительной мощности.
Для увеличения срока службы конструкция контакторов допускает смену контактов.
Существуют комбинированные контакторы переменного тока, в которых параллельно главным замыкающим контактам включают два тиристора. Во включенном положении ток проходит через главные контакты, поскольку тиристоры находятся в закрытом состоянии и ток не проводят. При размыкании контактов схема управления открывает тиристоры, которые шунтируют цепь главных контактов и разгружают их от тока отключения, препятствуя возникновению электрической дуги. Поскольку тиристоры работают в кратковременном режиме, их номинальная мощность невелика и они не нуждаются в радиаторах охлаждения.
Наша промышленность выпускает комбинированные контакторы типа КТ64 и КТ65 на номинальные токи, превышающие 100 А, выполненные на базе широко распространенных контакторов КТ6000 и снабженные дополнительным полупроводниковым блоком.
Коммутационная износостойкость комбинированных контакторов в режиме нормальных коммутаций составляет не менее 5 млн. циклов, а коммутационная износостойкость полупроводниковых блоков примерно в 6 раз выше. Это позволяет многократно использовать их в системах управления.
Для управления электродвигателями переменного тока небольшой мощности применяют прямоходовые контакторы с мостиковыми контактными узлами. Двукратный разрыв цепи и облегченные условия гашения дуги переменного тока позволяют обойтись без специальных дугогасительных камер, что существенно уменьшает габаритные размеры контакторов.
Прямоходовые контакторы обычно выпускаются промышленностью в трехполюсном исполнении. При этом главные замыкающие контакты разделяются пластмассовыми перемычками 1.
Наряду со слаботочными герконами, созданы герметичные силовые магнитоуправляемые контакты (герсиконы), способные коммутировать токи в несколько десятков ампер. На этой основе были разработаны контакторы для управления асинхронными электродвигателями мощностью до 1.1 кВт. Герсиконы отличаются увеличенным раствором контактов (до 1.5 мм) и повышенным контактным нажатием. Для создания значительной силы электромагнитного притяжения используют специальный магнитопровод.
Область применения электромагнитных контакторов достаточно широка. В машиностроении контакторы переменного тока применяют чаще всего для управления асинхронными электродвигателями. В этом случае их называют магнитными пускателями. Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.
На рисунке 1 (а, б) показаны соответственно монтажная и принципиальная схемы соединений нереверсивного магнитного пускателя. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

а)                                        б)
Рисунок 1 — Схемы нереверсивного пускателя
На принципиальной схеме все элементы одного аппарата имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.
Нереверсивный магнитный пускатель имеет контактор KM с тремя главными замыкающими контактами (Л1-С1, Л2-С2, Л3-С3) и одним вспомогательным замыкающим контактом (3-5).
Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки контактора (или цепи управления) с наибольшим током – тонкими линиями.
Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки контактора потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 – 5,
что создаст параллельную цепь питания катушки контактора. Если теперь кнопку «Пуск» отпустить, то катушка контактора будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то контактор отключается и его вспомогательный контакт размыкается. После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита превращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.
Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют контакторное управление.
Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки контактора.
В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рисунке 2, а. Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки. В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой. Если после нажатия кнопки SВ3 «Вперед» и включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

 


Рисунок 2 — Схемы реверсивного пускателя
Аналогичная схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рисунке 2, б. В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.
В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.
Магнитные пускатели открытого исполнения монтируют в шкафах электрооборудования. Пускатели пылезащищенного и пылебрызгонепроницаемого исполнения снабжают кожухом и монтируют на стене или стойке в виде отдельного аппарата.
Электромагнитные контакторы выбирают по номинальному току электродвигателя с учетом условий эксплуатации. ГОСТ 11206-77 устанавливает несколько категорий контакторов переменного и постоянного тока. Контакторы переменного тока категории АС-2, АС-3 и АС-4 предназначены для коммутации цепей питания асинхронных электродвигателей. Контакторы категории АС-2 используют для пуска и отключения электродвигателей с фазным ротором. Они работают в наиболее легком режиме, поскольку эти двигатели обычно пускаются при помощи роторного реостата. Категории АС-3 и АС-4 обеспечивают прямой пуск электродвигателей с короткозамкнутым ротором и должны быть рассчитаны на шестикратный толчок пускового тока. Категория АС-3 предусматривает отключение вращающего асинхронного электродвигателя. Контакторы категории АС-4 предназначены для торможения противотоком электродвигателей с короткозамкнутым ротором или отключения неподвижных электродвигателей и работают в наиболее тяжелом режиме.
Контакторы, предназначенные для работы в режиме АС-3, могут быть использованы в условиях, соответствующих категории АС-4, но номинальный ток контактора при этом снижается в 1.5-3 раза. Аналогичные категории применения предусмотрены для контакторов постоянного тока.
Контакторы категории ДС-1 применяют для коммутации малоиндуктивной нагрузки. Категории ДС-2 и ДС-3 предназначены для управления электродвигателями постоянного тока с параллельным возбуждением и позволяют коммутировать ток, равный . Категории ДС-4 и ДС-5 применяют для управления электродвигателями постоянного тока с последовательным возбуждением.
Указанные категории определяют режим нормальных коммутаций, в котором контактор может непрерывно работать длительное время. Кроме того, различают режим редких (случайных) коммутаций, когда коммутационная способность контактора может быть увеличена примерно в 1.5 раза.
Если асинхронный электродвигатель работает в повторно-кратковременном режиме, то выбор контактора осуществляется по величине среднеквадратичного тока. На выбор контактора влияет степень защиты контактора. Контакторы защищенного исполненияимеют худшие условия охлаждения, и их номинальный ток снижается примерно на 10% по сравнению с контакторами открытого исполнения.

КОНТАКТНО – ДУГОГАСИТЕЛЬНЫЕ СИСТЕМЫ КОНТАКТОРОВ

В контакторах обычно используются рычажные (рис. 1, а) и мостиковые (рис. 1, б) контакты. В рычажных контактах образуется при отключении один разрыв (одна дуга), в мостиковых – два (две дуги). Поэтому при прочих равных условиях возможности для отключения электрических цепей у аппаратов с мостиковыми контактами выше, чем у аппаратов с рычажными (пальцевыми) контактами.

Рисунок 1 – Рычажные и мостиковые контакты
Мостиковые контакты по сравнению с рычажными имеют тот недостаток, что в замкнутом состоянии в них создается два контактных перехода тока, в каждом из которых должно быть создано надежное касание. Поэтому сила контактной пружины  должна быть удвоенной (по сравнению с рычажными контактами), что в конечном итоге увеличивает мощность электромагнитного привода контактора.
В контакторах переменного тока на отключаемые токи до 100 А при напряжении сети до 100-200 В можно не применять дугогасительные камеры, так как дуга гасится за счет растяжения ее в атмосферном воздухе (открытый разрыв). Для предотвращения перекрытия электрических дуг на соседних полюсах применяются изоляционные перегородки. Контакторы с открытым разрывом дуги существуют также и на постоянном токе, но отключаемые токи для них существенно меньше.
При высоких значениях отключаемых токов и напряжений аппараты снабжаются дугогасительными камерами, из которых наиболее распространены щелевые камеры и дугогасительные решетки. Щелевая камера (рис. 2, а) образует внутри узкий просвет (щель) между стенками из дугостойкого изоляционного материала (асбестоцемент и др.). В него загоняется электрическая дуга 1 и там она гасится за счет усиленного отвода тепла при тесном соприкосновении со стенками.
Дугогасительная решетка (рис. 2, б) представляетсобой пакет из тонких (мм) металлических пластин 2, на которые выдувается дуга. Пластины выполняют роль радиаторов, интенсивно отводящих тепло от столба дуги и способствующих ее гашению.
Наиболее важной характеристикой дугогасительной камеры является вольт – амперная характеристика. Используя ее, можно рассчитать процессы гашения дуги при отключении цепи.

 


Рисунок 2 – Дугогасительные камеры
Как показал опыт эксплуатации, дугогасительная решетка непригодна для частых отключений цепи при сравнительно больших токах. При большой частоте отключений ее пластины разогреваются до высоких температур и не успевают остыть. Они оказываются неспособными охлаждать столб дуги, и решетка отказывает в работе. Для режима частых отключений цепи более пригодны щелевые дугогасительные камеры.
Система магнитного дутья предназначена для того, чтобы создать дополнительные силы для схода дуги с контактов и вхождения ее в дугогасительную камеру (рис. 3, а). Катушка 1 магнитного дутья включена последовательно в цепь отключаемого тока. Созданный ею магнитный поток Ф с помощью деталей 2 и 3 магнитопровода подводится к зоне горения дуги у входа в дугогасительную камеру 4.
Рисунок 3 – Система магнитного дутья
Взаимодействие тока дуги (А) с магнитным полем напряженностью (А/м) приводит к появлению действующей на дугу электродинамической силы (Н), которая загоняет дугу длиной  (м) в камеру:
,                                          (*)где Гн/м.
В зоне горения дуги (в воздушном зазоре , м, между пластинами 3 на рис. 3, а) в соответствии с законом полного тока для однородного поля (HL=Iw) напряженность поля (А/м)
.
Подставив это значение в (*), получим:
,
где  – число витков катушки.
Так как в системе с катушкой последовательного магнитного дутья сила пропорциональна квадрату тока, то целесообразно использовать этот вид дутья в контакторах, рассчитанных на сравнительно большие номинальные токи. Для сокращения расхода меди на изготовление катушки, сечение которой должно выбираться по номинальному току контактора, желательно иметь возможно меньшее число витков катушки. Однако это число витков должно обеспечивать такую напряженность магнитного поля в зоне его взаимодействия с током дуги, которая создаст условия для надежного гашения дуги в заданном диапазоне отключаемых токов. Обычно оноизмеряется единицами при номинальных токах в сотни ампер, а при токах в десятки ампер достигает десяти и выше.
Преимущество систем с катушкой последовательного магнитного дутья заключается в том, что направление силы  не зависит от направления тока . Это позволяет применять указанную систему не только на постоянном, но и на переменном токе. Однако на переменном токе вследствие появления вихревых токов в магнитопроводе может возникнуть сдвиг по фазе между током дуги и результирующей напряженностью магнитного поля в зоне горения дуги, что может вызвать обратное «забрасывание» дуги в камеру.
Недостаток системы с катушкой последовательного магнитного дутья – малая напряженность магнитного поля, создаваемая ею при небольших отключаемых токах. Поэтому параметры этой системы надо выбирать так, чтобы в области этих токов обеспечить максимально возможную напряженность магнитного поля в зоне горения дуги, не прибегая к значительному увеличению числа витков катушки магнитного дутья, чтобы не вызывать излишнего расхода меди на её изготовление. При небольших токах магнитопровод этой системы не должен насыщаться. Тогда почти вся намагничивающая сила катушки компенсируется падением магнитного потенциала в воздушном зазоре и напряженность магнитного поля в нем окажется максимально возможной. При больших токах магнитопровод, наоборот, целесообразно вводить в насыщение, когда его магнитное сопротивление становится большим. Это снизит напряженность магнитного поля в зоне расположения дуги, уменьшит силу  и интенсивность гашения дуги, снизит перенапряжения при её гашении.
Существует система с катушкой параллельного магнитного дутья, когда катушка 1 (см. рис. 3), содержащая сотни витков из тонкого провода и рассчитываемая на полное напряжение источника питания, создает в зоне горения дуги напряженность магнитного поля (А/м)
.
Действующая на дугу электродинамическая сила (Н) (см. рис. 3, б)
,
где
В этой системе сила, действующая на дугу, пропорциональна току в первой степени. Поэтому она оказывается более целесообразной для контакторов на небольшие токи (примерно до 50 А).
Контактор с параллельной катушкой магнитного дутья реагирует на направление тока. Если направление магнитного поля сохраняется неизменным, а ток изменит свое направление, то сила  будет направлена в противоположную сторону. Дуга будет перемещаться не в дугогасительную камеру, а в противоположную сторону – на катушку магнитного дутья, что может привести к аварии в контакторе. Это – недостаток рассматриваемой системы. Недостатком этой системы является также необходимость повышения уровня изоляции катушки в расчете на полное напряжение сети. Понижение напряжения сети приводит к уменьшению намагничивающей силы катушки и ослаблению интенсивности магнитного дутья, что снижает надежность дугогашения.
В системе магнитного дутья вместо катушки напряжения можно применять постоянный магнит. По свойствам такая система аналогична системе с параллельной катушкой магнитного дутья. Замена катушки напряжения постоянным магнитом исключит расход меди и изоляционных материалов, которые потребовались бы на создание катушки. При этом в системе не должны нарушаться свойства постоянного магнита в процессе эксплуатации.
Системы с катушкой параллельного магнитного дутья и постоянными магнитами на переменном токе не применяются, так как практически невозможно согласовать направление магнитного потока с направлением тока дуги, чтобы получить одно и то же направление силы  в любой момент времени.
С увеличением напряженности поля магнитного дутья улучшаются условия схода дуги с контактов на дугогасительные рога и облегчается её вхождение в камеру. Поэтому с ростом  уменьшается также износ контактов от термического воздействия дуги, но до определенного предела.
Большие напряженности поля создают значительные силы, воздействующие на дугу и выбрасывающие расплавленные металлические мостики из межконтактного промежутка в атмосферу. Это повышает износ контактов . При оптимальной напряженности поля  износ контактов минимален.
Износ контактов – важный технический фактор. Поэтому принимаются серьезные меры, например уменьшение вибрации контактов при включении аппарата, чтобы уменьшить износ и увеличить срок службы контактов.
Важной характеристикой дугогасительного устройства переменного тока является закономерность роста восстанавливающейся прочности межконтактного промежутка за переходом тока через нуль.

Классификация магнитных пускателей | Электрика в квартире, ремонт бытовых электроприборов

Просмотров 1.7k. Опубликовано Обновлено

Магнитный пускатель — это электрическое устройство, которое предназначено для управления силовыми нагрузками (электродвигатели, водонагреватели, индукционные печи и т.д.).

 

 

   Электрические магнитные пускатели подразделяются:

 

   — по назначению — обычные и реверсивные;

 

   — наличию или отсутствию теплового реле;

 

   — наличию или отсутствию кнопок управления;

 

   — степени защиты от внешних воздействий:

 

      — степень защиты IP00(открытые): размещаются в отапливаемых помещениях в закрытых шкафах, на панелях и других местах, имеющих защиту от попадания пыли, влаги и посторонних предметов;

      — степень защиты IP20 (открытые): размещаются в закрытых помещениях в шкафах управления, куда не попадает пыль, влага и посторонние предметы;

      — степень защиты IP40 (в оболочке): размещаются внутри помещений , которые не имеют отопления, там, где окружающая среда не содержит большого количества пыли и там , где попадание влаги на оболочку магнитного пускателя исключено;

      — степень защиты IP54 (в оболочке): применяются для внутренних и наружных установок в местах, защищённых от прямого воздействия солнечных лучей и атмосферных осадков;
 

   — наличию дополнительных (блокировочных, сигнальных) контактов;

 

   — по рабочему току на магнитные пускатели 0-й, 1-й, 2-й, 3-й, 4-й, 5-й и 6-й величины:

 

      — нулевая величина (0) — рабочий ток 6,3А;

      — первая величина (1) — 10-16А;

      — второй величины (2) — 25А;

      — третьей величины (3) — 40А;

      — четвёртой величины (4) — 63А;

      — пятой величины (5) — 100А;

      — шестой величины (6) — 160А.

 

   К магнитным пускателям предъявляются высокие требования по износостойкости. Пускатели выпускают в трёх классах коммутационной износостойкости — А, Б и В.

 

   — Класс А — наивысшая износостойкость.

   — Класс Б — средняя износостойкость.

   — Класс В — низкая износостойкость.

 

   Магнитные пускатели также могут различаться по напряжению катушки. Рабочее напряжение катушки пускателя должно соответствовать напряжению цепей управления. Стандартный ряд напряжений — 12, 24, 110, 220, 380 вольт.

 

   Категории применения магнитных пускателей:

 

   — АС-1 — нагрузка пускателя активная или малоиндуктивная;

   — АС-3 — режим прямого пуска электродвигателя с короткозамкнутым ротором, отключение вращающегося двигателя;

   — АС-4 — пуск электродвигателя с короткозамкнутым ротором, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.

 

   При выборе магнитного пускателя часто применяется термин — «величина пускателя». Данный термин условный и характеризует допустимый ток контактов главной цепи пускателя. При этом подразумевается, что напряжение главной цепи составляет 380В и магнитный пускатель работает в режиме АС-3.

Магнитные пускатели.

по порядкупо росту ценыпо снижению ценыпо новизне

16243248

  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений
  • Цену уточняйте

    В наличии

    отдел продаж Краснодар

    • +7 (863) 226-89-33

      отдел продаж Ростов-на-Дону
    • +7 (988) 993-78-88

      Евгений

Магнитные пускатели и тепловые реле.

Магнитные пускатели предназначены для дистанционного управления электродвигателями и другими электроустановками. Они обеспечивают нулевую защиту, т.е. при исчезновении напряжения или его снижении до 50—60% от номинального катушка не удерживает магнитную систему пускателя, и силовые контакты размыкаются. При восстановлении напряжения токоприемник остается отключенным. Это исключает возможность аварий, связанных с самопроизвольным пуском электродвигателя или другой электроустановки. Пускатели с тепловыми реле осуществляют также защиту электроустановки от длительных перегрузок.

Наибольшее распространение получили магнитные пускатели серий ПМЕ и ПАЕ. Пускатели серии ПМЕ могут быть использованы для управления электродвигателями мощностью от 0,27 до 10 кВт, а пускатели серии ПАЕ — для управления электродвигателями и другими электроустановками мощностью от 4 до 75 кВт.

Изготавливаются эти серии в открытом, защищенном, пылеводозащищенном и пылебрызгонепроницаемом исполнении на напряжение 220 и 380 В. Они могут быть реверсивными и нереверсивными. Реверсивные пускатели наряду с пуском, остановом и защитой электродвигателя изменяют направление его вращения.

В магнитные пускатели встраиваются тепловые реле ТРН (двухполюсные) и ТРП (однополюсные). Они срабатывают под влиянием протекающего по ним тока перегрузки электродвигателя и отключают его от сети.

В каждый пускатель серии ПМЕ встраивается по одному двухфазному реле типа ТРН. В магнитный пускатель ПАЕ (нереверсивный и реверсивный) третьей величины встраивается по одному двухфазному реле ТРН, а в пускатели 4, 5 и 6 величин — по два тепловых реле типа ТРП. Катушка пускателя обеспечивает надежную работу при напряжении от 85 до 105% номинального.

Маркировка магнитных пускателей расшифровывается следующим образом: первая цифра после сочетания букв, указывающих тип пускателя, обозначает величину (1; 2; 3; 4; 5; 6), вторая — исполнение по роду защиты от окружающей среды (1 — открытое исполнение; 2 — защищенное; 3 — пылезащищенное; 4 — пылебрызгонепроницаемое), третья — исполнение (1 — нереверсивный без тепловой защиты; 2 — нереверсивный с тепловой защитой; 3 — реверсивный без тепловой защиты; 4 — реверсивный с тепловой защитой).

1. Устройство магнитного пускателя

Основными элементами магнитного пускателя (рис. 1) являются электромагнитная система 5 и 6, главные контакты 2 и 3, блок-контакты и дугогасительная камера 8. Электромагнитная система представляет собой разъемный магнитопровод, на среднем керне которого размещена катушка. Для уменьшения нагрева, вызываемого вихревыми токами, магнитопровод набран из отдельных, изолированных друг от друга пластин электротехнической стали. Неподвижную часть магнитопровода 5 называют сердечником, подвижную часть 6 — якорем. Якорь механически соединен с контактами 2.

Рис. 1. Магнитный пускатель ПМЕ: 1 — основание; 2 — подвижный контактный мост; 3 — неподвижный контакт; 4 — присоединительный зажим; 5 — сердечник; 6 — якорь; 7 — возвратная пружина; 8 — дугогасительная камера

При включении электрический ток проходит по катушке, создает магнитное поле, которое притягивает якорь к сердечнику 5 и тем самым замыкает контакты 2 и 3 пускателя; при отключении якорь под действием возвратных пружин 7 (а в некоторых типах магнитных пускателей под действием собственного веса) отходит от сердечника и контакты размыкаются.

Катушка магнитного пускателя питается однофазным переменным током. Вследствие этого магнитный поток в течение периода дважды изменяет свое направление, достигая максимального значения и снижаясь до нуля. Это вызывает вибрацию и гудение магнитной системы. Для ослабления этих явлений на торцевой части сердечника магнитного пускателя закладывается медный короткозамкнутый виток, который охватывает обычно около 1/3 площади его сечения.


2. Тепловое реле

Тепловое реле в магнитных пускателях устанавливают для защиты электродвигателя от перегрузок.

Тепловое реле (рис. 2) состоит из четырех основных элементов: нагревателя 1, включаемого последовательно в защищаемую от перегрузки цепь; биметаллической пластинки 2 из двух спрессованных металлических пластинок с различными коэффициентами линейного расширения; системы 3—7 рычагов и пружин; контактов 8 и 9.

Рис. 2.14. Схема теплового реле: 1 — нагреватель; 2 — биметаллическая пластинка; 3 — регулировочный винт; 4 — защелка; 5 — рычаг; 6 — пружина; 7 — кнопка возврата; 8 — подвижный контакт; 9 — неподвижный контакт; 10 — вывод нагревателя

Когда через нагревательный элемент 1 проходит ток, превышающий номинальный ток электродвигателя, выделяется такое количество тепла, что незакрепленный (на рисунке левый) конец биметаллической пластинки 2 изгибается в сторону металла с меньшим коэффициентом линейного расширения (то есть опускается), нажимает на регулировочный винт 3 и выводит защелку 4 из зацепления. В этот момент под действием пружины 6 верхний конец рычага 5 поднимется, разомкнет контакты 8 и 9 и разорвет цепь управления магнитного пускателя. Кнопка 7 служит для ручного возврата рычага 5 в исходное положение после срабатывания реле.

Из вышесказанного следует, что работа теплового реле основана на изгибании биметаллической пластинки под действием тепла выделяемого в нагревательном элементе. Но эта же пластинка будет изгибаться и под действием тепла окружающего воздуха. Таким образом, в жаркие дни реле будет срабатывать быстрее, чем в холодные. Для устранения этого явления в реле применена температурная компенсация, сущность которой заключается в том, что изгибанию биметаллической пластинки от изменения температуры окружающего воздуха соответствует противоположное по направлению изгибание пластинки компенсатора. Пластинка компенсатора тоже представляет собой биметаллическую пластинку, но с обратным по отношению к основной биметаллической пластинке прогибом.

В магнитные пускатели типа ПМЕ-100, ПМЕ-200 и в магнитные пускатели ПАЕ-300 встраивают тепловые реле ТРН (рис. 3). Эти реле двухфазные, с температурной компенсацией, с ручным возвратом. Нагрев биметалла косвенный, нагреватели сменные с номинальным током до 40 А.

Температурный компенсатор выполнен из биметалла с обратным прогибом по отношению к основному термоэлементу. При установившейся температуре между компенсатором и защелкой устанавливается определенный зазор. Изменение величины этого зазора путем поворота эксцентрика (регулятора уставки), т.е. удаление или приближение защелки, изменяет уставку реле. Каждое деление регулятора уставки соответствует 5% величины номинального тока нагревателя. При уставке регулятора в положение «0» ток уставки реле равен номинальному току нагревателя. При уставке регулятора в положение «–5» ток уставки уменьшается на 25%, в положение «+5» — увеличивается на 25% по отношению к величине номинального тока нагревателя.

Время срабатывания реле при температуре окружающего воздуха 20±5°С и нагреве реле из холодного состояния шестикратным номинальным током уставки при любом положении регулятора уставки должно быть в следующих пределах:

Рис. 3. Конструкция теплового реле ТРН-10: 1, 2, 3, 4, 6 — винты; 5 — крышка; 7 — нагревательный элемент; 8 — пластмассовая крышка; 9 — шток; 10 — контактный мостик

· 3—15 с — для реле ТРН-10А;

· 6—25 с — для реле типов ТРН-10; ТРН-25 и ТРН-40.

Время ручного возврата реле в пределах температуры окружающего воздуха от –40 до +60°С должно быть не более 2 мин.

При установке реле в рабочее положение при температуре окружающего воздуха 20 ±5°С и обтекании обоих полюсов номинальным током реле не должно срабатывать в установившемся тепловом состоянии и должно срабатывать в течение не более 20 мин при токе, равном 1,2 номинального тока уставки. Защитные характеристики реле приведены на рис. 4 и 5.

Однофазные тепловые реле ТРП-60 и ТРП-150 (рис. 6), встраиваемые в пускатели ПАЕ четвертой, пятой и шестой величин, имеют комбинированный нагрев биметаллической пластинки (одна часть тока проходит через нагревательный элемент, другая — через биметаллическую пластинку). При одном нагревателе, рассчитанном на ток нулевой уставки, имеется возможность регулировать ток уставки в пределах ±25%. Реле имеет шкалу, на которой нанесены по пять делений по обе стороны от нуля. Цена деления 5% для открытого исполнения и 5,5% для защищенного.

В тепловом реле ТРП предусмотрены два исполнения по возврату: ручной возврат с гарантированным отсутствием самовозврата контактной группы и самовозврат с ускорением возврата вручную.

Рис. 4. Защитные характеристики реле ТРН-10А: 1 — зона защитных характеристик при срабатывании реле из холодного состояния; 2 — зона защитных характеристик при срабатывании реле из горячего состояния (после прогрева)

Рис. 5. Защитные характеристики реле ТРН-25 и ТРН-40: 1 — зона защитных характеристик при срабатывании реле из холодного состояния; 2 — зона защитных характеристик при срабатывании реле из горячего состояния (после прогрева)

Рис. 6. Тепловые реле типа ТРП: 1 — биметаллическая пластинка; 2 — упор самовозврата; 3 — держатель подвижного контакта; 4 — пружина; 5 — подвижный контакт; 6 — неподвижный контакт; 7 — сменный нагреватель; 8 — регулятор тока уставки; 9 — кнопка ручного возврата

Реле не срабатывает при длительном обтекании током, равном току уставки; срабатывает в течение 20 мин после увеличения тока по сравнению с током уставки на 20%. Реле нормально работает при токах, не превышающих 15-кратного значения. Реле допускает нагрузку 18-кратным номинальным током теплового элемента в течение 1 с, или до срабатывания реле, если оно произойдет за время меньше 1 с.

Для защиты реле ТРП-60 и ТРП-150 от токов короткого замыкания достаточно, чтобы номинальный ток плавкой вставки предохранителя, включенного последовательно с тепловым элементом защищаемого реле, превышал номинальный ток теплового элемента не более чем в 4—5 раз.

Пускатели двигателей — двигатели и управление

Пускатели двигателей

 

Пускатели двигателей могут управляться вручную или автоматически. Ручные пускатели и выключатели обеспечивают местное управление оборудованием на промышленных или строительных рынках. Они используются в таких приложениях, как электропилы, насосы, вентиляторы, конвейеры, воздуходувки, упаковка и сортировка. С другой стороны, автоматические магнитные пускатели двигателей обычно используются в качестве систем безопасности и для регулирования двигателей воздушных компрессоров.

Контактный механизм ручного пускателя приводится в действие механическим звеном от рукоятки переключения или кнопки. Этот переключатель «вкл-выкл» обеспечивает защиту от перегрузки с помощью теплового блока и механизма перегрузки прямого действия. Ручные пускатели двигателей Hoffmeyer внесены в список UL и одобрены CSA.

Магнитные пускатели двигателей имеют электромагнитный набор контактов. Они запускают и останавливают двигатели с помощью схемы управления с устройствами мгновенного действия. Он подключен к катушкам магнитного пускателя двигателя, который включает и выключает двигатель.Магнитные пускатели двигателей содержат наборы как неподвижных, так и подвижных контактов. В них также используются нажимные пружины, соленоидная катушка, стационарный электромагнит, набор магнитных экранирующих катушек и подвижный якорь.

Магнитные пускатели двигателей

также используются в сочетании с датчиками, запускающими автоматическое отключение двигателя. Например, если продукт попадает в опасную часть системы конвейерной ленты и срабатывает датчик предупреждения, двигатель отключается, чтобы предотвратить травмы рабочих и/или повреждение продуктов и оборудования.Магнитные пускатели двигателей также включают и выключают двигатели воздушных компрессоров для поддержания постоянного уровня давления в воздушных резервуарах.

Стандартные и усиленные пускатели двигателей Hoffmeyer

подают точный электрический ток на отдельные двигатели и другие компоненты конвейерных систем. Hoffmeyer поставляет как ручные пускатели двигателей, так и магнитные пускатели двигателей.

Свяжитесь с Hoffmeyer сегодня, чтобы поговорить с одним из наших компетентных представителей по обслуживанию клиентов. Благодаря более чем 90-летнему опыту в области промышленных поставок, компания Hoffmeyer может помочь вам найти именно те магнитные, ручные и воздушные пускатели двигателей, которые подходят именно вам.Мы также предоставляем все необходимые адаптеры и аксессуары и можем помочь найти индивидуальные решения для удовлетворения ваших уникальных потребностей.

Свяжитесь с нами сегодня!

Предложение Магнитный пускатель, Магнитный пускатель двигателя, 3-фазный пускатель двигателя от китайского производителя

Категория продукта Магнитные пускатели, мы специализированные производители из Китая, Магнитный пускатель, Магнитный пускатель двигателя поставщики / фабрики, оптовые продажи высокого качества продукты 3-фазный пускатель двигателя R & D и производство, у нас есть отличное послепродажное обслуживание и техническое служба поддержки.Надеемся на ваше сотрудничество!

    LE1-D09 Магнитный пускатель двигателя

    • Упаковка: картонные коробки

    • Мин.Заказ: 100 комплектов

    • № модели: LE1-D09,12,18,25 Магнитный пускатель двигателя

    • Транспортировка: океан, воздух

    LE1 D1 Магнитный пускатель серии D Наш пускатель серии BE применимо к AC 50 60HZ напряжение 660V непосредственное управление трехфазным двигателем переменного тока для запуска и остановки. Он имеет особенности небольшого объема, легкого веса, низкого энергопотребления, высокой эффективности, безопасности и надежности и т. Д. Мы стремимся к достижению…

    LE1-D95 Электромагнитный пускатель двигателя

    • Упаковка: СТАНДАРТНАЯ ЭКСПОРТНАЯ УПАКОВКА

    • Мин.Заказ: 100 комплектов

    • № модели: LE1-D40,65,80,95 Магнитный пускатель двигателя

    • Транспортировка: океан, воздух

    LE1 D40 80 50 серия имеет особенности небольшого объема, легкого веса, низкого энергопотребления, высокой эффективности, безопасности и надежности и т. Д. Стартер в основном применяется для цепей переменного тока 50 или 60 Гц с напряжением до 550 В для дальнего замыкания и размыкания цепи и частого запуска…

    Магнитный пускатель двигателя LE1-DN

    • Упаковка: СТАНДАРТНАЯ ЭКСПОРТНАЯ УПАКОВКА

    • Мин.Заказ: 100 мешков/мешков

    • № модели: LE1-DN Магнитный пускатель двигателя

    • Транспортировка: океан, воздух

    Магнитный пускатель LE1 DN в основном используется для пускателей нового типа. напряжения переменного тока 50 или 60 Гц до 550 В для дальнего включения и отключения цепи, а также для частого запуска и управления двигателем. Он имеет небольшой объем, легкий вес, низкое энергопотребление, высокую эффективность, безопасность и…

    QJX2-32 Пускатель пониженного напряжения звезда-треугольник

    • Упаковка: СТАНДАРТНАЯ ЭКСПОРТНАЯ УПАКОВКА

    • Мин.Заказ: 100 Комплект/Комплекты

    • Модель №: QJX2 (LC3) Пускатель двигателя пониженного напряжения звезда-треугольник

    • Транспортировка: океан, воздух

    Серия QJX2 LC3 звезда-треугольник. двигатель в цепи переменного тока 50 60Гц напряжением до 660В и током до 95А Оснащен таймером для автоматического переключения звезда треугольник для снижения напряжения и тока пуска двигателя

Китайские поставщики магнитных стартеров

Магнитный пускатель

в основном применяется для цепей переменного тока 50 или 60 Гц, напряжением до 550 В для включения и отключения цепи на большом расстоянии, а также для частого запуска и управления двигателем.Он имеет небольшой объем, легкий вес, низкое энергопотребление, высокую эффективность, безопасную и надежную работу и т.д. -MB Магнитный пускатель
Пускатель звезда-треугольник

Наиболее распространенные устройства пуска двигателей низкого/высокого напряжения

Двухпозиционное устройство ВКЛ-ВЫКЛ

Наиболее распространенным устройством пуска двигателей является низковольтный пусковой контактор .Контактор определяется как «устройство ВКЛ-ВЫКЛ с двумя состояниями для многократного установления и прерывания цепи электропитания».

Наиболее распространенные устройства пуска двигателей низкого и среднего напряжения (на фото: контактор Allen Bradley)

Контакторы разработаны для обеспечения оптимальной производительности и срока службы при переключении нагрузок; они не предназначены для отключения токов короткого замыкания, поэтому цепи двигателя требуют отдельной защиты от короткого замыкания.

Поскольку контакторы замыкаются магнитным способом через свои управляющие катушки, использование контакторов обычно называют магнитным управлением.

Для небольших двигателей, как правило, с дробной мощностью, также доступны переключатели ручного управления. Пусковые контакторы и переключатели двигателя в США обычно разрабатываются и производятся в соответствии со стандартами NEMA ICS-1, NEMA ICS-2 и UL 508.

Контроллер определяется как «устройство или группа устройств, которые служат для каким-то заранее определенным образом электроэнергия, подаваемая на устройство, к которому оно подключено».

Пусковые контакторы двигателей доступны в виде составных блоков с внешними средствами переключения, определяемыми как комбинированный контроллер .

Пускатель определяется как: «форма контроллера электродвигателя, которая включает средства переключения, необходимые для запуска и остановки двигателя, в сочетании с соответствующей защитой от перегрузки». Комбинированный пускатель, который включает в себя контактор переключения двигателя, а также защиту от перегрузки и встроенное отключающее устройство, является типом комбинированного контроллера.

Примеры низковольтных контакторов, используемых для пуска двигателя

Низковольтные ручные и электромагнитные контроллеры классифицируются как классы A, B или V в зависимости от их прерывающей среды и их способности отключать токи:

Класс A: Контроллеры класса A Воздушный выключатель переменного тока, вакуумный выключатель или масляные ручные или магнитные контроллеры для работы при напряжении 600 В или менее.Они способны прерывать рабочие перегрузки, но не короткие замыкания или неисправности, выходящие за пределы рабочих перегрузок.

Класс B: Контроллеры класса B представляют собой ручные или электромагнитные контроллеры с воздушным выключателем постоянного тока для работы при напряжении 600 В или менее. Они способны прерывать рабочие перегрузки, но не короткие замыкания или неисправности, выходящие за пределы рабочих перегрузок.

Класс V: Контроллеры Класса V представляют собой вакуумные магнитные контроллеры переменного тока для работы при напряжении 1500 В или ниже и способны отключать рабочие перегрузки, но не короткое замыкание или неисправности, выходящие за пределы рабочих перегрузок.

Низковольтные контакторы с рейтингом NEMA имеют размеры от 00 (самый маленький) до 9 (самый большой) для различных применений в соответствии с [5]. На рис. 1 показан низковольтный контактор NEMA вместе с ручным пусковым выключателем двигателя, пускателем и комбинированным пускателем.

Рисунок 1 – a.) Пусковой контактор двигателя, b.) Ручной пускатель двигателя, c.) Пускатель двигателя с контактором и реле перегрузки, d.) Комбинированный пускатель с магнитным автоматическим выключателем, контактором, тепловым реле перегрузки и контрольными устройствами

Управление контакторами с помощью устройств с постоянным контактом относится к двухпроводному управлению.Использование устройств мгновенного действия в управлении контакторами называется трехпроводным управлением

Преимущество трехпроводного управления состоит в том, что позволяет контактору размыкаться и оставаться разомкнутым в случае сбоя сетевого напряжения . Такая компоновка типична для защиты двигателей от пониженного напряжения и предотвращения непреднамеренного повторного включения питания после сбоя питания.

Двухпроводное и трехпроводное управление показано на рис. 2 ниже.

Рисунок 2 – Управление контактором низкого напряжения (показано нереверсивное управление полным напряжением): a.) Номенклатура контактора, b.) Двухпроводное управление, c.) Трехпроводное управление

Контакторы среднего напряжения обычно используют вакуум в качестве средства отключения. В отличие от автоматического выключателя, вакуумный контактор среднего напряжения специально разработан для длительного срока службы в режиме отключения нагрузки, а не для режима отключения при коротком замыкании.

Однако, в отличие от своих низковольтных аналогов, контактор среднего напряжения может отключать токи короткого замыкания за пределами рабочих перегрузок.

Вакуумный 3-полюсный контактор с электромагнитным приводом для распределительных устройств среднего напряжения; от SIEMENS (фото предоставлено directindustry.com)

Воздушные, вакуумные или масляные контроллеры среднего напряжения классифицируются как класс E. Контроллеры класса E далее делятся на классы E1 и E2 следующим образом:

Класс E1: Контроллеры класса E1 используют свои контакты для как запуск, так и остановка двигателя, а также прерывание коротких замыканий или неисправностей, превышающих рабочие перегрузки.

Класс E2: Контроллеры Класса E2 используют свои контакты для запуска и остановки двигателя и используют предохранители для коротких замыканий или неисправностей, превышающих рабочие перегрузки.

Свыше 7200 В управление двигателем обычно осуществляется с помощью автоматических выключателей.


Подробное описание стартера двигателя (ВИДЕО)

Не видите это видео? Нажмите здесь, чтобы посмотреть его на Youtube.

Ссылка: Двигатели переменного тока, управление двигателем и защита двигателя – Bill Brown, P.E., Square D Engineering Services

В чем разница между контактором и магнитным пускателем?

Контактор подает напряжение на катушку контактора для замыкания контактов, а также для подачи и прерывания питания в цепи.Пускатель двигателя представляет собой просто контактор ПЛЮС реле перегрузки и рассчитан на мощность двигателя или силу тока. Термин «пускатель двигателя» обычно относится к полной сборке. Нажмите, чтобы увидеть полный ответ.

Контактор

и пускатель двигателя: в чем разница?

(Компания по производству электрооборудования)

Здесь собрана лучшая информация и знания по теме «Чем отличается контактор от магнитного пускателя?» компилируется и синтезируется шаренолом.ком команда:

Что такое магнитный пускатель и как он работает?

Магнитные пускатели состоят из электрического контактора и устройства защиты от перегрузки, обеспечивающего защиту в случае внезапного отключения питания. Контактор похож на реле, но предназначен для переключения большего количества электроэнергии и работы с нагрузками более высокого напряжения.

(Поставка РСП)

Что такое контактор?

замыкание или размыкание набора контактов, которые контролируют напряжение, подаваемое на некоторую нагрузку в системах охлаждения — используется для управления электрической нагрузкой в ​​системе управления, поясняет работу контактора и реле

Контактор

и реле — разница между реле и контактором

(Обучение технике)

Что происходит при замыкании контактора в цепи?

Когда контактор замкнут, ток поступает на «катушку» (электромагнит).Это может быть то же напряжение, что и мощность, проходящая через контакты, или часто более низкое «управляющее» напряжение используется только для питания катушки.

В чем разница между пускателем и контактором?

(УМНОЕ Рождество)

В чем разница между пускателем двигателя и контактором?

A Контактор зависит от информации от системы управления пускателем двигателя и включает и выключает цепь двигателя.Пускатель двигателя получает информацию от контактора и системы контакторов для включения и выключения двигателя. Функция контактора такая же, как у автоматического выключателя или выключателя, но принцип работы отличается .

Контактор Megnatic против твердотельного реле объяснить на урду / что такое ssr / что такое магнитный контактор

(Как 2 Инженера)

Что такое контактор в пускателе двигателя?

Контактор является одной из модификаций реле и частью пускателя двигателя.Он рассчитан по напряжению (или расчетному току нагрузки на контакт (полюс) и подает напряжение на катушки контактора для включения или отключения силовой цепи.

Основное различие между контактором и пускателем?

(Инженер-технолог)

Как работает стартер двигателя?

Хотя пускатели двигателей иногда называют контакторами, на самом деле они состоят из контактора и теплового реле перегрузки.Контактор представляет собой электромеханическое устройство на основе катушки и набора контактов. Когда катушка находится под напряжением, она замыкает контакты, позволяя току течь от источника питания к обмоткам двигателя.

Разница между контакторами и реле — ЭЛЕКТРОМАГНИТНЫЕ ПЕРЕКЛЮЧАТЕЛИ, которые используют электрики

(Электрик У)

В чем разница между пускателями двигателей NEMA и IEC?

Например, пускатели двигателей NEMA обычно поставляются с реле перегрузки класса 20, а версии IEC обычно поставляются с реле перегрузки класса 10.(Класс реле перегрузки указывает количество времени, в течение которого может возникнуть перегрузка, прежде чем реле сработает).

Что такое контактор? | Все о контакторах | Схема подключения

(Электролектории)

Что такое пускатель электродвигателя с первичным резистором?

Пускатели электродвигателей с первичным резистором представляют собой экономичный вариант, в котором используются резисторы и некоторое количество контакторов, причем последние определяют количество ступеней пускового напряжения.Эти шаги могут быть несколько резкими из-за низкой индуктивности цепи.

Разница между контактором и реле | Функции контактора и реле | как работают контактор и реле

(ПЕРЛ ИНЖИНИРИНГ)

Что происходит при замыкании контактора в цепи?

При переменном токе контактор замыкается на , создает электрическую цепь .Это позволяет вашему блоку переменного тока запускаться, когда термостат посылает сигнал на охлаждение или обогрев. Когда термостат требует нагрева или охлаждения, происходит магнитное действие. Это вызывает соединение между стороной напряжения контактора (сторона сети) и стороной нагрузки.

В чем разница между контактором и реверсивным контактором и как они работают?

(ГалкоТВ)

Что происходит, когда электрический ток проходит через контактор?

Когда электрический ток проходит через контактор, электромагнит создает сильное магнитное поле.Это магнитное поле втягивает якорь в катушку, и это создает электрическую дугу. Электрические токи проходят через один контакт в устройство, в которое встроен контактор.

Различия между реле и контакторами 🙂

(Электрический мир)

Что произойдет, если в ПЛК выйдет из строя контактор?

Однако, когда контактор разомкнут и подача питания на катушку не приведет к замыканию этих трех основных контактов, контакт обратной связи также не будет замкнут, и на вход ПЛК не будет поступать сигнал.Таким образом, мы можем получать уведомления, если контактор сломан.

Что происходит, когда контактор кондиционера размыкается?

На стороне нагрузки соединены компрессор и двигатель вентилятора.Когда термостат перестает призывать к действию, контактор размыкается. Когда контактор размыкается, он прекращает подачу питания переменного тока. Что происходит, когда контактор неисправен?

Как работает якорный контактор?

Это заставляет сердечник контактора перемещать якорь.Затем цепь между неподвижным и подвижным контактами замыкается нормально замкнутым (НЗ) контактом, позволяющим току проходить через контакты к нагрузке. Когда ток перестает проходить, катушка обесточивается и размыкает цепь.

Информация об авторе

Имя: Арлин Эмар IV

День рождения: 10 июля 1996 г.

Адрес: 8912 Hintz Shore, West Louie, AZ 69363-0747

Телефон: +13454700762376

Должность: Административный техник

Хобби: Пейнтбол, Верховая езда, Езда на велосипеде, Бег, Макраме, Игра на музыкальных инструментах, Мыловарение

Введение: Меня зовут Арлин Эмар IV, я веселый, великолепный, красочный, радостный, взволнованный, супер, любознательный человек, который любит писать и хочет поделиться с вами своими знаниями и пониманием.

Добавить комментарий

Ваш адрес email не будет опубликован.