Лампы дневного света устройство: Лампы дневного света: как подклюсить устройство, ремонт

Содержание

Как подключить лампу дневного света

Лампы дневного света давно и прочно вошли в нашу жизнь, а сейчас приобретают наибольшую популярность, так как электроэнергия постоянно дорожает и использование обычных ламп накаливания становится довольно дорогим удовольствием. А энергосберегающие компактные лампы не всем могут быть по карману, да и современные люстры требуют большого их количества, что ставит под сомнение экономию средств. Именно поэтому в современных квартирах устанавливается все больше люминесцентных ламп.

Содержание

  1. Устройство люминесцентных ламп
  2. Принцип работы лампы дневного света
  3. Как подключить лампу дневного света?
  4. Как проверить лампу дневного света?

 

Устройство люминесцентных ламп

Чтобы понять, как работает лампа дневного света, следует немного изучить ее устройство. Лампа состоит из тонкой стеклянной цилиндрической колбы, которая может иметь различный диаметр и форму.

Лампы могут быть:

  • прямые;
  • кольцевые;
  • U-образные;
  • компактные (с цоколем Е14 и Е27).

 

Хоть они все отличаются по внешнему виду объединяет их одно: все они имеют внутри электроды, люминесцентное покрытие и закачанный инертный газ, в котором находятся пары ртути. Электроды представляют собой небольшие спирали, которые раскаляются на короткий промежуток времени и зажигают газ, благодаря которому люминофор, нанесенный на стенки лампы, начинает светиться. Так как спирали для розжига имеют маленький размер, то стандартное напряжение, имеющееся в домашней электросети, для них не подходит. Для этого применяют специальные приборы – дроссели, которые ограничивают силу тока до номинального значения, благодаря индуктивному сопротивлению. Также, чтобы спираль разогревалась кратковременно и не перегорела, используют еще один элемент – стартер, который после зажигания газа в трубках лампы, отключает накал электродов.

Дроссель

Стартер

Принцип работы лампы дневного света

На клеммы собранной схемы подается напряжение 220В, которое проходит через дроссель на первую спираль лампы, далее переходит на стартер, который срабатывает и пропускает ток на вторую спираль, подключенную к сетевой клемме.

Наглядно это видно на схеме, представленной ниже:

Зачастую на входных клеммах устанавливают конденсатор, играющий роль сетевого фильтра. Именно его работе часть реактивной мощности, вырабатываемой дросселем, гасится, и лампа потребляет меньше электроэнергии.

Как подключить лампу дневного света?

Схема подключения люминесцентных ламп, приведенная выше, является простейшей и предназначена для розжига одной лампы. Для того, чтобы выполнить подключение двух ламп дневного света, необходимо немного изменить схему, действуя по тому же принципу последовательного соединения всех элементов, так, как показано ниже:

В данном случае используется два стартера, по одному на каждую лампу. При подключении двух ламп к одному дросселю следует учитывать его номинальную мощность, которая указана на его корпусе. Например, если он имеет мощность 40 Вт, то к нему можно подключить две одинаковые лампы, имеющие нагрузку не более 20 Вт.

Существуют также и схема подключения лампы дневного света без использования стартеров. Благодаря использованию электронных балластных устройств розжиг ламп происходит мгновенно, без характерного «моргания» со стартерными схемами управления.

Электронные балласты

Подключить лампу к таким устройствам очень просто: на их корпусе расписана детальная информация и схематически показано, какие контакты лампы необходимо соединить с соответствующими клеммами. Но чтобы было совсем понятно, как выполнить подключение лампы дневного света к электронному балласту, нужно взглянуть на простую схему:

Преимуществом данного подключения является отсутствие дополнительных элементов, необходимых для стартерных схем управления лампами. К тому же, с упрощением схемы увеличивается надежность работы светильника, так как исключаются дополнительные соединения проводов со стартерами, которые являются еще и довольно ненадежными устройствами.

Ниже приведена схема подключения к электронному балласту двух люминесцентных ламп.

Как правило, в комплекте с электронным балластным устройством уже имеются все необходимые провода для сборки схемы, поэтому нет необходимости что-то придумывать и нести дополнительные расходы для покупки недостающих элементов.

Как проверить лампу дневного света?

Если лампа перестала зажигаться, то вероятной причиной ее неисправности может быть обрыв вольфрамовой нити, которая разогревает газ, заставляя светиться люминофор. В процессе работы вольфрам постепенно испаряется, оседая на стенках лампы. При этом на краях стеклянной колбы появляется темный налет, предупреждающий о том, что скоро лампа может выйти из строя.

Как проверить целостность вольфрамовой нити? Очень просто, необходимо взять обычный тестер, которым можно измерить сопротивление проводника и прикоснуться к выводным концам лампы щупами.

Прибор показывает сопротивление 9,9 Ом, что красноречиво говорит нам, что нить цела.

Проверяя вторую пару электродов, тестер показывает полный ноль, эта сторона имеет обрыв нити и поэтому лампа не хочет зажигаться.

Обрыв спирали происходит от того, что со временем нить истончается и постепенно возрастает напряжение, проходящее через нее. Благодаря повышению напряжения выходит из строя стартер – это видно по характерному «морганию» ламп.

После замены сгоревших ламп и стартеров схема должна работать без наладки.

Если включение ламп дневного света сопровождается посторонними звуками или слышен запах гари, следует немедленно обесточить светильник и проверить работоспособность всех его элементов. Имеется вероятность того, что на клеммных соединениях образовалась слабина и греется подключение проводов. Кроме этого, дроссель, если изготовлен некачественно, может иметь витковое замыкание обмоток и, как следствие, выход из строя ламп дневного света.

 

Страница не найдена - ЛампаГид

Светодиоды

В настоящее время широкое применение получили источники света на основе светодиодов. По-другому их называют

Светодиоды

Светодиодная лампочка – это чудо-изобретение. Ведь до ее появления при превращении электричества в свет

Теория

Кто изобрел лампочку? Ответ на этот вопрос не совсем точный. Электрическая лампочка была изобретена

Люминесцентные лампы

В наше время выбор различных вариантов осветительных приборов огромен. Нет смысла говорить о лампах

Люминесцентные лампы

Для освещения больших по площади территорий часто используется несколько устаревшая, но довольно эффективная лампа ДРЛ.

Люминесцентные лампы

Люминесцентные лампы (ЛЛ) находят свое применение в самых разных областях деятельности человека. Изобретение этого

Страница не найдена - ЛампаГид

Люминесцентные лампы

Начиная с того времени, как была изобретена лампа накаливания, люди ищут способы создания более

Улица

Реализация уличного освещения намного сложнее бытового. Это связано с существованием множества правил и требований.

Монтаж

Дизайн интерьера помещений часто включает конструктивные изменения на потолке. Гипсокартонная плита – очень популярный

Светодиоды

Светодиодная лампочка – это чудо-изобретение. Ведь до ее появления при превращении электричества в свет

Прочее

Датчики движения в повседневной жизни активно применяются в системах охраны и сигнализации, для экономного

Светодиоды

Несмотря на разговоры о том, что светодиоды – это наивысшее достижение в области осветительной

Принцип работы люминесцентной лампы и ее устройство

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Схемы подключения люминесцентных ламп дневного света



Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер) Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.




Принцип работы:  при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него - достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного "дросселя" как правило схема на подобие етой...

3 схемы подключения люминесцентной лампы без дросселя и стартера.

Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.

Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.

В первую очередь вам нужно выяснить, что же именно сгорело:

  • сама люминесцентная лампочка

Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.

Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.

Одна из наиболее серьезных проблем - это вышедший из строя дроссель.

Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.

Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.

Как запустить лампу дневного света без дросселя

Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.

В ней используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на некоторые преимущества (возможность запуска сгоревших ламп дневного света), все эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый светильник, чем паять и собирать всю эту конструкцию.

Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?

Вам понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.

Конечно, схему с ее использованием нельзя считать абсолютно бездроссельной, так как на плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам гораздо меньше, так как экономка работает на частотах до нескольких десятков килогерц.

Этот минидроссель ограничивает ток через лампу и дает высоковольтный импульс для зажигания. Фактически это ЭПРА в миниатюрном варианте.

Раньше была большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня уже их активно меняют на светодиодные.

Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.

Поэтому некоторые сознательные и бережливые граждане, которые еще не сдали их в специальные пункты приема, хранят подобные изделия у себя на полках в шкафчиках.

Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.

Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.

При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.

Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).

При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.

Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.

При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.

Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от "нитей накала" колбы. Они обычно идут в виде штырьков.

При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.

Всего у вас должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.

Ну и естественно не забываем про питание 220В. Это те самые жилки, которые идут от цоколя.

Все что нужно сделать далее, это припаять по два проводника к каждому контакту на плате (от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного света.

То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.

Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.

Если стартер в схеме присутствует, его придется выкинуть или зашунтировать.

Как выбрать мощность энергосберегающей лампы

Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.

Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?

А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.

То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.

Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.

Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.

Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает - это качество товаров из поднебесной не соответствует "железобетонным" советским гостам.

2 схемы бездроссельного включения ламп дневного света

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант - это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.

Главное преимущество ее в том, что подобным образом можно запустить светильник не только без дросселя, но и перегоревшую лампу, у которой вообще нет целых спиралей на штырьковых контактах.

Для трубок мощностью 18Вт подойдут следующие компоненты:

  • диодный мост GBU408
  • конденсатор 2нФ (до 1кв)
  • конденсатор 3нФ (до 1кв)
  • лампочка накаливания 40Вт

Для трубок в 36Вт или 40Вт емкости конденсаторов следует увеличить.  Все элементы соединяются вот таким образом.

После чего схемка подключается к лампе дневного света.

Вот еще одна подобная бездроссельная схема.

Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).

Зажигаем сгоревшую лампу

В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.

Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.

Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.

Электроны необходимые для ионизации, вырываются наружу и при комнатной температуре, даже если спираль и перегорела. Все происходит за счет умноженного напряжения.

Весь процесс выглядит следующим образом:

  • первоначально в колбе разряд отсутствует
  • затем на концы подается умноженное напряжение
  • свет внутри за счет этого моментально зажигается
  • далее загорается лампочка накаливания, которая своим сопротивлением ограничивает максимальный ток
  • в колбе постепенно стабилизируется рабочее напряжение и ток
  • лампочка накаливания немного тускнеет

Недостатки подобной сборки:

  • низкий уровень яркости
  • повышенная пульсация

А еще при питании люминесцентных ламп постоянным напряжением, вам придется очень часто менять полярность на крайних электродах колбы. Проще говоря, перед каждым новым включением переворачивать лампу.

В противном случае пары ртути будут собираться только возле одного из электродов и светильник без периодического обслуживания долго не протянет. Это явление называется катафорез или унос паров ртути в катодный конец светильника.

Там где подключен "плюс", яркость будет меньше и этот край начнет чернеть значительно быстрее.

Особенно это заметно при монтаже светильников ЛБ в холодных помещениях - гараж, сарай, коридор, подвал. Если колба не прогрета, она может даже не запуститься.

В этом случае стоит до нее дотронуться теплой рукой и она тут же начинает гореть.

Поэтому запомните - люминесцентная лампа это источник света переменного тока. Постоянный ей противопоказан и убивает лампу. Особенно импортные дохнут очень быстро.

Еще один минус подобных диодных схем, про который мало кто говорит - итоговый ток потребления из розетки. Для 40Вт ЛБ лампочки при не идеально подобранных компонентах, ток потребления из сети 220В может доходить до 1А.

А это даже превышает нагрузку обычной лампы накаливания в 200Вт. Вот это экономия у вас получится!

Поэтому какой из способов подойдет именно вам, решайте сами, исходя из имеющихся под рукой запчастей и познаний в электронике.

Как работает лампа дневного света схема. Из чего состоит люминесцентная лампа

Люминесцентные светильники давно удерживают первенство в освещении нашего быта, чему способствуют долговечность и экономичность данных устройств. Схем подключения люминесцентного светильника существует много, и у каждой из них есть свои особенности.
Сначала разберемся в принципе работы самой лампы . Длинная стеклянная трубка от нескольких сантиметров до… Если учитывать всевозможные современные спирали и изгибы, я не знаю, какова их может быть конечная длина? Мы все же займемся прямыми трубками, которые ограничивались в недавнем прошлом 80 ваттами, и тех, наверное, уже не существует.
Труба заполнена инертным газом с присутствием капельки ртути. Кстати, из-за ртути и утилизируют использованные люминесцентные лампочки в установленном законом порядке, иначе бы случилась экологическая катастрофа.
Суть работы лампы такова: между двумя электродами, представляющими собой нити накала на концах колбы, надо сделать устойчивый электрический пробой , испаряющий и ионизирующий ртуть. Ионизированные пары ртути создают ультрафиолетовое излучение , воздействующее на люминофор , которым изнутри покрыта колба. В зависимости от состава люминофора свечение может принимать все оттенки радуги.
Наверное, слышали о бактерицидных лампах или о кварцевании ? Так вот в этих светильниках люминофор отсутствует, стекло кварцевое, без препятствий пропускающее ультрафиолетовые лучи, более того, в салонах для загара именно такие светильники и применяются, а ультрафиолет может и раковую опухоль нажить — возьмите на заметку!
Как же создается электрический пробой? Рассмотрим некоторые варианты схем подключения люминесцентного светильника.

схема подключения однолампового люминесцентного светильника

Для начала надо разогреть нити накала, чтоб они могли излучать электроны — это называется электронной эмиссией . Данную функцию выполняет стартер . Его контакты настолько близки друг от друга, что при подаче 220В возникает между ними дуга, разогревающая биметаллическую пластину устройства. Пластина соединяется с рядом стоящим контактом, замыкая цепь накала люминесцентной лампы. Цепочка соединений всех элементов схемы представлена на Рис.1, по-моему, комментировать здесь нечего. О роли конденсаторов читайте ниже.
Чтобы не было короткого замыкания, в цепь подключается пускорегулирующий аппарат — ПРА , ограничивающий пусковой ток. Это катушка индуктивности, намотанная на сердечник из электротехнической стали, отсюда и название «дроссель».
Как только разогретые электроды начинают излучать электроны, напряжение на контактах стартера падает, они разрываются, на дросселе возникает высокое напряжение самоиндукции , способное между электродами создать устойчивый электрический пробой. Люминесцентный светильник зажигается, напряжение на лампочке падает наполовину засчет ПРА, и стартер, выполнив свою функцию, уходит на отдых до следующего этапа зажигания. Его в это время можно даже удалить, все равно светильник будет работать.

схема подключения двухлампового люминесцентного светильника

Смотря какие лампочки подключаете. Если лампы-сороковки, то это простое параллельное подключение: к схеме, указанной чуть выше, добавить еще такую, получим двухламповый люминесцентный светильник. Здесь присутствуют два конденсатора (раньше были, теперь их может и не быть). Маленький конденсатор (С1) уничтожает радиопомехи, большой (С2) — дросселя. Резистор R предназначен для разрядки С2 после выключения. Уберем это усложнение — все равно будет успешное зажигание, что, в общем-то, в современных светильниках и делается.


Другое дело, двадцатки — лампочки мощностью 18Вт (Рис.2 и 3). Их рабочее напряжение всего 60В, тогда как сороковки (36Вт) работают на 108 вольтах, поэтому 18-ваттные часто подключаются к сети 220В парой. Соединяются они последовательно, и у каждой — свой стартер, но балласт общий. Четырехламповые светильники 18Вт — просто два двухламповых в одном. Техника зажигания все та же.
Санитарные нормы не рекомендуют длительное пребывание в местах, освещенных стартерными люминесцентными светильниками, ввиду негативного воздействия мерцающего эффекта на зрение. В качестве альтернативы предлагается

схема подключения люминесцентного светильника с ЭПРА.

ЭПРА — это электронный пускорегулирующий аппарат , представляющий собой своеобразный преобразователь частоты и умножитель напряжения. Высокая частота, на которой работает с этим аппаратом люминесцентная лампа, становится не заметна глазу. Такая схема подключения люминесцентного светильника не только безопасна, но еще и экономичнее, в плане потребления электроэнергии, процентов на 15. Значительная потеря в массе из-за отсутствия электротехнической стали делает светильник более удобным при установке.
Основной упор ЭПРА делает на схему подключения двухлампового люминесцентного светильника, схема вычерчивается на крышке аппарата, поэтому проблемы с подключением сводятся к минимуму.


На моем рисунке фаза сети подается на клемму L, рядом — клемма N, на которую подключается «ноль», а на третий контакт. Все остальное видно на чертеже. Конечно, модификаций ЭПРА много, но не стоит бояться замены одного другим, чертеж на крышке все расставит по своим местам, только если монтаж проводов светильника изменить придется.

Люминесцентные лампы - 2-ой в мире по распространенности источник света, а в Стране восходящего солнца они занимают даже 1-ое место, обогнав лампы накаливания. Раз в год в мире делается более 1-го млрд люминесцентных ламп.

1-ые образцы люминесцентных ламп современного типа были показаны американской
компанией General Electric на Глобальной выставке в Нью-Йорке в 1938 году. За 70 лет существования они крепко вошли в нашу жизнь, и на данный момент уже тяжело представить какой-либо большой магазин либо кабинет, в каком не было бы ни 1-го осветительного прибора с люминесцентными лампами.

Люминесцентная лампа - это обычный разрядный источник света низкого давления , в каком разряд происходит в консистенции паров ртути и инертного газа , в большинстве случаев - аргона. Устройство лампы показано на рис. 1.


Пробирка лампы - это всегда цилиндр 1 из стекла с внешним поперечником 38, 26, 16 либо 12 мм. Цилиндр может быть прямым либо изогнутым в виде кольца, буковкы U либо более сложной фигуры. В торцевые концы цилиндра герметично впаяны стеклянные ножки 2, на которых с внутренней стороны смонтированы электроды 3. Электроды по конструкции подобны биспиральному телу накала ламп накаливания и также делаются из вольфрамовой проволоки. В неких типах ламп электроды изготовлены в виде триспирали, другими словами спирали из биспирали. С внешней стороны электроды подпаяны к штырькам 4 цоколя 5. В прямых и U-образных лампах употребляется только два типа цоколей - G5 и G13 (числа 5 и 13 указывают расстояние меж штырьками в мм).

Как и в лампах накаливания, из пробирок люминесцентных ламп воздух кропотливо откачивается через штенгель 6, впаянный в одну из ножек. После откачки объем пробирки заполняется инертным газом 7 и в него вводится ртуть в виде маленький капли 8 (масса ртути в одной лампе обычно около 30 мг ) либо в виде так именуемой амальгамы, другими словами сплава ртути с висмутом, индием и другими металлами.

На биспиральные либо триспиральные электроды ламп всегда наносится слой активирующего вещества - это обычно смесь окислов бария, стронция, кальция, время от времени с маленький добавкой тория.

Если к лампе приложено напряжение большее, чем напряжение зажигания, то в ней меж электродами появляется электронный разряд, ток которого непременно ограничивается какими-либо наружными элементами. Хотя пробирка заполнена инертным газом, в ней всегда находятся пары ртути, количество которых определяется температурой самой прохладной точки пробирки. Атомы ртути возбуждаются и ионизируются в разряде еще легче, чем атомы инертного газа, потому и ток через лампу, и ее свечение определяются конкретно ртутью.

В ртутных разрядах низкого давления толика видимого излучения не превосходит 2 % от мощности разряда, а световая отдача ртутного разряда - всего 5-7 лм/Вт. Но больше половины мощности, выделяемой в разряде, преобразуется в невидимое уф-излучение с длинами волн 254 и 185 нм. Из физики понятно: чем короче длина волны излучения, тем большей энергией это излучение обладает. При помощи особых веществ, именуемых люминофорами, можно перевоплотить одно излучение в другое, при этом, по закону сохранения энергии, «новое» излучение может быть только «менее энергичным», чем первичное. Потому уф-излучение можно перевоплотить в видимое при помощи люминофоров, а видимое в ультрафиолетовое - нельзя.

Вся цилиндрическая часть пробирки с внутренней стороны покрыта узким слоем конкретно такового люминофора 9, который и превращает уф-излучение атомов ртути в видимое. В большинстве современных люминесцентных ламп в качестве люминофора употребляется галофосфат кальция с добавками сурьмы и марганца (как молвят спецы, «активированный сурьмой и марганцем»). При облучении такового люминофора уф-излучением он начинает сиять белоснежным светом различных цветов. Диапазон излучения люминофора - сплошной с 2-мя максимумами - около 480 и 580 нм (рис. 2).

1-ый максимум определяется наличием сурьмы, 2-ой - марганца. Меняя соотношение этих веществ (активаторов), можно получить белоснежный свет различных цветовых цветов - от теплого до дневного. Потому что люминофоры превращают в видимый свет больше половины мощности разряда, то конкретно их свечение определяет светотехнические характеристики ламп.

В 70-е годы прошлого века начали делать лампы не с одним люминофором, а стремя, имеющими максимумы излучения в голубой, зеленоватой и красноватой областях диапазона (450, 540 и 610 нм). Эти люминофоры были сделаны сначало для кинескопов цветного телевидения, где с помощью их удалось получить полностью применимое проигрывание цветов. Композиция 3-х люминофоров позволила и в лампах достигнуть существенно наилучшей цветопередачи при одновременном увеличении световой отдачи, чем при использовании галофосфата кальция. Но новые люминофоры еще дороже старенькых, потому что в их употребляются соединения редкоземельных частей - европия, церия и тербия. Потому в большинстве люминесцентных ламп как и раньше используются люминофоры на базе галофосфата кальция.

Электроды в люминесцентных лампах делают функции источников и приемников электронов и ионов, за счет которых и протекает электронный ток через разрядный просвет. Для того чтоб электроны начали перебегать с электродов в разрядный просвет (как молвят, для начала термоэмиссии электронов), электроды должны быть нагреты до температуры 1100 – 1200 0С. При таковой температуре вольфрам сияет очень слабеньким вишневым цветом, испарение его сильно мало. Но для роста количества вылетающих электронов на электроды наносится слой активирующего вещества, которое существенно наименее термостойко, чем вольфрам, и при работе этот слой равномерно распыляется с электродов и оседает на стенах пробирки. Обычно конкретно процесс распыления активирующего покрытия электродов определяет срок службы ламп.

Для заслуги большей эффективности разряда, другими словами для большего выхода уф-излучения ртути, нужно поддерживать определенную температуру пробирки. Поперечник пробирки выбирается конкретно из этого требования. Во всех лампах обеспечивается приблизительно однообразная плотность тока - величина тока, деленная на площадь сечения пробирки. Потому лампы разной мощности в колбах 1-го поперечника, обычно, работают при равных номинальных токах. Падение напряжения на лампе прямо пропорционально ее длине. А потому что мощность равна произведению тока наальна их д напряжение, то при схожем поперечнике пробирок и мощность ламп прямо пропорционлине. У самых массовых ламп мощностью 36 (40) Вт длина равна 1210 мм, у ламп мощностью 18 (20) Вт - 604 мм.

Большая длина ламп повсевременно заставляла находить пути ее уменьшения. Обычное уменьшение длины и достижение подходящих мощностей за счет роста тока разряда нерационально, потому что при всем этом возрастает температура пробирки, что приводит к повышению давления паров ртути и понижению световой отдачи ламп. Потому создатели ламп пробовали уменьшить их габариты за счет конфигурации формы - длинноватую цилиндрическую пробирку сгибали напополам (U-об- различные лампы) либо в кольцо (кольцевые лампы). В СССР уже в 50-е годы делали U-образные лампы мощностью 30 Вт в пробирке поперечником 26 мм и мощностью 8 Вт в пробирке поперечником 14 мм.

Но кардинально решить делему уменьшения габаритов ламп удалось исключительно в 80-е годы, когда начали использовать люминофоры, допускающие огромные электронные нагрузки, что позволило существенно уменьшить поперечник пробирок. Пробирки стали делать из стеклянных трубок с внешним поперечником 12 мм и неоднократно изгибать их, сокращая тем общую длину ламп. Появились так называемые компактные люминесцентные лампы. По механизму работы и внутреннему устройству малогабаритные лампы не отличаются от обыденных линейных ламп.

Посреди 90-х годов на мировом рынке появилось новое поколение люминесцентных ламп, в маркетинговой и технической литературе называемое «серией Т5» (в Германии - Т16). У этих ламп внешний поперечник пробирки уменьшен до 16 мм (либо 5/8 дюйма, отсюда и заглавие Т5). По механизму работы они также не отличаются от обыденных линейных ламп. В конструкцию ламп внесено одно очень принципиальное изменение - люминофор с внутренней стороны покрыт узкой защитной пленкой, прозрачной и для ультрафиолетового, и для видимого излучения. Пленка защищает люминофор от попадания на него частиц ртути, активирующего покрытия и вольфрама с электродов, по этому исключается «отравление» люминофора и обеспечивается высочайшая стабильность светового потока в течение срока службы. Изменены также состав наполняющего газа и конструкция электродов, что сделало неосуществимой работу таких ламп в старенькых схемах включения. Не считая того - в первый раз с 1938 года - изменены длины ламп таким макаром, чтоб размеры осветительных приборов с ними соответствовали размерам стандартных модулей очень престижных на данный момент навесных потолков.

Люминесцентные лампы, в особенности последнего поколения в колбах поперечником 16 мм, существенно превосходят лампы накаливания по световой отдаче и сроку службы. Достигнутые сейчас значения этих характеристик равны 104 лм/Вт и 40000 часов.
Но люминесцентные лампы имеют и огромное количество недочетов, которые следует знать и учесть при выборе источников света:

1. Огромные габариты ламп нередко не позволяют перераспределять световой поток необходимым образом.
2. В отличие от ламп накаливания, световой поток люминесцентных ламп очень находится в зависимости от окружающей температуры (рис. 3).

3. В лампах содержится ртуть - очень ядовитый металл, что делает их экологически небезопасными.
4. Световой поток ламп устанавливается не сходу после включения, а спустя некое время, зависящее от конструкции осветительного прибора, окружающей температуры и самих ламп. У неких типов ламп, в которые ртуть вводится в виде амальгамы, это время может достигать 10-15 минут.
5. Глубина пульсаций светового потока существенно выше, чем у ламп накаливания, в особенности у ламп с редкоземельными люминофорами. Это затрудняет внедрение ламп в почти всех производственных помещениях и, не считая того, негативно сказывается на самочувствии людей, работающих при таком освещении.
6. Как было сказано выше, люминесцентные лампы, как и все газоразрядные приборы, требуют для включения в сеть использования дополнительных устройств.

На фоне постоянного роста цен на электричество населению приходится экономить. Наиболее простой способ сделать это — установить люминесцентные лампы. Они потребляют в 3-4 раза меньше, чем классические, давая практически такой же световой поток. Давайте разберем, чем хорош есть ли смысл менять обычные лампочки накаливания на “энергосберегайки” и в чем их основные достоинства.

Светильники, работающие по принципу люминесцента, были изобретены в середине 30-х годов прошлого века. Их придумали в США. Распространяться по стране они начали в 50-е годы, в 60-е они появились в Европе и СССР. Сегодня люминесцентные светильники находятся на втором месте по распространенности (первое занимают лампы накаливания), но их процентное соотношение постоянно растет. И даже светодиодные лампы не вытесняют люминесцентные с рынка — они занимают нишу обычных ламп накаливания.

Классические люминесцентные линейные лампы старого типа

Использование этих светильников долгое время было ограничено из-за их больших размеров. Если в общественных заведениях их еще можно было разместить, то для дома они не очень подходили. Но в 90-е годы ученым удалось усовершенствовать конструкцию, уменьшить ширину трубки до 12 мм и скрутить ее в спираль, создав аналог обычной лампочки. Это придало люминесцентным лампам новую жизнь.

Устройство светильника

Теперь давайте разберем, (речь идет о компактных вариантах, или КЛЛ):

  1. Колба.
  2. Цоколь.

Колба представляет собой тонкую трубку, завитую в спираль. Внутри трубки расположены электроды из вольфрама, окрашенные оксидами стронция, бария и кальция. Трубка герметично закрыта, в ней находится инертный газ, смешанный с парами ртути. Именно эти пары ионизируются и испускают ультрафиолет. Принцип работы следующий: на вольфрамовые контакты подается напряжение, между ними возникает заряд и происходит запуск светильника. Пары ртути излучают свет в ультрафиолетовом спектре. Чтобы сделать его видимым, на стенки трубки наносят специальное вещество — люминофор. В результате облучения от ультрафиолета он тоже “зажигается” и светится в видимом спектре. При помощи толщины слоя люминофора и его состава можно менять цвет и насыщенность потока. По сути, именно от него зависит, насколько хорошо устройство будет светить.

Внимание: при производстве КЛЛ используются различные редкоземельные элементы, нанесенные в 3-5 слоев в качестве люминофора. Следите за тем, чтобы цоколь не разбился — в нем много вредных веществ. Именно за счет использования более дорогих люминофоров, нанесенных толстым слоем, ученым удалось добиться значительного сокращения длины трубки.

Современные люминесцентные лампы

Изучая следует рассказать про вторую часть конструкции — цоколь. Он не только удерживает светильник в патроне, но и содержит внутри ЭПРА (пуско-регулирующую аппаратуру или, в просторечии, стартер/балласт). Они выдают токи с высокими частотами, из-за чего у комнатных ламп полностью отсутствует эффект мерцания, который хорошо заметен у обычных линейных ламп накаливания. Высокочастотные токи образуются в результате работы инвертора, выпрямляющего их и преобразующего в импульсы. Современные ЭПРА также способны усиливать мощностные коэффициенты, что позволяет создавать активные нагрузки и не компенсировать при работе косинус фи.

Внимание: по сути, срок службы лампы зависит от качества балласта. Расчетное время свечения люминофора около 20 тысяч часов, но устройство обычно работает меньше и выходит из строя в результате поломки ЭПРА.

При выборе старайтесь не экономить — дешевые лампы собираются из недорогих комплектующих, которые служат максимум полтора года. Также они крайне чувствительны к скачкам напряжения — при просадке на 10-20% балласт может выйти из строя.

Типы ламп

Все устройства можно разделить на два типа:

  1. Имеющие встроенный ЭПРА.
  2. Имеющие внешний дроссель.

Встроенные ЭПРА, входящие в состав люминесцентной лампы, обычно подключаются к классическому цоколю E27 или E14 — они могут использоваться в любых люстрах и светильниках. Лампы под внешние ЭПРА представляют собой обычную трубку с цоколем под штырьковые крепления. Обычно их используют в настольных светильниках — дроссель находится внутри корпуса, а лампа является расходным материалом.

Цоколь у них может быть рассчитан на подключение к 2 или 4 штырькам. При замене лампы нужно учитывать тип цоколя, чтобы не перепутать — промышленность выпускает более 10 видов подобных устройств.

Некоторые нюансы

Раньше люминесцентные лампы не очень любили, поскольку они давали “больничный” безжизненный белый свет. Сегодня ситуация изменилась — промышленность выпускает устройства с диапазоном работы от 2700 до 6500 градусов Кельвина, что практически полностью перекрывает возможные диапазоны от “лампового” желтого до практически голубого.

Сгоревший ЭПРА в люминесцентной лампе

Мощность подобных светильников варьируется от 5 до 23 ватт, для жилых помещений используют 9-15 ваттные варианты. Выбирая себе качественную лампу, обязательно спрашивайте у продавца про устройство люминесцентного светильника. Чем качественнее ЭПРА, тем дольше она прослужит. Стандартный срок службы сертифицированных ламп — 10 00 часов, тогда как дешевые китайские подделки служат 1000-3000 часов. Изделия от лидеров рынка, таких как PHILIPS или OSRAM, легко выхаживают по 15 тысяч часов, особенно если в сети нет провалов напряжения.

Внимание: люминесцентные светильники не работают вместе с диммерами. Если вам важен процесс регулировки уровня освещения, то приобретайте классические лампы накаливания.

И еще один совет напоследок. Не гонитесь за дешевыми устройствами — они служат очень мало. Если хотите сэкономить, то покупайте комплекты из 2, 4, 8 светильников — они обходятся значительно дешевле, чем одиночные. Выбирайте лампы от проверенных производителей — они гарантировано проработают весь положенный им срок.

Люди часто спрашивают, какой газ в люминесцентных лампах используют и не вреден ли он. В большинстве устройств используют аргон с парами ртути. Ничего страшного не произойдет, если вы разобьете ее в доме, но лучше все же не допускать подобного и сдавать их в пункты утилизации.

Люминесцентные лампы

Люминесцентные лампы используются в промышленном машинном зрении для освещения больших площадей. Таким образом можно освещать даже целые помещения цеха, станции наполнения и укладки на поддоны, агрегаты и т. Д. Однако для обработки изображений их всегда следует использовать в сочетании с электронным балластом, чтобы избежать эффекта мерцания в получаемом изображении камеры. На самом деле они используются только в форме стержня, трубки круглой формы встречаются довольно редко.

Видео: 50 Гц-мерцание флуоресцентного освещения в замедленной съемке


Типичные свойства, используемые в промышленном машинном зрении

Принцип действия люминесцентной лампы


Люминесцентные лампы также обычно называют «неоновым светом» или люминесцентным светом.Люминесцентная лампа построена по принципу газоразрядной лампы низкого давления. Благородный газ (неон / аргон) вместе с паром ртути ионизируется с помощью напряжения зажигания. Таким образом, смесь становится электропроводной, образуется высокоэнергетическая плазма низкого давления.

Эта возможность генерировать свет основана на электронных переходах в атомных структурах газовой смеси. Вышедшие электроны переходят с более высоких уровней энергии на более низкие и при этом излучают в основном ультрафиолетовый свет.Из-за очень дискретных атомных переходов для парогазоразрядных ламп характерны довольно узкополосные спектры излучения.

Видимый спектр обычной неоновой трубки (типичный пример

Чтобы излучать видимый дневной свет, трубка покрыта изнутри флуоресцентными веществами (= люминесцентным материалом).

Эти покрытия поглощают нежелательный УФ-свет и излучают разные цвета в зависимости от газового наполнения трубки и покрытия.Пробирки доступны в продаже в различных оттенках белого (например, теплый белый, нейтральный белый, дневной белый и т. Д.). Цветной свет также возможен, но не очень часто используется для промышленной обработки изображений.

Важное значение для промышленного машинного зрения

  • Неоновый свет никогда не генерирует непрерывный спектр излучения, а состоит из различных отдельных диапазонов длин волн.
  • Несмотря на кажущийся долгий срок службы, составляющий несколько тысяч часов, после нескольких месяцев непрерывной работы приходится мириться со значительными потерями в яркости.Решить эту проблему можно циклической заменой трубок. Поскольку одна лампа часто содержит несколько трубок, их заменяют временно смещенными. Если прибл. Установлено 4 трубки, одна из трубок заменяется каждые четыре-шесть недель. В среднем лампы остаются в эксплуатации от 4 до 6 месяцев. Возраст, яркость, цветовая температура и т. Д. Всегда представляют собой смесь нескольких пробирок.
  • Электронный балласт строго требуется для использования люминесцентных ламп. Типичный эффект мерцания на частоте 50 Гц очень мешает при любой надлежащей проверке, при использовании балласта 25 кГц этих проблем в основном можно избежать.
  • Чем больше время работы, тем сильнее повреждается люминесцентный слой, который преобразует УФ-свет в видимый свет. Со временем лампа будет излучать более коротковолновый свет. Для критических цветных приложений баланс белого следует выполнять периодически, а отдельные лампы следует регулярно заменять в циклическом режиме.

3. Как работают люминесцентные лампы?

3.4. Физические характеристики ламп

Принципы работы

Люминесцентная лампа генерирует свет от столкновений в горячей газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть - в какие электроны поднимаются на более высокие уровни энергии, а затем отступать при излучении на двух линиях УФ-излучения (254 нм и 185 нм).Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке фонарь. Химический состав этого покрытия подобран таким образом, чтобы излучать в желаемом спектре.

Строительство

Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть путем ударной ионизации. Ионизация может происходить только в исправных лампочках.Следовательно, вредные последствия для здоровья от этого процесса ионизации невозможно. Кроме того, лампы часто оснащаются двумя конверты, что значительно снижает количество УФ-излучения испускается.

Электрические аспекты эксплуатации

Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия.В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны различные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до конца срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, т.е.излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где схемотехника не подлежит замене перед люминесцентными лампами.Это снизило количество технических сбоев, вызывающих эффекты, как перечисленные выше.

ЭМП

Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц - вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e.грамм. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.

Мерцание

Все лампы будут различать интенсивность света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.Для лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на частоте 120 Гц не видно, в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».

Однако как лампы накаливания (Чау-Шинг и Девани, 2004), так и "немерцающие" люминесцентные источники света (Хазова и О'Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой частот, либо только в часть лампы или во время цикла запуска в несколько минут.

Световое излучение, УФ-излучение и синий свет

Имеются характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специальных покрытий из стекло и часто продаются с атрибутом «теплый» или "Холодные" или, точнее, по их цветовой температуре для профессиональные светотехнические приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. свет, чем лампы накаливания.Есть на международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, настроенными на защиту от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.

УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити накала и поглощение стекла. Некоторый КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г.).

Люминесцентная лампа - обзор

III Квантоворасщепляющие люминофоры (QSP) и безртутные люминесцентные лампы

Обычные люминесцентные лампы, которые обеспечивают энергоэффективное освещение общего назначения в коммерческих и жилых помещениях, используют ртуть в качестве активного вещества для генерации УФ-излучения. Однако растет озабоченность по поводу выщелачивания растворимой ртути из отработанных ламп на свалках твердых отходов, попадающих в запасы грунтовых вод.Люминесцентная лампа, в которой разряд ксенона низкого давления возбуждает подходящие люминофоры для генерации белого света, может рассматриваться как безртутная замена существующим люминесцентным лампам. Недавно эффективность разряда ксенонового газа составила почти 65% при оптимальных условиях эксплуатации. Однако проблемы с эффективностью лампы не позволяют нам рассматривать обычные люминофоры как материалы, генерирующие белый свет в такой люминесцентной лампе.

Общая эффективность преобразования люминесцентной лампы может быть схематически записана как η лампа ∼ η uv vis / ε uv ] Q p , где η uv - эффективность разряда для преобразования электроэнергии в УФ-энергию, Q p - квантовая эффективность люминофора, ε vis - средневзвешенная энергия спектра видимых фотонов, излучаемых люминофором (это фиксируется с помощью спектральная чувствительность человеческого глаза, которая достигает максимума около 555 нм), и ε uv - энергия фотона, испускаемого разрядом и поглощаемого люминофором.

Для обычных люминесцентных ламп на основе ртути эффективность составляет (очень приблизительно): 0,25 ∼ 0,65 [254 нм / 555 нм] 0,85. Обратите внимание, что эффективность разряда составляет около двух третей, и люминофор преобразует почти каждый падающий фотон в УФ-излучение. Если эффективность разряда составляет 65%, а люминофор почти идеален, чем объясняется относительно низкая общая эффективность преобразования, составляющая 25%? Ответ заключается в стоксовом сдвиге, обозначенном здесь отношением [ к / ε uv ], которое учитывает тот факт, что каждый УФ-фотон, падающий на люминофор, несет энергию около 5 эВ, в то время как каждый фотон, испускаемый люминофор несет чуть более 2 эВ.На этот единственный процесс приходится 55% потерь энергии в обычной люминесцентной лампе.

Если мы хотим воспроизвести эффективность преобразования энергии обычных люминесцентных ламп, но с разрядом Xe, который излучает на длине волны 147 нм, более высокие потери стоксова сдвига могут быть компенсированы более высокой квантовой эффективностью люминофора. Были некоторые демонстрации люминофоров, которые в избыточном количестве производят более одного видимого фотона на каждый падающий УФ-фотон. Мы называем такие материалы «квантово-расщепляющими люминофорами» (QSP).Например, люминофор YF 3 : Pr 3+ дает квантовую эффективность 1,40 ± 0,15 при комнатной температуре при возбуждении излучением 185 нм. Если этот люминофор также дает такую ​​же квантовую эффективность при возбуждении 147 нм, тогда требование преобразования энергии становится более разумным: 0,25 ∼ 0,65 [147 нм / 555 нм] 1,40. Можно сразу увидеть преимущества люминофора YF 3 : Pr 3+ в устройствах, в которых в качестве основного источника возбуждения используется вакуумное ультрафиолетовое излучение (ВУФ) разряда инертных газов.

Процесс квантового расщепления в люминофорах, активированных Pr 3+ , показан на рис. 11A. Падающие фотоны ВУФ-излучения поглощаются через разрешенный оптический переход Pr 3+ 4 f → 5 d . Возбуждение затухает до уровня 1 S 0 . Тогда вероятность перехода такова, что уровень 1 S 0 радиационно распадается до уровня 1 I 6 , что приводит к генерации первого фотона.Второй переход, который соединяет верхний уровень 3 P с несколькими уровнями основного состояния, дает второй фотон.

РИСУНОК 11. Схематическое изображение квантового расщепления в (A) материалах, активированных Pr 3+ и (B) материалах, активированных Gd 3+ , Eu 3+ ; –- & gt; указывает на безызлучательные переходы.

К сожалению, практическое использование люминофора YF 3 : Pr 3+ непросто по нескольким причинам.Во-первых, люминофор нестабилен в присутствии разряда инертных газов / ртути, который используется в обычных люминесцентных лампах. Неизвестно, возникает ли эта нестабильность из-за химического, фотохимического, плазменного или другого механизма. Во-вторых, крупномасштабное производство фторированных материалов затруднено. В-третьих, излучение Pr 3+ , которое происходит в основном в темно-синем (около 405 нм), по существу теряется, потому что человеческий глаз практически нечувствителен к этой длине волны.

Вышеупомянутые проблемы с практической реализацией фторированных материалов побудили Шриваставу и его коллег продолжить разработку оптимизированных решеток-хозяев оксидов в качестве QSP.Были обнаружены три оксидных материала, в которых наблюдается квантовое расщепление Pr 3+ : SrAl 12 O 19 , LaMgB 5 O 10 и LaB 3 O 6 . Однако ни один из оксидных материалов не показал квантовую эффективность, превышающую единицу, и проблема темно-синего излучения все еще оставалась.

Недавно в литературе были описаны попытки создания QSP, основанные на трехвалентном ионе гадолиния. Падающие фотоны ВУФ-излучения поглощаются через оптический переход Gd 3 + 8 S 7/2 6 G J (рис.11Б). Процесс кросс-релаксации вызывает излучение намеренно добавленного активатора Eu 3+ (этап 1 на фиг. 11B). Во время этого процесса кросс-релаксации ион Gd 3+ релаксирует в нижнее состояние 6 P J . Энергия, мигрирующая по уровням 6 P J , захватывается вторым ионом Eu 3+ (этап 2 на фиг. 11B). Следовательно, два красных фотона могут быть произведены на один падающий фотон ВУФ-излучения. Действительно, внутренняя квантовая эффективность приближается к двум в Li (Y, Gd) F 4 : Eu 3+ .

Вышеупомянутое обсуждение показывает, что люминофор, который появился как слабое звено в цепи преобразования энергии, может быть улучшен путем разработки QSP. Ни один такой материал не был превращен в коммерчески жизнеспособный люминофор, хотя значительные усилия продолжаются в разработке таких люминофоров.

Высокоэффективные флуоресцентные органические светоизлучающие устройства с фосфоресцентным сенсибилизатором

  • 1

    Baldo, M.A. et al. Высокоэффективное фосфоресцентное излучение органических электролюминесцентных устройств. Nature 395 , 151–154 (1998).

    ADS CAS Статья Google Scholar

  • 2

    Бальдо, М. А., Ламански, С., Берроуз, П. Э., Томпсон, М. Э. и Форрест, С. Р. Очень высокоэффективные органические светоизлучающие устройства зеленого цвета на основе электрофосфоресценции. Прил. Phys. Lett. 75 , 4–6 (1999).

    ADS CAS Статья Google Scholar

  • 3

    VanSlyke, S.A. & Tang, C. W. Органические электролюминесцентные устройства с улучшенной эффективностью преобразования энергии. (Патент США № 4539507, 1985 г.).

  • 4

    Бальдо, М. А., О'Брайен, Д. Ф., Томпсон, М. Э. и Форрест, С. Р. Экситонное синглетно-триплетное отношение в тонкой полупроводниковой органической пленке. Phys. Ред. B 60 , 14422–14428 (1999).

    ADS CAS Статья Google Scholar

  • 5

    Клессинджер, М.& Michl, J. Возбужденные состояния и фотохимия органических молекул (VCH Publishers, New York, 1995).

    Google Scholar

  • 6

    Клив, В., Яхиоглу, Г., Ле Барни, П., Френд, Р. и Тесслер, Н. Сбор синглетной и триплетной энергии в полимерных светодиодах. Adv. Матер. 11 , 285–288 (1999).

    CAS Статья Google Scholar

  • 7

    Чен, К.Х., Ши, Дж. И Тан, К. В. Последние разработки в области молекулярных органических электролюминесцентных материалов. Macromol. Symp. 125 , 1–48 (1997).

    Артикул Google Scholar

  • 8

    Brackmann, U. Лямбдахромные лазерные красители (Lambda Physik, Gottingen, 1997).

    Google Scholar

  • 9

    Форстер Т. Передаточные механизмы электронного возбуждения. Обсудить. Faraday Soc. 27 , 7–17 (1959).

    Артикул Google Scholar

  • 10

    Ермолаев В. Л., Свешникова Е. Б. Индуктивно-резонансный перенос энергии от ароматических молекул в триплетном состоянии. Докл. Акад. 1963. Т. , , 149, , 1295–1298.

    CAS Google Scholar

  • 11

    Берггрен, М., Додабалапур, А., Слашер, Р. Э. и Бао, З. Усиление света в органических тонких пленках с использованием каскадной передачи энергии. Nature 389 , 466–469 (1997).

    ADS CAS Статья Google Scholar

  • 12

    Гарбузов Д. З., Булович В., Берроуз П. Э. и Форрест С. Р. Эффективность фотолюминесценции и поглощение тонких пленок трис-хинолата алюминия (Alq 3). Chem. Phys. Lett. 249 , 433–437 (1996).

    ADS CAS Статья Google Scholar

  • 13

    Vander Donckt, E., Camerman, B., Hendrick, F., Herne, R. & Vandeloise, R. Комплекс Ir (III) с иммобилизованным полистиролом как новый материал для измерения кислорода. Бык. Soc. Чим. Бельг. 103 , 207–211 (1994).

    CAS Статья Google Scholar

  • 14

    Bulovic, V. et al. Яркие насыщенные органические светоизлучающие устройства с переходом от красного к желтому цвету, основанные на спектральных сдвигах, вызванных поляризацией. Chem. Phys. Lett. 287 , 455–460 (1998).

    ADS CAS Статья Google Scholar

  • 15

    Chen, C.H., Tang, C.W., Shi, J. & Klubeck, K.P. Улучшенные красные легирующие примеси для органических электролюминесцентных устройств. Macromol. Symp. 125 , 49–58 (1997).

    Артикул Google Scholar

  • 16

    Булович В., Дешпанде Р., Томпсон, М. Э. и Форрест, С. Р. Настройка цветового излучения тонкопленочных молекулярных органических светоизлучающих устройств с помощью эффекта твердотельной сольватации. Chem. Phys. Lett. 308 , 317 (1999).

    ADS CAS Статья Google Scholar

  • 17

    Тан Ч. В., Ван Слайк С. А. и Чен Ч. Х. Электролюминесценция легированных органических тонких пленок. J. Appl. Phys. 65 , 3610–3616 (1989).

    ADS CAS Статья Google Scholar

  • 18

    О'Брайен, Д. Ф., Бальдо, М. А., Томпсон, М. Э. и Форрест, С. Р. Улучшение передачи энергии в электрофосфоресцентных устройствах. Прил. Phys. Lett. 74 , 442–444 (1999).

    ADS CAS Статья Google Scholar

  • Использование гудения флуоресцентных ламп для более эффективных вычислений - ScienceDaily

    Свойство, вызывающее гудение люминесцентных ламп, может обеспечить новое поколение более эффективных вычислительных устройств, которые хранят данные с помощью магнитных полей, а не электричества.

    Группа исследователей из Мичиганского университета разработала материал, который как минимум вдвое более «магнитострикционный» и гораздо менее дорогостоящий, чем другие материалы в этом классе. Помимо вычислений, это также может привести к созданию более совершенных магнитных датчиков для медицинских и охранных устройств.

    Магнитострикция, которая вызывает гудение люминесцентных ламп и электрических трансформаторов, возникает, когда форма материала и магнитное поле связаны, то есть изменение формы вызывает изменение магнитного поля.Это свойство может стать ключом к новому поколению вычислительных устройств, называемых магнитоэлектриками.

    Магнитоэлектрические чипы

    могут сделать все, от крупных центров обработки данных до сотовых телефонов, более энергоэффективным, сократив потребности мировой вычислительной инфраструктуры в электроэнергии.

    Изготовленный из комбинации железа и галлия, материал подробно описан в статье, опубликованной 12 мая в журнале Nature Communication . Команда, возглавляемая профессором материаловедения и инженерии Университета Мэн Джоном Хероном, включает исследователей из Intel; Cornell University; Калифорнийский университет в Беркли; Университет Висконсина; Purdue University и другие места.

    Магнитоэлектрические устройства используют магнитные поля вместо электричества для хранения цифровых единиц и нулей двоичных данных. Крошечные импульсы электричества заставляют их слегка расширяться или сжиматься, изменяя их магнитное поле с положительного на отрицательное или наоборот. Поскольку им не требуется постоянный поток электроэнергии, как современные чипы, они потребляют лишь часть энергии.

    «Ключом к тому, чтобы заставить магнитоэлектрические устройства работать, является поиск материалов, электрические и магнитные свойства которых взаимосвязаны.- сказал Херон. - А большая магнитострикция означает, что микросхема может выполнять ту же работу с меньшим энергопотреблением ».

    Более дешевые магнитоэлектрические устройства с десятикратным улучшением

    В большинстве современных магнитострикционных материалов используются редкоземельные элементы, которых слишком мало и они дороги, чтобы их можно было использовать в количествах, необходимых для вычислительных устройств. Но команда Херона нашла способ добиться высоких уровней магнитострикции с помощью недорогого железа и галлия.

    Обычно, объясняет Херон, магнитострикция сплава железо-галлий увеличивается с добавлением большего количества галлия.Но это увеличение выравнивается и в конечном итоге начинает падать, поскольку более высокие количества галлия начинают формировать упорядоченную атомную структуру.

    Итак, исследовательская группа использовала процесс, называемый низкотемпературной молекулярно-лучевой эпитаксией, чтобы по существу заморозить атомы на месте, не давая им образовать упорядоченную структуру по мере добавления галлия. Таким образом, Херон и его команда смогли удвоить количество галлия в материале, добившись десятикратного увеличения магнитострикции по сравнению с немодифицированными сплавами железа и галлия.

    «Низкотемпературная молекулярно-лучевая эпитаксия - чрезвычайно полезный метод - это немного похоже на окраску распылением отдельными атомами», - сказал Херон. «И« нанесение распылением »материала на поверхность, которая слегка деформируется при приложении напряжения, также облегчило испытание его магнитострикционных свойств».

    Исследователи работают с программой Intel MESO

    Магнитоэлектрические устройства, изготовленные в исследовании, имеют размер в несколько микрон - большие по компьютерным стандартам.Но исследователи работают с Intel, чтобы найти способы уменьшить их до более удобного размера, который будет совместим с программой компании по магнитоэлектрическим спин-орбитальным устройствам (или MESO), одной из целей которой является продвижение магнитоэлектрических устройств в массовое производство.

    «Intel отлично умеет масштабировать вещи и делает все возможное, чтобы технология действительно работала в сверхмалых масштабах компьютерного чипа», - сказал Херон. «Они очень вкладываются в этот проект, и мы регулярно встречаемся с ними, чтобы получить отзывы и идеи о том, как расширить эту технологию, чтобы сделать ее полезной в компьютерных микросхемах, которые они называют MESO.«

    В то время как устройство, использующее этот материал, вероятно, появится через несколько десятилетий, лаборатория Херона подала заявку на патентную защиту через UM Office of Technology Transfer.

    Работа называется «Разработка новых ограничений магнитострикции за счет метастабильности в сплавах железо-галлий». Исследование поддерживается IMRA America и Национальным научным фондом (номера грантов NNCI-1542081, EEC-1160504, DMR-1719875 и DMR-1539918).

    Среди других исследователей этой статьи - доцент кафедры материаловедения и инженерии Эммануил Киупакис; Доцент кафедры материаловедения и инженерии Роберт Ховден; и научные сотрудники аспиранта UM Питер Мейсенхаймер и Сок Хён Сон.

    Машина для переработки люминесцентных ламп

    Рейтинг продукта: 4.67

    Делает то, для чего был создан! (5)
    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Счетчик лампочек был бы отличным

    Просто, но эффективно.

    Отзыв от Valley Veiw Hospital в Гленвуд-Спрингс, Ко.

    Отличное соотношение цены и качества (5)

    Покупатель порекомендовал бы этот продукт другу

    Покупателю понравилось: Ничего
    Не понравилось покупателю: Ничего

    Bulb Eater немедленно помог нам уменьшить объем хранилища, создать более безопасную среду хранения, одновременно позволив нам добавить еще один предмет к нашим усилиям по сокращению отходов в городе Оберн.

    Проверено Служба охраны окружающей среды города Оберн - Переработка в Оберне, округ Ли, Алабама, США

    Помогает окружающей среде (5)

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Ничего

    Ничего, это было благословением для нашей собственности, которая постоянно использует ее для дубления лампочек.

    Отзыв Olde Towne University Square в Толедо, Огайо

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Счетчик лампочек был бы отличным

    Отзыв от HMU, LLC в Ричмонде, Вирджиния

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Счетчик лампочек был бы отличным

    Отзыв компании Sanitary Ltd в Грузии

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Ничего

    Отзыв от Tolley Electric в Ashland va

    Прочный, быстрый, эффективный, простой (5)

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Счетчик лампочек был бы отличным

    Ничего особенного не нравится.Хорошо спроектированный и собранный, полный при доставке. Спасибо.

    Рассмотрено NW Natural Gas в 220 NW Second Ave. Portland, OR. 97209

    Сделал именно то, что сказал представитель !! (5)

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Ничего
    Не понравилось покупателю: Счетчик ламп был бы отличным

    Отзыв от PF McCarthy, Inc.в Колорадо-Спрингс, CO

    Превосходное соотношение цены и качества (5)

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Ничего

    Отзыв Bascom Palmer Eye Inst.в Майами, Флорида

    Освободить комнату от хранившихся отработавших ламп (5)

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Иногда происходит поломка барабана за пределами

    Отзыв Holmdel Board Of Education в Холмделе, Нью-Джерси

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Ничего

    Отзыв компании Health and Hospital Corp.в Индианаполисе, штат Индиана.

    Покупатель порекомендовал бы этот продукт другу

    Покупателю понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Дорогие лампы ограниченного размера, которые можно раздавить

    Было бы неплохо вот-вот раздавить HID Bulbs

    Отзыв NBPD в Нортбруке

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Клиенту не понравилось: Мне сказали, что мне нужно от 12 до 13 сот

    В целом мы очень довольны производительностью этой машины.Хотелось бы, чтобы мы купили его раньше.

    Проверено Amelang partners, Inc. в V.A. Региональный офис, Хьюстон, Техас,

    Pruduct работает как рекламируется (5)

    Покупатель порекомендовал бы этот продукт другу

    Покупателю понравилось: Ничего
    Не понравилось покупателю: Дорого

    Отзыв Adman Electric Inc.в Кливленде, TN

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Иногда происходит поломка барабана за пределами

    Очень доволен. Bulb Eater соответствует нашим ожиданиям или превосходит их.

    Отзыв от Колледж Мэри Болдуин в Стонтоне, штат Вирджиния

    Намного проще, чем боксировать.(5)

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Иногда происходит поломка барабана за пределами

    Отзыв компании Williams Electric Company inc в Клинтоне, OK

    Клиент порекомендовал бы этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Дорого

    Отзыв TWI-Yamaha в Воноре, Теннесси

    Покупатель порекомендовал бы этот продукт другу

    Покупателю понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Дорого, Иногда выходит из строя барабан

    Луковицы довольно часто ломаются при помещении в желоб.Я бы сделал желоб на 12 дюймов длиннее. В целом неплохой агрегат.

    Проверено CVCS в Синклервилле, штат Нью-Йорк,

    Клиент порекомендовал бы этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Дорого

    Проверено Starr Electric Company в Фейетвилле, Северная Каролина

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Ничего

    Проверено Флоридскими сертифицированными монтажниками знаков в Дотане, штат Алабама, 36303

    Штамповочный завод избавляется от лампочек на 5 лет (4)

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Ничего

    Проверено Unipres, США.в Портленде, штат Теннесси.

    Покупатель порекомендовал бы этот продукт другу

    Покупателю понравилось: Ничего
    Не понравилось покупателю: Ничего

    Отзыв от Genworth Financial в Линчбурге, Вирджиния

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Хорошее качество
    Не понравилось покупателю: Ничего

    Отзыв от East Kentucky Power в Винчестере, KY

    Отличный продукт и ценность (5)

    Клиент порекомендовал этот продукт другу

    Клиенту понравилось: Хорошее качество, уменьшает потребность в пространстве для хранения
    Не понравилось покупателю: Иногда происходит поломка барабана за пределами

    Проверено Transwestern Commercial Services в кампусе

    острова Ригли Гуси

    Люминесцентная лампа - Энциклопедия Нового Света

    Ассорти из люминесцентных ламп .Сверху две компактные люминесцентные лампы, снизу две штатные лампы. Спичка показана для шкалы.

    Люминесцентная лампа представляет собой газоразрядную лампу, которая использует электричество для возбуждения паров ртути в аргоне или неоне, в результате чего образуется плазма, излучающая коротковолновый ультрафиолетовый свет. Затем этот свет заставляет люминофор флуоресцировать, производя видимый свет.

    В отличие от ламп накаливания, люминесцентные лампы всегда требуют пускорегулирующего устройства для регулирования потока энергии через лампу. В обычных трубных приспособлениях - обычно 4 фута (120 сантиметров) или 8 футов (240 сантиметров) - балласт заключен в приспособление.Компактные люминесцентные лампы могут иметь обычный балласт, расположенный в светильнике, или они могут иметь балласты, встроенные в лампы, что позволяет использовать их в патронах, обычно используемых для ламп накаливания.

    Поскольку люминесцентные лампы потребляют значительно меньше энергии, чем лампы накаливания, правительства и промышленность поощряют замену традиционных ламп накаливания люминесцентными лампами в рамках разумной экологической и энергетической политики.

    История

    Самым ранним предком люминесцентной лампы, вероятно, является устройство Генриха Гейслера, который в 1856 году получил голубоватое свечение от газа, который был запечатан в трубке и возбужден индукционной катушкой.

    На Всемирной выставке 1893 года на Всемирной колумбийской выставке в Чикаго, штат Иллинойс, были представлены люминесцентные лампы Николы Теслы.

    В 1894 году Д. Макфарлейн Мур создал лампу Мура, коммерческую газоразрядную лампу, предназначенную для конкуренции с лампой накаливания его бывшего начальника Томаса Эдисона. Используемые газы представляли собой азот и диоксид углерода, излучающие соответственно розовый и белый свет, и имели умеренный успех.

    В 1901 году Питер Купер Хьюитт продемонстрировал ртутную лампу, которая излучала свет сине-зеленого цвета и поэтому не подходила для большинства практических целей.Однако он был очень близок к современному дизайну и имел гораздо более высокий КПД, чем лампы накаливания.

    В 1926 году Эдмунд Гермер и его коллеги предложили увеличить рабочее давление внутри трубки и покрыть трубку флуоресцентным порошком, который преобразует ультрафиолетовый свет, излучаемый возбужденной плазмой, в более однородный белый свет. Сегодня Гермер известен как изобретатель люминесцентной лампы.

    General Electric позже купила патент Гермера и под руководством Джорджа Э.К 1938 году Инман ввел люминесцентную лампу в широкое коммерческое использование.

    Принципы работы

    Основной принцип работы люминесцентной лампы основан на неупругом рассеянии электронов. Падающий электрон (испускаемый из катушек проволоки, образующей катодный электрод) сталкивается с атомом газа (например, ртути, аргона или криптона), используемого в качестве излучателя ультрафиолета. Это заставляет электрон в атоме временно подпрыгивать на более высокий энергетический уровень, чтобы поглотить часть или всю кинетическую энергию, доставляемую сталкивающимся электроном.Вот почему столкновение называется «неупругим», так как часть энергии поглощается. Это более высокое энергетическое состояние нестабильно, и атом излучает ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень. Фотоны, которые испускаются из выбранных газовых смесей, обычно имеют длину волны в ультрафиолетовой части спектра. Человеческий глаз не видит его, поэтому его необходимо преобразовать в видимый свет. Это делается с помощью флуоресценции. Это флуоресцентное преобразование происходит в люминофорном покрытии на внутренней поверхности люминесцентной лампы, где ультрафиолетовые фотоны поглощаются электронами в атомах люминофора, вызывая аналогичный скачок энергии, а затем снижается с испусканием следующего фотона.Фотон, испускаемый в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал. Химические вещества, входящие в состав люминофора, специально подобраны так, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом. Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора.

    Механизм светового производства

    Крупный план катодов и анодов бактерицидной лампы (по существу аналогичная конструкция, в которой не используется люминесцентный люминофор, что позволяет видеть электроды) Нефильтрованное ультрафиолетовое свечение бактерицидной лампы создается разрядом паров ртути низкого давления (идентичным таковому в люминесцентной лампе) в оболочке из плавленого кварца без покрытия.

    Люминесцентная лампа заполнена газом, содержащим пары ртути низкого давления и аргон (или ксенон), реже аргон-неон, а иногда даже криптон.Внутренняя поверхность колбы покрыта флуоресцентным (и часто слегка фосфоресцирующим) покрытием, состоящим из различных смесей металлических и редкоземельных фосфорных солей. Катод колбы обычно изготавливается из спирального вольфрама, покрытого смесью оксидов бария, стронция и кальция (выбранной для того, чтобы иметь относительно низкую температуру термоэлектронной эмиссии). Когда включается свет, электроэнергия нагревает катод настолько, что он испускает электроны. Эти электроны сталкиваются и ионизируют атомы благородного газа в колбе, окружающей нить, с образованием плазмы в процессе ударной ионизации.В результате лавинной ионизации проводимость ионизированного газа быстро возрастает, позволяя протекать через лампу более высоким токам. Ртуть, которая существует в точке стабильного равновесного давления пара около одной части на тысячу внутри трубки (с давлением благородного газа, обычно составляющим около 0,3 процента от стандартного атмосферного давления), затем также ионизируется, вызывая ее выделение. свет в ультрафиолетовой (УФ) области спектра преимущественно на длинах волн 253.7 нанометров и 185 нанометров. Эффективность флуоресцентного освещения во многом обязана тому факту, что ртутные разряды низкого давления излучают около 65 процентов своего общего света на линии 254 нанометров (также около 10-20 процентов света, излучаемого в УФ, приходится на линию 185 нанометров). УФ-свет поглощается флуоресцентным покрытием лампы, которое повторно излучает энергию на более низких частотах (более длинные волны: две интенсивные линии с длинами волн 440 и 546 нм появляются на коммерческих люминесцентных трубках) (см. Стоксов сдвиг) для излучения видимого света.Смесь люминофоров контролирует цвет света и вместе со стеклом колбы предотвращает утечку вредного ультрафиолетового света.

    Электрические аспекты эксплуатации

    Люминесцентные лампы представляют собой устройства с отрицательным сопротивлением, поэтому, когда через них протекает больше тока (больше ионизированного газа), электрическое сопротивление люминесцентной лампы падает, позволяя протекать еще большему току. Люминесцентная лампа, подключенная непосредственно к сети постоянного напряжения, может быстро самоуничтожиться из-за неограниченного протекания тока.Чтобы предотвратить это, люминесцентные лампы должны использовать вспомогательное устройство, обычно называемое балластом, для регулирования тока, протекающего через лампу.

    Хотя балласт может быть (а иногда и является) таким же простым, как резистор, значительная мощность тратится впустую в резистивном балласте, поэтому балласты обычно используют вместо него реактивное сопротивление (катушка индуктивности или конденсатор). Для работы от сети переменного тока обычно используется простой индуктор (так называемый «магнитный балласт»). В странах, где используется сеть переменного тока на 120 В, сетевого напряжения недостаточно для освещения больших люминесцентных ламп, поэтому балласт для этих больших люминесцентных ламп часто представляет собой повышающий автотрансформатор со значительной индуктивностью рассеяния (чтобы ограничить ток).Любая форма индуктивного балласта может также включать конденсатор для коррекции коэффициента мощности.

    В прошлом люминесцентные лампы иногда работали напрямую от источника постоянного тока с напряжением, достаточным для зажигания дуги. В этом случае не было сомнений в том, что балласт должен быть резистивным, а не реактивным, что приводит к потерям мощности в балластном резисторе. Кроме того, при непосредственном питании от постоянного тока полярность питания лампы должна быть изменена каждый раз при запуске лампы; в противном случае ртуть скапливается на одном конце трубки.В настоящее время люминесцентные лампы практически никогда не работают напрямую от постоянного тока; вместо этого инвертор преобразует постоянный ток в переменный и обеспечивает функцию ограничения тока, как описано ниже для электронных балластов.

    В более сложных балластах могут использоваться транзисторы или другие полупроводниковые компоненты для преобразования сетевого напряжения в высокочастотный переменный ток, а также для регулирования тока в лампе. Их называют «электронными балластами».

    Люминесцентные лампы, которые работают непосредственно от сети переменного тока, будут мигать с удвоенной частотой сети, поскольку мощность, подаваемая на лампу, падает до нуля дважды за цикл.Это означает, что свет мигает со скоростью 120 раз в секунду (Гц) в странах, которые используют переменный ток с частотой 60 циклов в секунду (60 Гц), и 100 раз в секунду в странах, которые используют 50 Гц. Этот же принцип может также вызывать гудение от люминесцентных ламп, фактически от их балласта. И раздражающий гул, и мерцание устранены в лампах, в которых используется высокочастотный электронный балласт, например, во все более популярной компактной люминесцентной лампе.

    Хотя большинство людей не могут непосредственно увидеть мерцание 120 Гц, некоторые люди [1] сообщают, что мерцание 120 Гц вызывает напряжение глаз и головную боль.Доктор Дж. Вейч обнаружил, что люди лучше читают, используя высокочастотные (20-60 кГц) электронные балласты, чем магнитные балласты (120 Гц). [2]

    В некоторых случаях люминесцентные лампы, работающие на частоте сети, могут также вызывать мерцание на самой частоте сети (50 или 60 Гц), что заметно для большего количества людей. Это может произойти в последние несколько часов срока службы лампы, когда катодное эмиссионное покрытие на одном конце почти закончилось, и этот катод начинает испытывать трудности с испусканием достаточного количества электронов в газовый наполнитель, что приводит к небольшому выпрямлению и, следовательно, неравномерному световому выходу в положительном и отрицательные рабочие циклы сети.Мерцание частоты сети также иногда может исходить от самых концов трубок, поскольку каждый трубчатый электрод поочередно работает как анод и катод в течение каждой половины цикла сети и дает немного отличающуюся диаграмму светового потока в анодном или катодном режиме (это было более серьезная проблема с трубками, возникшая более 40 лет назад, и в результате многие фитинги той эпохи закрывали концы трубок из поля зрения). Мерцание на сетевой частоте более заметно периферическим зрением, чем в центре взгляда.

    Способ «зажигания» люминесцентной лампы

    Схема предварительного нагрева люминесцентной лампы с помощью автоматического пускового выключателя А подогрев люминесцентная лампа "стартер" (автоматический пусковой выключатель)

    Атомы ртути в люминесцентной лампе должны быть ионизированы, прежде чем дуга сможет «загореться» внутри лампы. Для небольших ламп для зажигания дуги не требуется большого напряжения, и запуск лампы не представляет проблемы, но для больших ламп требуется значительное напряжение (в диапазоне от тысячи вольт).

    В некоторых случаях это происходит именно так: мгновенный запуск Люминесцентные лампы просто используют достаточно высокое напряжение, чтобы разрушить столб газа и ртути и тем самым запустить дугу. Эти трубки можно идентифицировать по тому факту, что

    1. Они имеют по одному штифту на каждом конце трубки
    2. Патроны, в которые они вставляются, имеют "разъединяющую" розетку на низковольтном конце, чтобы обеспечить автоматическое отключение сетевого тока, чтобы человек, заменяющий лампу, не мог получить удар электрическим током высокого напряжения.

    В других случаях, должно быть предусмотрено отдельное средство помощи при запуске.Некоторые люминесцентные конструкции (лампы предварительного нагрева) используют комбинацию нити накала / катода на каждом конце лампы в сочетании с механическим или автоматическим переключателем (см. Фото), который первоначально соединяет нити накала последовательно с балластом и, таким образом, предварительно нагревает нити перед зажигая дугу.

    Эти системы являются стандартным оборудованием в странах с напряжением питания 240 В и обычно используют пускатель накаливания. Раньше также использовались 4-контактные термовыключатели и ручные переключатели. Электронные пускатели также иногда используются с этими электромагнитными балластными устройствами.

    Во время предварительного нагрева нити испускают электроны в газовый столб за счет термоэлектронной эмиссии, создавая тлеющий разряд вокруг нитей. Затем, когда пусковой переключатель размыкается, индуктивный балласт и небольшой конденсатор на пусковом переключателе создают высокое напряжение, которое зажигает дугу. Удар трубки надежен в этих системах, но стартеры накаливания часто переключаются несколько раз, прежде чем оставить лампу зажженной, что вызывает нежелательное мигание во время запуска. Старые устройства термического пуска в этом отношении показали себя лучше.

    После удара по трубке падающий основной разряд сохраняет нить накала / катод горячим, позволяя продолжать излучение.

    Если трубка не ударяется или ударяется, затем гаснет, последовательность запуска повторяется. При использовании автоматических пускателей, таких как стартеры накаливания, неисправная лампа, таким образом, будет бесконечно работать, мигая снова и снова, поскольку стартер многократно запускает изношенную лампу, а затем лампа быстро гаснет, поскольку эмиссии недостаточно для поддержания нагрева катодов, и лампа ток слишком низкий, чтобы держать пускатель тлеющего разомкнутым.Это вызывает визуально неприятное частое яркое мигание и запускает балласт при температуре выше расчетной. При повороте стартера на четверть оборота против часовой стрелки он отключается, размыкая цепь.

    У некоторых более продвинутых пускателей в этой ситуации истекает время ожидания, и они не пытаются повторять пуски, пока не будет сброшено питание. В некоторых старых системах для обнаружения повторных попыток пуска использовалось тепловое отключение сверхтока. Это требует ручного сброса.

    Более новые конструкции балласта с быстрым запуском предусматривают накаливание силовых обмоток внутри балласта; они быстро и непрерывно нагревают нити / катоды, используя низковольтный переменный ток.При запуске не возникает индуктивных всплесков напряжения, поэтому лампы обычно следует устанавливать рядом с заземленным отражателем, чтобы тлеющий разряд мог распространяться по трубке и инициировать дуговый разряд.

    Электронные балласты часто возвращаются к стилю между стилями предварительного нагрева и быстрого запуска: конденсатор (или иногда автоматически отключающая цепь) может замкнуть цепь между двумя нитями накала, обеспечивая предварительный нагрев нити. Когда трубка загорается, напряжение и частота на лампе и конденсаторе обычно падают, таким образом, ток конденсатора падает до низкого, но ненулевого значения.Обычно этот конденсатор и катушка индуктивности, которая обеспечивает ограничение тока при нормальной работе, образуют резонансный контур, увеличивая напряжение на лампе, так что она может легко запуститься.

    Некоторые электронные балласты используют запрограммированный запуск. Выходная частота переменного тока начинается выше резонансной частоты выходного контура балласта, и после того, как нити нагреваются, частота быстро уменьшается. Если частота приближается к резонансной частоте балласта, выходное напряжение возрастает настолько, что лампа загорается.Если лампа не загорается, электронная схема прекращает работу балласта.

    Механизмы выхода из строя лампы по окончании срока службы

    Режим отказа по окончании срока службы люминесцентных ламп зависит от того, как вы их используете, и от типа их ПРА. В настоящее время существует три основных режима отказа и четвертый, который начинает проявляться:

    Кончилась смесь выбросов
    Крупный план нити накала ртутной газоразрядной лампы низкого давления показывает белое покрытие из смеси термоэлектронной эмиссии на центральной части катушки.Покрытие, которое обычно состоит из смеси оксидов бария, стронция и кальция, при нормальном использовании разбрызгивается, что часто в конечном итоге приводит к выходу лампы из строя.

    «Эмиссионная смесь» на нитях / катодах трубки необходима для того, чтобы электроны могли проходить в газ посредством термоэлектронной эмиссии при используемых рабочих напряжениях трубки. Смесь медленно распыляется путем бомбардировки электронами и ионами ртути во время работы, но большее количество разбрызгивается каждый раз, когда лампа запускается с холодными катодами (метод запуска лампы и, следовательно, тип механизма управления оказывает значительное влияние на это).Лампы, работающие обычно менее трех часов при каждом включении, обычно исчерпывают эмиссионную смесь до того, как выйдут из строя другие части лампы. Распыленная эмиссионная смесь образует темные пятна на концах трубок, которые можно увидеть в старых трубках. Когда вся эмиссионная смесь исчезнет, ​​катод не может пропустить достаточно электронов в газовую начинку, чтобы поддерживать разряд при расчетном рабочем напряжении трубки. В идеале управляющий механизм должен отключать трубку, когда это происходит. Однако некоторые устройства управления будут обеспечивать достаточно повышенное напряжение для продолжения работы лампы в режиме с холодным катодом, что приведет к перегреву конца трубки и быстрому разрушению электродов и их поддерживающих проводов до тех пор, пока они не исчезнут полностью или стекло не потрескается, разрушив Заполнение газом низкого давления и прекращение выпуска газа.

    Отказ электроники встроенного балласта

    Относится только к компактным люминесцентным лампам со встроенными электрическими балластами. Отказ балластной электроники - это несколько случайный процесс, который следует стандартному профилю отказов для любых электронных устройств. Сначала наблюдается небольшой пик ранних отказов, за которым следует спад и неуклонное увеличение срока службы лампы. Срок службы электроники сильно зависит от рабочей температуры - обычно он сокращается вдвое на каждые 10 ° C повышения температуры.Указанный средний срок службы обычно составляет 25 ° C (это может варьироваться в зависимости от страны). В некоторых фитингах температура окружающей среды может быть намного выше этой, и в этом случае отказ электроники может стать преобладающим механизмом отказа. Аналогичным образом, использование компактного цоколя люминесцентных ламп приведет к более горячей электронике и сокращению среднего срока службы (особенно для ламп с более высокой номинальной мощностью). Электронные балласты должны быть спроектированы так, чтобы отключать лампу, когда заканчивается смесь выбросов, как описано выше.В случае интегральных электронных балластов, поскольку они никогда не должны снова работать, это иногда достигается путем преднамеренного сгорания какого-либо компонента для окончательного прекращения работы.

    Отказ люминофора

    Эффективность люминофора падает во время использования. Приблизительно к 25 000 часов работы это обычно будет вдвое меньше яркости новой лампы (хотя некоторые производители заявляют, что период полураспада у своих ламп намного больше). Лампы, у которых нет отказов системы эмиссии или встроенной балластной электроники, в конечном итоге разовьют этот режим отказа.Они все еще работают, но стали тусклыми и неэффективными. Процесс идет медленно и часто становится очевидным только тогда, когда новая лампа работает рядом со старой.

    В трубке заканчивается ртуть

    Ртуть теряется из-за газового наполнения в течение всего срока службы лампы, так как она медленно поглощается стеклом, люминофором и электродами трубки, где больше не может работать. Исторически это не было проблемой, потому что в трубках содержится избыток ртути. Однако экологические проблемы теперь приводят к тому, что трубки с низким содержанием ртути гораздо точнее дозируются с достаточным количеством ртути, достаточным для обеспечения ожидаемого срока службы лампы.Это означает, что потеря ртути возьмет верх из-за выхода из строя люминофора в некоторых лампах. Симптомы отказа аналогичны, за исключением того, что потеря ртути первоначально вызывает увеличенное время разгона (время для достижения полного светового потока) и, наконец, заставляет лампу светиться тускло-розовым светом, когда ртуть заканчивается, а основной газ аргон берет верх в первичный разряд.

    Люминофоры и спектр излучаемого света

    Многие люди считают цветовую гамму, создаваемую некоторыми люминесцентными лампами, резкой и неприятной.Иногда при флуоресцентном освещении у здорового человека может выглядеть болезненно размытый оттенок кожи. Это связано с двумя вещами.

    Первой причиной является использование трубок плохого качества с низким индексом цветопередачи и высокой цветовой температурой, например «холодный белый». Они имеют плохое качество света, из-за чего доля красного света ниже идеальной, поэтому кожа имеет менее розовую окраску, чем при лучшем освещении.

    Вторая причина связана с особенностями типа глаза и трубки.Естественный дневной свет с высокой цветовой температурой выглядит естественным при уровнях дневного освещения, но по мере снижения уровня освещения он становится для глаза все более холодным. При более низких уровнях освещения человеческий глаз воспринимает более низкие цветовые температуры как нормальные и естественные. Большинство люминесцентных ламп имеют более высокую цветовую температуру, чем лампы накаливания 2700 K, а более холодные лампы не выглядят естественными для глаз при гораздо меньшем дневном освещении. Этот эффект зависит от люминофора лампы и применяется только к лампам с более высокой CCT при значительно меньших уровнях естественного дневного света.

    Многие пигменты выглядят немного иначе при просмотре под люминесцентными лампами по сравнению с лампами накаливания. Это связано с различием в двух свойствах: CCT и CRI.

    CCT, цветовая температура, для освещения GLS с нитью составляет 2700 K, а для галогенного освещения - 3000 K, тогда как люминесцентные лампы обычно доступны в диапазоне от 2700 K до 6800 K, что представляет собой значительную вариацию с точки зрения восприятия.

    CRI, индекс цветопередачи, является мерой того, насколько хорошо сбалансированы различные цветовые компоненты белого света.Спектр лампы с такими же пропорциями R, G, B, что и у излучателя абсолютно черного тела, имеет индекс цветопередачи 100 процентов, но люминесцентные лампы достигают значений индекса цветопередачи от 50 до 99 процентов. Лампы с более низким индексом цветопередачи имеют несбалансированный цветовой спектр визуально низкого качества, что приводит к некоторым изменениям воспринимаемого цвета. Например, пробирка с галогенфосфатом с низким CRI 6800 K, которая выглядит так же неприятно визуально, как и они, заставит красный цвет казаться тускло-красным или коричневым.

    Один из наименее приятных источников света исходит от трубок, содержащих старые люминофоры галофосфатного типа (химическая формула Ca 5 (PO 4 ) 3 (F, Cl): Sb 3+ , Mn 2+ ), обычно обозначаемый как «холодный белый».«Плохая цветопередача связана с тем, что этот люминофор в основном излучает желтый и синий свет и относительно мало зеленого и красного. На взгляд эта смесь кажется белой, но свет имеет неполный спектр. В люминесцентных лампах более высокого качества используются либо галофосфатное покрытие с более высоким индексом цветопередачи или смесь трифосфорных люминофора на основе ионов европия и тербия, у которых полосы излучения более равномерно распределены по спектру видимого света. Галофосфатные и трифосфорные трубки с высоким индексом цветопередачи обеспечивают более естественную цветопередачу. человеческий глаз.

    Спектры люминесцентных ламп
    Типовая люминесцентная лампа с «редкоземельным» люминофором Типичная "холодная белая" люминесцентная лампа, в которой используются два люминофора, легированные редкоземельными элементами: Tb 3+ , Ce 3+ : LaPO 4 для зеленого и синего излучения и Eu: Y 2 O 3 для красного . Для объяснения происхождения отдельных пиков щелкните изображение. Обратите внимание, что некоторые спектральные пики генерируются непосредственно ртутной дугой.Это, вероятно, наиболее распространенный тип люминесцентных ламп, используемых сегодня.
    Галофосфатно-люминесцентная лампа старого образца Галофосфатные люминофоры в этих лампах обычно состоят из трехвалентной сурьмы и галофосфата кальция, допированного двухвалентным марганцем (Ca 5 (PO 4 ) 3 (Cl, F): Sb 3+ , Mn 2+ ). Цвет светового потока можно регулировать, изменяя соотношение излучающей синий легирующий элемент сурьмы и излучающий оранжевый легирующий марганец.Цветопередача этих ламп более старого стиля довольно низкая. Галофосфатные люминофоры были изобретены A.H. McKeag et al. в 1942 г.
    Люминесцентный свет "Естественное солнце" Объяснение происхождения пиков находится на странице изображения.
    Желтые люминесцентные лампы Спектр почти идентичен спектру нормальной люминесцентной лампы, за исключением почти полного отсутствия света ниже 500 нанометров. Этот эффект может быть достигнут либо за счет использования специального люминофора, либо, чаще, за счет использования простого желтого светофильтра.Эти лампы обычно используются в качестве освещения для фотолитографических работ в чистых помещениях и в качестве «отпугивающего насекомых» наружного освещения (эффективность которого сомнительна).
    Спектр "черного света" лампы Обычно в лампе черного света присутствует только один люминофор, обычно состоящий из фторбората стронция, легированного европием, который содержится в оболочке из стекла Вуда.

    Использование

    Люминесцентные лампы бывают разных форм и размеров.Все более популярными становятся компактные люминесцентные лампы (CF). Во многих компактных люминесцентных лампах вспомогательная электроника встроена в цоколь лампы, что позволяет им вставляться в обычный патрон для лампочки.

    В США уровень использования люминесцентного освещения в жилых помещениях остается низким (обычно ограничивается кухнями, подвалами, коридорами и другими помещениями), но школы и предприятия находят значительную экономию затрат на люминесцентные лампы и лишь изредка используют лампы накаливания.

    В осветительных приборах часто используются люминесцентные лампы разных оттенков белого.В большинстве случаев это происходит из-за непонимания разницы или важности различных типов трубок. Смешивание типов трубок в фитингах также делается для улучшения цветопередачи трубок низкого качества.

    В других странах использование люминесцентного освещения в жилых помещениях варьируется в зависимости от стоимости энергии, финансовых и экологических проблем местного населения, а также приемлемой светоотдачи.

    В феврале 2007 года Австралия приняла закон, запрещающий к 2010 году большинство продаж ламп накаливания. [3] [4] Хотя закон не определяет, какие альтернативы использовать австралийцам, компактные флуоресцентные лампы, вероятно, станут основной заменой.

    Токсичность ртути

    Поскольку люминесцентные лампы содержат ртуть, токсичный тяжелый металл, правительственные постановления во многих областях требуют специальной утилизации люминесцентных ламп отдельно от общих и бытовых отходов. Ртуть представляет наибольшую опасность для беременных женщин, младенцев и детей.

    Свалки часто отказываются от люминесцентных ламп из-за высокого содержания в них ртути.Бытовые и коммерческие источники отходов часто обрабатываются по-разному.

    Количество ртути в стандартной лампе может сильно различаться - от 3 до 46 мг. [5] Типичная четырехфутовая (120-сантиметровая) люминесцентная лампа Т-12 (а именно, F32T12) эпохи 2006 года содержит около 12 миллиграммов ртути. [6] Новые лампы содержат меньше ртути, а версии на 3-4 миллиграмма (например, F32T8) продаются как лампы с низким содержанием ртути.

    Очистка от разбитых люминесцентных ламп

    Сломанная люминесцентная лампа опаснее сломанной обычной лампы накаливания из-за содержания ртути.По этой причине безопасная очистка разбитых люминесцентных ламп отличается от очистки обычных разбитых стекол или ламп накаливания. Девяносто девять процентов ртути обычно содержится в люминофоре, особенно в лампах, срок службы которых близок. [7] Следовательно, типичная безопасная очистка обычно включает тщательную утилизацию любого битого стекла, а также любого рассыпчатого белого порошка (флуоресцентное покрытие стекла) в соответствии с местными законами об опасных отходах. Влажное полотенце обычно используется вместо пылесоса для очистки стекла и порошка, в основном для уменьшения распространения порошка по воздуху.

    Преимущества перед лампами накаливания

    Люминесцентные лампы более эффективны, чем лампы накаливания аналогичной яркости. Это связано с тем, что большая часть потребляемой энергии преобразуется в полезный свет и меньше преобразуется в тепло, что позволяет люминесцентным лампам работать холоднее. Лампа накаливания может преобразовывать только 10 процентов потребляемой мощности в видимый свет. Люминесцентная лампа, производящая столько полезной энергии видимого света, может потребовать от одной трети до одной четвертой количества потребляемой электроэнергии.Обычно люминесцентная лампа служит в 10-20 раз дольше, чем эквивалентная лампа накаливания. Если освещение используется в помещениях с кондиционированием воздуха, все потери лампы также должны быть устранены оборудованием для кондиционирования воздуха, что приводит к двойному штрафу за потери из-за освещения.

    Более высокая начальная стоимость люминесцентной лампы более чем компенсируется более низким потреблением энергии в течение срока ее службы. Более длительный срок службы может также снизить затраты на замену лампы, обеспечивая дополнительную экономию, особенно там, где труд является дорогостоящим.Поэтому он широко используется предприятиями по всему миру, но не домашними хозяйствами.

    Ртуть, выбрасываемая в воздух при утилизации от 5 до 45 процентов люминесцентных ламп, [8] компенсируется тем фактом, что многие угольные генераторы выделяют ртуть в воздух. Повышенный КПД люминесцентных ламп помогает снизить выбросы электростанции.

    Недостатки

    Проблема "эффекта удара", возникающая при съемке фотографий или пленки при стандартном флуоресцентном освещении.

    Люминесцентным лампам требуется балласт для стабилизации лампы и обеспечения начального напряжения зажигания, необходимого для начала дугового разряда; это увеличивает стоимость люминесцентных светильников, хотя часто один балласт используется двумя или более лампами.Некоторые типы балластов издают слышимое гудение или жужжание.

    Обычные балласты для ламп не работают от постоянного тока. Если доступен источник постоянного тока с достаточно высоким напряжением для зажигания дуги, можно использовать резистор для балласта лампы, но это приводит к низкой эффективности из-за потери мощности в резисторе. Кроме того, ртуть имеет тенденцию перемещаться к одному концу трубки, приводя только к одному концу лампы, производящему большую часть света. Из-за этого эффекта лампы (или полярность тока) должны регулярно меняться.

    Люминесцентные лампы лучше всего работают при комнатной температуре (скажем, 68 градусов по Фаренгейту или 20 градусов по Цельсию). При значительно более низких или более высоких температурах эффективность снижается, а при низких температурах (ниже нуля) стандартные лампы могут не запускаться. Для надежной работы на открытом воздухе в холодную погоду могут потребоваться специальные лампы. Электрическая схема «холодного пуска» также была разработана в середине 1970-х годов.

    Поскольку дуга довольно длинная по сравнению с газоразрядными лампами с более высоким давлением, количество света, излучаемого на единицу поверхности ламп, невелико, поэтому лампы большие по сравнению с источниками накаливания.Это сказывается на конструкции светильников, поскольку свет должен направляться из длинных трубок, а не из компактного источника. Однако во многих случаях полезна низкая сила света излучающей поверхности, поскольку она уменьшает блики.

    Люминесцентные лампы не излучают ровный свет; вместо этого они мерцают (колеблются по интенсивности) со скоростью, которая зависит от частоты управляющего напряжения. Хотя это не так легко различить человеческим глазом, это может вызвать стробоскопический эффект, представляющий угрозу безопасности, например, в мастерской, где что-то, вращающееся с правильной скоростью, может казаться неподвижным, если освещено только люминесцентной лампой.Это также вызывает проблемы при записи видео, так как между периодическими показаниями сенсора камеры и колебаниями интенсивности люминесцентной лампы может наблюдаться «эффект биения». Частота наиболее заметна на компьютерных мониторах с ЭЛТ, настроенных на частоту обновления, аналогичную частоте лампочек, которые будут мерцать из-за эффекта биений. Чтобы устранить это мерцание, можно изменить частоту обновления монитора.

    Лампы накаливания из-за тепловой инерции их элемента меньше меняют яркость, хотя эффект можно измерить с помощью инструментов.Это также меньшая проблема с компактными флуоресцентными лампами, поскольку они умножают частоту линии до невидимых уровней. Установки могут уменьшить эффект стробоскопа, используя пускорегулирующие балласты или управляя лампами на разных фазах многофазного источника питания.

    Проблемы с точностью цветопередачи обсуждались выше.

    Если специально не разработаны и не утверждены для регулирования затемнения, большинство люминесцентных осветительных приборов нельзя подключать к стандартному диммерному переключателю, используемому для ламп накаливания.За это ответственны два эффекта: форма волны напряжения, излучаемого стандартным диммером с фазовым управлением, плохо взаимодействует со многими балластами, и становится трудно поддерживать дугу в люминесцентной лампе при низких уровнях мощности. Многие установки требуют 4-контактных люминесцентных ламп и совместимых контроллеров для успешного затемнения люминесцентных ламп; Эти системы стремятся поддерживать полностью нагретые катоды люминесцентной лампы даже при уменьшении тока дуги, способствуя легкой термоэлектронной эмиссии электронов в поток дуги.

    Утилизация люминофора и небольшого количества ртути в трубках также представляет собой экологическую проблему по сравнению с утилизацией ламп накаливания. Для крупных коммерческих или промышленных пользователей люминесцентных ламп начинают становиться доступными услуги по переработке.

    Обозначение труб

    Примечание: информация в этом разделе может быть неприменима за пределами Северной Америки.

    Лампы обычно обозначаются кодом, например F ## T ##, где F означает люминесцентные лампы, первое число указывает мощность в ваттах (или, как ни странно, длину в дюймах в очень длинных лампах), буква T указывает, что форма Луковицы трубчатые, а последнее число - диаметр в восьмых дюйма.Типичные диаметры: T12 (1½ дюйма или 38 миллиметров) для бытовых ламп со старыми магнитными балластами, T8 (1 дюйм или 25 миллиметров) для коммерческих энергосберегающих ламп с электронными балластами и T5 ( 5 8 дюймов или 16 миллиметров) для очень маленьких ламп, которые могут работать даже от устройства с батарейным питанием.

    Лампы Slimline работают от пускового балласта с мгновенным запуском и узнаваемы по их одножильным цоколям.

    Лампы с высоким выходом ярче и потребляют больше электрического тока, имеют разные концы на выводах, поэтому их нельзя использовать в неправильном приспособлении, и они имеют маркировку F ## T12HO или F ## T12VHO для очень высокой мощности.Примерно с начала и до середины 1950-х годов и по сегодняшний день компания General Electric разработала и улучшила лампу Power Groove с маркировкой F ## PG17. Эти лампы можно отличить по трубкам большого диаметра с рифлением.

    U-образные трубки FB ## T ##, где B означает «изогнутые». Чаще всего они имеют то же обозначение, что и линейные трубы. Круглые лампы - это FC ## T #, с диаметром круга (, а не окружность или ватт), первое число, а второе число, как правило, 9 (29 мм) для стандартных светильников.

    Цвет обычно обозначается WW для теплого белого, EW для усиленного (нейтрального) белого, CW для холодного белого (наиболее распространенного) и DW для голубоватого дневного белого. BL часто используется для черного света (обычно используется в средствах защиты от насекомых), а BLB - для обычных темно-голубых лампочек, которые имеют темно-фиолетовый цвет. Другие нестандартные обозначения применяются для огней для растений или огней для выращивания.

    Philips использует числовые цветовые коды для цветов:

    • Низкая цветопередача
      • 33 вездесущий холодный белый (4000 Кельвинов)
      • 32 теплый белый (3000 К)
      • 27 гостиная теплый белый (2700 К)
    • Высокая цветопередача
      • 9xy «Graphica Pro» / «De Luxe Pro» (xy00 K; например, «965» = 6500 K)
      • 8xy (xy00 K; например, «865» = 6500 K)
      • 840 холодный белый (4000 К)
      • 830 теплый белый (3000 К)
      • 827 теплый белый (2700 K)
    • Другое
      • 09 Лампы для загара
      • 08 Черный свет
      • 05 Жесткое УФ-излучение (люминофоры вообще не используются, используется конверт из плавленого кварца)

    Нечетные длины обычно добавляются после цвета.Одним из примеров является F25T12 / CW / 33, что означает 25 Вт, диаметр 1,5 дюйма, холодный белый цвет, длина 33 дюйма или 84 сантиметра. Без 33-го можно было бы предположить, что F25T12 является более распространенным 30-дюймовым.

    Компактные люминесцентные лампы не имеют такой системы обозначений.

    Лампы люминесцентные прочие

    Блэклайт
    Blacklight - это подмножество люминесцентных ламп, которые используются для получения длинноволнового ультрафиолетового света (с длиной волны около 360 нанометров). Они построены так же, как и обычные люминесцентные лампы, но стеклянная трубка покрыта люминофором, который преобразует коротковолновое УФ-излучение внутри трубки в длинноволновое УФ-излучение, а не в видимый свет.Они используются для возбуждения флуоресценции (для создания драматических эффектов с помощью краски для черного света и для обнаружения таких материалов, как моча и некоторые красители, которые были бы невидимы в видимом свете), а также для привлечения насекомых к насекомым.
    Так называемые лампы blacklite blue также изготавливаются из более дорогого темно-фиолетового стекла, известного как стекло Вуда, а не из прозрачного стекла. Темно-пурпурное стекло отфильтровывает большинство видимых цветов света, непосредственно испускаемого разрядом паров ртути, производя пропорционально меньше видимого света по сравнению с УФ-светом.Это позволяет легче увидеть УФ-индуцированную флуоресценцию (тем самым позволяя плакатов с черным светом казаться гораздо более драматичными).
    Солнечные лампы
    Солнечные лампы содержат другой люминофор, который сильнее излучает в средневолновом УФ-диапазоне, вызывая реакцию загара у большинства людей.
    Лампы для выращивания растений
    Лампы для выращивания содержат смесь люминофора, которая способствует фотосинтезу растений; для человеческого глаза они обычно кажутся розоватыми.
    Бактерицидные лампы
    Бактерицидные лампы вообще не содержат люминофор (технически это газоразрядные лампы, а не люминесцентные), а их трубки изготовлены из плавленого кварца, прозрачного для коротковолнового УФ-излучения, непосредственно испускаемого ртутным разрядом.УФ-излучение, излучаемое этими трубками, убивает микробы, ионизирует кислород до озона и вызывает повреждение глаз и кожи. Помимо того, что они используются для уничтожения микробов и создания озона, они иногда используются геологами для идентификации определенных видов минералов по цвету их флуоресценции. При таком использовании они снабжены фильтрами так же, как и черно-голубые лампы; фильтр пропускает коротковолновое УФ-излучение и блокирует видимый свет, создаваемый ртутным разрядом. Они также используются в стиральных машинах EPROM.
    Индукционные безэлектродные лампы
    Индукционные безэлектродные лампы - это люминесцентные лампы без внутренних электродов. Они были коммерчески доступны с 1990 года. В столб газа индуцируется ток с помощью электромагнитной индукции. Поскольку электроды обычно являются элементом, ограничивающим срок службы люминесцентных ламп, такие безэлектродные лампы могут иметь очень долгий срок службы, хотя они также имеют более высокую закупочную цену.
    Люминесцентные лампы с холодным катодом (CCFL)
    Люминесцентные лампы с холодным катодом используются в качестве подсветки жидкокристаллических дисплеев персональных компьютеров и телевизионных мониторов.

    Использование фильмов и видео

    Специальные люминесцентные лампы часто используются в кино / видео. Торговая марка Kino Flos используется для создания более мягкого заполняющего света и менее горяча, чем традиционные галогенные источники света. Эти люминесцентные лампы разработаны со специальными высокочастотными балластами для предотвращения мерцания видео и лампами с высоким индексом цветопередачи для приблизительной цветовой температуры дневного света.

    Противоречие Агапито Флореса

    Многие считают, что изобретателем люминесцентного света был филиппинец по имени Агапито Флорес.Сообщается, что он получил французский патент на свое изобретение и продал его компании General Electric, которая заработала на его идее миллионы долларов. Однако Флорес представил свой патент General Electric после того, как компания уже представила публике люминесцентный свет, и намного позже того, как он был первоначально изобретен. [9]

    См. Также

    Банкноты

    1. ↑ Lightsearch.com. Световод: люминесцентные балласты. Взято из Руководства по расширенному освещению , первоначально опубликованного Комиссией по энергетике Калифорнии в 1993 году.Проверено 31 мая 2007 года.
    2. ↑ Национальный исследовательский совет Канады, Мерцание люминесцентных ламп. Проверено 31 мая 2007 года.
    3. ↑ Тодд Вуди, «Австралия запрещает использование традиционных лампочек для борьбы с глобальным потеплением». Зеленый вомбат. 20 февраля 2007 г. Проверено 31 мая 2007 г.
    4. ↑ «Впервые в мире! Австралия сокращает выбросы парниковых газов из-за неэффективного освещения ». Канцелярия министра окружающей среды и водных ресурсов Австралии. Пресс-релиз (20 февраля 2007 г.). Проверено 31 мая 2007 года.
    5. ↑ Программа ООН по окружающей среде, «Набор инструментов для идентификации и количественной оценки выбросов ртути». п. 183. Проверено 31 мая 2007 года.
    6. ↑ Лаборатория светового дизайна, Ртуть в люминесцентных лампах. Проверено 31 мая 2007 года.
    7. ↑ Floyd et al. (2002). Цитируется в Программе Организации Объединенных Наций по окружающей среде, «Инструментарий для выявления и количественной оценки выбросов ртути», стр. 184. Проверено 10 февраля 2012 г.
    8. ↑ Программа ООН по окружающей среде. «Набор инструментов для идентификации и количественной оценки выбросов ртути." п. 184. Проверено 31 мая 2007 г.
    9. ↑ Агапито Флорес: изобретатели About.com. Проверено 31 мая 2007 года.

    Список литературы

    • Аткинсон, Скотт. Идеи для отличного домашнего освещения . Sunset Publishing, 2003. ISBN 037601315X
    • Дерри, Т. К. и Тревор Уильямс. Краткая история технологий . Mineola, NY: Dover Publications, 1993. ISBN 0486274721
    • Хьюз, Томас П. Американский генезис: век изобретений и технологического энтузиазма 1870-1970 гг. 2-е издание.Чикаго, Иллинойс: University of Chicago Press, 2004. ISBN 0226359271

    Внешние ссылки

    Все ссылки получены 14 апреля 2017 г.

    Источники света / освещения:

    Естественные / доисторические источники света:

    Биолюминесценция | Небесные объекты | Молния

    Источники света горения:

    Ацетиленовые / карбидные лампы | Свечи | Лампы Дэви | Огонь | Газовое освещение | Керосиновые лампы | Фонари | Limelights | Масляные лампы | Светильники

    Ядерные / химические источники света прямого действия:

    Betalights / Trasers | Хемолюминесценция (световые палочки)

    Источники электрического света:

    Дуговые лампы | Лампы накаливания | Люминесцентные лампы

    Разрядные источники света высокой интенсивности:

    Керамические разрядные металлогалогенные лампы | Лампы HMI | Лампы ртутно-паровые | Металлогалогенные лампы | Натриевые лампы | Ксеноновые дуговые лампы

    Другие источники электрического света:

    Электролюминесцентные (EL) лампы | Глобар | Индуктивное освещение | Дискретные светодиоды / твердотельное освещение (светодиоды) | Неоновые и аргоновые лампы | Лампа Нернста | Серная лампа | Ксеноновые лампы-вспышки | Свечи Яблочкова

    Кредиты

    New World Encyclopedia Писатели и редакторы переписали и завершили статью Wikipedia в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников New World Encyclopedia, , так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

    История этой статьи с момента ее импорта в New World Encyclopedia :

    Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *