Компрессоры винтовые принцип работы: принцип работы, преимущества и особенности обслуживания

принцип работы, преимущества и особенности обслуживания

Сегодня устройства винтового действия практически полностью вытеснили другие типы компрессоров – особенно на предприятиях, использующих большое количество сжатого воздуха. Рассмотрим принцип работы винтовых компрессоров, их преимущества и тонкости обслуживания.

Винтовые компрессоры являются разновидностью ротационного оборудования. Принцип их работы основан на вращении двух роторов, которые и называют винтами.

Первый винтовой компрессор был разработан шведским ученым Элиотом Лисхольном, образец выпустили в 1934 году. С тех пор изобретение перетерпело множество изменений, но принцип его работы остался прежним.

Сегодня винтовые агрегаты практически полностью вытеснили другие типы компрессоров из пищевой, стекольной, химической промышленности, а также других отраслей производства, использующих большое количество сжатого воздуха.


Содержание

Устройство и принцип работы винтового компрессора

Винтовой компрессор обеспечивает преобразование электрической энергии в воздушно-газовый толчок.

Основным узлом этого устройства является винтовой блок (см. рис. ниже). Он состоит из корпуса (1) и расположенной в нем винтовой пары (2 и 3) – ведущего и ведомого ротора.


Устройство винтового компрессора


В средней части роторов имеются утолщения, на которых нарезан винтовой профиль. Зубья ведущего ротора имеют выпуклую и широкую форму, ведомого – тонкую и вогнутую.

Роторная пара установлена на втулки или подшипники, между винтами предусмотрен минимальный зазор (от 0,1 до 0,4 мм). Роторы вращаются навстречу друг другу, соблюдая принцип ведомости. Их движение синхронизируется с помощью шестерен (4), закрепленных на валах роторов. Герметичность корпуса обеспечивают сальники и уплотнители.

В корпусе компрессора также предусмотрены полости для охлаждения (5), в которые, если это предусмотрено, подается жидкость (вода, масло).


Принцип работы винтового компрессора заключается в следующем.

После начала вращения роторной пары через впускное отверстие и регулятор всасывания начинает поступать воздух, который заполняет винтовые впадины по всей длине. Дальнейшее проворачивание винтов уменьшает объем рабочей камеры и увеличивает давление в ней. Когда впадины винта соединяются с выпускным отверстием компрессора, сжатая среда через радиатор охлаждения выходит через выпускное окно агрегата.


Принцип работы винтового компрессора


В масляной разновидности компрессора воздух на этапе попадания в роторный блок смешивается с очищенным маслом, которое поступает в него точно дозированными порциями. Перед выходом сжатая смесь проходит через картридж сепаратора. Масляные фракции отделяются от воздуха и снова поступают в роторный блок.

В безмасляных компрессорах (сухого сжатия) из-за сильного разогрева воздуха сжатие происходит в две ступени с промежуточным охлаждением. Компрессионный модуль таких устройств состоит из двух винтовых блоков на общей раме. Они оснащены каналами для подачи охлаждающей жидкости. Водно-гликолевый раствор принудительно нагнетается насосом, а затем охлаждается в теплообменнике. Чтобы обеспечить максимально возможную герметичность блока, роторы безмасляных компрессоров имеют повышенную частоту вращения (до 6 000 об/мин), что обеспечивается шестеренным мультипликатором.


Виды винтовых компрессоров

В настоящее время изготавливается множество различных типов винтовых компрессорных устройств. Они могут классифицироваться по различным критериям: по заполнению камеры, по сжимаемой среде, типу привода и т.д.

Двумя основными разновидностями винтовых компрессоров являются маслозаполненные модели и безмасляные устройства.

Маслозаполненные компрессоры чаще всего используются в производственных цехах. Процесс работы их роторов смягчается впрыскиванием масла. Оно же способствует отведению излишков тепла.

Безмасляные компрессоры применяются в тех сферах промышленности, которые требуют получения сжатого воздуха высокой степени чистоты: пищевой, фармацевтической, химической и прочих.

Безмасляный винтовой компрессор


Существуют безмасляные компрессоры сухого сжатия и водозаполненные устройства. Первые оснащаются двигателями синхронного типа, которые приводятся в движение обоими винтами. Они хуже, чем маслозаполненные, отводят тепло, поэтому имеют более низкую производительность.

Водозаполненные компрессоры используют вместо масла обычную воду, которая делает тепловую нагрузку на детали минимальной. Срок службы, надежность и безопасность таких устройств намного выше, чем у компрессоров сухого сжатия. При этом обходятся они дешевле, чем масляные – благодаря более низкому энергопотреблению и меньшим также затратам на обслуживание (замену масляных фильтров, емкостей для отработанной масляной жидкости и пр.).

По сжимаемой среде компрессоры бывают воздушными, газовыми и многоцелевыми, пот типу привода – ременными и прямыми, по виду используемой энергии – дизельными и электрическими.

В зависимости от степени сжатия воздуха/газа выделяют компрессоры низкого (до 1 Мн/м2), среднего (до 10 Мн/м2) и высокого (более 10 Мн/м2) давления.


Преимущества винтовых компрессоров

Основными преимуществами винтовых компрессоров являются компактные размеры, не слишком большой вес, надежность и долговечность.

Винтовые устройства:

  • Могут долгое время работать в автономном режиме
  • Оснащены системой автоматического отключения в случае аварии, перегрева или сбоя сети
  • Быстро монтируются в собственных рамах без специального фундамента
  • При работе создают минимум шума и вибраций благодаря изолирующим кожухам
  • Оснащены цифровыми блоками управления, которые позволяют легко менять давление, программировать циклы и регулировать энергопотребление
  • За счет использования винтовых блоков последних поколений и автоматического управления подачей воздуха существенно экономят электроэнергию (до 30 %)
  • Не требуют частого обслуживания (для сравнения, поршневые устройства подлежат осмотру через каждые 500 часов работы, винтовые – через 4000-8000 часов)

Отличная работоспособность винтового компрессора объясняется отсутствием клапанов, простой системой смазки и охлаждения. Практика показывает, что за время эксплуатации одного такого устройства предприятие может поменять около 5 машин поршневого типа.


Обслуживание безмасляного винтового компрессора

В первую очередь, необходимо отметить, что роторные компрессоры любого типа, а безмасляные – в первую очередь, не предназначены для сильно запыленных помещений.

Абразивные частицы, попадающие внутрь винтового блока, повреждают поверхности роторов и нарушают геометрию их форм. В результате вращающиеся винты начинают соприкасаться, что вызывает повышенное трение, образование задиров и схватываний.

Многие производители в целях защиты от износа и коррозии наносят на роторы специальные защитные покрытия.

Первыми это начали делать зарубежные производители. Обработка роторов специальными полимерными составами позволяла не только снизить вероятность их контакта с последующим образованием задиров, но и сократить затраты на точную механическую обработку поверхностей.

За счет включения мельчайших частиц твердых смазочных материалов полимерные покрытия имеют высокие антифрикционные свойства, что позволяет им эффективно снижать трение и препятствовать образованию задиров.

Покрытия выравнивают поверхности роторов, чем упрощают их приработку и обеспечивают динамическое уплотнение. Защитный слой, который создают эти материалы на винтовой паре, предотвращает коррозию металла, которую может вызвать попадание воды или агрессивных охлаждающих растворов.

Со временем заводские покрытия изнашиваются, и чтобы решить вопрос их восстановления, необходимо пользоваться готовыми антифрикционными материалами. Ранее такие составы были исключительно импортными, однако сегодня их производство налажено и в нашей стране.

Российская компания "Моденжи" разработала серию антифрикционных твердосмазочных покрытий для винтовых компрессоров, которые могут применяться как при производстве, так и при ремонте роторов.

Покрытия MODENGY наносятся на поверхности деталей слоем до 100 мкм, затем, после приработки, толщина уменьшается в 2-2,5 раза и становится оптимальной.

Полимерная матрица покрытия прочно удерживает в своих ячейках частицы твердых смазочных материалов, выполняющие антифрикционную и противозадирную функции.


Покрытие на поверхности детали


При обслуживании безмасляных винтовых компрессоров применяются покрытия MODENGY 1007, MODENGY 1014 и MODENGY 1066.


Покрытия MODENGY для роторов винтовых компрессоров


MODENGY 1007 производится на основе графита, поэтому имеет характерный серо-черный цвет. Покрытие стабильно работает при температурах -50…+350 °С, имеет несущую способность 1300 МПа (тест SRV).

Несущая способность MODENGY 1014 еще выше, она составляет 2700 МПа. Диапазон рабочих температур покрытия с дисульфидом молибдена и политетрафторэтиленом – -75…+255 °С. Состав отличается высокими антикоррозионными свойствами – >672 ч (тест в соляном тумане).

MODENGY 1066 с графитом и дисульфидом молибдена выдерживает температуры от -70 до +315 °С. Покрытие также обладает антикоррозионными свойствами (>300 ч в соляном тумане) и высокой несущей способностью (9900 H по методу Falex).



Перед нанесением покрытия с поверхностей роторов удаляются остатки старых смазок, пыль и другие загрязнения. Для полной очистки и обезжиривания винтовой пары используется Специальный очиститель-активатор MODENGY. Его применение способствует высокой адгезии будущего покрытия и гарантирует долгий срок его службы.

Антифрикционные составы наносятся на роторы в несколько слоев, затем детали подвергаются нагреву для полимеризации покрытий. Все материалы отверждаются при нагреве свыше +200 °С в течение 20-40 минут (точное время зависит от вида покрытия).

Роторы с покрытием MODENGY в дальнейшем не требуют повторной обработки – правильно нанесенный защитный слой не стирается, так как не дает винтовым поверхностям вступать в контакт.


Роторы винтового компрессора до и после нанесения покрытия MODENGY


Признаки необходимости ремонта масляных винтовых компрессоров

Масляный винтовой компрессор нуждается в ремонте, если наблюдаются:

  • Сложности с его запуском
  • Отсутствие сжатого воздуха в выходном патрубке агрегата
  • Снижение производительности устройства
  • Чрезмерный расход масла
  • Непроизвольное срабатывание предохранительного клапана
  • Отключение аппарата термостатом или прерывателем сети
  • Поломка роторного блока
  • Повышенное давление в компрессоре

Ремонт винтового компрессора


Причиной трудности с запуском винтового компрессора может быть низкая температура окружающего воздуха. Проблема решается после его прогрева.

Если устройство не перезапускается, необходимо проверить состояние всасывающего клапана – скорее всего, он загрязнен и плохо закрывается. В таком случае требуется прочистка или замена детали.

Отсутствие сжатого воздуха в выходном отверстии аппарата – признак закрытия регулятора. Чтобы устранить эту неисправность, потребуется проверить работоспособность реле давления, который подает питание на электромагнитный клапан, связанный, в свою очередь, с регулятором.

Понижение производительности компрессорного оборудования чаще всего связано с засорением регулятора. Чтобы демонтировать его для очистки, потребуется снять всасывающий фильтр.

Большой расход масла в компрессоре может быть вызван поломкой фильтра маслоотделителя или нарушением герметичности уплотнений этого фильтра. В обоих случаях проблема решается заменой деталей.

Если фильтр маслоотделителя засорился, предохранительный клапан может начать открываться непроизвольно. В таком случае требуется проверить, существует ли перепад давления между резервуаром масляного сепаратора и трубопроводом, в котором находится сжатый воздух. Если проблема есть, она решается заменой фильтра.

Отключение компрессора термостатом может происходить по несколькими причинами:

  • Температура окружающей среды слишком высока: таком случае ее следует снизить с помощью хорошей вентиляции, после чего перезагрузить аппарат
  • Охладитель масла засорился: требуется прочистить его с применением растворяющей жидкости
  • Недостаточно масла: следует долить необходимое количество
  • Термостат неисправен: деталь следует заменить на новую

При постоянном срабатывании прерывателя сети и отключении двигателя следует проверить напряжение и, если показатели в норме, перезапустить аппарат.

Прерыватель цепи может также срабатывать при перегреве двигателя. Если при этом режим отвода тепла не нарушен, необходимо перезапустить оборудование.

Ремонт роторного блока при его поломке возможен только в случае выхода из строя подшипников. В случае заклинивания роторов ремонт следует доверить специалистам.

Проблема повышенного давления в компрессоре может быть вызвана отсутствием команды на закрытие регулятора. В первую очередь, необходимо проверить эту деталь, а также состояние электромагнитного клапана (он должен быть закрыт). При необходимости их следует заменить.

устройство, схема, преимущества, особенности эксплуатации. Как выбрать винтовой компрессор

Винтовым называется компрессор, понижение давления в котором достигается за счет вращения двух винтов (роторов). По конструкции такие устройства принадлежат к ротационному компрессорному оборудованию. Впервые винтовая модель была запатентована в 1934 г. На сегодня агрегаты данного типа являются наиболее распространенными в своем сегменте. Этому способствует их относительно небольшая масса и компактные габариты, надежность, способность функционировать в автономном режиме, экономичность в плане потребления электроэнергии и затрат на обслуживание. Невысокий уровень вибрации позволяет монтировать такие системы без обустройства специального фундамента, как в случае с поршневыми аналогами. В ряде направлений (судовые рефрижераторы, мобильные компрессорные станции и т. п.) роторные модели практически полностью вытеснили компрессоры других разновидностей. Такие устройства могут подавать воздух, сжатый до 15 атм., и обладать производительностью 1–100 м3/мин.

Преимущества винтовых компрессоров

По сравнению с центробежными и поршневыми моделями, устройства описываемого типа имеют следующие базовые преимущества.

  1. Крайне низкий (порядка 2–3 мг/м3) расход масла, что в разы меньше, чем у крупных поршневых моделей с лубрикаторной смазкой. Следовательно, воздух, подаваемый посредством винтовых агрегатов, будет намного качественнее и чище. Его можно применять для питания новейшего пневматического оборудования без установки фильтров дополнительной очистки.
  2. Пониженный уровень вибрации и шума (у некоторых моделей – соразмерный с шумностью бытовой техники). С учетом небольшого веса и габаритов это позволяет устанавливать описываемые устройства без специального фундамента непосредственно на производствах, где потребляется сжатый воздух, а также оснащать ими разноплановые мобильные комплексы.
  3. Наличие воздушного охлаждения. Во-первых, это устраняет необходимость устанавливать системы оборотного водоснабжения. Во-вторых, появляется возможность вторично использовать тепло, которое выделяется в результате функционирования компрессора, к примеру, для обогрева помещений.
  4. Надежность работы, безопасность и простота эксплуатации, способность длительное время функционировать без обслуживания. Это становится возможным благодаря наличию автоматических систем, посредством которых осуществляется управление и контроль над работой агрегата.

Устройство винтового компрессора

Стандартная модель состоит из следующих элементов.

  1. Фильтр, необходимый для очищения воздуха, поступающего в агрегат. Обычно состоит из первичного фильтра, монтируемого непосредственно на корпус в месте забора воздушных масс из атмосферы, и вторичного, который устанавливается перед клапаном 2.
  2. Всасывающий клапан. Позволяет предотвратить выброс масла и сжатого воздуха из компрессора в момент остановки последнего. Работает на пневматическом управлении. По конструкции представляет собой обычный подпружиненный клапан. Некоторые устройства оснащены аналогами пропорционального типа.
  3. Винтовой блок. Представляет собой основную рабочую часть агрегата. Состоит из двух винтов (роторов), изготовленных посредством высокоточной механической обработки и помещенных в корпус. Самый дорогой элемент устройства. Роторная пара оснащена датчиком термозащиты, вмонтированным возле патрубка 18. Данный контроллер выключает мотор, если температура на выходе роторов превысит отметку в 105 °С.
  4. Ременной привод (высокомощные модели оснащены прямой муфтовой передачей или редукторами). Задает скорость, с которой вращаются винты. Представляет собой 2 шкива, один из которых установлен на роторной паре, другой – на двигателе. Чем больше скорость, тем выше производительность компрессора, однако максимальное давление (рабочее) при этом снижается.
  5. Шкивы, размер которых задает скорость оборотов винтовой пары 4.
  6. Двигатель. Вращает роторы 4 посредством ременной передачи (в более новых моделях – муфты или редуктора). Оснащен датчиком термозащиты, который отключает мотор от сети при достижении максимально допустимых значений потребляемого электротока. Вместе с датчиком, описанным в пункте 3, обеспечивает безопасность функционирования устройства и защищает его от возникновения аварийных ситуаций.
  7. Масляный фильтр. Он очищает масло перед его возвратом в роторы.
  8. Маслоотделитель первичной очистки. Здесь воздух освобождается от масла под действием центробежной силы (поток закручивается, вследствие чего и отделяются частицы).
  9. Маслоотделительный фильтр. Обеспечивает второй этап очистки. Такой комплексный подход позволяет минимизировать остаточные масляные пары на выходе до 1,3 мг/м3, что является недостижимым значением для поршневых агрегатов.
  10. Предохранительный клапан. Необходим для обеспечения безопасности. Клапан срабатывает, если давление в маслоотделителе 8 превысит допустимый лимит.
  11. Термостат, обеспечивающий нужный температурный режим. Пропускает масляный состав, не разогретый до 72 °С, мимо охлаждающего радиатора 9. Это позволяет ускорить достижение оптимальной температуры.
  12. Маслоохладитель. После отделения от сжатого воздуха горячее масло попадает в данный резервуар, где охлаждается до нужной температуры.
  13. Воздухоохладитель. Перед подачей потребителю сжатый воздух охлаждается здесь до температуры, которая будет выше на 15–20 °С, чем окружающая среда.
  14. Вентилятор. Осуществляет забор воздуха, охлаждает рабочие элементы.
  15. Клапан холостого хода (электропневматический). Управляет функционированием всасывающего клапана 2.
  16. Реле давления. Обеспечивает работу агрегата в автоматическом режиме. В новых компрессорах реле заменено электронной системой управления.
  17. Манометр. Находится на лицевой панели, показывает давление внутри компрессора.
  18. Выходной патрубок.
  19. Прозрачное цилиндрическое утолщение на трубке, необходимое для визуального контроля над процессом возврата масла.
  20. Клапан минимального давления. Пока последнее не превышает 4 бар, он всегда будет закрытым. Также данный элемент выполняет функцию обратного клапана, поскольку отделяет пневмолинию и компрессор при остановке последнего или работе в холостом режиме.

Устройство помещено в корпус, который обычно изготавливается из стали. Он покрывается негорючим звукопоглощающим составом, устойчивым к маслу и прочим сходным веществам. Это конструкция наиболее распространенной модификации. В зависимости от модели и производителя схема и комплектация роторного компрессора может варьироваться.

Принцип действия компрессора

Через клапан 2 воздух из атмосферы, очищенный посредством фильтров 1, попадает в роторную пару 3. Здесь он смешивается с маслом. Последнее подается в резервуар сжатия для выполнения следующих задач.

  1. Уплотнить зазоры между винтами 3 и корпусом 16, а также между полостями роторов. Это позволяет минимизировать перетечки и утечки.
  2. Устранить касание винтов, обеспечив масляный клин между ними.
  3. Отводить тепло, которое индуцируется в процессе сжатия воздуха.

Сжатая в блоке 3 воздушно-масляная смесь подается в маслоотделитель 7, где разделяется на составляющие. Отсепарированное масло очищается на фильтре 6 и возвращается в блок 3. В зависимости от температуры предварительно оно может охлаждаться в радиаторе 9, что регулируется термостатом 8. В любом случае, масло будет циркулировать по замкнутому кругу. Воздух поступает в охлаждающий радиатор 13. После достижения нужной температуры он подается на выход компрессора.

Режимы работы

  • Пусковой (Start). Данный режим служит для оптимизации нагрузки на электросеть в момент запуска компрессора. Включение двигателя осуществляется по схеме «звезда», а через 2 секунды (отсчитываются по таймеру, который включается в момент нажатия на кнопку Start) он переключается на схему «треугольник», что соответствует рабочему режиму. Маломощные винтовые модели работают на прямом пуске.
  • Рабочий. В системе начинает увеличиваться давление. Для его контроля имеется 2 манометра. Первый находится на лицевой панели и показывает параметры внутри компрессора. Второй – на ресивере, он служит для контроля линии. После достижения максимально допустимого давления срабатывает соответствующее реле, в результате чего агрегат переходит на холостой ход из рабочего режима.
  • Холостой ход. Двигатель и роторы вращаются, перемещая газ по внутреннему контуру. Это необходимо для охлаждения воздушных масс. Данный режим служит для перевода компрессора в состояние ожидания или выступает в качестве подготовки перед полным выключением. В поршневых моделях холостого хода нет. Детальное описание работы устройства на таком режиме выглядит следующим образом. Реле 16 дает команду, запускающую пневмоклапан холостого хода и временное реле. Параметры последнего можно настроить. Пневмоклапан открывает канал между фильтром маслоотделителя 9 и всасывающим клапаном 2, вследствие чего давление внутри компрессора начинает снижаться с такой скоростью, чтобы достичь минимальной отметки (2,5 бар) в течение установленного времени. Это позволяет остановить двигатель без выброса масла в область фильтра 1. По истечении указанного периода реле времени дает команду отключить мотор. Система переходит в состояние ожидания. Если сжатие достигло минимальной величины раньше, чем сработало временное реле, снова включается рабочий ритм.
  • Ожидание. Продолжается, пока рабочее давление не опустится ниже минимальной отметки, после чего реле 16 вновь запускает механизм. Длительность данного режима зависит от скорости расходования воздуха.
  • Стоп (Stop). Служит для штатного выключения агрегата. Если при этом компрессор находился в рабочем ритме, он на некоторое время перейдет на холостой ход и только после этого отключится.
  • Alarm-stop – экстренное выключение. Соответствующая кнопка находится на панели управления. Режим используется в случаях, если понадобилось срочно остановить двигатель. Агрегат выключается сразу, без промежуточного перехода на холостые обороты.

Разновидности винтовых компрессоров

Маслозаполненные. Один ротор в них является ведущим, второй – ведомым. Физический контакт между данными элементами предотвращается посредством впрыскиваемого масла (на 1 кВт мощности устройства подается 1 л/мин). Шумность работы подобного оборудования находится на уровне шума от бытовой техники – 60–80 Дб (при условии использования звукопоглощающих кожухов). Мощность двигателей может варьироваться в пределах 3–355 кВт, а объемные расходы – 0,4-54 м3/мин. Такое оборудование можно устанавливать непосредственно в рабочих цехах.

Безмасляные. Делятся на два подвида.

  • Компрессоры винтовые сухого сжатия. Оснащены синхронными электромоторами, которые приводят в движение оба винта, исключая контакт между ними. Они менее производительны по сравнению с моделями маслозаполненного типа. Из-за отсутствия масла нет и отвода тепла. Поэтому уровень сжатия достигает лишь 3,5 бар в одной ступени. Данный показатель можно поднять до 10 бар, если использовать вторую ступень и промежуточный рефрижератор. Но это, как и применение двух электромоторов вместо одного, увеличивает стоимость устройства.
  • Водозаполненные компрессоры. Самая технологичная модель, сочетающая все достоинства безмасляных и маслозаполненных вариантов. Водозаполненные агрегаты отличаются оптимальной производительностью и позволяют достигать сжатия 13 бар в одной ступени. Важным преимуществом подобных моделей является их экологичность, ведь традиционное компрессорное масло заменено на чистую, натуральную и не такую дорогостоящую воду. При этом обеспечивается внутреннее охлаждение. Вода обладает высокой удельной теплопроводностью и теплоемкостью. Вне зависимости от уровня конечного сжатия температура в ходе данного процесса повышается максимум на 12 °С. Этому способствует в том числе применение дозированного впрыска. Тепловая нагрузка на элементы устройства минимальна, следовательно, возрастает срок службы, надежность и безопасность агрегата в целом. Сжатый воздух не нуждается в дополнительном охлаждении. Циркулирующая в системе вода охлаждается до температуры окружающей среды. А влага, имеющаяся в сжатых воздушных массах, конденсируется и вновь возвращается в контур. В маслозаполненных моделях именно конденсат был загрязняющим веществом. Здесь же он используется в циркуляционном контуре за несколько часов (при нормальных условиях и непрерывной эксплуатации устройства). Следовательно, накопление отходов на станции практически нивелируется. Еще одно значимое достоинство водозаполненных компрессоров – возможность снизить на 20 % энергозатраты. Процесс сжатия в подобных устройствах приближается к идеальному изотермическому. Изготовление устройства обходится дешевле за счет отсутствия масляных фильтров, емкостей для отработанной масляной жидкости. Не приходится нести издержки и на переработку конденсата.

Безмаслянные модели используются в различных областях, но самые популярные сферы применения – пищевая, фармацевтическая и химическая промышленности.

Почему выгодно перейти на винтовое компрессорное оборудование

Как отмечалось выше, роторные модели постепенно вытесняют поршневые и центробежные варианты. Многие предприятия переходят именно на такие агрегаты, считая их более надежными, совершенными и экономичными. При этом стоимость роторных устройств выше, чем поршневых аналогов. Да и на замену оборудования (если речь идет именно о модернизации системы, а не о сборке новой установки) необходимо потратить определенную сумму. Разберемся более детально, в чем именно заключается выгода для предпринимателей, проведя сравнение винтовых и поршневых моделей. Но для начала необходимо понять, из каких статей расходов формируется стоимость любого компрессора. Окончательная сумма включает в себя следующие затраты.

  1. Приобретение агрегата.
  2. Оплата монтажных работ.
  3. Покупка расходных материалов.
  4. Оплата электроэнергии, потребляемой устройством.
  5. Ремонтные расходы.
  6. Покупка дополнительного оборудования. Например, это может быть очистительный комплекс для сжатого воздуха.
Расходы на приобретение агрегата

В этом плане более выгодными являются поршневые модели, цена которых на 20–40 % ниже стоимости винтовых аналогов. В то же время, это средства, затрачиваемые непосредственно на покупку оборудования. Но ведь его необходимо еще и установить. Поршневые модели имеют более значительные габариты и массу, в процессе работы они ощутимо вибрируют, поэтому нуждаются в обустройстве специального фундамента. Это существенно увеличивает стоимость монтажа. Если сравнивать общую сумму, которую необходимо потратить на покупку оборудования и его установку, то более выгодными оказываются именно роторные варианты.

Расходы на электроэнергию

КПД роторных компрессоров существенно больше. И чем выше производительность агрегата, тем более заметной будет эта разница. Имеет значение и тип устройства. Например, водозаполненные модели обеспечивают более высокую экономию энергоресурсов. Но даже маслозаполненные варианты низкой производительности, оснащенные традиционной схемой управления, на протяжении эксплуатационного периода несколько раз окупают свою стоимость за счет одной только экономии электричества. По критерию энергозатрат на генерирование одинакового объема сжатого воздуха поршневые агрегаты заметно проигрывают.

Некоторые винтовые модели позволяют еще больше увеличить экономию энергоресурсов. Речь идет о двухступенчатых агрегатах и устройствах с изменяемой частотой оборотов мотора. Подобное оборудование дает дополнительную экономию на 30 %. Важно и то, что имеется возможность регулировать производительность агрегата. Другими словами, компрессор будет генерировать столько сжатого воздуха, сколько потребляет оборудование в каждый конкретный момент. При таком режиме работы не возникнет ни переизбытка, ни дефицита. Оборудование будет функционировать с нужной производительностью, затрачивая энергоресурсы только на полезную работу.

Расходы на обслуживание и ремонт

Поршневые компрессоры нуждаются в регулярной замене колец поршней, клапанов, вкладышей и прочих элементов механизма. Роторные модели полностью избавляют пользователя от подобных проблем. В их механизме нет быстро изнашивающихся элементов. Потребность в ремонте возникает гораздо реже, а плановое обслуживание обходится гораздо дешевле. При соблюдении инструкции по эксплуатации такой агрегат способен прослужить около 20 лет, работая без ремонта в трехсменном режиме.

Удешевление обслуживания происходит еще и потому, что пропадает необходимость в постоянном присутствии рядом с оборудованием обслуживающего персонала. Роторные модели оснащены защитой, предотвращающей возникновение аварийных ситуаций. Например, оборудование отключается при перегреве или пиковых значениях электрического тока и способно работать в полностью автономном режиме.

В отличие от поршневых моделей, роторные аналоги поддерживают возможность комплектации блоками электронного управления, которые позволяют на программном уровне задать параметры функционирования агрегата на несколько недель вперед. Посредством электронного блока можно управлять и группой из нескольких механизмов, останавливая или запуская некоторые из них в зависимости от производственных потребностей в сжатом воздухе. Таким образом, комплекс функционирует с максимальной продуктивностью и без перерасхода ресурсов.

Покупка расходных материалов

Винтовые компрессоры имеют более эффективную систему маслоотделения, которая позволяет существенно снизить количество масляных фракций, смешивающихся со сжатым воздухом. Если уменьшается объем затрат основного расходного вещества, то снижается и стоимость его приобретения. Подобные агрегаты имеют более совершенную конструкцию (если сравнивать с поршневыми аналогами), которая позволяет установить современные СОЖ. Последние способны в несколько раз сократить частоту замены масляного состава.

Приобретение дополнительного оборудования

Поскольку в винтовых моделях масляные фракции отделяются эффективнее, нет необходимости покупать дополнительные комплексы очистки. А если сделать выбор в пользу более дешевого поршневого агрегата, придется приобрести еще и ресивер, который гасит возникающие в пневматической системе пульсации давления. Роторные аналоги не генерируют подобные пульсации. В большинстве случаев это позволяет избежать покупки дополнительных ресиверов.

Шумность работы винтовых агрегатов значительно ниже, чем у поршневых устройств. Посредством установки шумопогашающих кожухов можно еще сильнее снизить уровень звука и вибрацию, возникающие при функционировании компрессорного оборудования. Это позволяет монтировать его прямо в цехах, куда подается сжатый газ. Чем короче расстояние, на которое перемещается воздух, тем меньше появляется в нем конденсированной влаги и твердых фракций, которые способны серьезно навредить производственному превмооснащению.

Децентрализация компрессорного оборудования данного типа позволяет запускать только те единицы, которые понадобились в конкретный момент времени для обеспечения производства сжатым газом в необходимых объемах. Следует упомянуть и дополнительную выгоду, которая заключается в возможности задействования генерируемого компрессором тепла для нужд предприятия. Зачастую оно используется для отопления цехов.

Резюме

Роторные модели уступают поршневым аналогам равной производительности только по стоимости покупки. По всем остальным статьям (затраты на ремонт, закупку дополнительного оснащения и расходных материалов, оплату потребляемой энергии и работу обслуживающего персонала) они гораздо выгоднее и несколько раз окупают себя за эксплуатационный период. Таким образом, покупка винтового компрессорного оборудования – экономически оправданное и выгодное для предприятия решение.

Модели с частотным приводом

В середине 1990 гг. были созданы роторные компрессоры, оснащенные частотным приводом. Появление такого оборудования стало большим шагом к развитию и внедрению энергосберегающих технологий на производстве. Стоимость энергорессурсов постоянно увеличивается. Закономерно, что предприятия при модернизации своих мощностей стараются подобрать максимально экономичные варианты для замены устаревшего оснащения. И их выбор часто останавливается именно на роторных агрегатах с частотным приводом. Кроме надежности работы и способности функционировать в автономном режиме подобные агрегаты позволяют существенно оптимизировать энергозатраты.

Особенности конструкции и эксплуатации частотных приводов

Привод данного типа состоит из частотного преобразователя и асинхронного мотора. Последний преобразует электричество в механическую энергию, приводя в движение роторную пару. Частотный преобразователь служит для управления мотором. Он модифицирует переменный электроток одной частоты в переменный ток другой частоты.

В технической литературе чаще встречается термин «частотно-регулируемый электропривод». Подобное название обусловлено тем, что регулировка скорости оборотов мотора осуществляется посредством вариации частоты питающего напряжения, которое подается частотным преобразователем на двигатель. На сегодня подобные приводы широко применяются в различных сферах промышленности. Например, они задействованы в насосах, обеспечивающих дополнительную подкачку жидкости для сетей тепло- и водоснабжения.

Компрессорное оборудование с частотным приводом

Оснащение такого оборудования частотными приводами позволило получить агрегаты, обладающие рядом значимых достоинств по сравнению с простыми винтовыми моделями.

  • Плавный запуск. При включении обычного асинхронного электромотора возникают пусковые токи, превышающие номинальные в более чем 4 раза. Это провоцирует возникновение перегрузки в сети и накладывает ограничения на количество включений компрессорного оборудования в течение часа. Аналог с двигателем, оснащенным частотным преобразователем, запускается плавно, не провоцируя перегрузок в сети. Число пусковых операций у него будет меньше.
  • Способность поддерживать постоянное давление с высокой (до 0,1 бар) точностью, немедленное реагирование на все скачки данного параметра в сети. Каждый дополнительный бар нагнетания – это 6–8-процентное увеличение энергопотребления оборудования.
  • Обеспечение точного соответствия производительности компрессора и реальной потребности подключенного к нему оборудования в сжатом газе. Это позволяет минимизировать количество переходов агрегата в режим холостых оборотов. А ведь именно в моменты подобных переходов асинхронный электромотор обычной модели потребляет до 1/4 собственной номинальной мощности.

Посредством несложных расчетов получаем, что модель с частотным приводом за пятилетний период эксплуатации позволяет сэкономить до 25 % электроэнергии по сравнению с роторными моделями без частотного преобразователя. Некоторые производители обещают, что их оборудование способно сэкономить до 35 % ресурсов.

Другие способы оптимизации энергозатрат

На практике эффективность работы оборудования напрямую зависит от режима его функционирования. Нередко встречаются случаи, когда производители завышают показатели экономичности своего оборудования или в рекламных целях предоставляют неполную информацию. Пользователи компрессорных установок должны знать, что существуют и другие способы оптимизации энергозатрат, которые часто более просты и экономически выгодны. В качестве примера можно привести децентрализованный комплекс обеспечения сжатым газом. Он предусматривает установку нескольких компрессоров небольшой мощности вместо одного мощного агрегата, не всегда работающего на полную силу. Каждая единица подбирается в зависимости от объемов воздухопотребления конкретного оборудования. Поскольку не все производственные мощности могут быть задействованы в один момент времени, компрессорные агрегаты подключаются по мере необходимости.

Альтернативный вариант предусматривает монтаж нескольких винтовых моделей в единую сеть, которая оснащается одним пультом управления. Такая станция работает на 100 % своей мощности при пиковой нагрузке в сети. Как только потребность в сжатом газе снижается, ненужные мощности отключаются.

Кроме экономии энергоресурсов подобные мультикомпрессорные группы позволяют создать энергетический резерв. Если одна из единиц выйдет из строя, комплекс продолжит функционировать. Потеря мощности будет незначительной. Например, если в сеть входит 4 агрегата, то поломка одного из них снизит суммарную производительность только на 1/4.

Если же на предприятии будет установлен всего один, хоть и высокомощный агрегат, то его внезапная поломка может привести к полной остановке производственного цикла со всеми вытекающими убытками от простоя.

В настоящий момент степень изношенности компрессорного оборудования на многих предприятиях достиг критического уровня. Вопрос модернизации устройств подачи сжатого газа является очень актуальным. Надеемся, что данная статья поможет вам определиться с выбором компрессора, удовлетворяющего производственным потребностям вашего предприятия и современным требованиям к энергоэффективности, безопасности и надежности оборудования.

Описание и принцип работы винтового компрессора

Общее описание винтовых компрессоров

Винтовой компрессор представляет собой агрегат промышленного назначения, нагнетающий воздух посредством винтовой пары. Данный тип оборудования широко применяют в промышленности при необходимости непрерывно поставлять сжатый воздух пневматическим системам. Винтовое компрессорное оборудование является экономичным и современным оборудованием, которое характеризуется умеренным потреблением электрической энергии, простотой обслуживания и управления, а также долговечностью.

Винтовой компрессорный агрегат оснащается воздушной, жидкостной, либо масляной системой охлаждения. В результате прохождения процедуры охлаждения, воздух может содержать масляные капли, твердые частицы, а также водяные пары, что способствует износу оборудования. Поэтому, на производствах, где необходимо поддерживать высокие стандарты чистоты сжатого воздуха, используются воздушные и жидкостные системы охлаждения. Существуют также модели компрессоров, оснащенных ресивером и осушителем, которые наряду с очищением от примесей воздуха, обеспечивают его равномерную подачу и экономию электроэнергии. Такие модели являются хорошим решением для компактных производств.

Винтовые компрессорные установки активируются посредством электродвигателя. Перемещение определенного объема охлаждающего вещества (хладагента) в форме газа, позволяет точно отслеживать процесс охлаждения в компрессоре. Золотник, которым оснащен компрессор, обеспечивает снижение уровня притока газа и мощности.

Винтовой компрессор способен работать в режиме холостого хода, что позволяет снизить потребление электроэнергии в пять раз, а также максимально сократить износ деталей по причине отсутствия лишних включений электрического двигателя.

Данный вид компрессора, в отличие от поршневых компрессорных установок, не выбрасывает лишний воздух. Кроме того, винтовой компрессор производит сжатый воздух умеренной температуры, так как на конце сжатия температура низкая.

Впервые компрессоры винтового типа были запатентованы в 1930-х г. Вследствие того, что они достойно конкурировали с другими видами объемных компрессорных систем, их популярность и сфера применения росли. Сейчас винтовые компрессоры активно функционируют в самых разных областях производства. По техническим характеристикам они сравнимы с поршневыми агрегатами промышленного класса и актуальны для  предприятий, на которых необходимо поддерживать непрерывный процесс производства.

Принцип работы винтовых компрессоров

Винтовые компрессорные установки оснащены двумя винтами, один из которых имеет вогнутую поверхность, второй – выпуклую.

Винты и корпус компрессора вместе образуют объем рабочей камеры. В процессе вращения винтов размер камеры растет, а по мере удаления выступов на роторах от впадин осуществляется всасывание. При максимальном объеме камер процесс всасывания прекращается. Камеры оказываются в изолированном положении относительно патрубков. Далее, во впадину ведомого ротора входит выступ ведущего ротора (внедрение происходит с самого начала ротора и до нагнетательного отверстия). В определенный момент две поверхности образуют общий объем, который постепенно сокращается в результате движения элементов в направлении отверстия нагнетания. Происходит вытеснение газа.

В типичной конструкции винтовой компрессорной установки масло в рабочую зону не поступает. Винты находятся внутри корпуса, который оснащен разъемами (одним или несколькими), расточками, уплотнениями и камерами (нагнетания и всасывания). В данных системах используются подшипники скольжения (упорные и опорные) вследствие высокой частоты вращательных движений, которые совершает винтовая пара.

Попадание масла из подшипниковых узлов в сжатый газ и камеры подшипников, предотвращается благодаря использованию запирающего газа. Он подается в узлы уплотнений, которые представлены группой колец между винтами и камерами подшипников.

Винтовые компрессорные агрегаты используются в самых разных областях производства, т.к. их компактность и экономичность соответствует самым высоким стандартам.

Основные детали и конструктивные особенности винтовых компрессоров

Винтовые компрессорные установки оснащены винтовой парой (двумя роторами с лопостями). Один из винтов имеет вогнутую поверхность, поверхность второго выпуклая. По мере того, как винты совершают разнонаправленные вращательные движения, происходит сжатие газа. Сжатие осуществляется до предельного момента, после чего некоторый объем вытесняется через нагнетательное отверстие торцевой стенки.

Классическая модификация такого компрессора это конструкция, оснащенная двумя винтами. Существуют также одновинтовые модели, где работает один несущий винт, а приводом служит электрический двигатель.

Основными элементами конструкции данного вида агрегатов выступают корпус компрессора, электродвигатель, вентилятор, блок (в котором располагаются винты), фильтры (масляный и всасывающий), устройства для охлаждения и отделения масла, концевой охладитель воздуха, система управления и контроля, трубопроводы (воздушный и масляный). Вспомогательные элементы представлены реле давления, термостатом, предохранительным клапаном и др.

Винтовой компрессор по аналогии с поршневым агрегатом может оснащаться ресивером (или воздухосборником), что способствует стабилизации режима функционирования, повышению качества и охлаждению сжатого воздуха. Регулируемый привод в целом повышает общую эффективность работы компрессорных систем. Электронные системы управления на основе новейших микропроцессоров позволяют контролировать ключевые параметры эксплуатации.

Типы винтовых компрессорных установок

Классическая модель данного вида компрессоров оснащена двумя винтами (с выпуклой и вогнутой поверхностью). Тем не менее, существует два типа винтовых компрессорных агрегатов: одновинтовой и двухвинтовой. В классическом варианте, винтовая пара совершает разнонаправленные вращательные движения, в результате чего осуществляется сжатие газа. В одновинтовом агрегате есть один несущий винт, который приводится в действие электрическим двигателем.

Существует деление компрессорных установок на типы в соответствии с видом привода: агрегаты, оснащенные ременным и прямым приводом.

В компрессорах с ременным приводом имеются два шкива (один непосредственно на двигателе, второй расположен на винтовой паре), которые задают роторам вращение. Чем выше скорость вращательных движений, тем выше уровень производительности, но ниже уровень рабочего давления. В агрегатах с прямой передачей используется редуктор, либо прямой способ передачи посредством муфты.

В зависимости от параметра заполняемости маслом резервуара, где вращаются винты компрессора, и в которой происходит фактическое сжатие агрегаты подразделяются на:

Маслозаполненные винтовые компрессоры

Широко применимый тип компрессоров. Ведущим обычно является один винт. Ведомый ротор вращается вслед за ротором, приводящим в движение. Масло участвует в отводе тепла, которое образуется в процессе сжатия воздуха. Масло впоследствии удаляется сепаратором, давая на выходе чистый сжатый воздух. Хотя 99,9% масла остается внутри компрессора, всегда остается немного масла, которое проникает через сепаратор и покидает компрессор в сжатом воздухе, так называемый вынос масла. Поэтому эти компрессоры не могут быть использованы там, где требуется сжатый воздух без примеси масла.

Но для большинства заводов, цехов и машиностроения незначительное содержание масла не критично.  По сути это предотвращает образование ржавчины (внутри системы сжимающей воздух) и помогает машине работать плавно.

Преимущества:

  • тихая работа
  • высокий поток воздуха, равномерный поток
  • подходит для непрерывной работы

Недостатки:

  • дорогой по сравнению с поршневым типом компрессора
  • не подходит для длительных простоев
  • унос масла

Безмасляные винтовые компрессоры

Основной принцип работы такой же как у масляных компрессоров, только в этом случае здесь не используется масло, только воздух! Т.к здесь не впрыскивается масло во время сжатия, сжатие производится обычно в две стадии. Потому что если мы будем сжимать воздух в одну стадию например с 1 до 7бар, он станет очень горячим.

Ступень 1 сжимает воздух до нескольких бар (например 2,5бар). Воздух здесь очень горячий, поэтому он подается сначала через промежуточный охладитель прежде чем поступить во вторую ступень. Ступень 2 сжимает воздух дальше с 2,5бар до требуемой величины, например до 7 бар.

Обычно 2 ступени встроены на 1 редукторе с 1м эл. двигателем который приводит их в движение одновременно.

Если вам нужен 100% безмасляный воздух и в большом количестве, безмасляный винтовой компрессор то что вам нужно. Конечно же, здесь речь и о большой цене, но если Вам действительно нужен 100% безмасляный воздух, то у Вас нет выбора.

Преимущества:

  • 100% воздух без масла

Недостатки:

  • Более дорогой, чем масляный тип.
  • Обслуживание/ремонт более сложный процесс и более дорогой, чем у масляного типа компрессора.
  • Более шумный, чем масляный тип.

Безмасляные компрессоры имеют много областей применения. Это пищевая, химическая промышленность, фармацевтика, радиоэлектроника и производство полупроводников,. Винтовые безмасляные компрессоры можно подразделить на безмасляные компрессоры с впрыском воды в камеру сжатия, винтовые компрессоры сухого сжатия.

Водозаполненные винтовые компрессоры

Винтовые компрессоры с впрыском воды единственные компрессоры с мощностью ниже 55кВт достигающие 13бар. Вне зависимости от уровня конечного сжатия при дозированном впрыске температура не повышается более чем на 12°. Тепловая нагрузка на элементы устройства незначительна. следовательно, возрастает срок службы, надежность и безопасность агрегата в целом. При помощи этой технологии, отличная охлаждающая способность воды обеспечивает эффективный отвод тепла на источник.

Винтовые компрессоры с впрыскиваемой жидкостью обычно не требуют, чтобы два вращающихся в противоположные стороны ротора были в надлежащем зацеплении. Вода является слоем, который разделяет 2 винтовых профиля даже если один ротор «приводит в движение» другой. Этот тип компрессоров может быть очень выгодным для потребителя, т.к дает следующие преимущества:

  • впрыскиваемая жидкость обеспечивает внутреннее охлаждение. Некоторые газы в таком случае не полимеризуются, не работают во взрывоопасных температурах.
  • водозаполненные винтовые компрессоры достигают значительно большей степени сжатия.

Типичное применение водозаполненных винтовых компрессоров: рециркуляционные газы, окись этилена, угольный газ и очень специфичные газы, как например хлорсодержащий газ.

преимущества, принцип действия, исполнение, компоновка

На этой странице представлена полезная информация о винтовых компрессорах. Вы узнаете о принципе действия, области применения, исполнении и преимуществах. Выбрать компрессор вы можете на странице нашего каталога >>>

Принцип действия

В винтовых компрессорах сжатие воздуха происходит за счет уменьшения объёма полостей сжатия – канавок, образуемых поверхностями двух винтовых элементов и стенками корпуса винтового блока. Исходя из принципа действия, эти компрессоры относят к компрессорам объемного действия.

 

Принцип сжатия воздуха в винтовом блоке


Принцип сжатия воздуха в винтовом блоке

В этом разделе рассматриваются наиболее распространенные воздушные винтовые компрессоры для сжатия воздуха, при этом в винтовом блоке вместе в воздухом присутствует небольшое количество масла. Масло выполняет несколько функций:

  • обеспечивает масляные зазоры между элементами винтового блока, исключая сухое трение;
  • отводит тепло, выделяющиеся в процессе сжатия;
  • герметизирует винтовой блок;
  • смазывает подшипники винтового блока.

Такие компрессоры называются масляными или маслосмазываемыми (oilinjected).

Ниже представлена схема работы масляного винтового компрессора:

 

Схема работы

 

Схема работы

 

1. Воздушный фильтр 2. Регулятор всасывания 3. Винтовой блок 4. Муфта для передачи вращения от двигателя
5. Двигатель 6. Маслобак-сепаратор 7. Клапан минимального давления 8. Вентилятор охлаждения 9. Концевой охладитель 10. Сепаратор влаги (опционально) 11. Клапан автоматического слива конденсата 12. Шаровой кран
13. Масляный радиатор 14. Воздушно-масляный сепаратор 15. Масляный фильтр 16. Термостат
17. Осушитель (опционально)

Атмосферный воздух поступает в винтовой блок (поз.3) через воздушный фильтр (поз.1) и регулятор всасывания (поз. 2). Воздушный фильтр позволяет очищать всасываемый воздух от крупных частиц пыли, тем самым, исключая их попадание в винтовой блок. Регулятор всасывания позволяет переводить работу оборудования оборудования компрессора на холостой ход, когда сжатый воздух не потребляется.

Подаваемый винтовым блоком воздух, очищается от масла в баке-сепараторе (поз.6 на схеме), где крупные капли масла оседают на его стенках, а мелкие задерживаются специальным фильтром (поз.14) и отсасываются на вход блока. Специальный клапан на баке (поз.7) поддерживает в нем давление в несколько атм, т.е. даже если давление в пневмомагистрали упадет почти до атмосферного, то минимальное давление с несколько атм в баке-сепараторе все равно будет присутствовать. Это давление обеспечивает подачу масла обратно в блок. При нагревании масла выше определенной температуры, оно охлаждается в масляном радиаторе (поз13).

 

Внутреннее устройство

 

Внутреннее устройство

 

Выдаваемый компрессором воздух охлаждается в концевом охладителе (поз.9) и далее направляется в пневмосистему. Воздух может быть очищен специальными устройствами, входящими в корпус компрессора – сепаратор (поз.10) и осушитель (поз.17), которые также могут быть установлены и вне компрессора.

Принцип работы винтового компрессора был предложен около 100 лет назад, но технология изготовления качественных винтовых элементов с высокими требованиями к точности изготовления сложной поверхности появилась только во второй половине 20 века. Изготовление винтовых блоков – это технология, включающая в себя операции фрезерования, шлифования на высокоточных станках с последующим контролем на каждом этапе изготовления. Только предприятия с высоким объемом продаж могут позволить себе оснастить своё предприятия оборудованием для производства винтовых блоков. К таким предприятиям относятся FINI (Италия), CompAir (Германия), Rotair (Италия), AtlasCopco и некоторые другие.

 

Производство винтовых блоков на специальных станках

 

Производство винтовых блоков на специальных станках

 

Преимущества винтовых компрессоров

1)     Подача сжатого воздуха винтовым блоком происходит с частотой, более 100 импульсов в секунду, поэтому можно говорить, что компрессор подает воздух равномерно. Все рабочие движения в винтовом компрессоре винтового типа вращательные, поэтому оборудование не создает сильных вибраций на фундамент, а уровень шума у него приемлемый. Все это привело к возможности ставить компрессоры ближе к потребителю воздуха.

2)     Винтовые маслосмазываемые компрессоры выдают более чистый воздух, чем традиционные поршневые, но масло все же присутствует – не более 3 мг/м3 при отсутствии дополнительных фильтров.

3)    Обладают достаточно высокой экономичностью, при этом в широком диапазоне производительностей. Винтовые компрессоры изготавливаются в диапазоне мощностей от 2 кВт до мегаватт, при этом и технические и экономические характеристики мелких аппаратов так же хороши, как и у старших моделей.

4)     Винтовые маслосмазываемые компрессоры не требуют сложного техобслуживания (ТО). Стандартно меняются масло, воздушный фильтр, масляный фильтр и масляный сепаратор. Другие детали с ограниченным ресурсом меняются редко и не требуют специальных навыков и инструментов. Стандартный интервал сервисного обслуживания составляет 2000-4000 часов, при 200-500 часов у поршневого компрессора.

 

Расходные материалы для замены при проведении ТО

  1. Масляный фильтр
  2. Фильтр-сепаратор масла
  3. Масло
  4. Воздушный фильтр

 

Расходные материалы для замены при проведении ТО

 

5)     Применение различных опций для снижения энергозатрат: использование сжатого воздуха в системе рекуперации тепла, применение частотного регулирование привода и т.п. Тепло, выделяемое от оборудования, может быть направлено на обогрев помещений, для подачи горячей воды в душевые и для других применений. Использование частотного преобразователя позволяет вырабатывать столько сжатого воздуха, сколько требуется потребителю, таким образом, экономия электроэнергии может достигать до 33 %.

Использование частотного преобразователя

 

Использование частотного преобразователя

 

Также к преимуществам винтового компрессора данного типа относятся: меньшая масса и габариты, более высокий ресурс работы, возможность непрерывной работы 24 часа в сутки. Машины высокой мощности не требуют водяного охлаждения, что снижает общие затраты на монтаж и эксплуатацию винтового компрессора.

Компоновка, исполнения

Влияние на потребительские характеристики компрессора оказывает привод винтового блока. Так установки с ременным приводом в общем более компактны и позволяют производить различные варианты «давление-производительность» путем изменения диаметров шкивов. Компрессоры же с прямым приводом более экономичны и, как правило, не требуют специального обслуживания по замене.

Винтовой компрессор CompAir с ременным приводом Винтовой компрессор CompAir с прямым приводом
С ременным приводом С прямым приводом

 

Ввиду универсальности применения, аппараты средних и малых мощностей могут быть скомпонованы  с осушителями воздуха, а более мелкие – еще и с ресиверами.

 

Винтовой компрессор. Исполнение на раме Винтовой компрессор. Исполнение на раме с осушителем Винтовой компрессор. Исполнение на ресивере с осушителем
Исполнение на раме Исполнение на раме с осушителем Исполнение на ресивере с осушителем

 

Исполнение винтового компрессора

Винтовой компрессор является источником сжатого воздуха. Как правило, он является составной частью целого набора оборудования, необходимого для выполнения различных технологических задач. Сжатый воздух, выходящий из компрессора, проходит через различные устройства для его очистки, состав которого определяется классом очистки сжатого воздуха по стандартам ГОСТ 17433-80 и ISO 8573.1: осушители холодильного типа, осушители адсорбционного типа, ресиверы, фильтры и др.

Ниже представлена примерная схема компрессорной, в которой установлен винтовой воздушный компрессор. На схеме детально представлена система подготовки сжатого воздуха, а также система рекуперации тепла для обогрева воды.

Схема установки

Схема установки

Если вы не нашли необходимую информацию на данной странице- обращайтесь к нам любым удобным для вас способом, указанным на старанице "Контакты". Мы поможем с подбором оборудования. Приобрести винтовой компрессор можно на странице нашего каталога >>>


Принцип работы (действия) винтового компрессора

 

В данной статье затронем вопрос о принципе работы (действия) винтового компрессора.

 

Повторюсь, что винтовой компрессор относится к компрессорам объемного действия, где сжатие воздуха/газа происходит за счет изменения полости сжатия.

 

Типичная конструкция винтового компрессора показана на рисунке ниже:

 

Конструкция винтового компрессора

 

Цифрами на рисунке обозначены:

 

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – приводной ремень

5 – шкивы ременной передачи

6 – электродвигатель

7 – масляный фильтр

8 – масляный резервуар

9 – сепаратор

10 – клапан минимального давления

11 – термостат

12 – масляный радиатор

13 – воздушный радиатор

14 – вентилятор

 

В винтовых компрессорах существует два основных потока (или контура): воздушный/газовый поток и масляный поток.

 

Рассмотрим их подробнее на примере воздушного компрессора.

 

Воздушный поток

 

Всасываемый воздух через входной фильтр 1 и всасывающий клапан 2 попадает в винтовой блок 3. Именно в винтовом блоке, который является «сердцем» компрессора, происходит сжатие воздуха.

Основными компонентами винтового блока являются ведущий (ему передается вращение от электродвигателя 6, приводной ремень 4 и шкивы 5) и ведомый роторы:

 

Винтовой блок

 

Принцип сжатия воздуха в винтовом блоке наглядно показан на рисунке ниже:

 

Принцип сжатия воздуха в винтовом блоке

 

Следует отметить, что вращение к ведущему ротору может передаваться не только через ременную передачу, но и «напрямую» через эластичную муфту:

 

Муфта эластичная

 

Наличие всасывающего клапана 2 позволяет компрессору работать в двух основных режимах:

 

  • холостой ход (клапан закрыт)
  • нагрузка (клапан открыт)

 

Это отличает винтовой компрессор от, например, поршневого. Наличие режима холостого хода позволяет сократить число пусков двигателя компрессора и, тем самым, увеличить его надежность и срок службы. Ведь частые пуски отрицательно влияют как на сами двигатели, так и на систему энергоснабжения предприятия в целом.

 

Смесь сжатого роторами воздуха и масла попадает в масляный резервуар 8.

 

Наличие масла в винтовом блоке необходимо по ряду причин:

 

  • отвод тепла, образующегося при сжатии воздуха
  • смазка подшипников винтового блока
  • уплотнение камер сжатия за счет образования пленки на поверхности роторов

 

В масляном резервуаре 8 происходит первичное отделение масла от сжатого воздуха (за счет вращательного движения потока).

 

Остатки масла отделяются от сжатого воздуха в сепараторе 9 и возвращаются в винтовой блок 3 по специальному каналу.

 

Очищенный от масла сжатый воздух через клапан минимального давления 10 и охлаждаемый вентилятором 14 воздушный радиатор 13 подается потребителю.

 

Клапан минимального давления 10 необходим для поддержания в масляном резервуаре 8 давления, требуемого для нормальной циркуляции масла независимо от давления в сети потребителя.

 

Как правило, клапан минимального давления открывается при давлении на его входе на уровне 4-4,5 бар.

 

Вентилятор 14 может располагаться как на валу электродвигателя 6, так и приводиться в действие собственным электродвигателем.

 

Производительность вентилятора и площадь охлаждаемой поверхности радиатора 13 рассчитываются таким образом, чтобы обеспечить температуру сжатого воздуха на выходе компрессора, не превышающую температуру окружающей среды более, чем на 10 °С.

 

Следует отметить, что система охлаждения винтового компрессора может быть и водяной. В этом случае радиаторы 12 и 13 компрессора представляют собой трубчатые теплообменники, в которых охлаждение рабочей среды (масло, сжатый воздух) обеспечивается циркуляцией воды (или другого охлаждающего агента) в межтрубном пространстве теплообменника.

 

Теплообменник винтового компрессора с водяным охлаждением

 

Применение водяного охлаждения позволяет:

 

  • снизить уровень шума, производимого компрессором при работе;
  • отказаться от монтажа вентиляционных коробов для отвода от компрессора горячего охлаждающего воздуха.

 

Масляный контур

 

Масло из нижней части масляного резервуара 8 возвращается в винтовой блок 3 под действием давления, поддерживаемого внутри резервуара, благодаря наличию клапана минимального давления 10.

 

В зависимости от температуры масло может двигаться либо по «малому» контуру (масляный резервуар 8 – термостат 11 – масляный фильтр 7 – винтовой блок 3), либо по «большому» (масляный резервуар 8 – термостат 11 – масляный радиатор 12 – масляный фильтр 7 – винтовой блок 3).

 

Температура масла очень важна для длительной безотказной работы компрессора.

 

Слишком низкая температура может вызвать выделение конденсата из воздуха еще на этапе сжатия и «эмульгирование» масла, которое значительно ухудшит его эксплуатационные качества. Слишком высокая температура значительно снижает срок службы масла, а также вызывает чрезмерные температурные деформации роторов компрессора, которые могут привести, в худшем случае, даже к заклиниванию компрессора.

 

Как видите, ничего сложного в устройстве винтового компрессора нет. Современные винтовые компрессоры являются, бесспорно, надежными и эффективными для производства сжатого воздуха как на больших промышленных предприятиях, так и на предприятиях малого бизнеса.  

 

На этом все.

 

Если у вас остались вопросы, то вы можете задать их в форме ниже.

 

Мы ответим в течение 1-2 рабочих дней.

 

С уважением,

Константин Широких & Сергей Борисюк

Вернуться в раздел Все статьи

Еще по теме:

 

Винтовой компрессор. Общая информация

Принцип работы винтового компрессора

Конструкция/устройство винтового компрессора

Конструкция винтового газового компрессора. Видео

Конструкция винтового блока компрессора

Конструкция всасывающего клапана (регулятора всасывания) винтового компрессора

Конструкция термостата. Назначение термостата в винтовом компрессоре

Конструкция клапана минимального давления (КМД). Назначение КМД в винтовом компрессоре

Конструкция масляного резервуара. Назначение и принцип действия

Конструкция сепаратора тонкой очистки. Назначение и функции в винтовом компрессоре

Схема управления работой винтового компрессора. Общая информация

Силовая часть схемы управления винтового компрессора

 

Что такое винтовой компрессор: устройство, принцип работы, преимущества

Конструкция винтового компрессора – это ротационный агрегат. Его работа основывается на объемном принципе действия. У винтовых компрессоров есть ряд преимуществ:

  • Их можно устанавливать в абсолютно разных производственных условиях.
  • Они удобны в эксплуатации и обслуживании.
  • Они практически не издают шума. Это происходит благодаря тому, что данное оборудование не вибрирует при работе.

Данные плюсы винтового компрессорного оборудования сегодня ценятся. Это и понятно – оно сделано с использованием технических новинок и отвечает всем современным требованиям, процессам и задачам производства.

Но винтовое компрессорное оборудование также имеет несколько разновидностей. Среди них выделяют две первостепенные группы:

  • С одинарным винтом.
  • С двойным винтом.

Принцип работы винтовых компрессоров с одинарным винтом

В пневмоустройствах с одинарным винтом обычно есть две шестерни, которые присоединяются с боку к роторам. Те, в свою очередь, вращаются в разные стороны. Из-за этого совершается сжатие паров хладагента.

Вращение всех роторов происходит благодаря центральному ротору-винту. Хладагент проходит сквозь отверстие компрессорного устройства, которое находится на входе. Эти пары заставляют двигатель охладиться. Далее они оказывается в наружном секторе шестерен роторов, совершающих обороты. После этого, хладагент сжимается и выходит сквозь скользящий клапан в выпускное отверстие.

Компрессоры с двойным винтом выделяются присутствием двух роторов. Они называются основной и приводной. Здесь отсутствуют впускные и выпускные клапаны.

Пары хладагента всасываются с одной стороны, а выпускаются всегда с другой. Данный вариант сжатия способствует понижению уровня шума (это выгодно отличает винтовые компрессоры от поршневых). Сжатие хладагентов происходит из-за вращения роторов в разные стороны.

Ротор-винт, который находится в центре, запускает боковые роторы. Они начинают вращаться в разные стороны. Охлаждение двигателя проистекает за счет паров хладагента. Они просачиваются в компрессорное устройство сквозь отверстие входа. После того, как двигатель охладился, пары попадают во внешний сектор через специальные каналы. Там располагаются роторные шестерни. На данном этапе пары сжимаются и выходят наружу (это происходит через особые отверстия, у которых имеется специальный клапан).

Принцип работы винтовых компрессоров с двойным винтом

Особенность еще одной разновидности винтовых компрессоров (в данном случае мы говорим о двухроторных) - присутствие двух роторов. Это основной и вторичный ротор. Благодаря им работает приводной механизм.

Общей чертой выпускного компрессора, вне зависимости от специфических особенностей, является то, что у них отсутствуют впускные и выпускные клапаны. Пары хладагента входят в компрессор и выходят из него с противоположных сторон. Это обеспечивает компрессору бесшумность (в поршневом механизме достичь данного эффекта невозможно).

Преимущества винтовых компрессоров

Как можно заметить, разновидностей пневмоагрегатов очень много. И среди них особенно можно выделить ротационные (или винтовые). Сегодня они все больше и больше становятся популярными, т.к. имеют много плюсов, по сравнению с другими видами компрессоров:

Такое компрессорное оборудование рассчитывает (в зависимость от специфики деятельности) насколько необходимо сжать возжух. Нужный уровень сжатия достигается с помощью специального окна нагнетания. Современные компрессоры имеют возможность регулирования степени сжатия воздуха, благодаря, зафиксированным уровням нагнетания.

При работе винтового оборудования используется масло. Оно необходимо для того, чтобы сделать минимальными допустимые утраты сжатого воздуха. Такие потери могут произойти между зубьями шестерни и впадинами устройства. В данные узлы и впрыскивается масло, которое обеспечивает герметичность работы компрессора.

Но это еще не все функции, которые выполняет масло. Оно необходимо и для охлаждения. Таким образом, в винтовых компрессорах мы имеем дело не только с хладагентом. Дополнительную помощь ему оказывает масло. В особенности его действие можно заметить в финальном процессе сжатия воздуха до необходимой степени. Именно из-за этого винтовые компрессоры лучше всего подходят для пневмообеспечения в тех условиях, когда предполагаются перепады температур и давления: винтовые компрессоры можно применять во всевозможных ситуациях и при различных производственных процессах.

Следующая важная черта винтовых установок – это присутствие весьма компактных винтовых пневмосистем. Они предполагают малую производительность. Стоит помнить о данной особенности винтового пневмооборудования и не использовать его тогда, когда необходимо производство большого объема с большими затратами воздуха. Однако небольшая производительность таких компрессорных устройств означает, что оборудование весьма экономично и удобно в своем применении на производстве.

Особенный уход за такими устройствами не нужен. О тратах на профилактику также можно забыть. Кроме того, подобные компрессоры служат долгие годы.

Кроме таких экономичных, но не очень мощных винтовых компрессоров, существуют и весьма мощные модели. Они не проигрывают в мощности поршневым и центробежным компрессорам (данные пневмосистемы способны обеспечивать снабжение воздухом равное тому, что производят другие компрессоры, но быстрее и при значительно более меньших энергозатратах). Винтовые компрессоры способны достигать необходимой степени воздухосжатия при одноступенчатом цикле. В то время, как в поршневых компрессорных установках подобный эффект достигается только в рамках двух циклов.

Еще одно достоинство винтового компрессора – немалый моторесурс. Такие пневмосистемы отлично осиливают любой газ и комбинированные газовые смеси. Благодаря чему появляется возможность настраивать агрегат на нужный уровень давления и плавно изменять частоты вращения ротора.

Дополнительные плюсы данного оборудования - низкая изнашиваемость винтовой пневмосистемы.

Также эти установки вырабатывают более качественный воздух, который подается на производство при помощи винтовых компрессоров.

Итак, характеризуя винтовые компрессоры, необходимо еще раз подчеркнуть, что данное оборудование имеет много плюсов, относительно других разновидностей компрессоров. Благодаря последним достижениям в области разработки пневмообеспечения, винтовые установки удобны, надежны и функциональны.

Ограничения винтовых компрессоров

Безусловно, у винтовой пневмосистемы существуют некоторые недочеты, а точнее ограничения:

Винтовые компрессоры имеют сложный механизм. Так что, используя данное оборудование, необходимо тщательно изучать инструкцию по эксплуатации устройства.

Как мы уже говорили ранее, при использовании винтового оборудования используется масло и маслоохладитель.

Если применять данный вид пневмосистем для подачи воздуха или газов в пределах 15-20% от объема, то они не будут работать эффективно в районе промежуточного всасывания.

Сотрудники компании «Компрессор-центр» всегда с готовностью ответят на все вопросы. Простосвяжитесь с нами.

Винтовой компрессор устройство и принцип работы


Винтозубые компрессоры роторного типа за 80 лет эксплуатации унифицировались и потеснили поршневые. Низкие параметры шумовой нагрузки, экономичность в потреблении энергии и эксплуатационных затратах дают фору, особенно на производствах, требовательных к чистоте подаваемого сжатого воздуха или специального газа.

Принципиальное устройство винтовых компрессоров

Сжатие и подача газообразной среды достигается синхронным разнонаправленным вращением пары роторов с винтовыми зубьями. Эксплуатационные расходы и характеристики работы агрегата находятся в обратной пропорции. Оборудование демонстрирует эффективность на фоне малозатратности.

Цилиндрический корпус компрессора винтового типа с винтовой парой: ведущим и ведомым роторами в большинстве типов компрессоров имеет масляное наполнение. Слой масла обеспечивает:

Устройство винтового компрессора

Устройство винтового компрессора

  • Снижение коэффициента трения.
  • Является уплотнением, герметизирующим систему.
  • Осуществляет теплоотвод при работе трущихся деталей.

Винтовые компрессоры относятся к необслуживаемому оборудованию, ориентированы на автономную работу. Техническое обслуживание проводится 1 раз в течение года. Персонал не требует высокой квалификации и специального обучения. Пусконаладочные работы краткосрочны.

Недавно мы обсуждали компании где можно подобрать винтовой компрессор. Очень важно на данном этапе обращаться именно к тем, кто работает в данной сфере не один день.

Огромное спасибо компании Pressair, которая подготовила замечательное видео для нашего портала.

Работа поршневого компрессора периодически прерывается на регламентированный простой для осмотра и техобслуживания, роторный аналог способен работать без остановки. При этом качество газовой среды на выходе выше (по присутствию паров влаги) и масла в пользу последнего.

Предприятия пищевой, химической и фармацевтической промышленности полностью перешли на экологичные компактные винтовые компрессоры с экономией потребления энергии не менее 30%. Производства непрерывного цикла экономят и на установке дублирующей техники.

Малый вес агрегата, ресивер минимального объёма, отсутствие вибрации при работе позволяет обходиться без заложения фундамента. Изоляция в отдельном помещении требуется только для винтовых компрессоров мощностью свыше 10 кВт.

Последовательность рабочего цикла, устройство и принцип работы винтовых компрессоров

Запуск и переход в рабочий режим занимает 5–10 сек. Срабатывает входной клапан, ответственный за перевод компрессора на холостой ход и обратно. Входной клапан меняет режим работы при достижении пика давления в системе, перед выключением.

Принцип работы винтового воздушного компрессора

Принцип работы винтового воздушного компрессора

Накопление воздуха в ресивере идёт, пока не откроется клапан минимального давления. Он настраивается на минимальный параметр сети. Для одноступенчатого компрессора это 3–4 бар. Многоступенчатые вступают в работу последовательно.

Электрический мотор выводит компрессор на рабочий режим. Винтовая пара через 2 ступени воздушного фильтра получает очищенный воздух в смеси с маслом. В контактном межроторном зазоре создаётся смазывающий роторы и удерживающий газ запирающий масляный клин.

Зазор уплотняется, газовый поток сжимается, давление возрастает. Действие винтовых компрессоров ведётся и при сухом сжатии газовой среды. Полости между корпусом и винтовым блоком работают без масляной смазки.

Сжатый воздух поступает в отделитель масла. В маслоотделителе проводится двухступенчатое разделение сред. Первичное деление проходит под действием центробежной силы, окончательное — в фильтре-сепараторе.

Схема рабочих элементов винтового компрессора

Схема рабочих элементов винтового компрессора

Остывшее масло фильтруется и возвращается в винтовой отсек. Контролирует температурные параметры термостат. При отсутствии превышения температуры нагрева смазка возвращается без затрат времени на охлаждение в радиаторе.

Газ на охлаждение после очистки подаётся из ресивера в концевой охладитель. Температурный баланс радиатора обеспечивает прямоточная вентиляция. Далее воздух винтового компрессора подаётся потребителю.

Контролирует параметры работы винтового нагнетательного оборудования блок управления. Вручную производится только пуск и остановка по регламенту. Переключение режимов работы и аварийную остановку проводит электроника.

Краткий обзор параметров винтовых компрессоров

Роторные механизмы подачи газовой смеси под давлением оснащаются преимущественно электродвигателем, но работают и автономно с дизельным, бензиновым двигателем.

Марка установки Производительность, л/мин Паспортное давление Тип энергии Мощность двигателя, кВт Стоимость, тыс. р
Fini MICRO SE 2.2-10 290 10 380 В 2,2 166
Berg ВК-4Р 7 650 7 380 4,0 168
ЧКЗ ДЭН-5,5-10 600 10 380 5,5 173
Ingro XLM 10A 10 бар 920 10 380 7,5 182
Dali CA-1.7/8-GA 1700 8 380 11 200
Remeza ВК 30 15 ДВС

безмасляный

7300 15 380 22 800
CompAir C50 на шасси 5000 7 Дизель Yanmar 4TNV88BKCP 35 900
9 преимуществ винтовых компрессоров

9 преимуществ винтовых компрессоров

Видео по теме: Устройство и принцип работы винтового компрессора


Часть II из II… Винтовые компрессоры: принципы работы и уплотнения

Часть I этой серии из двух частей (LUBRICATION MANAGEMENT & TECHNOLOGY, январь / февраль 2008 г.) рассказала о диапазонах применения и вариантах регулирования громкости двухвинтовых компрессоров. Это объяснило общие особенности этих двухвальных вращающихся машин, которые работают по принципу положительного смещения в сочетании с внутренним сжатием. Работа безмасляных (сухих) по сравнению с жидкотопливными (мокрыми) винтовыми компрессорами и доступные варианты конструкции уплотнений - основная цель этой заключительной части.

Эксплуатация
Независимо от того, выполняется ли винтовой компрессор для безмасляного («сухого») сжатия или для впрыска масла или воды («мокрый» метод), газ сжимается в камерах, которые постепенно уменьшаются в размерах. Эти прогрессивные камеры образованы за счет взаимного зацепления двух винтовых роторов и окружающей стенки корпуса. Однако в сухих машинах используются зубчатые колеса, которые удерживают два винта, вращающихся в противоположных направлениях, точно друг от друга.Впрыскиваемые маслом (иногда называемые «залитые маслом») компрессоры не содержат зубчатых передач, и ведомый ротор взаимодействует непосредственно с внутренним ротором. Масло, которое впрыскивается в полость компрессора, обеспечивает интенсивное смазывание, и большая часть тепла сжатия поглощается. В то же время зазоры между роторами и стенками цилиндра (корпуса) также заполнены маслом. Это предотвращает обратный поток сжатого газа и повышает общую эффективность сжатия.

После выхода из нагнетательного фланца компрессора газ и масло выходят через обратный клапан в масляный резервуар, где большая часть масла отделяется от газа.В залитых маслом компрессорах оставшееся масло удаляется в последующем сепараторе, и только остаточное количество масла, как правило, пять частей на миллион (ч / млн), остается в потоке газа. Даже этот унос масла может быть дополнительно уменьшен путем последующего охлаждения и окончательного отделения влаги. Маслоотделитель должен поддерживаться надлежащим образом, а перепад давления на картриджах сепаратора должен учитываться для определения общей производительности компрессорной установки. Следует также признать, что эффективность сепарации масла изменяется, поскольку элементы сепаратора становятся все более загрязненными.

В небольших винтовых компрессорах корпус разделен вертикально на стороне всасывания. Цилиндр (обычно называемый «корпусом») и нагнетательная боковая пластина часто объединяются в одном корпусе. Корпуса больших машин обычно разделяются горизонтально для облегчения сборки. Роторы и валы фрезерованы из одного куска из кованой или нержавеющей стали. Некоторые производители предоставляют роторы с неметаллическими покрытиями. В тяжелых условиях эксплуатации, когда происходит потеря покрытия на краях ротора, может возникнуть быстрое падение эффективности компрессора.

Машины с технологическим газом

обычно проектируются с направлением потока сверху вниз. Это облегчает удаление жидкости из пространства сжатия всякий раз, когда жидкость впрыскивается в камеру ротора для охлаждения или для очистки во время работы. Очистка в потоке очень выгодна в тех случаях, когда газы загрязнены или имеют тенденцию к полимеризации. Область уплотнения снабжена соединениями для подачи и разгрузки уплотнительной среды. В принципе, можно наносить охлаждающую среду на стенку цилиндра, но также можно использовать неохлаждаемые корпуса (или корпуса) цилиндров.Часть 1 иллюстрирует типичные комбинации ротора, включая асимметричный профиль ротора. Комбинация профилей 4 + 6 означает, что у ротора четыре зуба, а у ротора шесть. Благодаря такой комбинации профилей диаметр сердечника ротора является относительно толстым. Это позволяет работать с большими перепадами давления.

Проблемы подшипников…
Хотя воздушные машины часто оснащены подшипниками качения, большинство компрессоров для сухого и влажного технологического газа оснащаются опорными подшипниками и упорными подшипниками того типа, который обычно встречается в центробежных компрессорах для технологического газа.Срок службы этих подшипников практически неограничен, пока действуют надлежащие процедуры смазки и эксплуатации. Подшипники качения допускаются для (относительно) легких нагрузок и там, где обеспечивается чистота масла. Излишне говорить, что выбор отдельного масляного контура подшипника с замкнутым контуром является мощным шагом в направлении поддержания чистой среды подшипника.

Если продавец предлагает мокро-винтовую машину с одной системой поддержки «все масло одинаково», то покупатель-владелец может пойти на большой риск - если он не готов увеличить эксплуатационные и эксплуатационные расходы, планируя очень частые замены масла или крупные инвестиции в оборудование для очистки нефти.Если это не входит в ваши планы, убедитесь, что вы указали двухвинтовые компрессоры с отдельными масляными контурами. Другими словами, не покупайте мокрые винтовые машины, где масло, введенное в пространство сжатия, также течет к подшипникам. Отдельные контуры используются в компрессорах коксового газа мощностью 5200 кВт, показанных на рис. 1 и рис. 2. Однако вместо нефти в этих службах коксового газа используется вода.

Уплотнения
Во многих применениях безмасляных винтовых компрессоров лучше всего обеспечить герметизирующий барьер между технологическим газом и подшипниками.Возможны различные типы уплотнений (см. Рис. 3, A-G). Включены:

  • Кольцевые уплотнения из карбона (3А)
  • Углеродное кольцо и эжектор-индуктор (3B)
  • Углеродные кольца, эжектор-индуктор и подача продувочного газа (3C)
  • Комбинированные плавающие кольца и механические уплотнения (3D)
  • Механические уплотнения и углеродные кольца (3E)
  • Вода как герметизирующая жидкость (3F)
  • Вода в небольших количествах в качестве герметизирующей жидкости (3G)

На входном валу компрессора производители часто выбирают лабиринтные уплотнения или механические уплотнения двойного действия с вращающимися пружинами.

Углеродные кольцевые уплотнения, с соединениями для впрыска и образования инертных, чистых газов, используются в тех случаях, когда утечки газа, даже в сочетании с уплотняющим газом, могут попасть в зоны подшипников или в атмосферу. Давление газа сбрасывается через плавающие углеродные кольца на краю камеры уплотнения.

Не следует забывать о кольцевых уплотнениях с плавающим барьером и механических уплотнениях двойного действия со стационарными пружинами. На барьерной воде плавающие кольцевые уплотнения барьерная вода поступает в камеру уплотнения, и небольшое количество воды достигает пространства сжатия.Большая часть воды возвращается в систему барьерной воды для охлаждения, фильтрации и повторного использования. Барьерные водяные уплотнения способны полностью предотвратить утечку газа и могут обеспечить ценные функции охлаждения и очистки. Механическое уплотнение двойного действия с неподвижной пружиной и комбинированное механическое уплотнение с кольцевым уплотнением в основном используются для сжатия при высоких перепадах давления.

Принцип отделения масла и много другой полезной информации можно получить из рис. 4 и различных ссылок [ссылки.1, 2 и 3].

Содействующий редактор Хайнц Блох является автором 17 всеобъемлющих учебников и более 340 других публикаций по надежности и смазке машин. С ним можно связаться по адресу: hpbloch @ mchsi.com

Ссылки:
1. Блох, Хайнц П., Практическое руководство по технологии компрессоров, (2-е издание, 2006 г.) John Wiley & Sons, (ISBN 0-471-727930-8), [см. Также 1-е испанское издание, (1998), McGraw-Hill, Нью-Йорк и Мехико, ISBN 970-10-1825-7].

2. Bloch, H.P., и Pierre Noack, «Недавний опыт с большими жидкостными компрессорами с ротационным винтовым компрессором», (1991, Материалы 20-го симпозиума по турбомашиностроению, Техасский университет A & M, Даллас, Техас).

3. Блох, Хайнц П. и Клэр Соарес, Технологическое оборудование, 2-е издание, 1998, Elsevier Publishing, Лондон-Нью-Йорк-Амстердам, ISBN 0-7506-7081-9.

,Винтовые компрессоры

: типы, область применения и управление

Часть I из II…

Смысл этой статьи, состоящей из двух частей, состоит в том, чтобы предупредить читателя о (часто значительных) достоинствах двухвинтовых ротационных компрессоров и установить рекорд прямо на мокрых винтовых машинах. Как для сухих, так и для мокрых винтовых компрессоров типичные профили ротора показаны на рис. 1. Эти машины представляют собой подгруппу машинной группы, состоящей из вращающихся компрессоров с принудительным рабочим объемом.Из различных доступных машин двухвинтовые винтовые компрессоры используются главным образом в системах подачи воздуха и технологического газа под высоким давлением, что является предметом данной статьи, в то время как некоторые другие роторно-поршневые воздуходувки и одношнековые компрессоры часто используются в условиях низкого давления и в больших объемах. , Они не покрыты здесь.

Вращающиеся машины с положительным смещением (аналогичные показанным на рис. 2) обладают тем же преимуществом, что и поршневое оборудование с положительным смещением в зависимости от расхода.отношения давления, то есть почти постоянный объем входного потока при различных условиях давления нагнетания. В отличие от центробежных и осевых машин, винтовые компрессоры не имеют ограничения по помпажу. Таким образом, нет минимальной пропускной способности для вращающихся компрессоров с принудительным рабочим объемом.

Скорость вращения наконечника ротора на роторном шнеке и роторно-поршневых воздуходувках низкая; это допускает впрыск жидкости или затопление жидкости, что облегчает обращение с загрязненными газами. Конструктивно роторы самоочищаются во время работы, но загрязняющие вещества должны храниться вдали от подшипников.Кроме того, грязь в компрессионном пространстве должна быть удалена фильтрацией или другими способами.

Безмасляные и залитые маслом модели
Вращающиеся винтовые компрессоры доступны в безмасляной или маслонаполненной конструкции. Технически говоря, без масла означает отсутствие масла в пространстве сжатия, но подшипники все еще требуют смазки чистой средой. Этот смазочный материал обычно представляет собой чистое масло, хотя также можно использовать чистую воду под давлением [Ref. 1]. Фактически, хотя вода под давлением представляет собой менее известную передовую технологию, она, тем не менее, применялась десятилетиями.В руках действительно компетентных производителей компрессоров винтовые компрессоры, залитые водой, оказались чрезвычайно эффективными и успешными в некоторых из самых грязных услуг [Ref. 1].

Несмотря на то, что безмасляные двухвинтовые компрессоры широко называются сухими шнековыми машинами, по крайней мере один известный производитель определяет и называет «сухим винтовым» любой винтовой компрессор, оснащенный зубчатыми передачами. Следовательно, независимо от того, является ли пространство сжатия сухим, залитым маслом или впрыснутым в воду, не имеет значения: поскольку зубчатые колеса синхронизируют два винта, его следует маркировать как сухую винтовую машину.Без зубчатых передач он не может функционировать как сухая винтовая машина, потому что результирующий контакт сопряженных роторов разрушит машину. Если нет зубчатых колес, следует использовать разделительную жидкость. Любая разделяющая жидкость, циркулирующая в компрессионном пространстве, сделает ее мокрой винтовой машиной [Ref. 2].

Области применения безмасляных машин включают все процессы, которые не допускают загрязнения сжатого газа или где смазочное масло будет загрязнено газом.Машины, залитые маслом, могут достичь немного более высокой эффективности, чем машины с «сухим винтом», и могут также использовать масло для охлаждения [Ref. 3]. То же самое можно сказать и о затопленных машинах. В некоторых случаях контур смазки подшипника должен быть полностью отделен от контура жидкости, используемого в пространстве сжатия. Всякий раз, когда это требование игнорируется, покупатель / пользователь может столкнуться с высокими расходами на техническое обслуживание или низкой надежностью оборудования.

Правильно спроектированные ротационные винтовые компрессоры сконструированы без какого-либо металлического контакта внутри камер сжатия, либо между самими роторами, либо между ними и стенками корпуса.Несмотря на то, что первоначально предназначенные для сжатия воздуха, ротационные винтовые компрессоры в настоящее время используются во многих сферах нефтехимической и смежных отраслей промышленности. К ним относятся воздухоразделительные установки, промышленные холодильные установки, выпарные установки, горнодобывающие и металлургические заводы.

Практически все газы могут быть сжаты: аммиак, аргон, этилен, ацетилен, бутадиен, газообразный хлор, хлористоводородный газ, природный газ, факельный газ, доменный газ, болотный газ, гелий, газ из известковой печи, газ коксохимического завода и углерод монооксидный газ может быть сжат с помощью винтовых машин.То же самое верно для всех углеводородных комбинаций; городской газ, воздух / метан, пропан, пропилен, дымовой газ, сырой газ, диоксид серы, оксид азота, азот, стирольный газ, винилхлорид и водородный газ можно найти в справочных таблицах опытных производителей.

Только один производитель имеет по крайней мере 20 масляных двухвинтовых компрессоров, успешно эксплуатируемых с трехлетним перерывом. Хотя условия процесса сильно различаются, возможно, есть несколько производителей с подобным опытом.У их компрессоров может быть не самая низкая стоимость установки, но они обычно представляют наилучшую стоимость и минимально возможную стоимость жизненного цикла в широком диапазоне.

Области применения
Пределы применения для роторных винтовых компрессоров устанавливаются диапазонами давления и температуры и максимально допустимыми скоростями машин. Безмасляные роторные винтовые компрессоры могут быть нагружены механически с перепадом давления до 12 бар, а масляные компрессоры - до 20 бар. Более высокие перепады давления возможны в особых случаях.Объемы потока до 60 000 м3 / ч (~ 35 000 акфм) были размещены в этих компрессорах.

Максимально допустимая степень сжатия для одной ступени двухвинтового компрессора не должна приводить к повышению температуры окончательного сжатия выше допустимого значения 250 ° C (482 ° F). Эта степень сжатия и соответствующая температура будут в очень большой степени зависеть от удельного теплового отношения (c P / c V ) газа, подлежащего сжатию. Например, где удельное тепловое отношение (c P / c V ) равно 1.4, максимальная степень сжатия была бы приблизительно 4,5, а там, где удельное тепловое отношение (c P / c V ) равно 1,2, максимальная степень сжатия была бы приблизительно 10 для безмасляной двухвинтовой ступени компрессора.

Многоступенчатые (многокорпусные) устройства не являются редкостью и могут привести к диапазонам давления от примерно 0,1 бар до 40 бар. Даже 100 бар был достигнут в некоторых случаях. Межступенчатое охлаждение используется во многих из этих приложений.В зависимости от размера компрессора возможны скорости от 2000 до 20000 об / мин. Ограничивающим фактором часто является окружная скорость охватываемого ротора, которая обычно колеблется от 40 до приблизительно 120 м / с и максимум до 150 м / с для очень легких газов.

Регулятор громкости
В принципе, необходимо отдельно рассмотреть варианты регулятора громкости для всухую и для винтовых компрессоров с впрыском масла.

Управление сухими винтовыми компрессорами…

  • Управление с помощью переменной скорости Поскольку винтовые компрессоры смещают среду положительно, наиболее выгодной стратегией регулировки громкости является изменение скорости.Это можно сделать с помощью электродвигателей с регулируемой скоростью, привода паровой турбины, гидравлических или гидромеханических преобразователей крутящего момента и других средств.

    Скорость обычно может быть уменьшена примерно до 50 процентов от максимально допустимой скорости. Таким образом, объем индуцированного потока и мощность, передаваемая через муфту, уменьшаются примерно в одинаковой пропорции. Допустимый диапазон изменения зависит от достаточности смазки подшипника на низкой скорости и от температуры нагнетания компрессора. В особых случаях возможно даже уменьшение потока на 70 процентов.Другими словами, пропускная способность сокращается до 30 процентов от нормы. Как упоминалось ранее, для этой машины с принудительным вытеснением не существует предела помпажа (минимального потока, ниже которого газ будет чередоваться между прямым и обратным потоком).

  • Обход При использовании этого метода объем избыточного газа может поступать обратно на сторону впуска через регулятор давления нагнетания компрессора. Промежуточный охладитель снижает объем избыточного газа до температуры на входе.
  • Регулятор полной нагрузки / холостого хода
    Как только достигается заданное конечное давление, регулятор давления приводит в действие мембранный клапан, который открывает перепускной канал между сторонами нагнетания и всасывания компрессора.Когда это происходит, компрессор работает на холостом ходу до тех пор, пока давление в системе не упадет до заданного минимального значения. Клапан закроется еще раз при получении импульса от датчика давления. Это возвращает компрессор к полной нагрузке.
  • Управление дроссельной заслонкой
    Этот метод управления подходит только для воздушных компрессоров. Как и в случае способа управления полной нагрузкой / скоростью холостого хода, заранее определенное максимальное давление в системе, например в ресивере сжатого воздуха, вызывает сброс давления на стороне нагнетания вплоть до атмосферного давления.Одновременно всасывающая сторона системы снижается до абсолютного давления около 0,15 бар. Когда давление во всей системе упало до допустимого минимального значения, полная нагрузка снова восстанавливается.

Управление масляными винтовыми компрессорами…

  • Управление дроссельной заслонкой
    Поскольку конечная температура сжатия зависит от впрыскиваемого масла, может быть предусмотрен больший диапазон степеней сжатия. Это позволяет варьировать объем основного потока в широких пределах.
  • Встроенный регулятор громкости
    Большие компрессоры часто оснащены внутренним регулятором объема. Задвижка, которая имеет форму, соответствующую контурам корпуса, встроена в нижнюю часть корпуса. Он предназначен для перемещения в направлении, параллельном роторам, благодаря чему эффективная длина роторов может быть сокращена. Диапазон этого режима управления обычно составляет от 10% до 100%. По сравнению с дросселированием всасывания этот тип управления обеспечивает более эффективную работу.

, часть II
В заключительном выпуске этой серии обсуждаются безмасляные и масляные ротационные винтовые компрессоры и доступные варианты конструкции уплотнения.

Содействующий редактор Хайнц Блох является автором 17 всеобъемлющих учебников и более 340 других публикаций по надежности и смазке машин. С ним можно связаться по адресу: [email protected]

Список литературы

1. Блох, Хайнц П., Практическое руководство по технологии компрессоров, (2-е издание, 2006), Джон Вили и сыновья, (ISBN 0-471-727930-8).[См. Также 1-е Испанское издание, (1998) McGraw-Hill, Нью-Йорк и Мехико, ISBN 970-10-1825-7].

2. Блох, Хайнц П. и Ноак, Пьер, «Недавний опыт с большими жидкостными компрессорами с вращающимся винтом для технологического газа» (Материалы 20-го симпозиума по турбомашиностроению, Техасский университет A & M, Даллас, Техас).

3. Bloch, Heinz P. и Soares, Claire, Process Plant Machinery, 2nd Edition, 1998, Elsevier Publishing, Лондон-Нью-Йорк-Амстердам, ISBN 0-7506-7081-9.

,

3.2 Типы компрессоров - SWEP

Существует несколько типов компрессоров, перечисленных в таблице 3.1.

Table 3.1
Таблица 3.1 Типы компрессоров.

Принципы работы поршневых компрессоров и динамических компрессоров существенно различаются. В компрессорах прямого вытеснения определенный объем газа захватывается в пространстве, которое непрерывно уменьшается сжимающим устройством (поршень, спираль, винт или подобное) внутри компрессора.Уменьшение объема увеличивает давление пара при работе компрессора. Принцип работы центробежного компрессора, также называемого турбокомпрессором, отличается. Здесь газ сжимается за счет ускорения рабочим колесом. Давление дополнительно увеличивается в диффузоре, где скорость преобразуется в давление. Центробежные компрессоры представляют интерес для очень больших мощностей, где входные потоки могут составлять приблизительно 2000 м 3 / час или более. Испарители и конденсаторы BPHE не могут работать с такими большими мощностями, поэтому они не совместимы с центробежными компрессорами.Тем не менее, BPHE могут быть использованы в качестве масляных радиаторов для центробежных компрессоров.

В дополнение к различным принципам работы компрессоры также можно различать в соответствии с их основным типом конструкции, как показано в таблице 3.2.

Table 3.1
Таблица 3.2 Классификация компрессоров по размеру.

В открытом компрессоре двигатель и корпус компрессора устанавливаются отдельно. Поскольку открытый компрессор не имеет уплотнения вокруг, существует риск утечки хладагента.Преимущества состоят в том, что компоненты компрессора легко доступны для технического обслуживания и можно избежать затрат на кожух.

В полугерметичном компрессоре двигатель и корпус компрессора расположены в корпусе из двух частей. Крышки скреплены болтами, что позволяет открывать крышку для обслуживания и т. Д. Полугерметичные компрессоры, как правило, немного дороже, чем герметичные, из-за болтов и уплотнительных колец, необходимых для соединения крышек.

Герметичный компрессор также размещает двигатель и корпус компрессора внутри корпуса.Тем не менее, стальной корпус сварен, что обеспечивает настоящую герметичность по отношению к окружающей среде. Невозможно открыть сварную оболочку герметичного компрессора, поэтому компрессор должен быть утилизирован в случае повреждения двигателя или компрессора.

Причиной общей группировки по размерам является демонстрация возможностей технического обслуживания и ремонта дорогих компрессоров, что менее важно для небольших герметичных компрессоров массового производства.

Поршневые компрессоры

Поршневые компрессоры (см. Рисунок 3.293434), также называемые поршневыми компрессорами, все еще широко используются, но в последние десятилетия столкнулись с растущей конкуренцией со стороны других типов компрессоров.

Внутри корпуса поршневого компрессора один поршень перемещается вверх и вниз в каждом цилиндре. Когда поршень находится в своей нижней точке, перегретый газ поступает в компрессор через впускные клапаны. Когда поршень движется вверх, впускной клапан закрывается, и давление газа увеличивается из-за уменьшенного объема. Сжатый газ покидает компрессор, когда давление достаточно высокое, чтобы открыть выходной клапан.Движение поршня вниз инициирует новое поступление газа через клапаны.

Преимуществом поршневых компрессоров является относительно простой принцип работы и конструкция. Основной компонент, круглый цилиндр с подходящим поршнем, может быть изготовлен довольно легко с хорошей точностью. Недостатком поршневых компрессоров является то, что они имеют много движущихся частей, что делает практически невозможным предотвращение вибраций. Еще одним недостатком является «мертвое пространство». Когда поршень находится в своем верхнем положении, часть сжатого газа будет задерживаться в пространстве между верхней частью поршня и крышей цилиндра.Газ в мертвом пространстве приводит к снижению объемной эффективности, поскольку при каждом ходе поршня сжимается меньше свежего газа, чем может фактически допустить общий объем цилиндра.

Клапаны, контролирующие поток газа в компрессор и из него, чувствительны к каплям газа. Если значительное количество жидкости попадает в корпус компрессора, когда поршень достигает своего верхнего положения, может возникнуть очень высокое давление, что может привести к серьезному повреждению клапанов или коленчатого вала.Это явление называется жидким молотом.

Винтовые компрессоры

Благодаря усовершенствованиям винтовых компрессоров за последние годы они стали более распространенными в системах кондиционирования воздуха и хладагентах среднего класса. Они, вероятно, станут еще более популярными и заменят многие крупные (от 50 кВт) поршневые компрессоры. Винтовые компрессоры производятся в двух разных конфигурациях: двухвинтовой компрессор, также называемый по типу Lysholm по имени его изобретателя, и одношнековый компрессор (см. Рисунок 3.3 ).

Двухшнековый, наиболее распространенный тип, состоит из двух роторов с дополнительными профилями, называемыми винтовыми и скользящими роторами, или роторами с наружной и внутренней резьбой. Профили ротора предназначены для непрерывного уменьшения объема между ними от входа до выхода компрессора. В отличие от поршневых компрессоров, винтовые компрессоры не имеют мертвого пространства. Хладагент подается от низкого давления к стороне высокого давления с непрерывно уменьшающимся объемом, то есть с непрерывно увеличивающимся давлением.Поэтому винтовые компрессоры не имеют ни всасывающих клапанов, ни напорных клапанов, а только обратный клапан, чтобы гарантировать, что при остановке компрессора не будет обратного потока хладагента.

Винтовые компрессоры

могут работать с высокой степенью сжатия, потому что масло, помимо своих функций смазки и уплотнения, также поглощает тепло сжатия и трения во время процесса. Поэтому правильное охлаждение масла необходимо в винтовом компрессоре и может быть обеспечено либо впрыском хладагента в компрессор, либо отдельной системой охлаждения масла.BPHE широко используются в качестве охладителей масла.

Спиральные компрессоры

Преимущества спиральных компрессоров известны с первых лет 20-го века. Причиной того, что они не были введены в больших масштабах до 80-х годов, была трудность производства свитков, которая требует очень высокой точности.

Спиральные компрессоры

улавливают газ в объеме, образованном между одной неподвижной и одной орбитальной спиралью. Орбитальная спираль приводится в движение электродвигателем, который вращает вал.Обратите внимание, что свитки выполняют движение по орбите. Они не вращаются.

Рисунок 3.4 объясняет функцию спирального компрессора. Перегретый газ (синий) поступает на внешние концы спиралей и сжимается на пути через спирали из-за орбитального движения одной из спиралей. Разгрузочное отверстие, через которое выходит газ высокого давления (красный), расположено в центре свитков.

Спиральные компрессоры

доступны в открытом и герметичном исполнении. Они имеют ряд преимуществ перед поршневыми компрессорами:

  • Отсутствие всасывающих и нагнетательных клапанов устраняет перепады давления и, как следствие, шум и вибрации.
  • Свитки не имеют мертвого пространства, что приводит к объемной эффективности, близкой к 100%.
  • Меньше движущихся компонентов, что приводит к снижению частоты отказов.
  • Они относительно нечувствительны к каплям жидкости из всасываемого газа из испарителя.

<< назад | следующий >>

,Компрессоры

- EnggCyclopedia

Компрессоры разных типов подразделяются на две основные категории: ротодинамические компрессоры и компрессоры с принудительным смещением. Эти два широких класса могут быть далее разделены как:

Ротодинамические компрессоры

  1. Центробежные компрессоры
  2. Осевые компрессоры

Компрессоры положительного смещения

  1. Ротационные компрессоры
  2. Поршневые компрессоры

Ротодинамические компрессоры

Эти компрессоры имеют вращающиеся части оборудования, придающие импульс частицам газа, которые впоследствии преобразуются в давление.Для компрессоров ротодинамического типа поток является непрерывным. Эти компрессоры часто имеют меньшие размеры и создают гораздо меньшую вибрацию, чем компрессоры с принудительным рабочим объемом.

Центробежные компрессоры

Эти компрессоры работают по тому же принципу, что и центробежные насосы. Газы поступают из осевого направления во вращающееся рабочее колесо компрессора, которое затем передает лучевую скорость частицам газа. Эти частицы затем попадают в диффузор, где скорость преобразуется в напор.Рабочие колеса обычно работают с высокими скоростями вращения, обычно в диапазоне 9000-15000 об / мин для компрессоров, используемых в химической промышленности. Компрессоры могут иметь либо один корпус с несколькими ступенями, либо несколько корпусов с промежуточными охладителями между ними, чтобы уменьшить мощность, необходимую для привода компрессоров. Компрессоры обычно приводятся в движение газовыми / паровыми турбинами или электродвигателями.

Стабильная рабочая область для центробежного компрессора находится между «точкой помпажа» и «точкой дросселя».Точка помпажа соответствует минимальному потоку стабильной работы. Точка помпажа характеризуется реверсом основного потока в компрессоре, чрезмерной вибрацией и звуком, исходящим из компрессора. Точка дросселирования компрессора при заданной рабочей скорости возникает при максимальном пределе расхода.

Следующий рисунок дает представление о структуре центробежного компрессора.

Рисунок 1 - Конструкция компрессора центробежного типа

Осевой компрессор

Эти компрессоры в основном используются для применений, связанных с большими расходами газа и относительно низкими давлениями на выходе по сравнению с центробежными компрессорами.Осевые компрессоры обычно более эффективны, чем центробежные компрессоры. Компрессор с осевым потоком состоит из большого количества лопастей, прикрепленных к вращающейся лопасти со стационарными регулируемыми лопастями, закрепленными на корпусе компрессора. Такое расположение лопастей создает несколько ступеней, что приводит к высокой эффективности и соотношению давления на корпус. Работа компрессора с осевым потоком регулируется скоростью вращения лопастей. Однако стабильный рабочий диапазон для компрессора с осевым потоком узок по сравнению с центробежными компрессорами.Типичные скорости вращения для осевых компрессоров находятся в диапазоне 1000-3000 об / мин.

Рисунок 2 - Стационарные и вращающиеся лопасти в компрессоре осевого потока

Компрессоры прямого вытеснения

Эти типы компрессоров работают с фиксированными объемными потоками газа, но они могут достигать диапазона дифференциальных давлений. Они могут быть далее классифицированы как «роторные компрессоры» и «поршневые компрессоры».

Ротационные компрессоры

Существует много вариантов компрессоров роторного типа в зависимости от деталей используемого механизма.Но у всех них есть две общие черты - фиксированный объемный поток и один или несколько вращающихся валов. Следующие схемы поясняют различные механизмы компрессоров с принудительным рабочим объемом роторного типа.

Рисунок 3 - Схема показывает винтовой компрессор с принудительным рабочим объемом

Рисунок 4 - Механизм жидкостно-поршневого компрессора с принудительным рабочим объемом

Рисунок 5 - Схема, показывающая механизм скользящей лопасти типа


Рисунок 6 - Компрессор с принудительным рабочим объемом

Поршневые компрессоры

Компрессоры поршневого типа обычно используются для применений, связанных с низкими расходами газа и высокими давлениями нагнетания.Эти компрессоры могут обеспечивать степень сжатия до 10 на ступень в зависимости от допустимой температуры нагнетаемого газа. Следующая картинка очень поясняет механизм поршневого типа компрессора.

Рисунок 7 - Двухступенчатый поршневой компрессор двойного действия

,

Отправить ответ

avatar
  Подписаться  
Уведомление о