Компрессор принцип работы: Устройство, работа поршневого компрессора

Содержание

Устройство, работа поршневого компрессора

В этой статье мы рассмотрим устройство и работу поршневого компрессора, который чаще всего применяется в пневматической системе автосервисов и шиномонтажей.

Что же такое компрессор? – по своему устройству это машина, предназначенная для сжатия и транспортировки газов с повышением давления на соотношение более чем 1,1. В наше время область применения и работа поршневых компрессоров очень широка, они необходимы на всех предприятиях, где в качестве источника энергии используют сжатый воздух. Компрессор можно встретить на заводах, газозаправочных станциях, автосервисах, медицинских учреждениях и даже мастерских по ремонту обуви.

На сегодняшний день наиболее распространенными типами устройств являются поршневые и винтовые компрессоры. Так как винтовые компрессоры имеют более высокую стоимость, то на небольших предприятиях, в том числе и СТО, широко применяются в работе поршневые компрессоры. Потребителями сжатого воздуха в автосервисе служат пневмогайковерты, пневмодрели, краскопульты, шиномонтажные станки, установки вакуумного отбора масла и т.

д.

Устройство поршневого компрессора

Основным элементом устройства поршневого компрессора является компрессорная головка (поршневой узел). Ее конструкция напоминает двигатель внутреннего сгорания. Она состоит из цилиндра, поршня, поршневых колец компрессора, шатуна, коленчатого вала, а также впускного и нагнетательного клапанов. В отличие от ДВС, клапаны в компрессоре представляют собой пластинку с пружиной и при работе поршневого компрессора приводятся в действие не принудительно, а от перепада давлений. Для смазки устройства поршневого компрессора, в частности трущихся деталей, в компрессорную головку заливают масло.

В случае если необходимо получить сжатый воздух высокой чистоты и без примесей масла (например, в медицинских учреждениях) применяют безмасляные компрессоры. В таком устройстве поршневого компрессора кольца выполнены с полимерных материалов, а для надежной работы поршневого компрессора применяют графитовую смазку.

Для достижения более высокой производительности поршневого компрессора компрессорные головки изготавливают с несколькими цилиндрами, которые могут иметь рядное, V-образное или оппозитное устройство.

В движение коленчатый вал приводится от электродвигателя, что обеспечивает работу поршневого компрессора. В зависимости от способа соединения с электродвигателем различают компрессоры поршневые с ременным и прямым приводом.

  1. При прямом приводе головка и двигатель расположены на одной оси и их валы в устройстве поршневого компрессора соединены напрямую.
  2. В компрессорах поршневых ременного типа привод головки и мотор расположены параллельно друг другу, а движение предается через ременную передачу. На шкиве привода головки установлены лопасти, которые обеспечивают охлаждение поршневого узла.

Другим важным элементом в устройстве и работе поршневого компрессора является ресивер, который представляет собой стальную емкость и предназначен для поддержания постоянного давления и равномерного расхода воздуха. В ресивере также установлен клапан для сброса давления в случае если будет превышено его допустимое значение.

Для обеспечения работы поршневого компрессора в автоматическом режиме в устройстве поршневого компрессора находится

прессостат (реле давления), который при достижении заданного давления размыкает контакты и останавливает двигатель, а при снижении давления ниже некоторого значения замыкает контакты и запускает компрессор.

Работа поршневого компрессора

Работа поршневого компрессора осуществляется по следующему принципу: при движении поршня вниз в цилиндре создается разрежение, в результате чего открывается впускной клапан. Так как в цилиндре давление ниже атмосферного, то через клапан поступает воздух. Для очистки поступающего воздуха в устройстве поршневого компрессора применяют фильтры. Во время движения поршня вверх при работе поршневого компрессора оба клапана закрыты. При сжатии воздуха возрастает давление в цилиндре и открывается нагнетательный клапан, через который воздух поступает в ресивер. Работающие по такому принципу поршневые компрессоры носят название одноступенчатых.

Одним из недостатков устройств поршневых одноступенчатых компрессоров

является ограниченное рабочее давление. Работа поршневого компрессора данного типа возможна с повышением давления только до 10 атмосфер. Это объясняется тем, что при больших давлениях сильно возрастает температура в цилиндре и может загореться масло, которое используется для смазки деталей.

Для достижения более высоких давлений в работе поршневых компрессоров применяют многоступенчатый принцип, в котором воздух поочередно сжимается в каждой ступени до определенного значения, после чего охлаждается в холодильнике и подается в цилиндр следующей ступени, где сжимается до более высокого давления. В качестве холодильника в устройстве поршневого компрессора используют медную трубку с ребрами охлаждения.

Работа поршневых компрессоров на небольших предприятиях наиболее часто основывается на двухступенчатой установке с двумя цилиндрами. Цилиндр первой ступени, как правило, имеет больший диаметр чем второй.

При выборе поршневого компрессора необходимо в первую очередь учитывать характеристики потребителей сжатого воздуха. Ведь работа поршневого компрессора не должна быть постоянной. При правильном подборе компрессорной головки и ресивера время работы компрессора должно быть равным времени отдыха.

Стоит учесть, что все производители указывают на своих компрессорах производительность в л/мин только на входе. Так как при повышении давления нагнетания производительность снижается, то для того чтобы узнать ее значение на выходе нужно от указанных данных отнять 30 %.

Воздушные компрессоры: устройство, принцип работы, назначение

Воздушный компрессор представляет собой установку, действие которой основано на сжатии воздуха и подачи его под определенным давлением в пневматическое оборудование. Выбирая компрессорное оборудование для выполнения различных видов работ, необходимо учитывать устройство компрессора, его конструктивные особенности, а также технические и рабочие характеристики установки.

 

Конструктивные особенности, принцип действия и устройство воздушного компрессора зависят от типа установки. Современные компрессоры имеют несколько классификаций, главной из которых является различие компрессоров по принципу действия. Сегодня производители компрессорного и пневматического оборудования предлагают большое количество данных установок различного типа,

наиболее распространенными среди которых являются винтовые и поршневые установки.

Поршневые компрессоры

Винтовые компрессоры

Все виды компрессоров имеют, как общие элементы, так и различия в конструкции. Кроме того, в зависимости от типа оборудования могут быть использованы различные материалы при изготовлении тех или иных составляющих компрессоров.

Устройство компрессоров винтового типа

В промышленных отраслях наиболее распространено использование винтовых воздушных компрессоров, которым характерны высокие технические характеристики. Устройство компрессора воздушного винтового отличается от аналогичных установок наличием винтового блока, в состав которого входят два ротора с ведущим и ведомым типом. Винтовой блок является основным рабочим элементом данного оборудования.

 

 

В момент работы данного компрессора, воздух, который проходит через систему фильтрации и клапан, поступает блок с винтами, где происходит смешивание воздуха с маслом. Использование масла необходимо для устранения пузырей воздуха и уплотнения пространства.

Далее воздушно-масляная смесь нагнетается винтовым блоком в пневматическую систему. На следующем этапе смесь поступает в сепаратор, где воздух отделяется от масел и, через систему радиатора, подается в ресивер или же на пневматическое оборудование.

Так как блок, в котором расположены винты, является главным рабочим элементом компрессора, принцип его работы необходимо рассмотреть отдельно. Зубья роторов – ведущего и ведомого, находятся в зацепленном состоянии. Корпус винтового блока и открытые полости роторов создают объем, в который, при вращении винтов, поступает воздух. Вращение роторов имеет противоположные направления. При этом происходит закрытие открытых полостей, что приводит к уменьшению объема между ними и увеличению давления нагнетания.

Подобное устройство винтового компрессора и его принцип действия обеспечивает высокую эффективность работы всей установки, бесперебойную подачу сжатого воздуха на пневмооборудование и возможность интенсивной эксплуатации данной системы на протяжении длительного времени.

Устройство поршневого компрессора и принцип его действия  

Другим видом компрессорных систем, широко используемых в быту и на небольших предприятиях, является оборудование поршневого типа. Главным отличием такой установки от винтового и других типов оборудование является достаточно простое устройство поршневого компрессора и принцип его работы.

Основные элементы данной установки можно разделить на группы в зависимости от выполняемых функций:

  • цилиндровая группа;
  • поршневая группа;
  • механизмы движения;
  • системы регулирования, представляющие собой элементы, регулирующие производительность оборудования – трубопроводы, вспомогательные клапаны;
  • системы смазки;
  • элементы охлаждения;
  • детали для установки оборудования.

 

 

Конструктивно поршневой компрессор представляет собой корпус, выполненный из чугуна, алюминия или же другого материала и оснащенный цилиндром, расположение которого может быть как вертикальным, так и горизонтальным. Основную подвижную и рабочую часть компрессора составляет сам поршень и два клапана, выполняющие всасывающие и нагнетательные функции.

Основу работы данного оборудования составляет движение поршня – поступательные движения приводят к всасыванию воздуха в цилиндр, а при возвратном действии воздух сжимается. Данный процесс и приводит к увеличению силы давления. В этот момент происходит закрытие клапана всасывающего действия, а нагнетательный клапан подает в магистраль сжатый воздух. Данный цикл повторяется на протяжении всего периода работы оборудования, обеспечивая пневмоинструменты воздухом под давлением необходимого уровня. Устройство компрессора воздушного поршневого отличается своей сравнительной простотой в сочетании с высокими рабочими и эксплуатационными характеристиками.

Учитывая устройство компрессоров поршневых и винтовых, их конструктивные, технические и эксплуатационные особенности, можно легко выбрать наиболее подходящий тип оборудования в соответствии с предъявляемыми к ним требованиями и для использования с различными пневмоинструментами при проведении как промышленных, так и бытовых работ.

Устройство воздушного компрессора и его особенности

Компрессоры — это устройства, предназначенные для сжатия разнообразных рабочих сред до определенного давления. В современной промышленности применяют кислородные, азотные, фреоновые и другие агрегаты. Но наибольшее распространение получило оборудование, которое производит сжатый воздух. Такие установки применяют во всех отраслях промышленности, а также в энергетике, строительстве, авторемонте, фармакологии, медицине и других направлениях деятельности.

Важно отметить, что эффективность агрегата напрямую зависит от того, насколько он соответствует конкретным условиям эксплуатации. А это значит, что перед покупкой следует изучить устройство компрессора и его характеристики. Это позволит сделать правильный выбор и приобрести ту установку, которая максимально полно отвечает потребностям того или иного предприятия.

Особенности оборудования

Современные производители предлагают потребителям широчайший модельный ряд техники. Поэтому прежде чем говорить о том, как устроен воздушный компрессор, отметим, что установки значительно различаются по конструкции, техническим характеристикам, принципу действия и другим особенностям. Так, к примеру, агрегаты можно классифицировать по таким признакам, как:

  • Тип привода. Наиболее распространены дизельные и электрические устройства, причем последние также делятся на два вида — с питанием от сети 220 и 380 вольт.
  • Конструкция блока, в котором происходит сжатие воздуха. По данному признаку различают поршневые и винтовые компрессоры.
  • Давление в системе. В зависимости от мощности и устройства, компрессоры могут сжимать воздух как до 8-10, так и до 100 и более атмосфер.

Что касается других отличий, то к их числу стоит отнести тип охлаждения, производительность, область применения и т.д. Логично предположить, что в каждом случае конструкция агрегата будет различаться. А это значит, что без уточнения деталей нельзя ответить на вопрос о том, как устроен воздушный компрессор. Именно поэтому ниже мы приводим только базовое строение механизма, которое в зависимости от модели может быть дополнено теми или иными деталями и узлами.

Конструкция оборудования для производства сжатого воздуха

Итак, основными конструкционными элементами компрессора являются:

  • Двигатель. Как мы уже отмечали выше, агрегаты оснащают электродвигателями и ДВС (бензиновыми и дизельными). Среди бытовых и полупрофессиональных моделей широко распространены установки, работающие от сети напряжением 220 вольт. Если же говорить о промышленном применении, то здесь наиболее востребовано дизельное оборудование, а также компрессоры, предназначенные для подключения к сети 380 вольт. И только в ограниченном числе случаев используют турбины, которые работают на газе или паре.
  • Блок сжатия воздуха. Данный узел может быть как поршневым, так и винтовым. Кроме того, для некоторых отраслей промышленности можно купить компрессоры мембранного, роторно-пластинчатого, шестеренчатого и других типов. Но поскольку их используют довольно редко, мы остановимся подробнее только на двух разновидностях:
    1. Устройство поршневого компрессора предлагает наличие одного или нескольких цилиндров, в которых происходит сжатие воздуха. При движении поршня по направлению от впускного клапана создается разряжение, вследствие которого воздух наполняет цилиндр. При обратном движении происходит сжатие рабочей среды. Когда давление достигает заданного значения, воздух преодолевает усилие пружины нагнетательного клапана и попадает в ресивер.
    2. Если поршневые агрегаты сжимают рабочую среду за счет возвратно-поступательного движения, то винтовые машины для этой цели используют вращение ведущего и ведомого ротора. Плоскости винтов и внутренняя поверхность корпуса создают воздушные камеры, объем которых попеременно увеличивается и уменьшается. За счет этого происходит наполнение камер воздухом, а затем его сжатие.
  • Ресивер. Это металлический сосуд, который оснащен входным и выходным патрубком, а также предохранительным клапаном для защиты от перегрузок. Применение воздухосборников позволяет одновременно решить несколько задач. Во-первых, с их помощью устраняют пульсацию сжатого воздуха, которая возникает вследствие особенностей устройства и принципа работы поршневых компрессоров. Во-вторых, ресивер служит для дополнительного охлаждения рабочей среды, а также ее очистки от конденсата. И наконец, резервуары используют для накопления сжатого воздуха. Небольшой запас позволяет справиться с пиковыми нагрузками на предприятии и обеспечивает работу пневмооборудования в моменты кратковременных отключений агрегатов.

Остались вопросы по устройству компрессоров, предназначенных для сжатия воздуха? Специалисты нашей компании готовы подробно рассказать обо всех особенностях бытовых и промышленных установок. Чтобы получить консультацию, достаточно связаться с нами по телефону, указанному на сайте.

Подготовлено: Елизавета Семёнова

Устройство и принцип работы компрессоров

Для получения сжатого воздуха используется компрессорное оборудование, применяемое в производственных отраслях, гаражах, автомастерских и в строительстве.

Первое компрессорное устройство было изобретено еще до нашей эры, компрессоры в современном исполнении работают уже более 150 лет. Во все времена устройство носило название – поршневая воздуходувка, которая создавала поток воздуха под высоким давлением. И сегодня, несмотря на многочисленные инновации и технологии принцип работы компрессора остается неизменным.

Разновидности поршневых компрессоров

Поршневые компрессоры различаются по типу устройства кривошипно-шатунного узла:

  • Одностороннее всасывание, с мощностью не более 100 кВт;
  • Двухстороннее всасывание.

По устройству цилиндров, и их расположению: вертикальные, угловые, горизонтальные. Различаются по степени сжатия: 1-ступенчатые, 2-ступенчатые, многоступенчатые.

По виду исполнения компрессоры могут быть передвижными и стационарными. Отличается компрессор передвижной и по конечному давлению, что важно учитывать при выборе оборудования:

  • Сверхвысокое давление – более 1000 бар;
  • Высоким давлением – до 1000 бар;
  • Средним давлением – до 100 бар;
  • С низким давлением – до 12 бар.

Принцип работы поршневого компрессора

Поршневой компрессор имеет достаточно простой принцип работы и состоит из чугунного корпуса цилиндрической формы, нагнетательного и всасывающего клапана и поршня. Полный рабочий процесс совершается за два хода поршня, во время которого во внутреннюю часть корпуса заходит жидкость или воздух, после чего происходит возрастание давления и сжатое вещество выталкивается через клапан-нагнетатель.

Многолетний опыт использования поршневого оборудования в разных сферах деятельности показал ряд таких преимуществ:

  • Работа возможна даже при отсутствующем начальном давлении;
  • Можно комбинировать любые газы и жидкости, даже загрязненные и пожароопасные;
  • Конечное давление более 1000 бар, что позволяет добиться высокой производительности.

Принцип работы винтового компрессора

Винтовые компрессоры работают от электросети и могут быть, как передвижными, так и стационарными. Передвижной винтовой компрессор является единой установкой, состоящей из нескольких элементов:

  • Компрессор;
  • Бензиновый или дизельный двигатель;
  • Электрогенератор.

Передвижные компрессоры надежны и мобильны, так как установлены на прицеп с колесами, что позволяет быстро доставлять оборудование к месту работы. Если оборудование транспортируется на грузовом транспорте, тогда компрессор устанавливается на кузов.

устройство, принцип действия, виды, производители

Компрессоры промышленные – агрегаты, обеспечивающие процесс сжатия газового либо воздушного потока за счет нагнетания давления в рабочей камере и последующей подачей к подведенному оборудования и пневматическому инструменту. Генерация сжатого воздуха осуществляется с учетом принципа действия конструкций и технологических параметров рабочего цикла.

Сфера использования компрессорных устройств включает отрасли нефтепереработки и строительства, индустрию медицины и химическую промышленность, предприятия металлургической отрасли и машиностроение, а также производственные процессы изготовления радиоэлектроники и дорожное строительство.

Содержание:

  1. Компрессор промышленный – конструкция
  2. Принцип действия компрессоров
  3. Компрессор винтовой
  4. Воздушные компрессоры
  5. Компрессор поршневой
  6. Масляные компрессоры
  7. Безмасляные (сухие) компрессоры
  8. Компрессор инверторный
  9. Компрессор промышленный - рейтинг производителей

Компрессор промышленный – конструкция

Принцип работы компрессорных агрегатов, обеспечивающих генерацию воздушного потока, зависит от типа оборудования, его конструкции и технических особенностей. Основными составными элементами устройств выступают:

  1. Винтовой блок либо поршневой механизм;
  2. Ресивер;
  3. Фильтр воздушного потока;
  4. Арматура и соединительные шланги;
  5. Контроллер и система автоматики;
  6. Контур охлаждения;
  7. Маслоотделитель;
  8. Масляный фильтр.

Компрессор промышленный – конструкция

Главными техническими характеристиками агрегатов для генерации сжатого воздуха являются:

  • Уровень производительности;
  • Мощность электропривода;
  • Граничные показатели рабочего давления.

При подборе модели компрессора необходимо сопоставлять технические параметры установки и доступные условия для размещения оборудования, а также производить расчет совместимости с имеющимися устройствами и рассматривать возможность интеграции механизма в функционирующую технологическую группу.

Принцип действия компрессоров

Принцип работы компрессорных устройств базируется на сжатии нагнетенного воздушного потока в рабочей камере благодаря перемещению узлов рабочей группы. Полученный очищенный и охлажденный сжатый воздух подается в магистральную систему для обеспечения работы подведенных агрегатов. Схема функционирования устройств на примере масляных компрессоров винтового типа предусматривает поступление атмосферного воздушного потока через всасывающий клапан в герметичный винтовой блок, где за счет движения роторных лопастей нагнетается давление и воздух смешивается с масляным веществом. Полученная воздушно-масляная смесь в процессе нагнетания рабочего объема смещается в пневматический отсек и после проходит стадию сепарации для отделения масляных примесей.

Полученный в результате генерации сжатый воздух поступает в ресивер либо в магистральную систему.

Принцип действия компрессоров

Компрессор винтовой

Компрессор с винтовым принципом функционирования относится к категории устройств объемного действия и осуществляет сжатие воздушной среды за чет движения роторных лопастей, закрепленных в винтовом блоке. Агрегаты поддерживают длительные рабочие циклы и характеризуются небольшими скачками рабочего давления. Среди преимуществ винтовых устройств значатся:

  1. Повышенная износостойкость;
  2. Возможность работы на протяжении 24 часов;
  3. Экономный расход масла;
  4. Сниженное энергопотребление;
  5. Автоматическая регулировка параметров производительности;
  6. Присутствие системы охлаждения.

Компрессор винтовой

Работа винтовой пары характеризуется низким уровнем шума и вибрации, что делает возможным монтаж оборудования в помещении цеха. Установки отличаются компактностью исполнения и имеют небольшой вес, поэтому могут монтироваться на ровную поверхность пола без использования опорного фундамента.

Воздушные компрессоры

Компрессор электрический воздушный – оборудование для производства сжатого воздушного потока, рабочей средой которого выступает закачанный атмосферный воздух. По типу используемого способа сжатия установки делятся на динамические конструкции и механизмы объемного сжатия. Агрегаты динамического типа включают осевые, струйные и центробежные модификации устройств. Приборы объемного действия классифицируются как:

  • Винтовые установки;
  • Агрегаты поршневого типа.

Воздушные компрессоры

По принципу размещения компрессоры включают стационарные и передвижные модели, с учетом применения смазывающих веществ установки бывают:

  • Масляные;
  • Сухие (безмасляные).

Критериями выбора компрессорных агрегатов выступают граничные параметры рабочего давления, особенности эксплуатационных условий и предельные нагрузки. С учетом назначения применения выделяются компрессоры для аэрации, вакуумные установки для генерации сжатого воздуха, а также устройства промышленного назначения и оборудование для бытовых нужд.

Компрессор поршневой

Поршневые компрессоры – агрегаты для сжатия воздушного атмосферного потока, работа которых осуществляется по принципу объемного сжатия. Главным функциональным элементом выступает компрессорная головка, повышение параметров давления внутри компрессорной камеры осуществляется за счет изменения объема рабочего давления. Схема работы поршневых агрегатов включает следующие этапы:

  1. Атмосферный воздушный поток поступает в устройство через всасывающий клапан и фильтр;
  2. При чередовании движений поршневой группы происходит нагнетание рабочего давления, которое проталкивает воздух в камеру сжатия;
  3. При достижении граничной отметки рабочего давления открывается нагнетающий клапан, и воздух из камеры подается на выход, пройдя этапы охлаждения и сепарации.

Компрессор поршневой

По способу соединения поршневого блока с электродвигателем модификации устройств бывают:

  • С прямой передачей;
  • С ременным типом привода.

Масляные компрессоры

В маслозаполненных компрессорных установках процесс сжатия воздушного потока осуществляется с присутствием масляного уплотнения, которое покрывает рабочие элементы тонким пленочным слоем и обеспечивает заполнение свободных полостей, что позволяет минимизировать трение деталей и продлить срок их эксплуатации. Компрессорное масло осуществляет охлаждающую функцию и препятствует развитию коррозии. Достоинствами масляных приборов являются:

  1. Высокая эффективность работы;
  2. Устройство не перегревается;
  3. Удлиненный срок службы благодаря отсутствию трения;
  4. Длительная беспрерывная эксплуатация;
  5. Экономичное потребление электроэнергии.

Масляные компрессоры

По способу соединения поршневого блока с электродвигателем модификации устройств бывают:

    Недостатком маслозаполненных устройств выступает необходимость постоянного контроля уровня масла и конструктивная сложность исполнения. При генерации сжатого воздуха в потоке остаются примести нефтепродуктов, а также большие габаритные размеры и вес по сравнению с устройствами безмасляного типа. Обязательным условием эксплуатации масляных установок является своевременная замена фильтрующих масляных элементов и сепараторов.

    Безмасляные (сухие) компрессоры

    Компрессоры с сухим принципом сжатия функционируют без применения смазывающих веществ и осуществляют генерацию воздуха 100% чистоты, что делает их оптимальным решением для производств с критичными требованиями к качественным характеристикам сжатого воздушного потока. Установки задействованы в технологических процессах пищевого производства и в медицинской отрасли, в автомастерских, при сборке мебельных конструкций и при организации покрасочных работ. Преимуществами безмасляных механизмов являются:

    • Компактные габаритные размеры и небольшой вес;
    • Приемлемая стоимость;
    • Отсутствие затрат на компрессорное масло.

    Безмасляные (сухие) компрессоры

    Установки не предусматривают применение сепаратора, отличаются простотой конструкции и предусматривают легкость перемещения. В отличие от масляных моделей имеют более низкий эксплуатационный ресурс из-за трения элементов.

    Компрессор инверторный

    Инверторные компрессоры – агрегаты поршневого типа, оснащенные вертикальным валом и соединенные с электродвигателем. Установки поддерживают регулируемую частоту движения ротора. Регулировка производительности прибора осуществляется с помощью электронного блока, который поддерживает плавную смену параметров частоты вращения вала, что позволяет поддерживать стабильную температуру функционирования устройства.

    Компрессоры инверторного типа отличаются непрерывным режимом работы. Установка не останавливается, а лишь снижает обороты в зависимости от изменения показателей температуры. Агрегаты характеризуются длительным эксплуатационным ресурсом благодаря чередованию максимальных и пониженных нагрузок на роторный элемент. Компрессоры предусматривают пониженный уровень шума и экономично потребляют энергоресурсы.

    Компрессор инверторный

    Компрессор промышленный - рейтинг производителей

    При выборе компрессорного агрегата необходимо учитывать параметры производительности и предельное давление, уровень надежности и срок службы оборудования, а также сопоставлять имеющиеся производственные мощности. В рейтинге производителей отечественного рынка компрессорного оборудования ведущие позиции занимает белорусская компания Remeza, которая предлагает широкий ассортимент установок поршневого и винтового типа. В числе зарубежных брендов, специализирующихся на выпуске профессиональных установок для сжатия воздуха значатся: компания Fubag (Германия), корпорация Абак и бренд Fiac из Италии, оборудование которых отличается высокой надежностью и эффективностью работы.

    Компрессор промышленный Fubag

Поршневой компрессор - безмасляный, масляный, промышленный одноступенчатый, двухступенчатый

Компрессоры поршневого типа считаются первыми в своем рыночном сегменте. Такие установки до сих пор используются на производствах, несмотря на наличие более современных и экономичных моделей. Повсеместное использование поршневых установок связано также с высокими рабочими показателями, которые допускают его применение во всех промышленных отраслях. Компрессоры такого типа могут интенсивно использоваться даже при больших объемах производства, т.к. полностью отвечают их высоким требованиям эксплуатации.

Содержание:

  1. Компрессор поршневой
  2. Конструкция поршневых компрессоров
  3. Принцип действия поршневого компрессора
  4. Компрессор масляный поршневой
  5. Безмасляный поршневой компрессор
  6. Компрессор одноступенчатый поршневой
  7. Компрессор двухступенчатый поршневой
  8. Ремонт компрессоров поршневых

Компрессор поршневой

Поршневой компрессор создан для обеспечения различных механизмов воздухом с избыточным давлением. Сжатый с его помощью воздух может служить источником энергии для ряда установок или для осуществления некоторых технических работ. Широкая сфера применения позволяет использовать такие устройства и в быту, и в машиностроении, и в разных областях промышленности. Модель поршневого типа до сих пор остается актуальной, благодаря простой конструкции и высоким техническим показателям.

В их числе:

  • Возможность получить на выходе давление, равное 30 атмосферам – из-за этого такие компрессоры очень востребованы, когда нужны высокие цифры давления сжатого воздуха.
  • Устойчивость к переходным процессам с частыми остановками/запусками аппаратов.
  • Способность работать без перебоев даже в неблагоприятных для эксплуатации условиях: запыленность, высокий или низкий температурный режим.

Компрессор поршневой

Поршневые компрессоры также удобно использовать для пневматического оборудования, которому не требуется большой расход воздуха под давлением в минуту. В некоторых областях до сих пор нет альтернативы для их применения.

Конструкция поршневых компрессоров

Поршневые компрессоры заметно дешевле установок другого типа. Это напрямую связано с простотой конструкции, которая не требует больших затрат на производстве. Отсюда вытекает и относительная дешевизна в ремонте таких аппаратов. Внешне устройство напоминает цилиндр, внутри которого расположен поршень. Исполнение может быть разным: от горизонтального/вертикального до наклонного размещения установки.

Конструкция поршневых компрессоров

Самая простая конструкция у одноцилиндровых компрессоров:

  • Поршень;
  • Цилиндр;
  • Клапаны для нагнетания и всасывания воздуха.

Перечисленные части являются базовым оснащением любого устройства для сжатия воздуха поршневого типа. Конструкция других моделей несколько отличается и зависит от характеристик конкретного компрессора. Так, на рынке представлены варианты с разным количеством цилиндров или ступеней для сжатия воздуха (одно- и многоступенчатые). Есть также компрессоры, которые отличаются видом расположения самих цилиндров в установке: размещенные в ряд, в форме буквы V или W.

Простая реализация таких установок сделала возможной еще и работу в условиях загрязненной среды при минимальном риске поломок. Но здесь есть обратная сторона. Если не очищать воздух в помещении, где установлен компрессор, на выходе он будет таким же грязным, и к этому добавятся пары масла и продукты износа механизма. Такое качество воздуха можно использовать далеко не везде.

Принцип действия поршневого компрессора

Рассматриваемый тип установки оборудован механизмом объемного сжатия, т.е. когда компрессия происходит путем уменьшения объема с газообразной средой. Это возможно через возвратно-поступательные движения поршня, которые уменьшают в объеме и выталкивают воздух из окружающей среды в подсоединенную магистраль.

Вся суть работы компрессоров поршневого типа сводится к периодичному нагнетанию воздуха. При опускании поршня в освободившемся пространстве всасывается воздух из атмосферы. При подъеме впускной клапан, через который изначально попадает воздух, закрывается, объем становится меньше, а давление возрастает. Когда сжатие доходит до нужного уровня, открывается клапан для нагнетания.

Принцип действия поршневого компрессора

Создаваемое при этом давление вытесняет воздух в указанную выше магистраль.

Для временного хранения сжатого воздуха или газа используется специальный резервуар (ресивер). Компрессор останавливает работу, когда ресивер полностью заполнен. Процесс передачи полученной атмосферы потребителю позволяет механизму остыть. Если не снизить температуру, аппарат перегреется и выйдет из строя.

Такие аппараты не подходят для постоянной нагрузки без перерывов. Самые простые компрессоры поршневого, которые применяются в быту, эксплуатируются не дольше 20 минут. После чего им нужен отдых, пока механизм не остынет – это еще около 40 минут. Полупрофессиональные модели функционируют 1:1, т.е. 20 минут работают, 20 отдыхают. И только профессиональные промышленные аппараты могут работать без остановки около восьми часов.

Компрессор масляный поршневой

Такие модели есть с прямым и ременным приводом. Первый применяется в реконструкционных работах на фасаде здания, при изготовлении мебели или в сервисных центрах по ремонту автомобилей. Поршневые масляные компрессоры с ременным приводом чаще используются на шиномонтаже, станциях технического обслуживания, а также при строительстве. Они отличаются от установок с прямым приводом тем, что могут работать непрерывно по несколько часов.

Компрессор масляный поршневой

Масляные модели в общем разрешается эксплуатировать более продолжительное время. Все дело в использовании масла, которое охлаждает механизм, уменьшает силу трения между деталями, защищает металл от коррозии, а также уплотняет зазоры между некоторыми технологическими элементами. Основной минус масляных моделей компрессоров – это засорение сжатого воздуха микроскопическими частями масляной жидкости. Однако и с этим можно справиться, если установить современную систему подготовки воздуха.

Безмасляный поршневой компрессор

Основное отличие этой модели от масляной в разделении областей с рабочей средой и смазкой для деталей. В таких компрессорах предусмотрена дополнительная очистка воздуха перед выходом, чтобы исключить попадание даже микроскопических капель.

Безмасляный поршневой компрессор

Безмасляные модели поршневого типа имеют ряд преимуществ:

  1. Механизм занимает меньше места.
  2. Перемещать аппарат можно в любом положении.
  3. Не требуется частое обслуживание, т.к. отпадает необходимость в замене масла и фильтров.

Использование безмасляных установок актуально на производстве, где нужен абсолютно чистый воздух без любых примесей, в особенности масла (производство продуктов, лекарств или упаковки).

Компрессор одноступенчатый поршневой

Количество ступеней в механизме компрессора влияет на то, до какого давления будет сжат воздух на выходе. Обычные одноступенчатые аппараты применяются в небольшой мастерской или дома. Они позволяют сжать воздух или газ не выше, чем до 10 бар. Более высокие цифры давления можно получить лишь при использовании многоступенчатого поршневого компрессора. Одноступенчатые блоки отлично справляются с легкой работой, и будут служить долгий срок, если не пользоваться ими больше и дольше, положенного в инструкции. Если даже дома вы одновременно используете много пневматических инструментов, то при выборе стоит смотреть в сторону двухступенчатых аппаратов.

Компрессор одноступенчатый поршневой

Компрессор двухступенчатый поршневой

Такие установки вполне справятся с большим давлением и производительностью, поэтому подходят для работы в сложных условиях на небольшом предприятии. Суть двухступенчатого механизма в том, что воздух сжимается в два этапа, в промежутке между которыми снижает температуру. На выходе получается воздух, сжатый под давлением максимум 12 бар.

Принцип работы этой модели поршневого компрессора сводится к следующему:

  1. На первом этапе происходит сжатие воздуха до средних цифр давления. Все происходит в большем цилиндре, где воздух перемещается под низким давлением, но в большом количестве.
  2. Охлаждение перед выходом на ступень с высоким давлением.
  3. Рабочая среда переходит в меньший цилиндр, где и происходит конечное сжатие до нужных цифр. На этом этапе уже меньшее количество воздуха перемещается при высоком давлении.

Компрессор двухступенчатый поршневой

Механизмы некоторых двухступенчатых компрессоров имеют четкое разделение на ступени (например, V-образное размещение блоков). Отдельные модели внешне не отличаются от одноступенчатых. Этот момент нужно уточнять при покупке.

Ремонт компрессоров поршневых

Диагностика установок для сжатия воздуха поршневого типа показывает, что самыми частыми дефектами в их работе является износ деталей (сальников, втулок цилиндра) или недостаточная их смазка, коррозия элементов в местах сильного напряжения, поломка предохранительного клапана, загрязнение или утечка масла и др.

Любая техника, особенно в промышленных масштабах, нуждается в регулярном техническом обслуживании: проверке узлов, смене расходников и замене изношенных комплектующих. Если делать это вовремя, то риск поломок сведется к минимуму.

Ремонт компрессоров поршневых

В числе основных причин неисправностей поршневых компрессоров:

  • Несоблюдение рекомендованного инструкцией времени на охлаждение;
  • Избыточный нагар;
  • Частый стук и пр.

Любые сбои в работе устройства, вроде постороннего шума, самопроизвольного отключения, повышения или снижения температуры, давления, говорят о том, что компрессор нужно остановить и отправить на диагностику. Некоторые признаки укажут на необходимость замены деталей, а некоторые – на поломку. В любом случае ремонт и техническое обслуживание следует доверять профессионалам.

Несмотря на довольно низкую производительность и необходимость делать отдельный фундамент для поршневого компрессора (из-за сильной вибрации и шума при работе), они остаются востребованными на рынке. Это можно объяснить тем, что механизм хорошо работает в условиях постоянного включения/выключения, которые присущи предприятиям, где не требуется постоянное наличие сжатого воздуха.

Принцип работы компрессора,поршневой компрессор,спиральный компрессор

    Компрессор – это слово существительное, обозначающее устройство, которое в процессе своей работы осуществляет компрессию (сжатие) газообразных веществ.
Принцип работы компрессора
    Для того чтобы осуществить компрессию газов достаточно уменьшить объем, занимаемый газом при нормальных (или иных) условиях, не уменьшая количество хладагента, попавшего в уменьшаемый объем.
    При уменьшении объема, занимаемого газом, увеличивается его плотность, то есть возрастает давление газа внутри уменьшаемого объема.
    В большинстве практических случаев необходимости компрессии газов описанного выше примера одного цикла сжатия явно недостаточно. Поэтому реальный холодильный компрессор нуждается в подаче на входной терминал (практики называют его линией всасывания) все новых и новых «порций» сжимаемого газа, а с выходного терминала (линия нагнетания) необходимо своевременно удалять сжатый хладагент, во избежание превышения допустимого давления в объеме нагнетания. Это объясняется тем, что все механизмы имеют ограниченный предел прочности, а газы имеют предельные значения давления сжатия.
    Для разделения входного и выходного терминалов компрессора механизмы сжатия газов оборудуются клапанными системами, не позволяющими сжатому газу проникать из объема нагнетания обратно к линии всасывания, когда осуществляется работа холодильного компрессора.
Принцип действия компрессора
    За время использования компрессорной техники инженерная мысль создала несколько типов механизмов сжатия газов, что привело к параллельному развитию компрессорных технологий, реализующих тот либо иной принцип сжатия.
    Самая первая «массовая» компрессорная технология базировалась на использовании цилиндра и движущегося в нем поршня и, соответственно, такие компрессоры холодильных машин получили наименование «поршневые».
    Если рассматривать традиционных поршневой холодильный компрессор, то в нем вращательное движение вала приводящего двигателя при помощи кривошипно-шатунного механизма преобразуется в возвратно-поступательное движение поршня в цилиндре.
    Клапанная группа цилиндра «организует» поступление сжимаемого газа в рабочий цилиндр от входного терминала компрессора во время движения поршня к нижней мертвой точке через клапан всасывания и выход сжатого газа из цилиндра через клапан нагнетания во время движения поршня к верхней мертвой точке.
    Соответственно всасывающий клапан холодильной установки остается в «запертом» состоянии во время сжатия газа и препятствует вытеснению сжимаемого газа из цилиндра в сторону терминала всасывания, а нагнетающий клапан служит «непреодолимой границей» для уже сжатого газа в нагнетательном объеме компрессора во время всасывания очередной порции газа в цилиндр.
Назначение компрессора
    Рост потребностей в «компрессорных услугах» в различных областях хозяйственной деятельности породил идеи использовать иные принципы сжатия газов, так появились спиральный компрессор, роторный и винтовой.
    Роторный компрессор – наиболее близок к нему поршневой компрессор, отличием роторной технологии сжатия газов является тот момент, что роль поршня выполняется эксцентриком на валу компрессора.
    В роторных компрессорах отсутствует процесс преобразования вращательного движения в возвратно-поступательное при помощи кривошипно-шатунного механизма, то есть роторный механизм сжатия газов технологически более прост и более выгоден по энергетическим затратам на сжатие 1-й условной единицы газа. Но любые «преимущества» в одной области порождают недостатки в смежных областях: большинство роторных компрессоров работают только при одном определенном направлении вращения вала. Разработаны и выпускаются роторные компрессоры «безразличные» к направлению вращения вала, однако это усложняет их внутреннее устройство и удорожает их себестоимость при производстве, что нивелирует декларируемые ранее преимущества.
    Спиральные компрессоры для процесса сжатия газов используют «планетарное» движение подвижной спирали по отношению к неподвижной спирали. В результате такого движения спиралей всасываемый газ «захватывается» внешними хвостами спиралей и перемещается к центру спирального механизма. В этой области спирального механизма сжатия достигается максимально возможное давление газа и располагается нагнетательный клапан, пропускающий сжатый газ в нагнетательный объём компрессора.
    Спиральным компрессорам, как и роторным, присущ такой недостаток, как жесткая привязка к направлению вращения вала приводящего двигателя. Кроме того спиральные механизмы сжатия испытывают затруднения с работой при давлениях всасываемого газа ниже уровня атмосферного давления, то есть их невозможно использовать для процессов вакуумирования (откачка газов с целью понижения давления).
    Когда растет требуемая производительность компрессора, компрессорных установок наиболее эффективными для мощных систем, на сегодняшний день, являются компрессоры, использующие винтовой механизм сжатия газов. В этих компрессорах используется принцип «винта Архимеда», где «нарезка» винта подает газ от всасывания к нагнетанию при вращении самого винта в теле компрессора. Этот механизм, как роторный или спиральный, так же «критичен» к направлению вращения вала (винта).
    Следует заметить, что когда производители компрессоров, спиральных и винтовых, заявляют о «непрерывности» подачи сжатого газа в нагнетательный объем компрессора, в отличие от поршневых технологий, то они несколько лукавят. Сжатый газ в спиральных и винтовых компрессорах поступает в нагнетающий объем так же «порционно», как и в поршневых компрессорах, за один цикл вращения вала – одна порция сжатого газа.
    Условной новинкой в массовом компрессоростроении является появление «линейных» компрессоров. Слово «линейный» обозначает в буквальном смысле отсутствие в таком компрессоре вращающегося вала. Движение поршня в цилиндре осуществляется при помощи управляемых электромагнитов, перемещающих шток, на котором закреплён поршень. Миниатюризация электронных схем управления токами соленоидной катушки (катушка соленоидного клапана) и использование технологий частотно-импульсных преобразований позволило существенно удешевить «соленоидные» электродвигатели (микродвигатели) и допустить их массовое применение. Пока массовое внедрение в производство «линейных» компрессоров ограничивается применением в бытовой холодильной технике.
    Разные типы компрессоров имеют одну общую проблему — тепло, которое выделяется при процессе сжатия газов, при работе сжимающих механизмов (силы трения и противодействия), при работе приводящих в действие компрессоры двигателей. Поэтому если работа холодильных компрессоров рассматривается, как только «сжимающее устройство», в отрыве от требуемых на работу компрессора энергозатрат и теплового вреда, наносимого окружающей среде, то такое положение дел явно неправомерно.

главный инженер Новиков В.В.,
академический советник Международной Академии Холода

Как работают воздушные компрессоры: Анимированное руководство

Воздушные компрессоры - универсальные и жизненно важные компоненты любого завода или мастерской. За последние годы они стали меньше и менее громоздкими, что делает их более удобными в различных рабочих ситуациях. Это очень полезные портативные машины, которые приводят в действие отдельные пневматические инструменты.

Основным преимуществом воздушных компрессоров является то, что они намного мощнее обычных инструментов и не требуют собственных громоздких двигателей.Поскольку единственное реальное техническое обслуживание, которое требуется от них, - это небольшая смазка, различные инструменты могут приводиться в действие одним двигателем, который использует давление воздуха для достижения максимального потенциала.

Их универсальность не ограничивается только верстаком для сверл или шлифовальных машин; их можно использовать для чего угодно, от накачивания шины (например, на вашей местной заправке) до прочистки раковины дома.

Воздушные компрессоры - это свидетельство человеческой изобретательности. Важно понимать, как они работают, чтобы вы могли выбрать правильный воздушный компрессор для своего проекта.

Как работают воздушные компрессоры

Воздушные компрессоры работают, нагнетая воздух в контейнер и нагнетая его. Затем воздух проходит через отверстие в резервуаре, где нарастает давление. Подумайте об этом как об открытом воздушном шаре: сжатый воздух может использоваться как энергия, поскольку он высвобождается.

Они приводятся в движение двигателем, который превращает электрическую энергию в кинетическую. Это похоже на то, как работает двигатель внутреннего сгорания, в котором используются коленчатый вал, поршень, клапан, головка и шатун.

Оттуда сжатый воздух можно использовать для питания различных инструментов. Некоторые из наиболее популярных вариантов - гвоздезабиватели, гайковерты, шлифовальные машинки и краскораспылители.

Существуют разные типы воздушных компрессоров, и каждый из них имеет свою специализацию. Как правило, различия не такие уж и серьезные: все сводится к тому, как компрессор обрабатывает вытеснение воздуха.

Как работает каждый тип воздушного компрессора

Есть два метода сжатия воздуха: принудительное и динамическое вытеснение.У каждого метода есть несколько подкатегорий, которые мы рассмотрим ниже. Результаты относительно схожи, но процессы их достижения различаются.

Вот как работают положительное и динамическое смещение:

Положительный рабочий объем

Компрессоры прямого вытеснения нагнетают воздух в камеру, объем которой уменьшен, чтобы сжать воздух.

Объемный объем - это общий термин, который описывает различные воздушные компрессоры, мощность которых достигается за счет объемного вытеснения воздуха.Несмотря на то, что внутренние системы различаются между разными машинами, метод подачи энергии одинаков.

Некоторые типы компрессоров прямого вытеснения лучше подходят для промышленных нагрузок, тогда как другие лучше подходят для любителей или частных проектов. Вот три основных типа воздушных компрессоров, в которых используется объемный объем:

1.
Винтовой винт

Винтовые компрессоры имеют два внутренних «винта», которые вращаются в противоположных направлениях, удерживая и сжимая между собой воздух.Два винта также создают постоянное движение при вращении.

Это распространенный тип воздушного компрессора, который является одним из самых простых в уходе. Двигатели обычно имеют промышленные размеры и отлично подходят для непрерывного использования.

2. Поворотная заслонка

Роторно-лопастные компрессоры похожи на роторно-винтовые компрессоры, но вместо винтов на роторе установлены лопасти, которые вращаются внутри полости. Воздух сжимается между лопаткой и ее кожухом и затем выталкивается через другое выпускное отверстие.

Роторно-пластинчатые компрессоры

очень просты в использовании, что делает их очень популярными для частных проектов.

3. Поршневой / поршневой тип

Поршневой (возвратно-поступательный) компрессор использует поршни, управляемые коленчатым валом, для подачи газа под высоким давлением. Обычно они используются на небольших площадках и не предназначены для постоянного использования.

Есть два типа поршневых компрессоров: одноступенчатые и двухступенчатые.

1. Одноступенчатый

В одноступенчатых компрессорах воздух сжимается с одной стороны поршня, в то время как другая сторона отвечает за его работу: когда поршень движется вниз, воздух всасывается, а когда он движется вверх, воздух нагнетается. сжатый.

Одноступенчатые компрессоры относительно доступны по цене по сравнению с другими компрессорами, и их обычно легко приобрести; их можно найти практически в любом механическом магазине.

2. Двухступенчатый

Двухступенчатые компрессоры имеют две камеры сжатия по обе стороны от поршня. Компрессоры двойного действия обычно имеют водяное охлаждение за счет постоянного потока воды через двигатель. Это обеспечивает лучшую систему охлаждения, чем другие компрессоры.

Из-за своей высокой стоимости двухступенчатые компрессоры лучше подходят для заводов и мастерских, чем для частных проектов.

Динамическое смещение

Компрессоры

с динамическим рабочим объемом используют вращающуюся лопасть, приводимую в действие двигателем, для создания воздушного потока. Затем воздух ограничивается для создания давления, а кинетическая энергия сохраняется внутри компрессора.

Они в основном предназначены для крупных проектов, таких как химические заводы или производители стали, поэтому маловероятно, что вы сможете найти такой у местного механика.

Как и в случае компрессоров прямого вытеснения, существует два различных типа динамического вытеснения: осевое и центробежное.

1. Осевые компрессоры

В осевых компрессорах используется серия лопаток турбины, которые генерируют воздух, прогоняя его через небольшую площадь. Осевые компрессоры, похожие на другие лопаточные компрессоры, работают со стационарными лопастями, которые замедляют воздушный поток, увеличивая давление.

Эти типы воздушных компрессоров не очень распространены и имеют ограниченную функциональность. Они используются в основном в авиационных двигателях и на крупных воздухоразделительных установках.

2. Центробежные компрессоры

Центробежные или радиальные компрессоры работают за счет подачи воздуха в центр через вращающуюся крыльчатку, которая затем толкается вперед под действием центробежной или внешней силы.За счет замедления потока воздуха через диффузор генерируется больше кинетической энергии.

Электрические высокоскоростные двигатели обычно используются для таких компрессоров. Одно из наиболее распространенных применений центробежных компрессоров - это системы HVAC.

В чем разница между насосом и компрессором?

Иногда слова «насос» и «компрессор» используются как синонимы. Они могут показаться похожими, но между ними есть разница.

Насосы перемещают жидкости между местами, в то время как воздушные компрессоры сжимают объем газа и часто транспортируют его в другое место.В любом проекте, связанном с жидкостью, например, при перекачивании бассейна, используется насос. С другой стороны, сжатый воздух используется в качестве энергии для выполнения различных задач, таких как пескоструйная обработка.

Понимание этой разницы между двумя терминами и методами распространения может помочь вам понять, что вам нужно для вашего проекта.

Воздушные компрессоры - полезный инструмент в любом строительном проекте. От окраски распылением до ремонта спущенной шины они могут значительно облегчить работу. Нет двух одинаковых воздушных компрессоров, и понимание того, как они работают, позволяет вам принимать обоснованные решения для проекта, над которым вы работаете.

Поршневой компрессор Рабочий анимационный ролик

Поршневые компрессоры

относятся к категории компрессоров прямого вытеснения. Принцип работы компрессора заключается в возвратно-поступательном движении поршня внутри цилиндра, который сжимает воздух / газ внутри цилиндра. Затем сжатый воздух / газ выпускается через соответствующие клапаны в выпускное отверстие.
Поршень совершает возвратно-поступательное движение за счет шатуна, который получает приводы от вращающегося коленчатого вала.

Поршневые компрессоры в основном бывают двух типов:

- Магистральная конструкция.
- Крейцкопфная конструкция

Конструкция ствола: В конструкции ствола рабочий поршень напрямую соединен с шатуном, который, в свою очередь, получает привод от коленчатого вала. Принцип работы в конструкции ствола допускает сжатие и выпуск воздуха / газа только с одного конца цилиндра.

Крейцкопф Тип: В конструкции крейцкопфа компрессор работает посредством крейцкопфа, соединяющего поршень и шатун. Конструкция позволяет при необходимости сжатие и выпуск воздуха / газа на обоих концах цилиндра.

В анимационном видеоролике принципа работы поршневого компрессора описывается многоцилиндровый компрессор, который имеет цилиндры конструкции как ствола, так и крейцкопфа.

Поршневой компрессор Рабочее видео

(Вышеупомянутое видео, в котором кратко объясняется работа поршневого компрессора, является УПРОЩЕННЫМ отрывком [для видео] из учебного курса Compressor , перечисленного на странице ' Product '

- Вышеуказанное содержание НЕ является репрезентативным учебного курса Industrial
, указанного на странице продукта.

Для детального обучения на компрессорах
с расширенными анимациями и Графика ,
, которые дают практическое понимание , вероятно, до уровня
, никогда ранее не достигнутого, воспользуйтесь

КУРС ОБУЧЕНИЯ ПО КОМПРЕССОРАМ

Учебное пособие по основам работы с воздушным компрессором

Бесплатное онлайн-обучение по основам работы с воздушным компрессором

.
Вход в систему не требуется, абсолютно бесплатно как работают воздушные компрессоры intro. Вы узнаете, как работают бесшумный воздушный компрессор и двухступенчатый воздушный компрессор.

Воздушный компрессор - это устройство, которое принимает входную механическую энергию, обычно от двигателя, и преобразует ее в энергию жидкого воздуха. Сжатый воздух можно хранить для последующего использования в резервуарах со сжатым воздухом или передавать по трубам к месту использования. Компрессоры с поршнем в качестве сжимающего элемента называются поршневыми компрессорами . Компрессоры также могут быть выполнены с венами или крыльчатками. Эти типы компрессоров называются ротационными компрессорами .

Принцип работы роторного компрессора:


Из видео выше вы узнаете о конструкции и работе роторного компрессора. Ротационные компрессоры обычно состоят из цилиндрического корпуса с регулируемыми лопатками, впускного и выпускного отверстий. Лопатки находятся на нецентральном приводном валу. По мере вращения вала лопатки скользят внутрь и наружу, чтобы поддерживать контакт с цилиндрической стенкой компрессора.При этом они создают внутри цилиндра воздушные камеры разных размеров.


Воздух входит в самую большую камеру, когда лопасти вращаются, они втягиваются, заставляя камеру уменьшаться и сжимать воздух, воздух выходит в самую маленькую камеру. Ротационные компрессоры обычно не подвержены вибрации и пульсации, которые возникают в поршневых компрессорах.

Принцип работы поршневого компрессора:

Типичный поршневой компрессор состоит из корпуса с внутренним поршнем, соединенным с коленчатым валом. Когда коленчатый вал вращается, поршень совершает возвратно-поступательное движение внутри цилиндрического корпуса. В головке цилиндра есть два клапана, впускной и выпускной. Впускное отверстие (, иногда называемое всасывающим клапаном ), позволяет атмосферному воздуху входить в цилиндр. Выпускное отверстие (, иногда называемое выпускным клапаном ) выбрасывает вновь сжатый воздух из цилиндра. При вращении коленчатого вала поршень опускается и поднимается, изменяя доступный объем внутри цилиндра.

Ход поршня вниз называется ходом всасывания.Ход вверх называется ходом сжатия. По мере того как поршень движется вниз на такте всасывания, объем внутри цилиндра увеличивается. По мере того как объем увеличивает внутреннее давление, давление воздуха в цилиндре становится ниже, чем давление воздуха на входе. Это позволяет внешнему воздуху с более высоким давлением открыть впускной клапан и впустить больше воздуха в цилиндр. Когда поршень начинает свой ход сжатия вверх, объем внутри цилиндра уменьшается. Уменьшение объема приводит к увеличению давления в цилиндре.Повышение давления открывает выпускной клапан, и сжатый воздух выходит из баллона.


Это одноступенчатый компрессор, он имеет только один поршень и цилиндр и сжимает воздух только за одну ступень. Одноступенчатый компрессор обычно имеет степень сжатия от 5 до 1. При выходном давлении от 50 до 75 фунтов на квадратный дюйм, когда воздух сжимается, он становится все более горячим, если воздух становится слишком горячим, не только цикл сжатия становится менее эффективным, но существует опасность взрыва, если какой-либо углеводородный материал, такой как масло или смазка, вступит в контакт с перегретым воздухом.

Чтобы избежать опасности перегрева и по-прежнему создавать более высокое давление, производители делают компрессоры с несколькими ступенями. Воздух сжимается на первой ступени, которая обычно является самой большой ступенью, затем охлаждается, а затем сжимается на второй ступени. Горячий сжатый воздух из первой ступени направляется на вторую ступень по тонкой трубке, на которую поступает воздух от вентилятора с маховиком. После охлаждения воздуха внутри трубы сжатый воздух поступает на вторую ступень, где еще больше сжимается.

Сжатый воздух, поступающий во вторую ступень, иногда называют наддувом. Двухступенчатые компрессоры имеют диапазон сжатия от 3 до 1 или даже меньше на ступень, но могут работать при давлении до 175 фунтов на квадратный дюйм. Они также могут подавать больше воздуха при более высоком давлении, чем одноступенчатые компрессоры той же мощности. Если необходимо давление более 175 фунтов на квадратный дюйм, следует использовать многоступенчатые компрессоры. На этих более крупных компрессорах охлаждение может происходить за счет циркуляции воды вместо воздуха до достижения давления 2500 фунтов на квадратный дюйм.Может потребоваться до шести или семи ступеней с охлаждением между каждой ступенью. Универсальность
делает компрессоры одним из основных компонентов в производстве воздуха.

Как работает воздушный компрессор

Много лет назад в магазинах было обычным делом иметь центральный источник энергии, который приводил в действие все инструменты через систему ремней, колес и приводных валов. Электроэнергия передавалась по рабочему пространству механическими средствами. Хотя ремни и валы могут исчезнуть, многие магазины по-прежнему используют механическую систему для перемещения энергии по магазину.Он основан на энергии, хранящейся в воздухе под давлением, а сердце системы - воздушный компрессор.

Вы найдете воздушные компрессоры, которые используются в самых разных ситуациях - от угловых заправочных станций до крупных производственных предприятий. И все больше и больше воздушных компрессоров находят применение в домашних мастерских, подвалах и гаражах. Модели, рассчитанные на любую работу, от надувных игрушек для бассейнов до электроинструментов, таких как гвозди, шлифовальные машины, дрели, ударные гайковерты, степлеры и краскопульты, теперь доступны в местных домашних центрах, у дилеров инструментов и в каталогах по почте.

Большим преимуществом пневматической энергии является то, что для каждого инструмента не нужен собственный громоздкий двигатель. Вместо этого один двигатель компрессора преобразует электрическую энергию в кинетическую. Это позволяет создавать легкие, компактные, простые в обращении инструменты, которые работают тихо и содержат меньше изнашиваемых деталей.

Типы воздушных компрессоров

Хотя существуют компрессоры, в которых для создания давления воздуха используются вращающиеся рабочие колеса, компрессоры объемного действия более распространены и включают модели, используемые домовладельцами, деревообработчиками, механиками и подрядчиками.Здесь давление воздуха увеличивается за счет уменьшения размера пространства, содержащего воздух. Большинство компрессоров, с которыми вы столкнетесь, выполняют эту работу с возвратно-поступательным поршнем.

Как и небольшой двигатель внутреннего сгорания, обычный поршневой компрессор имеет коленчатый вал, шатун и поршень, цилиндр и головку клапана. Коленчатый вал приводится в движение электродвигателем или газовым двигателем. Хотя есть небольшие модели, которые состоят только из насоса и двигателя, большинство компрессоров имеют воздушный резервуар для удержания количества воздуха в пределах заданного диапазона давления. Сжатый воздух в резервуаре приводит в движение пневматические инструменты, а мотоцикл включается и выключается, чтобы автоматически поддерживать давление в резервуаре.

В верхней части цилиндра вы найдете головку клапана, которая удерживает впускной и выпускной клапаны. Оба являются просто тонкими металлическими заслонками: одна установлена ​​под ней, а другая - сверху. При движении поршня вниз над ним создается разрежение. Это позволяет наружному воздуху при атмосферном давлении открыть впускной клапан и заполнить область над поршнем.Когда поршень движется вверх, воздух над ним сжимается, закрывает впускной клапан и толкает выпускной клапан. Воздух движется из выпускного отверстия в резервуар. С каждым ходом в бак поступает больше воздуха, и давление повышается.

Типичные компрессоры выпускаются в 1- или 2-цилиндровых версиях в зависимости от требований инструментов, которые они приводят в действие. На уровне домовладельца / подрядчика большинство двухцилиндровых моделей работают так же, как одноцилиндровые, за исключением того, что на один оборот приходится два хода, а не один. Некоторые коммерческие 2-цилиндровые компрессоры представляют собой 2-ступенчатые компрессоры: один поршень нагнетает воздух во второй цилиндр, что дополнительно увеличивает давление.

Компрессоры

используют реле давления для остановки двигателя, когда давление в баллоне достигает заданного предела - около 125 фунтов на квадратный дюйм для многих одноступенчатых моделей. Однако в большинстве случаев такое давление не требуется. Поэтому в воздуховоде будет регулятор, который вы настроите в соответствии с требованиями к давлению используемого вами инструмента. Манометр перед регулятором контролирует давление в баллоне, а манометр после регулятора контролирует давление в воздушной линии.Кроме того, на баке есть предохранительный клапан, который открывается при выходе из строя реле давления. Реле давления может также включать разгрузочный клапан, который снижает давление в баллоне при выключении компрессора.

Многие компрессоры с шарнирно-поршневыми поршнями смазываются маслом. То есть они имеют масляную ванну, которая смазывает подшипники и стенки цилиндра разбрызгиванием при вращении кривошипа. У поршней есть кольца, которые помогают удерживать сжатый воздух наверху поршня и удерживают смазочное масло от воздуха.Однако кольца не совсем эффективны, поэтому некоторое количество масла попадет в сжатый воздух в виде аэрозоля.

Наличие масла в воздухе не обязательно является проблемой. Многие пневматические инструменты требуют смазки, и часто добавляются встроенные масленки, чтобы увеличить равномерность подачи к инструменту. С другой стороны, эти модели требуют регулярных проверок масла, периодической замены масла, и они должны работать на ровной поверхности. Прежде всего, есть некоторые инструменты и ситуации, в которых требуется безмасляный воздух. Распыление масла в воздушном потоке вызовет проблемы с отделкой.Многие новые инструменты для деревообработки, такие как гвоздезабиватели и шлифовальные машинки, не содержат масла, поэтому нет никаких шансов загрязнить деревянные поверхности маслом. В то время как решения проблемы воздушного масла включают использование маслоотделителя или фильтра в воздушной линии, лучшая идея - использовать безмасляный компрессор, в котором вместо масляной ванны используются подшипники с постоянной смазкой.

Разновидностью поршневого компрессора автомобильного типа является модель, в которой используется цельный поршень / шатун. Поскольку пальца отсутствует, поршень наклоняется из стороны в сторону, когда эксцентриковая шейка вала перемещает его вверх и вниз.Уплотнение вокруг поршня поддерживает контакт со стенками цилиндра и предотвращает утечку воздуха.

Там, где потребность в воздухе невысока, может быть эффективен диафрагменный компрессор. В этой конструкции мембрана между поршнем и камерой сжатия изолирует воздух и предотвращает утечку.

Мощность компрессора
Одним из факторов, используемых для определения мощности компрессора, является мощность двигателя. Однако это не лучший показатель. Вам действительно нужно знать количество воздуха, которое компрессор может подавать при определенном давлении.

Скорость, с которой компрессор может подавать объем воздуха, указывается в кубических футах в минуту (куб. Поскольку атмосферное давление играет роль в скорости движения воздуха в цилиндр, куб. Фут в минуту будет зависеть от атмосферного давления. Он также зависит от температуры и влажности воздуха. Чтобы создать равные условия игры, производители рассчитывают стандартные кубические футы в минуту (scfm) как cfm на уровне моря при температуре воздуха 68 градусов по Фаренгейту и относительной влажности 36%.Номинальные значения стандартных кубических футов в минуту приведены для конкретного давления, например, 3,0 кубических футов в минуту при 90 фунтах на квадратный дюйм. Если уменьшить давление, scfm повышается, и наоборот.

Вы также можете встретить рейтинг, называемый смещением куб. Футов в минуту. Этот показатель является произведением рабочего объема цилиндра и числа оборотов двигателя. По сравнению с scfm, это показатель эффективности компрессорного насоса.

Номинальные значения кубических футов в минуту и ​​фунтов на квадратный дюйм важны, поскольку они указывают на инструменты, которыми может управлять конкретный компрессор. Выбирая компрессор, убедитесь, что он может подавать такое количество воздуха и давление, которое необходимо вашим инструментам.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

Принципы работы воздушных компрессоров - Системы обслуживания машин и оборудования для теплоходов

Принципы работы воздушных компрессоров - Системы обслуживания машин и оборудования для судов

Домашняя страница || Система технического обслуживания машин ||


Принцип работы воздушных компрессоров - Системы обслуживания машин и оборудования для теплоходов

Одноступенчатый компрессор, используемый для подачи воздуха под высоким давлением, необходимым для запуска дизельного двигателя, к сожалению, будет генерировать температуры сжатия на уровне, аналогичном тем, что в дизельном топливе. Такого тепла будет достаточно для воспламенения испаренного масла так же, как в двигателе с воспламенением от сжатия. Тепло, производимое на одной ступени сжатия, также будет расточительным по энергии.

Эта теплота сжатия добавляет энергию и вызывает результирующий рост давления помимо того повышения давления, которое ожидается от действия поршня. Однако, когда воздух охлаждается, повышение давления из-за выделяемого тепла теряется. Остается только давление от сжатия. Дополнительное давление из-за тепла бесполезно и фактически требует большей мощности для движения поршня вверх во время такта сжатия.


Рисунок 1: Конфигурация многоступенчатого воздушного компрессора

Идеальное охлаждение цилиндра одноступенчатого компрессора с постоянной (изотермической) температурой во время процесса могло бы устранить проблемы, но этого невозможно достичь. Многоступенчатые воздушные компрессорные агрегаты с различными конфигурациями цилиндров и формами поршней (рис. 1 выше) используются в сочетании с промежуточным и после охлаждения для обеспечения максимально возможного приближения к идеалу изотермического сжатия.

Рабочий цикл

На такте сжатия (рис. 2 ниже) теоретического одноцилиндрового компрессора давление повышается до немного выше давления нагнетания. Открывается подпружиненный обратный нагнетательный клапан, и сжатый воздух проходит через него с приблизительно постоянным давлением. В конце хода перепад давления на клапане, которому способствует пружина клапана, закрывает выпускной клапан, задерживая небольшое количество воздуха под высоким давлением в зазоре между поршнем и головкой блока цилиндров.Во время такта всасывания воздух в зазоре расширяется, его давление падает до тех пор, пока подпружиненный всасывающий клапан не сядет на место и не начнется еще один такт сжатия.


Рисунок 2: Индикаторная диаграмма компрессора (любезно предоставлена ​​Hamworthy Engineering Ltd)

Охлаждение

Во время сжатия большая часть потребляемой энергии преобразуется в тепло, и любое последующее повышение температуры воздуха снижает объемный КПД компрессора. цикл.Чтобы минимизировать повышение температуры, необходимо отводить тепло. Хотя некоторые из них могут быть удалены через стенки цилиндра, относительно небольшая площадь поверхности и доступное время сильно ограничивают возможный отвод тепла, и, как показано на (Рисунок 3), практическим решением является более чем одноэтапное сжатие и охлаждение воздуха. между этапами.

Для небольших компрессоров воздух может использоваться для охлаждения цилиндров и промежуточных охладителей, наружные поверхности цилиндров расширены ребрами, а промежуточные охладители обычно представляют собой секционные ребристые трубы, через которые обильный поток воздуха обдувается вентилятором, установленным на конец коленчатого вала.В более крупных компрессорах, используемых для подачи воздуха для запуска главного двигателя, чаще используется водяное охлаждение как для цилиндров, так и для промежуточных охладителей.

Для этой цели обычно используется морская вода, охлаждающая жидкость циркулирует от насоса, приводимого в действие компрессором, или она может подаваться из основной системы циркуляции морской воды. Морская вода вызывает образование накипи в охлаждающих каналах. Предпочтительна пресная вода из центральной системы охлаждения, обслуживающей компрессоры и другое вспомогательное оборудование.


Рис. 3. Идеальная индикаторная диаграмма для двухступенчатого компрессора с промежуточным охлаждением (любезно предоставлена ​​Hamworthy Engineering Ltd)

Ниже приведены некоторые основные процедуры обслуживания систем и оборудования машинного оборудования :

  1. Судовой воздушный компрессор

  2. Одноступенчатый компрессор, используемый для подачи воздуха при высоком давлении, необходимом для запуска дизельного двигателя, к сожалению, будет генерировать температуры сжатия на уровне, аналогичном тем, что в дизельном топливе.Такого тепла будет достаточно для воспламенения испаренного масла так же, как в двигателе с воспламенением от сжатия. Тепло, производимое на одной ступени сжатия, также будет расточительным для энергии .....
  3. Пневматическая система запуска

  4. Воздух под давлением от 20 до 30 бар требуется для запуска основных и вспомогательных дизельных двигателей на моторных судах и для вспомогательных дизели пароходов. Управляющий воздух под более низким давлением требуется для судов обеих категорий, и независимо от того, поступает ли он из компрессоров высокого давления через редукционные клапаны или из специальных компрессоров управляющего воздуха, он должен быть чистым, сухим и обезжиренным.....
  5. воздушный компрессор с автоматическим управлением

  6. До общего внедрения оборудования управления воздушные компрессоры при необходимости останавливались и запускались персоналом машинного отделения для поддержания давления в воздушном ресивере. В порту или на море это обычно означало работу одного компрессора примерно на полчаса в день, если воздух не использовался для свистка (во время тумана), для работы на палубе или для других целей. ....
  7. Системы сжатого воздуха для пароходов

  8. Система сжатого воздуха необходима для подачи воздуха в воздушные двигатели сажеобдувочного котла, шланговые соединения по всему судну и, возможно, для запуска дизельного генератора.Воздушный компрессор общего назначения будет подавать воздух под давлением 8 бар, но для запуска дизеля потребуется более высокое давление (как для судов с дизельным двигателем) . ..
  9. Двухступенчатый пусковой воздушный компрессор

  10. Тип Hamworthy 2TM6, который был разработан для подачи воздуха на открытом воздухе в диапазоне от от 183 м3 в час при давлении нагнетания 14 бар до 367 м3 в час при 42 барах. Картер представляет собой жесткую отливку, которая поддерживает коленчатый вал из чугуна с шаровидным графитом в трех подшипниках .....
  11. Работа с топливом

  12. Топливо и смазочные масла получают из сырой нефти, в первую очередь, путем нагрева сырой нефти, так что пары испаряются, а затем конденсируется при разных температурах.Составляющие или фракции собираются отдельно в процесс перегонки .....
  13. Перекачка топлива и риск возгорания

  14. Топливная система на жидком топливе обеспечивает средства для доставки топлива от приемных станций на уровне верхней палубы, левого и правого борта в двухдонные или глубокие бункерные цистерны. Краны для отбора проб устанавливаются на соединениях палубы для получения репрезентативного образца для (а) анализа берега; (б) испытания на борту; и (c) удержание на судне . ..
  15. Обработка топлива высокой плотностью

  16. Плотность топлива, испытанного при 15 ° C, может приближаться к плотности воды, быть равной ей или превышать ее.При использовании топлива с высокой плотностью уменьшение разницы в плотности между топливом и водой может вызвать проблемы с разделением, но не с обычными твердыми примесями ...
  17. Регулятор вязкости

  18. Непрерывная проба топлива прокачивается с постоянной скоростью через тонкая капиллярная трубка. Поскольку поток через трубку является ламинарным, перепад давления в трубке пропорционален вязкости. В этом агрегате электродвигатель приводит в действие шестеренчатый насос через редуктор со скоростью 40 об / мин.....
  19. Топливные смесители

  20. Обычно более дешевое остаточное топливо используется для больших медленных дизельных двигателей, а генераторы работают на более легком и более дорогом дистиллятном топливе. Добавление небольшого количества дизельного топлива к тяжелому топливу значительно снижает его вязкость, и если нагревание используется для дальнейшего снижения вязкости, смесь может использоваться в генераторах с соответствующей экономией . ....
  21. Подогреватели топлива

  22. Система который подает остаточное топливо из резервуара для ежедневного использования в дизельное топливо или котел, должен довести его до нужной вязкости путем нагрева.Для сжигания мазута в топке котла или двигателе с воспламенением от сжатия его необходимо предварительно нагреть ....
  23. Гомогенизатор

  24. Гомогенизатор представляет собой альтернативное решение проблемы воды в топливе с высокой плотностью. Его можно использовать для эмульгирования небольшого процента для впрыска в двигатель с топливом. Это противоречит обычной цели удаления всей воды, которая в свободном состоянии может вызвать газообразование топливных насосов, коррозию и другие проблемы ......
  25. Комплексная система сжигания котла

  26. Элементарная автоматическая система сжигания на основе двухпламенная горелка используется во многих вспомогательных котлах.Горелка имеет увеличенный размер, чтобы показать детали. Для устройства используются различные различные системы управления . ....
  27. Обработка смазочного масла

  28. Минеральные масла для смазки, как и топливо, получают из сырой нефти в процессе нефтепереработки. Базовые компоненты смешиваются для получения смазочных материалов с желаемыми свойствами и правильной вязкостью для конкретных задач. ....
Домашняя страница || Охлаждение || Машины || Сервис || Клапаны || Насосы || Вспомогательная сила || Карданный вал || Рулевые механизмы || Судовые стабилизаторы || Холодильное оборудование || Кондиционирование воздуха || Палубное оборудование | | Противопожарная защита || Судовая конструкция || Главная ||

Генеральное грузовое судно.com предоставляет информацию о грузовых судах, различных системах механизмов - процедурах обращения, мерах безопасности на борту и некоторых базовых знаниях о грузовых судах, которые могут быть полезны людям, работающим на борту, и тем, кто работает на терминале. По любым замечаниям, пожалуйста Свяжитесь с нами

Copyright © 2010-2016 General Cargo Ship. com Все права защищены.
Условия использования
Прочтите нашу политику конфиденциальности || Домашняя страница ||

Основы сжатого воздуха: винтовые компрессоры

Винтовые компрессоры являются «рабочими лошадками» большинства производителей во всем мире.Если вы видите большое здание, и там делают что-нибудь, скорее всего, их производственный процесс работает от винтового винтового компрессора.

Для этого есть веская причина. Промышленный винтовой компрессор имеет 100% рабочий цикл. Он может работать 24/7 без перерыва, и на самом деле он обычно работает лучше и длится дольше при таком использовании. Поршневой компрессор обычно работает лучше, когда он может сделать перерыв - ему нравится прерывистый рабочий цикл. Однако роторный двигатель может работать весь день без остановок - он не любит постоянно запускаться и останавливаться.

Другая причина заключается в том, что при правильном размере винтовые компрессоры могут быть одними из самых энергоэффективных компрессоров на рынке. Ключи - это правильный размер, правильная конструкция воздушной системы и интеллектуальное управление компрессором. Вы можете поместить в воздушную систему самый эффективный компрессор в мире, но если система и схема управления плохо спроектированы, компрессор не будет эффективным.

Давайте поговорим о том, как они сжимают воздух

Типичный винтовой воздушный компрессор имеет два взаимосвязанных винтовых ротора, заключенных в корпус.Воздух поступает через клапан, обычно называемый впускным клапаном, и забирается в пространство между роторами. Когда винты вращаются, они уменьшают объем воздуха, увеличивая, таким образом, давление.

Существуют также винтовые воздушные компрессоры с одним винтом. Однако они не очень популярны, когда дело доходит до сжатия воздуха. Вы увидите их больше в холодильных установках. Их принцип работы выходит за рамки этого блога, но если вам интересно, вы можете прочитать здесь больше.В остальной части этого сообщения в блоге можно предположить, что речь идет о компрессорах с более чем одним винтом.
Узел, в который входят роторы и корпус, в котором они находятся, называется «воздушным блоком» или компрессорным блоком. Это терминология для всех роторных компрессоров, будь то роторные, спиральные, винтовые или кулачковые - часть, которая сжимает воздух, называется компрессорным блоком.

Винтовые компрессоры могут быть маслозаполненными или безмасляными. Безмасляные компрессоры заключены в кавычки, потому что безмасляные компрессоры не обеспечивают безмасляный воздух (в воздухе вокруг нас есть масло).Однако разница в том, что в безмасляных роторных механизмах масло в камере сжатия отсутствует.

В роторно-винтовом компрессоре с масляной смазкой охватываемый ротор приводится в движение двигателем или двигателем, а охватывающий ротор приводится в движение охватываемым ротором или, фактически, тонкой масляной пленкой, которая находится между ними. Масло также закрывает камеру сжатия и действует как охлаждающая жидкость.

В безмасляном винтовом компрессоре набор шестерен регулирует синхронизацию между охватываемым и охватывающим ротором. Нет масла для уплотнения камеры, поэтому без нескольких ступеней вы не можете достичь такого высокого давления, как при использовании масляной смазки. Кроме того, в них нет охлаждающего масла, поэтому они нагреваются, что снижает эффективность. Из-за этого безмасляные винтовые компрессоры обычно ограничиваются специальными применениями или являются двухступенчатыми. Есть некоторые безмасляные компрессоры, в которых в качестве охлаждающей жидкости используется вода, но они встречаются редко.

Винтовой компрессор - это гораздо больше, чем компрессорный блок.Давайте посмотрим на типичный винт с масляной смазкой:

Компрессорный блок не просто сжимает воздух; он сжимает воздушно-масляную смесь. Затем эта смесь поступает в резервуар, называемый резервуаром-сепаратором или отстойником. Масло отделяется от воздуха под действием центробежной силы - когда воздух вращается в баке, масло выпадает, потому что частицы масла тяжелее частиц воздуха. Обычно в баке есть перегородки, которые помогают в этом. Также имеется разделительный элемент, который удаляет почти все оставшееся масло - почти все, кроме нескольких частей на миллион (обычно 3 ppm).

Оттуда масло и воздух идут двумя разными путями. Затем воздух проходит через охладитель и направляется в ваше приложение. Масло будет возвращаться в компрессорный блок или через маслоохладитель. Обычно имеется термостатический клапан, который направляет масло в ту или иную сторону в зависимости от температуры масла. Вы не хотите, чтобы компрессор работал слишком горячим или слишком холодным. Если нагреться, масло поджарится, снизится эффективность и сгорят другие компоненты. Если вы бежите слишком холодно, вы никогда не станете достаточно горячим, чтобы вскипятить жидкую воду, выпавшую из воздуха при сжатии.Слишком много жидкой воды в масле приведет к отказу компрессорного блока.

Обычно имеется клапан минимального давления или обратный клапан минимального давления, который не выпускает воздух в воздушную систему до тех пор, пока не будет достигнуто минимальное давление для смазки компрессора. Есть масляный фильтр, который отфильтровывает загрязнения в масле. Также имеется воздушный фильтр, препятствующий попаданию внутрь крупных загрязнений. Другой общий компонент - это продувочный клапан (или разгрузочный клапан). Этот клапан сбрасывает избыточное давление в поддоне до давления холостого хода, когда компрессор работает на холостом ходу.

Безмасляный роторный механизм состоит из различных компонентов. Обычно имеется два компрессорных блока, и воздух охлаждается с помощью промежуточного охладителя между ними. Обычно шестерни обоих компрессорных блоков размещены в коробке передач, и эта коробка передач смазывается. Сальник и избыточное давление используются для предотвращения попадания масла из коробки передач в компрессорный блок. Бака сепаратора, маслоохладителя или термоклапана нет, но другие компоненты обычно есть.

Вот и все, что касается винтовых воздушных компрессоров.Далее мы рассмотрим основы спиральных воздушных компрессоров.

Как работает двухступенчатый воздушный компрессор

Сегодня на рынке представлено так много моделей воздушных компрессоров, что трудно понять их все. Однако сначала хорошо установить, что все воздушные компрессоры работают в основном по одному и тому же принципу: они преобразуют энергию от источника, такого как электродвигатель, бензиновый или дизельный двигатель, в сжатый воздух, который затем сохраняется и готов к выпуску в приводное оборудование, такое как производственное и строительное оборудование.

Как работает двухступенчатый воздушный компрессор?

Теперь, когда мы установили основной принцип работы всех воздушных компрессоров, давайте обратимся к теории двухступенчатого воздушного компрессора. В отличие от одноступенчатых воздушных компрессоров, которые обычно используют поршневые или винтовые роторы для забора воздуха из внешнего воздухозаборника и однократного повышения его давления, двухступенчатые компрессоры повторяют повышение давления всасываемого воздуха дважды. Естественно, это означает, что есть два цилиндра для хранения сжатого воздуха, а также двойные механизмы для втягивания и нагнетания воздуха.

Есть много различий между одноступенчатыми и двухступенчатыми компрессорами. В одноступенчатом процессе воздух сжимается, используется и пополняется со скоростью, с которой один поршень или винт может втянуть больше воздуха и создать в нем давление. Напротив, двухступенчатые воздушные компрессоры работают по принципу, согласно которому после первой ступени повышения давления вторая ступень повышения давления обеспечивает более высокое давление хранимого воздуха. Этот процесс ценен теми, кому требуются более высокие источники сжатого воздуха - обычно выше 100 фунтов на квадратный дюйм - а также быстрое и непрерывное пополнение воздуха.

Двухступенчатые винтовые воздушные компрессоры

Двухступенчатые воздушные компрессоры, ценимые за их способность создавать более высокое давление и быстрее восстанавливать накопленный сжатый воздух, часто используются для привода оборудования, критически важного для массового производства, где надежность имеет решающее значение, например, в общем производстве, автомобилестроении, авиакосмической промышленности, пищевой производство напитков и стекла. Из всех двухступенчатых компрессоров те, которые работают с помощью ротационных или сдвоенных спиральных винтов, безусловно, являются одними из самых популярных и надежных моделей, используемых сегодня.

Двухступенчатые винтовые воздушные компрессоры часто предпочтительнее поршневых или поршневых моделей, особенно в промышленных применениях, подобных только что упомянутым. Причина этого в том, что роторная конструкция более эффективна, требует меньше обслуживания и работает более тихо. Объединив все свои преимущества, двухступенчатые винтовые компрессоры обеспечивают большее время безотказной работы в тех случаях, когда требуется непрерывная непрерывная работа.

Почему выбирают винтовые компрессоры Kaishan?

В Kaishan Compressors мы производим одноступенчатые и двухступенчатые винтовые воздушные компрессоры более 60 лет.Мы стремимся к постоянному совершенствованию и инновациям во всем, что мы делаем. Вот почему все наши воздушные компрессоры малошумны, не требуют особого обслуживания и потребляют меньше энергии, что снижает стоимость владения при максимальной надежности и производительности, которые вы получаете от наших продуктов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *