Какой ток ac: Что означает AC и DC на панели мультиметра?

Содержание

Что такое AC на самом деле?

На самом деле это более сложный вопрос, чем вы себе представляете.

На первый взгляд, мы думаем о синусоидальных вольтах, которые выходят из стены, как о переменном токе, и о вольтах, которые выходят из батареи, как о постоянном токе, но в действительности это всего лишь два, почти чистых, общедоступных примера.

Как упоминает @ThePhoton, в действительности все напряжения могут быть выражены как имеющие два компонента. Часть постоянного тока и некоторая функция времени переменного тока. Функция времени может быть чем угодно. Простой синус, треугольник, пульсовая волна, все что угодно со средней амплитудой, равной нулю.

Очевидно, что настенная розетка имеет или должна иметь нулевую часть постоянного тока, а батарея должна иметь функцию нулевого переменного тока. Однако в действительности почти каждый сигнал в той или иной степени имеет и то, и другое.

На практике, будем ли мы называть сигнал переменным или постоянным током, во многом зависит от того, какую информацию несет сигнал и как мы намереваемся его использовать.

Пример 1. Рассмотрим вывод мостового выпрямителя.

Очевидно, что вход здесь — AC, но то, что мы называем выходом.

Если мы собираемся использовать его для обычной функции для генерации источника питания постоянного тока, мы называем это постоянным током, несмотря на то, что это действительно функция переменного тока с компонентом постоянного тока.

Однако, если бы мы намеревались подать эту полную выпрямленную волну в усилитель в качестве сигнала, мы бы назвали его сигналом переменного тока.

Пример 2: Рассмотрим простой усилитель с постоянным током

Опять же, вход, очевидно, является классическим переменным током, но для правильной работы добавляется компонент напряжения постоянного тока, а на выходе получается компонент постоянного тока Q. Однако мы все равно будем называть выход сигналом переменного тока, несмотря на смещение.

На самом деле это все еще верно, даже если входной сигнал удален. В области видимости выход может выглядеть как напряжение постоянного тока, но мы бы назвали его переменным сигналом с нулевой амплитудой (смещенным).

Пример 3: это переменный или постоянный ток?

Вы можете назвать эту форму волны напряжением постоянного тока с пульсацией или назвать напряжение переменного тока с большим смещением постоянного тока.

Либо может быть правильным. Какой из них более правильный, полностью зависит от того, как используется сигнал. В некоторых приложениях оба могут даже быть правдой.

В заключении:

За исключением простейших примеров линейного напряжения и напряжения батареи, термины AC и DC являются относительными и специфическими для конкретного применения. Какой термин вы используете или слышите, должен вызывать определенное более высокое утилитарное значение.

AC-DC или DC-DC? Какой преобразователь лучше и надежнее?

Создание напряжения постоянного тока от источника переменного тока означает, что вам придется выпрямить напряжение переменного тока, чтобы получить постоянное. Одно отличие по сравнению с DC-DC преобразователем состоит в том, что вы можете использовать линейный источник питания с переменным напряжением. Это означает, что вы можете воспользоваться трансформатором, чтобы уменьшить или увеличить напряжение переменного тока, а затем подать его на выпрямитель. Ближе всего к линейному источнику постоянного тока может быть двигатель постоянного тока, приводящий в действие генератор постоянного тока, что не очень эффективно.

Линейный источник переменного и постоянного тока все еще имеет место в лабораторных источниках и высококачественном звуке, но в большинстве современных преобразователей энергии используются импульсные регуляторы напряжения, а не линейные. В этом приложении вы будете выпрямлять входящее переменное напряжение для создания шины постоянного тока. Если у вас есть шина постоянного тока, вы можете использовать любую из архитектур преобразования постоянного тока в постоянный ток (DC-DC преобразование), чтобы получить конечное выходное напряжение или напряжения, которые вам нужны.

Проблема с выпрямлением напряжения

Несмотря на концептуальную простоту, выпрямление входящего переменного тока добавляет массу проблем вашему источнику питания. Большая часть выпрямителей выполняется на обычных диодах. Эти диоды будут создавать пульсации при переключении в процессе работы, что создает высшие гармоники в сети переменного тока. У них также будет прямое падение напряжения (хотя оно небольшое), которое рассеивает энергию на тепло.

Вы можете использовать выпрямительный мост на базе транзисторов MOSFET для выпрямления входящего переменного напряжения, но значительно усложняет выпрямитель и повышает его стоимость по сравнению с диодным. Рассмотрим небольшой пример для термостата Nest, который питается от сети 24 В переменного тока, используемого для обычных термостатов. Это настоящая проблема, так как включение обогревателя или кондиционера основано на замыкании 24 В цепи переменного тока в термостате — так работает обычный термостат. Разъем потребляет очень маленький ток для зарядки своих батарей. Затем он может замыкать вход 24 В переменного тока, чтобы включить обогреватель, используя тот же транзисторный мост, пока он работает от батарей. Термостату Nest требуется каждый “маленький кусочек энергии”, который он может сохранить, отсюда необходимость устранения простого диодного моста.

У выпрямления переменного тока есть другие проблемы, такие как импульсный ток, который возникает в процессе выпрямления (рисунок ниже). Он отличается от пускового тока, который есть у источников постоянного тока, когда вы впервые подаете на них питание. Импульсы тока возникают из-за того, что выпрямительные диоды могут работать только тогда, когда входное переменное напряжение больше, чем напряжение постоянного тока. Это означает, что имеется короткий всплеск тока только на пиках переменного напряжения, что приводит к снижению коэффициента мощности источника переменного тока. Коэффициент мощности является своего рода мерилом согласованности напряжения и тока, подаваемого линией переменного тока.

Для индуктивных нагрузок, таких как электродвигатели, переменный ток будет отставать от переменного напряжения. Для емкостной нагрузки наоборот — ток опережает напряжение. В обоих случаях напряжение и ток не совпадают по фазе, поэтому коэффициент мощности ниже идеального значения «1». При выпрямлении коэффициент мощности падает по другой причине. Хотя скачки тока могут быть в фазе с напряжением, это происходит только в течение короткого периода времени сигнала переменного тока.

Улучшение коэффициента мощности

Несмотря на то, что низкий коэффициент мощности не увеличит стоимость электроэнергии для вас (если ваше устройство не работает на промышленном предприятии), но это увеличит реактивную мощность в сети. Во многих странах разработаны стандарты, в соответствии с которыми для автономного источника переменного тока требуется коррекция коэффициента мощности (PFC). Допустимое значение коэффициента мощности (cos φ) гарантирует, что входной ток источника питания является синусоидой, которая совпадает по фазе с входным напряжением.

PFC добавляет еще один импульсный регулятор к вашему источнику переменного тока. Внешний интерфейс PFC обычно является повышающим преобразователем (рисунок ниже). Поскольку входное переменное напряжение повышается до более высокого напряжения, возможно, до 350 В постоянного тока, преобразователь может получать ток от линии переменного тока практически в любое время сигнала. Микросхема управления основана на широтно-импульсной модуляции (ШИМ) транзисторов повышающего преобразователя, чтобы ток, взятый из линии переменного тока, был прямо пропорционален напряжению. Он не может потреблять ток на переходах через ноль, поэтому коэффициент мощности не может быть идеальным. Тем не менее, можно получить выше 0,9, что решает основную проблему.

Помимо необходимости выпрямления в источнике переменного тока, существуют различия в способе выпрямления из-за различий в средних значениях напряжений переменного тока в различных странах мира. Во всем мире напряжение сети переменного тока может варьироваться от 100 В в Японии до 240 В в Европе. В старых линейных источниках питания пользователь мог переключить переключатель, чтобы изменить обмотку на входном трансформаторе. Это позволяло адаптироваться к различным напряжениям сети. При включении питания коммутатор может изменить первичную обмотку, следовательно, вы используете полный диодный мост с высоким напряжением и полумост с более низким напряжением (рисунок ниже). Это позволяет шине постоянного тока, которую вы запитываете, быть ближе к номинальному значению постоянного тока, даже если напряжение на входе переменного тока уменьшилось вдвое.

С ростом доступности транзисторов MOSFET из карбида кремния (SiC), многие внешние интерфейсы PFC используют каскадное выпрямление (рисунки ниже). Карбид кремния имеет незначительное время обратного восстановления, поэтому в выпрямлении нет задержек, связанных с открытием/закрытием P-N перехода. Два SiC транзистора стоят больше двух диодов, но выигрыш в эффективности может стоить того. Как только транзисторы MOSFET выпрямят переменный ток, сохраняя при этом коэффициент мощности, у вас будет высоковольтная шина постоянного тока, с которой вы можете использовать любую из архитектур DC-DC преобразователя для получения конечного выходного напряжения. Вы также можете использовать этап DC-DC для создания границы изоляции, если это необходимо.

Схема PFC с тотемным полюсом работает как повышающий преобразователь. При положительном потенциале, указанном на рисунках «плюс» и «минус» на источнике ЭДС, ток накапливается в катушке индуктивности, когда S2 замкнут (a), а затем поступает в нагрузку через S1 (b). SD2 может быть диодом, но SiC-транзистор повышает эффективность преобразователя

Когда полярность источника переменного ЭДС становится отрицательной в цепи PFC с тотемным полюсом, транзисторы направляют ток в индукторе в обратном направлении (а). Когда S1 открывается и S2 закрывается, он посылает ток в нагрузку (b). SD1 может быть диодом, но SiC-транзистор повышает эффективность.

Изобилие стандартов

Основное различие между источниками AC-DC и DC-DC заключается в том, что источники AC-DC должны соответствовать гораздо более строгим нормативным стандартам. Оба источника имеют стандарты FCC и CE для электромагнитных помех, но более высокое рабочее напряжение источников AC-DC требует изготавливать их соответствующими стандартам пожарной и электробезопасности. Поскольку большинство источников AC-DC изолированы от напряжения источника (имеют потенциальную развязку), для этого также требуются списки UL, CSA и CE.

Если вы делаете медицинское устройство, вам может потребоваться еще более строгий дизайн. В то время как изоляция в обычном источнике питания может быть только на проводах согласующего трансформатор, медицинские трансформаторы устанавливают обмотки на совершенно отдельные катушки (рисунок ниже). Таким образом, полностью исключается возможность пробоя между первичной и вторичной обмотками, результатом чего может стать короткое замыкание, которое может убить пациента.

Стандарты, применимые к вашему AC-DC преобразователю, зависят от приложения. Существуют различные стандарты для информационных, медицинских и телекоммуникационных продуктов. Существуют также различные правила для класса I, где вилка имеет заземляющий контакт, и класса II, часто называемого «двойной изоляцией», где источник питания не подключен к заземлению. Кроме того, существует ограниченный класс источника питания (LPS) с “ослабленными” безопасными характеристиками из-за ограниченного характера его доступности энергии. Свод правил настолько сложен, что многие разработчики обращаются к сторонней листинговой компании, такой как UL или TUV, или к десяткам испытательных лабораторий, которые знакомы со всеми мировыми стандартами для вашего конкретного применения продукта.

Электрические шумы и “иммунитет” к ним

Американский стандарт FCC и Европейский стандарт CE имеют описания допустимых электромагнитных помех от всех источников, как AC-DC, так и DC-DC. Но все сложнее и сложнее удовлетворить требования к расходным материалам AC-DC. Мало того, что у вас есть правила по количеству генерируемых электромагнитных помех (EMI), вы также должны проверить AC-DC преобразователь на предмет наведенного шума; то есть высших гармоник, которые он “отправляет” обратно в сеть. Поскольку AC-DC преобразователи часто работают с большими токами и напряжениями, они генерируют гораздо больше помех, чем DC-DC преобразователи, поэтому соблюдение правил защиты от электромагнитных помех будет более сложным.

В дополнение к требованиям по электромагнитным помехам, ваш преобразователь AC-DC будет соответствовать требованиям по невосприимчивости. Здесь вы должны смоделировать ситуацию с сетевыми помехами от источника питания и доказать, что ваш преобразователь имеет допустимые параметры качества выходного напряжения и тока. Как и DC-DC преобразователь, он также должен быть защищен от электромагнитных помех.

Все это соответствует требованиям EMI, пожарной безопасности, электробезопасности и экологически чистой энергии для AC-DC конвертора. В Power Integrations есть хороший сайт, на котором представлены некоторые требования к источникам переменного тока, например, «вампирское питание», которое потребляет AC-DC преобразователь, даже когда он выключен.

Несмотря на то, что некоторые инженеры избегают проблем с проектированием AC-DC источников питания, включая опасность разработки высоковольтных цепей, существует растущее поколение “аналоговых” инженеров, которые не боятся проблем и видят преимущества в создании безопасных, эффективных и экологически чистых продуктов, которые можно смело назвать ”инженерным искусством”.

Обозначение постоянного и переменного тока. DC ток — понятие и виды постоянно тока

На чтение 25 мин Просмотров 948 Опубликовано

Что такое DC ток и что он значит

Постоянным принято называть электрический ток, сила и направление которого не меняются. В электротехнике смешанный вид с преобладающим постоянным компонентом также называется постоянным, если колебания незначительны для предполагаемого эффекта, или если колебания являются результатом колебаний нагрузки. Тогда среднее арифметическое рассматривается как постоянный ток.

Линии электропередач поставляют ток в дома и на предприятия

К сведению! На английском языке его принято обозначать, как Direct Current, или сокращенно DC, что также используется и для постоянного напряжения. Переменный электрический поток переводится, как Alternating Current, что означает AC напряжение.

«Чистый» и «пульсирующий» постоянные токи

Показания вольтметра при подключении измерительных щупов

Давайте рассмотрим эти принципы более наглядно. Во-первых, связь между подключением измерительных щупов со знаком на показаниях вольтметра при измерении постоянного напряжения:

Рисунок 3 – Цвета измерительных щупов служат ориентиром для интерпретации знака (+ или -) показаний измерительного прибора.

Математический знак на дисплее цифрового вольтметра постоянного напряжения имеет значение только в контексте подключения его измерительных проводов. Рассмотрим возможность использования вольтметра постоянного напряжения для определения того, складываются ли два источника постоянного напряжения друг с другом или вычитаются друг из друга, предполагая, что на обоих источниках нет маркировки их полярности.

Использование вольтметра для измерения на первом источнике:

Рисунок 4 – Положительные (+) показания указывают, что черный – это (-), красный – это (+)

Этот результат первого измерения +24 на левом источнике напряжения говорит нам, что черный провод вольтметра действительно подключен к отрицательной клемме источника напряжения № 1, а красный провод вольтметра действительно подключен к положительной клемме. Таким образом, мы узнаем, что источник №1 – это батарея, включенная следующим образом:

Рисунок 5 – Полярность источника 24 В

Измерение другого неизвестного источника напряжения:

Рисунок 6 – Отрицательные (-) показания указывают, что черный – это (+), красный – это (-)

Второе измерение вольтметром показало отрицательные (-) 17 вольт, что говорит нам о том, что черный измерительный щуп на самом деле подключен к положительной клемме источника напряжения № 2, а красный измерительный провод подключен к отрицательной клемме. Таким образом, мы узнаем, что источник №2 – это батарея, включенная в противоположную сторону:

Рисунок 7 – Полярность источника 17 В

Для любого, знакомого с постоянным током, должно быть очевидно, что эти две батареи противодействуют друг другу. Противоположные напряжения, априори, вычитаются друг из друга, поэтому, чтобы получить общее напряжение на обоих батареях, мы вычитаем 17 вольт из 24 вольт и получаем 7 вольт.

Но мы могли бы изобразить два источника в виде невзрачных прямоугольников, помеченных точными значениями напряжений, полученными с помощью вольтметра, и маркировкой полярности, указывающей на положение измерительных щупов вольтметра:

Рисунок 8 – Показания вольтметра, как они отображались на нем

Какое напряжение DC тока

При DC напряжении электроны всегда движутся в одном направлении. Источник напряжения таким образом всегда имеет одинаковую полярность. Однако уровень напряжения не всегда должен быть одинаковым. В качестве классического источника энергии для генерации постоянного напряжения обычная батарейка, в которой уровень напряжения снижается во время разряда.

Движение электронов при постоянном напряжении

Кроме того, большинство источников питания также генерирует постоянное напряжение, хотя на них подается переменное. В случае стабилизированных источников питания, помимо направления потока, большое значение также уделяется и уровню АС напряжения, который может варьироваться в зависимости от напряжения, однако постоянно будет иметь одинаковую полярность.

Обратите внимание! Переменные напряжения, подаваемые сетевыми трансформаторами и генераторами, могут быть преобразованы выпрямителями. Тогда возникает электрическое напряжение, которое варьируется по величине, но не по знаку.

Схемы с постоянным и переменным током

Компонент переменного напряжения может быть уменьшен путем подключения достаточно большого сглаживающего конденсатора параллельно или последовательно сглаживающей катушки так, что останется только небольшая остаточная пульсация. Чем больше емкость конденсатора или индуктивность катушки, тем меньше будет пиковое значение наложенного переменного напряжения.

Пара слов о «полярности» переменного напряжения

Комплексные числа полезны для анализа цепей переменного тока, поскольку они предоставляют удобный метод символьной записи сдвига фаз между параметрами переменного тока, такими как напряжение и ток.

Однако большинству людей нелегко понять эквивалентность абстрактных векторов и реальных параметров схемы. Ранее в данной главе мы видели, как источники переменного напряжения задаются значениями напряжения в комплексной форме (амплитуда и угол фазы), а также обозначением полярности.

Чем отличается DC ток от AC тока

Изначально постоянный ток должен был генерироваться на электростанциях с относительно низким напряжением розетки для потребителя, 110 или 220 В. Однако если при таком варианте подключено сразу несколько потребителей, суммарные значения очень высоки. В таком случае требуются толстые и дорогие кабели для преодоления больших расстояний, чтобы удерживать потери при передаче в определенных пределах. При использовании переменного напряжения генерируемая электроэнергия может транспортироваться на относительно большие расстояния с небольшими потерями. С 1980 г. стало возможным выпрямить трехфазный ток высокого напряжения, а затем преобразовать его обратно.

Главное отличие AC и DC, постоянного и переменного токов состоит в том, что первый изменяется через определенные промежутки времени (с определенной частотой), в частности, он меняет направление по мере своего протекания. В мире самой распространенной является частота 50 Гц.

Обратите внимание! Когда электричество достигает потребителя, тогда в ход идут трансформаторы. Они преобразуют высокое напряжение в более низкое, которое и поступает в дома.

Трансформатор напряжения

Как уже было сказано, DC электричество не меняется с течением времени. И так как электроны движутся лишь в одном направлении, источники характеризуются наличием положительного и отрицательного полюсов. AC более эффективно при использовании многокилометровых линий электропередач. А постоянный ток предпочтителен для небольшой электроники или накопительных элементов, например, солнечных батарей.

Важность маркировки полярности

В соответствии со схемой на рисунке 8 (выше) обозначения полярности (которые указывают на положение измерительного щупа вольтметра) указывают, что источники складываются друг с другом. Источники напряжения складываются друг с другом, чтобы сформировать общее напряжение, поэтому мы добавляем 24 вольта к -17 вольтам, чтобы получить 7 вольт: всё еще правильный ответ.

Если мы позволим маркировке полярности определять наше решение, складывать или вычитать значения напряжения (независимо от того, представляют ли эти маркировки полярности истинную полярность или только положение измерительного провода вольтметра), и включим математические знаки этих значений напряжений в наши расчеты, результат всегда будет правильным.

Причины непостоянства

Экономичный переносной аппарат для измерения артериального давления выполняет свои функции на протяжении нескольких лет без установки новых батареек. Мощность потребления светодиодного освещения зала значительно больше. Такие устройства подключают к стандартной сети 220V через адаптер, который выравнивает напряжение и уменьшает амплитуду до необходимого уровня. Однако даже качественные преобразователи выполняют свои функции с допустимыми погрешностями. Постепенно уменьшается энергетический потенциал электрохимического источника. Отмеченные факторы объясняют действительное непостоянство измеряемых параметров в контрольной цепи.

По классическому определению, DC подразумевает неизменное направление движения заряженных частиц. Это значит, что показанный результат трансформации (б) с полуволнами одной полярности также соответствует заданному условию.

Важно! Постоянный ток – это частный случай однонаправленного тока, когда дополнительно обеспечивается стабилизация параметра с определенной точностью.

Направление постоянного тока и обозначения на электроприборах и схемах

Чтобы упростить расчеты и создание электрических схем, принимают направленность этого параметра по направлению к точке с меньшим потенциалом (от плюса к минусу). В действительности частицы перемещаются именно таким образом только при положительном заряде. В металле направление потока электронов обратное, однако для исключения путаницы применяют обозначенный базовый принцип.

Изоляция положительных выводов (щупов, кабелей) обозначается красным цветом, отрицательных – черным или синим. Если в сопроводительном тексте указано dc напряжение, это значит, что и ток в соответствующей цепи будет постоянный. На чертежах и корпусах изделий применяют условные обозначения в виде параллельных линий (сплошной и прерывистой).

К сведению. Анод (катод) – это выводы электронной лампы или другой детали, которые подключают к положительному (отрицательному) электроду аккумуляторной батареи.

Также можно встретить обозначение a c что это такое, подробно описано в заключительном разделе статьи. Прямая расшифровка сокращения от «alternating current» не всегда корректна. Однако в узком смысле подразумевают синусоиду с переменной полярностью, которая обозначается латинскими буквами «AC», характерным одиночным волнистым символом либо стандартным математическим знаком примерного равенства «≈».

Величина постоянного тока

Определение «сила» не является корректным. Тем не менее, его применяют с учетом общепринятых норм. Вернувшись к сути явления, можно определить силу тока (I) по количеству перемещенных за определенный временной интервал (t) зарядов:

I = Q/t.

По международным стандартам СИ подразумеваются единичные величины: ампер, кулон и секунда. Для работы с большими токами удобнее пользоваться производной (ампер-часом) с повышающим множителем 3 600.

К сведению. Измерения выполняются с помощью универсального мультиметра или специализированного амперметра. Прибор включают непосредственно в цепь либо используют вспомогательный шунт.

Плотность тока

Количество зарядов удобно оценивать с учетом размеров проводника и концентрации энергии в контролируемой области. Для этого пользуются производным параметром, плотностью тока (j). Его значение вычисляют по формуле:

j = I/S, где S – поперечное сечение в мм кв.

По j определяют безопасный диаметр жилы либо соответствующие размеры плавкого предохранителя. В зависимости от целевого назначения предотвращают разрушение материала при нагреве либо используют плановый разрыв токопроводящей цепи при чрезмерных нагрузках.

Постоянная dc-тока

Эту составляющую вычисляют по среднему за определенный временной период значению сигнала. В сложных условиях, при изменении частоты, образуется кривая линия. Если соблюдается периодичность (синусоида, равномерные импульсы), постоянная на графике изображается прямой линией.

Изменяющаяся компонента

Переменная составляющая определяет искажения формы сигнала, при особых условиях – энергетические потери. При значительном уровне такая компонента оказывает влияние на подключенную нагрузку с реактивными характеристиками. Переменный ток ac выполняет полезные функции только при подсоединении потребителей, совместимых с таким источником питания. Однако и в этом случае возникают проблемы, если не ограничить помехи при включении контактора или пусковой скачек напряжения на обмотке электродвигателя.

Различия в постоянном и переменном токе

При сохранении определенной разницы потенциалов поток зараженных частиц перемещается равномерно в одном и том же направлении. Если применить ток ас, отмеченная стабильность нарушается. В этой ситуации придется учитывать изменение рабочих параметров с частотой сигнала. Кроме наличия переходных процессов, усложняются правила вычислений.

Однако только переменное напряжение ac обеспечивает функциональность колебательного контура – базового компонента радиотехнической схемы. Электромагнитные волны распространяются на большое расстояние, что необходимо для передачи/приема информации. Отражение сигналов используется для радиолокации, дистанционных методов измерения и контроля. Переменный ток ac применяют для генерации энергии и вращения роторов двигателей.

В некоторых ситуациях определяющее значение приобретают особенности воспроизведения технологического процесса. Уместный пример – серия современных сварочных аппаратов:

  • если номинальный ток постоянный, проще выполнять рабочие операции, однако придется тщательно контролировать безопасный уровень напряжения в режиме холостого хода;
  • с переменным током сложнее сделать качественный шов, но именно такой вариант специалисты рекомендуют для соединения сваркой деталей из цветных металлов.

Какой выбрать вариант источника питания для создания эффективного функционального устройства? Для правильного ответа проект изучают в комплексе. Кроме схемотехники, оценивают энергетические затраты и целевое назначение.

Особенности DC тока

Время на чтение:

Ежедневно миллиарды людей по всему миру используют электричество, хотя при этом мало кто знает, как и откуда оно поступает. Кроме этого, не все даже знают о том, что существуют две формы: AC, DC — постоянный, переменный токи. С переменным люди сталкиваются чуть чаще в обычной жизни, но и постоянный также играет важную роль.

Что такое АС

Перевод аббревиатуры АС с английского обозначает Alternative Current (переменный ток). Соответственно DC, что читается как Direct Current, обозначает постоянное, текущее в одном направлении, напряжение. Каждый из них используется для питания электроприборов и играет ключевую роль в целостности электрооборудования при неправильном подключении.

Полезно! Электроток не меняющий в течение времени свою величину и направление называется постоянным.

Переменный ток является формой, повсеместно применяемой потребителями для обеспечения работоспособности основного электрооборудования. Преимущественно стандартная форма волн в электроцепей представлена в виде синусоидальной кривой, с положительным полупериодом равным положительному течению напряжения и наоборот.

В отдельных случаях, например, музыкальные усилители, применяют различные формы волн. Они могут быть треугольными, либо прямоугольными. Аудио и радио сигнал транслируемые по проводам, также относятся к переменному току. Этот тип напряжения несёт зашифрованные информационные данные (звуки или изображения). В отдельных случаях передача может осуществляться за счёт модуляции. Такой ток преимущественно чередуется с высокочастотными, что и отличает их от обычной передачи электроэнергии.

Отличие переменного от постоянного

Прежде всего постоянное напряжение должно генерироваться на подстанциях с относительно низким напряжением для предоставления потребителю (220В). Однако, при одновременном подключении нескольких приборов, суммарное значение возрастает. В этой ситуации, для передачи напряжения на большие расстояния, необходимо использовать толстый и дорогостоящий кабель. Только так можно получить возможность транспортировки тока на большие расстояния с минимальными потерями мощности.

В примере с переменным, генерируемое электричество способно преодолевать большое расстояние с наименьшими потерями. С 1980 г. появилась возможность выпрямления трёхфазного электрического тока и его обратное преобразование.

Основным отличием AC напряжения от DC тока заключается в том, что последний показывает сравнительную стабильность. Под этим подразумевается, что он не изменяет частоту направления движения.

Полезно! Наиболее распространённой частотой в мире признаётся 50 Гц.

Из-за того, что движение постоянного тока течёт равномернее, направление протекания электронов осуществляется строго в одном направлении. Причем источник в данной ситуации имеет, как положительный, так и отрицательный полюс. Таким образом, постоянный ток преимущественно используют в высоковольтных линиях (для транспортировки на значительные расстояния). После преобразования в переменный, он передаётся в наши розетки.

Интересно! Перед тем как напряжение достигло пункта назначения (потребителя), оно попадает в трансформатор. Здесь оно преобразуется из высокого в более низкое, с соответствующим пониженным значением частности, приемлемое в использовании для бытовых нужд, и передаётся в квартиру, дом.

Сравнительная таблица

Сравнительный график переменного тока и постоянного тока

Переменный ток Постоянный ток
Количество энергии, которое можно нести Безопасно переносить на большие расстояния по городу и может обеспечить большую мощность. Напряжение постоянного тока не может перемещаться очень далеко, пока оно не начнет терять энергию.
Причина направления потока электронов Вращающийся магнит вдоль провода. Устойчивый магнетизм вдоль провода.
частота Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. Частота постоянного тока равна нулю.
направление Он меняет свое направление, пока течет по кругу. Он течет в одном направлении в цепи.
ток Это величина, изменяющаяся во времени Это ток постоянной величины.
Поток электронов Электроны продолжают переключать направления – вперед и назад. Электроны неуклонно движутся в одном направлении или «вперед».
Получен из Генератор переменного тока и сеть. Ячейка или батарея.
Пассивные параметры Сопротивление. Только сопротивление
Фактор силы Лежит между 0 и 1. это всегда 1.
Типы Синусоидальный, Трапециевидный, Треугольный, Квадратный. Чистый и пульсирующий.


Переменный и постоянный ток. Горизонтальная ось – это время, а вертикальная ось представляет напряжение.

Постоянный ток

Международный символ этого напряжения DC — Direct Current (постоянный ток), а условное обозначение на электросхемах «—» или «=». Величина и полярность этого вида напряжения являются неизменными, а сила тока изменяется только при изменениях нагрузки. Этот вид электрического тока производится аккумуляторами, батарейками и элементами солнечных электростанций.

От сети постоянного тока работают двигатели трамваев, троллейбусов и другого электротранспорта. Эти электродвигатели имеют лучшие тяговые характеристики, чем двигатели переменного тока.

Информация! От постоянного напряжения работает бОльшая часть электронных схем, но они получают питание от сети переменного тока через встроенный или внешний блок питания с выпрямителем.

Переменный ток

Международное обозначение этого напряжения AC — Alternating Current (переменный ток), а условное обозначение на электросхемах «~» или «≈».

Величина и полярность переменного тока в сети всё время меняется. Частота этих изменений составляет 50Гц в Европе и некоторых других странах и 60Гц в США. Большинство бытовых и промышленных электроприборов изготавливаются для питания переменным напряжением.

Практически вся электроэнергия, используемая в быту и промышленности, является переменной. Для передачи на большие расстояния его повышают при помощи трансформаторов, а в конечной точке линии понижают до необходимой величины. Это позволяет уменьшить стоимость ЛЭП и потери. Для того, чтобы исключить колебания напряжения, для особоважных приборов устанавливаются стабилизаторы.

При увеличении напряжения и неизменной передаваемой мощности сила тока и сечение проводов пропорционально уменьшается. Если напряжение не повышать, то для подачи электроэнергии к потребителю необходимо использовать кабеля большого сечения, а передача на большие расстояния окажется невозможной. Вот почему в розетке переменный ток.

В домашней розетке два контакта — фазный и нулевой. В некоторых случаях к ним добавляется заземляющий. Это однофазное напряжение является частью трёхфазной системы. Она включает в себя три одинаковых сети. Напряжение в этих сетях сдвинуто по фазе на 120° друг относительно друга.

Вначале эта система была шестипроводной. В таком виде её изобрёл Никола Тесла. Позже М. О. Доливо-Добровольский усовершенствовал эту схему и предложил передавать трёхфазное напряжение по трём или чётырём проводам (L1, L2, L3, N). Он также показал преимущества трёхфазной системы электроснабжения перед схемами с другим числом фаз.

Чем опасен АС ток для человека

Как уже упоминалось, особенность АС напряжения заключается в равномерном протекании частиц от одного полюса к другому. В сравнении с DC током он считается менее опасным так как в большинстве случаев оказывает на человеческий организм спазматическое воздействие. Спазм проходит сразу после снятия напряжения, что снижает вероятность критических результатов.

Однако отсутствие опасности для организма наблюдается только в случае малого значения постоянного тока. Чем больше его значение, тем возрастает вероятность критических последствий. Например, при контакте с напряжением, превышающем 500 В, ток может оказаться опаснее чем переменный. Однако в быту такие значения отсутствуют и используются в трансформаторах или подстанциях, доступ куда открыт только специально обученным людям.

Важно! Основное отличие воздействия высоковольтного тока на человека заключается в сильном отбрасывающем эффекте (в сравнении с переменным).

Что опаснее для человека

Для человеческого организма большую опасность представляет переменный АС. Под его воздействием происходит резкая фибрилляция сердечных желудочков. Но это не означает, что постоянный ток может считаться безопасным. Люди, попавшие под такое напряжение, получают тяжёлые травмы в результате отброса и механического удара.

Происхождение переменного и постоянного тока

Магнитное поле около провода заставляет электроны течь в одном направлении вдоль провода, потому что они отталкиваются отрицательной стороной магнита и притягиваются к положительной стороне. Так родился источник постоянного тока от батареи, в первую очередь благодаря работе Томаса Эдисона.

Генераторы переменного тока постепенно заменили аккумуляторную систему постоянного тока Edison, потому что переменный ток безопаснее переносить на большие расстояния по городу и может обеспечить большую мощность. Вместо постоянного применения магнетизма вдоль проволоки ученый Никола Тесла использовал вращающийся магнит. Когда магнит был ориентирован в одном направлении, электроны текли к положительному, но когда ориентация магнита была перевернута, электроны также поворачивались.

Что показывает мультиметр при выборе различных режимов работы?

Они располагаются вокруг круглого переключателя, с помощью которого можно устанавливать необходимый режим. На переключателе место контакта обозначено точкой или рельефным треугольничком. Обозначения разделены на сектора. Практически все современные мультиметры имеют подобную разбивку и круглый переключатель.

Сектор OFF. Если установить переключатель в это положение – прибор выключен. Есть и модели, которые автоматически выключаются через некоторое время. Это очень удобно, потому что я например во время работы его забываю выключать, да и не удобно когда меряешь, потом паяешь все время выключать его. Батареи хватает надолго.

2 и 8 – два сектора с обозначением V, этим символом обозначается напряжение в вольтах. Если просто символ V – то измеряется постоянное напряжение, если V, измеряется переменное напряжение. Стоящие рядом цифры показывают диапазон измеряемого напряжения. Причем постоянное измеряется от 200m (милливольт) до 1000 вольт, а переменное от 100 до 750 вольт.

3 и 4 – два сектора для измерения постоянного тока. Красным выделен всего один диапазон для измерения тока до 10 ампер. Остальные диапазоны составляют: от 0 до 200, 2000 микроампер, от 0 до 20, 200 миллиампер. В обычной жизни десяти ампер вполне хватает, при измерении силы тока мультиметр включается в цепь путем подключения щупов в нужное гнездо, специально предназначенное для измерения силы тока. Как-то раз я впервые попробовал измерить силу тока в розетке своим первой простенькой моделью тестера. Пришлось менять щупы на новые — штатные выгорели.

5 (пятый) сектор. Значок похож на Wi-Fi. Установка переключателя в этом положении позволяет проводить звуковую прозвонку цепи например нагревательного элемента.

6 (шестой) сектор – установка переключателя в данное положение проверяет исправность диодов. Проверка диодов — очень востребованная тема среди автомобилистов. Можно самому проверить исправность например диодного моста автомобильного генератора:

7 – символ Ω. Здесь измеряется сопротивление 0 до 200, 2000 Ом, от 0 до 20, 200 или 2000 кОм. Так же очень востребованный режим. В любой электрической схеме больше всего элементов сопротивления. Бывает, что измерением сопротивления быстро находишь неисправность:

Можно ли провести свет под железной дорогой?

Здравствуйте уважаемые пикабушники. Есть у меня вопрос, по поводу дачного участка.

Купили участок в ДНТ. Участок находиться в железнодорожной развилке. Стал вопрос о проведении света на участок. Подключиться можно только по улице за железной дорогой (председатель дает точку подключения только там) Сами понимаете через железную дорогу провода не перекинешь. Но есть туннель под жд дорогой. Можно ли через него провести провода или это не законно? И как вообще быть?

Пара слов о «полярности» переменного напряжения

Комплексные числа полезны для анализа цепей переменного тока, поскольку они предоставляют удобный метод символьной записи сдвига фаз между параметрами переменного тока, такими как напряжение и ток.
Однако большинству людей нелегко понять эквивалентность абстрактных векторов и реальных параметров схемы. Ранее в данной главе мы видели, как источники переменного напряжения задаются значениями напряжения в комплексной форме (амплитуда и угол фазы), а также обозначением полярности.

Поскольку у переменного тока нет параметра «полярности», как у постоянного тока, эти обозначения полярности и их связь с углом фазы могут вводить в заблуждение. Данный раздел написан с целью, прояснить некоторые из этих вопросов.

Напряжение, по своей сути, – относительная величина. Когда мы измеряем напряжение, у нас есть выбор, как подключить вольтметр или другой измерительный прибор к источнику напряжения, поскольку есть две точки, между которыми существует разность потенциалов, и два измерительных щупа у прибора, которые необходимо подключить.

В цепях постоянного тока мы явно обозначаем полярность источников напряжения и падений напряжения, используя символы «+» и «-«, а также используем измерительные щупы с цветовой маркировкой (красный и черный). Если цифровой вольтметр показывает отрицательное постоянное напряжение, мы знаем, что его измерительные щупы подключены «обратно» напряжению (красный провод подключен к «-«, а черный провод – к «+»).

Полярность батарей обозначается специфичными для них символами: короткая линия батареи всегда является отрицательной (-) клеммой, а длинная линия – всегда положительной (+):

Рисунок 1 – Общепринятое обозначение полярности батареи

Хотя было бы математически правильно представить напряжение батареи в виде отрицательного значения с обозначением обратной полярности, но это было бы явно необычно:

Рисунок 2 – Совершенно нестандартное обозначение полярности

Интерпретация таких обозначений могла бы быть проще, если бы обозначения полярности «+» и «-» рассматривались как контрольные точки для измерительных щупов воль означал бы «красный», а «-» означал бы «черный». Вольтметр, подключенный к указанной выше батарее красным щупом к нижней клемме и черным щупом к верхней клемме, действительно будет указывать отрицательное напряжение (-6 вольт).

На самом деле, эта форма обозначения и интерпретации не так уж необычна, как вы могли подумать: она часто встречается в задачах анализа цепей постоянного тока, где знаки полярности «+» и «-» сначала рисуются согласно обоснованному предположению, а затем интерпретируются как правильные или «обратные» в соответствии с математическим знаком рассчитанного значения.

Однако в цепях переменного тока мы не имеем дело с «отрицательными» значениями напряжения. Вместо этого мы описываем, в какой степени одно напряжение совпадает или не совпадает с другим по фазе: т.е. по сдвигу по времени между двумя сигналами. Мы никогда не описываем переменное напряжение как отрицательное по знаку, потому что возможность полярной записи позволяет векторам указывать в противоположных направлениях.

Если одно переменное напряжение прямо противоположно другому переменному напряжению, мы просто говорим, что одно напряжение на 180° не совпадает по фазе с другим.

Тем не менее, напряжение между двумя точками является относительным, и у нас есть выбор, как подключить прибор для измерения напряжения между этими двумя точками. Математический знак показаний вольтметра постоянного напряжения имеет значение только в контексте подключений его измерительных щупов: к какой клемме подключен красный щуп, а к какой клемме подключен черный щуп.

Кроме того, угол фазы переменного напряжения имеет значение только в контексте знания, какая из этих двух точек считаются «опорной». Поэтому, чтобы дать заявленному углу фазы точку отсчета, на схемах часто указываются обозначения полярности «+» и «-» на клеммах переменного напряжения.

Важность маркировки полярности

В соответствии со схемой на рисунке 8 (выше) обозначения полярности (которые указывают на положение измерительного щупа вольтметра) указывают, что источники складываются друг с другом. Источники напряжения складываются друг с другом, чтобы сформировать общее напряжение, поэтому мы добавляем 24 вольта к -17 вольтам, чтобы получить 7 вольт: всё еще правильный ответ.

Если мы позволим маркировке полярности определять наше решение, складывать или вычитать значения напряжения (независимо от того, представляют ли эти маркировки полярности истинную полярность или только положение измерительного провода вольтметра), и включим математические знаки этих значений напряжений в наши расчеты, результат всегда будет правильным.

Опять же, маркировка полярности служит ориентиром для размещения математических знаков значений напряжений в правильном контексте.

То же самое верно и для переменного напряжения, за исключением того, что математический знак заменяется углом фазы. Чтобы связать друг с другом несколько переменных напряжений с разными углами фазы, нам нужна маркировка полярности, чтобы обеспечить систему отсчета для углов фаз этих напряжений.

Возьмем, к примеру, следующую схему:

Рисунок 9 – Угол фазы заменяет знак ±

Маркировка полярности показывает, что эти два источника напряжения складываются друг с другом, поэтому для определения общего напряжения на резисторе мы должны сложить значения напряжения 10 В 0° и 6 В ∠ 45° вместе, чтобы получить 14,861 В 16,59 °.

Однако было бы вполне приемлемо представить 6-вольтовый источник как 6 В 225°, с обратной маркировкой полярности, и при этом получить такое же общее напряжение:

Рисунок 10 – Переключение проводов вольтметра на источнике 6 В изменяет угол фазы на 180°

6 В 45° с минусом слева и плюсом справа – это точно то же самое, что 6 В ∠ 225 ° с плюсом слева и минусом справа: изменение маркировки полярности идеально дополняет добавление 180° к значению угла фазы:

Рисунок 11 – Изменение полярности добавляет 180° к углу фазы

Что такое АС и ДС?

АС, DC – это устоявшиеся термины, буквально означающие: переменный ток, постоянный ток (англ.: alternating current, direct current). … Иногда с аббревиатурой DC связывают постоянную составляющую сигнала, а с AC – переменную.

Почему переменный ток лучше чем постоянный?

Постоянный ток как раз имеет меньшие потери, чем переменный, потому что при его использовании потери мощности обуславливаются падением напряжения только на активном сопротивлении, а при переменном токе на активном и реактивном.

Что такое источник питания DC?

Импульсные источники питания постоянного тока DC/DC осуществляют преобразование нестабилизированного постоянного напряжения в гальванически изолированное стабилизированное постоянное напряжение.

Какой ток в сети переменный или постоянный?

Почти вся производимая электроэнергия является переменной, а постоянная, вырабатываемая генераторами постоянного тока и солнечными электростанциями перед поступлением в сеть преобразовывается в переменный ток, поэтому более, чем в 98% розеток переменный ток.

Как обозначается переменный и постоянный ток?

Постоянный ток: Обозначение (—) или DC (Direct Current = постоянный ток). Переменный ток: Обозначение (~) или AC (Alternating Current = переменный ток).

Какой ток в розетке 220 вольт?

Параметры домашней сети всегда известны: переменный ток, напряжение 220 вольт и частота 50 герц. Они подходят преимущественно для электродвигателей, холодильников и пылесосов, а также ламп накаливания и многих других приборов. Многие потребители работают при постоянном напряжении в 6-12 вольт.

Что такое переменный ток и чем он отличается от постоянного?

Что такое переменный ток и чем он отличается от тока постоянного Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Примечания



Источники

  • https://masterservisnsk.ru/shkola-elektrika/dc-eto-kakoj-tok.html
  • https://amperof.ru/teoriya/dc-tok-ponyatie-vidy.html
  • https://oxotnadzor.ru/chto-takoye-dc-tok-direct-current/
  • https://printeka.ru/prochee/dc-i-ac-napryazhenie-chto-eto.html
  • https://tutsvarka.ru/raznoe/kak-peremennyj-tok-ac-protiv-postoyannogo-toka-dc-chto-nuzhno-znat-2021-2
  • https://ectrl.ru/provodka/dc-tok.html
  • https://oxotnadzor.ru/postoyannyy-tok-peremennyy-tok-angliyskiy/
  • https://EcoSvet-Russia.ru/obuchenie/ac-dc-tok-rasshifrovka.html
  • https://kmd-mk.ru/dc-napryazhenie-chto-oznachaet/

ЧТО ТАКОЕ AC & DC?

Share

Pin

Tweet

Send

Share

Send

Вы слышали о переменном и постоянном токе, но если бы вас спросили о значении инициалов в игре «Опасность», вы бы смогли ответить? Многие люди используют термины, не понимая, что обозначают аббревиатуры DC и AC. Термины «AC» и «DC» относятся к типу электрического тока, используемого устройством. Аккумуляторы и многие источники питания вырабатывают постоянный ток, а электричество в ваших розетках — переменный ток

кредит: Sarayut Thaneerat / EyeEm / EyeEm / GettyImagesЧто означает AC & DC?

Аббревиатура AC / Аббревиатура DC

Термин «AC» обозначает переменный ток. Полярность электрического заряда переключается с положительного на отрицательный или чередуется с фиксированной скоростью. Что это обозначает? Это означает, что электроны в заряде сначала текут в одном направлении, а затем в другом, переключаясь назад и вперед через регулярные интервалы или циклы. Для типичного бытового тока в США переменный ток чередуется со скоростью 60 циклов в секунду. Однако в Европе и большей части остального мира она чередуется со скоростью 50 циклов в секунду.

Аббревиатура «DC» обозначает постоянный ток. Полярность электрического заряда не переключается назад и вперед. Вот почему один конец батареи положительный, а другой конец отрицательный. Ток течет от отрицательного конца батареи, через управляемое устройство и обратно к батарее на положительном конце.

Различия в переменном и постоянном токе

Теперь, когда вы знаете значение AC и значения DC, вы можете захотеть узнать разницу между ними. Устройства, предназначенные для работы от переменного тока, могут использовать больше энергии, поскольку переменный ток может легко передаваться при высоких уровнях тока (сила тока). Типичный дом имеет электрическую систему на 200 ампер. При типичном напряжении в 120 вольт это позволяет потреблять до 24 000 ватт, что более чем достаточно для многих устройств, которые мы используем каждый день. Большинство аккумуляторов допускают лишь незначительную долю этого потребления, как правило, допуская нагрузки в диапазоне миллиампер, или в 200 000 раз меньше, чем домашний центр нагрузки.

Устройства, предназначенные для работы с постоянным током, используют батареи или источники питания, которые преобразуют бытовой переменный ток в постоянный ток при правильном напряжении. Основным преимуществом постоянного тока является то, что устройство может быть портативным, работать от батарей, а не подключаться к сетевой розетке.

Интересный факт AC / DC

Изобретатель Томас Эдисон хотел использовать энергию постоянного тока для первой в стране электрической сети. Однако высокая стоимость передачи постоянного тока на большие расстояния привела к тому, что коммунальные предприятия отвергли план Эдисона в пользу более дешевой системы переменного тока, которую мы имеем сегодня.

Share

Pin

Tweet

Send

Share

Send

Смотреть видео: Что такое категория применения и нагрузки AC-1, AC-3 и др. в коммутационных аппаратах. (January 2022).

ACϟDС. Понимание сварочного тока и полярности – ООО «ЦСК»

Сварка – это ручной труд, но сварщики должны обладать достаточным количеством технических знаний, даже если в школе физика для них была чем-то сверхъестественным. 

Одним из обязательных понятий, которые необходимо знать, является «сварочный ток». Сварщик должен хорошо понимать, что такое полярность и какое влияние она оказывает на процесс сварки.

На сварочных аппаратах и электродах можно заметить обозначения AC или DC, которые описывают полярность тока. Почему электрические токи и полярность возникают во время сварки? Давайте рассмотрим эти понятия внимательно.

 

Что такое переменный (AC) и постоянный (DC) ток?

AC от англ. «alternating current» обозначает переменный ток, а DC «direct current»постоянный ток.

АС чередует направление тока, а DС течет только в одном направлении.

Сварочные машины и электроды с маркировкой DC имеют постоянную полярность, тогда как маркированные AC изменяют полярность 120 раз в секунду с частотой тока 60 герц.

 

Чем переменный и постоянный ток различаются при сварке?

Сварка при постоянном токе (DC) создает более плавные и более устойчивые дуги, образуется меньше брызг. Легче производится сварка в вертикальном и верхнем положениях.

Тем не менее, переменный ток (AC) может быть предпочтительным выбором начинающих сварщиков, поскольку часто используется в недорогих сварочных аппаратах начального уровня. AC также распространен в судостроительной сварке или в любых условиях, где дуга может плавать из стороны в сторону.

 

Что такое полярность?

Электрическая цепь, возникающая при включении сварочного аппарата, имеет отрицательный и положительный полюс – это свойство называется полярностью. Полярность имеет большое значение при сварке, потому что выбор правильной полярности влияет на прочность и качество сварного шва. Использование неправильной полярности может привести к большому количеству брызг, плохому проплавлению и потере контроля сварочной дуги.

 

При сварке переменным током соблюдать полярность не требуется!

В свою очередь, сварка с использованием постоянного тока бывает двух типов:

 

— сварка током прямой полярности

— сварка током обратной полярности

Что такое прямая и обратная полярность постоянного тока (DC)?

Полярность
прямая обратная
отрицательная положительная
(–) (+)

 

Процесс сварки будет различаться в зависимости от направления, полярности тока: положительной (+) или отрицательной (–).

Положительная полярность постоянного тока (DC+) обеспечивает высокий уровень проплавления, в то время как отрицательная полярность постоянного тока (DC–) даст меньшее проплавление, но более высокую скорость осаждения (например, на тонком листовом металле). Различные защитные газы могут дополнительно влиять на процесс сварки.

Сварка током прямой полярности

Под сваркой прямой полярности принято понимать сварку, при проведении которой на свариваемую деталь (изделие) подаётся положительный заряд от сварочного аппарата, т.е. сварочный кабель соединяет свариваемое изделие с клеммой (+) сварочного аппарата. На электрод же подаётся отрицательный заряд через электрододержатель, соединённый кабелем с клеммой (–).

При сварке током прямой полярности основная температурная нагрузка ложится на металлическую свариваемую деталь. То есть, она разогревается сильнее, что позволяет углубить корень сварочного шва.

Ток прямой полярности рекомендуется применять при необходимости резки металлоконструкций и сварке толстостенных деталей, а также в иных случаях, когда требуется добиться большого выделения тепла, что как раз и является характерной особенностью такого типа подключения.

 

Сварка током обратной полярности

Под сваркой обратной полярности принято понимать сварку, при проведении которой на свариваемую деталь (изделие) подаётся отрицательный заряд от сварочного аппарата, т.е. сварочный кабель соединяет свариваемое изделие с клеммой (–) сварочного аппарата. На электрод же подаётся положительный заряд через электрододержатель, соединённый кабелем с клеммой (+).

При сварке током обратной полярности больше тепла выделяется на электроде, а нагрев детали сравнительно уменьшается. Это позволяет производить более «деликатную» сварку и уменьшает вероятность прожига детали.

Сварку током обратной полярности рекомендуется применять при необходимости сваривания тонких листов металла, нержавеющей, легированной стали, иных сталей и сплавов, чувствительных к перегреву.

 

Так как переменный ток (AC) наполовину положительный и наполовину отрицательный, его сварочные свойства находятся прямо в середине положительной и отрицательной полярности постоянного тока (DC). Некоторые сварщики выбирают переменный ток (AC), если они хотят избежать глубокого проплавления. Например, при ремонтных работах на ржавых металлах.

Хотя переменный ток сам по себе не имеет полярности, если электроды для сварки на переменном токе использовать с постоянным, они покажут более низкие результаты. Поэтому производители электродов обычно указывают наиболее подходящую полярность на покрытии и упаковке электродов.

Понимание направления и полярности сварочного тока важно для правильного выполнения сварочных работ. Знание того, как эти факторы влияют на ваш сварной шов, облегчит вашу работу.

Источник: www.weldingschool.com

 

Сварочные материалы и оборудование Вы можете приобрести на нашем сайте — сварочные электроды и сварочное оборудование.

Звоните нам по телефону: +7 (343) 266-44-33 или отправляйте заявку на e-mail: [email protected]

Ac dc расшифровка. Обозначение постоянного и переменного электрического тока

Рано или поздно каждый человек вынужден столкнуться с ситуацией, когда необходимо познакомиться с электричеством ближе, чем на уроках физики в школе. Отправным моментом для этого может стать как поломка электроприборов или розеток, так и просто искренний интерес к электронике со стороны человека. Один из основных вопросов, который необходимо рассмотреть: каким образом обозначены постоянный и переменный ток. Если вы знакомы с понятиями:электрический ток, напряжение и сила тока, вам будет проще понять , о чём идёт речь в этой статье.

Электрическое напряжение делят на два вида:

  1. постоянное (dc)
  2. переменное (ас)

Обозначение постоянного тока (-), у переменного тока обозначение (~). Аббревиатуры ac и dc устоявшиеся, и употребляются наравне с названиями «постоянный» и «переменный». Теперь рассмотрим в чём их отличие. Дело в том, что постоянное напряжение течёт только в одном направлении, из чего и вытекает его название. А переменное, как вы уже поняли, может менять своё направление. В частных случаях направление переменного может оставаться одним и тем же. Но, кроме направления, у него также может меняться и величина. В постоянном ни величина, ни направление, не изменяется. Мгновенным значением переменного тока называют его величину, которая берётся в данный момент времени.

В Европе и России принята частота в 50 Гц, то есть изменяет своё направление 50 раз в секунду, в то время, как в США, частота равна 60 Гц. Поэтому техника, приобретённая в Соединённых штатах и в других государствах, с отличающейся частотой может сгореть. Поэтому при выборе техники и электроприборов следует внимательно смотреть на то, чтобы частота была 50 Гц. Чем больше частота у тока, тем больше его сопротивление. Также можно заметить, что в розетках у нас дома течёт именно переменный.

Помимо этого, у переменного электрического тока существует деление ещё на два вида:

  • однофазный
  • трёхфазный

Для однофазного необходим проводник, который будет проводить напряжение, и обратный проводник. А если рассматривать генератор трёхфазного тока, у него, на всех трёх намотках вырабатывается переменное напряжение частотой в 50 Гц. Трёхфазная система — это не что иное, как три однофазных электрических цепи, сдвинутых по фазе относительно друг друга под углом в 120 градусов. Посредством его использования, можно одновременно обеспечивать энергией три независимые сети, пользуясь при этом только шестью проводами, которые нужны для всех проводников: прямых и обратных, чтобы проводить напряжение.

А если у вас, например, имеется только 4 провода, то и тут проблем не возникнет. Вам нужно будет только соединить обратные проводники. Объединив их, вы получите проводник, который называют нейтральным. Обычно его заземляют. А оставшиеся внешние проводники кратко обозначают как L1, L2 и L3.

Но существует и двухфазный, он представляет из себя комплекс двух однофазных токов, в которых также присутствуют прямой проводник для проведения напряжения и обратный, они сдвинуты по фазе относительно друг друга на 90 градусов.

Применение

Из-за того что постоянный течёт лишь в одну сторону, его использование обычно ограничивается носителями с небольшой энергоёмкостью, например, его можно встретить в обычных батарейках, аккумуляторах для электроприборов с маленьким энергопотреблением, такие как фонарики или телефоны и батареях, использующих солнечную энергию. Но постоянный источник необходим не только для зарядки небольших аккумуляторов, так постоянный ток большой мощности используется для работы электрифицированных железнодорожных путей, при электролизе алюминия или при дуговой электросварке, а также других промышленных процессов .

Для выработки постоянного тока такой силы используют специальные генераторы. Также его можно получить посредству преобразования переменного, для этого используется прибор, в котором применяют электронную лампу, его называют кенотронный выпрямитель, а сам процесс обозначается как выпрямление. Ещё для этого используется двухполупериодный выпрямитель. В нём, в отличие от простого лампового выпрямителя, находятся электронные лампы, которые имеют два анода — двуханодные кенотроны.

Если вы не знаете как определять то, с какого полюса течёт постоянный ток, запоминайте: он всегда течёт от знака «+» к знаку «-«. Первыми источниками постоянного тока были особые химические элементы, их называют гальванические. Уже позже люди изобрели аккумуляторы .

Переменный применяют почти везде , в быту, для работы домашних электроприборов подпитывающихся из домашней розетки, на заводах и фабриках, на стройплощадках и многих других местах. Электрификация железнодорожных путей также может быть и на dc напряжении. Так, напряжение идёт по контактному проводу, а рельсы являются обратным электрическим проводником. По такому принципу работает около половины всех железных дорог в нашей стране и странах СНГ. Но, помимо электровозов, работающих лишь на постоянном и только на переменном, существуют также электровозы, совмещающие в себе способность работы как на одном виде электричества, так и на другом.

Переменный ток используется и в медицине

Так, например,дарсонвализация — это метод воздействия электричеством при большом напряжении, на наружные покровы и слизистые оболочки организма. Посредством этого метода у пациентов улучшается кровоснабжение, улучшается тонус венозных сосудов и обменных процессов организма. Дарсонвализация может быть как местная, на определённом участке, так и общая. Но чаще используют местную терапию.

Таким образом, мы узнали, что есть два вида электрического тока: постоянный и переменный , по-другому их называют ac и dc, поэтому, если вы скажете одну из этих аббревиатур, вас точно поймут. Кроме того, обозначение постоянного и переменного тока в схемах выглядит как (-) и (~), что упрощает их узнавание. Теперь, при починке электроприборов, вы, без сомнений, скажете, что в них используется переменное напряжение, а если вас спросят какой ток находится в батарейках, вы ответите, что постоянный.

Услышав музыку этой группы хотя бы один раз, её невозможно забыть или спутать с чем-то другим. Потрясающий звук, бешеная энергетика, незабываемый вокал — это всё «AC/DC», культовая рок-группа родом из Австралии, ставшая настоящей легендой хеви-метала и хард-рока. Удивителен тот факт, что коллектив продолжает существовать с 1971 года, а в конце лета 2015 года музыканты, которым давно перевалило за 60, собрались в большой гастрольный тур по Канаде и США, что доказывает, что эту удивительную рок-группу рано списывать со счетов, и они еще могут «задать жару».

Становление рок-легенды

У Уильяма и Маргарет Янг, коренных шотландцев, переехавших в Австралию в 1963 году, всего было девять детей, в том числе трое сыновей — Джордж, Малкольм и Агнус. На удивление, все они были чрезвычайно талантливы в музыкальном плане. Первым братом, втянувшимся в рок-музыку, был старший, Джордж. Он с друзьями основал «Easybeats», подростковый рок-бэнд, чем привлек внимание младших Янгов к музыке. Малкольм, а затем и Агнус, взяв в руки гитару, обнаружили настоящий талант, обучаясь с рекордной быстротой.

После нескольких неудачных попыток участия в музыкальных коллективах, в голову Малкольму Янгу приходит идея создать собственную группу, а его младший брат Агнус с энтузиазмом поддерживает эту задумку. Вокалиста Дейва Эванса братья нашли по объявлению в газете, а на барабаны и бас-гитару были приглашены знакомые молодых Янгов.

Название своей группы будущие легенды рока придумали, а точнее сказать, нашли, довольно быстро: надпись «AC/DC», что означает «переменно-постоянный ток» часто размещалась на бытовых приборах, вроде пылесоса или электрической швейной машины, где её и увидела сестра братьев Янг, Маргарет. Такое название показалось друзьям оригинальным, звучным и очень метким, и было единогласно принято всеми членами группы.

Так как к созданию группы Малкольм и Агнус подходили очень серьезно, они решили придумать также какой-то оригинальный сценический имидж. И здесь им снова помогла Маргарет, которая, как и родители молодых людей, очень поддерживала их в организации собственного музыкального коллектива. Она придумала оригинальную «изюминку» группы: выступать в форменной школьной одежде. Благодаря этой судьбоносной идее, Ангуса Янга узнают по коротким школьным штанишкам, галстучку и забавной кепке, в которые он бессменно облачается на концертах группы и по сей день.


Свое дебютное выступление группа провела в последний день 1973 года, а местом, где квинтет сыграл в первый раз, был выбран бар «Chequers». С этого момента начала своё существование хард-рок-группа, которой было предначертано стать мировой легендой и обрести огромное количество фанатов и последователей.

Карьера: находки и потери

В 1974 году в составе группы произошли множественные перемены, были замещены несколько барабанщиков и бас-гитаристов. А самой главной и судьбоносной заменой того времени в «AC/DC» стала смена вокалиста. Дейв Эванс отказался выходить на сцену на одном из выступлений, необходимо было срочно что-то предпринять, и тут свою кандидатуру предложил шофер группы Бон Скотт, по счастливой случайности оказавшийся в нужное время в нужном месте. После выступления Бон был взят в коллектив на постоянной основе. Настоящим именем нового вокалиста было Роналд Белфорд Скотт, и он оказался необыкновенно харизматичным и энергичным молодым человеком, к тому же, наделенным незаурядным музыкальным талантом и вокальными данными. С ним дела у группы стремительно пошли в гору. Позже британский журнал «Classic Rock» поставит его на первое место в рейтинге «100 величайших фронтменов всех времён».


Группа пишет несколько довольно успешных песен и в 1975 выпускает свой первый альбом — «High Voltage». Альбом хоть и не занял лидирующих мест, тем не менее, был неплохой заявкой на популярность. В этом же году «AC/DC» выпускают второй альбом, под названием «T.N.T.», что в переводе означает «тринитротолуол». Этот альбом имел немалый успех, но, как и первый, официально выпускался лишь в Австралии. Мировая известность была еще впереди.


Участники группы понимают, что для того, чтобы по-настоящему «расправить крылья» им необходимо расширить границы своего влияния. Они активно работают в этом направлении, и вскоре подписывают международный контракт с «Atlantic Records», что позволяет «AC/DC» наконец вырваться из Австралии. Они начинают покорение сцен Великобритании и Европы со старыми хитами, тем не менее, не забывая про новые: в 1976 году выходит «Dirty Deeds Done Dirt Cheap» — третья пластинка группы, имевшая довольно неплохой успех. После этого члены группы принимают решение переселиться в Великобританию. Они активно выступают, общаются с СМИ и поклонниками, постепенно завоевывая все большую популярность.


Работа кипит. Один за одним выходят альбомы «Let There Be Rock» (1977), «Powerage» (1978), «Highway to Hell» (1979). Последний возносит «AC/DC» на пик популярности и на верхушки мировых чартов. Большинство композиций этого альбома являются абсолютными хитами по сей день, по праву считаясь одними из лучших песен в истории мирового рока. Кажется, ничто не может омрачить бешеный успех молодых энергичных исполнителей… Как оказалось, это было не так.

19 февраля 1980 года происходит страшная трагедия — внезапно умирает вокалист группы, блистательный Бон Скотт. По официальной версии это произошло из-за злоупотребления алкоголем. Группа просто раздавлена.


Потеряв свой «голос», «AC/DC» подумывают о прекращении карьеры, но принимают решение сохранить коллектив, полагая, что жизнерадостный Бон Скотт хотел бы именно этого. Друзья встают на ноги после потрясения, и спустя несколько прослушиваний они находят необыкновенно талантливого вокалиста — Брайана Джонсона. У рок-группы словно открывается второе дыхание и они начинают работать не покладая рук.

В том же году выходит легендарный альбом «Back in Black», обложку которого было принято решение сделать черной, в память о бывшем солисте и верном друге. Альбом имеет головокружительный успех, впоследствии он станет самым продаваемым альбомом за всю историю группы и удостоится статуса «дважды бриллиантовый».

Следующие годы рок-коллектив ведет очень продуктивную деятельность. Великолепным «золотым составом» (Малкольм и Агнус Янг, Клифф Уильямс (гитара, бас-гитара), Брайан Джонсон (вокал), Фил Радд (ударные)) они пишут и играют свои лучшие хиты, записывают огромное количество альбомов, выступают на концертах по всему свету, завоевывают престижнейшие музыкальные награды.


В 2003 году легендарная группа была занесена в «Зал славы», так же заняла в США почетное 5-е место по числу проданных альбомов за всю историю. На родине группы, в Австралии в их честь назвали улицу.

Вызывает восхищение неиссякающая энергия группы, которая, несмотря на свой «солидный возраст», не перестает радовать поклонников. «AC/DC» выпустили прекрасные альбомы (2008 и 2014), которые почитатели их творчества встретили с ликованием и раскупили огромными тиражами.


И ни болезнь Малкольма Янга, который вынужден был покинуть группу в 2014, ни небольшие проблемы с законом Фила Радда, не смогли сломить дух легендарных «AC/DC». Вот это и есть настоящие рокеры, которые, несомненно, еще не раз удивят своих фанатов, утерев нос многим молодым группам.

1 из 20

Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.

Что такое AC? Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.

Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.

Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:

АС: Электростанции и генераторы переменного тока производят переменный ток.

DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.

Применение переменного и постоянного тока:

АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин, и практически всего промышленного оборудования.

DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.

Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину напряжения до (110 или 230 В) для передачи его в наши дома.

Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что контакт с высоким напряжением переменного тока является более опасным, чем с низким напряжением постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.

Читайте также…

DUA01CB23500V, Модуль реле контроля тока, напряжение AC/DC,ток AC/DC, DIN

Диапазон рабочих температур -20 → +60 °C
Ширина 99.5мм
Максимальное считываемое напряжение 4 V ac, 20 V ac/dc, 50 V ac/dc, 200 V ac/dc, 500 V ac/dc
Производитель Carlo Gavazzi
Минимальное считываемое напряжение 0,4 В перем. тока, 2 В перем./пост. тока, 5 В перем./пост. тока, 20 В перем./пост. тока, 50 В перем./пост. тока
Конфигурация контактов SPDT
Контрольное приложение Current, Voltage
Минимальная рабочая температура -20°C
Максимальная рабочая температура +60°C
Высота 83.5мм
Фаза электрического тока 1
Диапазон измерения напряжения 0,4 → 4 В перем. тока, 2 → 20 В перем./пост. тока, 20 → 200 В перем./пост. тока, 5 → 50 В перем./пост. тока, 50 → 500 В перем./пост. тока
Размеры 22,5 x 99,5 x 83,5 мм
Напряжение питания 230 В перем. тока
Чувствительность по напряжению Категории электрооборудования по перенапряжению
Токовая чувствительность Перегрузка
Длина 22.5мм
Circuit SPDT (1 Form C)
Contact Rating @ Voltage 8A @ 250VAC
ECCN EAR99
HTSUS 8536.49.0055
Moisture Sensitivity Level (MSL) Not Applicable
Mounting Type DIN Rail
Operating Temperature -20В°C ~ 60В°C
Output Type Relay
Package Box
RoHS Status RoHS Compliant
Series DUA01 ->
Trip Range 2 ~ 500V AC/DC
Trip Status Energized High
Type Current Sensing AC, Voltage Sensing AC/DC
Voltage — Supply 115 ~ 230VAC
Вес, г 150

Что такое переменный ток (AC)?

AC: Электрический ток, который постоянно меняет направление.

AC — это краткая форма переменного тока, при котором электрический заряд меняет направление через равные промежутки времени, создавая чередующиеся положительные и отрицательные значения одинаковой величины.

Переменный ток следует синусоидальной форме, где напряжение постоянно увеличивается от нуля до максимального положительного пикового напряжения. Затем он меняет направление и падает через ноль в отрицательном направлении, пока не достигнет отрицательного пикового значения, равного положительному по величине и отличающегося только полярностью.Напряжение снова меняется на обратное и поднимается к нулевой точке, чтобы завершить один цикл. Этот процесс повторяется с номинальной частотой 50 Гц или 60 Гц (циклов в секунду).

Скорость изменения направления определяется числом полных циклов в секунду и называется частотой. Двумя широко используемыми стандартами частоты для бытовых и промышленных приложений являются 50 Гц, которые используются в большинстве частей мира, и 60 Гц, используемые в США и некоторых других регионах.

Другая частота 400 Гц используется в самолетах, космических кораблях, морских судах, военных и других чувствительных устройствах, где требуется легкое оборудование и более высокие скорости двигателя.

Переменный ток вырабатывается с помощью гидро-, дизельных, паровых или ветряных турбин. Другими источниками являются возобновляемые источники энергии, такие как солнечная энергия; однако некоторые из них производят постоянный ток и должны быть преобразованы в переменный ток перед подачей в сеть.

Переменный ток является распространенной формой производства и распределения электроэнергии из-за простоты производства и распределения.Переменное напряжение легко регулируется вверх и вниз в соответствии с любым требуемым уровнем напряжения. Чтобы свести к минимуму потери мощности в проводниках, электроэнергия передается при высоких напряжениях и малых токах. Позже это снижается на уровне распределения и потребителя в соответствии с потребностями потребителя.

В большинстве электрического и электронного оборудования используется переменный ток напряжением 220–240 В или 110–120 В для бытовых и офисных приложений и 415 В для промышленности. Однако большая часть оборудования и особенно вся электроника используют внешние или внутренние блоки питания для преобразования переменного тока в соответствующий постоянный ток (DC), требуемый электронными устройствами и схемами.

Переменный ток обычно подается на оборудование по трем проводам

  • Горячий провод передает энергию.
  • Нейтраль обеспечивает обратный путь для тока в горячем проводе. Он также связан с землей.
  • Третий провод — это заземление, которое также соединено с землей, оно соединено с металлическими частями оборудования для обеспечения безопасности и устранения опасности поражения электрическим током.

Глоссарий источников питания

12.1 Источники переменного тока – введение в электричество, магнетизм и электрические цепи

ЦЕЛИ ОБУЧЕНИЯ

К концу раздела вы сможете:
  • Объясните разницу между постоянным током (dc) и переменным током (ac)
  • Определение характеристик переменного тока и напряжения, таких как амплитуда или пик и частота

Большинство примеров, рассмотренных до сих пор в этой книге, особенно те, которые используют батареи, имеют источники постоянного напряжения.Таким образом, как только ток установлен, он является постоянным. Постоянный ток (dc)  — это поток электрического заряда только в одном направлении. Это устойчивое состояние цепи постоянного напряжения.

Однако в большинстве известных приложений используется переменный во времени источник напряжения. Переменный ток (ac)  – это поток электрического заряда, который периодически меняет направление. Переменный ток создается ЭДС переменного тока, которая генерируется на электростанции, как описано в Наведенных электрических полях.Если источник переменного тока периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и жилую энергию, которая удовлетворяет многие из наших потребностей.

Напряжение и частота переменного тока, обычно используемые на предприятиях и дома, различаются по всему миру. В типичном доме разность потенциалов между двумя сторонами электрической розетки изменяется синусоидально с частотой или и амплитудой или в зависимости от того, живете ли вы в Северной Америке или Европе соответственно.Большинство людей знают, что разность потенциалов для электрических розеток составляет или в Северной Америке, или в Европе, но, как объясняется далее в этой главе, эти напряжения не являются пиковыми значениями, приведенными здесь, а скорее связаны с обычными напряжениями, которые мы видим в наших электрических розетках. На рис. 12.1.1 показаны графики зависимости напряжения и тока от времени для типичной мощности постоянного и переменного тока в Северной Америке.

(рис. 12.1.1)  

Рисунок 12.1.1  (a) Напряжение постоянного тока и ток постоянны во времени после установления тока.(b) Зависимость напряжения и тока от времени для переменного тока сильно различается. В этом примере, который показывает мощность переменного тока 60 Гц и время t в секундах, напряжение и ток синусоидальны и находятся в фазе для простой цепи сопротивления. Частоты и пиковые напряжения источников переменного тока сильно различаются.

Предположим, мы подключаем резистор к источнику переменного напряжения и определяем, как во времени изменяются напряжение и ток на резисторе. На рисунке 12.1.2 показана схема простой цепи с источником переменного напряжения.Напряжение колеблется синусоидально во времени с фиксированной частотой, как показано, либо на клеммах батареи, либо на резисторе. Следовательно, переменное напряжение или «напряжение на вилке» может быть выражено как

(12.1.1)  

, где  это напряжение в момент времени  это пиковое напряжение и  это угловая частота в радианах в секунду. Для типичного дома в Северной Америке и  в то время как в Европе  и

Для этой простой цепи сопротивления   переменный ток , то есть ток, синусоидально колеблющийся во времени с фиксированной частотой, равен

(12.1.2)  

, где  это ток в момент времени  и  это пиковый ток, равный  В этом примере говорят, что напряжение и ток находятся в фазе, а это означает, что их синусоидальные функциональные формы имеют пики, впадины и узлы в одном и том же месте. Они колеблются синхронно друг с другом, как показано на рисунке 12.1.1(b). В этих уравнениях и во всей этой главе мы используем строчные буквы (например, ) для обозначения мгновенных значений и заглавные буквы (например ) для обозначения максимальных или пиковых значений.

(рис. 12.1.2)  

Рисунок 12.1.2  Разность потенциалов между клеммами источника переменного напряжения колеблется, поэтому источник и резистор имеют синусоидальные волны переменного тока друг над другом. Математическое выражение для дается выражением

Ток в резисторе колеблется туда-сюда точно так же, как управляющее напряжение, поскольку  Если резистор представляет собой, например, люминесцентную лампу, она становится ярче и тускнеет несколько раз в секунду, поскольку ток неоднократно проходит через нуль.Мерцание слишком быстрое для ваших глаз, но если вы будете махать рукой взад и вперед между своим лицом и флуоресцентным светом, вы увидите стробоскопический эффект переменного тока.

ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 12.1

Если рассматривается европейский источник переменного напряжения, какова разница во времени между переходами через нуль на графике зависимости напряжения переменного тока от времени?

Цитаты Кандела

Лицензионный контент CC, указание авторства

  • Загрузите бесплатно на http://cnx.org/contents/[email protected] Получено с : http://cnx.org/contents/[email protected] Лицензия : CC BY: Attribution

Цепи переменного тока – зависимость мощности от напряжения и тока

В цепи переменного тока – переменный ток генерируется источником синусоидального напряжения

Напряжение

Токи в цепях с чисто резистивными, или индуктивными нагрузками.

Мгновенное напряжение в синусоидальной цепи переменного тока может быть выражено в виде во временной области как

u(t) = напряжение в цепи в момент времени t (В)

U max = максимальное напряжение при амплитуде синусоидальной волны (В)

4

4
время (с)

ω = 2 π f

    = угловая частота синусоидальной волны (рад/с)

f = частота (Гц, 3 00 фаза) 9005 синусоидальной волны (рад)

Мгновенное напряжение может быть альтернативно выражено в частотной области (или вектором) как

U = U(jω) = U max e jθ1 (1а)

где

U(jω) = U = комплексное напряжение (В) угол, равный фазовому сдвигу синусоидального сигнала относительно косинусоидального сигнала.

Обратите внимание, что конкретная угловая частота — ω — явно не используется в векторном выражении.

Ток

Мгновенный ток может быть выражен во временной области как

i (t) = ток по времени t (a)

I MAX = максимальный ток на амплитуде синусоидальная волна (a)

токи в цепях с чистые резистивные, емкостные или индуктивные нагрузки указаны на рисунке выше.Ток в «реальной» цепи с резистивной, индуктивной и емкостной нагрузками указан на рисунке ниже.

мгновенный ток в схеме переменного тока можно альтернативно, можно выразить в формате частоты (или фазора) AS

AS

I = I (Jω) = I MAX E (2A)

где

I = I (Jω) = Комплексной ток (а) Комплексное ток (а)

6

Частота

Обратите внимание, что частота большинства систем переменного тока фиксирована — как 60 Гц в Северной Америке и 50 Гц в большей части остального мира.

Угловая частота для Северной Америки

ω = 2 π 60

= 377 RAD / S

Угловая частота для большей части остальной части мира составляет

ω = 2 π 50

= 314 RAD / S

Резистовая нагрузка

Напряжение над резистивной нагрузкой в ​​системе переменного тока можно выразить как

U = RI (4)

, где

R = сопротивление (Ом)

Для резистивной нагрузки в цепи переменного тока напряжение равно в фазе с током.

Индуктивная нагрузка

Напряжение над индуктивной нагрузкой в ​​систему переменного тока может быть выражена как

u = J Ω LI (5)

, где

l = индуктивность (Генри)

Для индуктивной нагрузки ток в цепи переменного тока равен π/2 (90 o ) фаза после напряжение (или напряжение до тока).

Емкостная нагрузка

Напряжение над индуктивной нагрузкой в ​​систему переменного тока может быть выражена как

U = 1 / (J Ω C) I (6)

, где

C = емкость (фарад)

Для емкостной нагрузки ток в цепи переменного тока опережает напряжение на π/2 (90 o ) фаза .

В реальной электрической цепи имеется смесь резистивных, емкостных и индуктивных нагрузок со сдвигом фазы напряжения/тока в диапазоне — π/2 <= φ <=  π/2 , как показано на рисунок ниже.

Ток в «реальной» цепи с резистивной, индуктивной и емкостной нагрузками. φ — фазовый угол между током и напряжением.

Импеданс

Ом Закон о сложном переменном токе можно выразить как

U Z = I Z Z (7)

, где

U Z = падение напряжения по нагрузке (вольты, В)

I z = ток через нагрузку (ампер, А)

Z = полное сопротивление нагрузки (Ом, Ом)

Полное сопротивление в цепи переменного тока можно рассматривать как комплексное сопротивление.Импеданс действует как частотно-зависимый резистор, где сопротивление является функцией частоты синусоидального возбуждения.

Согласие в серии

Полученный импеданс для импедансов в серии можно выразить как

Z = Z 1 + Z 2 (7b)

Согласие на параллельном

Полученное сопротивление для импедансов параллельно Может быть выражено как

1 / z = 1 / z 1 + 1 / z 2 (7c)

Домасмент

Допуск — это инвертированный импеданс

y = 1 / z (8)

где

Y = проводимость (1/Ом)

Среднеквадратичное значение или эффективное напряжение

Среднеквадратичное значение — это эффективное значение синусоидального напряжения или тока.

RMS — среднеквадратный квадрат — или эффективное напряжение может быть выражено как

U RMS = U EFF

= U MAX / (2) 1/2

= 0,707 U MAX (9)

U RMS = U EFF

= RMS напряжение (V)

U MAX = Максимальное напряжение (амплитуда) синусоидального источника напряжения (V)

RMS — средневековая квадрат — или эффективный ток может быть выражен как

I RMS = I EFF

= I Макс. / (2) 1/2

        = 0.707 I max (10)

= I EFF

= RMS Текущий (а)

I

7 MAX = максимальный ток (амплитуда) источника синусоидального напряжения (А)

Вольтметры и амперметры переменного тока показывают среднеквадратичное значение напряжения или тока, или 0,707-кратное максимальное пиковое значение. Максимальные пиковые значения равны 1.в 41 раз больше значений вольтметра.

Пример

  • для системы 230V U RMS = 230V и U MAX = 324 V
  • для системы 120V RMS U RMS = 120V и U max = 169 В

Трехфазное напряжение переменного тока — фаза-фаза и фаза-нейтраль

В трехфазной системе переменного тока напряжение может подаваться между линиями и нейтралью (потенциал фазы), или между линиями (линейный потенциал).Результирующие напряжения для двух распространенных систем – европейской 400/230 В и североамериканской 208/120 В для одного периода указаны на рисунках ниже.

400V / 230V AC

9000V

Распечатать 400/230 В Трифазная диаграмма

    • L1, L2 и L3 — это три фазы линии к нейтральным потенциалам — фазовых потенциалов
    • L1 до L2, L1 до L3 и L2 до L3 — линейные потенциалы трех фаз — линейные потенциалы
    • L2, L2 и L3 — результирующий потенциал трех фаз в симметричной цепи — результирующий потенциал = 0 Величина линейных потенциалов равна 3 1/2 (1.73) величина фазового потенциала.

      U RMS, Line = 1.73 U RMS, фаза (11)

      208V / 120V AC

      Печать 208/120 В Трифазная диаграмма

      Power

      Active — или Real или True — Сила, которая делает фактическую работу в цепи — можно рассчитать как

      P = U RMS I RMS COS Φ (12)

      , где

      P = активная реальная мощность (W)

      φ = фазовый угол между током и напряжением (рад, градусы)

      Cos φ также называется коэффициентом мощности.

      Реактивная мощность в цепи может быть рассчитана как

      Q = U RMS I RMS SIN Φ (13)

      q = Реактивная мощность (var)

      Что такое источник питания переменного тока?

      Источник питания переменного тока, также известный как источник питания переменного тока, представляет собой устройство, способное подавать на нагрузку переменную мощность и частоту. Источник питания переменного тока подает переменный электрический ток, который помогает питать или тестировать отдельную часть оборудования, имитируя перебои в электросети, гармоники, скачки напряжения или другие события, которые могут привести к неисправности тестируемого устройства (ИУ).Источники питания переменного тока, такие как блоки питания переменного тока IT7321, обычно используются для электрических испытаний в авиации, освещении, лабораторных испытаниях, военном и заводском производстве. Этот источник питания переменного тока позволяет генерировать сигналы переменного тока с частотой от 45 Гц до 500 Гц. Он также может генерировать различные формы синусоидальной волны, включая всплески, ловушки и приглушенные фазовые волны для имитации различных событий.

      Мощность переменного тока имеет форму синусоиды. На графике выше амплитуда представляет собой напряжение в вольтах, а частота измеряется в периодах в секунду.В Северной Америке жилая электрическая сеть чаще всего представляет собой 1 фазу 60 Гц 120 В переменного тока. В Европе сеть работает на частоте 50 Гц и напряжении 230 В переменного тока.

      Наши лучшие модели:

      ITECH IT7321 Программируемый блок питания переменного тока 150/30 В 3/1,5 А

      В этой модели используется прецизионное линейное усиление. Линейность описывает, как источник питания может создавать сигналы, которые являются точными копиями входного сигнала при различных уровнях мощности и частоты. В авионике существуют строгие требования к испытаниям, электронное оборудование, предназначенное для авиации и работающее на частоте 400 Гц переменного тока, потребует испытаний для демонстрации соответствия.Источник питания переменного тока, такой как IT7321, позволяет выполнять эти тесты точно и легко.
      Основные характеристики: 

      • Высокая точность и разрешение ±(0,2%+0,6 В)/±(0,2%+0,6 мА)
      • Самый большой диапазон частот (45–500 Гц)

      Variac:

      Другой тип базового и непрограммируемого источника питания переменного тока — это Variac или трансформатор переменного напряжения. Variac работает, пропуская (переменный) или переменный ток через две или более катушки (первичную сторону и вторичную сторону) для передачи электрической энергии.Variac можно использовать для передачи или преобразования напряжения для питания устройств, которые в противном случае могут работать только в цепи определенного напряжения. Компания Circuit Specialists предлагает большой выбор вариаторов, включая версии с цифровыми панелями и промышленные модели с различными уровнями выходной мощности.

      Рисунок 3: Переменный автотрансформатор с максимальной выходной мощностью 30 А

      Этот мощный настольный преобразователь частоты Variac является одним из самых эффективных способов точного управления напряжением переменного тока как для лабораторных, так и для промышленных приложений с самым большим диапазоном выходной мощности.Основные характеристики:

      • Диапазон напряжения до 130 В
      • Точный выход без искажений

       

      Однофазный и трехфазный Мощность:

      Электроэнергия в основном вырабатывается и транспортируется с использованием трехфазной мощности. Однофазный источник питания будет использовать два проводника (фазу и нейтраль), в то время как трехфазный источник питания использует только три проводника для передачи в три раза большей мощности. Трехфазные источники питания более экологичны, поскольку для передачи заданного количества энергии требуется меньше проводящего материала.

      Тесла Электричество переменного тока

      Ссылки на другие Tesla Организации | Тесла и исследование Космоса

      Тесла указал на неэффективность электрического тока постоянного тока Эдисона. электростанции, которые были строить вверх и вниз по атлантическому побережью. Секрет, как он чувствовал, кроется в использование переменного тока , потому что ему все энергии были циклическими.Почему бы не построить генераторы, которые посылали бы электроэнергия по распределительным линиям сначала в одну сторону, затем в другую, несколькими волнами, используя принцип многофазности?

      Лампы Эдисона были слабыми и неэффективными при питании от постоянного тока. Эта система имела серьезные недостаток в том, что его нельзя было транспортировать более чем на две мили из-за к его неспособности перейти к высоким уровням напряжения, необходимым для длительного дистанционная передача.Следовательно, электростанция постоянного тока была требуется с интервалом в две мили.

      Постоянный ток течет непрерывно в одном направлении; чередование ток меняет направление 50 или 60 раз в секунду и может быть ступенчатым изменять уровни высокого напряжения, сводя к минимуму потери мощности в больших расстояния. Будущее за переменным током.

      Никола Тесла разработал многофазную систему переменного тока генераторы, двигатели и трансформаторы и занимали 40 основных U.С. патенты на система, которую купил Джордж Вестингауз, намеревалась обеспечить Америка с системой Теслы. Эдисон не хотел терять свой DC империи, и началась ожесточенная война. Это была война токов между переменным и постоянным током. Тесла-Вестингауз в конечном итоге вышел победителем потому что AC был превосходной технологией. Это была война, выигранная за прогресс как Америки, так и всего мира.

      Тесла представил свои двигатели и электрические системы в классическом бумага, Новая система двигателей и трансформаторов переменного тока который он представил перед Американским институтом инженеров-электриков в 1888 году.Одним из самых впечатленных был промышленник и изобретатель Джордж Вестингауз. Однажды он посетил лабораторию Теслы и был поражен увиденным. Тесла сконструировал модель многофазной системы. состоит из динамо-машины переменного тока, повышающей и понижающей трансформаторы и двигатель переменного тока на другом конце. Идеальное партнерство между Tesla и Westinghouse для общенационального использования электроэнергии в Америка началась.

      ДОМ

       

      Разница между напряжением переменного и постоянного тока (со сравнительной таблицей)

      Основное различие между переменным и постоянным напряжением заключается в том, что в переменном напряжении полярность волны меняется со временем, тогда как полярность постоянного напряжения всегда остается неизменной. Другие различия между напряжением переменного и постоянного тока показаны ниже в сравнительной таблице.

      Содержание: Напряжение переменного тока в сравнении с напряжением постоянного тока

      1. Сравнительная таблица
      2. Определение
      3. Основные отличия

      Сравнительная таблица

      База для сравнения Напряжение переменного тока Напряжение постоянного тока
      Определение Напряжение переменного тока — это сила, которая создает переменный ток между двумя точками. Напряжение постоянного тока индуцирует постоянный ток между двумя точками.
      Символическое представление
      Частота Зависит от страны. Ноль
      Коэффициент мощности Лежит между 0 и 1. 0
      Полярность Изменения Оставаться постоянным
      Направление Варьировать Оставаться прежним
      Получено из Генератор Элемент или батарея
      Эффективность Высокая Низкая
      Пассивный параметр Полное сопротивление Сопротивление
      Амплитуда Есть Нет
      Преобразование С помощью инвертора. С помощью выпрямителя.
      Трансформатор Требуется для трансмиссии. Не требуется.
      Фаза и нейтраль Есть Нет
      Преимущества Простота измерения. Легко усиливать

      Определение напряжения переменного тока

      Напряжение, вызывающее переменный ток, известно как напряжение переменного тока. Переменный ток индуцируется в катушке, когда проводник с током вращается в магнитном поле.Проводник при вращении отсекает магнитный поток, а изменение потока индуцирует переменное напряжение в проводнике.

      Определение напряжения постоянного тока

      Постоянное напряжение индуцирует постоянный ток. Волны только в одном направлении, а величина напряжения всегда остается постоянной. Генерация напряжения постоянного тока довольно проста и легка. Напряжение наводится за счет вращения катушки в поле магнита. Катушка состоит из разрезного кольца и коммутатора, преобразующего переменное напряжение в постоянное.

      Ключевые различия между переменным и постоянным напряжением

      1. Напряжение, вызывающее переменный ток, известно как переменное напряжение. Постоянное напряжение создает постоянный ток.
      2. Частота переменного напряжения зависит от страны (в основном используются 50 и 60 Гц). Принимая во внимание, что частота постоянного напряжения становится равной нулю.
      3. Коэффициент мощности переменного напряжения находится в диапазоне от 0 до 1. А коэффициент мощности постоянного напряжения всегда остается равным 1.
      4. Полярность переменного напряжения всегда меняется со временем, а полярность постоянного напряжения всегда остается постоянной.
      5. Напряжение переменного тока однонаправленное, а напряжение постоянного тока двунаправленное.
      6. Генератор вырабатывает переменное напряжение, а постоянное напряжение получает от элемента или батареи.
      7. Эффективность переменного напряжения выше, чем постоянного.
      8. Импеданс — это пассивный параметр переменного напряжения, а постоянного — сопротивление. Импеданс означает противодействие напряжения протеканию тока.
      9. Напряжение переменного тока имеет амплитуду, тогда как напряжение постоянного тока не имеет амплитуды.Амплитуда термина означает максимальное расстояние, пройденное колебанием и вибрирующим телом.
      10. Инвертор преобразует постоянный ток в переменный. В то время как выпрямитель преобразует переменный ток в постоянный.
      11. Трансформатор необходим для передачи переменного тока, но не используется для передачи постоянного тока.
      12. Напряжение переменного тока имеет фазу и нейтраль, тогда как напряжение постоянного тока не требует ни фазы, ни нейтрали.
      13. Главное преимущество переменного напряжения в том, что его легко измерить.Преимущество постоянного напряжения заключается в том, что напряжение можно легко усилить. Усиление — это процесс, посредством которого увеличивается сила сигнала.

      Соотношение между переменным и постоянным напряжением

      Вольт переменного тока × 1,414 = Вольт постоянного тока

      Переменный ток (AC) Введение

      Переменный ток (AC) Введение

      Электрические системы переменного тока (AC) находятся на большинстве многодвигательных, высокопроизводительных самолетов с турбинными двигателями и самолетов транспортной категории.Переменный ток — это тот же тип электричества, который используется в промышленности и для питания наших домов. Постоянный ток (DC) используется в системах, которые должны быть совместимы с питанием от батарей, например, в легких самолетах и ​​автомобилях. Питание переменного тока дает много преимуществ при выборе питания постоянного тока для электрических систем самолета.

      Переменный ток может передаваться на большие расстояния легче и экономичнее, чем постоянный, поскольку переменное напряжение можно повышать или понижать с помощью трансформаторов. Поскольку все больше и больше агрегатов в самолетах работают от электричества, требования к мощности таковы, что за счет использования переменного тока можно реализовать ряд преимуществ (особенно в самолетах большой транспортной категории).Можно сэкономить место и вес, поскольку устройства переменного тока, особенно двигатели, меньше и проще, чем устройства постоянного тока. В большинстве двигателей переменного тока щетки не требуются, и они требуют меньше обслуживания, чем двигатели постоянного тока. Автоматические выключатели удовлетворительно работают при нагрузках на больших высотах в системе переменного тока, в то время как искрение настолько чрезмерно в системах постоянного тока, что автоматические выключатели необходимо часто заменять. Наконец, большинство самолетов, использующих 24-вольтовую систему постоянного тока, имеют специальное оборудование, для которого требуется определенное количество переменного тока с частотой 400 циклов.Для этих самолетов используется устройство, называемое инвертором, для преобразования постоянного тока в переменный.

       

      Переменный ток постоянно меняет значение и полярность или, как следует из названия, чередуется. На рис. 9-12 показано графическое сравнение постоянного и переменного тока. Полярность постоянного тока никогда не меняется, а полярность и напряжение переменного тока постоянно меняются. Следует также отметить, что цикл переменного тока повторяется через заданные промежутки времени. При переменном токе и напряжение, и ток начинаются с нуля, увеличиваются, достигают пика, затем уменьшаются и меняют полярность.Если изобразить эту концепцию на графике, становится легко увидеть переменную форму волны. Эта форма волны обычно упоминается как синусоида.

      Рисунок 9-12. Кривые постоянного и переменного напряжения. [щелкните изображение, чтобы увеличить] Определения
      Значения переменного тока

      Существуют три значения переменного тока, которые применяются как к напряжению, так и к току. Эти значения помогают определить синусоиду и называются мгновенными, пиковыми и эффективными. Следует отметить, что при обсуждении этих терминов в тексте упоминается напряжение.Но помните, значения относятся к напряжению и току во всех цепях переменного тока.

       

      Мгновенное

      Мгновенное напряжение – это значение в любой момент времени вдоль волны переменного тока. Синусоида представляет ряд этих значений. Мгновенное значение напряжения меняется от нуля при 0° до максимума при 90°, обратно до нуля при 180°, до максимума в обратном направлении при 270° и снова до нуля при 360°. Любая точка синусоиды считается мгновенным значением напряжения.

      Пиковое значение

      Максимальное мгновенное значение, часто называемое максимальным значением. Наибольшее единичное положительное значение возникает после определенного периода времени, когда синусоида достигает 90°, а наибольшее единичное отрицательное значение возникает, когда волна достигает 270°. Хотя пиковые значения важны для понимания синусоидальной волны переменного тока, авиатехники редко используют пиковые значения.

      Действующее

      Действующие значения напряжения всегда меньше, чем пиковые (максимальные) значения синусоиды и приблизительное значение напряжения постоянного тока того же значения.Например, цепь переменного тока 24 вольта и 2 ампера должна выделять через резистор столько же тепла, сколько цепь постоянного тока 24 вольта и 2 ампера. Эффективное значение также известно как среднеквадратичное или среднеквадратичное значение, которое относится к математическому процессу, с помощью которого получено значение.

      Большинство измерителей переменного тока отображают действующее значение переменного тока. Почти во всех случаях номинальные значения напряжения и тока системы или компонента указаны в эффективных значениях. Другими словами, отраслевые рейтинги основаны на эффективных значениях.Пиковые и мгновенные значения, используемые только в очень ограниченных ситуациях, будут указаны как таковые. При изучении переменного тока любые значения тока или напряжения считаются действующими значениями, если не указано иное. На практике используются только действующие значения напряжения и тока.

      Эффективное значение равно умножению на 0,707 пикового (максимального) значения. И наоборот, пиковое значение в 1,41 раза превышает эффективное значение. Таким образом, значение 110 вольт, указанное для переменного тока, составляет всего 0,707 от пикового напряжения этого источника питания.Максимальное напряжение составляет примерно 155 вольт (110 × 1,41 = максимум 155 вольт).

       

      Частота повторения сигнала переменного тока называется частотой переменного тока. Частота обычно измеряется в циклах в секунду (CPS) или герцах (Гц). Один Гц равен одному CPS. Время, необходимое синусоиде для завершения одного цикла, известно как период (P). Период — это значение или период времени, обычно измеряемый в секундах, миллисекундах или микросекундах. Следует отметить, что временной период цикла может меняться от одной системы к другой; всегда говорят, что цикл завершается за 360 ° (относительно 360 ° вращения генератора переменного тока).[Рис. 9-13]Рис. 9-13. Значения переменного тока.

      Цикл определен

      Цикл — это завершение шаблона. Всякий раз, когда напряжение или ток претерпевает серию изменений, возвращается к исходной точке, а затем повторяет ту же серию изменений, серия называется циклом. Когда значения напряжения отображаются в виде графика, как на рис. 9-14, отображается полный цикл переменного тока. Один полный цикл часто называют синусоидой и равен 360°. Обычно синусоида начинается там, где напряжение равно нулю.Затем напряжение увеличивается до максимального положительного значения, уменьшается до нулевого значения, затем увеличивается до максимального отрицательного значения и снова уменьшается до нуля. Цикл повторяется до тех пор, пока напряжение не исчезнет. В полном цикле есть два чередования: положительное чередование и отрицательное. Следует отметить, что полярность напряжения меняется на обратную для каждого полупериода. Следовательно, во время положительного полупериода поток электронов считается однонаправленным; во время отрицательного полупериода электроны меняют направление и текут по цепи в противоположном направлении.

      Рисунок 9-14. Цикл напряжения.

      Частота определена

      Частота — это количество циклов переменного тока в секунду (CPS). Стандартной единицей измерения частоты является Гц. [Рис. 9-15] В генераторе напряжение и ток проходят полный цикл значений каждый раз, когда катушка или проводник проходят под северным и южным полюсами магнита. Количество циклов на каждый оборот катушки или проводника равно количеству пар полюсов.

      Рисунок 9-15.Частота в циклах в секунду.

      Таким образом, частота равна числу циклов в одном обороте, умноженному на число оборотов в секунду.

      Определенный период

      Время, необходимое синусоиде для завершения одного полного цикла, называется периодом (P). Период обычно измеряется в секундах, миллисекундах или микросекундах. [Рис. 9-14] Период синусоиды обратно пропорционален частоте. То есть чем выше частота, тем короче период.Математическая связь между частотой и периодом задается следующим образом:

      Длина волны определена

      Расстояние, которое волна проходит за период, обычно называется длиной волны и обозначается греческой буквой лямбда (λ). Длина волны связана с частотой по формуле:

      Чем выше частота, тем короче длина волны. Длина волны измеряется от одной точки на сигнале до соответствующей точки на следующем сигнале.[Рис. 9-14] Поскольку длина волны — это расстояние, распространенными единицами измерения являются метры, сантиметры, миллиметры или нанометры. Например, звуковая волна с частотой 20 Гц будет иметь длину волны 17 метров, а волна видимого красного света 4,3 × 10–12 Гц будет иметь длину волны примерно 700 нанометров. Имейте в виду, что фактическая длина волны зависит от среды, через которую должен проходить сигнал.

      Рисунок 9-16. Синфазные и противофазные условия.

      Соотношение фаз

      Фаза — это соотношение между двумя синусоидами, обычно измеряемое в угловых градусах.Например, если есть два разных генератора переменного тока, производящих энергию, было бы легко сравнить их отдельные синусоидальные волны и определить их фазовое соотношение. На рис. 9-16В разница фаз между двумя формами напряжения составляет 90°. Фазовое соотношение может быть между любыми двумя синусоидами. Соотношение фаз можно измерить между двумя напряжениями разных генераторов переменного тока или током и напряжением, вырабатываемыми одним и тем же генератором переменного тока.

      На рис. 9-16A показаны сигнал напряжения и сигнал тока, наложенные на одну и ту же временную ось.Обратите внимание, что когда напряжение увеличивается в положительном чередовании, ток также увеличивается. Когда напряжение достигает своего пикового значения, то же самое происходит и с током. Обе формы волны затем меняются местами и уменьшаются до нулевой величины, затем продолжаются таким же образом в отрицательном направлении, как и в положительном направлении. Когда две волны идут точно в ногу друг с другом, говорят, что они находятся в фазе. Чтобы быть в фазе, два сигнала должны проходить через точки максимума и минимума в одно и то же время и в одном направлении.

      Когда два сигнала проходят через точки максимума и минимума в разное время, между ними существует разность фаз. В этом случае говорят, что две формы волны не совпадают по фазе друг с другом. Термины «опережение» и «запаздывание» часто используются для описания разности фаз между сигналами. Говорят, что сигнал, который первым достигает своего максимального или минимального значения, опережает другой сигнал. На рис. 9-16В показано это соотношение. С другой стороны, говорят, что второй сигнал отстает от первого источника.Когда сигнал считается опережающим или отстающим, обычно указывается разница в градусах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *