Какие электростанции есть – Типы электростанций. Виды электростанций. Принципиальная схема тепловой электростанции

Содержание

Виды электростанций ℹ️ характеристика основных типов устройств, классификация, принцип работы и назначение, плюсы и минусы энергетических объектов, таблица, примеры

Основные виды электростанций, их преимущества и недостатки

Характеристики электростанций

Все электрические станции объединены и образуют Единую энергетическую группу, которую создали с целью более эффективного использования их мощностей, чтобы непрерывно снабжать потребителей электроэнергией. Основным элементом в устройстве считается электрогенератор, который выполняет определенные функции:

Характеристики электростанций
  1. Гарантирует непрерывную работу одновременно с другими энергосистемами и обеспечивает энергией собственные автономные нагрузки.
  2. Обеспечивает быстрое реагирование на наличие или отсутствие нагрузки, которая соответствует его номинальному значению. Производит запуск электродвигателя, обеспечивающего функционирование всей станции.
  3. Совместно со специальным оборудованием выполняет защитные функции.

Каждый генератор отличается формами, размерами и источником энергии, который вращает вал. Кроме него, в станцию входят: турбины, котлы, трансформаторы, распределительное оборудование, технические средства коммутации, автоматика, релейная защита. Сейчас большое внимание уделяется выпуску более компактных установок.

Они вырабатывают электроэнергию, которая питает не только различные объекты, но и целые поселения, находящиеся на удаленном расстоянии от электрических линий. В основном они используются на полярных станциях и предприятиях, добывающих полезные ископаемые.

Основные виды

Классификация электростанций в первую очередь проводится по типу энергоносителей. К ним относятся уголь, природный газ, вода рек, ядерное топливо, дизельное горючее, бензин и т. д. Список основных станций:

Основные виды электростанций
  1. ТЭС — расшифровка аббревиатуры: тепловая электрическая станция. Для ее работы используется природное топливо, а она может быть конденсационной (КЭС) или теплофикационной (ТЭЦ).
  2. ГЭС — гидравлическая электростанция, которая работает за счет воды рек, падающей с высоты. Существует ее разновидность — ГАЭС (гидроаккумулирующая).
  3. АЭС — атомные станции, энергоносителем которых является ядерное топливо.
  4. ДЭС — стационарные или передвижные электростанции, работающие на дизельном топливе. Обычно это станции малой мощности, которые используются в строительстве и частном секторе, где нет линий электропередач.

Существуют еще солнечные, ветровые, приливные и геотермальные источники электропитания, которые слабо применяются в нашей стране. У них есть ряд недостатков природного характера, и они представляют собой альтернативные виды выработки электроэнергии.

Тепловые и гидравлические

Тепловые электростанции России создают около 70% от всей электроэнергии. Для их функционирования используется мазут, уголь, газ, а в некоторых регионах - торф и сланцы. На теплоэлектроцентралях кроме электрической производится тепловая энергия.

Тепловые электростанции

Одним из основных элементов станции является турбина, которая вращается за счет вырабатываемого пара. Преимуществом ТЭС считается то, что ее оборудование можно разместить практически везде, где есть природные энергоносители. Кроме того, на их работу практически не влияют природные факторы.

Но при этом применяемое топливо не возобновляется, то есть его ресурсы могут закончиться, а само оборудование засоряет окружающую среду. В России тепловые станции не оборудованы эффективными системами для очистки от вредных и токсичных веществ.

Тепловые и гидравлические электростанции

Газовое оборудование считается более экологичным, но идущие к нему трубы также наносят вред природе. Станции, которые находятся в центральном регионе страны работают на природном газе и мазуте, а в восточных районах — на угле. Поэтому их размещение осуществляется ближе к месторождениям природного топлива.

По своей значимости гидравлические станции расположились на втором месте после ТЭС. Их основное отличие — это использование энергии воды, которая относится к возобновляемым ресурсам. Если смотреть по карте России, то можно заметить, что самые мощные ГЭС находятся в Сибири на Енисее и Ангаре. Список крупных электростанций:

  1. Саяно-Шушенская — обладает мощностью 6,4 тыс. мВт.
  2. Красноярская — 6 тыс. мВт.
  3. Братская — 4,5 тыс. мВт.
  4. Усть-Илимская — 3,84 тыс. мВт.

Схема принципа действия установок довольно проста. Падающая вода приводит в движение турбины, которые вращают генераторы, и начинает вырабатываться электроэнергия. Стоимость электричества, производимого ГЭС, считается самой дешевой, и она в 5—6 раз меньше, чем на ТЭС. Кроме того, чтобы управлять гидравлической станцией, требуется меньшее количество сотрудников.

Гидравлические электростанции

Большую разницу составляет время запуска установки. Если для ГЭС этот параметр составляет 3—5 минут, то у ТЭС он будет длиться несколько часов. С другой стороны, гидравлическая установка функционирует на полную мощность только при большом подъеме уровня воды.

Сейчас большое внимание уделяется строительству гидроаккумулирующих станций, которые отличаются от традиционных установок возможностью перемещения одинакового количества воды между нижним и верхним бассейнами. В ночное время, когда есть излишки электроэнергии, вода подается снизу вверх, а в дневное — наоборот.

Атомные и дизельные

По количеству выпускаемой энергии атомные электростанции располагаются на третьем месте. Их доля в энергетике России составляет всего 10%. В Соединенных Штатах это значение равно 20%, а самый высокий показатель во Франции — более 75%.

После катастрофы на АЭС в Чернобыле была сокращена программа по строительству и развитию ядерных электростанций. Наиболее известные объекты в России:

Ленинградский АЭС
  • Ленинградский;
  • Курский;
  • Смоленский;
  • Белоярский и др.

Сейчас наиболее популярны атомные теплоэлектроцентрали, назначение которых — производство электрической энергии и тепла. Станция такого типа функционирует в поселке Билибино на Чукотке. Кроме того, одним из последних направлений считается создание АСТ — атомных станций теплоснабжения, в которых происходит превращение ядерного энергоносителя в тепловую энергию.

Такое оборудование успешно работает в Нижнем Новгороде и Воронеже. При правильной эксплуатации АЭС является самой экологичной установкой, а именно:

Воронежская АЭС
  • несущественные выбросы в атмосферу;
  • кислород практически не поглощается;
  • не создается парниковый эффект.

Если рассматривать принцип работы атомной электростанции, то следует учитывать катастрофические последствия после аварий. Отработанный энергоноситель также требует специального захоронения в ядерных могильниках.

Мобильные дизельные электростанции стали неотъемлемой частью для снабжения электроэнергией отдаленных районов и объектов строительства. Помимо этого, их зачастую используют как аварийные или резервные источники.

Основным элементом оборудования считается генератор, который вращается от двигателя внутреннего сгорания. Стационарные установки могут обладать мощностью до 5 тыс. кВт, а передвижные — не более 1 тыс. кВт.

Одним из их достоинств считаются компактные размеры, поэтому их можно размещать в небольших помещениях. К минусам можно отнести зависимость от наличия топлива, способов его доставки и хранения.

Преимущества и недостатки

Любая электрическая станция обладает как определенными достоинствами, так и некоторыми недостатками. Причины такой ситуации могут зависеть от технологических процессов, человеческого фактора и природных явлений.

Таблица. Плюсы и минусы ТЭС, ГЭС, АЭС.

Геотермальные электростанции
Вид электростанции Достоинства Недостатки
Тепловая 1. Небольшая цена на энергоноситель. 2. Малые капитальные вложения. 3. Не имеют конкретной привязки к какому-нибудь району. 4. Низкая себестоимость электроэнергии. 5. Все оборудование занимает небольшую площадь. 1. Сильное загрязнение окружающей среды. 2. Большие эксплуатационные расходы.
Гидравлическая 1. Отсутствует необходимость добычи и доставки энергоносителя. 2. Не загрязняет близлежащие районы. 3. Управление водяными потоками. 4. Высокая надежность функционирования. 5. Легкое техническое обслуживание и небольшая себестоимость электроэнергии. 6. Возможность дополнительно использовать природные ресурсы. 1. Подтопление плодородных земель. 2. Большая занимаемая площадь.
Атомная 1. Малое количество вредных выбросов. 2. Небольшой объем энергоносителя. 3. Высокая мощность на выходе. 4. Низкие издержки для получения электроэнергии. 1. Вероятность опасного облучения. 2. Выходная мощность не регулируется. 3. Катастрофические последствия при аварии. 4. Высокие капитальные вложения.

Нетрадиционные электростанции (солнечные, геотермальные, приливные, ветровые и др.) в России используются в небольшом количестве.

Несмотря на недостатки, которые в основном связаны с непостоянством природных явлений, высокой стоимостью и малой выходной мощностью, за альтернативными установками - интересное и перспективное будущее.


nauka.club

список, типы и особенности. Геотермальные электростанции в России

Россия с советских времен показывает высокие результаты по выработке электричества на тепловых электростанциях. Электростанции России раскиданы в большинстве крупных городов страны. Рассмотрим самые мощные по выработке энергии и их отличительные особенности. Отметим, что большая часть сооружений была возведена еще в 60-80-е годы прошлого века, но с тех времен введены в эксплуатацию и новые конструкции.

Саяно-Шушенская ГЭС

электростанции России

Эта электростанция занимает 7 место среди действующих сооружений в мире по установленной мощности. Саяно-Шушенская ГЭС, расположенная на Енисее, является самой высокой плотиной в России и одной из самых высоких в мире. Ее максимальная пропускная способность составляет 13090 м3/с. В станционной части этой электростанции России находится 21 секция, машинный зал включает в себя 10 гидроагрегатов, а в станционной части – 10 постоянных водоприемников, от которых проложены турбинные водоводы. Плотина Саяно-Шушенской ГЭС способствует поднятию уровня воды в Енисее, за счет чего образуется водохранилище. Проектная мощность станции составляет 6400 МВт.

Красноярская ГЭС

Первые электростанции в России строились в 50-60-е годы прошлого века. Так, Красноярская ГЭС начала возводиться еще в 1955 году, тоже на Енисее. Данная станция называется сердцем энергосистемы Сибири, так как является одним из ведущих поставщиков электроэнергии в этом регионе. На сегодня Красноярская ГЭС входит в десятку крупных станций мира, в штате которой работают больше 550 человек. Окончательно введена в эксплуатацию она была в далеком 1972 году и с тех пор постоянно совершенствовалась. Данная ГЭС состоит из нескольких объектов:

  • гравитационной бетонной плотины;
  • приплотинном здании ГЭС;
  • установки по приему и распределению энергии;
  • судоподъемника с подъодным каналом.
крупнейшие электростанции России

На возведение второй по мощности электростанции России потребовалось почти 6 млн м3 бетона. Станция отличается максимальной пропускной способностью в 14000 м3/сек, а мощность ГЭС составляет 6000 МВт. Плотиной образуется Красноярское водохранилище площадью 2000 км2. Особенность данной электростанции – в единственном в России судоподъемнике, который нужен для пропуска судов. В 1995 году гидроагрегаты ГЭС были изношены на 50%, поэтому было принято решение реконструировать их и модернизировать.

Сургутская ГРЭС

типы электростанций в России

Крупнейшие электростанции России представлены и Сургутской ГРЭС, расположенной в Ханты-Мансийском автономном округе. Станция имеет установленную электрическую мощность в 5597 МВт, работая на попутном нефтяном и природном газе. Ее строительство началось в 80-е годы, когда на территории среднего Приобья наблюдалась нехватка энергопотребления. Согласно первоначальному проекту, всего должно было быть введено 8 энергоблоков, а мощность должна была выделить Сургутскую ГРЭС в число самых мощных тепловых станций.

Братская ГЭС

Крупнейшие электростанции России располагаются на реке Ангаре. Братская ГЭС входит в состав Ангарского каскада ГЭС, являясь лидером по производству электроэнергии во всей Евразии. Решение о возведении станции было принято в 1954 году, а запуск в эксплуатацию состоялся в 1967 году. Уникальные объемы и стабильные водные ресурсы Байкала и Братского водохранилища сказались в том, что данная ГЭС стала играть важную роль для экономического развития страны.

список электростанций России

На сегодняшний день Братская ГЭС состоит из 18 агрегатов, а производимая здесь энергия широко используется в различных производствах. Станция состоит из нескольких цехов, за которыми постоянно наблюдает персонал в 300 человек. Так как по Ангаре нет сквозного судоходства, то и гидроузел не имеет судопропускных сооружений. Установленная мощность Братской гидроэлектростанции – 4500 МВт.

Балаковская АЭС

первые электростанции в России

В список электростанций России, которые производят самые большие объемы электроэнергии, мы включили и Балаковскую АЭС, которая является лидером в атомной энергетике страны. Благодаря постоянному совершенствованию оборудования были достигнуты высокие показатели. Эффективность способов увеличения выработки энергии была повышена за счет улучшения конструкции ядерного топлива. На данной станции используются реакторы с двухконтурными энергоблоками.

Курская АЭС

электростанции России

Энергетика является основой экономики и в Курском регионе. Расположенные здесь электростанции России входят в число первых пяти станций, которые вырабатывают большие мощности. Именно электроэнергия данной станции обеспечивает большую часть производств в области. Курская АЭС представляет собой станцию одноконтурного типа, когда теплоносителей выступает обычная очищенная вода, циркулирующая по замкнутому контуру.

Ленинградская АЭС

Ленинградская атомная станция является первой в стране, которая имеет реакторы типа РБМК-1000. Состоит ЛАЭС из четырех энергоблоков, причем основная производимая энергия ухода на общее потребление. Данная станция является крупнейшим производителем энергии в северо-западном регионе России.

Геотермальные источники во благо страны

Существуют различные типы электростанций в России. Так, геотермальная энергетика считается самой перспективной в современном истории, в том числе и в нашей стране. Специалисты сходятся во мнении, что объемов энергии тепла Земли гораздо больше объемов энергии всех мировых запасов нефти и газа. Геотермальные станции целесообразно возводить там, где есть вулканические районы. Вследствие стыка вулканической лавы с водными ресурсами вода интенсивно нагревается, горячая вода выбивается на поверхность в виде гейзеров.

геотермальные электростанции в России

Такие природные свойства позволяют возводить современные геотермальные электростанции в России. Их в нашей стране немало:

  1. Паужетская ГеоЭС. Данная станция была возведена в 1966 году вблизи вулкана Камбальный из-за необходимости обеспечения жилых поселков и производств поблизости электроэнергией. Установленной мощностью на момент запуска была всего 5 МВт, затем мощности были увеличены до 12 МВт.
  2. Верхне-Мутновская опытно-промышленная ГеоЭС располагается на Камчатке и была запущена в 1999 году. Она состоит из трех энергоблоков по 4 МВт мощностью. Строительство велось рядом с вулканом Мутновский.
  3. Океанская ГеоЭС. Эта станция была возведена на Курильской гряде в 2006 году.
  4. Менделе́евская ГеоТЭС. Данная станция возводилась для того, чтобы обеспечить теплоснабжением и электроснабжение город Южно-Курильск.

Как видим, геотермальные электростанции в России до сих пор действуют. Причем ведутся активные работы по модернизации существующих сооружений, что позволит обеспечить районы и предприятия, расположенные вблизи вулканических пород, нужным объемом энергии.

Вслед за прогрессом

Отметим, что развитие энергетики не стоит на месте. Так, стало известно, что в России, в частности, на территории Самарской области, будет возводиться солнечная электростанция. Эксперты говорят, что этот проект станет значимым явлением не только для Самарского региона, но и для всей страны в целом. Планируется строительство солнечных станций еще на территории Ставрополя и Волгограда. Что касается уже существующих сооружений, при должном внимании и своевременной модернизации они смогут обеспечить нужным количеством энергии даже удаленные районы России.

fb.ru

Тепловые электростанции: виды и принцип работы

Содержание:

  1. Разновидности тепловых электростанций
  2. Принцип работы тепловой электростанции
  3. ТЭС на угле
  4. Газовые ТЭС
  5. Другие виды топлива для ТЭС
  6. КПД тепловой электростанции
  7. Самые мощные ТЭС
  8. Видео

Превращение природных энергетических ресурсов в электричество осуществляется с помощью специальных установок, функционирующих на различных принципах. Среди них наиболее широкое распространение получили тепловые электростанции, применяющие для работы жидкое, твердое и газообразное органическое топливо. Они вырабатывают более 70% всей мировой электроэнергии и располагаются поблизости от месторождений природных ресурсов. Многие ТЭС производят не только электричество, но и тепловую энергию.


Виды тепловых электростанций

Стандартная тепловая электростанция представляет собой целый комплекс, включающий в себя различные устройства и оборудование, преобразующие топливную энергию в электричество и тепло.

Подобные установки отличаются параметрами и техническими характеристиками, по которым и выполняется их классификация:

  • В соответствии с видами и назначением поставляемой электроэнергии, тепловые станции могут быть районными и промышленными. Районные установки известны как ГРЭС или КЭС и предназначены для обслуживания всех потребителей региона. Электростанции, вырабатывающие тепло, называются ТЭЦ. Мощность районных станций превышает 1 млн. кВт. Промышленные электростанции предназначены для электро- и теплоснабжения конкретных предприятий и производственных комплексов. Их мощность значительно меньше, чем у ГРЭС и устанавливается в соответствии с потребностями того или иного объекта.
  • Все типы тепловых электростанций работают на различных источниках энергии. Прежде всего, это обычные органические ресурсы, используемые большинством ТЭС и продукты нефтепереработки. Наибольшее распространение получили уголь, природный газ, мазут. Наиболее прогрессивные установки работают на ядерном топливе и называются атомными электростанциями – АЭС.
  • Силовые установки, преобразующие энергию тепла в электричество, бывают паротурбинными, газотурбинными и смешанной парогазовой конструкции.
  • Технологическая схема паропроводов ТЭС может быть разной. В блочных конструкциях тепловые электрические станции используют одинаковые энергетические установки или энергоблоки. В них пар от котла подается лишь к собственной турбине и после конденсации он вновь возвращается в свой котел. По данной схеме построено большинство ГРЭС (КЭС) и ТЭЦ. Другой вариант предполагает использование поперечных связей, когда пар от котлов подается к общему коллектору – паропроводу, обеспечивающему работу всей паровых турбин станции.
  • По параметрам начального давления ТЭС могут быть с критическим и сверхкритическим давлением. В первом случае российские стандарты для ТЭС-ТЭЦ составляют 8,8-12,8 Мпа или 90-130 атмосфер. Второй вариант имеет более высокие параметры, составляющие 23,5 Мпа или 240 атмосфер. В таких конструкциях используется промежуточный перегрев и блочная схема.

Принцип работы тепловой электростанции

Основной принцип работы тепловой электростанции заключается в производстве тепловой энергии из органического топлива, которая в дальнейшем используется для выработки электрического тока.

Понятия ТЭС и ТЭЦ существенно различаются между собой. Первые установки относятся к так называемым чистым электростанциям, вырабатывающим только электрический ток. Каждая из них известна еще и как конденсационная электростанция – КЭС. ТЭЦ расшифровывается как теплоэлектроцентраль и является разновидностью ТЭС. Данные установки не только генерируют электричество, но и являются тепловыми, то есть дают тепло в системы отопления и горячего водоснабжения. Такое комбинированное использование требует специальных паровых турбин с противодавлением или системой промежуточного отбора пара.

Несмотря на разнообразие конструкций, работа всех ТЭС осуществляется по общей схеме. В котел постоянно подается топливо в виде угля, газа, торфа, мазута или горючих сланцев. На многих электростанциях используется заранее приготовленная угольная пыль. Вместе с топливом поступает воздух в подогретом виде, выполняющий функцию окислителя.

В процессе горения топлива создается тепло, нагревающее воду в паровом котле. Происходит образование насыщенного пара, подаваемого в паровую турбину через паропровод. Далее тепловая энергия становится механической.

Вал и остальные движущиеся части турбины связаны между собой и представляют единое целое. Струя пара под высоким давлением и при высокой температуре выходит из сопел и воздействует на лопатки турбины. Закрепленные на диске, они начинают вращаться и приводят в движение вал, соединенный с генератором. В результате вращения происходит преобразование механической энергии в электрический ток.

Пройдя через паровую турбину, пар снижает свою температуру и давление. Далее он попадает в конденсатор и прокачивается по трубкам, охлаждаемым водой. Здесь пар окончательно превращается в воду и поступает в деаэратор для очистки от растворенных газов. Очищенная вода с помощью насоса подается в котельную установку через подогреватель.


ТЭС на угле

Уголь уже давно стал одним из основных источников энергии в повседневной жизни и производственной деятельности людей. Широкое распространение данного вида топлива стало возможным благодаря его доступности. Во многих месторождениях он расположен в нескольких метрах от поверхности земли и может добываться более дешевым открытым способом. Кроме того, уголь не требует каких-то особых условий хранения и складируется в обычные кучи неподалеку от объекта.

Промышленное использование угля началось в конце 18-го века. В дальнейшем, когда появился железнодорожный транспорт, уголь стал источником движущей силы для паровозов. Позднее он стал применяться на первых тепловых электростанциях, построенных в конце 19-го века. Многие ТЭС и в настоящее время работают на угле.

На самых первых электростанциях сжигание угля осуществлялось путем его укладки на колосниковые решетки. Загрузка топлива и удаление шлака выполнялось вручную. Постепенно эти процессы были механизированы и уголь попадал на решетки из верхнего бункера. Решетка приводилась в движение и отработанный шлак ссыпался в специальный приемник.

Современные тепловые электростанции уже давно не пользуются кусковым углем. Вместо него в котлы загружается угольная пыль, получаемая в дробилках или мельницах. Подача топлива к горелкам производится сжатым воздухом. Попадая в топку, угольная пыль вперемешку с воздухом начинает гореть, выделяя большое количество тепла.


Газовые ТЭС

Вторым после угля по своей значимости является природный газ, используемый многими ТЭС. Данный вид топлива обладает несомненными преимуществами. Вредные выбросы, отравляющие атмосферу, значительно ниже, чем при сжигании угля. После сжигания не остается побочных продуктов в виде шлака или золы.

Эксплуатация ТЭС на газе становится значительно проще, поскольку в этом случае не требуется приготовление угольной пыли. Газу не требуется какая-либо специальная подготовка, и он сразу готов к использованию. Газовые тепловые электростанции считаются более маневренными, что немаловажно в ситуациях с изменяющимися нагрузками.

Эффективность и коэффициент полезного действия газовых ТЭС значительно увеличились при переходе в рабочий режим с циклом парогазовых установок. Сжигание топлива производится не в котле, а в газовой турбине. Такие установки предназначены только для газа и не могут работать на угольной пыли.


Другие виды топлива для ТЭС

Помимо традиционных видов топлива тепловые электростанции применяют в своей работе и другие источники энергии. Одним из таких энергоресурсов является мазут, который использовался на многих электростанциях во второй половине 20-го века.

В современных условиях цена продуктов нефтепереработки существенно увеличилась, поэтому мазут перестал быть основным топливом. Его частично используют угольные электростанции для растопки. Эксплуатационные качества мазута аналогичны с природным газом, однако при его сжигании в большом количестве выделяется оксид серы, загрязняющий окружающую среду.

В 20-м веке некоторые ТЭС работали на торфе. В настоящее время этот ресурс практически не используется из-за низкой эффективности по сравнению с газом и углем. Установки на дизельном топливе применяются на небольших объектах, где не требуются значительные объемы электроэнергии. В основном, они предназначены для удаленных районов, расположенных на значительном расстоянии от сетей централизованного электроснабжения.


КПД тепловой электростанции

Основным показателем любой тепловой электростанции является ее коэффициент полезного действия. Например, для угольных ТЭС существует термический КПД, определяемый количеством угля, необходимого для выработки 1 кВт*ч электроэнергии. Если в начале 20-х годов прошлого века этот показатель составлял 15,4 кг, то в 60-е годы он снизился до 3,95 кг. В дальнейшем расход угля вновь незначительно поднялся до 4,6 кг.

Причиной такого подъема стали газоочистители, уловители пыли и золы, из-за которых угольная электростанция снизила выходную мощность на 10%. Многие станции пользуются более чистым в экологическом плане углем, что также привело к увеличению потребления топлива.

Процентное выражение термического КПД тепловой электростанции составляет не более 36%, что связано с высокими тепловыми потерями, вызываемыми отходящими газами при горении. У атомных электростанций, отличающимися низкими температурами и давлением термический КПД еще ниже – 32%. Самый высокий показатель у газотурбинных установок, оборудованных котлами-утилизаторами и дополнительными паровыми турбинами. КПД электростанций с таким оборудованием превышает 40%. Этот показатель полностью зависит от величины рабочих температур и давления пара.

Современные паротурбинные электростанции используют промежуточный перегрев пара. После того как он частично отработает в турбине, происходит его отбор в промежуточной точке для последующего повторного нагрева до первоначальной температуры. Система промежуточного перегрева может состоять из двух ступеней и более, что способствует значительному увеличению термического КПД.


Самые мощные ТЭС

В настоящее время лидером тепловой энергетики по праву считается тепловая электростанция Туокетуо, находящаяся в Китае в провинции Внутренняя Монголия. До недавних пор она являлась лишь третьей в мире, уступая по мощности ТЭС, расположенным в Тайчжуне и Сургуте. В результате проведенной реконструкции в 2017 году добавились два энергоблока по 660 Мвт каждый, после чего общая мощность станции достигла 6720 мегаватт. После этого Сургутская ГРЭС стала занимать 3-е место в мире и 1-е – в России.

В российской Энергосистеме доля тепловых электростанций составляет около 70%, а общее количество в натуральных цифрах – 358 единиц. Самые крупные ТЭС расположены возле крупных месторождений полезных ископаемых, используемых в качестве топлива. Установки, применяющие мазут, привязаны к крупным нефтеперерабатывающим предприятиям.

Крупнейшей российской ТЭС является Сургутская, производительность которой составляет 5600 МВт. На карте географическое положение объекта определяется на примерно одинаковом расстоянии от Нефтеюганска и Ханты-Мансийска.

Строительство объекта началось в 1979 году, а в 1985 году был введен в эксплуатацию 1-й энергоблок. Далее за 3 года в строй вступили все оставшиеся энергоблоки, производительностью 800 МВт. Работа станции осуществляется на попутном газе, образованном в местах разрабатываемых газовых месторождений. Такой газ должен утилизироваться, однако он превратился в энергетический ресурс. К настоящему времени построены еще 2 энергоблока по 400 МВт, что позволило вывести станцию на проектную мощность.

Следует отметить еще одну крупную российскую ГРЭС – Рефтинскую. Она работает на каменном угле, а производительность составляет 3800 мегаватт. Объект расположен примерно в 100 км от Екатеринбурга. Строительство велось с 1963 по 1980 годы, в течение всего периода энергоблоки вводились в строй поэтапно.


electric-220.ru

Электростанции бывают различных типов

В современном мире для выработки большого количества энергии используются электростанции. Область эксплуатации электрических станций достаточно широкая, в частности, они могут применяться для снабжения энергий удаленных зданий и сооружений во множестве отраслей промышленности.

Типы электростанций

Электростанции бывают различных типов, наиболее распространенными из которых являются:

  • Тепловые
  • Гидравлические
  • Атомные

Тепловые станции, осуществляющие выработку энергии, отличаются быстротой возведения и дешевизной, по сравнению с иными разновидностями. Данный тип электростанции способен функционировать надлежащим образом без сезонных колебаний. Несмотря на неоспоримые достоинства, различные типы электростанций имеют несколько собственных недостатков. К примеру, ТЭС работают на невозобновимых ресурсах, создают отходы и режим их работы изменяется медленно, поскольку для разогрева котельной установки требуется несколько суток.

Гидравлические электростанции более экономичны и просты в управлении. Для обслуживания данных станций не требуется многочисленного персонала. Помимо всего прочего, ГЭС обладают продолжительным сроком полезного использования, превышающим 100 лет, а также маневренностью при изменении нагрузки. Невысокая себестоимость производимой энергии является одной из причин большого распространения гидравлических станций на сегодняшний день. Проблема гидроэлектростанций состоит в том, что на их возведение уходит от 15 до 20 лет и процесс строительства осложняется затопление больших площадей плодородных земель. В отдельных случаях могут возникнуть дополнительные проблемы с выбором места для возведения объекта.

Электростанции бывают различных типовАтомные станции функционируют на ядерном топливе и чаще всего размещаются в тех местах, где требуется электрическая энергия, но отсутствуют прочие источники сырья. Около 25 тонн топлива позволяют станции работать на протяжении нескольких лет. Действие АЭС не становится причиной увеличения парникового эффекта, а процесс выработки энергии осуществляется без загрязнения окружающей среды.

Основы функционирования электростанций

Вне зависимости от того, какие бывают электростанции, они по большей части используют энергию вращения вала генератора. Назначение генератора заключается в том, что он:

  1. Должен обеспечивать продолжительную стабильную параллельную работу с энергосистемами различной мощности, а также функционирование на автономную нагрузку
  2. Претерпевает моментальный сброс и наброс нагрузки, сопоставимой с его номинальной мощностью
  3. Выполняет защитную функцию благодаря наличию специальных устройств
  4. Запускает двигатель, обеспечивающий функционирование станции

Электростанции являются наиболее оптимальным способом выработки энергии по ряду факторов. На сегодняшний день не существует аналогичных методов, которые смогут обеспечить производство электроэнергии в настолько больших масштабах.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru

Какие бывают виды электростанций

Электрическая энергия, которую активно стали использовать, по историческим меркам, не так давно, существенным образом изменила жизнь всего человечества. В настоящее время разные виды электростанций вырабатывают огромное количество энергии. Конечно, для более точного представления можно было найти конкретные числовые значения. Но для качественного анализа это не так важно. Важно отметить тот факт, что электрическая энергия используется во всех сферах человеческой жизни и деятельности. Современному человеку даже трудно себе представить, как можно было обходиться без электричества еще каких-то сто лет тому назад.

Виды электростанцийВысокая потребность в электрической энергии требует и соответствующих генерирующих мощностей. Для выработки электричества, как иногда выражаются люди в обиходе, используются тепловые, гидравлические, атомные и другие виды электростанций. Как не трудно заметить, конкретный вид генерации определяется тем видом энергии, который требуется для выработки электрического тока. На гидроэлектростанциях энергия падающего с высоты водного потока превращается в электрический ток. Точно так же электростанции на газу превращают в электричество тепловую энергию сгорающего газа.

Всем известно, что в природе действует закон сохранения энергии. Все перечисленные виды электростанций по своей сути превращают один вид энергии в другой. В атомных реакторах происходит цепная реакция распада определенных элементов с выделением тепла. Это тепло с помощью определенных механизмов превращается в электричество. Точно по такому же принципу действуют и тепловые электростанции. Только в этом случае источником тепла служит органическое топливо – уголь, мазут, газ, торф и другие вещества. Практика последних десятилетий показала, что такой способ выработки электроэнергии весьма затратен наносит существенный ущерб окружающей среде.

Электростанции на газуПроблема заключается в том, что запасы органического топлива на планете ограничены. Расходовать их следует экономно. Передовые умы человечества давно поняли это и ведут активный поиск выхода из создавшегося положения. Одним из возможных вариантов выхода считаются альтернативные электростанции, которые работают на других принципах. В частности для выработки энергии используется солнечный свет и ветер. Солнце будет светить всегда и ветер дуть никогда не устанет. Как выражаются специалисты, это неиссякаемые или возобновляемые источники энергии, которые нужно рационально использовать.Альтернативные электростанцииСовсем недавно перечень, в который входят виды электростанций, был коротким. Всего три позиции – тепловые, гидравлические и атомные. В настоящее несколько известных в мире компаний ведут серьезные исследования и опытно-конструкторские разработки в области применения солнечной энергии. В результате их деятельности на рынке появились преобразователи солнечного света в электричество. Следует отметить, что КПД их еще оставляет желать лучшего, но эта проблема рано или поздно будет решена. Точно так же обстоят дела с утилизацией энергии ветра. Ветряные генераторы получают все большее распространение.

fb.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о