Как сделать зарядное устройство из бп компьютера: Зарядное устройство из блока питания компьютера

Содержание

Как сделать зарядное устройство из компьютерного БП АТХ

Хотим представить зарядное устройство с током зарядки до 40 А. Прибор был создан с использованием блока питания ATX от компьютера, с небольшой переделкой схемы. Такой ток и напряжение прекрасно подойдут для заряда автомобильных батарей или как выпрямитель стартера.

Схема принципиальная зарядки 12В 40А

Схема на зарядное устройство из компьютерного БП АТХ 40 ампер

ЗУ оснащено модулем контроля и регулировки тока и измерения напряжения. Индикатор светодиодный цифровой (можете купить готовый с Алиэкспресс). Один переключаемый режим (зеленый светодиод) — это измерение напряжения, второй (красный светодиод) — это измерение тока. Хотя если будете собирать конструкцию — ставьте сразу два.

  • Диапазон регулировки тока 1.9 до 42 А, напряжение зарядки выставлено на 15 В.

Это устройство состоит из двух преобразователей: главного и вспомогательного, в котором есть 15 В для питания контроллера и вентиляторов, а также 5 В для питания измерительного прибора. Преобразователь резервный (stand-by) как в блоке питания ATX.

Моточные данные трансформаторов

Силовой преобразователь на базе контроллера TL494 (KA7500). Трансформатор на ферритовом сердечнике ERL35, первичная обмотка 45 витков намотана двумя проводами 0.6 мм в три слоя, а вторичная обмотка — 12 витков медной лентой 0.25 x 8 мм в два слоя. Одна половина вторичной обмотки расположена между первым и вторым слоем первичной обмотки, а вторая половина между вторым и третьим.

Силовые транзисторы применены IRF740. Каждый из транзисторов имеет отдельный трансформатор управления, выполненный на ферритовом сердечнике EE16, эти трансформаторы имеют коэффициент 1:1 и намотаны проволокой 0.25 мм по 40 витков каждая обмотка.

Выпрямитель выходной изготовлен с использованием диодов MBR4060 и двух дросселей. Намотаны дроссели проволокой 0.5 мм по 10 витков каждый.

В системе регулировки тока использовался измерительный резистор 1 миллиом 2 Вт, который также служит в качестве шунта для прибора. Напряжение на измерительном резисторе отрицательно относительно массы, поэтому использовал простой преобразователь, построенный из усилителя измерения, который дает на выходе сигнал напряжения 0-5 В с 1V/10А. Сильнотоковые дорожки усилены проводом медным 2.5 мм2 и залитыми припоем. Выходные кабели сечением 6 мм2 с крокодилами на концах.

Корпус переделанного ЗУ

Корпус естественно не переделывался и остался от родного блока питания ATX, только для лучшего охлаждения поставили рядом второй вентилятор. Плата (как видно по фото) была спаяна с нуля, но можете взять за основу готовую.

Самодельное готовое зарядное устройство из БП ПК

Конечно для стартера авто 40 А — это мало. Примерно 200 А нужно, чтобы, например, дизель заводить. Но если аккумулятор уже слабый, то эти 40 Ампер неплохо его поддержат. Скачать схему в хорошем качестве можно по ссылке.


▶▷▶▷ схема зарядного устройства at блока питания от компьютера

▶▷▶▷ схема зарядного устройства at блока питания от компьютера
ИнтерфейсРусский/Английский
Тип лицензияFree
Кол-во просмотров257
Кол-во загрузок132 раз
Обновление:24-03-2019

схема зарядного устройства at блока питания от компьютера - Yahoo Search Results Yahoo Web Search Sign in Mail Go to Mail" data-nosubject="[No Subject]" data-timestamp='short' Help Account Info Yahoo Home Settings Home News Mail Finance Tumblr Weather Sports Messenger Settings Want more to discover? Make Yahoo Your Home Page See breaking news more every time you open your browser Add it now No Thanks Yahoo Search query Web Images Video News Local Answers Shopping Recipes Sports Finance Dictionary More Anytime Past day Past week Past month Anytime Get beautiful photos on every new browser window Download Зарядное устройство из блока питания компьютера - Diodnik diodnikcom/zaryadnoe-ustrojstvo-iz-bloka-pitaniya Cached Архив » Полезные схемы » Зарядные устройства » Зарядное устройство из блока питания компьютера Зарядное устройство из блока питания компьютера Дата: 29092015 // 0 Комментариев Схемы зарядных устройств для автомобильных АКБ: как сделать tokarguru/stanki-i-oborudovanie/shemy-zaryadnyh Cached Из блока питания от стационарного компьютера Схема зарядного устройства из старого Схема Зарядного Устройства At Блока Питания От Компьютера - Image Results More Схема Зарядного Устройства At Блока Питания От Компьютера images Зарядное устройство из блока питания компьютера с generatorexpertsru/elektrogeneratory/iz-bloka-pitaniya Cached Как сделать зарядное устройство из блока питания компьютера , в чем преимущества данного устройства и специфические характеристики Зарядное устройство из компьютерного блока питания | Поделки 100-советоврф/zaryadnoe-ustrojstvo-iz Cached Делаем так, берём тестер и с помощью его находим пять вольт, которые подходят к 13, 14 и 15 ноге микросхемы и обрезаем дорожку, этим мы отключаем защиту блока питания от повышения напряжения И Зарядное устройство из блока питания ноутбука - Diodnik diodnikcom/zaryadnoe-ustrojstvo-iz-bloka-pitaniya-noutbuka Cached Архив » Полезные схемы » Зарядные устройства » Зарядное устройство из блока питания ноутбука Зарядное устройство из блока питания ноутбука Как сделать зарядное устройство для автомобильного autodvigcom/diagnostics/zaryadka-dlya Cached Рассмотрим процесс изготовления и сборки зарядного девайса на примере блока питания от ноутбука Great Wall: Сначала следует разобрать корпус блока питания Зарядное устройство из компьютерного блока питания - YouTube wwwyoutubecom/watch?v=NlTkOg-QVgo Cached Зарядка аккумулятора автомобиля без зарядного устройства Блока Питания от неправильного подключения Зарядное устройство для АКБ из блока питания — полезный и avtozamcom › Электроника › АКБ Чтобы контролировать силу тока зарядки, в корпус зарядного устройства можно еще вмонтировать амперметр Его нужно подключать параллельно к цепи блока питания Как сделать зарядное устройство из компьютерного блока 100-советоврф/kak-sdelat-zaryadnoe Cached Схема по которой мы будем переделывать довольно популярная, она более известная, как « схема от итальянца», актуально для блоков питания формата «at» на базе TL494 Самодельное зарядное устройство для автомобильного autotopikru › Советы автолюбителям Важно, чтобы блок питания был полностью исправен Не плохо себя показала модель st-230whf из старых ПК Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать Promotional Results For You Free Download | Mozilla Firefox ® Web Browser wwwmozillaorg Download Firefox - the faster, smarter, easier way to browse the web and all of Yahoo 1 2 3 4 5 Next 19,600 results Settings Help Suggestions Privacy (Updated) Terms (Updated) Advertise About ads About this page Powered by Bing™

  • Зарядный ток выставляется в зависимости от ёмкости аккумулятора, по нормальному не боле 10% от неё.
  • Зарядное устройство для автомобильного аккумулятора из блока питания компьютера. Зарядное устройство для NiMh/NiCd аккумуляторов на LM393. ...подключения к компьютеру — USB и последовательный ( COM )
  • для NiMh/NiCd аккумуляторов на LM393. ...подключения к компьютеру — USB и последовательный ( COM ) порт, при этом производителем ИБП поставляется фирменное программное обеспечение , которое позволяет, проанализировав ситуацию, определить время работы и дать оператору возможность безопасно выключить компьютер... Аксессуары для компьютеров и ноутбуков. Автомобильные зарядные устройства. Схема проезда в интернет магазин: Яндекс Карты. Системные блоки. Адаптеры и кабели питания. Как видите, внешне отличить это зарядное устройство от предыдущего нельзя. Элементы схемы занимают практически все свободное пространство внутри корпуса зарядного устройства. Схема зарядного устройства для GP300 Игорь (RA0FMF) Схема защиты от перенапряжения для регулируемого блока питания Коломоец Е.В. (RA0SDS). Источник питания 13,5В/15А из АТ блока питания компьютера. Все ноутбуки и компьютеры. Главная Телефоны и связь Аксессуары Сетевые зарядные устройства Сетевые зарядные устройства Rock. Системные блоки. Блоки питания. Крупнейший производитель программного обеспечения для вычислительной техники — персональных компьютеров, игровых приставок, КПК, мобильных телефонов и прочего. Разработчик наиболее широко распространённой на данный момент в мире программной платформы - семейства операционных систем Windows. Интернет-магазин ноутбуков, настольных компьютеров, плееров, аксессуаров, ПО. Сведения об услугах компании. Адреса магазинов. Данные зарядные устройства сертифицированы компанией Apple — то есть, проверены на полное соответствие строгим внутренним стандартам Apple. Дополнительный плюс — использование порта USB, позволяющего ускорить передачу данных на компьютер и значительно сократить время зарядки. Кроме того, показан образец зарядного устройства в виде автомобильного держателя для бутылки или подстаканника. Зарядные устройства для аккумуляторов (AA/AAA/C/D) Главная страница Компьютеры Системы энергопитания Адаптеры, блоки питания, зарядные уст-ва Acmepower.

ПО. Сведения об услугах компании. Адреса магазинов. Данные зарядные устройства сертифицированы компанией Apple — то есть

которое позволяет

  • чтобы блок питания был полностью исправен Не плохо себя показала модель st-230whf из старых ПК Фрагмент схемы такого зарядного устройства представлена ниже
  • она более известная
  • которые подходят к 13

Зарядный ток выставляется в зависимости от ёмкости аккумулятора, по нормальному не боле 10% от неё. Зарядное устройство для автомобильного аккумулятора из блока питания компьютера. Зарядное устройство для NiMh/NiCd аккумуляторов на LM393. ...подключения к компьютеру — USB и последовательный ( COM ) порт, при этом производителем ИБП поставляется фирменное программное обеспечение , которое позволяет, проанализировав ситуацию, определить время работы и дать оператору возможность безопасно выключить компьютер... Аксессуары для компьютеров и ноутбуков. Автомобильные зарядные устройства. Схема проезда в интернет магазин: Яндекс Карты. Системные блоки. Адаптеры и кабели питания. Как видите, внешне отличить это зарядное устройство от предыдущего нельзя. Элементы схемы занимают практически все свободное пространство внутри корпуса зарядного устройства. Схема зарядного устройства для GP300 Игорь (RA0FMF) Схема защиты от перенапряжения для регулируемого блока питания Коломоец Е.В. (RA0SDS). Источник питания 13,5В/15А из АТ блока питания компьютера. Все ноутбуки и компьютеры. Главная Телефоны и связь Аксессуары Сетевые зарядные устройства Сетевые зарядные устройства Rock. Системные блоки. Блоки питания. Крупнейший производитель программного обеспечения для вычислительной техники — персональных компьютеров, игровых приставок, КПК, мобильных телефонов и прочего. Разработчик наиболее широко распространённой на данный момент в мире программной платформы - семейства операционных систем Windows. Интернет-магазин ноутбуков, настольных компьютеров, плееров, аксессуаров, ПО. Сведения об услугах компании. Адреса магазинов. Данные зарядные устройства сертифицированы компанией Apple — то есть, проверены на полное соответствие строгим внутренним стандартам Apple. Дополнительный плюс — использование порта USB, позволяющего ускорить передачу данных на компьютер и значительно сократить время зарядки. Кроме того, показан образец зарядного устройства в виде автомобильного держателя для бутылки или подстаканника. Зарядные устройства для аккумуляторов (AA/AAA/C/D) Главная страница Компьютеры Системы энергопитания Адаптеры, блоки питания, зарядные уст-ва Acmepower.

Как сделать зарядное устройство для 12В свинцово-кислотных аккумуляторов из компьютерного БП ATX.

Как сделать зарядное устройство для 12В свинцово-кислотных аккумуляторов из компьютерного БП ATX.

 

Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?

Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.

 

 

Итак: начали.

Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!

Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.

 

По пунктам:

 

  1. Перерезать дорожку идущую от канала 5В к 2-й ноге м/с и её обвязке и соединить её с +5VSB.

  2. выпаять всю обвязку 1-й и 3-й ноги м/с.
  3. выпаять детали через которые 4-я нога была связана с -5В и -12В, остальные трогать НЕ НАДО.
  4. выпаять детали делителя на 16-й ноге (все резисторы которые к ней подходят)
  5. Если будете оставлять канал 5В (зачем может пригодиться скажу далее), замените нагрузочный резистор на выходе этого канала с 10Ом на 15Ом аналогичного размера (мощности). Ибо после переделки там будет уже 6В и ему станет слишком жарко J
  6. Теперь можно демонтировать все детали каналов 3,3В -5В и -12В, а также и 5В если вы его решите не оставлять.
  7. Также выпаять все провода выходящие из БП кроме 3-х черных и 3-х желтых.

 

Стадия разрушения на этом окончена, пора переходить к созиданию.

 

  1. Согласно схеме на Рис.1 смонтировать делитель для 1-й и 3-й ноги м/с из резисторов R1, R3 и R2. Я это сделал в свободных дырках оставшихся от удаленных деталей. Теперь защита будет «довольна» и не будет нам мешать. Вот так это выглядело на этом этапе:

  2. Замкнуть 9-ю ногу м/с на землю или сделать это через выключатель если сетевого нет или вам его недостаточно. Это действие обеспечивает запуск БП (а теперь, без 5 минут, зарядного), PS-ON - так сказать.

  3. Далее (на схеме не обозначено), но очень рекомендую нагрузить канал 12В хотя бы на 0,5А. Чем угодно – лампочкой, резисторами или и тем и другим одновременно. Это нужно для адекватной работы БП на холостом ходу (хотя слабенькие БП, типа этого, могут обойтись штатным нагрузочным резистором).
  4. Теперь восстанавливаем делитель на 16-й ноге (R4, R6 и R12 по схеме).
  5. Включаем БП (лучше через лампочку на 60-100Вт вместо предохранителя) и меряем напряжение в бывшем 12В канале. Если необходимо подбираем резистор R12 до получения 14,35-14,4В (ну или ещё большего если вам покажется мало, хотя я считаю именно это значение наиболее правильным). Кроме того, можно установить регулятор. Делается это так: сначала подбором R6 добиваемся 13,5-14В на выходе, затем последовательно с ним ставим переменный резистор на 10кОм. Он обеспечит вам регулировку выходного напряжения от 13,5-14 до 14,9-15,4В. Этого диапазона должно хватить для аккумулятора в любом состоянии.

 

По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.

VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.

Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.

А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там - около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.

Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:

 

В итоге, что мы имеем?

 

Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.

Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:

 

 

Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).

Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:

 

План действий:

  1. Выпаиваем всё, что обведено или зачеркнуто на схеме Рис.3 розовым, и все провода. Должно получиться примерно так:

  2. Резистор R42 (по схеме, у вас может оказаться другим номером, так что будьте внимательны) заменяем на 10-11кОм. Включаем БП (желательно через лампу на 60-100Вт, на всякий случай) и меряем напряжение на выходе. Обратите внимание: БП должен запуститься сам, замыкать 4-ю ногу ШИМ на землю НЕ НАДО. Если вы это сделаете, то отключите защиту по току и при КЗ на выходе сможете наблюдать вылет силовых транзисторов и других элементов блока питания. Если напряжение не 14,35-14,45В, то подбором резисторов R44, R45 добиваетесь чтоб оно было в указанном диапазоне. Если этого недостаточно можно не сильно изменить и R42.

    В принципе на этом можете и закончить. Нет? Ааа…, вам нужно ограничение максимального зарядного тока как в варианте 1? Тогда продолжим.

    Изображен только фрагмен изменений в обвязке ШИМ. Это не значит что всё остальное вокруг него надо выпаять.
  3. В ШИМ TL494 имеется два встроенных усилителя ошибки, в данной схеме один из них не использовался, его мы и задействуем для ограничения максимального зарядного тока. Отключаем 15-ю ногу ШИМ от 13-й и 14-й, а16-ю ногу от земли. Можете дорожки перерезать, можете просто их отдельно выпаять, как вам нравится короче. Затем монтируем цепь из R5, C1, R7, R8, R9, R6 по схеме на Рис.4. При указанных номиналах БП больше 5А давать отказывается. При достижении порога, как и в первом случае, начинает падать выходное напряжение. Правда, есть и отличия, в данном варианте падение будет гораздо более резким. Фактически больше заданного тока, он не даст ни при каких обстоятельствах, напряжение упадет хоть до 0 (ну или почти). В то время, как в первом варианте, при достижении заданного порога напряжение снижается более плавно и не станет менее 2,5-3В даже если управляющий транзистор КТ361 откроется совсем. Но, вернемся к данной схеме. В режиме ограничения максимального тока возможно появление сверчков, убиваются подбором R5 и С1. Роль шунта (резистор R6 на схеме) на 0,005Ом у меня выполнял кусок медной проволоки длиной 2,5см, из телефонного кабеля. Изменение порога ограничения максимального тока достигается изменением номинала резистора R9 или R6. И предвосхищая вопрос: «зачем нужен R7?». Отвечу: «Не помню» J, очевидно что при разработке различных вариантов во время проектирования он был нужен в каком то из них. Но потом схема изменилась и теперь он, судя по всему, не играет никакой роли и вместо него можно ставить перемычку. Вот результат работы, испытание заряда реального аккумулятора от UPS, 12В 7А/ч.  

       Напряжение 14,4В ток 0,44А. Пусть вас цифры тока не удивляют, он разряжен был не сильно.
  4. Вентилятор, как и в предыдущем случае, к бывшему каналу 5В. На провода крокодилы, землю платы заизолировать от корпуса. Защита от переполюсовки - аналогична. От КЗ щупов прекрасно защищает оставшаяся нетронутой штатная защита. Проверено неоднократно.

 

Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.

Вот плата в полном сборе:

Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.

 

Итак: наша следующая «жертва» - БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит - с него мы возьмем больше, например 10А.

Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.

Повторим в точности пункты 1 и 2 из второго варианта.

Канал 5В, в данном случае, я демонтировал полностью.

Далее собираем схему по Рис.5.

Чтобы не пугать вентилятор напряжением в 14,4В - собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.

С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь - иное.

Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо.

Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.

Вот этот вариант в готовом виде:

 

Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.

 

Вот готовая продукция:

 

Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?

 

Тогда позвольте представить:

 

За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).

Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.

Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:

А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.

То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.

 

Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.

  • Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
  • Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
  • Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
  • Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
  • Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
  • При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).

Теперь, кто за что отвечает:

  • R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
  • R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
  • R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
  • R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
  • VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
  • Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
  • И наконец, самое важное - компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
  • Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
  • Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.

Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.

Вот фото устройства в собранном виде без корпуса и в корпусе:

Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.

 

 

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.

Вот он, собственной персоной:

Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но…  для нас - несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.

В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:

 

Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:

 

А это внутренности блока в сборе и внешний вид:

 

Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.

В целом это немного упрощённый вариант 4. Разница заключается в следующем:

  • В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
  • Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
  • Регулировка оборотов вентилятора тоже была упрощена.

А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они - мерцают. В остальном - всё нормально.

Индикация выглядит так:

 

На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.

Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.

Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.

Да, чуть не забыл. Резистор R30 устанавливать именно так - совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.

 

Как видите, при правильном подходе, почти любой БП АТХ можно переделать в то, что вам нужно. Если будут новые модели БП и нужда в зарядках, то возможно будет и продолжение.

Кота от всего сердца поздравляю с юбиелеем! В его честь, кроме статьи, ещё был заведён новый жилец - очаровательная серая киска Маркиза.

 

Автомобильное зарядное устройство с защитой от КЗ из компьютерного AT блока питания своими руками


После зимы мне понадобилось зарядить автомобильный аккумулятор, т.к. машина стояла и аккумулятор разрядился. Своего зарядного устройства не было, приходилось просить у соседа. Решил сделать зарядное устройство для аккумулятора машины из старого компьютерного AT блока питания своими руками.
При поиске схемы защиты искал такую, которая смогла бы обеспечить надежную защиту как от короткого замыкания на клеммах зарядного устройства, так и от случайной переполюсовки. Мне понравился вариант схемы автора «Радио Кот_Пенсионер». Для переделки был взят AT компьютерный блок питания, мощностью 230 ватт с ШИМ TL494. Красным цветом на схеме выделены мои номиналы деталей.

Для начала, перед тем, как собирать плату защиты, нужно сделать блок питания регулируемым. Для этого, выпаиваем все резисторы с первой ноги ШИМ TL494. Запаиваем один резистор с первой ноги на линию 12 вольт на 22k, и второй – на минусовую линию на 4,7k. Затем, ко 2й ноге ШИМ TL494 подпаиваем резистор на 10k и припаиваем на средний вывод переменного резистора, сопротивлением 4,7k. Один крайний вывод переменного резистора припаиваем к 14й ноге ШИМ TL494, а другой крайний – к минусовой линии. Конденсаторы с линии -12 вольт нужно удалить, а с линии +12 вольт – заменить с большим рабочим напряжением. Еще рекомендую заменить диодную сборку с линии 5 вольт, на линию 12 вольт. Теперь AT блок питания становится регулируемым. Можно проверить это, подключив, не забыв в разрыв сетевого провода вставить лампу накала.

Сборку схемы защиты и стабилизации тока собираем по схеме. Диоды можно использовать любые импульсные. Транзистор T1 можно использовать  STP75NF75, IRF3205, FIR120N06P или любой другой N-канальный, у которого сопротивление Rds равно или меньше 0,01 Ом. Транзистор T2 – любой PNP, у которого Hfe меньше 100, чтобы предотвратить ложные срабатывания от наводок. Хорошо подходят высоковольтные. Можно использовать в качестве транзистора T2 следующие: КТ521А, 2SA1767, 2N6520, MPSA92, BF493S, BF421, BF423 и т.д. Резистором R6 задается минимальный ток, а R4 – максимальный.

В схеме использовал китайский вольтамперметр DSN-VC288, рассчитанный на 10 ампер. Провода, идущие к шунту, советую заменить на более мощные.
Схему зарядного устройства с защитами для аккумуляторов 12 вольт из компьютерного блока питания, печатную плату и STL файлы для печати пластиковых элементов на 3D принтере можно скачать ЗДЕСЬ.

Как переделать аккумуляторный шуруповерт в сетевой в домашних условиях

Шуруповерты с автономным питанием от аккумуляторной батареи с напряжением 12В – очень востребованный инструмент на производственных линиях и на бытовом уровне. Его достоинством считается непривязанность к розеточной сети, работы по сверлению и креплению саморезов проводить очень удобно. Как недостаток можно отметить большую стоимость аккумуляторных батарей и относительно небольшой срок их службы – от 3-5 лет, при интенсивной работе может быть еще меньше. Поэтому многие задумываются, как сделать блок питания для шуруповерта своими руками. При покупке и замене батарей финансовые затраты могут быть от 50 до 80% от первоначальной стоимости нового шуруповерта. Учитывая свои финансовые возможности и потребности, многие потребители ищут более экономичный способ для продолжения эксплуатации старых шуруповертов. Один из таких способов – переделать его схему питания для розеточной сети с напряжением 220В.

Общий вид аккумуляторного шуруповерта

Как переделать аккумуляторный шуруповет в сетевой

Рассмотрим два наиболее доступных способа, как переделать шуруповерт с питанием 12В постоянного тока своими руками быстро и с минимальными финансовыми затратами:

  • Использовать родное зарядное устройство шуруповерта;
  • Использовать блок питания для шуруповерта от системного блока ПК.

Есть и другие способы переделки, но они требуют больше практических навыков и знаний в электротехнике, эти доступны даже дилетантам.

Использование зарядного устройства для шуруповерта

Это самый простой и не требующий финансовых затрат способ, если не считать затрат на электроэнергию и припой при пайке контактов.

Последовательность действий:

  • Откручиваются винты крепления корпуса зарядного устройства, снимается верхняя крышка;
  • К выходным контактам зарядного устройства припаиваются токопроводящие жилы шнура питания. Провода должны быть гибкие, многожильные, сечением не менее 2.5-4 мм2, чтобы выдержать токовые нагрузки в процессе эксплуатации, длина шнура – 3-4 м;

Подключения шнура питания к выходу зарядного устройства

  • Можно припаять провода к выходящим клеммам зарядного устройства, к которым подключаются контакты аккумуляторного блока при установке его на зарядку. Этот способ имеет определенные сложности – клеммы сделаны из латунного сплава, и медные провода обычным припоем к ним не припаиваются;
  • Требуется зачистить место пайки надфилем или наждачной бумагой до появления металла желтоватого цвета;
  • Хорошо прогреть клемму, паяльником на 40-60 Вт, смазать специальной пастой (в магазинах радиодеталей продаются припои для пайки цветных металлов), тогда оловянный припой надежно сцепится с латунью;

Припой для латуни

  • После того, как места пайки будут готовы, к ним можно припаять медные луженые концы проводов, с красной изоляцией на +, с синей или черной – на минус;

Всей этой процедуры можно избежать, если выпаять из платы клеммы и на их место к плате припаять провода. Вывести шнур питания с выхода зарядного устройства можно через отверстия в корпусе, где размещались контакты для зарядки, или проделать дополнительное отверстие, соизмеримое с диаметром шнура питания.

Некоторых смущает третий контакт на выходе зарядного устройства, использовать надо только два: «+12В» и «-12В». Полярности контактов указываются на корпусе или на плате, для надежности можно включить зарядное устройство в розетку и мультиметром проверить наличие на выходе напряжения 12 В постоянного тока и полярность контактов. Оставшийся контакт – для датчика автоматического управления, отключения и подключения зарядки, при достижении полного уровня зарядки аккумулятора датчик отключает зарядное устройство. В нашем случае эта функция не нужна, клемму можно оставить или откусить от платы. Если вы собираетесь данное зарядное устройство еще использовать по прямому назначению, то снимать клеммы не надо, провода припаивайте с нижней стороны платы к токопроводящим дорожкам.

  • После припаивания проводов шнур выводится наружу, и корпус зарядного устройства закрывается. Противоположный конец шнура зачищается, медные проводники лудятся припоем.

Следующий этап работы – это подготовка входных контактов питания на самом шуруповерте:

  • Снимаем аккумуляторный контейнер с ручки шуруповерта;
  • Открываем его и извлекаем гальванические банки аккумулятора;

Удаление гальванических банок с аккумуляторного отсека

  • В корпусе аккумуляторного контейнера просверливаем отверстие для шнура питания;
  • Концы провода, приходящего с выхода зарядного устройства, припаиваем к контактам в аккумуляторном контейнере с внутренней стороны, соблюдая полярности;
  • Клеммы на контейнере тоже из латунного сплава, поэтому при необходимости зачищайте и используйте припой для пайки латуни;
  • Закрепите провод внутри контейнера к стенке корпуса, чтобы он не отрывался при натяжке. Это можно сделать гибкой пластиной из пластика, двумя винтами прикрутив ее к корпусу внутри отсека. Под пластиной проложить шнур питания, таким образом он будет надежно прижат с внутренней стороны;

Важно! Не используйте для крепления провода в зарядном устройстве и на шуруповерте металлические пластины в качестве хомутов или используйте между проводом и пластиной диэлектрическую прокладку (пластиковую, резиновую, картонную или другого изоляционного материала). В противном случае металлическая пластина может передавить шнур и прорезать изоляционный слой, что приведет к короткому замыканию.

  • Аккумуляторный контейнер закрывается и устанавливается в ручку шуруповерта;
  • Зарядное устройство включается в розетку, если все сделано правильно шуруповерт будет функционировать.

Надо отметить, что если полярности перепутаны, катастрофы не свершится, патрон шуруповерта будет вращаться против часовой стрелки, в сторону выкручивания. Но на каждом изделии есть реверсный переключатель, поэтому, чтобы не перепаивать контакты, достаточно переключить вращение в другую сторону. Соблюдать полярности рекомендуют для того, чтобы не вводить в заблуждение пользователей, и вращение осуществлялось в ту сторону, в которую показывают стрелки возле переключателя.

Использование блока питания от системного блока ПК

Такой способ применяют в том случае, если нет родного зарядного устройства шуруповерта, или оно неисправно и восстановлению не подлежит.

Рассматривается импульсный блок питания LC 300-ATX P4, на выходе которого три вида напряжения постоянного тока: +3.3В; +5В и +12В. 12 вольтовая линия выдерживает нагрузки до 15А, это мощность до 180Вт. Это не меньше, чем выдают аккумуляторные батареи, но, как показывает практика, вполне достаточно, чтобы закручивать саморезы в плотные породы дерева.

Блок питания LC 300-ATX P4

Последовательность операций при переделке:

  • Снимается со старого системного блока ПК блок питания, для этого надо отсоединить все шины с разъемами, идущие от него к другим платам, откручивается его корпус;

Системный блок

  • Вскрывается крышка металлического корпуса;
  • Откусываются разъемы с проводами на расстоянии 15-20 см от платы;

Важно! Не перекусывайте провода, идущие от платы к вентилятору, – не будет охлаждения, и БП быстро выйдет из строя.

  • На всех моделях бп этой серии цвета проводов распаиваются по стандартам, черный – корпус, желтые +12В, оранжевый + 3.3В, красный +5В;
  • Зеленый провод включения блока питания заводим на корпус (черный провод) через выключатель;

Расключение проводов на плате LC 300-ATX P4

  • Надо отметить, что импульсный БП работает эффективно, когда все его выходы под нагрузкой, поэтому на выход +5В можно припаять лампочку, черный и красный провода, даже автомобильную на 12 В. Она не будет ярко светиться, этого и не требуется, главное, чтобы цепь была под нагрузкой. Аналогично поступаем с линией 3.3В – припаиваем на лампу в 5-10В оранжевый и черный провод. Одну из этих ламп можно вывести на лицевую панель как индикатор, что БП включен, и питание подано;

Вывод провода от БП к шуруповерту

  • На шуруповерт пускаем черный провод к минусу в аккумуляторном отсеке и желтый подключаем к плюсу. Удаление гальванических банок из аккумуляторного отсека и пайка проводов осуществляются по методике, описанной ранее;

Ввод линии 12В на аккумуляторный отсек

  • Оставшиеся лишние провода можно откусить или для надежности пустить параллельно в одной линии;
  • После подключения всех проводов включаем блок питания в сеть, если все сделано правильно, шуруповерт будет работать.

Надо отметить, что есть и другие способы собрать блоки питания на трансформаторе, выдающие полную мощность в 300-400Вт. В нашем случае рассматривались варианты, не требующие капиталовложений и больших знаний. В других случаях, когда делается блок питания для шуруповерта 18В своими руками, блок питания для шуруповерта 12В от ПК не подойдет. Можно определенными доработками повысить напряжение до 18 вольт, но это требует детального рассмотрения в отдельной статье, потребуются другие варианты, знания электротехники и практические навыки.

Видео

Оцените статью:

Зарядка аккумулятора от блока питания компьютера – зу из БП АТХ

Самодельное зарядное устройство

На состояние автоаккумуляторной батареи обращают внимание в зимний период. Ведь в это время плотность электролитического состава меняется, быстро теряется заряд. В результате, запуск двигателя усложняется. Для решения этой проблемы используют зарядные устройства.

Разработкой и сборкой зу для акб занимаются многие компании. Поэтому подобрать модель с требуемыми параметрами сможет каждый водитель. Такие модели отличаются обширным функционалом: тренировка источника питания, восстановление заряда, прочее. Их стоимость достаточно высока.

Поэтому автолюбителей интересует зарядное устройство для автомобильного аккумулятора, которое сконструировано из подручных агрегатов и элементов.

Преимущества самостоятельной сборки

  1. Использование подручных материалов, элементов. Поэтому расходы на изготовления сокращаются.
  2. Небольшой вес. Он не превышает 1,5–2 кг. Поэтому перемещать самодельный агрегат для восстановления заряда батареи несложно.
  3. Постоянное охлаждение. В состав блока питания включен вентилятор. Поэтому вероятность нагрева минимальна.

Какие сложности?

  1. Сконструированный преобразователь не всегда работает тихо. Периодически он издает звуки, которые похожи на звон, шипение.
  2. Не допускается контакт самодельной зарядки и корпуса автотранспортного средства. Если заряжаем с включением в сеть, то контакт провоцирует поломку преобразователя, КЗ.
  3. Подключение токопроводящих выводов аккумуляторной батареи к проводам выполняется точно. Если на этом этапе допущены ошибки, то вторичные цепи переделанного блока питания в зарядное устройство выходят из строя.
  4. Все контакты и элементы перед подключением проверяются. Только после этого компьютерный блок питания используется для зарядки.

Правила эксплуатации автоаккумулятора

Для поддержания автоаккумулятора в работоспособном состоянии недостаточно подготовить надежное зарядное устройство. Дополнительно выполняются и такие рекомендации:

  • Постоянная поддержка заряда. Аккумуляторный источник постоянно подзаряжается. При перемещении заряд поступает от генератора и других узлов автотранспорта. Если техника не эксплуатируется, то для восстановления заряда применяют ЗУ, как стационарного, так и портативного типа. Если батарея полностью разряжается, то специалисты рекомендуют проводить стремительное восстановление. В противном случае, запуститься процесс сульфатации свинцовых пластин.
  • Пределы напряжения (около 14 В). Напряжение, которое подается генератором, не должно чрезмерно превышать этот параметр. При этом не имеет особого значения тот факт, какой именно режим запущен. Если мотор не функционирует, то напряжение может снижаться до 12,6–13 В. При таких показателях применяют ЗУ с соответствующими параметрами и индикаторами.
  • Отключение потребителей при неработающем моторе. Если зажигание отключено, то и все устройства, фары отключаются. В противном случае, источник питания достаточно быстро потеряет заряд.
  • Подготовка автоаккумулятора. Перед восстановлением заряда с аккумуляторной батареи удаляют подтеки электролитического состава, пыль. Токопроводящие выводы очищаются от окислов, налета. Перед подачей напряжения тщательно проверяются соединения и провода. Ведь даже минимальные смещения провоцируют нарушения, проблемы.
  • В зимний период источник перемещают в теплое помещение. Ведь при отрицательной температуре электролитический состав становится плотным, густым. Это провоцирует ухудшение прохождения заряда.

Основные этапы изготовления ЗУ

Перед тем как сделать из бп компьютера надежный зарядник, изучаются требования техники безопасности, особенности работы с такими агрегатами. Ведь в первичных цепях блока питания пк присутствует напряжение.

Подготавливаем блок питания. Допускается использование отличающихся по мощности моделей. Чаще всего выполняется переделка компьютерного БП, мощность которого составляет 200–250 Вт.

После выбора модели выполняются последующие действия:

  • Из блока питания компьютера откручиваются болтики. Такие действия необходимы для последующего демонтажа крышки.
  • Определение сердечника, который входит в состав импульсного трансформатора. Его измеряют. Полученное значение удваивают. Для каждого элемента этот параметр индивидуален. При проведении тестов удалось выявить, что для получения мощности в 100 Вт требуется 0,95–1 см2. Ведь зарядка источника питания эффективна, если выдает 60–70 Вт.
  • В состав многих моделей БП входит такая схема, как TL494. Подобная схема вводится в состав разнообразных БП, которые представлены на продажу.

Подготовка схемы

Для подготовки зарядного устройства из компьютерного блока питания своими руками требуются определенные компоненты цепи (их отличительная особенность — +12В). Все остальные элементы изымаются. Для этого используют паяльник. Для упрощения процесса изучаются схемы, которые присутствуют на специальных порталах. На них изображены основные элементы, которые потребуются для БП.

Цепи с такими показателями, как -12В, -/+5 В, изымаются. Демонтируется и переключатель, при помощи которого изменяется напряжение. Выпаивается и схема, которая требуется для сигнала запуска.

Сделать зарядное устройство из БП несложно. Но для этого потребуются резисторы (R43 и R44), которые причислены к опорному типу. Показатели резистора R43 изменяются. В случае необходимости напряжение выходное меняется.

Специалисты рекомендуют заменять R43 на 2 резистора (переменный тип — R432, постоянный тип — R431). Внедрение таких резисторов облегчает процесс создания регулируемого элемента. С его помощью проще изменять силу тока, а также выходное напряжение. Это требуется для сохранения работоспособности автоаккумулятора.

Решая, как переделать БП, стоит сосредоточиться на конденсаторе. На выходной части выпрямителя сосредотачивается стандартный конденсатор. Мастера проводят его замену на элемент, который отличается большими показателями напряжения. Так, часто пользуются конденсатором марки С9.

Рядом с вентилятором, который используется для обдува, сосредотачивается резистор. Его заменяют резистором, который выделяется большим сопротивлением.

При подготовке ЗУ для аккумулятора меняется и расположение вентилятора. Ведь воздушная масса должна поступать в подготавливаемый блок питания.

Со схемы ликвидируют дорожки, которые предназначены для соединения массы, фиксации платы непосредственно к шасси.

Сконструированный блок питания с регулировкой подводят к сети с переменным током. Для этих целей используют стандартную лампу накаливания (производительность составляет 40–100 Вт).

Такие действия выполняются для того, чтобы проверить, насколько эффективная схема получилась. Без предварительного тестирования сложно установить, перегорит ли БП с заданной мощностью при резких изменениях напряжения.

Дополнительные рекомендации

Для правильной настройки БП для автомобильной аккумуляторной батареи требуется соблюдение определенных правил.

  • Введение индикаторов. Для отслеживания того, насколько зарядился автомобильный аккумулятор, используются индикаторы. В состав схемы вводят цифровые или же стрелочные индикаторы. Их легко приобрести в специализированных магазинах или же демонтировать со старой техники. Допускается введение нескольких индикаторов, с помощью которых отслеживается степень заряда, напряжение на токопроводящих выводах.
  • Корпус с креплением или ручками. Наличие такой детали способствует упрощению процесса эксплуатации ЗУ из БП.

К сборке ЗУ из БП портативного компьютера допускается при условии, что есть определенный опыт, знания в области электроники. Проводить какие-либо мероприятия, если нет соответствующей подготовки, запрещено. Ведь в процессе нужно контактировать с токопроводящими выводами, элементами, на которые подается напряжение, ток.

Видео про сборку зарядного из БП компьютера для ватомобильного акб

Всем привет, вы меня давно просите показать, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора или в лабораторный блок питания.

Ну что ж вооружитесь паяльником поскольку этот день настал, но прежде, чем начнем замечу, что в ходе переделки нужно соблюдать крайнюю осторожность, так как мы будем иметь дело с высоким напряжением.

Во время наладочных работ обязательно убедитесь, что блок питания отключен от сети, также не будет лишним лампочкой разрядить ёмкие электролиты на плате блока питания, либо после отключения подождать несколько минут, пока шунтирующие их резисторы не разрядят ёмкость.Схема по которой мы будем переделывать довольно популярная, она более известная, как «схема от итальянца», актуально для блоков питания формата «at» на базе TL494. Современные блоки питания построены на самых разных микросхемах ШИМ, наиболее часто встречаются блоки питания на базе шим контроллера TL490 или её аналога КА7500 и компаратора LM339.Ранее я никогда не рассказывал о процессе переделки блоков питания, так как считаю, что проще собрать новый блок питания своими руками, чем переделывать компьютерный.

Хотя в сети очень много архивов на эту тему, но все повествуют нас о переделки конкретных блоков питания, универсальных способов нет и не может быть.Мне пришлось изрядно попотеть чтобы заставить блок питания работать как нужно, схема итальянца рабочая (есть в архиве в конце статьи), но чтобы применить её для блоков питания на основе TL494 и компаратора LM339, придётся выкинуть половину схемы, при том очень аккуратно, чтобы случайно не выкинуть то, что необходимо для работы.

Поэтому было решено сделать сверх доступное пособие по переделке блоков питания, всё будет очень наглядно в картинках и в мельчайших подробностях.

Сперва нужно найти блок питания. Подойдут блоки построенные на одной TL494 или более современные с применением компаратора LM339 и шим контроллера TL494.

Для начала замыкаем зеленый провод с любым из черных, этим запустив блок питания, начнёт крутится вентилятор, что свидетельствует о том, что блок рабочий, но лениться не стоит лучше мультиметром проверить напряжение на выходе блока питания.

Как мы знаем это у нас 3,3 вольта, 5 вольт и 12 вольт, если всё нормально вскрываем корпус, вынимаем плату и выпаиваем все провода оставляя только пару черных, пару желтых и зеленый провод. Нужны они для тестов, позже будут заменены или убраны.

Далее, можно также выкинуть диодные сборки на линиях 5 и 3,3 вольта, а конденсатор на шине 12 вольт заменить на 25, а лучше 35 или 50 вольтовый, ёмкость от 1000 до 2.2 тысяч микрофарад.

Очень и очень желательно использовать конденсаторы с низким внутренним сопротивлением.

Теперь займёмся серьезным, смотрим на микросхему TL494, (в моём случае стоит аналог K7500), отпаиваем всё, что идёт к первому выводу микросхемы, это как правило несколько резисторов.

Далее смотрим на выводы 13, 14 и 15 той же микросхемы, скорее всего, все они будут замкнуты друг с другом, нужно разъединить 15 вывод от остальных двух, а точнее от 13-го и 14-го. Я лично перерезал дорожку, таким образом выводы 1 и 15 у нас уже висят в воздухе, идём дальше.

Ту же самую операцию проводим с выводом 16,освобождая её от остальной обвязки. Далее берём любой резистор сопротивлением 2,2 килоома, протягиваем этот резистор с массы блока питания, (то есть с чёрного провода), к первому выводу микросхемы.

Следующим делом, находим переменный резистор на 20 кОм и подключаем его так, как показано на фото.

По идее у нас готова регулировка напряжения, но ничего пока проверять не нужно.

Далее находим пару резисторов сопротивлением 0,1 оМ мощность каждого резистора 5 ватт, соединяем их параллельно и подключаем одним выводом к массе питания, другой конец резистора подключается к выводу 16 микросхемы TL494, этот резистор у нас будет в качестве датчика тока.

Думаете всё))), нет… сделано только полдела, далее нужно скачать архив, который находиться в конце статьи, там есть печатная плата в программе «sprint layout», которую я сделал специально для вас и подробно подписал.Все точки на этой плате нужно подключить к соответствующим точкам, которые указаны на схеме, вот теперь ребята всё.

Можно радоваться и перейти к тестам, я всё сделал на макете, так как приходилось экспериментировать.

Теперь нужно окультурить всё это дело. Провода которые идут от самодельной платы желательно взять экранированные и как можно короче, места их соединений желательно и даже обязательно залить смолой или термоклеем. Обрыв провода может стать причиной выхода из строя всей конструкции.

Теперь замыкаем зеленый провод с черным, но перед этим обязательно берём страховочную лампу ватт на 40, 60 и подключаем блок питания в сеть только через эту лампу, иначе при косяках возможен фейерверк.

Запускаем источник питания, регулируем сперва напряжение, убеждаемся, что всё прекрасно и плавно регулируется в диапазоне от полутора до 15 с лишним вольт, можно и больше но данный блок питания будет использован в качестве зарядного устройства для автомобильных аккумуляторов, а там 15 вольт сполна хватит.Гоняем блок питания несколько минут, можно даже с небольшой нагрузкой, если всё нормально убираем страховочную лампу и подключаем на выход блока питания более серьезную нагрузку в моем случае галогенка на 60 ватт.

Мультиметр показывает значение тока в цепи и как видим ток также прекрасно регулируется, снять кстати можно более 10 ампер.Осталось только подключить более менее нормальный вольтамперметр например китайский, цифровой, за пару тройку баксов и в добрый путь, подключается следующим образом.

Можно доработать данный блок питания защитой от переполюсовки, но это уже другая история… Спасибо всем за внимание.

Архив к статье; скачать…

Автор; АКА Касьян

KOMITART — развлекательно-познавательный портал

Переделка компьютерного AT БП под зарядное устройство автомобильного аккумулятора.

Различных зарядных устройств на основе блока питания гуляет по просторам интернета немало. Вот решил поведать и я об истории развития своей схемы зарядок. Схема создавалась для того, чтобы наш котомобиль в морозы зимой все же продолжал ездить на авто, а собрать мог каждый желающий, мало-мальски радиокот. Основной упор в схемотехнике зарядных устройств -простота переделки. В наш век «китайтизации» электроники и электронной промышленности зачастую проще, дешевле и доступнее взять готовый AT/ATX блок питания и переделать его под любые свои нужды, нежели купить отдельно силовой трансформатор, диоды на мост, тиристор и прочие детали. Сначала поведаю о самом простом (ну уже проще просто не бывает!!!) и надежном зарядном на основе AT блока питания, без индикатора тока (хотя амперметр никто не мешает поставить).
Ну вот, нашли подходящий блок АТ , собранный на TL494. Моем его, чистим, сушим и смазываем вентилятор.
Небольшое отступление.
О качестве комплектующих для АТ и АТХ блоков. Хочу сказать о важном элементе схемы — фильтрующий конденсатор 310 вольт в первичной цепи. От него зависит не только такой параметр как пульсации выходного напряжения с частотой сети под большой нагрузкой, но и, что очень важно — нагрев самих выходных ключей. Если емкости не хватает, то им приходится работать до 35% своего времени на большей ширине импульса, чем при нормальной емкости, так как среднее средневыпрямленное напряжение уже не 310 вольт, а 250 — 260 вольт за счет пульсаций. Контроллеру приходится отрабатывать такие провалы, увеличивая ширину и время открытого состояния транзистора. Следовательно, им приходится работать на большем токе, чем при достаточной емкости. Из этого вытекает: больше ток — больше нагрев — меньше кпд. (Он и так небольшой 60 — 75% в зависимости от блока). Проведя некоторые измерения более древних и очень старых АТ блоков питания и более новых АТХ выяснилось — китайцы совсем совесть потеряли. Если раньше ставили конденсаторы — как на нем написано, так оно и было. То теперь 50% допуск всегда в минус.

Перебрал сотни блоков: Написано 470МКФ, выпаиваешь замеряешь — 300 -330МКФ, даже новый конденсатор — та же история.
Ну, да и ладно, пусть пишут что хотят: Ну, а нам необходимо заменить в АТ блоке, на основе которого мы будем строить зарядку 200МКФ на эти самые 330МКФ, или еще лучше 470МКФ (настоящих 470). Транзисторам легче будет.
С дросселями та же история.
АТ дроссель: АТХ дроссель:
Не домотаны, и кольцо меньше… Следствием уменьшения индуктивности дросселя групповой стабилизации будет акустический свист на малых токах (1-2 ампера). Индуктивность этого дросселя рассчитывается, исходя из режима непрерывности тока через него при минимальных нагрузках. При включении блока, он сразу выходит на мощность не менее 150Вт (зависит от компьютера). Через дроссель протекают определённые токи, не менее какой то величины. Дроссель можно рассчитать на это минимальное значение тока, но тогда, при включении без нагрузки, ток через дроссель станет прерывистым, что повлечёт за собой некоторые неприятности… Схема ШИМ регулирования рассчитана для случая непрерывности тока, по этому, при прерывистом токе, регулирование будет сбиваться, дроссель будет петь, напряжения на выходах будут прыгать, вызывая дополнительные токи перезарядки электролитических конденсаторов… Конечно, в данном случае нам на помощь придет цепь RC коррекции обратной связи, но притуплять скорость реакции на изменение напряжения бесконечно нельзя, В какой-то момент TL494 при КЗ просто не успеет снизить ширину импульса и транзисторы выйдут из строя. Этот процесс достаточно быстрый. Поэтому с этим нужно быть осторожнее. Ну ладно, это было лирическое отступление. Продолжим «танец с бубном» с зарядным устройством.
Схема с мягкой характеристикой зарядного тока.

Плата стандартного АТ блока. Смотрим на схему, что надо выпаять (а выпаять надо много-много лишнего), а что запаять, чтобы получить самую простую зарядку для аккумулятора. Схема взята стандартная, стандартного блока АТ и номиналы уже установленных элементов могут существенно отличаться от ваших. Менять их на указанные на схеме НЕ НАДО! Выпаиваем только ставшие ненужными защиты от перенапряжения, канал 5 вольт, канал -12 вольт. В общем, согласно схеме, оставляем следующее.

В итоге чтобы получить полноценную, регулируемую зарядку на 10 ампер и 15,8в с управляемым от тока нагрузки вентилятором, надо добавить всего восемь деталек!!! А именно: заменить два электролита, добавить шунт очень приближенного сопротивления 0,01ома -0,08 ома (например, три сантиметра шунта с китайского мультика — работает отлично). Фото исходного шунта (Авторский донор снят с советской Цэшки):

Резистор на 120ом, на 3,9к, и примерно 18к, переменный резистор на 10к, конденсатор на 10 нано и перевернуть обмотку на дросселе по каналу -5 вольта для вентилятора. Только не забудьте, что вентилятор теперь подключать надо так: красный на корпус, а черный на -5:.-12в. Шунт припаиваем в разрыв косички с силового трансформатора. Когда будете настраивать резистор на 3,9к то его сопротивление подберите по току заряда 10 ампер на реальном аккумуляторе. Вы не поверите — это всё! Это просто небывалая простота переделки практически уже металлолома во вполне достойную вещь! Если диоды по каналу +12в у Вас изначально стояли FR302, то надо заменить на более мощные, например выпаять из более современного ATX блока питания. Причем короткого замыкания он не боится — входит в ограничение тока. А вот переполюсовка подключения к аккумулятору приведет к большому ба-баху! Про «НОУ-ХАУ», уникальную защиту от перегрузки и короткого замыкания будет написано в ЭТОЙ статье. Цветными кружочками и линиями обозначены добавленные дополнительные элементы.

Настройка: Все включения до полной настройки проводить включая в сеть только последовательно с лампочкой накаливания 60 ватт. Проверяем монтаж.
Настройка канала напряжения.
Подключаем крокодилами мультиметр в режиме измерения напряжении в диапазоне до 200вольт. Включаем в сеть. Напряжение на выходе должно быть в пределах 16 вольт плюс/минус 4 вольта. Если что-то около 5 вольт, значит забыли заменить резистор в цепи контроля напряжения (1 вывод TL494) на 18к. Если около 23-25в, и постепенно без нагрузки нагреваются выходные ключи, то значит в цепи контроля напряжения (1 вывод TL494) обрыв или сопротивление 18к слишком большое, и блок вышел на полную ширину импульса и все равно не может набрать напряжение, для включения обратной связи. Настраиваем подбором этого резистора на напряжение примерно 15,8 — 16,2 вольта. Если вы выставите 14,4 в то акум через примерно 1 час перестанет у вас заряжаться вообще (проверено многократно на разных аккумуляторах).
Настройка канала тока.
Резистор включенный последовательно с регулятором тока временно меняем на подстроечник 22к выставляем его в положение минимального сопротивления. Подключаем крокодилами мультиметр в режиме измерения тока на диапазоне 10 ампер. Включаем в сеть блок через лампочку. Если лампочка вспыхнула и продолжает ярко светиться, значит что-то напутали, проверяем монтаж. Если амперметр показывает ток в пределах от 1 до 4 ампер то все нормально. Выставляем переменный резистор в режим максимального сопротивления, а подстроечным резистором настраиваем ток 15 -16 ампер. Иногда лампочка не дает так настроить, поэтому настройте примерно такой ток. Теперь подключив на выход разряженный аккумулятор и амперметр последовательно, убираем лампочку и включаем в сеть. Подстроечным резистором подстраиваем более точно ток, но уже 10 ампер. Затем подстроечник выпаиваем, меряем и впаиваем постоянный резистор такого же сопротивления. Вентилятор охлаждения должен вращаться с оборотами пропорционально току. Если на максимальном токе или коротком обороты слишком велики (напряжение выше 20 вольт), то необходимо отмотать витков 10 с обмотки минус 5 вольт канала питания вентилятора Напряжение на вентиляторе при подобранных витках должно быть от 6 вольт до 17 вольт. Все, на этом настройка закончена.
В итоге на выходе сборочного стола получаем довольно не плохое зарядное устройство. И даже с корпусом практически никаких слесарных работ не нужно. Выходные/входные провода выведены сзади через пластмассовые разъемы. Таких зарядных в свое время было сделано десятки, и все работают до сих пор :-).

Зарядное устройство для АКБ из компьютерного блока питания

Поиски наименования ШИМ блока питания для ноутбука НР привели меня на форум, на котором участники интересовались вопросом переделки блока питания настольного компьютера, в частности «Power Man IP-P350A2J», в зарядное устройство автомобильных аккумуляторов.

Очень было приятно видеть жилку любознательности и творчества, желание что-то сделать самостоятельно у современного молодого поколения. Попытаюсь помочь любознательным и умелым в переделке этого блока в зарядное устройство.


Изображения блока питания Power Man IP-350A2J взяты с форума.

Не буду останавливаться на вопросах, связанных с процессом зарядки аккумуляторов и с разработкой полноценного зарядного устройства. Рассмотрим главную проблему в переделке компьютерного блока питания в зарядное устройство. Это — регулирование его выходного напряжения «+12В» в пределах от +10 до +15В для установки нужного тока заряда IЗ аккумулятора, который варьируется в амперном исчислении в пределах (0,05-0,1) QA его энергоемкости QA в ампер*часах. Например, если энергоемкость аккумулятора QA=72 А*ч, то зарядный ток должен быть в пределах (3,6-7,2) А. Примите к сведению, что высокие зарядные токи ведут к закипанию электролита в аккумуляторе и выделению из него сероводорода и водорода. При токе в амперах, равном 0,05 QA заряд аккумулятора протекает более длительно, но без обильного газовыделения.

Беремся за переделку указанного блока питания. Этот блок имеет схемы дежурного и рабочего питания, а также контроллер значений рабочих напряжений — супервизор U3 на базе микросхемы «w7510» (см. схему). Его функция — контроль соответствия рабочих напряжений блока питания требуемым величинам. При несоответствии хоть одного напряжения требуемой величине он заблокирует работу инвертора рабочего питания компьютера.


 Схема переделанного блока питания Power Man IP-350A2J (70.93 Кбайт) в формате Adobe PDF.

При включенном в сеть блоке питания и определенных настройках системного блока компьютер находится в режиме ожидания («спит и ждет» обращения к нему). При активации клавиатуры или мыши, с материнской платы системного блока на блок питания поступает сигнал «PS-On». Этот сигнал активирует супервизор U3, питающийся от источника дежурного питания блока, и он низким напряжением на контакте 3 (fpl) «открывает» оптопару РС1, а та — транзистор Q1. Через открытый транзистор Q1 напряжение дежурного питания блока (+12В) с контакта 7 (vcc) U4 поступает на контакт 7 (vcc) U1 — ШИМ инвертора рабочего питания. ШИМ U1 плавно запускает инвертор рабочего питания и на выводах вторичных обмоток Т1 появляются импульсные напряжения, которые выпрямляются диодными сборками D5, D7, D9 в цепях формирования рабочих напряжений блока питания: +12V, +5V и 3,3V и диодами D2, D4 — в цепях −12В и −5В.

Супервизор — U3 после пуска рабочего инвертора осуществляет проверку соответствия рабочих напряжений блока питания требуемым значениям. Если какое либо из них не соответствует норме, супервизор высоким уровнем на контакте 3 (fpl) «запирает» оптопару РС1, а та в свою очередь — транзистор Q1. Подача напряжения питания через Q1 на ШИМ U1 прекращается и рабочий инвертор (на Q2 и Т1) перестает работать.

Таким образом, чтобы регулировать зарядное напряжение (+12В) в пределах +(10...15)В, нужно «обойти» контроллер напряжений — супервизор U3. Самое простое — соединить перемычкой П1 его контакт 3 (fpl) с его же контактом 2 (gnd). Благодаря этой перемычке оптопара РС1 будет всегда открыта при включенном в сеть блоке питания, обеспечивая питание ШИМ U1 рабочего инвертора, независимо от супервизора. Можно перемычку заменить выключателем, совмещенным с переменным резистором регулирования выходного напряжения или электронным ключом, если есть желание придать ЗУ дополнительные функции.

Установив указанную перемычку, подключаем к выводам «+12В» и «┴» нагрузку в виде лампы дальнего света мощностью до 70 Вт и вольтметр. Включаем блок питания в сеть. С задержкой по времени после включения (при исправном блоке) лампа плавно загорается. Проверьте вольтметром напряжение на выводе «+12» блока. Если напряжение соответствует этому значению, делаем второй шаг.

Медленно поворачивая движок резистора VR1 влево и вправо, определяем диапазон изменения напряжения на выводе «+12В». Если в одном из крайних положений движка VR1 напряжение не выше +16В, а в другом — не ниже 10В, то вам нужно всего лишь заменить резистор VR1 на переменный того же номинала. Имейте в виду, что рабочее напряжение конденсаторов в фильтрах цепей формирования «+12В» и «−12В» всего 16В.

Если это не удается, то в следующем шаге удалите резистор R58 номиналом 5,19 кОм, диод D18, а номиналы резисторов R68 и VR1 замените, соответственно, на 2,4 кОм и 2 кОм. Если диапазон регулирования напряжения +12 выйдет за пределы +15В, номинал R68 нужно увеличить на (5…10)%.

Если вам нужно дополнительно стабилизированное и регулируемое напряжение «+5В», то установите резистор: R58=5,19 кОм на место. В этом случае цепи питания «+12В» и «+5В» будут стабилизированными в диапазоне регулирования.

Если вы хотите увеличить напряжение своего зарядного устройства более 16В, то замените электролитические конденсаторы в цепи +12В и −12В, на более высоковольтные для исключения их пробоя (можно с меньшим номиналом чтобы поместились на плате).


Результат переделки Power Man IP-P350A2J в зарядное устройство для автомобильных аккумуляторов.

В качестве VR1 берите СП3-4ам или другого типа устанавливайте на металлическую переднюю панель, соединенную с корпусом блока питания. Соединение резистора с платой выполнить экранированным проводом в изоляции. Экран провода соедините с общим проводом вторичной цепи блока «┴».

Для индикации зарядного тока и напряжения можно применить амперметр М42303 на ток 10 ампер и шунт 75ШСМ3-10-0,5. Амперметр с помощью кнопочного переключателя и последовательно включенных резисторов Rд1 = 470 Ом и подстроечного Rд2 = 200 Ом, можно «перевести» в измеритель напряжения (см. схему). Регулировкой резистора Rд2 можно корректировать показания М42303 в единицах напряжения.

Удачи!

03 апреля 2015—13 апреля 2015

Олег Проскурня

Полное руководство по использованию правильного зарядного устройства или адаптера питания (и что произойдет, если вы этого не сделаете)

Подождите! Тот факт, что вилка универсального адаптера подходит к вашему ноутбуку или телефону, не означает, что им безопасно пользоваться. Прочтите это руководство по поиску подходящего зарядного устройства или адаптера питания.

На прошлых выходных я сел и перебрал всю свою беспорядочную хлам электроники. В рамках этого процесса я взял все свои блоки питания и адаптеры и бросил их в коробку. В итоге получился довольно большой ящик.Готов поспорить, что в любой семье есть дюжина или больше различных типов зарядных устройств для сотовых телефонов, адаптеров переменного / постоянного тока, блоков питания, кабелей питания и вилок зарядных устройств.

Наличие такого количества зарядных устройств может быть довольно неприятным. Их легко отделить от телефона, ноутбука, планшета или маршрутизатора. И как только это произойдет, может быть сложно понять, что к чему. Решение по умолчанию - пробовать случайные штекеры, пока не найдете тот, который подходит к вашему устройству. Однако это большая авантюра.Если вы возьмете несовместимый адаптер питания, в лучшем случае он будет работать, хотя и не так, как задумал производитель. Второй наихудший сценарий - вы обжариваете гаджет, который пытаетесь включить. В худшем случае вы сожжете свой дом.

В этой статье я расскажу, как рыться в ящике для мусора и найти подходящий адаптер питания для вашего устройства. Затем я расскажу, почему это так важно.

В двух словах:

  • Следующее может привести к повреждению вашего устройства:
    • Обратная полярность
    • Адаптер напряжения, превышающий номинальное значение устройства
  • Следующее может повредить ваш шнур питания или адаптер:
    • Обратная полярность
    • Адаптер тока ниже номинала устройства
  • Следующее может не привести к повреждению, но устройство не будет работать должным образом:
    • Адаптер напряжения ниже номинала устройства
    • Адаптер тока выше номинала устройства

A Очень Краткое введение в электрическую терминологию

Каждый адаптер питания переменного / постоянного тока специально разработан для приема определенного входа переменного тока (обычно стандартного выхода из розетки переменного тока 120 В в вашем доме) и преобразования его в конкретный выход постоянного тока.Точно так же каждое электронное устройство специально предназначено для приема определенного входного постоянного тока. Главное - согласовать выход постоянного тока адаптера со входом постоянного тока вашего устройства. Определение выходов и входов ваших адаптеров и устройств - сложная часть.

Адаптеры питания немного похожи на консервы. Некоторые производители помещают на этикетку много информации. Другие приводят лишь некоторые детали. А если на этикетке нет информации, действуйте с особой осторожностью.

Самыми важными деталями для вас и вашей тонкой электроники являются напряжение и ток .Напряжение измеряется в вольтах (В), а ток - в амперах (А). (Вы, вероятно, также слышали о сопротивлении (Ом), но обычно это не отображается на адаптерах питания.) труба. В этой аналогии напряжение будет давлением воды. Ток, как следует из этого термина, относится к скорости потока. А сопротивление зависит от размера трубы. Настройка любой из этих трех переменных увеличивает или уменьшает количество электроэнергии, отправляемой на ваше устройство.Это важно, потому что слишком низкая мощность означает, что ваше устройство не будет заряжаться или работать правильно. Слишком большая мощность генерирует избыточное тепло, что является бичом чувствительной электроники.

Другой важный термин, который необходимо знать, - это полярность . Есть положительный полюс (+) и отрицательный полюс (-). Для работы адаптера положительная вилка должна совпадать с отрицательной розеткой или наоборот. По своей природе постоянный ток - это улица с односторонним движением, и ничего не получится, если вы попытаетесь подняться по водосточной трубе.

Если вы умножите напряжение на ток, вы получите ватт .Но одно только количество ватт не скажет вам, подходит ли адаптер для вашего устройства.

Чтение этикетки адаптера переменного / постоянного тока

Если производитель был достаточно умен (или был вынужден по закону) включить выход постоянного тока на этикетку, вам повезло. Посмотрите на «кирпичную» часть адаптера и найдите слово ВЫХОД. Здесь вы увидите вольты, за которыми следует символ постоянного тока, а затем - ток.

Символ постоянного тока выглядит следующим образом:

Чтобы проверить полярность, найдите знак + или - рядом с напряжением.Или поищите диаграмму, показывающую полярность. Обычно он состоит из трех кругов, с плюсом или минусом с каждой стороны и сплошным кружком или С в середине. Если знак + справа, значит, адаптер имеет положительную полярность:

Если справа есть знак -, значит, он имеет отрицательную полярность:

Затем вы хотите посмотреть на свое устройство вход постоянного тока. Обычно вы видите, по крайней мере, напряжение около розетки постоянного тока. Но вы также хотите убедиться, что текущие совпадения тоже.

Вы можете найти напряжение и ток в другом месте устройства, на дне или внутри крышки батарейного отсека или в руководстве. Опять же, обратите внимание на полярность, отмечая символ + или - или диаграмму полярности.

Помните: вход устройства должен быть таким же , что и выход адаптера. Это включает полярность. Если устройство имеет вход постоянного тока +12 В / 5,4 А, приобретите адаптер с выходом постоянного тока + 12 В / 5,4 А. Если у вас есть универсальный адаптер, убедитесь, что он имеет соответствующий номинальный ток, и выберите правильную полярность напряжения и .

Fudging It: Что произойдет, если вы воспользуетесь неправильным адаптером?

В идеале у адаптера и устройства должны быть одинаковое напряжение, сила тока и полярность.

Но что, если вы случайно (или намеренно) используете не тот адаптер? В некоторых случаях вилка не подходит. Но во многих случаях к вашему устройству подключается несовместимый адаптер питания. Вот что вы можете ожидать в каждом сценарии:

  • Неправильная полярность - Если вы измените полярность, может произойти несколько вещей.Если повезет, ничего не произойдет и никаких повреждений не произойдет. Если вам не повезет, ваше устройство будет повреждено. Есть и золотая середина. Некоторые ноутбуки и другие устройства включают защиту от полярности, которая по сути представляет собой предохранитель, который перегорает, если вы используете неправильную полярность. В этом случае вы можете услышать хлопок и увидеть дым. Но устройство может по-прежнему работать от аккумулятора. Однако ваш вход постоянного тока будет тостом. Чтобы исправить это, замените предохранитель защиты полярности или обратитесь в сервисный центр. Хорошая новость в том, что основная схема не перегорела.
  • Слишком низкое напряжение - Если напряжение на адаптере ниже, чем у устройства, но ток такой же, устройство может работать, хотя и нестабильно. Если мы вернемся к нашей аналогии напряжения с давлением воды, это будет означать, что у устройства «низкое кровяное давление». Эффект от низкого напряжения зависит от сложности устройства. Динамик, например, может быть нормальным, но он не станет таким громким. Более сложные устройства будут давать сбои и могут даже отключиться при обнаружении пониженного напряжения.Обычно пониженное напряжение не приводит к повреждению или сокращению срока службы вашего устройства.
  • Слишком высокое напряжение - Если адаптер имеет более высокое напряжение, но ток такой же, то устройство, скорее всего, отключится при обнаружении перенапряжения. В противном случае оно может стать более горячим, чем обычно, что может сократить срок службы устройства или вызвать немедленное повреждение.
  • Слишком высокий ток - Если адаптер имеет правильное напряжение, но ток больше, чем требуется для входа устройства, проблем не должно быть.Например, если у вас есть ноутбук, который требует входа постоянного тока 19 В / 5 А, но вы используете адаптер постоянного тока 19 В / 8 А, ваш ноутбук по-прежнему будет получать необходимое напряжение 19 В, но потребляет только 5 А. Что касается тока, устройство делает все возможное, и адаптеру придется выполнять меньше работы.
  • Слишком низкий ток - Если адаптер имеет правильное напряжение, но номинальный ток адаптера ниже, чем на входе устройства, может произойти несколько вещей. Устройство может включиться и потреблять от адаптера больше тока, чем предназначено.Это может привести к перегреву адаптера или выходу его из строя. Или устройство может включиться, но адаптер может не справиться с этим, что приведет к падению напряжения (см. , слишком низкое напряжение выше). Для ноутбуков, работающих с адаптерами с пониженным током, вы можете видеть заряд аккумулятора, но ноутбук не включается, или он может работать от питания, но аккумулятор не заряжается. Итог: использовать адаптер с более низким номинальным током - плохая идея, поскольку это может вызвать перегрев.

Вы ожидаете увидеть все вышеперечисленное, основываясь на простом понимании полярности, напряжения и тока.В этих прогнозах не принимается во внимание различная защита и универсальность адаптеров и устройств. Производители также могут немного смягчить свои рейтинги. Например, ваш ноутбук может быть рассчитан на ток 8А, но на самом деле он потребляет только около 5А. И наоборот, адаптер может быть рассчитан на 5А, но может выдерживать токи до 8А. Кроме того, некоторые адаптеры и устройства будут иметь функции переключения или обнаружения напряжения и тока, которые будут регулировать выход / потребление в зависимости от того, что необходимо.И, как упоминалось выше, многие устройства автоматически отключаются до того, как это вызовет повреждение.

При этом я не рекомендую подтасовывать маржу, предполагая, что вы можете с помощью своих электронных устройств проехать на 5 миль в час сверх установленной скорости. На это есть причина, и чем сложнее устройство, тем больше вероятность того, что что-то пойдет не так.

Есть какие-нибудь предостережения об использовании неправильного адаптера переменного / постоянного тока? Предупреждайте нас в комментариях!

П.Адаптеры S. Wall, дающие вам USB-порт для зарядки, не так уж сложны. Стандартные USB-устройства имеют напряжение постоянного тока 5 В и ток до 0,5 А или 500 мА только для зарядки. Это то, что позволяет им хорошо работать с портами USB на вашем компьютере. Большинство настенных USB-адаптеров представляют собой адаптеры на 5 В и имеют номинальный ток значительно выше 0,5 А. Настенный USB-адаптер для iPhone, который я сейчас держу в руке, имеет напряжение 5 В / 1 А. Вам также не о чем беспокоиться. полярность с USB. USB-штекер - это USB-штекер, и все, о чем вам обычно нужно беспокоиться, - это форм-фактор (например.г., микро, мини или стандартный). Кроме того, USB-устройства достаточно умны, чтобы отключать устройства, если что-то не так. Следовательно, часто встречается сообщение «Зарядка не поддерживается с этим аксессуаром».

Изображение функции от Qurren - GFDL (http://www.gnu.org/copyleft/fdl.html) или CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0) /), через Wikimedia Commons

Как запустить проект

Добавлено в избранное Любимый 64

Обзор

Это руководство расскажет о различных способах реализации ваших электронных проектов.В нем будут подробно описаны параметры напряжения и тока, которые вы, возможно, захотите сделать. Также будут учтены дополнительные соображения, которые вы должны учесть, если ваш проект является мобильным / удаленным или, другими словами, вы не собираетесь сидеть рядом с розеткой на стене.

Если это действительно ваш первый электронный проект, у вас есть возможность прочитать это руководство или придерживаться рекомендованных материалов для проекта или платы разработки по вашему выбору. Комплект SparkFun Inventor’s Kit содержит USB-кабель, необходимый для питания, и отлично подходит для всех проектов в комплекте, а также для многих более сложных проектов.Если вы чувствуете себя подавленным, лучше всего начать с этого комплекта.

Рекомендуемая литература

Вот соответствующие уроки, которые вы, возможно, захотите проверить перед чтением этого:

способов питания проекта

Вот некоторые из наиболее распространенных методов, используемых для поддержки проекта:

  • Питание от USB
  • Настольный источник питания переменного тока
  • Настенный адаптер переменного тока в постоянный (например, компьютер или ноутбук)
  • Аккумуляторы

Четыре распространенных способа подачи питания на ваш проект

Какой вариант мне выбрать для поддержки моего проекта?

Ответ на этот вопрос во многом зависит от конкретных требований вашего проекта.

Питание через USB

Если вы начинаете с SparkFun Inventor's Kit или другой базовой платы для разработки, вам, скорее всего, понадобится только USB-кабель. Arduino Uno - это пример, для которого требуется только кабель USB A - B для подачи питания на работу схем из комплекта. Вот несколько USB-кабелей из нашего каталога для питания вашего проекта от USB-порта.

Кабель USB от A до B - 6 футов

В наличии CAB-00512

Это стандартная проблема USB 2.0 кабель. Это наиболее распространенный периферийный кабель типа «папа / папа» от А до В, обычный…

1

Кабель USB micro-B - 6 футов

В наличии CAB-10215

USB 2.0 типа A на 5-контактный микро-USB.Это новый разъем меньшего размера для USB-устройств. Разъемы Micro USB примерно вдвое дешевле…

13
Настольный источник питания переменного тока

Если вы занимаетесь строительными проектами и регулярно тестируете схемы, настоятельно рекомендуется приобрести настольный источник питания переменного тока. Это позволит вам установить напряжение на определенное значение в зависимости от того, что вам нужно для вашего проекта.Это также дает вам некоторую защиту, поскольку вы можете установить максимально допустимый ток. Затем, если в вашем проекте произойдет короткое замыкание, питание стенда отключится, надеюсь, что предотвратит повреждение некоторых компонентов в вашем проекте.

Вот несколько настольных источников питания переменного тока из нашего каталога.

Настенные адаптеры переменного тока в постоянный

Особый источник питания переменного тока в постоянный часто используется после проверки цепи. Этот вариант также хорош, если вы часто используете одну и ту же доску разработки снова и снова в своих проектах.Эти настенные адаптеры обычно имеют заданное выходное напряжение и ток, поэтому важно убедиться, что выбранный вами адаптер имеет правильные характеристики для проекта, который вы будете использовать, и не превышать эти характеристики. Вот несколько настенных адаптеров из каталога, которые предлагают несколько усилителей.

Для более актуальных проектов, ознакомьтесь с некоторыми из этих источников питания в нашем каталоге. Просто убедитесь, что в списке рекомендованных продуктов на странице продукта вы найдете кабель, подходящий для вашего региона.

Аккумуляторы

Если вы хотите, чтобы ваш проект был мобильным или базировался в удаленном месте, вдали от того, где вы можете получить настенное питание переменного тока из сети, батареи - это то, что вам нужно. Батарейки бывают самых разных, поэтому обязательно ознакомьтесь с последующими частями этого руководства, чтобы вы могли точно определить, что выбрать. Обычно выбираются щелочные батареи, аккумуляторы NiMH AA и литий-полимерные. Вот несколько батареек из каталога.

Литий-ионный аккумулятор - 2 Ач

В наличии PRT-13855

Это очень тонкие и чрезвычайно легкие батареи на основе литий-ионной химии.Каждая ячейка выдает номинальное напряжение 3,7 В при 200…

. 7

Щелочная батарея 9 В

В наличии PRT-10218

Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac. Даже не думайте пытаться перезарядить их.Используйте их с…

1

Никель-металлгидридный аккумулятор 2500 мАч - AA

В наличии PRT-00335

Никель-металлогидридные аккумуляторные батареи AA емкостью 2500 мАч, 1,2 В. [Технология NiMH] (http://en.wikipedia.org/wiki/Nickel_metal_hy…

Если вашему проекту требуется определенное напряжение или немного больше тока от батареи, попробуйте добавить повышающий преобразователь или импульсный стабилизатор.Вы можете снимать переменное напряжение с батареи и выдавать заданное напряжение 5 В. В зависимости от платы и компонентов, используемых в вашем проекте, вы потенциально можете выводить 9 В или 10 В в зависимости от конфигурации. Вам просто нужно убедиться, что вы получили необходимые компоненты для построения вашей схемы, чтобы выходное напряжение превышало 5 В. Вот несколько конвертеров из нашего каталога.

LiPower - повышающий преобразователь

В наличии PRT-10255

Плата LiPower основана на невероятно универсальном повышающем преобразователе TPS61200.Плата сконфигурирована для использования с Li…

5

Рекомендации по напряжению / току

Какое напряжение мне нужно для Project X?

Это во многом зависит от схемы, поэтому на этот вопрос нет простого ответа. Однако большинство микропроцессорных плат для разработки, таких как Arduino Uno, имеют на борту регулятор напряжения.Это позволяет нам подавать напряжение в указанном диапазоне выше регулируемого. Многие микропроцессоры и ИС на платах разработки работают от 3,3 В или 5 В, но имеют регуляторы напряжения, которые могут работать от 6 В до 12 В.

Питание поступает от источника питания и затем регулируется регулятором напряжения, так что каждая микросхема получает постоянное напряжение, даже если потребляемый ток может колебаться в разное время. Здесь, в SparkFun, мы используем блоки питания 9 В для многих наших продуктов, которые работают в режиме 3.Диапазон от 3 до 5 В. Однако, чтобы проверить, какое напряжение является безопасным, рекомендуется проверить техническое описание регулятора напряжения на плате разработки, чтобы узнать, какой диапазон напряжения рекомендуется производителем.

Сколько тока мне нужно для Project X?

Этот вопрос также зависит от макетной платы и микропроцессора, которые вы используете, а также от того, какие схемы вы планируете подключать к ним. Если ваш блок питания не может дать вам количество энергии, необходимое для проекта, схема может начать работать странным, непредсказуемым образом.Это также известно как потемнение.

Как и в случае с напряжением, рекомендуется проверить таблицы данных и оценить, что может понадобиться различным частям схемы. Также лучше округлить и предположить, что вашей схеме потребуется больше тока, чем для обеспечения достаточного тока. Если ваша схема включает элементы, требующие большого количества тока, такие как двигатели или большое количество светодиодов, вам может потребоваться большой источник питания или даже отдельные источники питания для микропроцессора и дополнительных двигателей.В противном случае падение мощности может привести к сбросу микропроцессора, недостаточному крутящему моменту двигателя или неполному горению светодиодных индикаторов. Опять же, всегда в ваших интересах получить блок питания, рассчитанный на более высокий ток, и не использовать дополнительные по сравнению с блоком, который не может обеспечить достаточно.

Браун-ауты со светодиодными лентами, соединенными ромбовидной цепочкой

Не знаете, насколько актуален ваш проект?

После того, как вы некоторое время поиграете со схемами, будет легче оценить количество тока, которое требуется вашему проекту.Тем не менее, распространенные способы выяснить это экспериментально - либо использовать настольный источник питания переменного тока постоянного тока, который имеет считывание тока, либо использовать цифровой мультиметр для измерения тока, идущего в вашу схему во время ее работы. Это даст вам общее представление о том, какой блок питания выбрать для вашего проекта.

Если вы не знаете, как измерить ток с помощью мультиметра, обратитесь к нашему руководству по мультиметру.

Мы настоятельно рекомендуем иметь цифровой мультиметр в вашем электронном ящике.Он отлично подходит для измерения силы тока или напряжения.

Подключения

Как подключить аккумулятор или источник питания к цепи?

Есть много способов подключить источник питания к вашему проекту.

Общие способы подключения питания к вашей цепи

Настольные переменные блоки питания обычно подключаются к цепям напрямую с помощью банановых разъемов или проводов. Они также похожи на разъемы на кабелях щупов мультиметра.

Кабели с крючками от банана к микросхеме

В наличии CAB-00506

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, функциональным генераторам и т. Д. Кабели…

7

Кабели из банана в банан

В наличии CAB-00507

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Кабель от банана к аллигатору

В наличии CAB-00509

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Многие проекты сначала строятся на макетной плате с использованием проводов в качестве прототипа, прежде чем они станут конечным продуктом. Существует множество способов питания вашей макетной платы, многие из которых включают те же разъемы, которые упоминаются здесь.

Как только проект проходит стадию прототипирования, он обычно попадает на печатную плату. Если вы планируете сделать схему один или два раза, можно перенести схему на макетную плату и вручную подключить схему для защиты проекта.Если вы планируете создавать схему более нескольких раз, вы можете подумать о разработке схемы с помощью программного обеспечения САПР (например, Eagle), чтобы сэкономить время при подключении проекта или если вы планируете уменьшить размер всей схемы.

Одним из наиболее распространенных разъемов питания, используемых на готовой печатной плате, как в бытовой электронике, так и в электронике для хобби, является цилиндрический разъем, также известный как цилиндрический разъем. Они могут различаться по размеру, но все они работают одинаково и обеспечивают простой и надежный способ поддержки вашего проекта.В зависимости от вашего дизайна, вы также можете получать питание от USB-порта компьютера или настенного адаптера.

Разъем SparkFun USB-C

В наличии BOB-15100

SparkFun USB-C Breakout обеспечивает в 3 раза большую мощность, чем предыдущая плата USB, при этом отключая каждый контакт на соединении…

5

Батареи обычно хранятся в футляре, который удерживает батареи и подключает цепь с помощью проводов или цилиндрического разъема.Некоторые батареи, такие как литий-полимерные ионные батареи, часто используют разъем JST. Вот несколько из нашего каталога.

Держатель батареи 9 В

В наличии PRT-10512

Этот держатель батареи 9 В позволяет вашей батарее плотно защелкнуться и удерживать ее на месте, что отлично подходит в ситуациях, когда вы надеваете…

3

Чтобы узнать больше о различных разъемах питания, см. Наше руководство по разъемам.

Основные сведения о разъемах

18 января 2013 г.

Разъемы - главный источник путаницы для людей, только начинающих заниматься электроникой. Количество различных вариантов, терминов и названий соединителей может сделать выбор одного или найти тот, который вам нужен, непростым. Эта статья поможет вам окунуться в мир разъемов.

Удаленное / Мобильное питание

Какую батарею мне выбрать?

Когда вы запитываете удаленную цепь, все еще возникают те же проблемы с поиском батареи, которая обеспечивает правильное напряжение и ток.Срок службы или емкость аккумулятора - это показатель общего заряда аккумулятора. Емкость аккумулятора обычно оценивается в ампер-часов, (Ач) или миллиампер-часов (мАч), и это говорит вам, сколько ампер может обеспечить полностью заряженная батарея за период в один час. Например, аккумулятор емкостью 2000 мАч может обеспечивать ток до 2 А (2000 мА) в течение одного часа.

Размер, форма и вес аккумулятора также следует учитывать при создании мобильного проекта, особенно если он будет летать на чем-то вроде небольшого квадрокоптера.Вы можете получить приблизительное представление о разнообразии, посетив этот список в Википедии. Узнайте больше о типах аккумуляторов в нашем руководстве по аккумуляторным технологиям.

Батареи, подключенные последовательно и параллельно

Вы можете добавлять батареи последовательно или параллельно, чтобы получить желаемое напряжение и ток, необходимые для вашего проекта. Когда две или более батарей помещаются в серии , напряжения батарей складываются. Например, свинцово-кислотные автомобильные аккумуляторы фактически состоят из шести одноэлементных свинцово-кислотных аккумуляторов, соединенных последовательно; шестерка 2.Ячейки 1 В в сумме дают 12,6 В. При последовательном соединении двух батарей рекомендуется, чтобы они были одного химического состава. Кроме того, будьте осторожны при последовательной зарядке аккумуляторов, поскольку многие зарядные устройства рассчитаны только на одноэлементную зарядку.

При подключении двух или более батарей по параллельно емкости увеличиваются. Например, четыре батареи AA, подключенные параллельно, по-прежнему будут вырабатывать 1,5 В, однако емкость батарей увеличится в четыре раза.

Какая емкость аккумулятора мне нужна для моего проекта?

На этот вопрос легче ответить, если вы определили величину тока, который обычно потребляет ваша схема.В следующем примере мы будем использовать оценку. Однако рекомендуется измерять ток, потребляемый вашей схемой, с помощью цифрового мультиметра, чтобы получить точные результаты.

В качестве примера давайте начнем со схемы, оценим ее текущий выходной ток, затем выберем батарею и посчитаем, как долго схема будет работать от батареи. Давайте выберем микроконтроллер ATmega 328, который станет нашим мозгом для схемы. В нормальных условиях он потребляет около 20 мА. Давайте теперь подключим три красных светодиода и стандартные резисторы ограничения тока 330 Ом к цифровым контактам ввода / вывода микроконтроллера.В этой конфигурации каждый добавленный светодиод заставляет схему потреблять примерно на 10 мА больше тока. Теперь давайте подключим к микроконтроллеру два мотора Micro Metal. Каждый из них при включении потребляет примерно 25 мА. Наш общий возможный текущий розыгрыш сейчас составляет:

Давайте выберем для этого стандартную щелочную батарею AA, потому что она имеет более чем достаточный ток (до 1 А), имеет приличную емкость батареи (обычно в диапазоне от 1,5 Ач до 2,5 Ач) и очень распространена. Мы предположим, что в этом примере среднее значение составляет 2 Ач.Обратной стороной использования AA является то, что он имеет выходное напряжение только 1,5 В, а поскольку остальные наши компоненты будут работать от 5 В, нам необходимо увеличить напряжение. Мы можем использовать этот повышающий переход на 5 В, чтобы получить необходимое нам напряжение, или мы можем использовать три батареи AA последовательно, чтобы приблизить нас к необходимому напряжению. Три последовательно включенных АА дают нам напряжение 4,5 В (3 раза по 1,5 В). Вы также можете добавить еще одну батарею на 6 В и регулировать напряжение в соответствии с требованиями вашей схемы.

Чтобы рассчитать, как долго цепь будет работать от батареи, мы используем следующее уравнение:

Для схемы, запитанной параллельно от 3 АА и подключенной к цепи с постоянным потребляемым током 100 мА, это соответствует:

В идеале мы могли бы получить 60 часов автономной работы от этих трех щелочных батарей AA в такой параллельной конфигурации.Однако рекомендуется «снижать номинальные характеристики» аккумуляторов, что означает предполагать, что время автономной работы будет ниже идеального. Давайте консервативно скажем, что мы получим 75% идеального времени автономной работы и, следовательно, около 45 часов автономной работы для нашего проекта.

Срок службы батареи также может варьироваться в зависимости от фактического потребляемого тока. Вот график для батареи Energizer AA, показывающий ожидаемое время ее работы при постоянном потреблении тока.

Energizer AA, ток и время работы от батареи

Это лишь одна из многочисленных конфигураций, которые вы можете использовать для удаленного управления вашим проектом.

Ищете другие примеры? Ознакомьтесь с Powering LilyPad LED Projects, чтобы увидеть еще один пример расчета, сколько энергии потребуется вашему проекту для светодиодов!

Стресс-тестирование

Теперь, когда вы выбрали источник питания и разъем, обязательно протестируйте свой проект и понаблюдайте за его поведением. В зависимости от производителя блоки питания могут иметь разную производительность. Обязательно протестируйте сетевой адаптер в течение определенного периода времени, чтобы убедиться, что микроконтроллер не отключится, а блок питания не сбросится под нагрузкой.Для определенных проектов, использующих емкостные сенсорные датчики, обязательно проверьте, нет ли задержек, вызванных шумными источниками питания.

Если вы управляете своим проектом удаленно, обязательно проверяйте его с аккумулятором. Батареи могут обеспечивать разную мощность в зависимости от подключенной нагрузки и химического состава батареи. Это также может привести к отключению микроконтроллера или прекращению подачи питания.

Ресурсы и дальнейшее развитие

Теперь вы должны знать наиболее распространенные способы питания вашей цепи и то, как определить, какой из них лучше всего подходит для вас, в зависимости от конкретных требований вашего проекта.Теперь вы можете сделать лучшее суждение, исходя из соображений тока, напряжения, разъема и мобильности для вашего проекта. Ознакомьтесь с этими другими замечательными руководствами для мониторинга, управления или поддержки вашего проекта!

Аккумуляторные технологии

Основы батарей, используемых в портативных электронных устройствах: LiPo, NiMH, плоские и щелочные батареи.

TSH82 Руководство по подключению настраиваемого операционного усилителя

Плата настраиваемого операционного усилителя TSH82 предлагает разработчикам отличный баланс производительности и гибкости.Мы покажем вам, как извлечь максимум из вашей доски!

Или посмотрите несколько идей в блогах:

4 лучших портативных зарядных устройства для ноутбуков 2021

Наш выбор

Anker Powerhouse 100

Это компактное, легкое портативное зарядное устройство имеет розетку переменного тока, порт USB-C PD и два порта USB-A, и оно может заряжать даже большинство энергоемких ноутбуков, пока они используются. В отличие от многих конкурентов, он также поставляется с настенным зарядным устройством на 45 Вт.

Anker Powerhouse 100 показал хорошие результаты в нашем тестировании, предлагая выходную мощность более 100 Вт и достаточную емкость, чтобы довести разряженный аккумулятор MacBook Air до 90% заряда - даже при интенсивном использовании с повышенной яркостью экрана. Он имеет множество выходных портов, включая порт USB-C Power Delivery (PD), два порта USB-A и розетку переменного тока. Устройство поставляется с настенным зарядным устройством на 45 Вт и кабелем USB-C, который можно использовать для зарядки на максимальной скорости, а также кабелем USB-A и защитным тканевым футляром для переноски.Он небольшой, прочный и легко упаковываемый, весит всего 1,9 фунта. Он также интуитивно понятен, хотя мы могли бы обойтись без встроенного фонарика и ремешка на запястье. На него распространяется стандартная 18-месячная гарантия Anker, которая является одной из самых длительных в этой категории продуктов.

Номинальная емкость: 27000 мАч (97,2 Втч)
Максимальная мощность: 141 Вт
Вес: 1,9 фунта
Размеры: 7,9 на 4,7 на 1,2 дюйма

Второе место

Портативная розетка ChargeTech 27К 4.0

Эта модель имеет множество портов, впечатляющую емкость и позволяет заряжать большинство ноутбуков. Он тонкий, изящный, простой в использовании и оснащен зарядным устройством. Но он тяжелее, чем остальные наши медиаторы, и не такой прочный.

Портативная розетка ChargeTech Portable Power Outlet 27K 4.0 имеет те же варианты портов, что и Anker, более высокую емкость (он смог зарядить наш тестовый ноутбук 1,2 раза) и более низкую цену на момент написания этой статьи. Это элегантное и компактное зарядное устройство легко помещается в рюкзак или портфель, и оно так же просто в использовании, как и наш лучший выбор.Но он не такой прочный, как Anker - его металлический корпус легче показывает царапины и вмятины, у него нет защитной резиновой заслонки над розеткой переменного тока, и он не поставляется с футляром для переноски - а весит он 2,4 фунта. это немного тяжелее. Как и в случае с нашим лучшим выбором, вам не нужно поставлять собственное настенное зарядное устройство, чтобы зарядить ChargeTech, поскольку он поставляется с зарядным кабелем USB-C и настенным зарядным устройством на 30 Вт. На него предоставляется гарантия сроком на один год, что меньше, чем у Anker, но у вас должно быть достаточно времени, чтобы убедиться, что он не неисправен.

Номинальная емкость: 27000 мАч (97,2 Втч)
Максимальная мощность: 133 Вт
Вес: 2,4 фунта
Размеры: 8,0 на 5,4 на 1,2 дюйма

Также отлично

Omnicharge Omni 20+

Это компактное и легкое зарядное устройство поддерживает беспроводную зарядку и имеет OLED-экран, на котором отображается время автономной работы и другие показатели. Он не такой мощный, как другие наши модели, и у него нет настенного зарядного устройства, но он заряжается с помощью любого совместимого зарядного устройства постоянного тока или USB-C.

Omnicharge Omni 20+ - самый легкий (1,4 фунта) и компактный из наших медиакомпонентов. Это простое в использовании зарядное устройство выглядит изящнее, чем большинство моделей, кажется прочным и имеет закругленные углы, что делает его удобным в использовании. Если у вас есть телефон или другое устройство, которое может заряжаться по беспроводной сети, например, новый iPhone, Google Pixel или Samsung Galaxy, это единственный наш выбор, который поддерживает беспроводную зарядку. Это также одна из немногих моделей, которые мы видели с опциями двойного входа (вы можете заряжать его с помощью постоянного тока или USB-C PD), а также экраном, на котором отображается полезная информация, такая как входная / выходная мощность, уровень заряда и работа температура.Если вам нужны эти дополнительные функции и максимальная портативность, это ваш лучший вариант, но у него есть некоторые заметные недостатки. А именно, Omnicharge имеет самую низкую выходную мощность (98 Вт) и емкость (он заряжал наш MacBook Air только примерно до 80%) из всех наших выборов, и на момент написания статьи это самый дорогой. И хотя в комплекте идут кабели USB-A и USB-C, в комплекте нет ни кейса, ни зарядного устройства. Как и ChargeTech, на эту модель предоставляется годовая гарантия.

Номинальная емкость: 20400 мАч (73.4 Вт · ч)
Максимальная мощность: 98 Вт
Вес: 1,4 фунта
Размеры: 5,0 на 4,8 на 1,1 дюйма

Бюджетный выбор

RAVPower 30000 мАч Блок питания переменного тока (RP-PB055)

Этот блок проворачивается его мощность составляет 149 Вт - это максимальная мощность из всех, что мы выбрали, - а емкость аккумулятора такая же, как у любого зарядного устройства, которое мы тестировали. Он тяжелее большинства, весит более 2 фунтов, но работает так же или лучше, чем более дорогие модели.

Блок питания переменного тока RAVPower 30000 мАч (RP-PB055) может показаться дорогим для бюджетного выбора, но на момент написания этой статьи мы не нашли ничего стоимостью менее 100 долларов, что мы могли бы рекомендовать.Это не наш лучший выбор, потому что он не поставляется с настенным зарядным устройством, его прорезиненная поверхность собирает отпечатки пальцев, он относительно тяжелый (2,2 фунта) и более громоздкий, чем остальные наши модели (особенно в его защитном жестком футляре), но он превосходит почти во всех остальных отношениях. Он более мощный, чем другие наши модели, и способен выдать колоссальные 149 Вт для ноутбуков и других энергоемких устройств. Он заряжал наш тестовый ноутбук 1,2 раза (связывая с ChargeTech для максимальной емкости), и, как и наш лучший выбор, он имеет порт USB-C PD, два порта USB-A и розетку переменного тока.В дополнение к жесткому корпусу он поставляется с мягким сетчатым мешочком и зарядным кабелем USB-C, а его 18-месячная гарантия соответствует периоду покрытия, выбранному нами в лучшем случае от Anker. Эта модель - ваш лучший выбор, если вы не возражаете против увеличения объема в обмен на максимальную мощность.

Номинальная емкость: 30 000 мАч (108 Втч)
Максимальная мощность: 149 Вт
Вес: 2,2 фунта
Размеры: 7,0 на 5,4 на 1,8 дюйма

Могу ли я использовать зарядное устройство меньшей мощности для моего Ноутбук? - ПК Webopaedia

Введение

Часто мы ищем замену нашим техническим устройствам в определенных ситуациях.Вот почему большинство пользователей ноутбуков, как правило, используют зарядные устройства для ноутбуков с адаптером питания меньшей мощности. Хотя какое-то время это кажется хорошим приемом, использование зарядного устройства меньшей мощности для вашего ноутбука может иметь некоторые последствия.

Также читайте: Сколько ватт требуется для зарядки ноутбука?

Что означает мощность зарядного устройства?

Проще говоря, мощность указывает количество энергии, которое может потребоваться, когда ваш ноутбук подключен к розетке.Каждое зарядное устройство имеет свой уровень мощности, поэтому их можно разделить на «зарядные устройства высокой мощности» или «зарядные устройства с низкой мощностью».

Как точно работает блок питания для ноутбука?

Мы можем сравнить мощность, потребляемую вашим ноутбуком, с потребностями в освещении вашей комнаты. Хотя вам может подойти более тусклый свет или свет с более низким уровнем яркости и мощности, например лампы мощностью 45 или 60 Вт, они не будут столь же эффективными, когда вам нужен очень яркий свет для работы.

Также читайте: Могу ли я оставить свой ноутбук подключенным к сети на ночь?

Точно так же и прилагаемый к ноутбуку блок питания рассчитан на работу в самых неблагоприятных условиях зарядки. И хотя в большинстве случаев может показаться, что он работает нормально, ему не хватает мощности для запуска программ с высокой производительностью.

После того, как зарядное устройство было подключено к розетке, мощность переменного тока автоматически преобразуется в мощность постоянного тока и передается на материнскую плату.Затем материнская плата распределяет его по различным другим частям вашего ноутбука, особенно по батарее, поскольку она будет хранить мощность постоянного тока, которую можно будет использовать позже.

Могу ли я использовать зарядное устройство меньшей мощности для моего ноутбука?

Ответ - да. Вы определенно можете использовать зарядное устройство с меньшей мощностью для своего ноутбука, но это напрямую повлияет на производительность самого ноутбука. Например, использование зарядного устройства на 45 Вт для ноутбука, которому требуется 90 Вт, может не позволить ему работать с максимальным потенциалом.Опять же, это во многом зависит от типа деятельности, выполняемой на самом ноутбуке.

Также читайте: Ноутбук не включается ИЛИ не заряжается [ИСПРАВЛЕНО]

Например, если вы используете свой ноутбук, чтобы прочитать какую-то статью, или если ваш ноутбук бездействует с минимальным уровнем яркости, зарядное устройство с низким энергопотреблением будет работать отлично. Но если вы планируете смотреть видео или фильм на большой громкости, весьма вероятно, что ваш ноутбук откажется от энергии, поступающей через зарядное устройство, и переключится на питание постоянного тока, хранящееся в его батарее.Поскольку ноутбук не будет получать питание через зарядное устройство с низким энергопотреблением, он в конечном итоге отключится, как только батарея разрядится.

Также читайте: Можете ли вы использовать ноутбук без аккумулятора?

Использование зарядного устройства малой мощности для вашего ноутбука будет больше разочарованием, чем удобством для вас. Судя по многочисленным отзывам и опыту пользователей и профессионалов, может оказаться довольно сложно правильно зарядить ноутбук с помощью зарядного устройства малой мощности.Поскольку питание подается медленно, для полной зарядки ноутбука могут потребоваться часы, что определенно не является идеальной ситуацией, если вы торопитесь.

Какие риски связаны с использованием зарядного устройства малой мощности для вашего ноутбука?

При низкой мощности вы потенциально можете вызвать перегорание в блоке питания, повредив его и другие компоненты вашего ноутбука. Поскольку ваш ноутбук будет заряжаться медленнее, чем обычно, несмотря на высокий ток, аккумулятор вашего ноутбука также выйдет из строя.Срок службы аккумулятора значительно сократится, и он также будет разряжаться намного быстрее.

Также читайте: Как заменить батареи ноутбука

Большинство пользователей также жалуются на перегрев своего устройства и адаптера, поскольку для зарядки аккумулятора требуется больше времени. Эти проблемы с охлаждением также могут иметь некоторые другие негативные последствия для вашего устройства, еще больше снижая производительность и возможности вашего ноутбука.

Также существует риск поломки некоторых компонентов вашего ноутбука, так как они будут потреблять электроэнергию, но не смогут ее получить из-за нехватки электроэнергии из-за использования зарядного устройства меньшей мощности.

Также читайте: Ноутбук тормозит при подключении к зарядке? [ИСПРАВЛЕНО]

Когда вы используете зарядное устройство с меньшей мощностью, регулятор напряжения внутри материнской платы регулирует напряжение тока в соответствии с требованиями внутренних компонентов вашего ноутбука. Таким образом, вы можете легко включить свое устройство с помощью зарядного устройства меньшей мощности, которое имеет минимальную разницу, чем то, которое фактически требуется для питания вашего устройства. Например, вы можете легко зарядить свой компьютер на 20 В с помощью зарядного устройства на 19 В без каких-либо осложнений.

Но если разница окажется значительно выше, вы можете столкнуться с проблемами с регулятором напряжения, настолько сильными, что он выйдет из строя или сломается.

Можно ли использовать зарядное устройство меньшей мощности без вреда для ноутбука?

На самом деле, существует одна ситуация, когда вы можете использовать зарядное устройство меньшей мощности, не оказывая отрицательного воздействия на ваше устройство и его производительность. Если вы подключаете ноутбук, когда аккумулятор полностью заряжен для поддержки внешнего источника питания, вы можете избежать как перегрева устройства, так и сокращения срока службы аккумулятора.

Если аккумулятор вашего устройства не заряжен, убедитесь, что вы не используете ноутбук, пока он заряжается. Это еще больше защитит жизнь вашего ноутбука и его аккумулятора.

Несмотря на то, что не рекомендуется использовать зарядное устройство с меньшей мощностью для устройства с достаточно высокой мощностью из-за возможных осложнений, профессионалы считают его безопасным для использования в нестабильной ситуации. Однако постоянное использование зарядного устройства меньшей мощности может привести к серьезному повреждению вашего драгоценного устройства.

Вам также может понравиться:

Сколько ватт требуется для зарядки ноутбука?

Могу ли я оставить ноутбук подключенным к сети на ночь?

Ноутбук не включается или не заряжается [ИСПРАВЛЕНО]

Можно ли использовать ноутбук без аккумулятора?

Как заменить элементы батареи ноутбука

Ноутбук тормозит при подключении к зарядке? [ИСПРАВЛЕНО]

5 способов зарядки ноутбука без зарядного устройства

Бывают случаи, когда вы забываете взять с собой зарядное устройство для ноутбука, собираясь куда-нибудь в поездку.В таких случаях вам понадобится один из способов, которые мы собираемся обсудить сегодня, чтобы зарядить ваш ноутбук энергией и выполнить необходимую работу.

Вам также может быть интересно, безопасно ли заряжать ноутбук без официального зарядного устройства? Мы также рассмотрим эту часть, но сначала давайте узнаем, как ее заряжать.

1. Зарядите свой ноутбук с помощью Power Bank

В зависимости от модели ноутбука вы можете использовать один из портов USB Type-C для зарядки, даже если у вас нет с собой официального зарядного устройства.

Подобно тому, как вы заряжаете свой смартфон через блок питания, когда у вас нет другого способа зарядить его, вы также можете использовать блок питания для зарядки ноутбука.

Но проблема с этим методом заключается в том, что, хотя большинству ноутбуков требуется питание от 8 до 12 В, блоки питания обычно имеют только 5 вольт, что означает, что вам нужно будет получить блок питания, поддерживающий 12 В или выше.

Блок питания PowerCore + 26800 мАч от Anker - отличный выбор для зарядки вашего ноутбука, так как он выдает примерно 20 вольт.

(Обратите внимание, что есть ранние поколения ноутбуков с USB Type-C, которые не поддерживают зарядку.)

2. Зарядите ноутбук от автомобильного аккумулятора

Теперь, если вы не можете управлять блоком питания, вы можете попробовать зарядить ноутбук от автомобильного аккумулятора.

Используя инвертор, такой как BESTEK 300W Power Inverter, вы можете запитать все, что требует до 300 Вт.

Возможно, этого будет недостаточно для запуска электроинструментов, но в данном случае этого более чем достаточно для зарядки вашего ноутбука!

У этого метода есть недостаток, заключающийся в том, что вам нужно оставить инвертор где-нибудь на полу вашего автомобиля. С другой стороны, вы все равно можете брать свой компьютер внутри и снаружи, что отлично подходит для новичков.

3. Используйте адаптер USB Type-C

.

Если у вас нет внешнего аккумулятора или вы не можете зарядить аккумулятор от автомобильного аккумулятора, есть другой способ - использовать адаптер USB Type-C.

В отличие от типа A, USB-C использует меньший овальный разъем, предназначенный для подключения высокой мощности. Он может проводить больше энергии и делать это на гораздо более высоких скоростях.

Адаптер USB Type-C, такой как настенное зарядное устройство Anker USB C, будет заряжать ваш ноутбук так же, как блок питания, но вам придется подключить его к источнику питания, тогда как блок питания является источником питания. сам.

Поскольку адаптер имеет защиту, которая отключает зарядку при обнаружении высокой температуры или других проблем, это один из самых безопасных способов зарядки через USB-C.

4. Зарядите свой ноутбук с помощью универсального адаптера питания

Приятно знать, что есть еще один способ зарядить аккумулятор ноутбука без использования официального зарядного устройства, но если вы установите слишком высокое напряжение при использовании универсального адаптера питания, то, скорее всего, вы получите разрядившуюся или вышедшую из строя аккумуляторную батарею.

Обычно он поставляется со сменными наконечниками, и поддерживается множество различных брендов.

Многие аккумуляторные батареи можно даже подключить к 12-вольтовому прикуривателю вашего автомобиля, что делает их действительно портативными.

5. Зарядите свой ноутбук с помощью супер батареи

Супер батареи похожи на вторые или запасные батареи для вашего ноутбука. У них разные кабели для зарядки, и они идут вместо оригинальной батареи вашего ноутбука.

При покупке убедитесь, что он подходит для вашего ноутбука и имеет правильный размер.Эти устройства относятся к конкретным брендам и могут не работать с вашим ноутбуком, если он специально разработан для этого.

Как вы уже догадались, этот метод не так эффективен, поэтому он используется только в экстренных случаях.

Безопасно ли заряжать ноутбук без официального зарядного устройства?

Если вы не знаете, что делаете, для аккумулятора может быть небезопасно использовать другие методы для зарядки вашего ноутбука. Убедитесь, что напряжение и мощность соответствуют характеристикам зарядного устройства вашего ноутбука.

Во всех случаях официальное зарядное устройство или утвержденная замена - лучший способ зарядить ваш ноутбук.

Подробнее: Стоит ли оставлять ноутбук постоянно подключенным к розетке?

Устали от перезарядки? Рассмотрим MacBook

M1

Если вы хотите избежать всех этих хлопот, связанных с зарядкой ноутбука сторонними зарядными устройствами, есть альтернатива.

Apple MacBook Air M1 и MacBook Pro M1 имеют потрясающее время автономной работы.Они должны прослужить вам более 10 часов, если вы просто просматриваете Интернет и выполняете несколько задач одновременно, не нагружая ЦП и ГП.

Связанный: Как ухаживать за несъемным аккумулятором ноутбука

Когда я начал писать этот пост на своем MacBook Air M1, батарея была на 65 процентов; когда закончил, в батарее осталось 62 процента.

Я использовал всего три процента примерно за час с девятью вкладками, открытыми в Chrome.

Несмотря на свою дороговизну, ноутбуки M1 MacBook Air и MacBook Pro могут проработать целый день без подзарядки.

Держите свой ноутбук заряженным!

Некоторые из этих методов могут быть небезопасными с точки зрения долговечности аккумулятора вашего ноутбука, поэтому не используйте их регулярно, если только не срочно. Всегда используйте официальное зарядное устройство, поставляемое с ноутбуком, и прибегайте к этим методам только при необходимости. Резюмируем:

1.Зарядите свой ноутбук с помощью внешнего аккумулятора

2. Зарядите свой ноутбук автомобильным аккумулятором.

3. Используйте адаптер USB Type-C.

4. Заряжайте свой ноутбук универсальным адаптером питания.

5. Носите супер аккумулятор

Забыть о зарядном устройстве дома действительно раздражает! В следующий раз, собирая чемоданы, первым делом бросьте зарядные устройства, а затем подумайте обо всем остальном.

Знаете, что еще больше раздражает? Это когда у вас есть зарядное устройство, но вы все равно не можете зарядить свой ноутбук!

Ноутбук подключен к сети, но не заряжается? 8 советов по решению проблемы

Если ваш ноутбук подключен к сети, но не заряжается, вот что вы можете сделать, чтобы аккумулятор снова зарядился.

Читать далее

Об авторе Умар Фарук (Опубликовано 23 статей)

Умар был энтузиастом технологий с тех пор, как он себя помнит! В свободное время он смотрит видео о технологиях на YouTube.Он рассказывает о ноутбуках в своем блоге Laptopar, не стесняйтесь проверить!

Более От Умара Фарука
Подпишитесь на нашу рассылку новостей

Подпишитесь на нашу рассылку, чтобы получать технические советы, обзоры, бесплатные электронные книги и эксклюзивные предложения!

Нажмите здесь, чтобы подписаться

Зарядное устройство VS Адаптер | HGD Индия

Фактическая разница между зарядным устройством и адаптером заключается в том, что зарядное устройство - это электрическое или электронное устройство, которое специально разработано для зарядки заряжаемого устройства, такого как аккумулятор или суперконденсатор, тогда как адаптер - это электрическое или электронное устройство, которое специально разработано для обеспечения источник питания для электронного устройства, такого как ноутбук, музыкальный проигрыватель или USB-вентилятор.Я знаю, что вы не поняли, что я пытаюсь сказать. Пожалуйста, прочтите статью полностью, чтобы понять разницу.

Зарядное устройство

Предположим, у нас есть батарея на 4,2 В, 3000 мАч. Теперь мы хотим его зарядить. Поэтому для зарядки этой батареи нам нужен источник питания 5 В постоянного тока, но у нас дома есть источник переменного тока 230 В (Индия) или 120 В переменного тока (США). В этом случае требуется зарядное устройство, которое преобразует переменный ток в постоянный и понижает напряжение от стандартного до требуемого. Так что зарядное устройство создано специально для зарядки аккумулятора.

Адаптер

Допустим, у нас есть вентилятор 5В постоянного тока. Если мы хотим использовать этот вентилятор, нам понадобится источник питания 5 В. Здесь требуется адаптер. Таким образом, адаптер предназначен только для обеспечения необходимого питания вентилятора. Если вентилятор был 5 В переменного тока, то нам понадобится адаптер, который может выдавать 5 В переменного тока на выходе.

Зарядное устройство VS Адаптер

1. Зарядное устройство специально разработано для зарядки таких устройств, как аккумулятор или суперконденсатор, тогда как адаптер - это устройство, которое предназначено для обеспечения необходимого источника питания для устройства.

2. Нет доступного зарядного устройства переменного тока в переменный, поскольку все батареи и суперконденсаторы заряжаются постоянным током, а не переменным током, но на рынке доступны адаптеры переменного тока в постоянный и переменного тока в переменный, они используются для обеспечения питания. питание для устройств постоянного и переменного тока соответственно.

3. Как правило, выходное напряжение зарядного устройства превышает требуемое напряжение устройств. Например, для батареи 4,2 В требуется зарядное устройство на 5 В. С другой стороны, адаптеры имеют такое же номинальное выходное напряжение, как и требуется для устройств.Например, для вентилятора 5 В постоянного тока требуется адаптер постоянного тока на 5 В.

Мобильное зарядное устройство VS Адаптер для ноутбука

Прочитав приведенное выше объяснение, вы можете подумать, почему используются разные названия, такие как «Мобильное зарядное устройство», «Адаптер для ноутбука», поскольку они оба используются для зарядки.

Если вы извлечете аккумулятор из своего мобильного телефона, подключите зарядное устройство и попытаетесь включить мобильный телефон, он не включится, потому что мобильное зарядное устройство предназначено только для зарядки аккумулятора, а не для подачи питания на мобильный телефон для его работы.Мобильный телефон всегда получает питание от аккумулятора, даже если подключено зарядное устройство или нет.

Если вы вытащите аккумулятор из портативного компьютера и подключите адаптер, а затем попытаетесь ВКЛЮЧИТЬ портативный компьютер, он будет включен, потому что адаптер предназначен для подачи питания на портативный компьютер для его работы. Когда вы подключаете адаптер, он не будет напрямую подключен к батарее. Внутри ноутбука установлена ​​дополнительная схема для зарядки аккумулятора, питающегося от адаптера.

Итак, когда мы подключаем адаптер, ноутбук берет питание от адаптера и работает. При этом заряжается и аккумулятор. Когда мы отключаем адаптер, ноутбук берет питание от аккумулятора и работает.

В чем разница? - Gizbuyer Guide

Электроника иногда может сбивать с толку. При таком большом количестве терминов, шнуров и объектов может быть трудно понять, что каждый из них делает и какой из них вам следует использовать.Зарядные устройства и адаптеры попадают в категорию часто перепутанных, так каковы фактические различия между ними?

Адаптер и зарядное устройство: в чем разница? Хотя кажется, что они служат одной и той же цели, адаптер и зарядное устройство - это два разных электронных аксессуара, которые иногда могут работать вместе. Адаптер - это то, что используется для зарядки зарядного устройства, а зарядное устройство используется для зарядки электронного устройства, такого как телефон или ноутбук.

Адаптер Зарядное устройство
Зарядное устройство зарядное устройство Заряжает аккумулятор
Адаптирует и преобразует напряжения
Нет внутренней электроники Преобразует переменный ток в постоянный
Обеспечивает источник питания Не все зарядные устройства работают одинаково

Знание разницы между зарядными устройствами и адаптеры - отличный способ убедиться, что вы используете правильный инструмент для работы.Давайте поговорим о том, что отличает их от других и выберете ли вы тот, который вам подходит!

Адаптер и зарядное устройство: в чем разница?

Как и многие другие электронные аксессуары, зарядные устройства и адаптеры легко запутать. Кажется, что они делают одно и то же, но выполняют разные действия, которые часто дополняют друг друга.

Адаптеры - это предмет, который помогает заряжать зарядное устройство. Они обеспечивают источник питания и помогают преобразовывать один тип напряжения в другой.Когда вы посещаете другие страны, вы используете адаптер для зарядки своих электронных устройств. Не только из-за разной формы розеток, но и из-за различных электрических токов. Сами адаптеры не имеют внутренних средств, необходимых для зарядки аккумулятора.

Зарядные устройства, напротив, предназначены для зарядки аккумулятора. При использовании с адаптером они снимают с него электрический ток и преобразуют его из переменного тока в постоянный, который будет использоваться с аккумулятором. Зарядные устройства также могут помочь регулировать количество электричества, поступающего от адаптера или сетевой розетки, чтобы гарантировать, что электронный элемент не получает слишком много.Одна отрицательная сторона зарядных устройств заключается в том, что они могут зависеть от типа устройства, которое они заряжают.

Скорее всего, у вас дома есть множество адаптеров и зарядных устройств. Убедитесь, что вы используете их не только по прямому назначению, но и что адаптер или зарядное устройство, которые вы используете, совместимы с электронным объектом, который вы пытаетесь запитать.

Адаптеры

Адаптеры - незаменимый инструмент для всех, кто хочет использовать электронику. Адаптер может помочь двум электронным устройствам работать вместе, например, компьютерным шнурам или игровым консолям.Если вы когда-либо путешествовали за границу в другую страну, возможно, вы использовали адаптер для использования своих электронных устройств или для зарядки чего-либо. Часть устройства, которая позволяет подключать устройства к розетке, называется адаптером .

Адаптеры в конечном итоге являются источником питания. Адаптеры помогают адаптировать выходное напряжение из розетки к потребностям вашего электронного устройства. В отличие от аккумулятора или зарядного устройства, адаптер не содержит внутренних элементов, которые накапливают энергию, чтобы электронное устройство оставалось живым без подключения к сети.

Используются адаптеры двух основных типов. К ним относятся адаптер переменного тока и адаптер постоянного тока . Вы можете узнать, какой адаптер нужен вашему электронному устройству, проверив заднюю часть устройства, или вы также можете проверить блок питания, если ваше устройство его использует.

Адаптер переменного тока

Адаптер переменного тока означает адаптеры переменного тока. Это означает, что электрический ток, который он использует, имеет обратное направление. Ток переходит от положительного тока к отрицательному за один интервал .Если вы хотите изменить напряжение переменного тока, то адаптер переменного тока - ваш лучший вариант. Этим типам адаптеров часто дается входной интервал, чтобы узнать их напряжение.

Адаптер постоянного тока

Адаптеры постоянного тока отличаются тем, что их ток течет только в одном направлении. В отличие от адаптеров переменного тока у них постоянный поток и не меняется полярность тока . Адаптеры постоянного тока принимают переменные токи энергии и преобразуют их в постоянные токи.Адаптеры постоянного тока также рассчитываются на основе их максимальной выходной мощности.

Зарядные устройства

Многие из нас ежедневно используют несколько зарядных устройств. Они принимают переменный ток питания и превращают его в постоянный ток, который можно использовать в большинстве электронных устройств. Зарядное устройство часто используется для зарядки аккумулятора или электронного устройства, такого как телефон, портативное игровое устройство или наушники. Одним из недостатков использования зарядного устройства является то, что не все зарядные устройства подходят для разных устройств.

При использовании с адаптером, зарядное устройство принимает электрический ток, который вырабатывается адаптером .Затем он возьмет эту энергию и преобразует ее в напряжение, необходимое конкретному устройству, чтобы батарея начала заряжаться. По сути, шнур, которым заряжается ваш компьютер, не то, что нужно для зарядки вашего смартфона.

Не все зарядные устройства одинаковы. Иногда бывает сложно найти зарядное устройство стороннего производителя, которое работает с вашим электронным устройством. Некоторые зарядные устройства не обязательно подключать к розетке. Внешние аккумуляторы, беспроводные зарядные устройства и автомобильные зарядные устройства работают от собственного источника питания, в котором адаптер не пригодится.Большинство зарядных устройств, которые не подключены напрямую к розетке, не будут иметь такой же выходной сигнал, как подключенные.

Адаптеры и зарядные устройства - одно и то же?

Хотя кажется, что адаптеры и зарядные устройства делают почти одно и то же, у каждого из них есть свои ограничения. Адаптеры иногда можно использовать в качестве зарядного устройства, но зарядное устройство никогда не даст такой же выходной энергии, как адаптер. Когда дело доходит до некоторых электронных устройств, таких как ноутбуки, шнур для зарядки и адаптер - это почти одно и то же.

Адаптеры обеспечивают подачу электрического тока на что-нибудь, например, ноутбук. Например, , если вы обнаружите, что ваш компьютер не будет удерживать заряд аккумулятора, вы все равно сможете использовать это устройство, пока к нему подключен адаптер . Зарядные устройства работают с перезаряжаемыми батареями, а это означает, что если с вашей батареей что-то не так, вы не сможете использовать это устройство после того, как истечет текущий срок службы батареи.

Что следует использовать?

Если вы хотите подключить электрическое устройство к вторичному источнику питания, то адаптер обеспечит получение нужного напряжения без выхода из строя вашего оборудования.Для тех, кто путешествует, переходная часть вашего преобразователя гарантирует, что ваши вилки будут подходить к разным розеткам. Если вы используете электронное устройство, которое не указано как портативное, вы должны использовать адаптер, который прилагается к нему, или тот, который предназначен для использования . Сюда входят игровые приставки, настольные компьютеры, телевизоры и т. Д.

Зарядное устройство следует использовать только с электронным устройством, содержащим перезаряжаемую батарею . Телефоны, портативные игровые системы или ноутбуки - это все, что вам нужно для зарядного устройства.Зарядное устройство знает количество напряжения, которое требуется конкретному элементу, и будет заряжать внутреннюю батарею устройства, чтобы вы могли использовать его по беспроводной сети после того, как батарея будет заряжена.

Источники:

https://www.howtogeek.com/175734/htg-explains-can-you-use-any-charger-with-any-device/

http://www.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *