Как сделать зарядное устройство из бесперебойника – Зарядное устройство на скорую руку из сгоревшего бесперебойника

Зарядное устройство из бесперебойника с диммером


Однажды достался мне на запчасти старый бесперебойник от компьютера. Но не стал я его разбирать и утилизировать. Решил сделать из него зарядное устройство для автомобильных аккумуляторов, тем более, что мощности его трансформатора для этой цели вполне было достаточно.


Зарядники из старых бесперебойников я делал несколько раз, но это были совершенно безобразные поделки на скорую руку, собранные на дощечке, без регулировки и даже без предохранителя. На самоделкине даже публиковалось одно из них

Конечно, где – то в лесу, в деревне за 100 км от города севший аккумулятор, при крайней необходимости, можно пытаться заряжать от чего угодно, но для постоянного использования нужна хорошая и безопасная конструкция.

Разбираем бесперебойник и удаляем всё лишнее. Оставляем сетевой разъём с предохранителем, выходную розетку (ещё пригодится), трансформатор, выключатель.



Ещё понадобится мощный диодный мост с радиатором, конденсатор 4700 мкФ 35В, кулер от компьютера (но это не обязательно), микроамперметр (мне попался от старого кассетника), шунт примерно на 0,3 Ома и диммер. Диммер подойдёт самый обычный, используемый для регулировки света в помещениях, на 300 Ватт.

Сначала надо проверить трансформатор. Находим у него обмотку с самым большим сопротивлением. Это, скорее всего, была выходная обмотка, с напряжением 220В.

Теперь она будет входной. Подаём на неё напряжение из розетки и меряем, сколько будет на выходе.

Получилось 14,2В. переменного тока. После выпрямления на конденсаторе фильтра получится около 19В.

Димер тоже разбираем, нам нужна только его электронная начинка с регулятором.



Ну, а дальше всё просто. Уголками и винтами с гайками закрепляем все эти запчасти в корпусе и соединяем все вышеуказанные запчасти.
Схему соединений приводить нет особого смысла, потому как нет в ней ничего сложного.

Розетка, которая раньше была выходом бесперебойника, припаивается напрямую к сетевому разъёму, и теперь просто выполняет функцию удлинителя.

Димер включается в разрыв сетевого провода, последовательно с сетевым выключателем, и регулирует напряжение сети на входе трансформатора.

Выход трансформатора своими клеммами соединяется с диодным мостом, на котором есть соответствующая маркировка : ~, +, и - .
Конденсатор фильтра припаивается прямо к выводам диодного моста, согласно его полярности. Сюда же припаиваются провода от вентилятора, красный плюс, черный минус. С диодного моста синий провод «минус» идет прямо на «минус» аккумулятора.


Плюсовой, коричневый провод, с диодного мота припаивается к шунту, собранному из трёх параллельно соединённых керамических резисторов сопротивлением 1 (один) Ом. В итоге получается 0,33 Ом. Мощность резисторов 5 вт. С выхода шунта коричневый провод идёт на «плюс» аккумулятора.

Провода микроамперметра припаиваются прямо к выводам шунта. Сам микроамперметр закрепляется на пластиковой передней панели с помощью термоклея. Отверстия в пластиковой панели для микроамперметра и ручки диммера делаются обычным ножом. Тем же термоклеем крепится и ручка регулятора.


Аккумулятор подключается специальными цанговыми клеммами, купленными в автомагазине по случаю.


Перед включением зарядного устройства следует подключить аккумулятор (строго соблюдая полярность!), и включить устройство.

Регулируя напряжение на входе, подбирают ток заряда аккумулятора на уровне 5..5,5 А. Это соответствует зарядному току 12 – вольтового автомобильного аккумулятора на 55 Ампер-часов. При указанном сопротивлении шунта (0,33 Ом) стрелка микроамперметра (ток его отклонения по паспорту равен 1 мА), как раз будет находиться в среднем положении шкалы. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Доработка и переделка бесперебойника

ИБП – это очень выгодный прибор. Пока он работает, у пользователя нет проблем с электроснабжением. Но на этом функциональность данного прибора не заканчивается. Простейшая доработка бесперебойника дает возможность создать на его базе такие устройства как преобразователь, блок питания и зарядка.



Как бесперебойник переделать в преобразователь напряжения 12/220 В

Преобразователь напряжения (инвертор) превращает постоянный 12-вольтовый ток в переменный, попутно повышая напряжение до 220 вольт. Средняя стоимость такого устройства – 60-70 долларов США. Однако даже у владельцев изношенных бесперебойников с функцией старта от батареи есть вполне реальный шанс получить работоспособный преобразователь фактически даром. Для этого нужно сделать следующее:

  1. Вскрыть корпус ИБП.

  2. Демонтировать аккумулятор, сняв с клемм накопителя два провода – красный (на плюс) и черный (на минус).

  3. Демонтировать  спикер – устройство звуковой сигнализации, похожее на сантиметровую шайбу. 

  4. Припаять к красному проводу предохранитель. Большинство конструкторов советуют использовать предохранители на 5 ампер.

  5. Соединить предохранитель с контактом «входа» ИБП – гнезда, куда вставлялся кабель, соединяющий бесперебойник с розеткой.

  6. Соединить черный провод со свободным контактом гнезда «входа».

  7. Взять штатный кабель для подключения ИБП к розетке, срезать вилку. Подключить разъем в гнездо входа и определить цвета проводов, соответствующие красному и черному контактам.

  8. Подсоединить провод от красного контакта к плюсу аккумулятора, а от черного – к минусу.

  9. Включить ИБП.

Внутреннее устройство ИБП Eaton 5P 1150i

Такую трансформацию допускают только бесперебойники с функцией старта от батареи. То есть ИБП должен изначально уметь включаться от аккумулятора, без подключения к розетке.

Если у ИБП есть штатная розетка – 220 вольт можно снимать с ее контактов. Если таковой розетки нет – ее заменит  удлинитель, подключенный к гнезду  «выхода» бесперебойника. Вилка удлинителя удаляется, после чего провода припаиваются к контактам гнезда «выхода».

Основные недостатки подобных преобразователей:

  • Рекомендуемое время работы такого инвертора – до 20 минут, поскольку ИБП не рассчитаны на длительную работу от аккумуляторов. Однако этот недостаток можно устранить, врезав в корпус ИБП компьютерный вентилятор, работающий от 12 В.
  • Отсутствие контроллера заряда аккумулятора. Пользователю придется периодически проверять напряжение на клеммах накопителя. Для устранения этого недостатка в конструкцию преобразователя можно врезать обычное автомобильное реле, припаяв красный провод за предохранителем к 87 контакту. При правильном подключении такое реле разомкнет подачу энергии при падении напряжения на аккумуляторе ниже 12 вольт.     

Как из бесперебойника сделать блок питания

В этом случае из всей конструкции бесперебойника понадобится только трансформатор. Поэтому решившемуся на подобную переделку ИБП пользователю придется либо распотрошить весь ИБП, оставив только корпус и трансформатор, либо снять эту деталь, заготовив для нее отдельный корпус. Далее действуют по следующему плану:

  1. С помощью омметра определяют обмотку с самым большим сопротивлением.Типовые цвета – черный и белый. Эти провода будут входом в блок питания. Если трансформатор остался в ИБП, то этот шаг можно пропустить – входом в самодельный блок питания в этом случае будет «входное» гнездо на торце ИБП, связующее прибор с розеткой. 

  2. Далее на трансформатор  подают переменный ток на 220 вольт. После этого с оставшихся контактов снимают напряжение, подыскивая пару с разностью потенциалов до 15 вольт. Типовые цвета – белый и желтый. Эти провода будут выходом из блока питания.

  3. Вход в блок питания формируют из проводов, по одну сторону от сердечника. Выход из блока формируют из проводов, расположенных с противоположной стороны.   

  4. На выходе из блока питания ставят диодный мост.

  5. Потребители подключаются к контактам диодного моста.

Трансформатор 

Типовое напряжение на выходе из трансформатора – до 15 В, однако оно просядет после подключения к самодельному блоку питания нагрузки. Вольтаж на выходе конструктору такого устройства придется подбирать путем экспериментов. Поэтому практика  использования трансформатора ИБП как основы блока питания для компьютера – это далеко не самая лучшая идея.

Переделка бесперебойника под зарядку

В этом случае не нужна минимальная трансформация, похожая на описанную абзацем выше. Ведь у бесперебойника есть своя батарея, которая заряжается по мере надобности. В итоге для превращения ИБП в зарядное устройство нужно сделать следующее:

  1. Обнаружить первичный и вторичный контур трансформатора. Этот процесс описан абзацем выше.

  2. Подать на первичный контур 220 вольт, врезав в цепь регулятор напряжения – в качестве такового можно использовать реостат для лампочек, заменяющий традиционный выключатель.

  3. Регулятор поможет откалибровать напряжение на обмотке выходе в пределах от 0 до 14-15 вольт. Место врезки регулятора – перед первичной обмоткой.

  4. Подключить к вторичной обмотке трансформатора диодный мост на 40-50 ампер.

  5. Соединить клеммы диодного моста с соответствующими полюсами аккумулятора.

  6. Уровень заряда аккумулятора контролируется по его индикатору или вольтметром.

 

eaton-enkom.ru

Зарядное устройство из бесперебойника с диммером

Зарядное устройство из бесперебойника с диммером

Однажды достался мне на запчасти старый бесперебойник от компьютера. Но не стал я его разбирать и утилизировать. Решил сделать из него зарядное устройство для автомобильных аккумуляторов, тем более, что мощности его трансформатора для этой цели вполне было достаточно.




Зарядники из старых бесперебойников я делал несколько раз, но это были совершенно безобразные поделки на скорую руку, собранные на дощечке, без регулировки и даже без предохранителя. Конечно, где – то в лесу, в деревне за 100 км от города севший аккумулятор, при крайней необходимости, можно пытаться заряжать от чего угодно, но для постоянного использования нужна хорошая и безопасная конструкция. Разбираем бесперебойник и удаляем всё лишнее. Оставляем сетевой разъём с предохранителем, выходную розетку (ещё пригодится), трансформатор, выключатель.

Ещё понадобится мощный диодный мост с радиатором, конденсатор 4700 мкФ 35В, кулер от компьютера (но это не обязательно), микроамперметр (мне попался от старого кассетника), шунт примерно на 0,3 Ома и диммер. Диммер подойдёт самый обычный, используемый для регулировки света в помещениях, на 300 Ватт.

Сначала надо проверить трансформатор. Находим у него обмотку с самым большим сопротивлением. Это, скорее всего, была выходная обмотка, с напряжением 220В.


Теперь она будет входной. Подаём на неё напряжение из розетки и меряем, сколько будет на выходе.

Получилось 14,2В. переменного тока. После выпрямления на конденсаторе фильтра получится около 19В. Димер тоже разбираем, нам нужна только его электронная начинка с регулятором.



Ну, а дальше всё просто. Уголками и винтами с гайками закрепляем все эти запчасти в корпусе и соединяем все вышеуказанные запчасти.

Схему соединений приводить нет особого смысла, потому как нет в ней ничего сложного.

Розетка, которая раньше была выходом бесперебойника, припаивается напрямую к сетевому разъёму, и теперь просто выполняет функцию удлинителя.

Димер включается в разрыв сетевого провода, последовательно с сетевым выключателем, и регулирует напряжение сети на входе трансформатора.

Выход трансформатора своими клеммами соединяется с диодным мостом, на котором есть соответствующая маркировка : ~, +, и - .

Конденсатор фильтра припаивается прямо к выводам диодного моста, согласно его полярности. Сюда же припаиваются провода от вентилятора, красный плюс, черный минус. С диодного моста синий провод «минус» идет прямо на «минус» аккумулятора.
Плюсовой, коричневый провод, с диодного мота припаивается к шунту, собранному из трёх параллельно соединённых керамических резисторов сопротивлением 1 (один) Ом. В итоге получается 0,33 Ом. Мощность резисторов 5 вт. С выхода шунта коричневый провод идёт на «плюс» аккумулятора.

Провода микроамперметра припаиваются прямо к выводам шунта. Сам микроамперметр закрепляется на пластиковой передней панели с помощью термоклея. Отверстия в пластиковой панели для микроамперметра и ручки диммера делаются обычным ножом. Тем же термоклеем крепится и ручка регулятора.



Аккумулятор подключается специальными цанговыми клеммами, купленными в автомагазине по случаю.


Перед включением зарядного устройства следует подключить аккумулятор (строго соблюдая полярность!), и включить устройство.
Регулируя напряжение на входе, подбирают ток заряда аккумулятора на уровне 5..5,5 А. Это соответствует зарядному току 12 – вольтового автомобильного аккумулятора на 55 Ампер-часов. При указанном сопротивлении шунта (0,33 Ом) стрелка микроамперметра (ток его отклонения по паспорту равен 1 мА), как раз будет находиться в среднем положении шкалы.
Источник

unikumrus.com

Сварочный аппарат из бесперебойника


Приветствую, Самоделкины!
Не так давно AKA KASYAN, автор одноименного YouTube канала занимался ремонтом бесперебойника, который принадлежал его знакомому. Повреждение были довольно серьезными, а все из-за неправильной установки аккумуляторов.

Данный бесперебойник был успешно восстановлен, но долго пылился без дела, пока автору не пришла в голову мысль сделать из него совсем другой прибор, а точнее сварочный аппарат.


Да, мы будем ломать рабочий бесперебойник. Вандализм? Возможно, но бесперебойники такого класса без всяких наворотов сейчас можно купить буквально за копейки, особенно без аккумуляторной батареи.
Автор же будет делать из внутренностей этого прибора довольно недешевое устройство, аппарат специфический, предназначенный для сварки скруток угольным электродом. Как известно самым распространенным способом соединения проводников является пайка при помощи припоя.


Но припой не славится своей долговечностью, и если речь идет о качественном монтаже «на века», то сварка проводов естественно в приоритете.


Дополнительным плюсом является то, что на месте сварки не будут образовываться дополнительные потери, а, следовательно, не будет и нагрева, получится буквально цельный проводник. Если же речь идет о пайки с помощью припоя, то под токами большой величины припой может даже расплавится.

Перед сваркой необходимо выполнить скрутку. Затем провода свариваются вместе, а на месте сварки образуется характерная для этого способа капелька.


Стоит сказать, что данный бесперебойник 24-вольтовый, то есть, он работает от 2-ух последовательно соединенных аккумуляторов с напряжением 12В.

Очень важно чтобы сварочный аппарат, а точнее трансформатор, обеспечивал необходимое напряжение холостого хода, которого было бы достаточно для образования дуги. Поэтому в данном случае трансформатор от 12-вольтового бесперебойника не подойдет. Он не обеспечит нужного напряжения, в результате чего мы получим максимум плавление провода за счет короткого замыкания. А качественно выполненной сварки с красивой капелькой с таким трансформатором получить не удастся.

В данном примере напряжение на вторичной обмотке трансформатора составляет около 26В. Этого будет вполне достаточно для образования дуги. Конечно под нагрузкой напряжение просядет, но значения не будут критическими.


Если же вы захотите использовать трансформатор с более низким выходным напряжением, например, от 12-вольтового бесперебойника, то придется искать второй такой же аналогичной трансформатор подключить вторичные обмотки последовательно, чтобы увеличить общее напряжение.


Мощность данного бесперебойника составляет порядка 400Вт. Приступим к его разборке.

На кадрах ниже отчётливо видны следы мини пожара.

Из этого бесперебойника нам нужен только трансформатор. Как видим он довольно неплохой, как по железу, так и по обмоткам, да и вес говорит о соответствующем качестве.

Обмотки, кстати, тут медные, что, согласитесь, не может не радовать. Видно, что бесперебойник довольно старый, а меди в те времена не жалели.

Данный трансформатор имеет низковольтную силовую обмотку на 24В с отводом от середины, сетевую обмотку с отводами и дополнительную маломощную обмотку.

Сейчас нам нужна сетевая обмотка, займемся ее поиском. Для этого нам понадобится мультиметр в режиме Ом-метра. Необходимо отыскать те отводы, между которыми будет самое большое сопротивление. В данном случае это около 8Ом.

Далее берем обыкновенную лампу накаливания с мощностью от 40 до 100Вт. Ее необходимо подключить последовательно с ранее проверенной обмоткой в сеть. Не забывайте о технике безопасности, все оголенные провода обязательно изолируем.

Лампа накаливания включенная таким образом в цепь, будет выполнять роль страховки. В случае чего, она ограничит ток и не даст обмотке сгореть. Если лампа не горит, значит все сделано правильно.

Затем переключаем мультиметр в режим измерения переменного напряжения и проверяем напряжение на силовой обмотке трансформатора.

Как видим, напряжение на концах обмотки составляет около 26В. Теперь трансформатор пока отложим в сторону. Далее нам необходим угольный электрод. В строительных магазинах порой можно встретить угольные электроды с медным напылением, но намного проще за сущие копейки купить батарейку формата D, у них внутри имеется угольный стержень, который отлично подойдет для данной самоделки.


Только стоит отметить, что такой электрод имеется только в обычных солевых батарейках, не алкалиновых, а именно в солевых.
Итак, батарейку необходимо разобрать и извлечь угольный стержень (электрод). Испорченную батарейку необходимо утилизировать соответствующим образом сдав в специализированный пункт приема химических источников тока, берегите природу!


Опытным путем было установлено, что система ограничения тока сварки в данном случае не нужна. Сварка будет происходить на максимальных значениях тока, но это не мешает варить провода небольшого сечения. Ток в режиме короткого замыкания у данного трансформатора составляет более 100А. Конечно в таком режиме трансформатор быстро выйдет из строя и попросту сгорит, но такое возможно только из-за залипания электрода, а в нашем случае он угольный и залипнуть к медному проводу просто никак не сможет, так что с этим тоже все хорошо. К тому же ток частично будет ограничен сопротивлением самого электрода и проводов.
За счет образования высокотемпературной дуги у нас есть возможность варить провода, сечение которых в разы больше, чем сечение обмоток самого трансформатора. Трансформаторы от бесперебойника не рассчитаны на долговременную работу под большой нагрузкой, поэтому не исключен перегрев. Но в данном случае мы же не собираемся пользоваться аппаратом часами на пролет, не давая ему отдохнуть. Включил, поварил, выключил. За этот временной промежуток даже обмотки не успеют нагреться.
Теперь займемся изготовлением держателя для электрода и массы. Масса - это образно, тут можно особо не заморачиваться, взять плоскогубцы, присобачить к ним провода и все.

Автор решил изготовить более удобный держатель для электрода. Для этого ему понадобилась монтажная клемма соответствующего диаметра, в которую свободно входит наш угольный электрод. Также понадобится медная трубка. Ее необходимо расплющить и все запаять вместе. Получилась вот такая штука.


Во время работы места паек будут нагреваться, но припой не расплавится, так как соединения обладают довольно большой теплопроводностью, и нагрев достаточно быстро передается рукоятке. Рукоятку необходимо изолировать термостойким каптоновым скотчем.
Затем берем плоскогубцы, снимаем изоляцию и припаиваем к ним провод. Такие массивные участки автор паял мощным паяльником мощностью 300Вт.

Далее необходимо подобрать корпус. Для этого автор использовал корпус от старого компьютерного блока питания.

Аппарат не содержит ни единого полупроводника, подключение проще простого, так что справится любой человек с базовыми знаниями по электронике.

Ну а в конце попробуем сварить вместе провода самого разного сечения и посмотрим, на что способен этот малыш.

Для такого простого и бюджетного аппарата вполне неплохой результат. Основные достоинства аппарата: малая себестоимость, высокая надежность (так как тут нечему ломаться), сравнительно небольшой вес и скромные размеры. Ему поддаются провода большого диаметра, что позволит применить аппарат не только для любительских, но и для профессиональных работ.

Ну а на этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Инвертор из бесперебойника - Diodnik

В быту иногда возникает острая необходимость в бесперебойном питании различных устройств. Это могут быть аварийное освещение, инкубаторы, аквариумное оборудования или простой усилитель, с которым компания вырвалась на природу. Современные бюджетные компьютерные источники бесперебойного питания способны проработать не более получаса от автономного питания, а те которые могут и специально для этого предназначены, стоят совсем других денег. Автомобильные инверторы на выходе не всегда выдают частоту в 50 Гц. Если нужна автономность на несколько часов, тогда в голову сразу приходит мысль, можно ли запитать UPS от обыкновенного автомобильного аккумулятора. На этот вопрос мы и постараемся сегодня дать ответ, сделаем инвертор из ИБП своими руками.

Инвертор из бесперебойника

Для переделки в инвертор мы выбрали UPS Mustek Power Must 800 USB (номер платы 098-17615-00-S1), этот UPS как будто создан для того, что бы его переделали, тем более нагрузка в 500 Вт для бытовых целей не такая уж и малая.

Переделка ИБП под автомобильный аккумулятор будет разбита на несколько этапов:

  • Отключение функции Green Power
  • Установка активной системы охлаждения
  • Реальные тесты

Green Power в UPS – некая хитрая фишка, которая не дает бесперебойнику достаточно долго работать от АКБ. В разных аппаратах проявляется и реализуется по-разному, в одних она отключает UPS, который работает без нагрузки через 5-10 мин, в других аппаратах Green Power не дает работать UPS более 25-30 мин в независимости от его нагрузки. Иногда эту функцию можно отключить с помощью специального резистора, но бывает, что процесс отключения зашит в микроконтроллер UPS, и тут уже ничем ему особо не поможешь.

Первым делом открываем корпус и для себя делаем фотографию его внутренностей, это нужно сделать для того, что бы в дальнейшем не возникало вопросов, что и куда подключать при обратной сборке.

Поле чего отключаем все провода и достаем плату управления, номер платы 098-17615-00-S1.

Если рассмотреть плату поближе можно увидеть, что на ней нанесены таблицы меняющие режимы работы бесперебойника.

Нас интересует резистор R15A, который отвечает за функцию Green Power. Аккуратно выпаиваем резистор с платы, а для любителей тишины еще можно произвести небольшие манипуляции с бузером. Если хочется полностью избавиться от писков, которые издает ИБП можно отпаять перемычку JP82 или выпаять сам бузер, а для тех, кто хочет приглушить звук достаточно впаять небольшой резистор на 100-300 Ом, вместо этой перемычки.

Следующим шагом станет установка 80мм вентилятора и небольшая доработка корпуса UPS.




Вентилятор отлично крепится к пластиковым перемычкам, которые уже есть внутри корпуса.

Как видим вентилятор размещается по центру корпуса, что дает возможность обдувать воздухом не только трансформатор, но и радиаторы транзисторов, расположенные в верхней части корпуса.

Можно придумать массу способов, как запитать вентилятор в UPS. Но мы выбрали самый простой и доступный для повторения. Питание вентилятора можно взять с платы лицевой панели, на которой размещена кнопка питания и светодиоды. Кнопку включения ставим на положение выкл. и тестером прозваниваем выводы разъема, находим, куда приходит плюс и минус от АКБ (у нас это вывод: вывод 7 — плюс, 5 – минус). Уже по дорожке или с помощью тестера отслеживаем плюс АКБ к кнопке питания и после кнопки (он возвращается через вывод 8 на плату). Значит, питание вентилятора можно взять с выводов: 5 – минус; 8 – плюс. При таком включении вентилятор у нас будет работать на полную мощность, когда кнопка питания будет включена, т.е. и при работе от сети (зарядке) и при работе от АКБ.

Дальнейшим этапом станет незначительная доработка корпуса. Первым делом делаем отверстия для притока свежего воздуха к вентилятору. Если портить лицевую панель жалко, можно наделать отверстий в днище, высота ножек позволит спокойно проходить небольшому потоку воздуха.

Также немного удивили декоративные пластиковые накладки, которые имеют перфорацию для вентиляции, но в самом корпусе в этих местах отверстий нет. Это все решается с помощью небольшого сверла и дрели.

Последним этапом перед сборкой станет фиксация трансформатора. При переноске UPS без штатного АКБ трансформатор буквально гуляет в своих посадочных местах, он с легкостью может из них выскочить и повредить основную плату.

Подключаем теперь провода с клеммами, вместо штатной батареи. Для дополнительной изоляции лучше надеть специальные силиконовые колпачки. Провод для подключения к UPS автомобильного аккумулятора нужно брать с сечением как можно больше, а сам провод должен быть максимально коротким.

И так, немного погоняем и протестируем наш инвертор из бесперебойника.

Как видим сделать инвертор из бесперебойника совсем не сложно, пришла пора реальных тестов. UPS на холостом ходу, ток потребления около 1 А.

Поставим на зарядку ноутбук, ток потребления поднялся до 5 А.

UPS нагружен лампочкой в 60 Вт, ток потребления почти 8 А.

К стати, ток зарядки не подымается выше 1 А, по мере заряда постепенно снижается.

Напряжение зарядки данного ИБП составляет 13,7 В.

Не трудно догадаться, что чем более емкая у Вас батарея, тем такой инвертор из бесперебойника проработает дольше, но и заряжаться от сети будет тоже весьма немалое время.

Данные фото и рекомендации даны для платы 098-17615-00-S1 от UPS Mustek Power Must 800 USB. При переделки других ИБП, вполне возможно данные рекомендации только частично останутся актуальными т.к. конструктив и схемы будут отличаться. Важно детально ознакомится с метками и таблицами, которые обозначены на плате, следовать рекомендациям производителя и не пытаться проводить эксперименты без знаний и навыков, т.к. можно вывести из строя не только сам UPS, но и аппаратуру, подключенную к нему. Главное помнить, что при работе UPS присутствует опасное для жизни напряжение.

Можно ли подключать автомобильный АКБ к UPS?

Мнения на этот счет двояки, но кардинально разные. Зачастую, по разным отзывам автомобильные аккумуляторы вполне справляются с данной задачей и работают стабильно. Основные проблема: газы, которые будут выделяться при зарядке АКБ и перегрев трансформатора, силовых ключей. От последней проблемы можно, хоть частично избавиться, используя дополнительные вентиляторы и т.п. А вот то от газов при зарядке никто никуда не денется. При зарядке выделяется не только взрывоопасный водород, но и другие газы, а это далеко не витамины. Если инвертор из бесперебойника используется в автомобиле, то и этот вопрос отпадает сам собой. Также важно помнить, что от сети зарядка АКБ происходит довольно небольшим током и процесс зарядки может растянуться на длительное время, от этого можно спокойно уйти если заряжать АКБ отдельно от UPS, например, для этих целей можно использовать самодельное зарядное устройство из блока питания компьютера. Использовать ли автомобильный АКБ в UPS решать нужно только Вам.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Зарядное устройство для аккумуляторов UPS

Приветствую, друзья!

Вы пользуетесь источниками бесперебойного питания, и у вас проблемы с их аккумуляторами?

И мне в ремонт попадают бесперебойники с севшими аккумуляторными батареями.

При севшей батарее источник бесперебойного питания (ИБП) включить в большинстве случаев невозможно. Ситуация усугубляется тем, что зарядить ее штатным зарядным устройством ИБП чаще всего нельзя.

Приходится использовать отдельные зарядные устройства. Одно из таких устройств предлагается вашему вниманию. Оно сделано из того, что было под рукой.

Работа схемы зарядного устройства

Переменное сетевое напряжение понижается трансформатором Т1, выпрямляются диодным мостом на диодах VD1 – VD4 и фильтруется электролитическим конденсатором C1.

Полученное постоянное напряжение подается на резистивный делитель с резисторами R1, R2 и R4. В верхнее плечо делителя включен переменный резистор R1. C его движка можно снимать постоянное напряжение в пределах примерно от 13 до 35 В.

С движка переменного резистора напряжение подается на эмиттерный повторитель, образованный транзистором VT1, нагрузкой которого служит резистор R3. Постоянное напряжение с резистора R3 служит входным сигналом для второго эмиттерного повторителя на составном транзисторе VT2 — VT3.

C выхода этого эмиттерного повторителя постоянное напряжение через резистор R5 подается на заряжаемый аккумулятор. Резистор R5 служит ограничителем тока при случайном замыкании выходных выводов зарядного устройства.

В качестве R1 используется многооборотный резистор, что позволяет точнее устанавливали величину зарядного напряжения. Величину зарядного напряжения можно регулировать в пределах примерно от 10 до 33 В. Это позволяет заряжать сразу два 12 В аккумулятора.

Это устройство использовалось для зарядки 12 В кислотных и VRLA аккумуляторов емкостью 5, 7, 9 и 12 А*ч.

Зачем нужны эмиттерные повторители?

Нам нужен регулируемый источник постоянного напряжения, которые должен обладать низким внутренним сопротивлением. Для справки: аккумулятор GP 1272 12 В 7,2 А*ч, широко используемый в ИБП, обладает внутренним сопротивлением около 0,023 Ом.

Наше зарядное устройство должно обладать хотя бы на порядок меньшим выходным сопротивлением. В противном случае величина зарядного напряжения будет заметно снижаться при подключении аккумулятора. Это будет из-за того, что часть напряжения, в соответствии с законом Ома, будет падать на выходном сопротивлении зарядного устройства.

Эмиттерный повторитель называется еще согласователем сопротивления.

Выходное сопротивление эмиттерного повторителя, подключенное параллельно нагрузке Rн, определяется внутренним сопротивлением источника сигнала Ri (см рис) и коэффициентом передачи h31e транзистора по току.

Чем этот коэффициент больше, тем меньше выходное сопротивление.

Источником сигнала для первого эмиттерного повторителя служит резистивный делитель R1, R2, R4.

Источником сигнала для второго эмиттерного повторителя служит резистор R3.

В качестве первого эмиттерного повторителя используется составной транзистор типа TIP122.

Составным он называется потому, что образован двумя транзисторами, смонтированными в общем корпусе.

Общий коэффициент передачи по току определяется произведением коэффициентов отдельных транзисторов.

В качестве второго эмиттерного повторителя используется составной транзистор, образованный из двух отдельных мощных транзисторов типа D209.

Конструктивное исполнение зарядного устройства

Из-за недостатка времени зарядное устройство не было смонтировано «по всем правилам». Активные элементы VD1 – VD4, VT2, VT3, VT4 установлены на общий радиатор, выдранный из неисправного компьютерного блока питания. Диодные сборки и мощные транзисторы D209 были взяты оттуда же.

Все остальное было смонтировано на куске картона. Радиатор имеет небольшие размеры, на нем установлены диоды и транзисторы, на которых рассеивается значительная мощность, поэтому он нуждается в обдуве вентилятором.

Вентилятор обдува питается напряжением, снимаемым с резистора R4 резистивного делителя через эмиттерный повторитель на составном транзисторе VT4 типа TIP122.

Используется небольшой 12 В компьютерный вентилятор. Подаваемое на него постоянное напряжение примерно равно 6 В.

При пониженном напряжении питании скорость вращения вентилятора и шум от него меньше.

В качестве диодов VD1 – VD4 используются две параллельно соединенные диодные сборки GBU605 от того же компьютерного блока питания.

В принципе, можно использовать и одну. Но запас по току не помешает…

Трансформатор Т1 – стержневой, имеет две катушки с первичными и вторичными обмотками. Первичные и вторичные обмотки катушек соединены последовательно каждая согласно схеме.

Рекомендации по применению зарядного устройства

При зарядке одиночных 12 В аккумуляторов напряжение на клеммах не должны превышать 15 вольт. При зарядке сдвоенных 12 В аккумуляторов напряжение на клеммах не должно превышать 30 вольт.

При зарядке надо контролировать ток заряда. Производители аккумуляторов рекомендуют заряжать батареи в щадящем режиме – током в 0,1 ее емкости. Таким образом, для батарей 7 А*ч ток заряда должен быть 0,7 А, для батарей 12 А*ч – 1,2 А.

Производители могут приводить и максимальные токи заряда. Так, например, для той же батареи GP1272 максимальный ток заряда не должен превышать 2,16 А.

Превышать максимальный ток заряда и напряжение не клеммах не рекомендуется во избежание сокращения срока службы аккумулятора.

Можно еще почитать:

Как устроены аккумуляторы в UPS.

Ремонт ИБП EATON 800.

До встречи на блоге!


vsbot.ru

Зарядное устройство для акб – Поделки для авто

Неоднократно мы говорили о конструкциях зарядных устройств для автомобильного аккумулятора и за это время успели предложить множество авторских вариантов строения ЗУ для автомобильных аккумуляторов.

Очередная конструкция простого, но в то же время мощного зарядного устройства с защитой от перегруза, короткого замыкания и переплюсовки питания. С переплюсовкой питания сталкивались многие автолюбители, когда по неосторожности путали плюс с минусом.

В случае дешевых, китайских зарядников или же самодельных конструкций (без защиты от переплюсовки), схема зарядного устройство моментально выйдет из строя, чтобы предотвратить это, мы приспособим систему защиты от переплюсовки, которая одновременно является защитой от перегруза и КЗ.

Схема…

В этот раз мы совместим эту схему с сетевым трансформатором и построим более мощное зарядное устройство для любых видов аккумуляторов.

Итак, в качестве трансформатора использован транс от старого и ненужного бесперебойника. Трансформатор будет включен в обратном направлении, выходная обмотка у нас будет первичной. Для начала нужно снять выходные данные трансформатора. Подключая в сеть измеряем переменное напряжение на выходе.

 

Вторичная обмотка обязательно имеет отвод от середины (если трансформатор от бесперебойника). Между средней точкой и одной из концов первичной обмотки напряжение обычно в пределах 6-7 Вольт, то есть, между двумя концами напряжение должно быть 2х7 Вольт.

14-15 Вольт вполне достаточно для зарядки любого автомобильного аккумулятора, даже с учетом спада напряжения после диодного выпрямителя, в таком случае мощный электролит будет компенсацией этой потери, заряжаясь до амплитудного значения.

Система защиты моментально срабатывает при появлении кзили переплюсовки питания. Силовой (полевой) транзистор в схеме не критичен, можно взять любой низковольтный N-канальный полевик с током 30-60Ампер, он не нагревается во время работы.

 

При нормальной работе полевик открыт , при появлении КЗ на шунте и полевике падение напряжения достаточно для срабатывания маломощного ключа, который открываясь замыкает затвор полевика на землю, этим надежно запирая его , так, что схема может находится в режиме защиты сколько угодно времени, при этом, для того , чтобы снять схему с защиты – просто нужно убрать перегруз или КЗ на выходе.

Пару слов о конструкции зарядника (блока питания и управления) . 

Трансформатор – сетевой , почему не импульсный ? сетевой же громоздкий, тяжелый, но не нужно забывать – он надежней любой импульсной схемы надежность работы важнее всего. Сам трансформатор взят от старого бесперебойника, он имеет обмотку на 14 -15 Вольт с отводом от середины.

С этой обмотки свободно можно снять ампер 10-15 и даже больше, но разумеется такие токи нам не нужны, для зарядки аккума 70А/ч эффективный ток заряда 7Ампер, (десятая часть емкости самого аккумулятора).

С учетом мощности нашего транса, можно заряжать даже аккумы на 120-150 Ампер часов, но откуда взять такую мощную схему управления ? схема, которая может управлять таким большим током заряда.

Есть несколько версий строения, можно использовать импульсные регуляторы либо обычные – линейные. Импульсные хороши тем, что имеют высокий КПД (до 90%) следовательно нагрева на управляющих элементах значительно меньше, чем в линейных схемах. Но импульсные схемы сложны и недоступны многим, взамен линейные можно собрать без спец микросхем, на транзисторах из подручного хлама (дешевизна конструкции тоже не мало важный момент).

Схема довольно простая с использованием более мощных тиристоров можно снять большой ток, а с такой развязкой ток до 7-8 Ампер

Генератор построен на комплиментарной паре маломощных транзисторов , при желании можно заменить на пару КТ3102/3107 или более ходовые КТ315/361.

Тиристор обязательно устанавливают на теплоотвод, не советую выставить минимальный ток, поскольку может сорваться работа генератора.

Из-за минимального количества комплектующих, схему можно собрать буквально навесным монтажом. К стати – тиристор тоже не критичен и может быть заменен на импортный, к примеру из серии BTA с током 15- 20 Ампер и более.

На выходе сетевого трансформатора переменка, которую нужно выпрямить. для этих целей можно применить дешевые китайские мосты в алюминиевых корпусах (к примеру KBPC5012  на 50 Ампер, можно и на 30), но не смотря на приличный ток моста, он все равно будет нагреваться, поэтому желательно посадить на теплоотвод.

Автор; АКА Касьян

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Отправить ответ

avatar
  Подписаться  
Уведомление о