Как сделать блок питания: Блок питания своими руками: регулируемый, 12В, 0-30В, ремонт

Содержание

Моделируем и паяем линейный блок питания

Любой, кто пытался сделать линейный блок питания, знает, что задача это несколько сложнее, чем преподносится в книжках. Схема-то простая. Но как понять, каковы должны быть номиналы компонентов в ней? Какой ток сможет выдавать БП при использовании заданных компонентов? Сегодня мы сделаем линейный блок питания на 5 В и в процессе попробуем ответить на эти вопросы.

Важно! Электричество — опасная штука. Знайте, что неосторожное обращение с ним может привести к вашей смерти. Не допускается повторять проект, если вы не знакомы с техникой безопасности при работе с 220 В.

Построение модели

Было решено построить модель будущего БП в LTspice. Вот что получилось:

Модель можно скачать здесь. Схема и принцип ее работы описаны во многих источниках, поэтому не будем задерживаться на этом моменте.

Небольшой трансформатор китайского производства под названием «EI-35*15 230V 50Hz 6V 3VA» у меня уже был. Измеренные сопротивление и индуктивность вторичной обмотки составили 3 Ом и 18.84 мГн соответственно, первичной — 1.4 кОм и 17.77 Гн. Эти значения и были использованы в модели. Коэффициент 0.995 взят с потолка. Он отражает потери на трансформаторе и должен быть чуть меньше единицы.

Емкость C1 была подобрана так, чтобы выходное напряжение при потреблении нагрузкой 200 мА держалось в пределах 5-6 В:

Минимальное и RMS значение напряжения:

На диодах D1-D4 при включении БП видим ток до 1.3 А, и после заряда конденсатора C1 — до 0.65 А. Похоже, что можно использовать диоды 1N4001. Они способны выдерживать прямой ток до 1 А, а импульсный ток — аж до 30 А. Но БП планировалось нагружать выше расчетного лимита. Поэтому были использованы диоды 1N5408. Они рассчитаны на прямой ток 3 А и импульсный ток до 200 А.

Также из модели мы узнаем, что ток через R2 может достигать 1.2 А. Поскольку это сопротивление вторичной обмотки трансформатора, то в реальной схеме R2 не будет. Но на его месте будет стоять предохранитель. Значит, предохранитель должен быть где-то на 2 A.

Само собой разумеется, напряжением V(out) как на скриншоте мы ничего питать не можем. Я хотел использовать какой-нибудь линейный стабилизатор с низким падением напряжения (LDO). Но оказалось, что к подходящим для задачи LDO, доступным в локальных магазинах, не так-то просто найти модель для LTspice. Поэтому в модели пришлось обойтись без LDO.

Пайка и тестирование

Блок питания у меня получился таким:

Стенд сделан из оргстекла, склеенного прозрачным эпоксидным клеем. В качестве LDO был использован L4941BV. Он выдает напряжение 5 В и ток до 1 А. Согласно даташиту [PDF], при токе 200 мА падение напряжения составляет лишь 0.15 В. Сам же стабилизатор при этом потребляет около 10 мА. Ожидалось, что в итоге БП сможет выдавать 150-180 мА.

Полная схема (кликабельно):

Блок питания тестировался при помощи 5-ваттных резисторов. Их номиналы уменьшались, то есть, ток увеличивался, до тех пор, пока на осциллографе не появилась рябь (ripple) в 60 мВ:

Произошло это на нагрузке 23 Ом. Соответственно, ток составил 217 мА, а мощность — 1.085 Вт.

Для измерения потребляемой мощности и коэффициента мощности был использован ваттметр МЕГЕОН 71017:

Согласно прибору, на такой нагрузке БП потребляет 2.75 Вт. Эффективность составила:

>>> 1.085/2.75
0.39454545454545453

Мы можем посчитать активную мощность (active power) в LTspice, как среднее от произведения входного тока на входное напряжение. Эта величина уже учитывает коэффициент мощности вместе с любыми искажениями в кривой потребляемого тока. Выходная мощность нам известна, она составляет 5 В умножить на 200 мА, или 1 Вт. Но такие расчеты дают эффективность не более 32%.

Также при использовании директивы .four 50 I(V1) модель выводит коэффициент мощности в SPICE Error Log:

Total Harmonic Distortion: 13.259803% PF=0.441966

Однако прибор показывает PF равный 0.925. В общем, такая упрощенная модель не подходит для оценки эффективности и коэффициента мощности.

Заключение

Сегодня мы многое узнали о линейных блоках питания. А именно — как понять, какие диоды нужно использовать в диодном мосту, на какой ток должен быть предохранитель, какой емкости должен быть конденсатор, а также как измерить КПД блока питания.

«Наивная» модель может быть использована для подбора номиналов компонентов. Однако если вы хотите оценить эффективность или коэффициент мощности блока питания, то моделировать его нужно вместе с LDO. За более точную модель придется заплатить лишними ограничениями на выбор компонентов.

Был изготовлен линейный блок питания на 5 В и 200 мА. Его эффективность не высока. Однако ценят линейные блоки питания не за эффективность, а за простоту, надежность и отсутствие ВЧ-наводок.

Метки: Электроника.

Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания с регулировкой из старой платы компьютера

Stalevik

Распродажа: с 23 августа 10:00 по 28 августа 09:59 (МСК) Посмотрите товары для изобретателей. Ссылка на магазин.

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.


Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Скачать схему с платой.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.

Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Регулируемый источник напряжения от 5 до 12 вольт

Продолжая наше руководство по преобразованию блока питания ATX в настольный источник питания, одним очень хорошим дополнением к этому является стабилизатор положительного напряжения LM317T.

LM317T – это регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать различные выходы постоянного напряжения, отличные от источника постоянного напряжения +5 или +12 В, или в качестве переменного выходного напряжения от нескольких вольт до некоторого максимального значения, все с токи около 1,5 ампер.

С помощью небольшого количества дополнительных схем, добавленных к выходу блока питания, мы можем получить настольный источник питания, способный работать в диапазоне фиксированных или переменных напряжений, как положительных, так и отрицательных по своей природе.  На самом деле это гораздо проще, чем вы думаете, поскольку трансформатор, выпрямление и сглаживание уже были выполнены БП заранее, и все, что нам нужно сделать, это подключить нашу дополнительную цепь к выходу желтого провода +12 Вольт. Но, во-первых, давайте рассмотрим фиксированное выходное напряжение.

Фиксированный источник питания 9В

В стандартном корпусе TO-220 имеется большое разнообразие трехполюсных регуляторов напряжения, при этом наиболее популярным фиксированным стабилизатором напряжения являются положительные регуляторы серии 78xx, которые варьируются от очень распространенного фиксированного стабилизатора напряжения 7805 +5 В до 7824, + 24V фиксированный регулятор напряжения. Существует также серия фиксированных отрицательных регуляторов напряжения серии 79хх, которые создают дополнительное отрицательное напряжение от -5 до -24 вольт, но в этом уроке мы будем использовать только положительные типы 78хх .

Фиксированный 3-контактный регулятор полезен в приложениях, где не требуется регулируемый выход, что делает выходной источник питания простым, но очень гибким, поскольку выходное напряжение зависит только от выбранного регулятора.  Их называют 3-контактными регуляторами напряжения, потому что они имеют только три клеммы для подключения, и это соответственно Вход , Общий и Выход .

Входным напряжением для регулятора будет желтый провод + 12 В от блока питания (или отдельного источника питания трансформатора), который подключается между входной и общей клеммами. Стабилизированный +9 вольт берется через выход и общий, как показано.

Схема регулятора напряжения

Итак, предположим, что мы хотим получить выходное напряжение +9 В от нашего настольного блока питания, тогда все, что нам нужно сделать, это подключить регулятор напряжения + 9 В к желтому проводу + 12 В. Поскольку блок питания уже выполнил выпрямление и сглаживание до выхода + 12 В, требуются только дополнительные компоненты: конденсатор на входе и другой на выходе.

Эти дополнительные конденсаторы способствуют стабильности регулятора и могут находиться в диапазоне от 100 до 330 нФ. Дополнительный выходной конденсатор емкостью 100 мкФ помогает сгладить характерные пульсации, обеспечивая хороший переходный процесс.  Этот конденсатор большой величины, размещенный на выходе цепи источника питания, обычно называют «сглаживающим конденсатором».

Эти регуляторы серии 78xx выдают максимальный выходной ток около 1,5 А при фиксированных стабилизированных напряжениях 5, 6, 8, 9, 12, 15, 18 и 24 В соответственно. Но что, если мы хотим, чтобы выходное напряжение составляло + 9 В, но имел только регулятор 7805, + 5 В ?. Выход + 5 В 7805 относится к клемме «земля, Gnd» или «0 В».

Если бы мы увеличили это напряжение на контакте 2 с 4 В до 4 В, выход также увеличился бы еще на 4 В при условии достаточного входного напряжения. Затем, поместив небольшой 4-вольтный (ближайшее предпочтительное значение 4,3 В) диод Зенера между контактом 2 регулятора и массой, мы можем заставить 7805 5 В стабилизатор генерировать выходное напряжение +9 В, как показано на рисунке.

Увеличение выходного напряжения

Итак, как это работает. Стабилитрон 4,3 В требует обратного тока смещения около 5 мА для поддержания выхода с регулятором, потребляющим около 0,5 мА.  Этот полный ток 5,5 мА подается через резистор «R1» с выходного контакта 3.

Таким образом, значение резистора, необходимого для регулятора 7805, будет R = 5 В / 5,5 мА = 910 Ом . Диод обратной связи D1, подключенный через входные и выходные клеммы, предназначен для защиты и предотвращает обратное смещение регулятора, когда входное напряжение питания выключено, а выходное питание остается включенным или активным в течение короткого периода времени из-за большой индуктивности. нагрузка, такая как соленоид или двигатель.

Затем мы можем использовать 3-контактные регуляторы напряжения и подходящий стабилитрон для получения различных фиксированных выходных напряжений от нашего предыдущего источника питания в диапазоне от + 5В до + 12В. Но мы можем улучшить эту конструкцию, заменив стабилизатор постоянного напряжения на регулятор переменного напряжения, такой как LM317T .

Источник переменного напряжения

LM317T – это полностью регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать на 1,5 А выходное напряжение в диапазоне от 1,25 В до чуть более 30 Вольт.  Используя соотношение двух сопротивлений, одно из которых является фиксированным значением, а другое – переменным (или оба фиксированным), мы можем установить выходное напряжение на желаемом уровне с соответствующим входным напряжением в диапазоне от 3 до 40 вольт.

Регулятор переменного напряжения LM317T также имеет встроенные функции ограничения тока и термического отключения, что делает его устойчивым к коротким замыканиям и идеально подходит для любого низковольтного или домашнего настольного источника питания.

Выходное напряжение LM317T определяется соотношением двух резисторов обратной связи R1 и R2, которые образуют сеть делителей потенциала на выходной клемме, как показано ниже.

LM317T Регулятор переменного напряжения

Напряжение на резисторе R1 обратной связи является постоянным опорным напряжением 1,25 В, V ref, создаваемым между клеммой «выход» и «регулировка». Ток регулировочной клеммы является постоянным током 100 мкА. Так как опорное напряжение через резистор R1 является постоянным, постоянным током я буду течь через другой резистор R2 , в результате чего выходного напряжения:

Затем любой ток, протекающий через резистор R1, также протекает через резистор R2 (игнорируя очень маленький ток на регулировочной клемме), причем сумма падений напряжения на R1 и R2 равна выходному напряжению Vout .  Очевидно, что входное напряжение Vin должно быть как минимум на 2,5 В больше, чем требуемое выходное напряжение для питания регулятора.

Кроме того, LM317T имеет очень хорошее регулирование нагрузки, при условии, что минимальный ток нагрузки превышает 10 мА. Таким образом , чтобы поддерживать постоянное опорное напряжение 1.25V, минимальное значение резистора обратной связи R1 должно быть 1.25V / 10mA = 120 Ом , и это значение может варьироваться от 120 Ом до 1000 Ом с типичными значениями R 1 является приблизительно 220Ω, чтобы 240Ω лет для хорошей стабильности.

Если мы знаем значение требуемого выходного напряжения, Vout и резистор обратной связи R1 , скажем, 240 Ом, то мы можем рассчитать значение резистора R2 из вышеприведенного уравнения. Например, наше исходное выходное напряжение 9 В даст резистивное значение для R2 :

R1. ((Vout / 1,25) -1) = 240. ((9 / 1,25) -1) = 1 488 Ом

или 1500 Ом (1 кОм) до ближайшего предпочтительного значения.

Конечно, на практике резисторы R1 и R2 обычно заменяют потенциометром, чтобы генерировать источник переменного напряжения, или несколькими переключенными предварительно установленными сопротивлениями, если требуется несколько фиксированных выходных напряжений.

Но для того, чтобы уменьшить математические вычисления, необходимые для расчета значения резистора R2, каждый раз, когда нам нужно определенное напряжение, мы можем использовать стандартные таблицы сопротивлений, как показано ниже, которые дают нам выходное напряжение регуляторов для различных соотношений резисторов R1 и R2 с использованием значений сопротивления E24 ,

Соотношение сопротивлений R1 к R2

Значение R2 Значение резистора R1
150 180 220 240 270 330 370 390 470
100 2,08 1,94 1,82 1,77 1,71 1,63 1,59 1,57 1,52
120 2,25 2,08 1,93 1,88 1,81 1,70 1,66 1,63 1,57
150 2,50 2,29 2,10 2,03 1,94 1,82 1,76 1,73 1,65
180 2,75 2,50 2,27 2,19 2,08 1,93 1,86 1,83 1,73
220 3,08 2,78 2,50 2,40 2,27 2,08 1,99 1,96 1,84
240 3,25 2,92 2,61 2,50 2,36 2,16 2,06 2,02 1,89
270 3,50 3,13 2,78 2,66 2,50 2,27 2,16 2,12 1,97
330 4,00 3,54 3,13 2,97 2,78 2,50 2,36 2,31 2,13
370 4,33 3,82 3,35 3,18 2,96 2,65 2,50 2,44 2,23
390 4,50 3,96 3,47 3,28 3,06 2,73 2,57 2,50 2,29
470 5,17 4,51 3,92 3,70 3,43 3,03 2,84 2,76 2,50
560 5,92 5,14 4,43 4,17 3,84 3,37 3,14 3,04 2,74
680 6,92 5,97 5,11 4,79 4,40 3,83 3,55 3,43 3,06
820 8,08 6,94 5,91 5,52 5,05 4,36 4,02 3,88 3,43
1000 9,58 8,19 6,93 6,46 5,88 5,04 4,63 4,46 3,91
1200 11,25 9,58 8,07 7,50 6,81 5,80 5,30 5,10 4,44
1500 13,75 11,67 9,77 9,06 8,19 6,93 6,32 6,06 5,24

Изменяя резистор R2 для потенциометра на 2 кОм, мы можем контролировать диапазон выходного напряжения нашего настольного источника питания от примерно 1,25 вольт до максимального выходного напряжения 10,75 (12-1,25) вольт.  Тогда наша окончательная измененная схема переменного электропитания показана ниже.

Цепь питания переменного напряжения

Мы можем немного улучшить нашу базовую схему регулятора напряжения, подключив амперметр и вольтметр к выходным клеммам. Эти приборы будут визуально отображать ток и напряжение на выходе регулятора переменного напряжения. При желании в конструкцию также может быть включен быстродействующий предохранитель для обеспечения дополнительной защиты от короткого замыкания, как показано на рисунке.

Недостатки LM317T

Одним из основных недостатков использования LM317T в качестве части цепи питания переменного напряжения для регулирования напряжения является то, что до 2,5 вольт падает или теряется в виде тепла через регулятор. Так, например, если требуемое выходное напряжение должно быть +9 вольт, то входное напряжение должно быть целых 12 вольт или более, если выходное напряжение должно оставаться стабильным в условиях максимальной нагрузки.  Это падение напряжения на регуляторе называется «выпадением». Также из-за этого падения напряжения требуется некоторая форма радиатора, чтобы поддерживать регулятор в холодном состоянии.

К счастью, доступны регуляторы переменного напряжения с низким падением напряжения, такие как регулятор низкого напряжения с низким падением напряжения National Semiconductor «LM2941T», который имеет низкое напряжение отключения всего 0,9 В при максимальной нагрузке. Это низкое падение напряжения обходится дорого, так как это устройство способно выдавать только 1,0 ампер с выходом переменного напряжения от 5 до 20 вольт. Однако мы можем использовать это устройство для получения выходного напряжения около 11,1 В, чуть ниже входного напряжения.

Таким образом, чтобы подвести итог, наш настольный источник питания, который мы сделали из старого блока питания ПК в предыдущем учебном пособии, может быть преобразован для обеспечения источника переменного напряжения с помощью LM317T для регулирования напряжения.  Подключив вход этого устройства через желтый выходной провод + 12 В блока питания, мы можем иметь фиксированное напряжение + 5 В, + 12 В и переменное выходное напряжение в диапазоне от 2 до 10 вольт при максимальном выходном токе 1,5 А.

Блок питания своими руками - как сделать компактный и простой блок

Блоки питания постоянного тока нужны не только радиолюбителям. Они имеют очень широкую сферу применения, и поэтому ими в той или иной степени пользуется большинство домашних мастеров. В этой статье описаны основные типы преобразователей напряжения, их характерные отличия и области применения и то, как сделать простой блок питания своими руками.

Самостоятельное изготовление позволит получить экономию немалых денежных средств. Разобравшись с устройством и принципом работы можно легко выполнить ремонт этого устройства.

Краткое содержимое статьи:

Области применения

Эти устройства имеют очень широкую сферу применения. Давайте рассмотрим основные способы использования. Для экономии ресурса аккумуляторных батарей к самодельным блокам питания подключают низковольтный электроинструмент.  Такие приборы используются для подключения светодиодных осветительных приборов, установке освещения в помещениях с высокой влажностью и опасностью поражения электрическим током и для многих других целей, не имеющих прямого отношения к радиоэлектронике.


Классификация устройств

Большинство блоков питания преобразуют сетевое переменное напряжение величиной 220 вольт в постоянное напряжение заданной величины. При этом устройства характеризуется большим перечнем рабочих параметров, которые необходимо учитывать при покупке или конструировании.

Основными рабочими параметрами является выходной ток, напряжение и возможность стабилизации и регулировки выходного напряжения. Все эти преобразователи по способу преобразования классифицируются на две большие группы: аналоговые и импульсные приборы. Эти группы блоков питания имеют сильные отличия и легко различаются по фото с первого взгляда.

Ранее выпускались только аналоговые приборы. В них преобразование напряжения осуществляется с помощью трансформатора. Собрать такой источник не составляет труда. Его схема достаточна проста. Он состоит из понижающего трансформатора, диодного моста и стабилизирующего конденсатора.

Диоды преобразуют переменное напряжение в постоянное напряжение. Конденсатор дополнительно его сглаживает. Недостатком таких приборов являются большие габариты и масса.

Трансформатор мощностью 250 Ватт обладает массой несколько килограмм. Кроме того на выходе таких устройств напряжение может меняться от внешних факторов. Поэтому для стабилизации выходных параметров в таких аппаратах в электронную схему добавляются специальные элементы.

С использованием трансформаторов изготавливаются блоки питания повышенной мощности. Такие приборы целесообразно использовать для зарядки автомобильных аккумуляторов или для подключения электрических дрелей для экономии ресурса литиевых аккумуляторов.

Преимуществом такого устройства является гальваническая развязка между двумя обмотками (за исключением автотрансформаторов). Первичная обмотка, подключенная в сеть высокого напряжения, не имеет физического контакта с вторичной обмоткой. На ней генерируется пониженное напряжение.

Передача энергии осуществляется с помощью магнитного поля переменного тока в металлическом сердечнике трансформатора. При наличии минимальных знаний в радиоэлектронике своими руками легче собрать классический регулируемый блок питания с использованием трансформатора.


С развитием электронной техники стало возможным выпускать более дешевые полупроводниковые преобразователи напряжения. Они очень компактны, мало весят и обладают очень низкой ценой. Благодаря этому они стали лидерами рынка. В любой квартире используются несколько разных блоков питания.

К сожалению, в большинстве современных приборов отсутствует гальваническая развязка с питающей сетью. Из-за этого довольно часто гибнут люди, которые при зарядке сотового телефона или другой техники пользуются прибором и одновременно принимают ванну или умываются.

При соблюдении техники безопасности человеку ничего не грозит. Эти приборы обладают достаточно низкой стоимостью и при их поломке зачастую их не пытаются отремонтировать, а приобретают новое устройство. Тем не менее если разобраться со схемами и принципами работы импульсных блоков питания, то легко можно будет, как отремонтировать такой блок питания, так и собрать новый прибор.

Импульсные блоки питания

Давайте разберемся с устройством и принципом работы импульсных источников питания. В таких приборах на входе переменное сетевое напряжение преобразуется в высокочастотное напряжение. Для трансформации токов высокой частоты требуются не большие трансформаторы, а миниатюрные электромагнитные катушки. Поэтому такие преобразователи легко умещаются в маленьких корпусах. Например, они легко размещаются в пластиковом патроне энергосберегающей лампы.


Компоновка такого блока питания в приборе небольшого размера не вызывает никаких проблем. Для надежной работы необходимо предусмотреть возможность охлаждения на специальных металлических радиаторах нагревающихся элементов электронной схемы. Преобразованное напряжение выпрямляется с помощью быстродействующих диодов и сглаживается на выходном фильтре.

Недостатком таких приборов является неизбежное наличие высокочастотных помех на выходе преобразователя, несмотря даже на наличие специальных фильтров. Кроме того, в импульсных приборах используются специальные схемы стабилизации выходного напряжения.


Импульсный блок питания можно приобрести в виде отдельного блока, готового к монтажу в приборе. Также это устройство можно собрать самостоятельно, воспользовавшись широко распространенными схемами и инструкциями по сборке блоков питания.

При этом следует учесть, что самостоятельная сборка может обойтись дороже покупного изделия, приобретенного в интернете на азиатском рынке. Это может быть вызвано тем, что радиоэлектронные компоненты продаются с большей наценкой, чем наценка производителя в Китае на сборку изделия и его доставку. В любом случае, разобравшись с устройством таких приборов, можно будет не только собрать такой прибор самостоятельно, но и при необходимости отремонтировать. Такие навыки будут очень полезными.

При желании сэкономить, можно воспользоваться импульсными блоками питания от персональных компьютеров. Зачастую в вышедшем из строя персональном компьютере находится исправный блок. Они требуют минимальной доработки перед использованием.

Такие блоки питания имеют защиту от холостого хода. Они должны всё время находиться под нагрузкой. Поэтому для того, что бы избежать отключения в нагрузку включают постоянное сопротивление. Такие модернизированные блоки применяют в первую очередь для питания бытового электроинструмента.

Фото блоков питания своими руками


Как сделать лабораторный источник питания своими руками

Подборка рекомендаций и ссылок по сборке лабораторного источника питания (ЛБП) своими собственными руками из доступных комплектующих. Вариантов сделать для себя точный блок питания с регулировкой множество — начиная от простых и бюджетных, заканчивая серьезными устройствами с мощной стабилизацией, связью с компьютером и удаленным программированием. 

 

Программируемые и управляемые модули для ЛБП

Простой способ собрать для себя лабораторный источник питания — это взять управляемый модуль-преобразователь со стабилизацией питания. Одни из самых мощных на Алиэкспресс — это модули RD DPS5015 и DPS5020, с выходными токами 15 и 20 Ампер соответственно. Для удаленного управления выбирайте версии «С» — communication для работы через USB/Bluetooth/Wi-Fi. Модули RD DPH5005 имеют встроенный Buck Boost конвертер для повышения напряжения (можно питать 12/24 вольта и получить на выходе, 30-40-50В. Один из самых продвинутых программируемых преобразователей питания — это модель RD 6006 (подробный обзор). Предыдущий список модулей с интересными вариантами.

Компактные преобразователи питания

Не всегда нужны громоздкие источники и приборы, но достаточно бывает компактного преобразователя для подключения и быстрого теста самоделок. На выбор могу предложить несколько вариантов. Например, простой карманный источник питания, который работает от USB зарядки или павербанка — DP3A, с поддержкой быстрой зарядки QC3.0 и возможностью выставить нужный ток или напряжение со стабилизацией до 15W. Подробный обзор DP3A по ссылке. Чуть мощнее и в отдельном корпусе под блочный монтаж — преобразователь 32В/4А с встроенными защитами (OVP/OСР/ОРР) и стабилизацией тока и напряжения CC/CV, а также возможностью поднять выходное напряжение (Buck Boost). Еще один полезный для домашних самоделок источник — простой блок питания наподобие ноутбучного, но со встроенным показометром и регулировкой. Заявлена стабилизация напряжения мощность до 72W (максимум 3А на выходе). 

Стационарные источники питания все-в-одном

Для стационарной работы я бы рекомендовал иметь дома хотя бы один мощный источник типа KORAD. Цифры в названии подобных ЛБП обычно показывают максимальные режимы питания: 30/60 Вольт и 5/10 Ампер. То есть KORAD KA3005 — это 30В/5А, модели 6005 стабилизирует большее выходное напряжение, а типа 3010 — больший ток (до 10 А). Плюс подобных источников — встроенный сетевой преобразователь на 220В.

Модули сетевого питания для сборки ЛБП

Для питания управляемых модулей нужен сетевой преобразователь. Я бы не рекомендовал брать дешевые «народные» платы питания, а предложил бы посмотреть в сторону корпусных БП. В таких уже продумано охлаждение и монтаж, присутствует некоторая регулировка выхода. На выбор предлагаются источники с выходным напряжением на 5V, 12V, 24V, 36V, 48V, 60V и мощностью  до 400 Вт. Конечно, можно использовать и компьютерные источники питания АТХ (с выходом 12В и преобразователем типа DPH5005, или с переделкой для повышения выходного напряжения), и другие от старой аппаратуры.

Таким образом, можно на базе готовых модулей и источников тока создать свой удобный и точный блок лабораторного питания. За основу можно взять как старую технику, так и полностью готовые комплектующие с Алиэкспресс и радиомагазинов. Цены варьируются от $5 за простой преобразователь с экраном и стабилизацией, и до $100 за мощное устройство. Из полезных функций — наличие Buck Boost конвертера, который помогает повышать напряжение при недостатке входного, функция заряда аккумуляторов (с наличием встроенной защиты и счетчиков емкости), функция стабилизации тока, функции удаленного управления.

Как сделать настольный блок питания из старого блока питания ATX

Настольный источник питания — чрезвычайно удобный набор для любителей электроники, но он может быть дорогим при покупке нового. Если у вас есть старый компьютер ATX PSU, вы можете дать ему новую жизнь в качестве настольного источника питания. Вот как.

Как и большинство компьютерных компонентов, блоки питания (БП) устарели. При обновлении вы можете обнаружить, что у вас больше нет нужных разъемов или что вашей новой блестящей видеокарте требуется гораздо больше энергии, чем может выдержать ваш маленький старый блок питания — установка с двумя графическими процессорами может легко набрать 1000 Вт. И, если вы чем-то похожи на меня, у вас есть кладка старых блоков питания, спрятанных где-то в шкафу. Теперь у вас есть шанс использовать один из них.

Настольный блок питания — это в основном просто способ подачи разнообразных напряжений для тестовых целей — идеально подходит для тех, кто постоянно играет с Arduinos и светодиодными лентами. Удобно, что это именно то, что делает блок питания компьютера тоже — только с большим количеством различных разъемов и цветных проводов.

Сегодня мы собираемся раздеть БП до его базовых потребностей, а затем добавить несколько полезных розеток в кейс, в который мы можем подключить проекты.

Предупреждение

Обычно вы никогда не открываете блок питания. Даже когда питание отключено, существуют большие конденсаторы, которые могут сохранять смертельный электрический ток в течение нескольких недель, а иногда и месяцев после включения. Будьте предельно осторожны при работе с блоком питания и убедитесь, что он не использовался в течение по крайней мере трех месяцев перед открытием корпуса, или убедитесь, что вы надеваете тяжелые перчатки для снаряжения, когда ковыряете там. Действовать с осторожностью.

Также обратите внимание, что это приведет к безвозвратному повреждению блока питания, поэтому вы больше никогда не сможете использовать его на компьютере.

Необходимые компоненты

  • Два 2,1-миллиметровых гнезда и гнездо — я буду питать Arduino напрямую. Для изготовления силового кабеля типа «мужчина-мужчина» будут использованы два штекерных разъема.
  • Разнообразие 2-миллиметровых цветных розеток, таких как эта (может использоваться с банановыми штекерами). Вы можете предпочесть терминальные сообщения.
  • Термоусадочные трубки, 13 мм х 1 м (и меньше, если вы можете позволить себе купить больше).
  • SPST (однополюсный однопроходный) кулисный переключатель. Я использовал освещенный, чтобы выполнять двойную функцию в качестве источника света.
  • 10 Вт 10 Ом проволочный резистор.

строительство

Открутите и снимите верхнюю часть корпуса блока питания. Возможно, вам придется извлечь вилку из главной схемы, чтобы полностью отделить крышки.

Это противные конденсаторы, которые содержат огромное количество электричества:

Снимите заглушки и протяните провода через отверстие в корпусе.

Затем свяжите их с помощью кабельных стяжек в соответствии с цветом, чтобы сделать вещи немного более организованными. Как общее правило:

  • Черный: земля
  • Красный: + 5В
  • Желтый: + 12В
  • Оранжевый: + 3,3 В
  • Белый: -5В
  • Синий: -12 В
  • Фиолетовый: + 5В в режиме ожидания (не используется)
  • Серый: индикатор включения
  • Зеленый: выключатель

Точные линии электропередачи, которые вы выбираете для подключения, — ваш выбор, но я решил работать только с 3 положительными линиями — 3,3, 5 и 12 В. Я также не буду использовать фиолетовые или серые провода, вместо этого подключу выключатель с подсветкой 12В.

Используйте сверла HSS, чтобы вырезать отверстия соответствующего размера в металле — для 2-миллиметровых пробок и цилиндра постоянного тока требовалось 8-миллиметровые отверстия. Зафиксируйте корпус с помощью куска дерева под ним. Проделать отверстие для кулисного переключателя было намного сложнее, но вы должны иметь возможность использовать сверло меньшего размера, чтобы вырезать как можно больше, а затем подать остаток с помощью сверла и шлифовальной машины.

Протягивание проводов через соответствующие отверстия и пайка разъемов, прежде чем вставлять их в корпус, вероятно, является хорошей идеей; Я этого не делал.

Разъемы GND, + 3,3 В, + 5 В и + 12 В должны легко подключаться. Не забудьте разрезать маленький кусочек термоусадочной трубки и пропустить через него пучки проводов. до паяя их к клеммам!

Штекер постоянного тока немного сложнее. Так как это будет использоваться для питания Arduino, который является положительным в центре, вам следует подключить несколько желтых кабелей к центральному штырьку. Возможно, вы слышали, что Arduino может питаться от внешнего источника 9 В, но встроенный регулятор мощности фактически обеспечивает напряжение 9-12 В, поэтому напряжение 12 В от настольного блока питания должно быть в порядке. Стволовые домкраты имеют 3 штырька, но только один из которых явно подключен к центру. Вы должны увидеть металлический круговой бит, но проверьте, где вы купили, если вы не уверены. Два других контакта — GND, и оба должны быть подключены. Опять же, используйте термоусадочную трубку, чтобы предотвратить случайное соединение центрального и внешнего штырьков.

Выключатель питания и индикатор

Зеленый провод действует как выключатель питания — просто заземлите его, чтобы включить блок питания. Это в отличие от обычного выключателя питания, будет фактически отключить питание от источника. Дополнение освещения делает это самой сложной частью проекта.

SPST-переключатели с подсветкой должны иметь 3 клеммы: одна будет обозначена другим цветом или помечена как GND. К противоположной клемме обычно подключается напряжение 12 В, тогда на остальную часть вашей цепи подается питание от центрального контакта. Его переключение обеспечит питание цепи, а также немного привлечет свет. Тем не менее, это не будет работать для нас. Вместо этого поменяйте местами линию GND и 12V. Используйте один 12В кабель (желтый) на цветной клемме вашего клавишного переключателя (или один с надписью GND). Потяните черный провод (GND) к контакту напротив; и подключите зеленый кабель к центральному штырьку.

Теперь, когда переключатель нажат, светодиод все равно будет гореть, но вместо того, чтобы 12 В было возвращено на центральный вывод, GND будет закорочено при включенном PWR, в результате чего наш блок питания активируется.

Сожмите их трубки!

Наконец, когда термоусадочные трубки аккуратно потянуты вниз, чтобы закрыть переключатели и точки пайки, используйте локальную тепловую пушку для их усадки. Этот бит на самом деле довольно интересно смотреть.

До:

И после:

Наконец, Поддельная Нагрузка

Многим источникам питания требуется нагрузка, чтобы оставаться включенной — в этом случае мы можем использовать резистор 10 Вт 10 Ом для выполнения этой работы. Подключите его между линиями 5 В (красная) и GND. Он выделяет небольшое количество тепла, но с вентилятором должно быть все в порядке.

Я закончил, связав все незакрепленные кабели и прикрыв их, чтобы они не касались других внутренних частей, а затем снова собрал все вместе для проверки.

Я перепутал, с какой стороны поставить вилки и кнопки, чтобы они оказались на тесной стороне, некоторые прямо над розеткой переменного тока. Это, конечно, глупо опасная вещь, так как паяные контакты переменного тока могут пробить или прикоснуться к разъемам питания постоянного тока, что вызовет неприятный сюрприз либо у меня, либо у моего Arduino. Я решил это, приклеив немного толстого пластика между ними, но это не идеально. Подумайте дважды, прежде чем сверлить, и убедитесь, что ваши розетки на правильной стороне!

Также в этот момент я понял, почему этот блок питания был положен на полку — вентилятор не работал. Не беспокойтесь — сам вентилятор был в порядке, но цепь контроллера была разорвана, поэтому я снова открыл его и подключил вентилятор непосредственно к одной из линий 12 В. Наконец, я провел тестирование мультиметром, чтобы убедиться, что напряжения правильные.

Теперь у меня есть постоянный источник питания для проектов электроники, и я могу покончить с постоянным подключением различных адаптеров. Это был опыт обучения, и были допущены ошибки: вы должны учиться на них. Дайте нам знать, как у вас получается!

Руководство для начинающих по подключению автомагнитолы через блок питания компьютера

Автор: Виктор

Подключить своими руками блок питания для автомагнитолы — актуальная задача для многих современных потребителей. Использование компьютерного БП дает возможность запитать автомобильную аудиосистему от бытовой розетки на 220 вольт. Подробнее об этом процессе, а также его нюансах вы сможете узнать из этого материала.

Содержание

Открытьполное содержание

[ Скрыть]

Параметры выбора подходящего блока питания

Перед тем, как подключить блок питания компьютера к сети на 220 вольт, необходимо понять, какой конкретно БП нужен. Чтобы обустроить такую схему подключения, подойдет источник формата АТ либо АТХ. Разумеется, использующийся блок питания должен быть полностью работоспособным, иначе подключить аудиосистему к бытовой сети не получится.

Найти такой БП сегодня не проблема:

  • такие устройства есть в каждом персональном компьютере, можно извлечь оттуда;
  • на любом радиорынке или в тематическом магазине продаются подержанные БП, купить устройство можно фактически за копейки;
  • можно найти неисправный и самостоятельно отремонтировать его, разумеется, если у вас есть опыт и знания;
  • опять же, если у вас есть опыт в радиоэлектронике, то можно соорудить БП самостоятельно.

Если вы не знаете, какой из двух вариантов — АТ либо АТХ — выбрать, то учитывайте, что отличия между ними следующие:

  1. Как правило, в устройствах АТ отсутствует выходное напряжение, в частности, имеется в виду дежурный источник на 5 вольт. Когда устройство подключается к сети, на его выходы сразу же поступает 12-вольтное напряжение по желтому кабеля, 5-вольтное — по красному. Два отрицательных контакта — на 12 и 5 вольт — подаются на два черных провода.
  2. Что касается АТХ, то в данном случае используется дежурный источник напряжения на 5 вольт, который будет функционировать постоянно, когда девайс подключен к бытовой сети. Но параметр выходного напряжения в нем появляться не будет до того момента, пока не замкнуться черный и зеленый контакты, расположенные на основном штекере. Если на этих контактах не будет перемычки, то на выходе сразу же образуется напряжение после того, как устройство подключится к сети 220 вольт.

Для реализации этой задачи вам потребуется БМ, рабочее значение мощности которого составит не менее 300 Ватт, допускается 350 Вт. Необходимо, чтобы этот БП выдавал постоянный ток величиной не меньше 12 ампер по 12-вольтной линии (автор видео — канал Stason22).

Можно ли изготовить БП на 12в самому?

Можно ли соорудить блок питания 12в — 220в своими руками? Сделать такой девайс можно, но этот процесс требует определенных навыков и опыта, поэтому будьте внимательны при выполнении этой задачи. Для изготовления вам потребует трансформаторный узел на 12 вольт, а также четыре диода с конденсаторным устройством на 470 мкф 25 вольт. Диодные элементы можно использовать любые, поскольку величина напряжения будет невысокой. Что касается конденсаторного устройства, то потребуется минимум на 25 вольт, поскольку в конечном итоге на выходе он будет выдавать положенные 12 вольт.

Как сделать БП своими руками:

  1. На диодных элементах есть полярность, собственно, как и на конденсаторном устройстве. Если на контакте вы увидели отметку в виде полоски, то это положительный вывод, если же полоска отсутствует, то вывод отрицательный. Возьмите два диодных элемента и подключите и между собой по схеме плюс-минус, со второй парой поступите так же. Сами элементы можно либо спаять, либо просто скрутить. Мы продемонстрируем наиболее простой способ изготовления — если есть необходимость, можно соорудить девайс на плате либо в корпусе.
  2. После этого вам потребуется две спайки или скрутки из диодов соединить друг с другом. При подключении положительный вывод на одной из спаек необходимо соединить с положительным выводом на другой спайке. Аналогичным образом поступите с отрицательными контактами — минус одной спайки подсоединяется с минусом другой. Так вы сделали диодный мост.
  3. Затем вам надо будет подключить вывода с трансформаторного устройства к сооруженному диодному мосту. Один контакт от устройства следует подсоединить к контакту плюс-минус на мосту, второй контакт аналогично подключается к такому же выводу. На данном этапе контакты плюс-плюс, а также минус-минус еще свободны.
  4. Когда эти действия будут выполнены, вам потребуется конденсатор, на котором также есть полярность. Как правило, на таких устройствах отмечается только отрицательный контакт, соответственно, тот вывод, что не отмечен, будет положительным. Конденсаторный элемент следует подключить к диодам. К положительному контакту конденсатора подключается вывод плюс-плюс диодов, а к отрицательному нужно подключить минус-минус диодов.
  5. Далее, вам потребуется два проводника, желательно, чтобы они имели разные цвета — один из них подключается к положительному выводу, а другой — к отрицательному. К примеру, на фото мы использовались красный проводник для соединения с положительным выводом (плюс-плюс) на диодном мосту, а синий — с отрицательным, то есть минус-минус. На положительном выходе имеется плюс от конденсаторного устройства, а на отрицательном — его минус.
  6. На этом процедуру сборки можно считать завершенной. Теперь вам остается только измерить величину напряжения. Если рабочий параметр составит 16.3 вольт, то переживать не стоит, поскольку это нормальная величина для напряжения БП, работающего вхолостую. Когда на блок будет оказана нагрузка, он в итоге будет выдавать 12 вольт.

Фотогалерея «Самостоятельное изготовление БП»

1. Спайка из четырех диодов - мост
2. Подключение диодного моста к трансформаторной обмотке
3. Подключение конденсатора к образовавшейся цепи
4. На завершающем этапе подключаются провода

Пошаговая инструкция по подключению

Для подсоединения к магнитоле будем использовать готовый компьютерный блок, а не самодельный, перед эксплуатацией следует произвести диагностику его работоспособности. Сам БП следует извлечь из металлического корпуса и очистить от загрязнений, отдельно проверьте печатную плату, убедитесь в том, что контакты в ней целые. Если на плате имеются дефекты, то их надо будет удалить. Также внимательно осмотрите конденсаторы на выходных выпрямителях — они не должны быть вздутыми, также на них не должно быть разрывов засечки. При необходимости конденсаторные элементы подлежат замене путем перепайки.

Что потребуется?

Для правильного подключения автомобильной магнитолы к БП вам потребуются следующие устройства и материалы:

  • непосредственно сам БП от компьютера;
  • аудиосистема от машины;
  • проводники необходимого сечения;
  • также для проверки работоспособности вам понадобятся автомобильные динамики или колонки от обычной бытовой магнитолы.

Специалисты рекомендуют использовать качественные динамики, поскольку сам девайс оборудован четырехканальным выходом. Это позволяет подключить две передних и две задних колонки. Выбирая колонки следует оценить их параметр сопротивления — как правило, для автомобильной аудиосистемы используются динамики, в которых значение сопротивления составляет 4 Ом. Если вы думаете, что выбрав динамики с сопротивлением на 8 Ом, они буду работать громче, то вы ошибаетесь (видео снято каналом Упаковано в Китае).

Алгоритм действий

Итак, для подсоединения автомагнитолы к БП для подключения к сети 220 вольт нужно сделать следующее:

  1. Для начала вам надо будет отрезать выход Din, через него аудиосистема подключается к бортовой сети транспортного средства. После этого надо будет зачистить все использующиеся проводники.
  2. Затем подключается сама аудиосистема, для этой цели оптимальней всего использовать штекер для подключения жесткого диска ПК. В частности, речь идет о широких четырехконтактных проводах — красном, желтом и двух черных контактах.
  3. Сам штекер надо будет отрезать, а контакты проводников подпаять к контактам аудиосистемы. Для полноценной эксплуатации блока питания надо будет также сделать соответствующий переходник. Для изготовления проводника надо будет желтый контакт подпаять к красному плюсу на самой автомагнитоле. А затем отрицательный черный выход от магнитолы надо будет подпаять к любому черному от использующегося блока питания.
  4. Для того чтобы БП можно было запустить без материнской платы, вам также потребуется использовать разъем, с помощью которого он питает материнку. К этому штекеру подключается много проводов, среди которых есть выходы черного и зеленого цвета. Вам потребуются именно они, поскольку эти контакты контролируют запуск устройства. Для того чтобы обеспечить заземление, нужно будет замкнуть эти два контакта между собой.
  5. После того, как БП будет запущен, на все проводники поступит напряжение — если контакты разомкнуть, то питание перестанет подаваться на устройством. То есть так вы сделали что-то наподобие перемычки для отключения.
  6. В том случае, если в вашем БП используется переключатель, то саму перемычку можно не снимать, но тогда вам надо будет запаять контакты зеленого и черного цветов. Сам переключатель в данном случае будет использоваться для активации и деактивации питания.
  7. Когда все эти шаги будут выполнены, вам надо будет соорудить акустическую системы из подготовленных ранее динамиков. Такие колонки (если вы используете автомобильные) обычно имеют небольшой вес, их можно установить в деревянный короб, предварительно соорудив в нем отверстия. Как вариант, для корпуса можно использовать прочный картон. После того, как колонки будут установлены внутрь, нужно будет подключить динамик к самой аудиосистеме.
    После того, как все динамики будут подключены, можно попробовать включить полученную систему в бытовую сеть и проверить ее работоспособность. Если магнитола не работает или работает некорректно (слабая громкость, шумы в динамиках), то нужно проверить качество подключения всех контактов, проверить места пайки (видео опубликовано каналом Opck prod).

Рекомендации экспертов

Что необходимо учитывать при выполнении этой задачи:

  1. Желательно использовать готовый и работоспособный БП, а не заниматься его самостоятельным изготовлением. Разумеется, если вы понимаете, как сделать блок питания, то можно соорудить его самостоятельно. Но практика показывает, что самодельные устройства обычно менее мощные. Тем более, что занимаясь самостоятельным изготовлением, необходимо обязательно убедиться в том, что вы используете рабочее трансформаторное устройство и диоды. Удостовериться в этом нужно на начальном этапе.
  2. Перед тем, как заняться подключением, обязательно проверить плату блока, а также конденсаторы на нем. Конденсаторные элементы не должны быть вздутыми и поврежденными, если же это так, то их нужно будет перепаять.
  3. Четко следует приведенной выше инструкции, чтобы правильно спаять все элементы для подключения.
  4. Важно, чтобы используемые динамики были рабочими. Бывает такое, что аудиосистема работает с помехами и шумами, а автовладелец думая, что причина в допущенных ошибках при сборке, начинает проверять и ремонтировать блок питания. При этом неработоспособными являются именно динамики. Если при подключении проводов от колонок вы допустите ошибки, динамики также будут работать с помехами.
 Загрузка ...

Видео «Наглядное пособие по подключению БП»

Чтобы правильно выполнить все действия и не допустить ошибок при выполнении данной задачи, ознакомьтесь с наглядным пособием в ролике (видео снял Artem Yakovlev).

Как сделать простой регулируемый блок питания из ИБП от LED с вольтметром самому, схема

Предлагаю вашему вниманию рассмотреть несложный вариант регулируемого блока питания, который можно собрать на основе обычного ИБП для светодиодных лент. То есть, в наше время весьма распространены импульсные блоки питания для LED лент, что рассчитаны на выходное напряжение 12, 24, 36 вольт. В зависимости от нужной мощности такие ИБП также разделяются по величине выходного тока. Причем, стоит учесть, что эти блоки питания имеют довольно неплохие характеристики, да и стоят они относительно недорого. А если приобрести по объявлениям экземпляр Б/У, то он обойдется еще дешевле. Ну, а чтобы его сделать регулируемым по выходному напряжению, то придется добавить очень простую схему всего на одном транзисторе.

Для новичков в нескольких словах расскажу про эти импульсные блоки питания. Эти ИБП собраны по стандартной, относительно несложной схеме. Сама общая схемотехника у них практически идентичная (по крайней мере в основных функциональных узлах). Платы находятся в экранированном металлическом корпусе, что дополнительно защитой от высокочастотных помех, идущих во вне. Данные блоки питания обладают достаточно большим КПД, как впрочем все другие импульсники. У них малый ток холостого хода, а это значит что без нагрузки они от сети практически ничего не потребляют. Для своей конкретной мощности эти ИБП имеют малые габариты и вес (если сравнивать с классическими трансформаторными БП). Во многих моделях, даже в дешевых экземплярах, имеются узлы ВЧ фильтров. Так что в целом эти импульсники для светодиодных лент очень даже хороши как по цене, так и по общим электрическим характеристикам.

Изначально данные ИБП для LED настроены на конкретное стандартное выходное постоянное напряжение, это 12 вольт, 24 и 36. Поскольку именно от такого напряжения питаются различные виды светодиодных лент. Так как количество ленты может быть разным, то и блоки питания разделяются по своей мощности и максимальному выходному току. Для моего примера я буду использовать импульсный блок питания с выходным напряжением 12 вольт и максимальным выходным током до 3 ампер. Больший ампераж БП уже потребует и большего количества биполярных транзисторов, которые нужно будет поставить для схемы регулировки выходного напряжения. А при токе до 3 ампер можно обойтись и одним транзистором.

Изначально сами ИБП для LED имеют подстройку выходного напряжения в небольших пределах. К примеру блок питания на 12 вольт можно подстроечным резистором задавать напряжение на выходе в диапазоне от 9 до 15 вольт. Но этого диапазона может вам не хватать, да и каждый раз подстраивать выходное напряжение подстроечным резистором не совсем удобно. И без встроенного вольтметра при подстройке каждый раз нужно будет брать в руки мультиметр. В общем доработка очень даже не помещает. Причем дополнительная схема очень простая, содержит всего несколько компонентов и ее может спаять практически каждый новичок.

Теперь о самой схеме простого регулятора выходного напряжения. Он имеет всего один биполярный транзистор типа КТ829 (n-p-n проводимость, составной). Этот транзистор может выдерживать токи до 8 ампер. Рассеиваемая мощность у него до 60 Вт. Поскольку этот транзистор является составным (внутри состоит из двух транзисторов), то он имеет весьма большой коэффициент по усилению тока, аж до 750. Конечно, в место КТ829 можно поставить любой другой аналогичный, или сделать пару из КТ815 и КТ819.

Сама же схема регулятора напряжения является линейной, то есть она всю лишнюю электрическую энергию переводит в тепло. Биполярный транзистор излишек напряжения берет на себя, тем самым при работе с максимальными токами и срезанием большого напряжения этот транзистор будет очень сильно греться. Так что в любом случае на транзистор нужно будет ставить охлаждающий радиатор подходящих размеров (радиатора с компьютерного процессора будет вполне достаточно).

Также стоит учесть, что при работе регулятора напряжения выходное напряжения блока питания будет на 1,2 вольта меньше, чем на выходе ИБП. Это происходит по причине, что база-эмиттерный переход составного транзистора для своей нормальной работы требует именно такого напряжения. Биполярный транзистор в схеме регулятора напряжения включен по схеме с общим коллектором (это включение еще называется эмиттерным повторителем). Для этой схемы характерно усиление только по току. Напряжение же схема не увеличивает, а наоборот, уменьшит на 1,2 вольта, о которых я уже сказал выше.

Переменный резистор R1 является простейшим делителем напряжения. Именно он задает величину выходного напряжения с вычетом 1,2 вольта, которые осядут на составном транзисторе. Резистор R2 нужен для ограничения тока в цепи база-эмиттерного перехода. Резистор R3 является небольшой нагрузкой, которая делает работу схемы более стабильной. Ну, и для удобства в схему добавлен простой цифровой вольтметр, который облегчит процесс регулировки нужного выходного напряжения (каждый раз не используя мультиметр). Хотя если у вас будет возможность, то лучше тогда поставить цифровой вольтметр-амперметр (правда он стоит чуть дороже, чем просто вольтметр).

И последнее, что стоит сказать, это про параллельное включение нескольких биполярных транзисторов. То есть, если вы планируете регулируемый блок питания гонять по всему диапазону напряжений, используя максимальные токи, то в этом случае лучше в схему поставить не одни транзистор, а два или три. Эти транзисторы соединяются между собой параллельно. А в цепь эмиттера добавляется компенсационный резистор где-то на 0,1 Ом (чтобы сделать работу всех транзисторов одинаковой по выходному току). В итоге выделяемое тепло на транзисторах равномерно распределится между всеми, параллельно соединенными. Это обеспечит защиту от чрезмерного перегрева, поскольку нескольким транзисторам гараздо легче рассеять тепло по радиатору, чем одному, который скорей всего выйдет из строя уже через несколько минут своей работы.

Видео по этой теме:

P.S. Данную схему я собирал. Она полностью работоспособна и не требует особых настроек после пайки. В целом же такой вариант блока питания вам обойдется гораздо дешевле, чем покупать БП аналогичной мощности уже готовые. Причем, сам ИБП возможно у вас уже где-то валяется без надобности. Вот и сделайте из него простой регулируемый блок питания своими руками.

Самая простая схема источника питания

Эта схема источника питания проста в изготовлении и недорого. А для этого требуется всего 5 компонентов.

За свою жизнь я построил много схем, но на самом деле это первый раз, когда я построил схему источника питания с нуля.

Последним проектом, который я хотел создать, был сетевой адаптер с USB-разъемом для зарядки моего iPhone. Но сначала я хотел начать с создания простой схемы, которая преобразует напряжение сети 220 В или 110 В в 5 В.

Поскольку я нахожусь в Австралии, когда пишу это, а напряжение здесь 220 В, я построил его с расчетом на 220 В. Но вместо этого очень легко преобразовать его в 110 В, переключив одно соединение (или один компонент).

Осторожно: НЕ подключайте к электросети все, что вы делаете самостоятельно, если вы не на 100% уверены в том, что делаете. Неправильное действие может привести к серьезным повреждениям, даже к смерти. Используйте предоставленную здесь информацию на свой страх и риск.

Если вам нужна совершенно безопасная и чрезвычайно полезная схема источника питания, вам следует проверить это портативное зарядное устройство USB, которое я построил.Он даже включает в себя загружаемое пошаговое руководство о том, как его собрать самостоятельно.

Проектирование источника питания

Я хочу построить схему источника питания на базе регулятора напряжения LM7805, потому что это простой в использовании чип. Этот компонент даст стабильное выходное напряжение от 5 В до 1,5 А.

Я легко могу понять, как использовать LM7805, посмотрев на его техническое описание.

Из таблицы я нашел эту маленькую схему:

Выбор номиналов конденсатора

На изображении выше показан регулятор напряжения с цифрой 0.Конденсатор 33 мкФ на входе и 0,1 мкФ на выходе. Трудно найти хороший источник информации об этих значениях конденсаторов, но, согласно этим вопросам и ответам, в этих значениях нет ничего волшебного.

В сети есть много мнений по поводу этих конденсаторов. Некоторые предлагают конденсаторы 0,1 мкФ, другие - конденсаторы 100 мкФ. Некоторые предлагают использовать одновременно 0,1 мкФ и 100 мкФ.

Значения, которые вы должны использовать, зависят от множества факторов. Например, какой длины будут провода.Но эта статья о том, как построить простую схему питания, поэтому не будем усложнять. Наверное, подойдет практически любая емкость конденсатора. Возможно, он будет работать даже без конденсаторов.

Чтобы сделать выходное напряжение «немного стабильным», я собираюсь использовать на выходе конденсатор емкостью 1 мкФ. Я пропущу входной конденсатор, потому что конденсатор все равно будет в этом положении - просто продолжайте читать.

Преобразование из 220 В

В таблице данных также указано, что для правильной работы требуется от 7 до 25 В.Итак, мне нужно только добавить несколько компонентов, которые преобразуют 220 В (или 110 В) переменного тока в постоянное напряжение, которое остается между 7 и 25 В.

Это относительно просто. Я просто добавлю трансформатор, который преобразует напряжение, например, примерно до 12 В. Затем я подам это переменное напряжение в мостовой выпрямитель, чтобы его выпрямить.

И я использую большой конденсатор на выходе, чтобы постоянно поддерживать напряжение выше необходимых 7В. Это значение конденсатора не критично. Я видел много схем блоков питания, в которых используется 470 или 1000 мкФ, поэтому сейчас я попробую с 470 мкФ.

Схема блока питания

Итак, итоговая схема выглядит так:

Список запчастей

Часть Значение Описание
Т1 220 В (или 110 В) до 12 В Трансформатор
DB1 Выпрямитель с диодным мостом
C1 470 мкФ (20 В и выше) Конденсатор
C2 1 мкФ (10 В и выше) Конденсатор
U1 7805 Регулятор напряжения

Общая стоимость комплектующих около 12-15 долларов. Самый дорогой компонент - трансформатор (около 10 долларов).

Поиск компонентов для цепи

Когда я не уверен, как выбрать компоненты для схемы, я обычно хожу в интернет-магазины электроники для любителей и смотрю на их варианты. В этих магазинах обычно есть компоненты, которые должны работать от стандартного блока питания без каких-либо особых требований.

В Австралии Jaycar - хороший вариант.

Быстрый поиск «трансформатора» на Jaycar дает мне несколько вариантов.Входное напряжение должно быть около 220 В, а выходное - около 12 В. После быстрого просмотра их вариантов и цен я остановился на этом:
https://www.jaycar.com.au/12-6v-ct-7va-500ma-centre-tapped-type-2853-transformer/p / MM2013

Трансформатор имеет центральный отвод на выходной стороне, который я могу игнорировать.

Это на 220В. Если вы живете в стране с напряжением 110 В, в магазинах вашей страны, вероятно, найдется подходящая версия. Щелкните здесь, чтобы просмотреть мой список интернет-магазинов.

Тогда мне нужен выпрямитель. Мы можем использовать 4 силовых диода (например, 1N4007) или мостовой выпрямитель (который в основном состоит из четырех диодов, встроенных в один компонент). Самый дешевый вариант, который появляется при поиске мостового выпрямителя на Jaycar, - это:
https://www.jaycar.com.au/w04-1-5a-400v-bridge-rectifier/p/ZR1304

Готовая схема

Это простая схема для пайки на макетной плате. Вот прототип, который я построил:

.

Напоминание: не подключайте к электросети все, что вы построили самостоятельно, если вы не на 100% уверены в том, что делаете.Используйте предоставленную здесь информацию на свой страх и риск.

Вы его построили?

Вы построили эту схему? Какой у вас опыт? С чем вы боролись? Расскажите в комментариях ниже, как все прошло.

Источник питания 5 В постоянного тока

Design (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать. В этом посте мы не только проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать сами.

Схема источника питания - это очень простая схема в обучении электронике. Практически каждый в электронике пытается это сделать. И я не могу сказать вам, насколько это весело, когда вы завершаете свой первый дизайн блока питания, тестируете его, и он работает нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это линейный дизайн, основанный на технологиях, он будет проходить вас на каждом этапе проектирования, попытается представить все простым языком, выполнит некоторые математические вычисления i.е. Если в схеме используется конденсатор, вы должны знать, зачем он нужен и как рассчитывается его значение.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой своими руками, то этот набор для самостоятельного изготовления регулируемого блока питания (нажмите здесь) подойдет именно вам. Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные части схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем мы перейдем к проектированию. Думаю, нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по отдельности.

Входной трансформатор

Трансформатор - это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Что ж, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор, чтобы понизить входящий переменный ток до требуемого нижнего уровня, то есть близкого к 5 В (переменный ток). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор - это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная схема

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Извините, вы ошибаетесь, как когда-то был я. Пониженное напряжение по-прежнему остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя - это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить необходимое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы его проектируем, в следующих разделах.

В основном, существует два типа выпрямительных схем; полуволновой и двухполупериодный. Однако нас интересует полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток.Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра - отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсаторный. Вы, наверное, слышали, конденсатор - это устройство, накапливающее заряд. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Стабилизатор - это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но и от изменений напряжения в сети.

Регулятор - это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали несколько основных концепций проектирования источников питания. Давайте пойдем дальше с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема источника питания 5В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты цепи, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним.

Теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания постоянного тока 5 В

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для питания наших проектов.

Итак, приступим к делу шаг за шагом.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора. Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

В техническом описании 7805 также предписывается использование конденсатора 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсации, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для изучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение - это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо учитывать его напряжение, номинальную мощность и значение емкости. Номинальное напряжение рассчитывается от вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т. Е. 500 мА в нашем исполнении, Vo = выходное напряжение, т. Е. В нашем случае 5 В, f = частота, т. Е. 50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R - сопротивление нагрузки. Rf - коэффициент пульсации, который должен быть менее 10% для хорошей конструкции. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5. Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдержать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит нашу поставку.

Практическое правило для выбора номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить к микросхеме регулятора радиатор.

Больше удовольствия с электроникой

Электроника - это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы узнали все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY.Вы хотите спаять и поиграть со всеми вышеупомянутыми компонентами, затем проверьте это, комплект источника питания Elenco (Amazon Link), вам будет интересен.

Также есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), , которая научит вас многим классным электронным устройствам с помощью практических занятий. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как проектировать источник питания постоянного тока на 5 Вольт.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

DIY: Как сделать блок питания 9 В из батареи дрели

Здравствуйте и добро пожаловать в мой первый проект DIY для Premier Guitar . Я собираюсь объяснить, как сделать батарейный блок питания для педалборда (Изображение 1) . Мы будем использовать аккумулятор для аккумуляторной дрели для питания и некоторые другие предметы, которые у вас, возможно, уже есть.Все детали, необходимые для этого проекта, можно легко найти и купить в Интернете.


Зачем вам использовать батарею дрели для питания ваших педалей эффектов? Зарядив свои эффекты от батареи, вы устраняете вероятность шума, вызванного плохой проводкой в ​​вашем доме или в помещении, это устраняет возможные контуры заземления, а также шнур, о котором можно споткнуться, и это расширяет ваши возможности для размещения педалборда. . Батареи для дрелей прочные, легко перезаряжаемые и прослужат очень долго, прежде чем потребуется подзарядка.Они просто вставляют и выскакивают из зарядного устройства, а также выскакивают из источника питания. Если у вас уже есть пара запасных аккумуляторов, стоимость этой сборки невелика. Запасные батареи можно приобрести в Интернете, если у вас уже есть зарядное устройство, или вы даже можете купить батареи и зарядное устройство.

Изображение 2

Если вы модифицировали проводку своих гитар, у вас, вероятно, есть инструменты и навыки, необходимые для создания этого проекта. Вам понадобится хороший паяльник и припой, дрель, плоскогубцы, мультиметр и, конечно же, защита для глаз.Если вы похожи на меня, вам также понадобятся очки для чтения, чтобы видеть, что вы делаете. Эта сборка довольно проста и понятна, как вы можете видеть на схеме соединений, показанной на Изображение 2 . Оранжевый квадрат - это задняя часть обычного педального переключателя 3PDT, который можно найти в большинстве стомпбоксов. Я использовал ножной переключатель 3PDT, но ножной переключатель 2PDT или любой тумблер также подойдет для этого проекта.

Изображение 3

Два самых важных элемента, которые нам нужны, помимо батареи, - это адаптер батареи и понижающий преобразователь, иногда называемый преобразователем напряжения.Батарея подключается к адаптеру так же, как к дрели, и имеет два провода, которые позволяют нам подключаться к источнику питания от аккумулятора. Батарейные адаптеры производятся для нескольких марок батарей для сверл. Я использую Milwaukee, но Makita и DeWalt также будут работать над этим проектом. Я купил свой аккумуляторный адаптер ( Image 3 ) примерно за 16 долларов на Amazon.

Понижающий преобразователь позволяет вам регулировать (или «понижать») напряжение, поступающее от батареи, до 9 вольт, что является напряжением, которое вы хотите для большинства педалей.Эти агрегаты также дешевы. Я купил пачку из четырех штук, на случай, если одну испортил. Возьмите тот, который будет выдерживать не менее 25 вольт в верхнем диапазоне и ниже нашего целевого напряжения 9 вольт. Также проверьте, какой ток он может выдержать: 3-5 ампер должно быть достаточно.

Изображение 4

Купленный мною понижающий преобразователь имеет размеры примерно 2 на 1 дюйм ( Изображение 4 ), с соединениями для входа и выхода постоянного тока. Небольшой латунный винт наверху синей прямоугольной коробки - это регулировка. У меня поворот винта против часовой стрелки снижает выходное напряжение.Чтобы установить регулировочный винт, понадобится действительно маленькая отвертка, а чтобы понизить его до 9 вольт, нужно сделать много оборотов.

Купленный мною понижающий преобразователь рассчитан на 3 ампера электрического тока. Итак, сколько тока потребляют ваши педали? Я нашел хороший список различных педалей и их мощность на Stinkfoot.se. Четыре педали, которые я использовал в последнее время, потребляют в общей сложности 113 мА, или 0,113 усилителя. Важно отметить, что стомпбоксы потребляют энергию всякий раз, когда к ним подключен гитарный шнур, даже когда они выключены.Ножной переключатель на педали просто направляет сигнал по схеме и не останавливает потребление энергии. Вот почему мы ставим педальный переключатель в наш проект, чтобы мы могли выключить питание. Мы также добавим светодиод, чтобы напоминать нам о включении питания.

В этом проекте мы будем использовать базовый корпус педали. Я использовал один размером примерно 2 1/4 дюйма на 4 1/4 дюйма, и его поставляли в коробке по три штуки. Коробка поставляется со специальным ступенчатым сверлом, которое проделывает отверстия для таких вещей, как домкраты, переключатели и светодиоды, а также полезный список шагов, которые подходят для разных частей.Кусок малярной ленты, обернутый вокруг сверла на соответствующем этапе, поможет вам просверлить отверстие нужного размера, не заходя слишком далеко.

Что еще нам понадобится?

  • Один ножной переключатель 3PDT (педальный переключатель 2PDT также будет работать)
  • Светодиод и монтажная панель
  • Один резистор 4,7 кОм (выпадающий)
  • Цилиндрический разъем, совместимый с вашим шнуром питания
  • Два цвета соединительных проводов, 22 AWG или 24 AWG
  • Стойки для установки понижающего преобразователя , или какой-нибудь силиконовый герметик
  • Три или четыре гайки и болта для крепления адаптера батареи
  • И, наконец, нам понадобится старый шнур питания, который, как я знаю, у вас валяется, для питания ваших педалей.

Использование термоусадочных трубок не обязательно, но они сделают вашу сборку намного аккуратнее, чем использование изоленты. Купив их, вы найдете им множество применений, и они часто пригодятся. У меня есть сумка с кучей кусков разного диаметра за пару баксов, и она прослужила мне несколько лет.

Изображение 5

А теперь приступим. Вы можете легко увидеть все детали и подсоединение проводов к корпусу (рис. 5). Первое, что мы сделаем, это прикрутим адаптер батареи к нижней части корпуса.Тщательно отметьте, где идут отверстия. Используйте самые короткие болты, чтобы они не мешали проводке, оставив место для доступа к винтам, удерживающим корпус вместе.

Изображение 6

Затем отметьте, где просверлить отверстия для педального переключателя, светодиода и домкрата. Вам понадобится еще одно отверстие, чтобы подвести провода от адаптера к корпусу: поместите его на конец, противоположный разъему. Обязательно отшлифуйте это последнее отверстие аккуратно и гладко по краям, чтобы не повредить проволоку.Я проделал отверстие для домкрата примерно на полпути между верхом и низом корпуса, и это оставило мне достаточно места для проводки. Убедитесь, что между разъемом и ножным переключателем достаточно места ( Изображение 6 ). Теперь мы можем установить разъем, педальный переключатель и светодиодную панель.

На этом этапе вам просто нужно следовать схеме, чтобы подключить устройства. Я использовал провод 22 AWG и нашел его немного громоздким, чтобы вставить его в несколько более узких мест и припаять. На этой ноте, вероятно, подойдет провод 24 AWG.Он должен быть рассчитан на ток от 1,4 до 3,5 ампер, в зависимости от того, многожильный он или сплошной. Чтобы дать вам представление, ток 1,4 ампера более чем в 10 раз превышает ток, который тянут мои четыре педали.

Я установил еще один разъем для выхода 18 вольт, на всякий случай, если мне когда-нибудь достанется педаль на 18 вольт. (Для этого также потребуется второй понижающий преобразователь.) Однако после подключения я обнаружил, что мои 18-вольтовые батареи на самом деле примерно 20 вольт, поэтому я удалил проводку.

Изображение 7

Если у вас нет стоек для понижающего преобразователя, вам нужен другой способ его крепления внутри корпуса.Я использовал силиконовый герметик, чтобы приклеить свой к тонкому куску дерева. Я использовал спирт, чтобы очистить корпус, куда я положил силикон, чтобы убедиться, что он прилипнет. После того, как силикон высох, и я подключил преобразователь, я использовал больше силикона, чтобы приклеить его к корпусу ( Изображение 7 ).

Изображение 8

Отрежьте провода от адаптера аккумулятора до более короткой длины, пропустите провода от входа понижающего преобразователя через отверстие в корпусе и припаяйте их к проводам аккумулятора.Здесь вам пригодится термоусадочная трубка. Используйте еще немного этого силикона, чтобы закрепить провода в отверстии, когда убедитесь, что все работает. И убедитесь, что вы подключили разъемы так, чтобы центр был отрицательным ( Изображение 8 ).

Изображение 9

Для работы светодиода требуется резистор, припаянный к положительной клемме последовательно. Положительная нога длиннее. Пропустите ножки светодиода через пластиковую монтажную втулку, которая идет в комплекте с лицевой панелью, прежде чем паять резистор ( Изображение 9 ).Затем светодиод просто войдет в лицевую панель. Если ваш светодиод расположен достаточно близко, вы можете припаять другой конец резистора к переключателю, как я. Вы можете использовать проволоку, если она слишком далеко. Другой вывод светодиода идет на землю от аккумулятора. Стоит отметить, что номинал выпадающего резистора во многом зависит от типа и цвета светодиода. Мы используем резистор 4,7 кОм, который отлично работает с синим стандартным светодиодом. Для всех других цветов и типов светодиодов тип резистора можно пересчитать онлайн.Хороший ресурс для этого: http://www.muzique.com/schem/led.htm.

Если вы все спаяли правильно, все готово! У меня есть две батарейки для дрели разного размера, и даже самые маленькие проработают мои педали в течение девяти часов. Я бы посоветовал включить источник питания и проверить мультиметром перед подключением любой из ваших педалей, следя за тем, чтобы полярность вашего выхода была правильной.

Как вы могли изменить мой дизайн? Вы можете использовать больший корпус и больше разъемов, что позволит вам подключать каждую педаль к отдельному кабелю.Вместо более крупного корпуса можно сделать отдельную коробку с множеством разъемов питания. Второй понижающий преобразователь может обеспечить питание 18 В. Возможно, для вас имеет смысл установить адаптер аккумулятора прямо на педалборд, а корпус педали отдельно. Дайте мне знать, если у вас есть другие идеи в разделе комментариев в Интернете.

Для меня это был приятный переход от моих обычных проектов. У меня много оставшихся деталей, так что, думаю, пора задуматься, что делать дальше.PQ: «Я бы посоветовал включить ваш источник питания и проверить с помощью мультиметра, прежде чем подключать любую из ваших педалей, следя за тем, чтобы полярность вашего выхода была правильной».

Статьи с вашего сайта

Статьи по теме в Интернете

Замечания по проектированию источника питания

- MCI Transformer Corporation

Базовое руководство по применению источника питания

Используются четыре основных типа блоков питания:

  • Нерегулируемый линейный
  • Регулируемый линейный
  • Феррорезонанс
  • Режим переключения

Различия между четырьмя типами включают постоянное выходное напряжение, экономическую эффективность, размер, вес и пульсации.В этом руководстве объясняется каждый тип источника питания, описывается принцип работы и выделяются преимущества и недостатки каждого из них.

1. Нерегулируемый линейный источник питания

Нерегулируемые источники питания содержат четыре основных компонента: трансформатор, выпрямитель, конденсатор фильтра и резистор утечки.

Блок питания этого типа из-за своей простоты является наименее дорогостоящим и наиболее надежным для требований низкого энергопотребления. Недостатком является непостоянство выходного напряжения.Оно будет меняться в зависимости от входного напряжения и тока нагрузки, а пульсации не подходят для электронных приложений. Пульсации можно уменьшить, заменив конденсатор фильтра на фильтр IC (индуктор-конденсатор), но затраты на это изменение сделают использование регулируемого линейного источника питания более экономичным выбором.

2. Регулируемый линейный источник питания

Регулируемый линейный источник питания идентичен нерегулируемому линейному источнику питания, за исключением того, что вместо спускного резистора используется трехконтактный стабилизатор.

Регулируемый линейный источник питания решает все проблемы нерегулируемого источника питания, но не так эффективен, потому что трехконтактный регулятор будет рассеивать избыточную мощность в виде тепла, которое должно быть учтено в конструкции источника питания. Выходное напряжение имеет незначительные пульсации, очень маленькую регулировку нагрузки и высокую надежность, что делает его идеальным выбором для использования в электронных устройствах с низким энергопотреблением.

3. Источники питания феррорезонансные

Феррорезонансный источник питания очень похож на нерегулируемый источник питания, за исключением характеристик феррорезонансного трансформатора.

Феррорезонансный трансформатор будет обеспечивать постоянное выходное напряжение в широком диапазоне входного напряжения трансформатора. Проблемы с использованием феррорезонансного источника питания заключаются в том, что он очень чувствителен к незначительным изменениям частоты сети и не может быть переключен с 50 Гц на 60 Гц, и что трансформаторы рассеивают больше тепла, чем обычные трансформаторы. Эти источники питания тяжелее и будут иметь более слышимый шум от резонанса трансформатора, чем регулируемые линейные источники питания.

4. Импульсные источники питания

Импульсный источник питания имеет выпрямитель, конденсатор фильтра, последовательный транзистор, регулятор, трансформатор, но он более сложен, чем другие источники питания, которые мы обсуждали. Схема ниже представляет собой простую блок-схему и не отображает все компоненты источника питания.

Переменное напряжение выпрямляется до нерегулируемого постоянного напряжения с помощью последовательного транзистора и регулятора. Этот постоянный ток прерывается до постоянного высокочастотного напряжения, что позволяет значительно уменьшить размер трансформатора и позволяет использовать источник питания гораздо меньшего размера.Недостатки этого типа источника питания состоят в том, что все трансформаторы должны изготавливаться по индивидуальному заказу, а сложность источника питания не подходит для низкопроизводительных или экономичных применений с низким энергопотреблением.


Выпрямительные цепи для регулируемых линейных источников питания

Из нашего предыдущего описания, регулируемый линейный источник питания является наиболее экономичной конструкцией с низким энергопотреблением, низким уровнем пульсаций и низким уровнем регулирования, который подходит для электронных приложений.В этом разделе мы объясним четыре основных используемых схемы выпрямления:

      • Полуволна
      • Полноволновой с центральным отводом
      • Полноволновой мост
      • Двойной дополнительный

1. Полуволновые схемы

Поскольку конденсаторный входной фильтр потребляет ток из схемы выпрямления только короткими импульсами, частота импульсов вдвое меньше, чем у двухполупериодной схемы, поэтому пиковый ток этих импульсов настолько велик, что эту схему не рекомендуется использовать для Мощность постоянного тока более 1/2 Вт.

2. Полноволновые схемы с центральным ответвлением

Двухполупериодный выпрямитель одновременно использует только половину обмотки трансформатора. Номинальный вторичный ток трансформатора должен в 1,2 раза превышать постоянный ток источника питания. Напряжение вторичной обмотки трансформатора должно быть примерно в 0,8 раза больше напряжения постоянного тока нерегулируемого источника питания на каждую сторону центрального ответвления, или трансформатор должно быть в 1,6 раза больше напряжения постоянного тока с центральным ответвлением.

3.Полноволновой мост

Двухполупериодная мостовая схема выпрямления является наиболее рентабельной, поскольку для нее требуется трансформатор с более низким номиналом в ВА, чем двухполупериодный выпрямитель. В двухполупериодном мосте вся вторичная обмотка трансформатора используется в каждом полупериоде, в отличие от двухполупериодного центрального отвода, который использует только половину вторичной обмотки в каждом полупериоде. Номинальный вторичный ток трансформатора должен в 1,8 раза превышать постоянный ток источника питания. Вторичное напряжение трансформатора должно быть приблизительно.В 8 раз больше постоянного напряжения нерегулируемого источника питания.

4. Двойной дополнительный выпрямитель

Двойной дополнительный выпрямитель используется для подачи положительного и отрицательного выходного постоянного тока с одинаковым напряжением. В большинстве случаев отрицательный ток значительно меньше, чем требуемый положительный ток, поэтому отношение напряжения и тока переменного тока к напряжению и току постоянного тока должно быть таким же, как и для двухполупериодного центрального отвода, описанного ранее.


Как выбрать трансформатор

Регулируемый линейный источник питания используется для обеспечения постоянного выходного напряжения при различных нагрузках, а также для изменения входного напряжения. Все наши расчеты для определения правильного трансформатора предполагают, что входное напряжение может варьироваться от 95 до 130 В и не влияет на выход нашего источника питания.

Формула, используемая для определения напряжения переменного тока, требуемого от трансформатора, выглядит следующим образом:

      • Vdc = Выходное напряжение
      • Vreg = Падение напряжения регулятора = 3v
      • Vrec = Падение напряжения на диодах = 1.25 В
      • Врип = пульсация напряжения = 10% от постоянного тока
      • Vном = 115 В
      • Vlowline = 95 В
      • .9 = КПД выпрямителя

Мы суммировали все расчеты для трех основных схем выпрямления в таблице ниже:

Схема выпрямления RMS НАПРЯЖЕНИЕ (ВОЛЬТ) RMS ТОК (AMPS)
Полноволновой центральный метчик В переменного тока C.Т. = 2,092 x Vdc ​​+ 8,08 IAC = IDC x 1,2
Полноволновой мост В переменного тока = 1,046 x В постоянного тока +4,04 IAC = IDC x 1,8
Двойной дополнительный В переменного тока CT = 2,092 X В постоянного тока = 8,08 IAC = IDC x 1,8

Существуют регуляторы с малыми потерями, которые имеют падение 0,5 В вместо 3 В, но в настоящее время они не рассматриваются из-за доступности.

ПРИМЕРЫ:

Пример # 1:

Регулируемый линейный источник питания необходим для 5 В постоянного тока на 1 АЦП с первичной обмоткой 115 В или 230 В, и вы не знаете, должен ли он быть двухполупериодным с центральным ответвлением или двухполупериодным мостом.

Полноволновый центральный метчик
В перем. Тока Т.Т. = 2,092 x В пост. Тока + 8,08 Iac = Idc x 1,2
В перем. Тока Т.Т. = 2,092 x 5 + 8,08 Iac + 1 х 1,2
Vac C.T. = 18,54 C.T. Iac = 1,2
ВА = 18,54 x 1,2 = 22,5

Возможные варианты трансформаторов:
4-02-6020 UL Крепление для ПК
4-05-4020 Низкопрофильный
4-07-6020 UL Крепление на шасси
4-42-3020 Крепление для ПК VDE
4-44-6020 Крепление для ПК VDE
4-47-3020 Крепление на шасси VDE
4-49-4020 Крепление на шасси VDE

Полноволновой мост
В перем. Тока = 1.046 x Vdc ​​+ 5,23 Iac = Idc x 1,8
В перем. Тока = 1,046 x В пост. Тока + 5,23 Iac = 1 x 1,8
В перем. Тока = 10,46 Iac = 1,8
VA = 10,46x 1,8 = 18,83

Возможные варианты трансформатора:
4-02-6010 UL Крепление для ПК
4-05-4010 Низкопрофильный
4-07-6010 UL Крепление на шасси
4-42-3010 Крепление для ПК VDE
4-47-6010 Крепление для ПК VDE
4-47-3010 Крепление на шасси VDE
4-49-4010 Крепление на шасси VDE

Пример № 2:

Регулируемый линейный источник питания необходим для 12 В постоянного тока при 250 мА постоянного тока с одним первичным напряжением 115 В, а двухполупериодный мост - это схемы выпрямления, которые вы будете использовать.

Полноволновой мост
В перем. Тока = 1,046 x В пост. Тока + 4,04 Iac = Idc x 1,8
В перем. Тока = 1,046 x 12 + 4,04 Iac = 0,25 x 1,8
В пер. Тока = 16,59 Iac = .45
VA = 16,59 x 0,45 = 7,47

Возможные варианты трансформатора:
4-01-5020 UL Крепление для ПК
4-03-4020 UL Крепление для ПК
4-05-3020 UL низкопрофильный кронштейн для ПК
4-06-5020 UL Крепление на шасси
4-41-2020 Крепление для ПК VDE
4-44-5020 Крепление для ПК VDE
4-46-2020 Крепление на шасси VDE

При использовании источников питания убедитесь, что выбранный регулятор имеет теплоотвод, достаточный для рассеивания мощности при высокой полной нагрузке линии.

Пример № 3:

Регулируемый линейный источник питания необходим для напряжения ± 15 В постоянного тока при 50 мА с первичной обмоткой 115 В.

Двойной дополнительный:
Vac CT = 2,092 x Vdc ​​x 8,08 Iac = Idc x 1,8
В перем. Тока CT = 2,092 x 15 + 8,08 Iac = 0,050 x 1,8
В перем. Тока CT = 39,46 Iac = 0,090
ВА = 39.46 х 0,090 = 3,55

Возможные варианты трансформатора:
4-01-4036 UL Крепление для ПК
4-03-3040 UL Крепление для ПК
4-05-2040 UL низкопрофильный кронштейн для ПК
4-06-4036 UL Крепление на шасси
4-44-4036 Крепление для ПК VDE

Давайте теперь посмотрим, как регулятор будет рассеивать тепло в худшем случае при высоком напряжении линии (= 130 В) и полной нагрузке.Регулятор отводит избыточную мощность в виде тепла. Регулятор имеет только максимальное количество мощности, которое он может рассеять, прежде чем внутренняя тепловая защита отключит его. Если источник питания 5 В постоянного тока, 1 А может работать при 95 В RMS, регулятор должен будет рассеивать 5,95 Вт при полной нагрузке на линии высокого напряжения (см. Расчет ниже).

Обычное рассеиваемое тепло:

DIY Eurorack Power Supply Руководство по сборке

  1. Ресурсы
  2. О блоке питания Eurorack для самостоятельной сборки
  3. Необходимые инструменты
  4. Спецификация (Спецификация)
  5. Шаги сборки блока питания Eurorack
  1. Схема блока питания Eurorack
  2. Печатная спецификация и руководство по сборке

Это модуль не для начинающих.Если вы раньше ничего не строили, остановитесь сейчас и приобретите модуль AI001 Multiple Eurorack Synthesizer Module. Хотя сборка сама по себе несложная, почти все компоненты блока питания DIY Eurorack поляризованы и должны быть «обращены» в правильном направлении на печатной плате, иначе у вас могут взорваться конденсаторы. При создании этого модуля требуется большая осторожность и внимание.

Для источников питания +/- 15 В внесите следующие изменения:

  1. Заменить LM7812 на LM7815
  2. Заменить LM7912 на L7915
  3. Используйте радиаторы с такими регуляторами
  4. Wallwart 16 В вместо 12 В
  5. Используйте соответствующий разъем для вашей системы

  1. Как и в случае с большинством наших сборок, вы хотите начать строить «от низкого к высокому», то есть сначала с «более коротких» элементов.В данном случае это два резистора 2,4 кОм на R1 и R2. Очень важно вставить их перед установкой колпачков 3300, так как это будет довольно сложно. Резисторы не поляризованы, поэтому не имеет значения, в какую сторону они входят. Они используются для обеспечения нагрузки на источник питания при тестировании без подключения каких-либо модулей.
  2. Затем мы вставим шесть диодов 1N4004. Чрезвычайно важно правильно сориентировать их. Совместите полосы на диодах, как на печатной плате.Два из них (D1 и 2) предназначены для разделения входящего переменного напряжения на два источника постоянного напряжения, а четыре других предназначены для обеспечения безопасности - вставьте их все.
  3. Затем вставьте LM7912 и LM7812. НЕ перепутайте их, иначе цепь взорвется. Радиатор не нужен, но если вы захотите вкрутить их в печатную плату, это никому не повредит.
  4. Затем вставьте разъем постоянного тока. Это происходит только в одном направлении.
  5. Сейчас мы можем установить четыре электролитических конденсатора емкостью 1 мкФ. Они поляризованы и должны идти правильным путем.На печатной плате есть индикаторы для стороны -, поэтому убедитесь, что положительный полюс не находится в этом отверстии. Они тоже здесь для безопасности, но вам все равно нужно убедиться, что они есть и правильно ориентированы. В более ранних версиях использовались танталовые конденсаторы, но электролитические более надежны и проще в использовании.
  6. После этого вы можете установить 6 больших конденсаторов емкостью 3300 мкФ. Убедитесь, что они правильно сориентированы. Они здесь, чтобы фильтровать и очищать биполярное питание.
  7. Перед тестированием с питанием выполните быструю проверку целостности цепи.
  8. Сейчас хорошее время для тестирования. Наденьте защитные очки и возьмите настенную розетку переменного тока. Переменный ток должен быть переменным током, а НЕ переменным током. Подключите бородавку к сети переменного тока, затем отступите и подождите 20-30 секунд. Если ничего не взорвалось, можно переходить к тестированию.
  9. Подсоедините черный провод мультиметра к земле, а красную ножку к + V, вы должны прочитать около +12 В. Затем переместите красный провод к контактной площадке -V, вы должны прочитать около -12 В. Он может быть немного выключен, если он находится в пределах одного вольта или около того.
  10. Отключите питание и подключите его. В большинстве случаев вы будете подключать источник питания к печатной плате на шинной плате, но есть места для разъема Eurorack и / или MOTM, если вы хотите использовать его в качестве настольного источника питания.
  11. Поделитесь своей сборкой в ​​Facebook и Instagram!
  12. Если вы хотите узнать больше об управлении электропитанием, прочтите это руководство по электропитанию Eurorack!
  13. Если у вас возникнут какие-либо проблемы, свяжитесь с нами по адресу: https://aisynthesis.com/contact/.

5 вещей, которые нужно знать перед покупкой

Одним из самых сложных компонентов для начинающих строителей является их блок питания.Источники питания не улучшат вашу частоту кадров, и они не играют большой роли в эстетике вашей системы. Однако нет более важного компонента для долгосрочного здоровья вашей системы, чем источник питания.

Если вы выберете некачественный блок питания, ваша сборка либо не будет работать, либо пострадает в долгосрочной перспективе. С другой стороны, если вы не понимаете, сколько энергии вам нужно для эффективного питания вашей системы, вы можете в конечном итоге выделить больше из своего бюджета на источник питания, чем необходимо, и, как следствие, потерять фактические производительность системы.

В этой статье мы собираемся обсудить пять различных факторов, которые следует учитывать перед выбором источника питания. Понимание этих пяти пунктов поможет вам выбрать источник питания, соответствующий вашему бюджету и потребностям.

БОЛЬШЕ ИЗ ЭТОЙ СЕРИИ 1. Что искать в ЦП 2. Как выбрать кулер для процессора 3. Как выбрать материнскую плату 4. Как выбрать видеокарту 5. Как выбрать блок питания 6. Как выбрать чехол для ПК 7. На что обращать внимание на игровой монитор 8. Что искать в игровом кресле

Определение правильной мощности для вашей системы

Перед тем, как выбрать блок питания, вам необходимо сначала выяснить, сколько энергии вам действительно потребуется от блока питания для работы вашего компьютера.

Это можно сделать двумя способами:

  1. Найдите результаты тестов энергопотребления на таких сайтах, как Tom’s Hardware, для компонентов вашей системы (в основном, это графический процессор и процессор) и сложите их вместе, чтобы получить минимальную номинальную мощность.
  2. Воспользуйтесь калькулятором источника питания OuterVision.

На мой взгляд, калькулятор источника питания OuterVision - это гораздо более простой и менее трудоемкий метод определения того, сколько энергии действительно потребуется вашей системе.

Все, что вам нужно сделать, это использовать раскрывающиеся меню, чтобы ввести свои компоненты в калькулятор, а затем нажать кнопку расчета, чтобы узнать, какая мощность блока питания рекомендуется для вашей системы. На вкладке «Эксперт» вы даже можете учесть разгон процессора и видеокарты.

Калькулятор

OuterVision, вероятно, самый точный калькулятор на рынке. Другие калькуляторы, которые я пробовал, в конечном итоге предлагают номинальную мощность, которая намного выше, чем вам действительно нужно. Тем не менее, как хорошее практическое правило, неплохо добавить некоторый запас к числу, которое дает вам OuterVision. Так что, если он говорит вам, что вам нужен блок питания мощностью 450 Вт, использование блока мощностью 500–550 Вт - неплохая идея.

Высокая мощность не соответствует качеству

Тот факт, что блок питания указан как блок мощностью 600 Вт (в качестве примера), не означает, что он может обеспечивать такое количество энергии в течение длительного периода времени.

Многие безымянные производители блоков питания перечисляют свои блоки питания с номинальной мощностью, которая намного выше, чем то, что они могут реально обеспечить за определенный период времени. Некоторые новички в сборке ПК делают ошибку, полагая, что только потому, что блок питания имеет высокую мощность, это означает, что он является достаточно хорошим источником питания для их нужд.

И, поскольку многие из этих низкокачественных источников питания продаются по смехотворно низким ценам, некоторые ошибочно думают, что получают надежный источник питания по отличной цене.На самом деле, однако, они покупают очень плохое устройство с неверной номинальной мощностью.

Итак, важно избегать неизвестных производителей блоков питания и придерживаться только хорошо известных производителей. Вот краткий список производителей, известных своими качественными блоками питания:

  • EVGA
  • Корсар
  • Сезонный
  • Antec
  • Cooler Master
  • Сильверстоун
  • Thermaltake
  • Тихо!
  • Bitfenix

Это, конечно, не полный список, и важно отметить, что не все блоки питания перечисленных выше производителей являются качественными.Поэтому важно, чтобы, получив рейтинг мощности, вы проявили должную осмотрительность и исследовали, какие качественные устройства доступны в вашем ценовом диапазоне.

Лучший способ сделать это - прочитать обзоры экспертов или ознакомиться с тщательно отобранным списком качественных источников питания в Руководстве покупателя блоков питания.

Важность экспертных оценок источников питания

Тестирование источника питания - это немного более сложный процесс, чем тестирование / тестирование других компонентов. Взгляните на методики тестирования от JonnyGuru и Tom’s Hardware.

Как видите, при тестировании блоков питания используется много дополнительного оборудования. И часть этого оборудования довольно дорогое.

И поскольку процесс тестирования источников питания немного сложнее, чем тестирование других компонентов, обзоров источников питания не так много, как обзоров других компонентов.

К счастью, - это несколько авторитетных обозревателей источников питания. Вот несколько из них:

Перед покупкой блока питания рекомендуется сначала проверить, не проводил ли какой-либо из вышеперечисленных веб-сайтов его обзор.

Объяснение рейтинговой системы 80 Plus

Еще один фактор, который следует учитывать при выборе источника питания, - это различные уровни эффективности 80 Plus.

Из Википедии:

80 Plus (торговая марка 80 PLUS ) - это программа добровольной сертификации, предназначенная для содействия эффективному использованию энергии в компьютерных блоках питания (БП).

Чтобы лучше понять рейтинговую систему 80 Plus, вам сначала нужно немного понять, как работает блок питания компьютера.

Компоненты вашего компьютера используют питание постоянного тока. Однако питание, поступающее из розетки, к которой подключен ваш компьютер, обеспечивает питание переменного тока (переменного тока).

Ваш блок питания отвечает за преобразование переменного тока от стены в постоянный ток, необходимый для работы ваших компонентов.

Во время этого преобразования происходит некоторая потеря мощности на нагрев. Таким образом, 100% мощности переменного тока, потребляемой от стены, не преобразует , а не в постоянный ток.Приличный блок питания преобразует не менее 80% переменного тока, потребляемого от стены, в постоянный ток.

Действительно хороший блок питания преобразует 90% и более.

Рейтинговая система 80 Plus в основном показывает, насколько эффективен источник питания при преобразовании мощности переменного тока в мощность постоянного тока. Но все идет немного глубже, поскольку рейтинговая система 80 Plus оценивает эффективность источника питания при определенных нагрузках.

Чтобы получить один из значков 80 Plus, блок питания должен поддерживать определенный уровень эффективности при нагрузке менее 20%, 50% и 100%.(В новейшем рейтинге 80 Plus, Titanium, учитывается эффективность блоков питания при нагрузке менее 10%.)

Вот таблица с разбивкой по каждому из различных рейтингов 80 Plus и с указанием уровня эффективности, которого он должен достичь, чтобы претендовать на этот конкретный рейтинг:

80 Plus Рейтинговые уровни 115 В без резервирования
900 12% от номинальной нагрузки 10% 20% 50% 100%
80 плюс 80% 80% 80%
80 плюс бронза 82% 85% 82%
80 Плюс Серебро 85% 88% 85%
80 плюс золото 87% 90% 87%
80 плюс платина 90% 92% 89%
80 Plus Титан 90% 92% 94% 90%

Важно отметить, что рейтинговая система 80 Plus не идеальна и не обязательно указывает на то, что источник питания является качественным.И, следовательно, его не следует использовать как главный фактор, определяющий качество источника питания.

Однако верно то, что блоки питания, которые достигают более высокого диапазона рейтингов 80 Plus (Gold, Platinum и Titanium), представляют собой , как правило, хорошо построенных и качественных блоков. Но просто обратите внимание, что если вы ищете блок питания, неплохо было бы, чтобы рассмотрел как рейтинговую систему 80 Plus для блока в сочетании с подробным обзором того же блока.

Краткое замечание по эстетике блока питания

Для значительной части людей, которые собирают свои собственные компьютеры, эстетика играет важную роль в процессе выбора компонентов.Однако блоки питания - это тот компонент, в котором эстетика обычно не играет большой роли.

Да, есть блоки питания RGB. И есть блоки питания, которые выглядят лучше, чем другие.

Однако для меня главное, что я ищу в источнике питания с точки зрения эстетики, - это, в основном, его кабельная разводка / оплетка.

Вы можете потратить много времени на то, чтобы убедиться, что ваши другие компоненты согласованы по цвету, и у вас будет самая чистая кабельная разводка, и вы можете продемонстрировать все это внутри корпуса с красивой полностью стеклянной боковой панелью.

Однако, если кабели ваших блоков питания выглядят так…

… разноцветные кабели ухудшат эстетику вашей сборки, и ваша система не будет выглядеть так красиво, как если бы в вашем источнике питания были все черные кабели, подобные этому…

Если вас не волнует эстетика, очевидно, вам не нужно беспокоиться о цвете кабелей устройства. А если вы покупаете модульное устройство, вы всегда можете поменять кабели на специальные рукава.

Однако, если вы ориентируетесь на бюджет, но все же хотите создать красивую конструкцию, просто знайте, что из более доступных источников питания есть , некоторые из которых будут иметь полностью черные кабели, которые выиграли ''. t убрать из вашей сборки.

Итак, хотя эстетика не является главной вещью, которую следует учитывать при покупке блока питания - особенно на более высоком уровне рынка, - для меня кабельная разводка является важным аспектом, который вы, возможно, захотите рассмотреть, если хотите построить чистая система.

Выбор подходящего источника питания

Хотя блоки питания могут быть не самыми привлекательными компонентами в сборке системы, они являются одними из самых важных. В этом посте мы рассказали вам о пяти вещах, которые следует учитывать при выборе блока питания для вашей сборки.

Если вы примете во внимание эти пять факторов, вам будет намного проще выбрать подходящий блок питания для ваших нужд.

Калькулятор блока питания

- Калькулятор мощности блока питания

Выберите компоненты

Центральный процессор (ЦП)

Выберите маркуВыберите марку Это поле обязательно к заполнению.Выбрать серию Выбрать серию Это поле обязательно к заполнению.

Материнская плата

Выберите материнскую платуATXE-ATXMicro ATXMini-ITXThin Mini-ITXSSI CEBSSI EEBXL ATSВыберите материнскую плату Это поле обязательно к заполнению.

Графический процессор (GPU)

Выбрать набор микросхем Выберите набор микросхем Выбрать серию Выбрать серию Икс 121

Оперативная память (RAM)

Выберите объем памяти 32 ГБ DDR4 16 ГБ DDR48 ГБ DDR44 ГБ DDR432 ГБ DDR 38 ГБ DDR34 ГБ DDR32 ГБ DDR3 Выберите объем памяти Икс 1234561

Твердотельный накопитель (SSD)

Выберите твердотельный накопитель Не установлен Менее 120 ГБ - 256 ГБ 256 ГБ - 512 ГБ 512 ГБ - 1 ТБ 1 ТБ + Выберите твердотельный накопитель Икс 123456781

Жесткий диск (HDD)

Выберите жесткий диск Не установлен 5400 об / мин 3.Жесткий диск 5 дюймов, 7200 об / мин 3,5 дюйма, 10000 об / мин 2,5 дюйма, 10000 об / мин, 3,5 дюйма, 15 000 об / мин, 2,5 дюйма, жесткий диск 15 000 об / мин, 3,5 дюйма, HDDВыберите жесткий диск Икс 123456781

Оптический привод (CD / DVD / Blu-Ray)

Выберите оптический привод Не установлен Blu-RayDVD-RWCOMBOCD-RWDVD-ROMCD-ROM Выберите оптический привод

Рекомендуемая мощность блока питания:

0 Вт

ПРИМЕЧАНИЕ. Рекомендуемая мощность блока питания дает вам лишь общее представление о том, что следует учитывать при выборе блока питания.Платам PCI, внешним устройствам, устройствам USB и FireWire, охлаждающим вентиляторам и другим компонентам может потребоваться больше энергии.

Часто задаваемые вопросы

Как рассчитать требования к блоку питания?

Лучший блок питания для вашего ПК - это тот, который обеспечивает нужную мощность для всех компонентов одновременно.Для ручного расчета необходимо умножить суммарный ток всех компонентов на общее напряжение всех компонентов. Результат - общая мощность, необходимая для сборки вашего ПК. Если вы введете все компоненты сборки вашего ПК в наш калькулятор, он сделает это за вас и предоставит список вариантов.

Почему мне следует использовать калькулятор для поиска источника питания?

Блок питания обеспечивает питание всех компонентов, и если вы установите неправильный блок питания, вы можете повредить компоненты.Правильный блок питания обеспечит все ваши компоненты постоянным количеством энергии, когда они в этом нуждаются.

Какие самые популярные марки блоков питания я могу купить?

Как узнать, что блок питания подходит по размеру?

В каждом корпусе ПК есть место для блока питания, хотя это пространство может отличаться по размеру и форме.Например, корпуса малого форм-фактора не смогут вместить блок питания, предназначенный для корпусов средней или полной башни. Всегда лучше смотреть на размеры корпуса вашего ПК и убедиться, что вы покупаете блок питания, который может поместиться в отведенном для этого месте.

Где я могу получить новости о блоках питания?

Как узнать, какой блок питания купить?

Прежде чем вы решите, какой блок питания купить, очень важно знать все компоненты, которые в настоящее время есть в вашей сборке, или те, которые вы хотели бы включить.Вот полный список элементов, которые необходимо учитывать при расчете потребностей в источнике питания.

  • Материнская плата - Убедитесь, что вы знаете, какая материнская плата (настольная, серверная, портативная и т. Д.) Установлена ​​в вашей сборке в настоящее время или какой форм-фактор вы хотите использовать в своей новой сборке. Это важный компонент ваших расчетов, потому что почти все в вашей сборке подключается к материнской плате и получает питание от нее.
  • Центральный процессор (ЦП) - Убедитесь, что вы знаете марку, модель или серию, а также размер сокета.
  • Графический процессор (GPU) - Вам нужно будет учесть фактическую потребляемую мощность и количество дополнительных контактов питания, которые может иметь графический процессор.Это будет 6, 8, 6 + 6, 6 + 8 или 8 + 8 контактов - и это на каждый графический процессор. Поэтому убедитесь, что у вашего блока питания достаточно кабеля для этого. В большинстве блоков питания будет хотя бы один кабель, совместимый с 8-контактным или 6-контактным разъемом.
  • Память (RAM) - Всегда знайте количество карт памяти, которые может поддерживать ваша материнская плата, а также размер (ГБ) каждой из них.
  • Оптический дисковод - Если ваша сборка ПК включает в себя оптический дисковод, обязательно включите его в свои расчеты. Также убедитесь, что вы знаете тип оптического носителя (Blu-ray, CD-ROM и т. Д.) Вашего оптического привода.
  • Жесткие диски (HDD) - Вам необходимо знать размер (дюймы) и число оборотов в минуту (например,грамм. 7200 об / мин) каждого жесткого диска, который у вас в настоящее время есть в вашей сборке или который вы хотите включить.
  • Твердотельный накопитель (SSD) - Вам необходимо знать размер (ГБ) каждого твердотельного накопителя, который у вас в настоящее время есть в вашей сборке или который вы хотели бы включить. Помните, что иногда их можно прикрепить к материнской плате.
  • Вентиляторы / Периферийные устройства - Вы можете захотеть добавить надстройки, такие как звуковая карта или вентиляторы корпуса RGB. Эти устройства также потребляют небольшое количество энергии, поэтому будьте осторожны, округляя мощность ватт для размещения периферийных устройств.

Что такое сертификация 80 PLUS?

80 PLUS - это сертификат, который измеряет эффективность источника питания.Производители добровольно отправят свою продукцию в независимую лабораторию для проверки энергоэффективности источника питания при различных нагрузках. На основании результатов блоки питания получают один из 6 уровней сертификации: 80 PLUS, 80 PLUS Bronze, 80 PLUS Silver, 80 PLUS Gold, 80 PLUS Platinum или 80 PLUS Titanium.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *