Как сделать 12 вольт из 36 вольт: У меня есть трансформатор с 220 вольт на 24 вольт. хочу его выход переделать на 12 вольт для дальнейшего включения автокомпрессора.

Содержание

42 Вольта вместо 12 - это нужно? Да это просто необходимо.

Даже современные автомобили, имеют бортовое напряжение в 12 вольт, пришедшее на транспорт с далёких 50 — 60 годов прошлого века. И всех водителей, да и производителей транспортных средств тоже, вроде бы этот привычный всем вольтаж устраивает. Но наверное многие водители замечали, что только стоит включить например подогрев сидений, или обычные фары, и тут же обороты холостого хода начинают падать. Тут всё довольно просто — необходимую мощность, которая требуется для нормальной работы электрических потребителей, можно получить только забрав её от двигателя. И не все водители знают, что для владельца автомобиля, такое превращение механической энергии в электрическую, выходит попросту говоря в выхлопную трубу, вместе с дополнительными литрами сожжённого топлива. И чем больше электропотребителей и мощнее они, тем больше топлива сжигается, сжигая деньги владельца.

Скажу более точно: на каждые сто ватт электрической энергии, расход топлива увеличивается на 170 грамм (миллилитров). Нетрудно подсчитать, сколько лишнего топлива сожрёт ваша машина или мотоцикл, если нашпиговать их например автозвуком, мощностью в 500 или 1000 ватт. И я знаю, что многие рассмеются в лицо и с удовольствием согласятся жечь лишний бензин или соляру, лишь бы слушать качественную и громкую музыку — я и сам такой. Но цель этой статьи в другом.

Начнём с того, что если всего лишь сэкономить какие то жалкие 100 ват электроэнергии, то конструкторам можно будет снизить вес автомобиля аж на 50 килограмм !!! Я имею в виду ватты, которые автомобиль потребляет от электрических потребителей, установленных на заводе, а не от потребителей, установленных самим водителем при тюнинге. И стремление завлечь покупателя комфортом в автомобиле, заставляет конструкторов оборудовать машины всё новыми и новыми энерго-потребителями. Подогрев зеркал, сидений, стёкол, антено и стеклоподъёмники, различные электронные блоки системы впрыска, ESP, ABC, системы навигации и климатические электроустановки, электрический усилитель руля, и ещё много чего. И о некоторых новейших электрических потребителях, я уже писал на моём блоге, например: электрическая помпа системы охлаждения, турбина с электродвигателем крыльчатки, аккумулятор с подогревом, или электропривод тормозов. Всё это скоро появится на серийных машинах.

И если совсем недавно, обычная серийная машина среднего класса девяностых -двухтысячных годов, потребляла от 800 до 1500 ватт электромощности, то сегодняшние среднеклассовые автомобили потребляют уже от 3000 до 7000 ватт !!!

А европейские законы, даже заставили конструкторов установить в современные автомобили электрический подогрев в катализатор, который потребляет 1,5 киловатт !!! электроэнергии, и примерно столько же мощности теряется в проводах по пути к подогревателю. Если посчитать (исходя из 170 мл на 100 ватт, как написано выше) сколько лишнего топлива сжигается из-за подогрева катализатора, то становится непонятным, чего хотят добиться «зелёные»???

И как я уже говорил выше, всё же не стоит экономить например на удовольствии от музыки или комфорта (ведь за удовольствие не жалко платить), но вот чтобы при этом не сжигать бессмысленно топливо, нужно непременно искать выход.

А выход есть.

Ведь известно, что основная потеря электромощности происходит в проводах (я об этом написал выше, сколько теряет в проводах подогреватель катализатора). Это простые законы физики, и напомню, что у каждого провода (проводника) имеется некоторое электрическое сопротивление R. И выделяющаяся в этом проводнике мощность, будет равна произведению I²·R. Но с сопротивлением R почти ничего нельзя сделать. Можно конечно, если заменить медь проводника на серебро (только вот сколько будет стоить такая машина), да и увеличить сечение проводника тоже не выход (возрастёт и масса и цена, и сечение проводов в автомобилях итак уже по самое «нехочу»).

Но вот зато изменить силу тока I, весьма привлекательно, ведь в формуле сила тока стоит в квадрате (I²), а это значит, что если мы снизим портребляемый ток в 3 раза, то потери уменьшатся аж в 9 раз !!! Как говорится простая математика и никакого мошенничества.

Так от чего же зависит величина силы тока?

У любого портребителя электрической энергии мощность вычисляется как произведение U·I, а буква U — это напряжение сети автомобиля. А значит, при одинаковой мощности к примеру подогревателя сиденья, этот подогреватель будет потреблять в 3 раза меньший электрический ток, если напряжение его питания увеличить в 3 раза. Не пойму только, как это конструкторам транспортных средств, до сих пор не пришло в голову поменять 12 вольт на 36 (просто потребителей на машине было мало в те годы). Это нужно было сделать ещё тогда в далёкие 50 — 60-е годы, когда переходили с 6 на 12 вольт! Хотя и было в те годы мало потребителей на машине, но ведь тенденция их роста была очевидна.

И если мы возьмём 3 батареи по 12 вольт каждая и соединим их перемычками, то в сумме получится всего 36 вольт, но ведь это только в то время, когда машина простаивает в гараже. Стоит только завести двигатель, и получим 42 вольта (ведь 12 вольт при работе мотора повышается до 14 вольт).

42 ВОЛЬТА.

42 ВОЛЬТА — это стандарт будущего бортового напряжения земного транспорта. И хочу заменить, что не следует полагать, будто бы вскоре придётся впихивать под капот 3 батареи, которые займут в 3 раза больше пространства под капотом и они будут в 3 раза тяжелее нынешнего 12-вольтового аккумулятора. Совсем нет. Потому что потребляемый к примеру электростартером электрический ток, уменьшится во столько же раз, и мы сможем установить у себя под капотом аккумулятор, ёмкостью всего 20 А/ч !!! Единственное отличие такой батареи от нынешней 12-ти вольтовой — это количество банок: их будет не шесть, а в три раза больше — 18 !!!

Новый стандарт поможет легче осуществить внедрение систем управления не механически, а по проводам (система Drive by wire). Эта система будет устанавливаться даже в самых важных и ответственных узлах автомобиля: тормоза, рулевое управление и подача газа. И чтобы повысить надёжность этих узлов, от которых зависит безопасность водителя и окружающих, нужно будет установить два совершенно независимых источника элктроэнергии на борту автомобиля (как на самолётах). Проще говоря, на маломощных приборах можно будет оставить 12 вольтовую сеть, а на других более мощных потребителях установить сеть в 42 вольта. Это позволит к тому же не тратится водителям на адаптеры, если они захотят установить в машину 12 вольтовые мониторы телевизоров, компьютеров, навигаторов, телефонов и других маломощных приборов.

И напоследок скажу, что новые автомобили с 42 вольтовым напряжение на борту уже колесят по дорогам. Например новая машина (семёрка) от БМВ, была выпущена в 2001 году, и напряжение у неё на борту в 42 вольта. Кстати, даже наш отечественный завод, уже выпустил уникальный генератор, напряжение от которого можно выбрать, подключившись к одной из трёх колодок: 14, 28 и 42 вольта. Но об этом в следующей, вот этой небольшой статье.

Как сделать из 12 вольт 24 вольта. Как получить двадцать четыре вольта из компьютерного блока питания

В этой статье мы рассмотрим стабилизированный источник питания с плавной регулировкой выходного напряжения 0...24 вольта и током 3 ампера. Защита блока питания реализована на принципе ограничения максимального тока на выходе источника. Подстройка порога ограничения по току производится резистором R8. Выходное напряжение регулируется переменным резистором R3.

Принципиальная схема блока питания изображена на рисунке 1.

Перечень элементов:

R1........................180R 0,5W
R2, R4................. 6К8 0,5W
R3.......................10k (4k7 – 22k) reostat
R5........................7k5 0,5W
R6........................0.22R не менее 5W (0,15- 0.47R)
R7.......................20k 0,5W
R8.......................100R (47R – 330R)
C1, С2.................1000 x35v (2200 x50v)
C3.......................1 x35v
C4.......................470 x 35v
C5......................100n ceramick (0,01-0,47)
F1......................5A
T1......................KT816 (BD140)
T2......................BC548 (BC547)
T3......................KT815 (BD139)

T4......................KT819 (КТ805,2N3055)
T5......................KT815 (BD139)
VD1-4................КД202 (50v 3-5A)
VD5.................. BZX27 (КС527)
VD6...................АЛ307Б, К (RED LED)

Начнем по порядку:

Понижающий трансформатор выбирается такой мощности, чтобы он был способен долговременно отдавать ток в нагрузку требуемой величины, а напряжение на вторичной обмотке было на 2...4 вольта больше максимального напряжения на выходе блока питания. Соответственно и выпрямительный мост выбирается с запасом по току, чтобы не пришлось потом диоды моста или диодную сборку лепить на радиатор.

Как прикинуть мощность трансформатора? Например: на вторичке должно быть 25 вольт при токе 3 ампера, значит имеем 25 * 3 = 75 Ватт. Чтобы трансформатор мог долговременно отдавать в нагрузку 3 ампера увеличьте это значение процентов на 20... 30, т.е. 75 + 30% = 97,5 Вт. Отсюда следует, что необходимо выбрать 100 ваттный трансформатор.

Максимальное напряжение на выходе блока питания зависит от стабилитрона VD5, стоящего в коллекторной цепи транзистора Т1. Например: при использовании стабилитрона КС168, на выходе получим максимальное напряжение порядка 5 вольт, а если поставить КС527, на выходе поимеем максимальное напряжение вольт 25. Информацию по стабилитронам можете найти в статье:

Какого номинала должна быть фильтрующая емкость , стоящая после диодного моста? В нашем случае по схеме стоят две емкости в параллель С1 и С2 по 1000 микрофарад. А вообще емкость этого конденсатора выбирается из расчета порядка 1000 микрофарад на 1 ампер выходного тока.
Электролит С4, стоящий на выходе блока питания выбирается в районе 200 микрофарад на 1 ампер выходного тока.

На какое напряжение поставить электролиты С1, С2 и С4? Если не вдаваться в заумные расчеты, то можно воспользоваться формулой: ~Uвх:3×4 , т.е. величину напряжения, которую выдает вторичная обмотка понижающего трансформатора, нужно разделить на 3 и умножить на 4. Например: на вторичке имеем 25 вольт переменки, отсюда 25:3*4 = 33,33 , поэтому конденсаторы С1, С2 и С4 выбраны на Uраб = 35 вольт. Можно поставить емкости с более высоким рабочим напряжением, но никак не меньшим расчетной величины. Конечно такой расчет грубоват, но тем не менее...

На Т5 собран ограничитель тока. Порог ограничения зависит от номинала резистора R6 и положения переменного резистора R8. В принципе переменник R8 можно и не устанавливать, а порог ограничения сделать фиксированным. Для этого базу транзистора Т5 соединим с эмиттером Т4 напрямую, а подбором резистора R6 установим необходимый порог. Например: при R6=0,39 Ом ограничение будет порядка 3 ампер.

Регулировка тока ограничения. Без нагрузки установите потенциометром R3 Uвых порядка 5 вольт. Подсоедините к выходу БП последовательно соединенные амперметр и резистор 1 Ом (мощность резистора ватт 10). Подстроить R8 на необходимый ток ограничения. Проверяем: понемногу выкручиваем R3 на максимум, при этом показания контрольного амперметра не должны изменяться.

В процессе работы транзистор Т1 слегка греется, поставьте его на небольшой радиатор, а вот Т4 калится основательно, на нем рассеивается приличная мощность, тут без радиатора внушительного размера не обойтись, а еще лучше к этому радиатору кулер от компьютера приспособить.

Как прикинуть мощность рассеяния Т1? Например: напряжение после диодного моста 28 вольт, а на выходе вольт 12. Разница составляет 16 вольт. Прикинем мощность рассеяния при максимальном токе 3 ампера, т.е. 12*3 = 36 Ватт. Если выходное напряжение выставим 5 вольт при токе 3 ампера, значит на транзисторе рассеится мощность (28 - 5) * 3 = 69 Ватт. Поэтому при выборе транзистора Т4 не поленитесь заглянуть в справочник по транзисторам, посмотрите на какую мощность рассеяния он рассчитан (в таблице колонка

Рк max ). Справочный материал по транзистору смотри на рисунке ниже (для увеличения картинки кликните на изображении):

Печатная плата блока питания изображена на следующем рисунке:

Какого номинала поставить предохранитель? В этой схеме стоит два предохранителя: по первичной обмотке трансформатора (выбирается на 0,5...1 ампер больше максимального тока первичной обмотки), и второй перед выпрямительным мостом (выбирается на 1 ампер больше максимального тока ограничения БП).

С этой схемы можно выжать гораздо больше 3 ампер, для этого необходимо иметь транс-р, способный выдать необходимый ток, поставить диодный мост с запасом по току, пересчитать фильтрующие емкости, дорожки на плате, по которым будет протекать большой ток армировать толстым проводом, и применить параллельное соединение транзисторов в качестве Т4 как показано на следующем рисунке. Транзисторы так же ставятся на радиатор с принудительным обдувом вентилятором.

Если вы собираетесь использовать этот БП в качестве зарядного устройства для автомобильного аккумулятора, установите без нагрузки (аккумулятор не подключен) регулятором напряжения порядка 14,6 вольт на выходе и подключите аккумулятор. По мере заряда батареи плотность электролита увеличивается, сопротивление возрастает, соответственно ток будет падать. Когда аккумулятор зарядится и на его клеммах будет 14,6 вольт, зарядный ток прекратится.

Внешний вид печатной платы и собранного блока питания смотрите ниже:

Каждый автолюбитель мечтает иметь в своем распоряжении выпрямитель для зарядки аккумулятора. Без сомнения, это очень нужная и удобная вещь. Попробуем рассчитать и изготовить выпрямитель для зарядки аккумулятора на 12 вольт.
Обычный аккумулятор для легковой автомашины имеет параметры:

  • напряжение в обычном состоянии 12 вольт;
  • емкость аккумулятора 35 — 60 ампер часов.

Соответственно ток заряда составляет 0,1 от емкости аккумулятора, или 3,5 — 6 ампер .
Схема выпрямителя для зарядки аккумулятора изображена на рисунке.

Прежде всего нужно определить параметры выпрямительного устройства.
Вторичная обмотка выпрямителя для зарядки аккумулятора должна быть рассчитана на напряжение:
U2 = Uак + Uo + Uд где:

— U2 — напряжение на вторичной обмотке в вольтах;
— Uак — напряжение аккумулятора равно 12 вольт;
— Uo — падение напряжения на обмотках под нагрузкой равно около 1,5 вольт;
— Uд — падение напряжения на диодах под нагрузкой равно около 2 вольт.

Всего напряжение: U2 = 12,0 + 1,5 + 2,0 = 15,5 вольт.

Примем с запасом на колебание напряжения в сети: U2 = 17 вольт.

Ток заряда аккумулятора примем I2 = 5 ампер.

Максимальная мощность во вторичной цепи составит:
P2 = I2 х U2 = 5 ампер х 17 вольт = 85 ватт.
Мощность трансформатора в первичной цепи (мощность, которая будет потребляться от сети) с учетом КПД трансформатора, составит:
P1 = P2 / η = 85 / 0,9 = 94 ватт. где:
— Р1 — мощность в первичной цепи;
— Р2 — мощность во вторичной цепи;
-η = 0,9 — коэффициент полезного действия трансформатора, КПД.

Примем Р1 = 100 ватт.

Рассчитаем стальной сердечник Ш — образного магнитопровода, от площади поперечного сечения которого зависит передаваемая мощность.
S = 1,2√ P где:
— S площадь сечения сердечника в см.кв.;
— Р = 100 ватт мощность первичной цепи трансформатора.
S = 1,2√ P = 1,2 х √100 = 1,2 х 10 = 12 см.кв.
Сечение центрального стрежня, на котором будет располагаться каркас с обмоткой S = 12 см.кв.

Определим количество витков, приходящихся на 1 один вольт, в первичной и вторичной обмотках, по формуле:
n = 50 / S = 50 / 12 = 4,17 витка.

Возьмем n = 4,2 витка на 1 вольт.

Тогда количество витков в первичной обмотке будет:
n1 = U1 · n = 220 вольт · 4,2 = 924 витка.

Количество витков во вторичной обмотке:
n2 = U2 · n = 17 вольт · 4,2 = 71,4 витка.

Возьмем 72 витка.

Определим ток в первичной обмотке:
I1 = P1 / U1 = 100 ватт / 220 вольт = 0,45 ампер.

Ток во вторичной обмотке:
I2 = P2 / U2 = 85 / 17 = 5 ампер.

Диаметр провода определим по формуле:
d = 0,8 √I.

Диаметр провода в первичной обмотке:
d1=0,8 √I1 = 0,8 √ 0,45 = 0,8 · 0,67 = 0,54 мм.

Диаметр провода во вторичной обмотке:
d2 = 0,8√ I2 = 0,8 5 = 0,8 · 2,25 = 1,8 мм.

Вторичная обмотка наматывается с отводами.
Первый отвод делается от 52 витка, затем от 56 витка, от 61, от 66 и последний 72 виток.

Вывод делается петелькой, не разрезая провода. затем с петельки счищается изоляция и к ней припаивается отводящий провод.

Регулировка зарядного тока выпрямителя производится ступенчато, переключением отводов от вторичной обмотки. Выбирается переключатель с мощными контактами.

Если такого переключателя нет, то можно применить два тумблера на три положения рассчитанных на ток до 10 ампер (продаются в авто-магазине).
Переключая их, можно последовательно выдавать на выход выпрямителя, напряжение 12 — 17 вольт.


Положение тумблеров на выходные напряжения 12 — 13 — 14,5 — 16 — 17 вольт.

Диоды должны быть рассчитаны, с запасом, на ток 10 ампер и стоять каждый на отдельном радиаторе, а все радиаторы изолированы друг от друга.

Радиатор может быть один, а диоды установлены на нем через изолированные прокладки.

Площадь радиатора на один диод около 20 см.кв., если один радиатор, то его площадь 80 — 100 см.кв.
Зарядный ток выпрямителя можно контролировать встроенным амперметром на ток до 5 -8 ампер .

Можно использовать данный трансформатор, как понижающий, для питания аварийной лампы на 12 вольт от отвода 52 витка. (смотрите схему).
Если нужно питать лампочку на 24 или на 36 вольт, то делается дополнительная обмотка, из расчета на каждый 1 вольт 4,2 витка.

Эта дополнительная обмотка включается последовательно с основной (смотреть верхнюю схему). Нужно только сфазировать основную и дополнительную обмотки (начало — конец), чтобы общее напряжение сложилось. Между точками: (0 – 1) — 12 вольт; (0 -2) — 24 вольта; между (0 – 3) — 36 вольт.
Например. Для общего напряжения в 24 вольта нужно к основной обмотке добавить 28 витков, а для общего напряжения 36 вольт, еще 48 витков провода диаметром 1,0 миллиметр.


Возможный вариант внешнего вида корпуса выпрямителя для зарядки аккумулятора, изображен на рисунке.

Изготовим каркас трансформатора для статьи «Как рассчитать силовой трансформатор»

Для уменьшения потерь на вихревые токи, сердечники трансформатора набираются из пластин штампованных из электротехнической стали. В маломощных трансформаторах чаще всего применяются «броневые» или Ш – образные сердечники.

Обмотки трансформатора находятся на каркасе. Каркас для Ш-образного сердечника, располагается на центральном стержне, что упрощает конструкцию, позволяет лучше использовать площадь окна и частично создает защиту обмоток от механических воздействий. Отсюда и название трансформатора — ,броневой,. .

Для сборки броневых сердечников используются пластины Ш – образной формы и перемычки к ним. Для устранения зазора между пластинами и перемычками, сердечник собирается,вперекрышку,.

Площадь сечения Ш-образного сердечника S, есть произведение ширины центрального стержня на толщину набора пластин (в сантиметрах). Подходящие пластины для сердечника нужно подобрать.

Для примера, из статьи «Как рассчитать трансформатор 220/36 вольт»:

- мощность трансформатора Р = 75 ватт;
— площадь сечения магнитопровода S = 10 см.кв = 1000 мм.кв.

Под такое сечение магнитопровода выбираем пластины:

— ширина b = 26 мм. ,
— высота окна пластины c = 47 мм ,
— ширина окна – 17 мм.,

Если есть пластины другого размера, можно использовать и их.

Tолщина набора пакета пластин будет:

S: 26 = 1000: 26 = 38,46. Примем: a = 38,5 мм .

Есть много способов изготовления каркасов для Ш-обраного серденика из разных материалов: электрокартон, прессшпан, текстолит и т.д. Иногда применяется бескаркасная намотка. Для маломощных трансформаторов до 100 вт. неплохо получаются каркасы склеенные из картона и бумаги.

Изготовление каркаса.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электичческим током.
В этих случаях следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт .

Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
Рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.

Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.
Если вы найдете лампочку на другую мощнось, например на 40 ватт , нет ничего страшного — подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.

Сделаем упрощенный расчет трансформатора 220/36 вольт.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт

Где:
Р_2 – мощность на выходе трансформатора, нами задана 60 ватт ;

U _2 — напряжение на выходе трансформатора, нами задано 36 вольт ;

I _2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт .

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р_1 , мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S .

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:
S — площадь в квадратных сантиметрах,

P _1 — мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков ,

округляем до 173 витка .

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера .

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм .

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где : d — диаметр провода .

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм² .

Округлим до 1,0 мм².

Из выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм . и площадью по 0,5 мм² .

Или два провода:
- первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,
— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Преобразователь напряжения пригодиться во многих случаях. Во-первых, этот прибор пригодится для получения напряжения 28 В, при питании коммутатора ADC гигабайтного Интернета, а также при подключении блока Macintosh G4s от стандартного блока питания компьютера ATX. Да ещё есть много случаев, когда вам пригодится отличное от стандартного напряжение.

Возможно даже вам потребуется подключить электрооборудование на 12 В к сети туристического прицепа или мотоцикла на 6 В. Также вы можете применить преобразователь для питания компьютерного кулера от 24 В, когда недостаточно обычной скорости вращения вентилятора от 12 В. В каких случаях нужно повысить скорость вращения кулера, вы можете узнать из других статей. Особенно нелишне будет прочесть рассказ о том, как собрать самодельный, мощный обогреватель для автомобиля.

Предложенная схема преобразователя напряжения используется для питания флуоресцентной лампы в планшетном сканнере.

Пояснения к схеме.

Трансформатор необходимо собрать на ферритовом сердечнике. Преобразователь отлично будет работать на тороидальном сердечнике диаметром 30 мм, который похож на миниатюрный пончик. Если использовать броневой ферритовый магнитопровод, то преобразователь будет работать тоже. К тому же, состоящий из двух Ш-образных половинок сердечник легче найти, и наматывать проволоку на него легче. Броневой ферритовый магнитопровод можно найти, например: в поломанном компьютерном блоке питания, в цоколе сгоревшей компактной люминесцентной лампы (КЛЛ или экономлампе).

Обмоточной проволоки на сердечник трансформатора придётся мотать совсем не много, поэтому витки можно намотать даже тонким проводом в поливиниловой изоляции. Первичная обмотка повышающего трансформатора состоит всего лишь из 4 витков, две вторичные обмотки наматываются из 13 витков каждая.

Не ошибитесь, и соберите трансформатор правильно. Первичная обмотка наматывается в противоположном направлении, чем вторичные обмотки, которые намотаны в одном направлении. Начало одной вторичной обмотки соединено с концом другой. На схеме, точками возле «спиралек», обозначены начала обмоток трансформатора.

Транзисторы нужны для ключей преобразователя биполярные. Так как, для выше названных целей применения нашего преобразователя, ток на выходе не может превысить 500 мА, то можно использовать распространённые транзисторы: 2N3904, 2N4401, PN2222, MPS2222, C945, NTE123AP. Если вы собираетесь запустить от преобразователя плазменный монитор, тогда нужно взять два транзистора помощнее, такие как D965, которые устанавливаются в фотовспышку фотоаппарата. Если же вам нужно подключить к преобразователю нагрузку мощностью более 5 А, тогда устанавливайте ключи на составных транзисторах, например TIP120 или TIP3055. Но тогда не забудьте поменять диоды в схеме, на такие которые выдержат токи свыше 10 А, а сами транзисторы уже понадобиться закрепить на радиаторы.

Диоды устанавливайте не любые, которые найдёте, а те которые могут закрываться при обратной полярности тока за время 35 наносекунд, и меньше. Отлично, по этому показателю, для преобразователя подходят диоды 1N914 и 1N4148, но они выдерживают прямой ток не более 4 А. При подключении к преобразователю нагрузки более низкоомной, чем кулер, нужно поставить выпрямители SUF30J, UF510, UF540, которые могут работать при токах 15 – 20 А.

Конденсаторы можно выбрать с изоляционной обкладкой, как из полиэстера, так и из полипропилена. Конденсаторы на 100 пФ и 470 пФ не электролитические, а неполярные, они нужны для фильтрации высоких частот. Конденсатор на выходе, имеющий ёмкость 1,5 мФ, является электролитическим. По напряжению конденсаторы выбирайте в два раза больше, того напряжения, что действует в цепи.

Катушка нужна на величину индуктивности около 1 мГн. Таких катушек полно в радио- и телеаппаратуре, а также в тех же экономлампах.

Резисторы обязательно выбирайте по мощности с запасом. Оптимально для данной схемы подходят резисторы по 0,5 Вт. При увеличении выходного напряжения вдвое, необходимо также и сопротивление резисторов увеличивать вдвое.

Как ранее упоминалось, приведённая схема в первую очередь предназначена для питания компьютерного вентилятора завышенным вдвое входным напряжением. А вы можете, изменив соотношение витков на трансформаторе, изменять входное напряжение и в других пределах. В этом вам поможет умная голова, и умелые руки.

Ветрогенератор на базе асинхронного двигателя Что делать если постоянно срабатывает дифференциальный автомат

Статья поясняет как переделать обычный компьютерный блок питания на напряжение 24 вольта.

В некоторых случаях возникает потребность в мощных источниках питания для различного оборудования, рассчитанного на напряжение 24 вольта.

В этой статье расскажу как можно переделать обычный компьютерный блок питания как АТХ так и АТ на напряжение 24 в. Так же из нескольких таких блоков можно компоновать любые напряжения для питания всевозможных устройств.

Например для питания местной АТС УАТСК 50/200М, рассчитанной на напряжение 60 в и мощность около 600 Ватт, автор статьи заменил обычные громадные трансформаторные блоки на три маленьких компьютерных блоков питания которые аккуратно умещались на стенке рядом с рубильником питания и почти не создавая при этом никакого шума.

Переделка заключается в добавлении двух силовых диодов, дросселя и конденсатора. Схема аналогичная шине питания +12в после импульсного трансформатора, только диоды и полярность конденсатора обращены наоборот, как показано на рисунке (фильтрующие конденсаторы не показаны).

Прелесть такой переделки заключается в том, что цепи защиты и стабилизации напряжения остаются не тронутыми и продолжают работать в прежнем режиме. Возможно получить напряжение отличное от 24 вольт (например 20 или 30), но для этого придётся изменить параметры делителя опорного напряжения управляющей микросхемы и изменить либо отключить схему защиты, что сделать уже более сложно.

Дополнительные диоды Д1 и Д2 крепятся через изоляцию на том же самом радиаторе, что и остальные, в любом удобном месте но с обеспечением полного пятна контакта с радиатором.

Дроссель Л1 крепиться в любом доступном на плате месте (можно приклеить), но следует отметить, что в различных моделях и марках блоков питания он будет греться по-разному, возможно даже больше чем уже стоящий по цепи + Л2 (зависит от качества блока питания). В таком случае нужно либо подбирать индуктивность (которая не должна быть меньше стандартной Л2) либо крепить его непосредственно на корпус (через изоляцию) для отвода тепла.

Проверять блок можно на полной нагрузке или на нагрузке, на которую он у вас будет работать. При этом корпус должен быть полностью закрыт (как положено). При проверке следует наблюдать не перегреваются ли радиаторы, на которых закреплены полупроводники и дополнительно установленный дроссель по цепи -12в. К примеру, блок питания рассчитанный на 300 ватт можно нагрузить током 10-13А при напряжении 24В. Не лишним будет проверить пульсации выходного напряжения осциллографом.

Так же очень важно отметить, что если у вас будут работать вместе два или более блоков соединённые последовательно, то корпус (массу) схемы нужно ОТКЛЮЧИТЬ от металлического корпуса блока питания (я это делал простым перерезанием дорожек в местах крепления платы к шасси). Иначе вы получите короткое замыкание или через провод заземления шнуров питания или через касание корпусов друг к другу. Для наглядности исправной работы блока можно вывести наружу лампочку или светодиод.

Отличие переделки стандартов АТ и АТХ заключается лишь в запуске блока. АТ начинает работать сразу после включения в сеть 220 в, а АТХ нужно либо запускать сигналом PS-ON, как это сделано на компьютере, либо заземлить провод этого сигнала (обычно он подходит к управляющей ножке микросхемы). При этом блок так же будет стартовать при включении в сеть.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус

В прошлом обзоре блока питания я затронул тему того, как выбрать правильный блок питания. Если честно, то я немного не ожидал, что эта тема окажется такой нужной. В комментариях, а еще больше в личной переписке, меня спрашивали и о других нюансах выбора, принципах работы и о алгоритме поиска неисправностей.
В этом обзоре я постараюсь ответить на большую часть этих вопросов, а также возможно затрону тему новых вопросов 🙂

Начну с того, что для одного из моих ближайших проектов потребовался блок питания на 36 Вольт 10 Ампер. Вернее потребовалось их два, и заказал их два, но так как они абсолютно одинаковые, то и обзор будет на один блок.
Для чего и зачем я пока писать не буду, уж извините, но этот блок питания мы разберем «по винтикам».

Как всегда, сначала упаковка.
Пришли блоки питания (помимо общей упаковки) в обычных картонных коробках белого цвета, опознавательные знаки на упаковке отсутствовали, просто две большие коробки.
На вид абсолютно одинаковые, впрочем я бы скорее удивился если бы они были разными 🙂

Основное отличие импульсных блоков питания от тех, которые используют 50Гц трансформаторы — размер. Второе отличие — цена.
50Гц трансформатор на такую мощность будет иметь гораздо большие размеры и хоть он по конструкции намного проще, но будет иметь большую цену, так как содержит больше меди и железа.
Кроме того импульсные БП имеют больший КПД, потому в последнее время получили большое распространение, хотя «железные» трансформаторы отличаются большей надежностью.
Но стоит учитывать, что брендовые БП имеют обычно еще большую сложность и цену, так как имеют хорошую элементную базу, фильтры питания, корректоры мощности и т.п, потому чаще люди пользуются более простыми вариантами от небольших китайских фирм.
Один из таких блоков питания мы и рассмотрим в этом обзоре.
Если до этого мы рассматривали блоки питания небольшой мощности, то в этот раз я расскажу про довольно мощный вариант БП мощностью 360 Ватт, хотя на фоне вариантов Бп мощностью 800-2000 Ватт и он кажется «малышом».

Как я выше писал, импульсные БП имеют чаще небольшие размеры.
Данный блок питания имеет высоту примерно как у коробка спичек — 49мм. Длина блока питания 215мм, ширина — 114мм.

На одной из боковых граней корпуса присутствует маркировка:
S-360-36
Мощность блока питания 360 Ватт
Выходное напряжение — 36 Вольт
Максимальный выходной ток — 10 Ампер
Входное напряжение — 110/220Вольт ±15%

На второй стороне присутствует переключатель диапазона входного напряжения, в наших странах неактуальный и даже вредный, так как переключив в режим 110 Вольт и включив в стандартную сеть 220-230 Вольт мы получим скорее всего громкий бах.
Я обычно при ремонте таких БП сразу выкусываю этот переключатель, просто в целях безопасности.

Сверху корпуса установлен небольшой вентилятор. При таких мощностях блоки питания уже крайне редко делают с пассивным охлаждением, мне такие попадались всего несколько раз, но из-за сложности конструкции они имеют уже очень высокую цену, потом очень мало распространены.
Рядом присутствует надпись, указывающая, что вентилятор управляется автоматически в режиме вкл/выкл в зависимости от температуры.
Немного забегая вперед скажу, что никакой автоматики нет, без нагрузки он вращается медленно, но стоит хоть чуть чуть нагрузить БП, обороты сразу возрастают до штатных независимо от температуры.

В прошлом обзоре я писал, что блоки питания, рассчитанные на большой выходной ток, обычно имеют разделенные клеммы для подключения нагрузки. Так сделано в этом БП, здесь установлено по три клеммы на плюсовой и минусовой контакты.
Входные клеммы стандартны — Фаза, ноль, заземление.
Также слева установлен светодиод индикации работы блока питания и подстроечный резистор для корректировки выходного напряжения.

Клеммник имеет защитную крышку, которая открывается на 90 градусов, а в закрытом состоянии защелкивается.

У меня есть привычка разбирать БП перед первым включением. Делаю я это в целях безопасности, так как бывали разные случаи.
Внутри данного БП на вид все нормально, за исключением небольшого нюанса, который я заметил сразу. Дело в том, что выходной дроссель имеет большие размеры и почти касается верхней крышки, это не очень безопасно. Током конечно не убьет, но БП может пострадать, я бы рекомендовал проложить дополнительную изоляцию между дросселем и крышкой. Такой проблемой страдают многие недорогие блоки питания, так что это не косяк данного блока.

Как я писал выше, охлаждается блок питания посредством небольшого вентилятора.
Судя по маркировке, вентилятор имеет размеры 60х15мм, т.е. 60мм это длина и ширина, а 15мм — толщина.
Вентилятор рассчитан на 12 Вольт. к сожалению здесь применен недорогой вентилятор, кроме того имеющий подшипники скольжения и если вы планируете применить где нибудь такой БП, то для длительной беспроблемной работы я бы заменил его на что нибудь более правильное.
Я уже как то писал в своих обзорах, что чаще всего применяю вентиляторы фирмы Sunon, на мой взгляд у них довольно высокое качество и надежность.
Из хорошего можно сказать то, что вентилятор в данном БП довольно тихий, что очень хорошо.

Силовые полупроводники прикручены к алюминиевому корпусу блока питания через небольшие теплораспределяющие проставки.
Мне не очень нравится подобный вид крепления полупроводников, но так делают почти все. например в блоках питания фирмы Менвелл транзистор крепится точно также, правда там в целях безопасности на него одет резиновый колпачок.
Так как данный блок питания двухтактный, то высоковольтных транзисторов два, а не один.
Выходной диод один, хотя на плате присутствует место под установку второго, подключаемого параллельно первому. Второй устанавливается в блоках, рассчитанных на меньшее напряжение и больший ток, но никто не мешает поставить и здесь второй, но это уже скорее доработка, а измерения покажут, имеет ли смысл данная операция.

Осмотр закончили, включаем и производим небольшую проверку.
Цель данной проверки, выяснить пределы регулировки выходного напряжения и вставить на выходе БП то напряжение, на которое он рассчитан, ну или то, которое необходимо.
1. при включении БП показал на выходе 36.8 Вольта.
2. минимальное напряжение, которое можно выставить — 34.53, я рассчитывал, что минимальный порог будет ниже, для моего применения придется дорабатывать.
3. А вот максимальный порог сильно удивил. Когда крутил, то даже стало немного не по себе. 52.3 при штатном 36. Ожидал что БП накроется, пока я фотографирую, но все прошло нормально, хотя я не рекомендую выставлять такое напряжение на выходе, чаще нормальным считается ±10% от штатного.
4. Выставляем на выходе 36 Вольт. Судя по диапазону перестройки уже можно понять, что регулировка очень грубая, потому мне пришлось немного помучаться чтобы выставить ровно 36 Вольт, хотя в реальной жизни это смысла не имеет и сделано было только для обзора 🙂

Разбираем блок питания дальше.
Транзисторы довольно неплохо прилипли к своей пластинке, отдирать их не хотелось потому я открутил и теплораспределительную пластинку 🙂

К плате особых нареканий не возникло, обычная недорогая сборка, бывало и хуже, но бывало и лучше, по пятибальной шкале на 3 балла.
Но один дефект все таки нашел, была не очень хорошая пайка одного из контактов трансформатора. Непропай в данном месте ни к чему фатальному бы не привел, но расстроил.
Дорожки. по которым течет значительный ток, дополнительно пролужены припоем.

Естественно я начертил схему данного БП, делал я это только для обзора, так как схемотехнику этих блоков питания знаю хорошо и обычно в схеме не нуждаюсь, но возможно кому нибудь будет полезно, так как такая схема (с некоторыми небольшими изменениями) используется в большинстве БП такой мощности.
Но хотя я и знаю хорошо эту схемотехнику, перечерчивать схему по плате было не очень удобно и заняло больше времени, чем я планировал.
Схема практически повторяет схему классического компьютерного блока питания и как показала практика, является очень ремонтопригодной.
На схеме присутствует шунт для измерения тока, на схеме его сопротивление указано как 0.1 Ома, но на самом деле при прозвонке он скорее был ближе к перемычке.

Дальше я решил немного рассказать о том, как вообще работают такие блоки питания, тем более что многие узлы являются типичными для почти всех импульсных блоков питания.
На этой блок схеме обозначены основные узлы импульсного блока питания. Правда сейчас задающий генератор и схема управления выполняются в одной микросхеме, а иногда микросхема содержит с высоковольтный транзистор.
Иногда по входу импульсного блока питания устанавливают Корректор Коэффициента Мощности, а в мощных БП он является обязательным, если БП соответствует европейским нормам, но об этом я расскажу как нибудь в другой раз, так как в недорогих БП он почти не встречается.

На основании этой блок схемы я дальше и буду рассказывать об этом БП, но для начала немного теории о процессах, происходящих в импульсном блоке питания.
Ключевое в работе импульсного блока питания, это принцип ШИМ стабилизации, правда стоит отметить, что вполне существуют и импульсные блоки питания без этого, но они являются не стабилизированными, т.е. выходное напряжение зависит от мощности нагрузки и входного напряжения.
ШИМ регулирование это изменение соотношения времени включенного состояния коммутирующего элемента к выключенному состоянию.
Если на графике, то выглядит это так:

Если «на пальцах», то я недавно объяснял в личке этот принцип стабилизации, попробую повторить здесь.
Многие наверное помнят задачки типа — через одну трубу в бассейн поступает вода со скоростью х литров в минуту, через другую выливается со скоростью Y литров в минуту.
Вот на этом принципе я и объясню как это работает.

Для начала представим, что существует очень большая емкость (электрическая сеть), маленькая емкость (конденсатор выходного фильтра питания), ну и всякие мелочи для переправки воды из одного места в другое.
На бочке установлен кран, через него вода убегает к потребителю, ну или энергия в нагрузку.
Пополнять бочку мы можем только определенное количество раз в минуту (бывают альтернативные варианты, но о них пока не будем), например 100 раз.
Наша задача, поддерживать уровень воды в бочке всегда постоянным.
Так как пополнять может только определенное количество раз в минуту, то значит пополнять придется разными объемами.
К примеру если потребление маленькое, то будет достаточно обычных чашек, а если кран открыли на полную, то придется использовать ведра.
В ШИМ регулировке это означает меньшую или большую ширину открытого состояния силового элемента.
Если кран закрыт, то пополняем бочку наперстками, есть же еще испарение (утечки, нагрузка цепи обратной связи т.п.) которое надо компенсировать 🙂

Используя узел обратной связи, контроллер отслеживает напряжение на выходе блока питания и подстраивает мощность, передаваемую в нагрузку так, чтобы напряжение на выходе БП оставалось неизменным.
Кстати, таким способом можно сделать обратную связь по чем угодно.
Например в драйверах светодиода контроллер следит за током.
Можно следить за температурой, подстраивая скорость вентилятора, за освещением, регулируя яркость лампочки и т.д. и т.п.

На этой диаграмме показано:
1. Ток в цепи трансформатора (условно)
2. Сигнал управления ключевым транзистором
3. Напряжение на выходном конденсаторе.

Существует довольно много топологий построения импульсных блоков питания, я нарисовал несколько самых распространенных.
Немного расскажу о них.
1. Обратноходовый преобразователь. Применяется там, где хорошо иметь большой диапазон входного напряжения и небольшая мощность (до 100-150 Ватт). Скорее всего Бп вашего планшета или монитора применена именно эта схема.
2. Полумостовой преобразователь. Также очень распространенная схемотехника. Думаю что я буду не сильно далек от истины, если скажу, что в 95% компьютерных БП применена именно такая схемотехника. Ее преимущества — большая мощность при относительно простой схемотехнике, меньший размер трансформатора, так как трансформатор применяется без зазора, в отличии от первого варианта.
3. Двухтактный преобразователь (PushPull- Тяни-Толкай). Данная схема в сетевых блоках питания применяется крайне редко, зато она нашла широкое применение в инверторах недорогих блоков бесперебойного питания.
4. Мостовой преобразователь. Так сказать «расширенная» версия полумостового. Преимущества — большая мощность, ток через силовые ключи в два раза ниже чем в полумостовой.
Также такая схема применяется в более сложных блоках бесперебойного питания.

Существует еще несколько топологий, но они являются производными от приведенных выше, и менее распространены, потому не вошли в данную статью.

В этот раз я также начертил цветной вариант схемы обозреваемого блока питания, где цветом обозначил основные узлы, о которых говорил выше.
Как я писал, некоторые цвета мне тяжело назвать правильно, потому буду уточнять.
Красный — Входной фильтр питания, диодный мост, силовой узел.
Красно-фиолетовый (слева внизу) — Узел управления мощными транзисторами инвертора.
Зеленый — Микросхема- ШИМ контроллер и ее «обвязка».
Синий — Выходной выпрямитель, дроссель и конденсатор фильтра
Голубой — Цепь контроля выходного тока
Фиолетовый — Узел контроля выходного напряжения
Желто-рыжий — Узел блокировки преобразователя при снижении напряжения на выходе.

В этой схеме нет привычного элемента, который был на всех прошлых схемах — оптрона. Дело в том, что здесь ШИМ контроллер питается от выходного напряжения. первоначальный запуск бока питания происходит благодаря резисторам R8 и R14. Такой принцип применялся в компьютерных БП АТ стандарта, с приходом АТХ стандарта контроллер стал питаться от источника питания дежурного режима и эти резисторы исключили из схемы.

Дальше я покажу большую часть узлов и элементов на примере конкретного блока питания.
Начнем с сетевого фильтра.
В этом БП он есть, это уже хорошо, так как в дешевых компьютерных БП вместо него ставят просто перемычки, но в дорогих он может быть и многоступенчатым. Здесь средний вариант между этими двумя.

По входу блока питания установлен предохранитель и ограничитель пускового тока — NTC терморезистор (термистор).
Также присутствует Х2 конденсатор для уменьшения помех, излучаемых блоком питания, в сеть.

Двухобмоточный синфазный дроссель намотан довольно толстым проводом, хотя размеры при такой мощности могли сделать бы и побольше.
Входной диодный мост KBU808 рассчитан на 8 Ампер 800 Вольт.

В фильтре питания присутствуют как Y конденсаторы, так и один обычный, высоковольтный.
Но в данном случае применение обычного высоковольтного вместо конденсатора Y типа безопасно, так как если БП не заземлен, то даже при его пробое выход БП будет все равно подключен через Y конденсатор, а если БП заземлен, то тем более ничего не будет 🙂

Конденсаторы входного фильтра питания промаркированы как 680мкФх250 Вольт.
Если верить маркировке, то в принципе их емкость достаточна, а напряжение выбрано даже с запасом.

Но реальность оказалась несколько другой, емкость конденсаторов всего 437мкФ, что при последовательном соединении дает всего около 220мкФ. Мало, хоть в принципе и терпимо.
Большая емкость дает больший срок жизни конденсаторов, меньшие пульсации и добавляет запаса по входному напряжению в сторону уменьшения напряжения.
Я думаю потом их заменить на что то поприличнее, но пока не нашел подходящих, так как данные конденсаторы имеют высоту 35мм, максимум можно попробовать установить 40мм, а большинство найденных мною конденсаторов имеют высоту 45мм.
На плате выделено место под конденсатор большего диаметра, так что «будем искать» 🙂

Узел ШИМ контроллера и инвертора.
В качестве ШИМ контроллера применена «классика жанра», KA7500, которая является почти полным аналогом TL494, наверное самого распространенного ШИМ контроллера, соперничать с ним по популярности может разве что uc384x.
Силовые ключи инвертора — MJE13009

К сожалению теплораспределительная пластина прижимается к корпусу без пасты. Тестирование показало, что проблем из-за этого не возникает, но я бы для успокоения души все таки нанес термопасту.

Узел выходного трансформатора, выпрямителя и конденсаторов фильтра.

Выходной диод — SF3006PT, это 30 Ампер 400 Вольт диод, что для 10 Ампер блока питания более чем достаточно.
Как я выше писал, рядом есть место для второго диода, потому в принципе можно немного улучшить характеристики, но на самом деле прирост КПД будет мизерным.

Выходной дроссель.
Здесь он выполняет несколько другую функцию чем в обратноходовых блоках питания, из-за этого и такие большие размеры. Скажу лишь что его размеры соответствуют заявленной мощности блока питания. Кроме его высоты замечаний нет.
Конденсаторы выходного фильтра.
Производитель поставил три конденсатора по 1000мкФ 63 Вольта.
Обычно я говорю, что емкость выходного конденсатора должна быть равна 1000мкФ на каждый ампер выходного тока. В двухтактных блоках питания требования менее жесткие, и даже бренды ставят такую же (а иногда и меньшую) емкость при таком токе, правда в их оправдание могу сказать, что в брендовых БП конденсаторы стоят лучшего качества.
Также на фото попал токовый шунт и видно, что для более сильноточных вариантов есть место для дополнительных шунтов.

Здесь с емкостью все в порядке. Практически соответствует заявленной.

После осмотра я скрутил все обратно, только не привинчивал верхнюю крышку и перешел к этапу тестирования под нагрузкой.
Стенд у меня остался тем же, что и в предыдущие разы и состоит из:
Электронной нагрузки
Мультиметра
Бесконтактного термометра
Осциллографа
Ручки и бумажки 🙂

Правда в этот раз мне пришлось снять верхнюю крышку с электронной нагрузки, так как боялся что она будет перегреваться на такой мощности.
В основном тестирование проходило как и в прошлые разы, за исключением того, что для измерения температуры мне приходилось на ходу снимать верхнюю крышку. Из-за этого некоторые значения измеренных температур будут чуть завышенными так как БП успевал чуть подогреваться без принудительного охлаждения.

1. Режим холостого хода, напряжение выставлено 36.03 вольта, пульсации практически отсутствуют.
2. Ток нагрузки 2 ампера, напряжение чуть поднялось и составило 36.06 вольта, пульсации в норме.

1. Ток нагрузки 4 Ампера, выходное напряжение поднялось еще немного, пульсации в норме.
2. Ток нагрузки 6 Ампер, выходное напряжение 36.09 Вольта, это очень хороший результат, пульсации при этом всего 50мВ

1. Ток нагрузки 8 Ампер, выходное напряжение почти неизменно, пульсации выросли до 75мВ, но все равно остаются низкими для такого тока.
2. Ток нагрузки 10 Ампер, выходное напряжение поднялось до 36.12 Вольта, отличный результат, изменение от исходного всего 0.3%. Пульсации выросли до 100мВ, на мой взгляд ничего страшного, особенно с учетом того, что БП выдает 360 Ватт и 100мВ это всего 0.25-0.3%
Для примера, если бы это был БП на 12 Вольт, то эквивалент пульсаций равнялся бы 30мВ.
К сожалению последний тест длился всего 15-16 минут из привычных мне 20, на электронной нагрузке сработала защита от перегрева и отключила нагрузку 🙁

Дав нагрузке немного остыть, я решил ради эксперимента продолжить тест, но уже при 12 Ампер токе, проверять так проверять 🙂
Решение провести это эксперимент я принял потому, что компоненты БП имели температуру далекую от максимальной.
Но увы, проработал так БП максимум минуту, я сделал фото, снял осциллограмму, но потом последовал очень тихий щелчок (хотя на фоне воя вентиляторов нагрузки может и не такой тихий), малюсенькая вспышка в районе силовых ключей и БП затих 🙁
Правда у меня было маленькое подозрение, что виновата электронная нагрузка, она в определенной ситуации, при перегреве, могла закоротить выход БП (если сначала сработала защита на том радиаторе, где расположен датчик тока), хотя до такой температуры за минуту она прогреться не успела бы, но в любом случае БП не выдержал 🙁

Осциллограмма перед выходом из строя.
Видно что напряжение пульсаций находится вполне в норме. Но меня расстраивают более высокочастотные пульсации, вызванные скорее всего «звоном» в силовых цепях, как по мне, это одна из возможных причин выхода из строя, но утверждать не буду.

Измерение теплового режима работы проходило как всегда, 20 минут прогрев, измерение температур, повышение тока на одну ступень и т.д.
Полученные результаты можно понять из таблицы. Верхняя строка цифр — измерение температур на холостом ходу, заодно я проверил что термометр показывает одинаковые значения на разных компонентах.

В качестве небольшого бонуса я немного опишу методику поиска неисправности и ремонта конкретно этого БП и принципов поиска неисправности для основной массы поломок остальных.

Поломали, ремонтируем

Вообще, буквально недавно меня в личке спрашивали о алгоритме поиска неисправности, на что я ответил —
Может даже имеет смысл написать такую статью, правда пока не знаю к чему ее привязать, разве что спалить БП который пришлют на обзор :))))
Как в воду глядел 🙂

В данном случае поломка оказалась не очень сложной, да и вообще я выше писал, что данный тип БП очень ремонтопригоден.
Здесь даже предохранитель остался цел 🙂

Для начала я должен предупредить, что при ремонте импульсного БП приходится работать с цепями имеющими высокое напряжение и имеющими непосредственную связь с сетью 220 Вольт. По правилам техники безопасности блок питания должен при этом питаться через развязывающий трансформатор, чтобы обеспечить гальваническую развязку с сетью 220 Вольт.

Первым делом при поиске неисправности производят общий осмотр, это очень важный этап, иногда позволяющий локализовать место поломки.
Также немаловажно знать, после чего вышел из строя БП.
1. Новый БП, чаще при работе или КЗ в нагрузке — силовые цепи.
2. Старый БП, если перед поломкой были проблемы с запуском. Либо перед поломкой его отключили от сети (для БП работающих постоянно) — конденсаторы выходного фильтра. Такая поломка чаще всего «тянет» за собой и высоковольтную часть, в низковольтной части чаще всего все остается исправным.
3. Старый БП, но предохранитель цел и даже есть попытки запуска — чаще всего виновата потеря емкости конденсатора фильтра питания ШИМ контроллера, обычно встречается на БП небольшой мощности собранных по обратноходовой схеме.

Дальше немного по компонентам.
Предохранитель цел — значит скорее всего цел и диодный мост, но на маломощных Бп роль предохранителя может сыграть обмотка входного дросселя.
Предохранитель сгорел — скорее всего дело плохо, но есть варианты
1. Если на входе БП есть защитный варистор и подали больше 300 Вольт, то чаще все решается заменой варистора и предохранителя.
2. Варистора нет, либо он цел. Вот тут скорее всего дело худо, проверяем — диодный мост и высоковольтный транзистор (или транзисторы если их два).

Чаще всего диодный мост выходит из строя только при сгорании высоковольтных транзисторов, сам по себе выходит из строя очень редко.

Следующий этап, проверяем высоковольтный транзистор, лучше его выпаять, так как если вышел из строя диодный мост, то это может давать ложное КЗ.
Если транзистор имеет КЗ хотя бы между двумя выводами из трех, то он умер. Если транзисторов два, то с вероятностью 99% умер и второй, менять лучше парой.
В моем случае так вышло. что транзисторы имели пробой между коллектором и базой, потому предохранитель остался цел так как не было КЗ по цепи высоковольтного питания. Это довольно редкий случай, чаще имеем КЗ между всеми тремя выводами.
Если транзистор сгорел, то проверяем резистор подключенный к выводу базы, так как чаще всего сгорает и он. Вывод эмиттера также может быть подключен к токоизмерительному резистору, обычно мощный и стоит рядом, проверяем и его.
В моем случае я имел два сгоревших транзистора и два резистора.

Следующий этап, подбор замены.
Если есть родные либо их можно купить, то отлично, если нет, то ищем замену.
При поиске замены сначала определяем что за транзисторы стояли, и ищем документацию на них. после этого ищем варианты, которые есть в наличии/продаже и сравниваем их характеристики.
У транзисторов, которые стояли в импульсном блоке питания обращаем внимание на следующие ключевые характеристики. Вообще влияет еще коэффициент передачи по току и граничная частота. Первый параметр лучше иметь похожий на тот что был в сгоревшем, второй если будет больше, то лучше. У полевых транзисторов надо смотреть на емкость затвора (Input Capacitance), чем меньше, тем лучше.
В моем случае транзисторы биполярные, потому и демонстрировать буду на их примере.
Я привел три варианта, родной — подходящий вариант — неподходящий вариант.
Хотя в неподходящем варианте критичны последние два параметра.

В моем случае родных не было, но были транзисторы с «доноров».
Резисторы подобрать проще, если нет подходящего номинала, то можно соединить несколько штук параллельно или последовательно. Но у меня были подходящие резисторы.

Резисторы сгорели очень аккуратно, сразу даже и не заметишь маленькую трещину в покрытии. Не было ни дыма и особого шума, разве что маленькая вспышка.

Перед заменой транзисторов желательно сначала проверить остальные компоненты рядом с ними иначе замененные компоненты ожидает судьба предыдущих.
Конкретно по этой схеме. Диоды параллельно коллектору и эмиттеру не сгорают никогда (по крайней мере я такого не видел), диоды в базе иногда сгорают, но в данном случае стоят довольно мощные диоды (чаще ставят мелкие 4148) и они остались целы. Конденсатор также выжил, выходят из строя здесь они редко, резистор межу коллектором и базой также можно не проверять, но стоит проверить резистор между базой и эмиттером.
Трансформатор — довольно надежный компонент и чем мощнее, тем надежнее, но у меня бывали случае межвиткового КЗ у мелких трансформаторов, причем обычным мультиметром это определить сложно или вообще невозможно.

После замены деталей неплохо проверить ШИМ контроллер. Первым у этих микросхем страдает внутренний стабилизатор напряжения 5 Вольт. Для проверки подаем питание 10-20 Вольт на микросхему (я подключился к конденсатору фильтра питания микросхемы) и измеряем напряжение между минусом питания и 14 выводом.
220 Вольт пока не подаем.
На фото питание в норме.

Если интересно, то можем подключиться к задающему генератору и посмотреть на красивую «пилу» 🙂
Ее наличие означает, что задающий генератор микросхемы работает.

После этого можно проконтролировать прохождение управляющих импульсов к силовым транзисторам.
Кстати. Если БП работал долго, то из-за высыхания емкости конденсатора фильтра питания микросхемы (или высыхания конденсатора в Бп дежурного режима АТХ БП), она могла выйти из строя.
Иногда выход из строя выходных транзисторов тянет за собой и два управляющих транзистора, на схеме это Q2, Q3. Кроме них обычно ничего из строя не выходит.
Данный БП не даст управляющие импульсы на мощные транзисторы пока не «обойти» защиту от пониженного напряжения на выходе, я это сделал закоротив эмиттер и коллектор транзистора Q5.
Если все в порядке, то между эмиттером и базой будет примерно такая картинка:

Все, на этом основная часть ремонта закончена.
Промываем плату от остатков флюса, я всегда рекомендую это делать, как минимум из-за культуры ремонта.

С лицевой стороны платы ремонт «выдают» только отечественные резисторы.
Заодно я немного приподнял транзисторы, чтобы они лучше прижимались.

Для проверки я всегда включаю БП через лампу накаливания. Это позволяет сократить количество походов в магазин за деталями 🙂
Лампу я использую мощностью 150 Ватт, она включается последовательно с сетью и при нормальной работе должна только моргнуть немного при включении.
В штатном режиме на холостом ходу она даже не накаляется, менее мощная лампа может немного накаляться, но на грани различимости, это также нормально.
Включаем, проверяем, все работает 🙂

Некоторые дополнения.
Если вы заметили, что ваш блок питания требует «прогрева» перед включением и это время постепенно увеличивается, то следует проверить конденсаторы БП, так как если затянуть с этим, то все может закончиться выходом из строя высоковольтного транзистора и часто микросхемы ШИМ контроллера.
Выходной диод БП выходит из строя редко, но лучше его проверить, обычно это можно сделать даже не выпаивая его из платы.
С переходом на импульсные блоки питания самая частая поломка — выход из строя электролитических конденсаторов, причем иногда емкость он может иметь нормальную, но внутреннее сопротивление сильно увеличивается.

Для общего развития я добавил для скачивания неплохую книгу по импульсным блокам питания.

Резюме.
Плюсы
Блок питания выдал заявленную мощность
Тепловой режим работы в норме
Небольшой уровень пульсаций
Наличие нормального фильтра по входу 220 Вольт
Отличная стабильность выходного напряжения
Хорошая ремонтопригодность

Минусы
Проблемы с надежностью при перегрузке или коротком замыкании
Конденсаторы входного фильтра имеют заниженную емкость
Нет заявленного автоматического управления вентилятором.
Низкое качество выходных конденсаторов

Мое мнение. Меня очень расстроило то, что блок питания вышел из строя, хотя это и произошло при мощности выше заявленной, но это говорит об отсутствии либо некорректной работе защиты от перегрузки. Но в то же время обрадовал температурный режим блока питания, даже при максимальной мощности никакие компоненты не перегревались, хотя выходящий воздух имел легкий запах нагретых компонентов, но это частая особенность новых блоков питания.
Но даже при том, что я спалил этот блок питания, могу сказать, что он имеет неплохой потенциал и если его не перегружать, то будет работать. В основном это связано с отработанностью данной схемотехники, здесь тяжело что то накосячить, хотя проблемы с надежностью вылезли 🙁
В будущем я думаю его немного доработать и надеюсь что в ближайшем времени вы увидите его (хотя скорее их) в одном из моих новых устройств, на которое я потихоньку готовлю обзор, там же будет и описание доработки.

Вполне возможно что в обзоре присутствует некоторое количество ошибок, если заметили, пишите, исправлю или дополню при необходимости.
Вся информация о ремонте основана на личном опыте. Вообще разнообразие причин поломок и методов определения неисправности гораздо больше, чем я описал, но боюсь что все описать очень тяжело и будет ну совсем большая статья.
Надеюсь что хотя бы часть читателей найдет ответы на свои вопросы, которые они мне задавали.

Магазин дал скидку на блок питания, исходная цена была 30.2 доллара, в течении недели будет действовать цена 26.99.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Понижающий трансформатор 220 на 36 вольт: схема правильного подключения

Трансформатор 220 на 36 вольт идеально подходит для питания цепи освещения в банях, саунах, ванных комнатах, подвалах. Требования безопасности накладывают некоторые ограничения на применение переменного напряжения величиной 220 вольт в помещениях с высокой влажностью. Поэтому идеальным выходом из создавшейся ситуации является использование переменного тока напряжением 12, 24 или 36 вольт. В случае если произойдет контакт человека с электрической сетью, он ощутит только лишь слабый удар. Он не нанесет никакого вреда организму человека.

Конструкция трансформатора

Как и любой другой, понижающий трансформатор с 220 на 36 вольт состоит из трех основных компонентов:

  1. Первичная обмотка.
  2. Вторичная обмотка.
  3. Магнитопровод.

И первичная, и вторичная обмотки состоят из определенного числа витков медного провода. Обычно используют именно медный провод в лаковой изоляции, так как он по своим характеристикам намного лучше, нежели алюминиевый. Если использовать алюминиевый, то его потребуется в несколько раз больше, что существенно увеличивает габариты трансформатора. Правда, алюминиевые провода в лаковой изоляции раньше использовались в стабилизаторах напряжения. Магнитопровод может быть выполнен как из трансформаторной стали, так и из ферромагнетика. Это материал, который существенно лучше любого металла.

Мощность и коэффициент трансформации

Можно визуально даже оценить мощность любого трансформатора – чем больше габариты, тем она выше. Но для точного расчета мощности необходимо использовать специальные формулы. Наиболее простой метод расчета мощности трансформатора – это умножение напряжения вторичной обмотки на силу тока в ней. Получите реальное значение мощности исследуемого трансформатора. Для работы по созданию и проектирование такого устройства вам потребуется знать еще один основной параметр, характеризующий трансформатор.

Это не что иное, как коэффициент трансформации. Он представляет собой отношение числа витков вторичной обмотки к первичной. То же самое значение можно получить, если разделить I2/I1, а также напряжение U2/U1. В любом из трех этих случаев вы получите одинаковое значение. Оно вам может потребоваться при самостоятельном расчете точного количества витков для первичной и вторичной обмоток.

Расчет трансформатора

Если необходимо изготовить трансформатор 220 на 36 вольт (1000 ватт), желательно использовать формулу для расчета мощности во вторичной обмотке. Она была упомянута выше, мощность равна произведению силы тока на напряжение. При этом имеется два параметра, которые заведомо известны – это непосредственно мощность Р2 (1000 Вт) и напряжение во вторичной цепи U2 (36 В). Из этой формулы необходимо теперь вычислить ток, который протекает по первичной цепи.

Один из важных параметров – это коэффициент полезного действия, который у трансформаторов не превышает 0,8. Он показывает, какое количество мощности, потребляемой непосредственно от сети, переходит в нагрузку, подключенную к вторичной обмотке (в данном случае это всего 80 %). Разница в мощности идет на нагрев магнитопровода и обмоток. Она теряется, причем безвозвратно. Мощность, которая потребляется от сети переменного тока, равна отношению Р2 к коэффициенту полезного действия.

Магнитопровод трансформатора

Вся мощность переходит от первичной обмотки к вторичной посредством магнитного потока, которое создается в магнитопроводе (сердечнике). Именно от мощности Р1 зависит площадь сечения сердечника S. Чаще всего для сердечника используют набор пластин в форме буквы "Ш". При этом площадь поперечного сечения равна произведению квадратного корня из Р1 на коэффициент 1,2. Зная значение площади, можно определить количество витков W на 1 В. Для этого нужно 50 разделить на площадь.

Напряжения в первичной и вторичной обмотках известны – это 220 и 36 вольт. Количество витков для каждой из обмоток определяется путем умножения напряжения на W. В том случае, если получаются десятичные значения, необходимо округлить их в большую сторону. Также нужно учитывать, что при подключении нагрузки вторичной цепи происходит падение напряжения. По этой причине желательно увеличить количество витков примерно на 10 % от расчетного.

Провода обмоток

А теперь нужно произвести расчет тока в первичной и вторичной обмотках. Ток равен отношению мощности к напряжению. Если изготавливается трансформатор 220 на 36 вольт (500 ватт), то во вторичной цепи будет протекать ток, равный отношению 500/36 = 13,89 А. Мощность в первичной цепи будет равна 625 Вт, а сила тока - 17,36 А.

Далее производится вычисление плотности тока. Этот параметр указывает, какое значение силы тока приходится на каждый квадратный миллиметр площади сечения провода. Обычно в трансформаторах принимают плотность тока, равную 2 А/кв. мм. Диаметр провода, необходимого для намотки, можно определить по простой формуле: коэффициент полезного действия, умноженный на квадратный корень из силы тока. Следовательно, во вторичной цепи необходимо использовать провод, диаметр которого будет равен произведению 0,8 на 3,73 – это 2,9 мм (округлить до 3 мм). В первичной обмотке нужно использовать провод, диаметр которого будет 3,33 мм. В том случае, если у вас нет проводов с нужным диаметром, можно воспользоваться простой хитростью. Производите намотку одновременно несколькими проводами, соединенными параллельно. При этом сумма сечений должна быть не меньше той, которая была рассчитана вами. Сечение провода равно отношению коэффициента полезного действия к квадрату диаметра.

Заключение

Зная все эти простые формулы, можно самостоятельно изготовить надежный трансформатор, который будет работать в идеальном режиме. Но нужно еще знать, как подключить трансформатор 220 на 36 вольт. В этом ничего сложного нет, достаточно соединить первичную обмотку с сетью переменного тока 220 В, а вторичную - с нагрузкой, системой освещения, например. При первом запуске постарайтесь соединить трансформатор с максимальной по мощности нагрузкой, чтобы определить, нет ли перегрева сердечника и обмоток.

Блок питания 12 вольт 20 ампер своими руками

Многие электротехнические устройства питаются от постоянного напряжения величиной 12 вольт. Если такая техника не особо нуждается в высокой стабильности напряжения, то вполне подойдет самый простой блок питания, состоящий из понижающего трансформатора, диодного моста и фильтрующего конденсатора электролита. Тут вопрос остается только за мощностью такого источника питания, ну и следовательно от нее зависит, какие именно функциональные части будет стоять в блоке питания на 12 вольт. В этой статье давайте разберемся более подробно с этой темой.

Итак, схема простого блока питания на 12 вольт начинается с понижающего трансформатора, задача которого сетевое переменное напряжение 220 вольт понизить до более низкого. Логично предположить, что это пониженное напряжение должно в нашем случае быть 12 вольт. Но нет. На выходе вторичной обмотки трансформатора, для получения в итоге постоянных 12 вольт должно быть около 10 вольт. Почему так? Просто существует в электротехнике такой вот эффект - переменное напряжение после диодного моста имеет выпрямленный ток, но он скачкообразной формы. Когда мы к выходу моста подсоединяем фильтрующий конденсатор электролит эти скачки постоянного напряжения сглаживаются, а само напряжение увеличивается примерно на 18%. Вот и получается, что переменные 10 вольт после выпрямительного моста и фильтрующего конденсатора электролита превратятся в постоянные 12 вольт.

Нам нужно определится, в первую очередь, с мощностью нашего блока питания на 12 вольт. Какую именно максимальную силу тока мы хотим, чтобы он имел. К примеру, нужно иметь максимальную силу тока в 5 ампер. В этом случае, чтобы спаять хороший блок питания на 12 вольт с этим током нам понадобится понижающий трансформатор мощностью около 80 ватт. Напомню, чтобы найти электрическую мощность нужно силу тока перемножить на напряжение. Следовательно мы наши 12 вольт умножаем на 5 ампер и получаем 60 ватт. Плюс к этому мы добавляем небольшой запас (пусть будет 20 ватт). Вот и видим, что нужен трансформатор на 80 ватт (это если идти по оптимальному пути, хотя если вы поставите большей мощности транс, то это только повлияет на общие размеры источника питания).

Для получения тока на вторичной обмотке около 5 ампер, диаметр этой самой обмотки должен быть не менее 1,6 мм (медь). Для определения зависимости диаметра провода вторичной обмотки и силы тока, который она должна обеспечивать нужно смотреть в справочные таблицы (их легко найти в интернете воспользовавшись поиском).

Теперь нужно подобрать подходящий выпрямительный диодный мост, который нам позволит сделать из переменного напряжения постоянное, хотя и скачкообразной формы. Опять же, нужно в начале определится с силой тока, которую диодный мост может выдержать без негативных воздействий на него. Мы определились, что нам нужен максимальный ток 5 ампер. Как и в случае с трансформатором добавим к этому некий запас. В итоге, находим диодный мост (диоды под него) на силу тока в 8-10 ампер. Мост должен быть рассчитан на напряжение не менее 12 вольт (хотя диоды с маленьким обратным напряжением это редкость, обычно они рассчитаны на достаточно большие обратные напряжения). Либо ставим готовый целостный диодный мост, или паяем его сами из четырех диодов с нужными параметрами.

Ну, и последним важным функциональным элементом нашего самодельного блока питания на 12 вольт, что будем паять своими руками, является конденсатор электролит. Он выполняет фильтрующую роль, сглаживая скачки постоянного напряжения, делая постоянное напряжение более ровным (хотя и не идеальным). Для нашего блока питания вполне подойдет конденсатор электролит, рассчитанный на напряжение 16-25 вольт и емкостью около 5 000 - 10 000 микрофарад. Вот и все, осталось только эти все компоненты спаять в единую схему и собрать в подходящем корпусе.

Всем нам известно, что блоки питания сегодня являются неотъемлемой частью большого количества электрических приборов и осветительных систем. Без них наша жизнь нереальна, тем более экономия электроэнергии способствует эксплуатации этих приборов. В основном блоки питания имеют выходное напряжение от 12 до 36 вольт. В этой статье хотелось бы разобраться с одним вопросом, можно ли сделать блок питания на 12В своими руками? В принципе, никаких проблем, ведь этот прибор на самом деле имеет несложную конструкцию.

Из чего можно собрать блок питания

Итак, какие детали и приборы необходимо, чтобы собрать самодельный блок питания? В основе конструкции всего лишь три составляющие:

  • Трансформатор.
  • Конденсатор.
  • Диоды, из которых своими руками придется собрать диодный мост.

В качестве трансформатора придется использовать обычный понижающий прибор, который будет уменьшать вольтаж с 220 В до 12 В. Такие приборы сегодня продаются в магазинах, можно использовать старый агрегат, можно переделать, к примеру, трансформатор с понижением до 36 вольт на прибор с понижением до 12 вольт. В общем, варианты есть, используйте любой.

Что касается конденсатора, то оптимальный вариант для самодельного блока – это конденсатор емкостью 470 мкФ с напряжением 25В. Почему именно с таким вольтажом? Все дело в том, что на выходе из напряжение будет выше запланированного, то есть, больше 12 вольт. И это нормально, потому что при нагрузке напряжение упадет до 12В.

Собираем диодный мостик

А вот теперь очень важный момент, который касается вопроса, как сделать блок питания 12В своими руками. Во-первых, начнем с того, что диод — это двуполярный элемент, как, в принципе, и конденсатор. То есть, у него два выхода: один минус, другой плюс. Так вот плюс на диоде обозначен полоской, а, значит, без полоски это минус. Последовательность соединения диодов:

  • Сначала соединяются между собой два элемента по схеме плюс-минус.
  • Точно также соединяются между собой и два других диода.
  • После чего две парные конструкции необходимо соединить между собой по схеме плюс с плюсом и минус с минусом. Здесь главное не ошибиться.

В конце у вас должна получиться замкнутая конструкция, которая носит название диодный мостик. У нее четыре соединительных точек: две «плюс-минус», одна «плюс-плюс» и еще одна «минус-минус». Соединять элементы можно на любом плате необходимого устройства. Основное здесь требование – это качественный контакт между диодами.


Во-вторых, диодный мост – это, по сути, обычный выпрямитель, который выпрямляет переменный ток, исходящий с вторичной обмотки трансформатора.

Полная сборка прибора

Все готово, можно переходить к сборке конечного продукта нашей идеи. Сначала надо подключить выводы трансформатора к диодному мосту. Их подключают к точкам соединения «плюс-минус», остальные точки остаются свободными.

Теперь необходимо подключить конденсатор. Обратите внимание, что на нем также есть отметки, которые определяют, полярность прибора. Только на нем все наоборот, чем на диодах. То есть, на конденсаторе обычно помечается минусовой контакт, который подсоединяется к точке диодного моста «минус-минус», а противоположный полюс (положительный) присоединяется к точке «минус-минус».

Остается только подключить два питающих провода. Для этого лучше всего выбрать цветные провода, хотя это необязательно. Можно использовать одноцветные, но при условии, что их придется каким-нибудь образом обозначить, к примеру, на одном из них сделать узелок или обмотать конец провода изолентой.


Итак, делается подключение питающих проводов. Один из них подключим к точке «плюс-плюс» на диодном мосте, другой к точке «минус-минус». Все, понижающий блок питания на 12 вольт готов, можно его тестировать. В холостом режиме он обычно показывает напряжение в пределах 16 вольт. Но как только на него подадут нагрузку, напряжение снизится до 12 вольт. Если есть необходимость выставить точное напряжение, то придется к самодельному прибору подключить стабилизатор. Как видите, сделать блок питания своими руками не очень сложно.

Конечно, это простейшая схема, блоки питания могут быть с различными параметрами, где основных два:

  • Выходное напряжение.
  • Как дополнение, может быть использована функция, которая разграничивает модели блока питания на регулируемый (импульсный) и нерегулируемый (стабилизированный). Первые обозначены возможностью изменять выходное напряжение в пределах от 3 до 12 вольт. То есть, чем сложнее конструкции, тем больше возможностей у агрегатов в целом.


    И последнее. Самодельные блоки питания – это не совсем безопасные аппараты. Так что при их тестировании рекомендуется отойти на некоторое расстояние и только после этого проводить включение в сеть 220 вольт. Если вы что-то неточно рассчитали, к примеру, неправильно подобрали конденсатор, то есть большая вероятность, что этот элемент просто взорвется. В него залит электролит, который при взрыве разбрызгается на приличное расстояние. К тому же не стоит производить замены или пайку при включенном блоке питания. На трансформаторе собирается большое напряжение, так что не стоит играть с огнем. Все переделки надо проводить только на выключенном приборе.

    Похожие записи:

    Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

    • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
    • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
    • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

    Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

    Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

    Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

    Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

    Компоновка прибора

    Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.


    На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.


    Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

    Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.


    Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

    Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

    Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

    Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

    Проблемы простого блока питания с нагрузкой

    Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

    Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

    1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
    2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
    3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

    На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.


    Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

    Блок питания повышенной мощности

    Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

    Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

    На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

    Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

    Тема: как сделать простой, регулируемый плавно, блок питания своими руками.

    Человек, у которого электрика и электроника является хобби, увлечение, делами, что позволяют получать удовольствие или иметь дополнительный заработок, просто обязан иметь у себя в наличии блок питания с плавной регулировкой напряжения! Ведь работая с различной электрической и электронной техникой постоянно приходится сталкиваться с её питанием, а оно, как известно, не всегда одинаково. Постоянно искать источники питания с подходящим напряжением, тоже не выход. Именно в данном случае наиболее рациональным и правильным решением будет создание простого (или сложного, если есть в этом особая необходимость) блока питания, имеющего плавное регулирование напряжения питания. Простая, но надёжная схема представлена на рисунке, давайте её разберём.

    Схема простого, регулируемого плавно, блока питания представляет собой две основные части, это сам блок питания и небольшая транзисторная схема параметрического регулятора напряжения. Первая часть содержит понижающий трансформатор, выпрямитель (диодный мост) и конденсатор (сглаживающий фильтр). По большей части именно от выбора этих частей зависит мощность всего блока питания. Что бы не делать слишком большим блок питания ограничимся электрической мощностью в 30 Вт. Хотя для увеличения этой мощности достаточно будет поменять трансформатор, мост и выходной транзистор, имеющие соответствующие величины токов и напряжений.

    Итак, находим трансформатор, который рассчитан на входное напряжение 220 вольт и выходное 12-15 вольт, вторичная обмотка должна иметь сечение, обеспечивающее номинальную силу тока в 2-3 ампера. Далее, спаиваем диодный мостик, элементы которого должны быть рассчитаны на ток не меньше 5 ампер (лучше брать с небольшим запасом). И к выходу моста припаяем фильтрующий конденсатор с ёмкостью от 1000 микрофарад и более. Схема плавно регулируемого параметрического стабилизатора после её сборки (спайки) должна сразу начать нормально работать, хотя если есть желание донастройки и точной регулировки внутренних параметров, можете сами по изменять имеющиеся электронные компоненты, поставив туда наиболее подходящие на Ваш взгляд.

    Теперь расскажу о самой работе данной схемы плавно регулируемого блока питания. Трансформатор - его задача заключается в преобразовании электрической энергии, то есть он сетевое напряжение 220 вольт понижает до нужных 12 вольт. Заметим, что как был у нас переменный ток, так и остался, хотя и понизилась амплитуда. Диодный мостик занимается тем, что переводит все колебания в один полупериод, а именно значение тока после мостика уже меняется только от нуля и до 12 вольт, не меняя своего полюса. Но волнообразный ток подходит не для всех случаев питания электрооборудования, для многих устройств нужен именно постоянный ток, допускающий минимальные колебания. Для этого и нужен конденсатор, который сглаживает скачки напряжения.

    Схема регулятора является параметрической, то есть в схеме создаётся некое опорное напряжение, уже от которого путём деления напряжения и усиления силы тока создаются необходимые выходные величины электрических параметров. С выхода мостика, на котором уже сглажены скачки (фильтрующим конденсатором), напряжение подаётся на цепь параметрического стабилизатора, состоящего из резистора R1 и стабилитрона VD2. Тут напряжение делиться, причём на стабилитроне образуется некоторое постоянная его величина с малыми отклонениями. Если напряжение будет меняться, по причине внешних обстоятельств, то эти изменения только будут заметны на R1.

    Параллельно стабилитрону, на котором образовалось опорное напряжение постоянной величины, включён переменный резистор R2, что, собственно, и осуществляет плавное изменение выходного напряжения на нашем регулируемом блоке питания. Когда мы его крутим, то получаем определённую величину постоянного напряжения, что далее делится между база-эмиттерными переходами транзисторов, включённых по схеме эмиттерных повторителей. А, как известно, включение по этой схеме заставляет транзисторы работать в режиме усиления только тока, при том, что напряжение остаётся как бы неизменным. То есть, напряжение снятое с переменного резистора передаётся на выход через транзисторы, которые понижают его только на величину своего насыщения (примерно от 0.4 до 0.7 вольт).

    Проще говоря - выставили мы на переменном резисторе значение 5 вольт, оно передалось через транзисторы на выход (минус примерно 1.2 вольта, что осели на транзисторных переходах база-эмиттер), а в силу усиления тока, мы получили повышение мощности, срезанной от основной, которая имеется на выходе диодного мостика. Транзисторы тут являются некими электрическими краниками, которыми мы управляем при помощи изменения напряжения на база-эмиттерных переходах. Чем больше мы подадим на них напряжения с переменного резистора, тем сильнее откроются транзисторы (понизится их внутреннее сопротивление) и больше электрической мощности передастся на выход регулируемого блока питания.

    Выпрямитель тока с 220 на 12 вольт

    предназначен для подключения к бытовой электросети (220 вольт) светодиодных ламп и ленты, рассчитанных на пониженное напряжение (12V, 24V, 36V) постоянного или переменного тока.

    Каждый из представленных светодиодных трансформаторов 220 – 12 обеспечивает стабильное выходное напряжение 12V, что гарантирует долгий срок службы подключённого светодиодного оборудования. Также имеется несколько моделей электромагнитных трансформаторов на 24 и 36 вольт.

    Каталог трансформаторов 220 – 12 вольт

    Как определить нужную мощность понижающего трансформатора?

    Выбрать трансформатор очень просто: сложите мощности всех низковольтных источников света, которые Вы собираетесь подключить к трансформатору, и к полученному числу добавьте 20%. В результате вы получите минимальную номинальную мощность необходимого светодиодного трансформатора.

    Диапазон мощностей, имеющихся у нас в продаже понижающих трансформаторов 220 – 12/24/36 вольт, позволяет подобрать трансформатор для любого случая.

    Понижающие трансформаторы 12 вольт. Разные виды и ракурсы.

    Мы не рекомендуем производить установку трансформатора в местах с повышенной влажностью и/или температурой, например, в сауне или бассейне.

    Зачем трансформатор, если проще установить лампы на 220 вольт?

    Возможно, что и проще, но мы всегда рекомендуем по возможности устанавливать светодиодные лампы на 12 вольт в паре с 12-и вольтовым трансформатором постоянного тока. Первичные затраты у Вас не увеличатся, так как лампы на 12 вольт стоят дешевле своих 220-и вольтовых аналогов, и эта разница покрывает цену трансформатора. Но при этом Вы получаете существенный плюс – надёжность. Светодиодные лампы работают долго, но срок службы 12-и вольтовых светодиодных ламп, как правило, ещё больше, т.к. они дополнительно защищены (от электронных шумов и бросков напряжения в электросети) внешним мощным понижающим трансформатором.

    Где купить понижающий трансформатор 220 – 12/24/36 вольт?

    В нашем интернет-магазине Вы можете выбрать и купить понижающий трансформатор 220 – 12/24/36 вольт. Мы осуществляем доставку по России и СНГ.

    Вы спрашивали – мы отвечали

    • Здравствуйте! Подскажите, если в 2-х комнатную квартиру установить встроенные потолочные светодиодные светильники, то насколько далеко можно разнести местоположения трансформаторов и светодиодных ламп?
      Не повлияет ли удалённость трансформатора от светодиодной лампы на срок службы и работу последней, если расстояние между ними составляет 10-15 метров?
      Обычно рекомендуется не превышать 5 метров длины от трансформатора до лампы.
    • Рассматриваю вопрос установки трансформатора 220/12 и использования светодиодных ламп в помещении парилки и помывочной комнаты в бане. Подскажите, есть ли у трансформаторов гальваническая развязка? Возможно ли их применение в таких условиях?Нет, трансформаторы нельзя использовать в помещениях с повышенной влажностью.
    • Здравствуйте, не подскажете, как правильно подключить трансформатор ps200w?Клеммы всех трансформаторов 220-12 подписаны одинаково.
    • У меня в люстре стоят 12 ламп галогеновых 12v цоколь G4. Хочу заменить галоген на LED.
      При замене галогенок (12шт х 20ватт) на LED (12шт х 2 ватт) хочу поменять трансформатор на понижающий 220 -12 вольт постоянного тока.
      Хватит ли мне трансформатора 30 ватт или запас нужно делать больше? Спасибо большое.
      Если речь идёт о наших светодиодных лампах G4 на 2 ватта, то трансформатора такой мощности заведомо хватит.
    • Для 50 светильников со светодиодными лампами 5вт какой мощности нужен понижающий трансформатор?Мощность трансформатора рассчитать просто: нужно сложить мощности всех подключённых светодиодных ламп и увеличить .
    • У меня установлен трансформатор на 150 Ватт, к нему подключено 4 точечных светильника по 35 Вт (4х35=140Вт). Хочу заменить лампы на LED. Мощность ламп будет, например 4х3=12 Ватт. Вопрос: что делать с трансформатором?Мы уже отвечали на подобный вопрос, но касательно ламп с цоколем G4.
    • У меня в квартире установлено много галогеновых ламп на 12 вольт. Это лампы с отражателем диаметром 50мм и маленькие пальчиковые лампы, цоколь у них, кажется, G4. При замене этих ламп на LED G4 нужно ли мне будет менять установленные понижающие трансформаторы?Если у Вас установлены старые электронные трансформаторы (их легко опознать – они всегда маленькие, трансформатор на 50 .

    Задайте свой вопросРАСПРОДАЖА! Цены снижены до 60%! Подходят для:Светодиодные лампы Е27 на 12, 24, 36 вольтСветодиодная лента 12 вольтСветодиодные прожекторы 12 вольт, 24 вольтаРасстояние от трансформатора до ленты или лампыВопросы покупателей Вы спрашивали – мы отвечалиНаши ответы на несколько сотен самых распространённых вопросов: как не ошибиться при выборе, как правильно подключить, решения проблем.Популярные статьи

    • Чем грозит покупка дешевых светодиодных ламп?Зачем платить больше, если лампу той же мощности можно на рынке купить дешевле? Мы купили на рынке три дешёвые лампы, разобрали их и покажем Вам, что Вы реально получите вместе с подобными "изделиями".
    • Что такое светодиодная лампа?Короткий ответ на этот вопрос и несколько слов о наших светодиодных лампах ТАУРЭЙ.
    • Недостатки светодиодных лампУ светодиодных ламп есть и недостатки. Для кого-то они могут оказаться существенными.
    • Температура света – что это?Популярно о цветовой температуре, что это такое, и как получилось, что свет измеряется в градусах.

    Новости и акции

    • 15.08.2019Поступление в продажу трансформатора с выходным напряжением 24 вольта постоянного тока
    • 05.06.2019Ожидается поступление светодиодных матриц и прожекторов мощностью до 500 ватт с белым нейтральным светом, для сетей 110/127/220 вольт и для 12-24 вольт.
    • 02.10.2018Очередное поступление низковольтных светодиодных ламп Е27 на 12, 24, 36 вольт мощностью от 3 до 12 ватт.
      Новые мощные прожекторы на 500 ватт.
    • 01.10.2018Новая продукция – линейка низковольтных светодиодных прожекторов на 12-24 вольт пополнилась моделями на 60 ватт. Также в продаже новые драйверы на 70 и 80 ватт.
    • 28.09.2018Поступление новых недорогих светодиодных ламп Е27 на 24/36/48 вольт. Две модели бренда «Край Света» на 8 и 10.5 ватт.

    Делаем простой выпрямитель тока на 12 вольт, для заряда аккумуляторов авто. Всё началось с того, что привезли мне на роботу нерабочий блок питания на 22В и 110В. Решил из него сделать зарядное устройство для своей машины для аккумулятора. Аккумулятор естественно на 12В. Сначала разобрал блок питания и посмотрел что там есть внутри. Как оказалось, кроме трансформатора ничего и не было. Не работал БП из-за того, что один провод на подачу электроэнергии просто каким-то образом отвалился. Все же прибор советских времен и со временем поизносился. Корпус и все провода решил выкинуть и смастерить все заново.

    Достал из прибора трансформатор. Там было две вторичные обмотки. Одна была на 22В, вторая — 110В. Но этот вольтаж мне не подходил для зарядки аккумулятора.

    Разобрал трансформатор, достал все пластины, размотал вторичную обмотку на 22 В. Намотал новым, более толстым, проводом новую обмотку на 12В. Она содержала наполовину меньше витков чем прежняя, но так как сечение провода увеличил, заполнило окно полностью. Все аккуратно собрал и проверил. На выходе оказалось 13.4В. Это отлично подходило для АКБ.

    Схема выпрямителя тока на 12 вольт

    Далее решил не усложнять дело всякими хитроумными зарядными на микросхемах, а собрать простой и надежный выпрямитель на диодах. Взял диоды Д242. Они очень надежные, но немного греются, следует установить на радиаторы.

    Спаял по стандартной схеме диодного моста. Подключил — все отлично работало, на выходе теперь было 13.7В. Как и должно быть, немного увеличилось напряжение после выпрямления. Но ничего страшного. Для аккумуляторов ведь надо не строго 12, а примерно 14 вольт для нормального заряда.

    Все аккуратно вместил в новый корпус. Сделал выход на выпрямитель. Подключаю и с удовольствием пользуюсь. Сделал еще индикатор наличия электроэнергии — просто подключил к сети 220В обычный светодиод через резистор. Получился простой и надёжный выпрямитель для ЗУ на 12 вольт .

    На сайте продавца доступен "Онлайн консультант".
    Для перехода на сайт нажмите "В магазин"

    На сайте продавца доступен бесплатный номер 8-800.
    Для перехода на сайт нажмите "В магазин"

    На сайте продавца доступен "Заказ в один клик".
    Для перехода на сайт нажмите "В магазин"

    Как из трех вольт сделать 12. Как получить нестандартное напряжение. Автомобильное зарядное usb

    Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.

    Получаем 12 Вольт из 220

    Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

    1. Понизить напряжение без трансформатора.
    2. Использовать сетевой трансформатор 50 Гц.
    3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

    Понижение напряжения без трансформатора

    Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

    1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
    2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
    3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

    Гасящий конденсатор

    Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

    • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
    • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

    Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

    Схема изображена на рисунке ниже:

    R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

    Или усиленный вариант первой схемы:

    Номинал гасящего конденсатора рассчитывают по формуле:

    С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

    С(мкФ) = 3200*I(нагрузки)/√Uвход

    Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

    Конденсаторы должны быть такими – пленочными:

    Или такие:

    Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

    Блок питания на сетевом трансформаторе

    Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

    В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

    Uвых=Uвх*Ктр

    Ктр – коэффициент трансформации.

    Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

    Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

    Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

    12 Вольт из 24 Вольт или другого повышенного постоянного напряжения

    Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.

    Схема с линейным стабилизатором упоминалась в предыдущем пункте.

    К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.

    Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.

    Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.

    Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.

    Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.

    12 Вольт из 5 Вольт или другого пониженного напряжения

    Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.

    Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.

    Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.

    Как получить 12В из подручных средств

    Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

    Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

    Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

    Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

    Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео

    Как самому собрать простой блок питания и мощный источник напряжения.
    Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


    Каждый, кто захочет сможет изготовить 12 - ти вольтовый блок самостоятельно, без особых затруднений.
    Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник...
    Шаг 1: Какие детали необходимы для сборки блока питания...
    Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок....
    -Монтажная плата.
    -Четыре диода 1N4001, или подобные. Мост диодный.
    -Стабилизатор напряжения LM7812.
    -Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В - 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
    -Электролитический конденсатор емкостью 1000мкФ - 4700мкФ.
    -Конденсатор емкостью 1uF.
    -Два конденсатора емкостью 100nF.
    -Обрезки монтажного провода.
    -Радиатор, при необходимости.
    Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
    Шаг 2: Инструменты....
    Для изготовления блока необходимы инструменты для монтажа:
    -Паяльник или паяльная станция
    -Кусачки
    -Монтажный пинцет
    -Кусачки для зачистки проводов
    -Устройство для отсоса припоя.
    -Отвертка.
    И другие инструменты, которые могут оказаться полезными.
    Шаг 3: Схема и другие...


    Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
    Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
    Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
    Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

    Схема блока питания 12в 30А .
    При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
    Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
    В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
    Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
    Для охлаждения радиатора можно применить небольшой вентилятор.
    Проверка блока питания
    При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку - типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
    Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

    Блок питания 3 - 24в

    Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
    Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
    Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

    Схема блока питания на 1,5 в

    Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

    Схема регулируемого блока питания от 1,5 до 12,5 в

    Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

    Схема блока питания с фиксированным выходным напряжением

    Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

    Схема блока питания мощностью 20 Ватт с защитой

    Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
    По какой схеме: импульсный источник питания или линейный?
    Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения...
    Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
    Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
    Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
    Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
    На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

    Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
    Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
    Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

    Самодельный блок питания на 3.3v

    Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

    Трансформаторный блок питания на КТ808

    У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
    У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

    При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

    Блок питания на 1000в, 2000в, 3000в

    Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
    Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
    Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы - отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

    В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 - ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
    Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
    R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

    Еще по теме

    Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

    Ремонт и доработка китайского блока питания для питания адаптера.

    DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.

    При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

    Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.


    После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

    Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.


    Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.


    Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

    Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

    Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

    Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

    Вариант №1

    Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

    Вариант №2

    На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


    Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


    Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

    U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

    Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


    Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


    Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



    Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

    Вариант №3

    Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

    Итак, схему в студию!


    Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


    Итак, что на выходе?


    Почти 5.7 Вольт;-), что и требовалось доказать.

    Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


    На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

    Одна батарея на 36 В или три на 12 В? Плюсы и минусы

    Несколько лет назад, когда приложение требовало 36 вольт, лучшим вариантом было подключить три батареи на 12 В последовательно. Но теперь, когда на рынке появились батареи на 36 В, вы можете задаться вопросом, может ли использование всего одной батареи «плавать» вашу лодку лучше. (Буквально для тех, кому они нужны для питания троллинговых двигателей!)

    Вот пример. Допустим, вашему троллинговому двигателю или другому устройству требуется 36 вольт и 50 Ач. Вы можете заменить одну батарею на 36 В, 50 Ач, на три батареи на 12 В, 50 А · ч, соединенные последовательно.Но правильный ли это путь?

    Это зависит от источника питания, типа используемой батареи и личных предпочтений. Во-первых, давайте посмотрим, как тип батареи может повлиять на ваш выбор.

    Какой тип батареи на 36 вольт вы используете?

    Для некоторых типов батарей выбор между тремя батареями на 12 В и одной батареей на 36 В может иметь большее значение. Например, свинцово-кислотные батареи необходимо часто проверять и доливать дистиллированную воду, поэтому вы можете предпочесть следить за одной батареей вместо трех.

    Но если вы выбрали литий, вы вообще откажетесь от обслуживания. Таким образом, обслуживание батарей не будет важным фактором, когда дело доходит до выбора между тремя батареями на 12 В или одной батареей на 36 В.

    А если говорить о литии… как о новейшей технологии в производстве аккумуляторов, он превосходит во всех отношениях. И три батареи на 12 В, и одна литиевая батарея на 36 В обеспечат питание в два раза дольше, чем обычные батареи.

    Вот некоторые из других преимуществ, которые вы получаете, просто выбирая литий:

    • Не требует обслуживания.
    • Более быстрое время зарядки, чем у обычных батарей (2 часа или меньше).
    • Не содержит токсинов, не протекает и безопасно для хранения в помещении.
    • Три литиевые батареи 12 В или литиевая батарея 36 В будут весить на 70% меньше, чем аналогичные установки других типов батарей.
    • Сила тока остается постоянной, даже если срок службы батареи составляет менее 50%.
    • Скорость разряда, когда она не используется, составляет всего 2% в месяц (для свинцово-кислотных аккумуляторов ставка составляет 30%).

    Три литиевые батареи 12 В vs.Литиевая батарея 36V

    Итак, вы выбрали литий. А теперь перейдем к актуальному вопросу. Стоит ли использовать одну батарею на 36 В для питания троллингового двигателя / другого приложения? Или три батарейки на 12В?

    Правда, оба варианта хорошо работают с литием! Таким образом, можно сказать, что единственные «за» и «против» основаны на потребностях конкретного приложения и личных предпочтениях. Вот разница между использованием 36-вольтовой батареи и трех 12-вольтных батарей:

    Плюсы и минусы использования трех литиевых батарей 12 В

    Плюсы: Один из аргументов в пользу использования трех батарей по 12 штук в серии заключается в том, что если одна из них выйдет из строя, ее легко заменить.Кроме того, у вас будет больше гибкости при размещении батарей в вашем приложении. Это может быть полезно для тех, кто хочет распределить вес в лодке.

    В отличие от батареи на 36 В, вам не понадобится специальное зарядное устройство для аккумуляторов 12 В. Они также могут помочь при запуске двигателя.

    Минусы: Чем больше у вас батарей, тем больше у вас точек подключения. Вам придется смонтировать и подключить каждое из них, и каждое открытое соединение является потенциальным источником ненадежности.

    Плюсы и минусы использования одной литиевой батареи 36 В

    Плюсы: Самым очевидным преимуществом выбора одной батареи на 36 В является то, что она всего одна! Одна легкая батарея (если она литиевая) для установки и хранения.Всего один набор кабелей для подключения, меньше точек подключения, о которых нужно беспокоиться, и меньше беспорядка, о котором можно споткнуться.

    Еще одним плюсом является тот факт, что батареи на 36 В работают по принципу «подключи и работай». Вам не нужно придумывать, как последовательно соединить три батареи на 12 В для получения более высокого напряжения.

    Но самым важным преимуществом для многих может быть то, что использование всего одной батареи 36 В экономит место! Это отлично подходит для рыбацких лодок, где на счету каждый дюйм пространства. Это одна из причин, почему они популярны для использования с мощными троллинговыми двигателями.

    Минусы: Вам понадобится специальное зарядное устройство для литиевой батареи на 36 В. Зарядные устройства на 12 В более распространены на рынке, но они никуда не годятся.

    Прочие соображения

    А как насчет цены батареи на 36 В по сравнению с тремя батареями на 12 В? Будет ли один вариант вернуть вам больше с трудом заработанных денег, чем другой? Возможно нет. Хотя батареи на 12 В менее дороги, вам придется купить три из них, чтобы получить необходимую мощность. И если вам не понадобится новое зарядное устройство, стоимость батареи на 36 В будет лишь немного выше.

    Суть в том, что оба варианта работают нормально. Нет большой разницы между использованием трех батарей на 12 В или одной батареи на 36 В с точки зрения преимуществ и недостатков, если вы используете литий. Выберите настройку, которая лучше всего подходит для вашего приложения и потребностей.

    И еще несколько хороших новостей - у нас есть оба варианта! Купите нашу новую литиевую батарею 36 В здесь или посмотрите литиевые батареи на 12 В здесь.

    Узнайте больше о литиевых батареях здесь:

    Как подключить аксессуары к вашей тележке для гольфа Аксессуары - расположение 12 В

    Как подключить и установить электрические аксессуары -

    Большинство продаваемых нами аксессуаров рассчитаны только на входное напряжение 12 В.Однако с соответствующими деталями вы сможете установить эти аксессуары на электрические или газовые тележки для гольфа на 12, 24, 36 и 48 вольт. Для большинства продаваемых нами аксессуаров прилагается электрическая схема, которая поможет вам в процессе установки. Ниже мы изложим некоторые меры предосторожности, чтобы приобретенные вами аксессуары работали правильно.

    (12 ВОЛЬТ) ГАЗОВЫЕ ГОЛЬФИКА-

    • Всегда сначала подключайте заземляющий провод к раме, отрицательной клемме на соленоиде или отрицательной клемме на 12-вольтной батарее.
    • После того, как вы подключили провод заземления, продолжите, поместив положительный полюс провода на положительное соединение вашей батареи.

    (24 и 36 Вольт) ЭЛЕКТРИЧЕСКИЕ ТЕЛЕЖКИ ДЛЯ ГОЛЬФА-

    • Один из способов установки аксессуара на 12 вольт потребует от вас наличия 12 вольт в вашей системе. Ниже мы приложили изображения, показывающие, как это работает (ПРИМЕЧАНИЕ: все батареи на фото 6 Вольт)
    • Другой способ подключить аксессуар на 12 В к вашей 36-вольтовой системе потребует покупки редуктора напряжения.Это снизит общее напряжение или весь аккумулятор до 12 вольт. Установка редуктора напряжения увеличит срок службы всей вашей аккумуляторной батареи.

    (48 Вольт) ЭЛЕКТРИЧЕСКАЯ Тележка для гольфа-

    • Все 48-вольтовые электрические гольф-кары Club Car, EZGO и Yamaha требуют установки редуктора напряжения. Если вы планируете установить свет, радио, вентилятор или любые другие аксессуары на 12 вольт; потребуется редуктор напряжения (ВОЛТ-2000).
    • Обратите внимание на то, что некоторые новые тележки имеют (4) 12-вольтовые батареи, позволяющие подключиться к одной из тележек этой серии.

    Не стесняйтесь обращаться в службу поддержки клиентов по телефону 1- (855) -349-4653 или свяжитесь с нами, если у вас есть какие-либо вопросы относительно этой информации.

    Сколько батарей в 48-вольтовой тележке для гольфа?

    Электромобиль для гольфа питается от бортовых аккумуляторных батарей, которые необходимо время от времени заменять. Обычно электрические тележки для гольфа используют электрические системы на 36 вольт и 48 вольт, хотя электрические тележки для гольфа на 72 вольта становятся все более популярными.

    Батарейные блоки для электрических тележек для гольфа основаны на свинцово-кислотных батареях на 6 В, 8 В и 12 В, хотя в последнее время также производятся литиевые батареи для тележек для гольфа на 12 В, 24 В, 36 В и 48 В. Итак, сколько батарей в гольф-мобиле на 48 вольт?

    Размеры батареи для гольф-каров

    Наиболее популярные размеры аккумуляторов для гольфмобилей:

    - 6 В: GC2 (10 3/8 x 7 3/16 x 10 5/8 дюймов, 264 x 183 x 270 мм) и GC2H (10 3/8 x 7 3/16 x 11 5/8 дюймов) , 264 x 183 x 295 мм),

    -8 В: GC8 (10 3/8 x 7 3/16 x 10 7/8 дюймов, 264 x 183 x 277 мм) и GC8H (10 3/8 x 7 3/16 x 11 5/8 дюймов , 264 x 183 x 295 мм),

    - 12 В: GC12 (12 7/8 x 7 3/16 x 10 7/8 дюймов, 327 x 183 x 277 мм).

    Итак, чтобы сделать аккумуляторную батарею 48 В , необходимо:

    - 8 (восемь) батарей GC2 или GC2H : 8 x 6 В = 48 В

    - 6 (шесть) батарей GC8 или GC8H : 6 x 8 В = 48 В

    - 4 (четыре) батареи GC12: 4 x 12 вольт = 48 вольт

    Аналогично, чтобы сделать аккумуляторную батарею на 36 вольт, необходимо:

    - 6 (шесть) батарей GC2 или GC2H: 6 x 6 вольт = 36 вольт

    - 3 (три) батареи GC12: 3 x 12 вольт = 36 вольт

    Примечание: с использованием батарей GC8 или GC8H можно создать батарейные блоки на 32 или 40 вольт, но НЕ на 36 вольт.Если кто-то решит использовать батареи GC8 или GC8H в 36-вольтовой тележке для гольфа, 4 (четыре) батареи GC8 или GC8H на 32 вольта, что приведет к недостаточной мощности гольф-мобиля, и 5 (пять) батарей GC8 или GC8H на 40 вольт. , которые могут повредить или вывести из строя электрическую систему 36-вольтового гольф-мобиля. Короче говоря, не используйте батареи GC8 или GC8H в 36-вольтовых тележках для гольфа.

    Хотя гольфмобиль на 72 В не так распространен, как устройства на 48 В, полезно знать, что для изготовления аккумуляторной батареи на 72 В требуется:

    - 12 (двенадцать) батарей GC2 или GC2H: 12 x 6 В = 72 В

    - 9 (девять) батарей GC8 или GC8H: 9 x 8 В = 72 В

    - 6 (шесть) батарей GC12: 6 x 12 В = 72 В

    Примечание: при последовательном подключении аккумуляторов по возможности всегда используйте одни и те же модели аккумуляторов одного производителя, желательно из одной партии.

    Подсчет батарей и отверстий для воды

    Самый простой способ определить точное напряжение на гольф-мобиль - посмотреть - документацию. Однако по прошествии некоторого времени такие документы могут быть трудно найти, а все маркировки на гольф-каре могут быть покрыты ржавчиной и грязью.

    Итак, чтобы узнать точное напряжение электрической тележки для гольфа, откройте батарейный отсек, проверьте характеристики батарей (вольты, емкость, BCI Group) и посчитайте батареи.

    Если такие данные нечитаемы, подсчитайте батареи и, если они есть, отверстия для заполнения водой - каждая залитая / влажная свинцово-кислотная батарея имеет одно отверстие для заполнения водой на одну ячейку батареи (~ 2 В на элемент).

    Итак, залитые батареи GC2 / GC2H имеют 3 отверстия для заливки воды, что в сумме дает 6 вольт на батарею, батареи GC8 / GC8H имеют 4 отверстия для заливки воды, что в сумме составляет 8 вольт на батарею, а батареи GC12 имеют 6 отверстий для заливки воды в сумме. 12 вольт на батарею.

    В отличие от свинцово-кислотных аккумуляторов с жидким электролитом, свинцово-кислотные аккумуляторы AGM и Gel-Cell не требуют от пользователя заливки воды во время использования, поскольку они не требуют обслуживания.Тем не менее, они (или, по крайней мере, батареи AGM) обычно имеют отверстия для заливки в верхней части батарей, которые также можно подсчитать, чтобы определить напряжение батареи.

    Литиевые 48-вольтовые аккумуляторы для гольф-карт

    Литиевые батареи

    обладают множеством преимуществ по сравнению со свинцово-кислотными батареями, включая экономию веса, более быструю перезарядку, большее количество поддерживаемых циклов зарядки / разрядки, превосходное 100% восстановление DoD и тому подобное.

    С другой стороны, литиевые батареи для гольф-каров дороже, по крайней мере, на начальном этапе.

    Если ваш гольф-мобиль на 48 В питается от литий-железо-фосфатной (LiFePO 4 ) батареи (или батарей), в ней есть:

    - 4 (четыре) литиевых батареи 12 В: 4 x 12 В = 48 В

    - 2 (две) литиевые батареи 24 В: 2 x 24 В = 48 В

    - 1 (одна) литиевая батарея 48 В: 1 x 48 В = 48 В

    В последнее время литиевые батареи на 48 вольт становятся все более популярными для систем на 48 вольт и литиевые батареи на 24 вольта для систем на 72 вольта.


    Long Story Short: Если ваш гольф-мобиль имеет 48-вольтовую электрическую систему и свинцово-кислотные батареи, то у вас есть 8 (восемь) 6-вольтовых батарей или 6 (шесть) 8-вольтовых батарей, или 4 (четыре) 12-вольтовых аккумулятора.

    Если такой гольф-мобиль питается от литиевых батарей, то у вас есть 4 (четыре) 12-вольтовых батареи, или 2 (две) 24-вольтовые батареи, или 1 (одна) 48-вольтовая батарея.

    Редукторы напряжения - аккумуляторные батареи (352) 643-1241

    36- или 48-вольтный редуктор напряжения

    Стоп-сигналы, задние фонари, указатели поворота, звуковые сигналы, фары, радиоприемники, GPS и аналогичные аксессуары к вашей тележке для гольфа используют 12 вольт.Но большинство тележек для гольфа имеют либо четыре 12-вольтовых батареи, шесть 8-вольтовых батарей или восемь 6-вольтовых батарей, которые считаются 48-вольтовыми системными тележками для гольфа. (4X12v = 48v) (6X8v = 48v) или (8X6v = 48v). В некоторых гольф-карах используется 36-вольтовая система, состоящая из шести 6-вольтовых батарей. (6X6v = 36v).

    Для питания принадлежностей тележки 48-вольтовые тележки с шестью 8-вольтовыми батареями используют редуктор напряжения с 16 на 12 вольт, подключенный к двум 8-вольтовым батареям. Таким образом, общая мощность 16 вольт снижается до требуемых 12 вольт.

    Или иногда аксессуары жестко подключаются напрямую к двум 8-вольтовым батареям, небезопасно обеспечивая 16-вольтные 12-вольтовые аксессуары тележки. (Поскольку 16 В - слишком большая мощность для 12-вольтовых аксессуаров, такая схема подключения приводит к очень ярким фарам и даже к плавлению линз из-за высокой температуры. Это также может вызвать преждевременное сгорание других аксессуаров)

    Точно так же тележки для гольфа с четырьмя 12-вольтовыми батареями обычно подключаются только к одной из четырех 12-вольтных батарей, питающих все аксессуары.

    Основная проблема с этими схемами проводки возникает из-за того, что в этих гольф-карах используются только одна или две батареи из множества тележек для питания всех 12-вольтных аксессуаров, оставляя другие батареи в аккумуляторном блоке в более высоком состоянии заряда.

    Теперь, чтобы еще больше усложнить ситуацию, когда вы подключаете зарядное устройство тележки, оно не полностью заряжает дополнительные батареи до того же уровня, что и другие батареи в блоке батарей тележки. Таким образом, в течение короткого периода времени дополнительные батареи продолжают падать все ниже и ниже по напряжению, вплоть до возможного затемнения света и потери мощности и расстояния.

    Кроме того, когда напряжение аккумулятора со временем падает, начинается сульфатация, которая приводит к повреждению аккумулятора; меньшее расстояние на одной зарядке; и меньшая производительность дополнительных батарей. Если эту проблему не устранить, дополнительные батареи могут быть безвозвратно повреждены и никогда не смогут обеспечить такую ​​же производительность, как когда они были новыми.

    Если вы теряете дистанцию; отсутствие скорости; ненормальное или неустойчивое ускорение; и даже возможное затемнение ваших фар, то, как аксессуары вашей тележки подключены к аккумуляторам, скорее всего, может быть проблемой.Редуктор напряжения с 36 вольт или 48 на 12 вольт поможет исправить эти проблемы.

    Редуктор напряжения на 36 или 48 вольт на 12 вольт (см. Фото) решает эти проблемы, поскольку он подключен к проводке для получения вспомогательного питания в равной степени от всех батарей в аккумуляторном блоке. Затем при перезарядке все батареи заряжаются одинаково.

    Другими словами, все батареи одновременно разряжаются по напряжению, а затем все вместе заряжаются одинаково. Таким образом достигается более длительный срок службы батареи, более длинные расстояния на одной зарядке, лучшая производительность гольф-мобиля и меньшее повреждение аккумуляторов.

    Мы используем только 30-амперный 36-вольтовый или 48-вольтный высокотехнологичный редуктор напряжения, позволяющий всем аксессуарам тележки работать от всех батарей тележки. Эти редукторы напряжения защищены от пыли и влаги, а также имеют усиленные ребра радиатора для лучшего охлаждения.

    Общее время установки составляет около 1,5 часов по месту жительства.

    Сколько батарей в гольфмобиле? (Можно ли использовать 3 x 12 вольт)


    Определение напряжения аккумулятора вашей тележки для гольфа

    В работе электромобилей для гольфа используются свинцово-кислотные или литий-ионные батареи.

    Сколько батарей в среднем гольф-мобиле? Обычной тележке для гольфа для правильной работы требуется от 4 до 6 батарей. В редких случаях в гольфмобиле можно найти 8 батареек.

    Тележки для гольфа питаются от 36 вольт или 48 вольт. Типичный раунд для гольфа требует, чтобы тележка для гольфа проехала около 40 минут.

    При покупке меньшего количества батарей, каждая с более высоким напряжением, может снизить первоначальные затраты, также необходимо учитывать глубину разряда.

    В большинстве тележек для гольфа используется шесть батарей по 8 В вместо четырех по 12 В.

    шагов для определения напряжения тележки для гольфа:

    1. Поднимите сиденье тележки Golf вверх и найдите аккумуляторный отсек.
    2. Теперь, когда вы определили местоположение, проверьте, сколько отверстий или ячеек есть в батарее. Количество отверстий, которое вы увидите, будет 3 , 4 или 6 .
    3. Теперь умножьте это число на 2, чтобы получить напряжение аккумулятора гольф-кары. Это потому, что каждая ячейка рассчитана на 2 вольта.
    4. Умножьте напряжение аккумулятора гольф-мобиля на общее количество аккумуляторов гольф-мобиля . Это поможет вам достичь напряжения в гольф-каре.

    Можно ли использовать три батареи на 12 В в тележке для гольфа?

    Да, 36-вольтовый гольф-мобиль, в котором используются шесть оригинальных 6-вольтовых батарей, можно заменить тремя 12-вольтовыми батареями.

    Однако имейте в виду, что при такой замене ваша тележка для гольфа может работать не так долго, как с батареями на 6 вольт. Тележка также не сможет покрыть все 18 лунок поля для гольфа.

    Как заменить шести- 6-вольтовые батареи на трех-12-вольтные батареи

    Вот как вы можете заменить батарею с шести 6-вольтовых батарей на три 12-вольтовых аккумуляторных батареи с помощью соединительных кабелей.

    1. Отсоедините 6-вольтовые батареи и выньте их из батарейного отсека в гольф-мобиле.
    2. Поместите три новые батареи на 12 В в ряд внутри отсека так, чтобы соединительный кабель перекрывал расстояние между положительной клеммой одной батареи и отрицательной клеммой соседней батареи.
    3. Подключите отрицательную клемму 1-й аккумуляторной батареи к положительной клемме 2-й аккумуляторной батареи. Для этого наденьте разъемы на обоих концах соединительного кабеля на две клеммы аккумулятора и зафиксируйте их на месте.
    4. Затем вам нужно подключить отрицательную клемму 2-й батареи к положительной клемме 3-й батареи.Для этого шага используйте тот же метод, который упоминался выше.
    5. Соедините положительный полюс гольфмобиля с положительным полюсом первой аккумуляторной батареи.
    6. Соедините отрицательную клемму гольфмобиля с отрицательной клеммой третьей аккумуляторной батареи.
    7. Теперь вы готовы к эксплуатации вашего гольфмобиля.

    Можно ли использовать автомобильные аккумуляторы в тележке для гольфа?

    Да, в гольфмобиле можно использовать автомобильные аккумуляторы.Однако это не рекомендуется, так как автомобильные аккумуляторы не обладают достаточной резервной емкостью, чтобы поддерживать тележку в движении в течение достаточного времени.

    С течением времени эти батареи не поддерживают большой ток, который постоянно требуется в случае тележки для гольфа.

    Стандартный автомобильный аккумулятор может разрядиться через несколько циклов. Это потребует частой замены, которая в конечном итоге окажется дорогостоящей.

    Можно ли использовать 12-вольтовые морские аккумуляторы глубокого цикла в гольф-мобиле?

    Да, вы можете использовать 12-вольтовые морские аккумуляторы глубокого разряда в гольфмобиле.

    Морские аккумуляторы глубокого разряда не имеют срока службы типичных аккумуляторов для гольф-каров.

    Аккумулятор для гольфмобиля на 6 В почти такой же большой, как и 12-вольтный морской аккумулятор глубокого разряда.

    Однако он разработан с определенной целью, в другом стиле, с большими свинцовыми пластинами и так далее. Это предотвращает быстрое разрушение аккумулятора гольф-кара, как морской аккумулятор глубокого разряда.

    Можно ли использовать литиевые батареи в тележке для гольфа?

    Да, вы можете использовать литиевые батареи в гольфмобиле.Хотя замена батарей для гольф-каров на литиево-ионные аккумуляторы не является обычным явлением, многие владельцы гольф-каров могут рассчитывать на 50% более длительное время автономной работы при использовании литиевых аккумуляторов.

    По моему опыту, я видел много владельцев гольф-каров, которые выбрали эту замену батареи.

    Если вы планируете перейти с свинцово-кислотного на литий-железо, вы должны сначала принять меры предосторожности.

    Заявление об отказе от ответственности: Пожалуйста, поговорите с квалифицированным механиком, прежде чем пытаться заменить батарею.

    Преимущества литиевых батарей

    • Литиевые батареи имеют примерно в 10 раз больше цикла зарядки и на 50% больше срока службы, чем обычные батареи для гольф-каров. Это означает, что вам не придется заменять их так часто, как стандартную батарею тележки.
    • Литиевые батареи намного легче свинцово-кислотных . Уменьшенный вес также уменьшает вес вашей гольф-кары и упрощает транспортировку аккумуляторов.Кроме того, это помогает тележке для гольфа двигаться плавнее и быстрее; с меньшей потребляемой мощностью.
    • Нет опасений, что может пролиться кислота, что иногда происходит в результате взаимодействия электролитов и погруженных пластин в серную кислоту. Это обычная проблема при интенсивном использовании.
    • Литий-ионные батареи
    • не требуют обслуживания, потому что они не ржавеют, так как нет возможности коррозии. Кроме того, поскольку жидкости нет, вам не нужно проверять уровень жидкости для подзарядки.
    • Эти батареи довольно мощные и способны очень быстро разряжать энергию.

    Недостатки литиевых батарей

    • Литиевые батареи имеют тенденцию к перегреву из-за перезарядки и изменений температуры наружного воздуха. Это делает их подверженными риску взрыва.
    • Их нужно заряжать чаще, чем обычные аккумуляторы для гольф-каров.
    • Эти батареи в четыре раза дороже обычных свинцово-кислотных аккумуляторов, в основном из-за затрат на их производство.
    • Часто из-за производственных дефектов некоторые батареи не достигают даже половины срока службы. Что еще хуже, это обычно происходит после истечения гарантийного срока.

    Можно ли использовать аккумуляторы AGM в тележке для гольфа?

    Батареи

    из абсорбированного стекломата (AGM) также известны как герметичные батареи. Как видно из названия, эти батареи поставляются полностью закрытыми в корпусе.

    Электролиты батареи находятся между пластинами батареи.

    Есть жидкость, которая помогает поддерживать влажность коврика и электролитов. Жидкость не будет вытекать, даже если в аккумуляторе есть трещина или поломка.

    Аккумуляторы

    AGM действительно идеальны для владельцев гольф-каров, которым нужна альтернатива свинцово-кислотным аккумуляторам, которые необходимо время от времени доливать водой.

    Как работают аккумуляторы AGM в тележке для гольфа

    Аккумуляторы

    AGM представляют собой мат с вплетенными в него тонкими стекловолокнами для увеличения площади поверхности.Волокна мата не оказывают вредного воздействия на кислотный электролит.

    Стекловолоконный мат также способен поглощать серную кислоту из аккумулятора.

    После 2–5% замачивания в кислоте коврик отжимают, чтобы сделать аккумулятор водонепроницаемым и безопасным для транспортировки. Пластины имеют плоскую конструкцию, что делает их похожими на пластины свинцово-кислотных аккумуляторов.

    Батареи обладают низким саморазрядом и низким внутренним сопротивлением, что позволяет им выдерживать высокие токи в течение продолжительного периода времени.Это обеспечит достаточный заряд батареи для перемещения вашего гольфа по всем участкам поля!

    Имейте в виду, что во избежание сульфатации пластин пластину необходимо менять каждые 6 месяцев.

    Преимущества использования аккумуляторов AGM

    Аккумуляторы

    AGM обладают рядом преимуществ, которые стоит учитывать при выборе вашего гольфмобиля. Вот несколько причин, по которым вы можете выбрать один.

    • Время зарядки как минимум в пять раз быстрее, чем у свинцово-кислотных аккумуляторов.
    • Аккумулятор выдерживает вибрацию. Он также работает при низких температурах.
    • Размер довольно компактный, от 30 до 100 Ач.
    • Количество электролита меньше, чем у стандартной батареи.
    • Герметичный корпус обеспечивает изоляцию от кислоты, что, в свою очередь, делает аккумулятор защищенным от проливания.
    • Глубина разряда составляет 80%, что позволяет батарее прослужить от трех до пяти лет. Это может продлиться до восьми лет при правильном уходе за батареями.
    • Вероятность сульфатирования меньше по сравнению с обычными батареями.

    Гелевый элемент против AGM-аккумулятора в тележке для гольфа

    Часто батареи AGM ошибочно принимают за гелевые батареи. Это неудивительно, потому что у них обоих есть много общих отличных черт, которые делают их достойными внимания.

    Однако, если вы хотите заменить текущий аккумулятор гольф-кара на гелевый элемент или модель AGM, вам необходимо сначала узнать разницу между ними.

    Оба типа этих батарей не проливаются, могут быть установлены в любом положении, имеют низкий саморазряд, имеют глубокий цикл и могут безопасно храниться в местах с меньшей вентиляцией.

    Различия между AGM и гелевыми батареями

    • В гелевом элементе электролит батареи суспендирован в геле силикагеля, внутри которого электроны текут между пластинами батареи.
    • С другой стороны, в батареях AGM используется стеклянный коврик, чтобы удерживать электролит батареи на месте между пластинами.
    • Гелевые ячейки
    • не обеспечивают такой большой ток и мощность, как ячейки AGM. Это означает, что тележки для гольфа будут работать лучше, если использовать батарею AGM, а не гелевую батарею.
    • Гелевые элементы
    • физически больше, чем аккумуляторы AGM, что затрудняет их транспортировку с места на место.
    • Гелевые ячейки
    • имеют меньшую ожидаемую продолжительность жизни по сравнению с ячейками AGM.
    • Гелевые элементы
    • имеют более медленную скорость разряда, чем аккумуляторы AGM.
    • Батареи вашего гольф-мобиля протекают? Прочтите мой совет
    • Аккумуляторы вашего гольф-мобиля нагреваются? Прочтите мой совет
    • Вам нужен новый аккумулятор для гольфмобиля? Информация о ценах на аккумулятор для гольф-кара

    Сколько батарей в тележке для гольфа EZGo?

    Аккумуляторы, как и автомобильные аккумуляторы, обычно являются одним из основных элементов гольфмобиля.Но в отличие от автомобильных аккумуляторов, в гольф-тачках для питания используются аккумуляторы глубокого разряда, а не бензиновый двигатель. Это значит, что постоянный ток может быть достигнут на многие мили.

    Электроприводная система для гольфмобилей EZGo имеет напряжение 36 или 48 вольт. Некоторые более новые модели - 72 вольта. Для правильной работы требуется комбинация нескольких батарей.

    Сколько батарей в тележке для гольфа EZGo?

    Гольф-кар EZGo имеет 3, 4, 6 или 8 батарей для гольф-кары.Для оптимальной работы средней тележке для гольфа потребуется от 4 до 6 аккумуляторов (чаще всего 6). Только в старых 36-вольтовых тележках вы найдете 3 батареи, а в некоторых 6-вольтовых версиях будет 8 батареек.

    В конструкции тележки для гольфа все (несколько) батарей вместе обеспечивают необходимое количество напряжения и силы тока, необходимые для питания тележки. То есть, когда эти 3, 4 или 6 батарей соединены, они суммируются и производят мощность 36 или 48 вольт.

    Каким образом количество батарей соответствует конфигурации батарей для тележки для гольфа EZGo?

    Эффективная работа гольф-каров происходит от ряда аккумуляторов гольф-каров, обеспечивающих достаточную мощность.То есть система батарей является последовательной, следовательно, более одной батареи соединены вместе, чтобы умножить напряжение. Например, из шести 8-вольтовых батарей будет получена 48-вольтовая система батарей, или так же хорошо, как из четырех 12-вольтовых батарей для той же 48-вольтовой системы батарей.

    Среди тележек для гольфа есть более широкий выбор для шести 8-вольтовых батарей, чем из четырех 12-вольтовых батарей для 48-вольтовой аккумуляторной системы. Конфигурации аккумуляторов расширены ниже:

    6-вольтовые аккумуляторы для гольф-каров

    6-вольтовые аккумуляторы для гольф-каров обычно имеют 3 крышки на верхней части аккумулятора.Это указывает на 2 вольта на ячейку. Чаще всего одна батарея 6-вольтовой тележки для гольфа имеет наибольшую емкость тока и допускает также самый большой диапазон в конфигурации батареи 8-6 В.

    Батареи для тележек для гольфа на 8 В

    Батареи для тележек для гольфа на 8 В обычно имеют 4 крышки в верхней части. Это указывает на 2 вольта на ячейку. Чаще всего одна 8-вольтовая батарея для гольф-мобилей имеет умеренную емкость тока. Для большинства электрических гольф-каров никогда не удивительно, что они являются обычным явлением с этой конфигурацией аккумуляторной батареи для гольф-мобилей на 6-8 В.

    Батареи для тележек для гольфа на 12 В

    Батареи для тележек для гольфа на 12 В обычно имеют 6 крышек на верхней части. Это указывает на 2 вольта на ячейку. Часто один 12-вольтный аккумулятор для гольф-кара имеет наименьшую допустимую силу тока. Эта система с любовью используется в аккумуляторных системах на 72 вольта, которые встречаются редко. Конфигурация аккумуляторных систем для тележек для гольфа для тележек EZGo, которые обычно используются, составляет 4-12 вольт.

    Как определить напряжение на тележке для гольфа?

    Самый быстрый способ узнать, какие батареи установлены в вашей тележке для гольфа:

    1. Потяните переднее сиденье вашей тележки для гольфа вверх и определите местонахождение аккумуляторного отсека тележки для гольфа.
    2. Обратите внимание на маркировку, показывающую напряжение аккумулятора. Если маркировки нет, перейдите к шагу 3.
    3. Тщательно проверьте батареи на наличие кислотных отверстий. Отверстия есть на каждой крышке аккумуляторной батареи. Для каждой батареи общее количество обычно составляет 3, 4 или 6 отверстий наверху.
    4. Чтобы вычислить напряжение батареи гольфмобиля, для каждого количества кислотных ямок на одной из ваших батарей умножьте это число на 2. Каждая лунка равна 2 вольтам.
    5. Наконец, умножьте напряжение батареи тележки для гольфа на сумму батарей тележки для гольфа, установленных в конкретной тележке для гольфа.

    Другой способ - посмотреть руководство по эксплуатации тележки или даже взять мультиметр и проверить напряжение батарей.

    Как рассчитать напряжение на тележке для гольфа?

    Лучший способ рассчитать напряжение 36 вольт или 48 вольт для тележки для гольфа:

    • Батареи для тележки для гольфа на 36 вольт (с шестью батареями 6 В)

    3 кислотных отверстия, умноженные на 2 вольта на каждое отверстие = 6-вольтовая батарея

    6-вольтовая батарея, умноженная на 6 батарей тележки = 36-вольтовая система

    • Батареи для 48-вольтовой тележки для гольфа (с шестью батареями 8 В)

    4 кислотных отверстия, умноженных на 2 вольта на каждую отверстие = 8-вольтовая батарея

    8-вольтовая батарея, умноженная на 6 аккумуляторов тележки = 48-вольтовая система

    • Батареи для 48-вольтовой тележки для гольфа (с четырьмя батареями 12 В)

    6 кислотных отверстий, умноженных на 2 вольт на лунку = 12-вольтовая батарея

    12-вольтовая батарея, умноженная на 4 батареи тележки, = 48-вольтовая система

    Заключение

    Наиболее распространенное напряжение в гольф-картах сегодня составляет 48 вольт.Некоторые старые модели имеют напряжение 36 вольт, а некоторые новые - 72 вольт. 48-вольтовые тележки могут иметь 4 батареи на 12 В или шесть батарей на 8 В.

    36-вольтовый блок используется на большинстве старых гольф-каров и имеет последовательную компоновку из шести 6-вольтных батарей.

    Очень редкие и немногие современные тележки для гольфа включают комплект 72 Вольт с расположением 6 X 12 Вольт.

    Напряжение тележки для гольфа | Вы используете напряжение 38 В или 48 В?

    Home »Знания об аккумуляторах» Как определить, работает ли ваша тележка для гольфа от аккумуляторной системы на 36 или 48 вольт

    Апр 28 год 2016 г. Это распространенный вопрос, на который вам необходимо получить ответ, прежде чем вы сможете определить правильное зарядное устройство для вашей тележки для гольфа.Самый простой способ понять это - взглянуть на свою тележку для гольфа.

    Где аккумуляторная батарея?

    Вы найдете аккумуляторную батарею для вашего гольф-мобиля прямо под сиденьем водителя. В некоторых случаях аккумуляторная система довольно большая и, скорее всего, будет продолжена под областью переднего носового конуса популярных тележек, таких как автомобили Gem, или других 4 или более пассажирских тележек для гольфа. Чем больше тележка, тем больше батарей у тележки обычно требуется для питания более мощного двигателя, необходимого для приведения в движение дополнительных пассажиров.

    Что ты там видишь?

    Итак, вы отодвигаете сиденье и что вы видите? Вот пример популярной тележки для гольфа. На этой фотографии изображен клубный автомобиль старого образца с аккумуляторной системой на 36 В. Это легко определить, потому что вы насчитаете (6) шесть батареек.

    Подсчитайте батареи - и «дырки» (ячейки)

    Каждая батарея имеет в общей сложности (3) три заливных отверстия (также называемых ячейками). Каждое отверстие или ячейка будет иметь значение 2 вольта. Итак, в этом случае мы будем знать, что эти батареи являются батареями на 6 вольт.Отсюда - 6x 6-вольтовая батарея = 36-вольтовая система. Это простое уравнение будет работать с любой тележкой для гольфа или даже другими электромобилями или электромобилями старого образца, работающими на традиционных свинцово-кислотных аккумуляторах.

    Другой пример

    Вот еще один пример, чтобы убедиться, что вы его поняли. Сколько вольт находится в этой аккумуляторной системе в автобусе последней модели, ожидающем установки новых аккумуляторов? Опять 1,2,3 = 6 вольт (2 вольта x 3) 1,2,3,4,5,6 = батареи на 6 вольт = всего 36 вольт (6 вольт x 6 батарей) Эй, у тебя это хорошо получается! Вот еще один для вас.

    Тест нашей тележки

    Наша тележка имеет 4 батареи под сиденьем, но каждая батарея имеет (6) шесть заливных отверстий или ячеек на каждой батарее. Будет ли это система на 48 вольт? Да, это система на 48 вольт, потому что у вас есть 6 ячеек на батарею и у вас 4 батареи. (6 элементов x 2 вольта = 12 вольт) (4 батареи x 12 вольт = 48 вольт).

    Дополнительная информация

    Если вы хотите узнать больше о системе аккумуляторов вашего гольф-мобиля, возможно, вы хотели бы прочитать об установке аккумулятора, выполняемой BatteryPete на гольф-тележке EZGO Medalist.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *