Как работает электродвигатель: Как работает электродвигатель [на понятном языке] | Инженерные знания

Содержание

Как работает электродвигатель [на понятном языке] | Инженерные знания

Вокруг нас становится всё больше электродвигателей. Вместе с безнадежным устареванием бензиновых агрегатов в мире транспорта, появляются и принципиально новые сферы использования электродвигателей. Многие высокотехнологичные электронные устройства используют такие двигатели для самых различных целей, например чтобы реализовать работу вибровызова у смартфона.

Полезно и интересно разобраться в логике функционирования этого нехитрого, но крайне востребованного сегодня устройства. Давайте опустим все сложные высказывания и формулировки, а попробуем на простом языке сформулировать основы функционирования электрических агрегатов.

Ротор электродвигателя

Ротор электродвигателя

Начнем с самого простого. Наверняка каждый из читателей игрался с магнитиками и обращал внимание, что в одну сторону магниты притягиваются, а в другую сторону магниты отталкиваются. Говоря научным языком — полюса магнита, имеющие одинаковые знаки, отталкиваются, а полюса магнита с разными знаками притягиваются.

Поведение магнитов

Поведение магнитов

Причину этого явления объясняют спецификой поведения зарядов. Но полностью объяснить природу взаимодействия пока не получилось. Да нам и не нужно сейчас это делать. Для нас важен сам факт подобного явления. Обратите внимание, что отталкиваются магниты гораздо раньше, чем будут подведены друг к другу вплотную. Всё дело в линиях магнитной индукции.

Линии магнитной индукции

Линии магнитной индукции

Теперь представим, что мы разместили магнитики таким образом, когда возможно использовать эту силу отталкивания нам во благо. Один магнитик поместили на ось, а второй поставили где то рядом. Вектора действующих сил распихали таким образом, что они по касательной толкают ось и заставляют её крутиться. Получилось, что система будет вращаться при правильном подборе точек расположения магнитов. Эффект напоминает раскручивание карусели, на котором катаются дети. Когда карусель с ребенком проходим мимо папы, он подкручивает систему и поддерживает вращение. Замени мы папу одним магнитом, а ребенка другим того же полюса — выйдет модель электродвигателя.

Может сложиться неправильное представление, что мы получили вечный двигатель. На самом деле это не так. Мы не сможем без прочих ухищрений заставить эту систему работать постоянно из-за потери энергии на сторонние факторы.

Теперь представим, что нам нужно управлять такой моделью. Ведь когда магниты постоянные, мы не сможем регулировать процесс вращения. Да и оптимизировать его не получится. Поэтому, мы прибегнем к помощи электромагнита. Электромагнит может создавать поле тогда, когда нам это нужно. Нажали на кнопочку — ток проходит через цепь и формируется магнитное поле.

Логика работы электромагнита

Логика работы электромагнита

Но в более простом случае рационально использовать рамку с током. Там начинает работать закон Ампера, а род взаимодействия будет таким же. Вспомним, что закон Ампера описывает влияние магнитного поля на проводник с током. Он описывает силу, которая будет действовать на проводник с током со стороны магнитного поля.

Закон Ампера

Закон Ампера

Теперь представим, что мы взяли рамку с током и поместили её в магнитное поле. Рамка с током представляет собой проводник, который оказался в магнитном поле. Пропускаем через рамку ток и поле начинает воздействовать с некоторой силой на этот проводник. Если рамка замкнутая, то ток меняет в ней свой направление.

Смена направления тока

Смена направления тока

Получается, что на рамке формируется вращающий момент. Ведь когда направление тока в проводнике меняется, меняется и направление вектора силы, воздействующей со стороны магнитного поля.

Если разместить рамку правильно, то появится именно крутящий момент. Если нет — поле будет гнуть рамку. Наша задача «снять» крутящий момент. Для этого рамку нужно правильно расположить или увеличить количество рамок. Тогда одна из них обязательно попадет в нужное положение.

Кстати, это магнитное поле формируется неподвижными постоянными магнитами статора двигателя.

Простейший электродвигатель

Простейший электродвигатель

Вращающаяся часть будет называться ротором или якорем. Неподвижная на корпусе — статором. Приведенная модель является рабочей моделью двигателя постоянного тока. В реальной схеме всё организовано точно также, только якорь имеет множество таких рамок внутри своей конструкции. Полезно прочитать эту статью.

Рамки внутри ротора

Рамки внутри ротора

Но есть одно несчастье. Подключи мы такую модель к источнику переменного напряжения, и получим не равномерное движение, а постоянные рывки. Всё дело в том, что переменный ток постоянно меняет своё направление.

Направление сил, воздействующих на ротор, тоже будет меняться.

В случае с электродвигателями переменного тока конструкция строится немного иначе.

Обмотка располагается не на роторе, а на статоре. Пропуская через обмотку статора электрический ток, мы получим пульсирующее магнитное поле. Ток, как и в примере выше, меняет своё направление. Ведь намотка выполнена тоже как рамка. И потому актуальна картинка про смену направления электрического тока. Магнитное поле тоже будет направлено в разные стороны.

Схема обмотки статора и направление тока

Схема обмотки статора и направление тока

Если в такое поле поместить магнитик или ротор особой конфигурации (колесо для грызуна, в котором индуцируется ток сам) опять получим описываемый ранее эффект и крутящий момент. Только обмоток нужно много, чтобы «толкались» они одна за другой. Тогда оно будет пульсировать и подпихивать наш якорь. Получили опять вращающий момент. Вуаля!

Как работает двигатель постоянного тока? (анимация и видео): shkola30 — LiveJournal

Дорогие мои читатели, начинаем разбирать темы августовского стола заказов (боже мой, как быстро летит время!). Сегодняшняя тема может быть мало кого заинтересует, зато если кого заинтересует, так это будет очень в пользу им. Слушаем trudnopisaka: Напишите пожалуйста понятно о устройстве электродвигателей постоянного тока. Можно на  примере одного из типов. Ведь с одной стороны принцип работы очень простой, а с другой,  если разобрать один из электродвигателей, то там много деталей, назначение которых не  очевидно. А на сайтах в начале поисковой выдачи есть только название этих деталей, в лучшем  случае. Планирую с детьми собрать простой электродвигатель, чтобы это помогло им в понимании техники и они не боялись ее осваивать.

Первый этап развития электродвигателя (1821-1832) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя.

Для второго этапа развития электродвигателей (1833-1860) характерны конструкции с вращательным движением якоря.

Томас Дэвенпорт — американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину.

В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. 13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.


Испытания различных конструкций электродвигателей привели Б. С. Якоби и других исследователей к следующим выводам:



  • расширение применения электродвигателей находится в прямой зависимости от удешевления электрической энергии, т. е. от создания генератора, более экономичного, чем гальванические элементы;

  • электродвигатели должны иметь по возможности малые габариты, большую мощность ибольший коэффициент полезного действия;

  • этап в развитии электродвигателей связан с разработкой конструкций с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом.

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешёвого источника электрической энергии — электромагнитного генератора постоянного тока.

В 1886 году электродвигатель постоянного тока приобрёл основные черты современной конструкции. В дальнейшем он всё более и более совершенствовался.

В настоящее время трудно представить себе жизнь человечества без электродвигателя. Он используется в поездах, троллейбусах, трамваях. На заводах и фабриках стоят мощные электрические станки. Электромясорубки, кухонные комбайны, кофемолки, пылесосы — всё это используется в быту и оснащено электродвигателями.



Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).

При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.





Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.



Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.


Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.



Индуктор (статор) электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах — специальная обмотка, служащая для улучшения условий коммутации.




Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.


Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусомэлектродвигателя.



Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка дегтя во всей этой вкусняшке — коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).

Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины.

Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса.

Рис. 2. Упрощенное изображения коллектора


Рис. 3. Выпрямление переменного тока с помощью коллектора

Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.

Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.

Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.

Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось.

В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.

В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах, в роторе ДПТ возникают мощные переходные процессы, в результате чего, искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.Конструкция двигателя может иметь один или несколько щеточно-коллекторных узлов.

А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.

А для пущего удобства выворачиваем двигатель наизнанку — гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.

И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история. ВОТ ТУТ можно прочитать про него подробнее.


Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Думаю многие из вас кто баловался с движками могли заметить, что у них есть ярко выраженный пусковой ток, когда мотор на старте может рвануть стрелку амперметра, например, до ампера, а после разгона ток падает до каких-нибудь 200мА.

Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки. Так что предельный ток который может развить движок и на который следует рассчитывать схему узнать несложно. Достаточно замерить сопротивление обмотки двигателя и поделить на это значение напряжение питания. Просто по закону Ома. Это и будет максимальный ток, пусковой.

Но по мере разгона начинается забавная вещь, обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость.

А если движок дополнительно еще подкручивать по ходу, то противоэдс будет выше питания и движок начнет вкачивать энергию в систему, став генератором.



Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

В настоящее время двигатели постоянного тока независимого возбуждения, управляемые тиристорными преобразователями, используются в промышленных электроприводах.’Эти при­воды обеспечивают регулирование скорости в широком диапазо­не. Регулирование скорости вниз от номинальной осуществляется изменением напряжения на якоре, а вверх — ослаблением потока возбуждения. Ограничения, по мощности и скорости обусловлены свойствами используемых двигателей, а не полупроводниковых приборов. Тиристоры могут соединяться последовательно или па­раллельно, если они имеют недостаточно высокий. класс по напря­жению или току. Ток якоря и момент ограничены перегрузочной способностью двигателя по нагреву.

Принцип работы:







Сборка двигателя постоянного тока ПО ДЕТАЛЯМ:








Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия — http://infoglaz.ru/?p=32677


СО-сообщества «2Академия», «Марсианский трактор», «Мир Полдня», «Школа Полдня», «ЗОНА СИНГУЛЯРНОСТИ».

Как работает электродвигатель?

03.02.2019 Концепт электромобиля Шкода

На какой оси движется электродвигатель?

Как правило, мотор может быть установлен как на передней, так и на задней оси. Однако лучше, если электромобиль имеет задний привод, чтобы крутящий момент более эффективно передавался на ось автомобиля. Важно отметить, что полностью электрический привод можно легко расширить, добавив второй электродвигатель к передней оси.

Все электромобили имеют одинаковый тип двигателя?

Предложение двигателей внутреннего сгорания очень обширно, поэтому существует множество концепций и вариантов, в которых применяются электрические двигатели. Неотъемлемой частью электромобилей обычно является блок электропривода, который может быть либо непосредственно встроен в двигатель, либо установлен отдельно, а затем подключен к двигателю с помощью трех сильных фазных проводников.

Есть ли разница между подключаемыми гибридами и автомобилями с электродвигателями?

Конечно. При проектировании «чистого» электромобиля предполагается, что у него не будет другого типа привода. Следовательно, двигатель может быть оптимально подготовлен для требуемого крутящего момента и мощности. Напротив, гибридная конструкция двигателя также должна учитывать характеристики двигателя внутреннего сгорания, который сосуществует с электродвигателем, ориентируясь на механическое сочетание их возможностей и соответствующего распределения мощности.

Простое и доступное описание строения и принципов работы электромобиля:

Система управления движением также является более сложной. Автомобиль должен управляться только электрически, с двигателем внутреннего сгорания или в комбинированном режиме и всегда с оптимальным потреблением энергии.

Правда ли, что электромобили существовали более ста лет назад?

Первые попытки построить электромобиль относятся к 1835 году, то есть целых 48 лет до постройки первого бензинового двигателя! Они проходили — независимо друг от друга — в Италии и Нидерландах. На рубеже 20-го века Фердинанд Порше и Франтишек Кржижик работали над электротехническими конструкциями, и в 1900 году на американских дорогах было больше электромобилей, чем автомобилей с двигателем внутреннего сгорания.

Двигатель Tesla model S

Интересно, что первый автомобиль, который достиг скорости более 100 км/ч, имел электрический привод. Однако эти автомобили работали на тяжелых свинцовых батареях и имели небольшой срок эксплуатации. Появление автомобилей серийного производства и массовое использование двигателей внутреннего сгорания, предлагающих более удобную гамму, на многие годы оттеснило электромобили.

Почему электродвигатели снова проходят через бум?

Тенденция современной электрической мобильности обусловлена не только необходимостью сокращения местных паров и выбросов CO2, но также быстрым развитием и доступностью новых технологий. Современные литий-ионные аккумуляторы намного лучше приспособлены для хранения и выделения необходимого количества энергии. У них есть своя управляющая электроника, они связываются со всей автомобильной системой, и их дальнейшее развитие происходит очень быстро. Полупроводниковые компоненты могут передавать гораздо большие величины тока с минимальными потерями и, таким образом, могут эффективно контролировать и регулировать мощные двигатели. В последние годы наличие зеленой энергии из возобновляемых источников и планы по развитию инфраструктуры зарядных станций также сыграли важную роль в продвижении электронной мобильности.

Электродвигатель как работает — Всё о электрике

Устройство и принцип работы электродвигателя

Электродвигатель – это электротехническое устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта

, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются между собой с обоих сторон, поэтому он и называется короткозамкнутым.

Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются

в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щетокили их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора.Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Разбираемся в принципах работы электродвигателей: преимущества и недостатки разных видов

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

Устройство и принцип действия электродвигателя постоянного тока

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.

Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

В двигателях большой мощности физически существующих магнитов не используют из-за их большого веса. Для создания постоянного магнитного поля статора используется несколько металлических стержней, каждый из которых имеет собственную обмотку из проводника, подключенного к плюсовой или минусовой питающей шине. Одноименные полюса включаются последовательно друг другу.

Количество пар полюсов на корпусе двигателя может быть равно одной или четырем. Число токосъемных щеток на коллекторе якоря должно ему соответствовать.

Электродвигатели большой мощности имеют ряд конструктивных хитростей. Например, после запуска двигателя и с изменением нагрузки на него, узел токосъемных щеток сдвигается на определенный угол против вращения вала. Так компенсируется эффект «реакции якоря», ведущий к торможению вала и снижению эффективности электрической машины.

Также существует три схемы подключения двигателя постоянного тока:

  • с параллельным возбуждением;
  • последовательным;
  • смешанным.

Параллельное возбуждение – это когда параллельно обмотке якоря включается еще одна независимая, обычно регулируемая (реостат). Такой способ подключения позволяет очень плавно регулировать скорость вращения и достигать ее максимальной стабильности. Его используют для питания электродвигателей станков и кранового оборудования.

Последовательная – в цепь питания якоря дополнительная обмотка включена последовательно. Такой тип подключения используется для того, чтобы в нужный момент резко нарастить вращающее усилие двигателя. Например, при трогании с места железнодорожных составов.

Двигатели постоянного тока имеют возможность плавной регулировки частоты вращения, поэтому их применяют в качестве тяговых на электротранспорте и грузоподъемном оборудовании.

Двигатели переменного тока — в чем отличие?

Устройство и принцип работы электродвигателя переменного тока для создания крутящего момента предусматривают использование вращающегося магнитного поля. Их изобретателем считается русский инженер М. О. Доливо-Добровольский, создавший в 1890 году первый промышленный образец двигателя и являющийся основоположником теории и техники трехфазного переменного тока.

Вращающееся магнитное поле возникает в трех обмотках статора двигателя сразу, как только они подключаются к цепи питающего напряжения. Ротор такого электромотора в традиционном исполнении не имеет никаких обмоток и представляет собой, грубо говоря, кусок железа, чем-то напоминающий беличье колесо.

Магнитное поле статора провоцирует возникновение в роторе тока, причем очень большого, ведь это короткозамкнутая конструкция. Этот ток вызывает возникновение собственного поля якоря, которое «сцепляется» с вихревым магнитным потом статора и заставляет вращаться вал двигателя в том же направлении.

Магнитное поле якоря имеет ту же скорость, что и статора, но отстает от него по фазе примерно на 8–100. Именно поэтому двигатели переменного тока называются асинхронными.

Принцип действия электродвигателя переменного тока с традиционным, короткозамкнутым ротором, имеет очень большие пусковые токи. Вероятно, многие из вас это замечали – при пуске двигателей лампы накаливания меняют яркость свечения. Поэтому в электрических машинах большой мощности применяется фазный ротор – на нем уложены три обмотки, соединенные «звездой».

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

Несмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого используется конденсатор.

Запитать от бытовой розетки можно и промышленный трехфазный двигатель. Для этого в его клеммной коробке две обмотки соединяются в одну, и в эту цепь включается конденсатор. Исходя из принципа работы асинхронных электродвигателей, запитанных от однофазной цепи, следует указать, что они имеют меньший КПД и очень чувствительны к перегрузкам.

Электродвигатели этого типа легко запускаются, но частоту их вращения практически невозможно регулировать.
Они чувствительны к перепадам напряжения, а при «недогрузе» снижают коэффициент полезного действия, становясь источником непропорционально больших затрат электроэнергии. При этом существуют методы использования асинхронного двигателя как генератор.

Универсальные коллекторные двигатели — принцип работы и характеристики

В бытовых электроинструментах малой мощности, от которых требуются малые пусковые токи, большой вращающий момент, высокая частота вращения и возможность ее плавной регулировки, используются так называемые универсальные коллекторные двигатели. По своей конструкции они аналогичны двигателям постоянного тока с последовательным возбуждением.

В таких двигателях магнитное поле статора создается за счет питающего напряжения. Только немного изменена конструкция магнитопроводов – она не литая, а наборная, что позволяет уменьшать перемагничивание и нагрев токами Фуко. Последовательно включенная в цепь якоря индуктивность дает возможность менять направление магнитного поля статора и якоря в одном направлении и в той же фазе.

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый трансформатор, то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатели имеют самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Синхронный принцип работы электродвигателя на видео

Устройство, принцип работы и подключения электродвигателей переменного тока

Подписка на рассылку

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

{SOURCE}

Как работает электродвигатель? — Наука

Наука2022

Видео:

Видео: Электродвигатель постоянного тока. Принцип работы.

Содержание:

Почти неизбежно, вы придете к моменту в своей жизни, когда столкнетесь с несчастным маленьким ребенком и движущейся игрушкой, которая больше не движется. Вы можете разобрать игрушку, полагаясь на свою готовность спасти день, но, оставив кучу компонентов, вы можете задаться вопросом, как эти витки яркой проволоки создают движение. Помимо сломанных игрушек, электродвигатели встречаются во многих устройствах, которые заставляют наше современное общество двигаться, от автомобилей до часов и охлаждающего вентилятора на вашем компьютере.

Части электродвигателя

Электродвигатель создает вращательное или круговое движение. Центральная часть двигателя представляет собой цилиндр, называемый арматурой или ротором. Арматура удерживает остальные компоненты, а также является частью двигателя, которая вращается. Вокруг якоря находится статор, в котором находятся изолированные катушки из проволоки, обычно из меди. Когда на двигатель подается ток, статор генерирует магнитное поле, которое приводит в действие якорь. В зависимости от конструкции двигателя вы можете также найти щетки или тонкие металлические волокна, которые поддерживают ток, протекающий к противоположной стороне двигателя при его вращении.

Заставить это работать

Возможно, вы заметили, что, когда у вас есть два магнита, противоположные полюса притягиваются и подобно полюсам отталкиваются. Электродвигатель использует этот принцип для создания крутящего момента или силы вращения. Это не электрический ток как таковой, а создаваемое им магнитное поле, которое создает силу, когда электродвигатель находится в движении. Электричество, движущееся по проводу, создает круговое магнитное поле с проволокой в ​​качестве источника и центра вращения. Когда вы добавляете ток, статор и якорь образуют стабильное магнитное поле и электромагнит, который перемещается или вращается в этом поле, соответственно.

Различные типы электродвигателей

Основной двигатель работает от постоянного или постоянного тока, но другие двигатели могут работать от переменного или переменного тока. Аккумуляторы производят постоянный ток, а розетки в вашем доме чередуются. Для того, чтобы двигатель работал на переменном токе, ему нужны два обмоточных магнита, которые не соприкасаются. Они перемещают двигатель через явление, известное как индукция. Эти асинхронные двигатели являются бесщеточными, так как им не требуется физический контакт, который обеспечивает щетка. Некоторые двигатели постоянного тока также являются бесщеточными и вместо этого используют переключатель, который изменяет полярность магнитного поля, чтобы поддерживать работу двигателя. Универсальные двигатели — это асинхронные двигатели, которые могут использовать любой источник питания.

Создание простого электрического двигателя

Теперь, когда у вас есть основные части и принципы, вы можете поиграть с концепцией дома. Сделайте катушку из медного провода нижнего сечения и протяните каждый конец через алюминиевую банку, чтобы подвесить ее. Поместите маленький сильный магнит по обе стороны подвесной катушки, чтобы создать магнитное поле. Если вы прикрепите батарею к обеим банкам с помощью зажимов типа «крокодил», ваша катушка станет электромагнитом, а ротор из медной проволоки, который вы создали, должен начать вращаться.

Электродвигатель как работает


Устройство и принцип работы электродвигателя

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым. Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щетокили их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора.Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Устройство электродвигателя и принцип работы

Июнь 29, 2014

50721 просмотров

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым. Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

Режимы работы электродвигателя в следующей статье.

Разбираемся в принципах работы электродвигателей: преимущества и недостатки разных видов

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

Устройство и принцип действия электродвигателя постоянного тока

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря. Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

В двигателях большой мощности физически существующих магнитов не используют из-за их большого веса. Для создания постоянного магнитного поля статора используется несколько металлических стержней, каждый из которых имеет собственную обмотку из проводника, подключенного к плюсовой или минусовой питающей шине. Одноименные полюса включаются последовательно друг другу.

Количество пар полюсов на корпусе двигателя может быть равно одной или четырем. Число токосъемных щеток на коллекторе якоря должно ему соответствовать.

Электродвигатели большой мощности имеют ряд конструктивных хитростей. Например, после запуска двигателя и с изменением нагрузки на него, узел токосъемных щеток сдвигается на определенный угол против вращения вала. Так компенсируется эффект «реакции якоря», ведущий к торможению вала и снижению эффективности электрической машины.

Также существует три схемы подключения двигателя постоянного тока:

  • с параллельным возбуждением;
  • последовательным;
  • смешанным.

Параллельное возбуждение – это когда параллельно обмотке якоря включается еще одна независимая, обычно регулируемая (реостат).

Такой способ подключения позволяет очень плавно регулировать скорость вращения и достигать ее максимальной стабильности. Его используют для питания электродвигателей станков и кранового оборудования.

Последовательная – в цепь питания якоря дополнительная обмотка включена последовательно. Такой тип подключения используется для того, чтобы в нужный момент резко нарастить вращающее усилие двигателя. Например, при трогании с места железнодорожных составов.

Двигатели постоянного тока имеют возможность плавной регулировки частоты вращения, поэтому их применяют в качестве тяговых на электротранспорте и грузоподъемном оборудовании.

Двигатели переменного тока — в чем отличие?

Устройство и принцип работы электродвигателя переменного тока для создания крутящего момента предусматривают использование вращающегося магнитного поля. Их изобретателем считается русский инженер М. О. Доливо-Добровольский, создавший в 1890 году первый промышленный образец двигателя и являющийся основоположником теории и техники трехфазного переменного тока.

Вращающееся магнитное поле возникает в трех обмотках статора двигателя сразу, как только они подключаются к цепи питающего напряжения. Ротор такого электромотора в традиционном исполнении не имеет никаких обмоток и представляет собой, грубо говоря, кусок железа, чем-то напоминающий беличье колесо.

Магнитное поле статора провоцирует возникновение в роторе тока, причем очень большого, ведь это короткозамкнутая конструкция. Этот ток вызывает возникновение собственного поля якоря, которое «сцепляется» с вихревым магнитным потом статора и заставляет вращаться вал двигателя в том же направлении.

Магнитное поле якоря имеет ту же скорость, что и статора, но отстает от него по фазе примерно на 8–100. Именно поэтому двигатели переменного тока называются асинхронными.

Принцип действия электродвигателя переменного тока с традиционным, короткозамкнутым ротором, имеет очень большие пусковые токи. Вероятно, многие из вас это замечали – при пуске двигателей лампы накаливания меняют яркость свечения. Поэтому в электрических машинах большой мощности применяется фазный ротор – на нем уложены три обмотки, соединенные «звездой».

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

Несмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого используется конденсатор.

Запитать от бытовой розетки можно и промышленный трехфазный двигатель. Для этого в его клеммной коробке две обмотки соединяются в одну, и в эту цепь включается конденсатор. Исходя из принципа работы асинхронных электродвигателей, запитанных от однофазной цепи, следует указать, что они имеют меньший КПД и очень чувствительны к перегрузкам.

Электродвигатели этого типа легко запускаются, но частоту их вращения практически невозможно регулировать.

Они чувствительны к перепадам напряжения, а при «недогрузе» снижают коэффициент полезного действия, становясь источником непропорционально больших затрат электроэнергии. При этом существуют методы использования асинхронного двигателя как генератор.

Универсальные коллекторные двигатели — принцип работы и характеристики

В бытовых электроинструментах малой мощности, от которых требуются малые пусковые токи, большой вращающий момент, высокая частота вращения и возможность ее плавной регулировки, используются так называемые универсальные коллекторные двигатели. По своей конструкции они аналогичны двигателям постоянного тока с последовательным возбуждением.

В таких двигателях магнитное поле статора создается за счет питающего напряжения. Только немного изменена конструкция магнитопроводов – она не литая, а наборная, что позволяет уменьшать перемагничивание и нагрев токами Фуко. Последовательно включенная в цепь якоря индуктивность дает возможность менять направление магнитного поля статора и якоря в одном направлении и в той же фазе.

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый трансформатор, то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатели имеют самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Синхронный принцип работы электродвигателя на видео

Поделиться:

Нет комментариев

Принцип действия электродвигателя переменного тока: как он устроен и работает

Электрический двигатель представляет собой особый преобразователь. Это машина, где электрическая энергия преобразуется и переходит в механическую. Принцип действия двигателя основан на электромагнитной индукции. Есть к тому же и электростатические двигатели. Можно без особых дополнений использовать двигатели на других принципах преобразования электричества в перемещении. Но немногие знают, как устроен и как работает электродвигатель.

В составе электродвигателя переменного тока присутствуют неподвижные и подвижные части. К первым относят:

Статор находит применение для машин синхронного и асинхронного типа. Индуктор эксплуатируется в машинах постоянного тока. Подвижная часть состоит из ротора и якоря. Первый применяют для синхронных и асинхронных устройств, тогда как якорь используется для оборудования с постоянными показателями. Функция индуктора лежит на двигателях небольшой мощности. Здесь нередко используют постоянные магниты.

Говоря о том, как устроен электродвигатель, необходимо определить, к какому классу оборудования относится конкретная модель. В конструкции асинхронного двигателя ротор бывает:

  • короткозамкнутым;
  • фазным, то есть с обмоткой.

Последний тип используется, если требуется уменьшить пусковой ток и отрегулировать частоту вращения асинхронного электродвигателя. Обычно речь идет о крановых электродвигателях, повсеместно используемых в крановых установках.

Кран обладает подвижностью и применяется в машинах постоянного тока. Это может быть генератор либо двигатель, а также универсальный двигатель, функционирующие по тому же принципу. Его используют в электроинструменте. Фактически универсальный двигатель — это тот же двигатель с постоянными показателями, в котором происходит последовательное возбуждение. Отличие касается лишь расчётов обмоток. Здесь отсутствует реактивное сопротивление. Оно бывает:

Вот почему любой электроинструмент, если из него извлекается электронный блок, сможет работать и на постоянном токе. Но при этом напряжение в сети будет меньше. Принцип действия электродвигателя определяется сообразно тому, из каких компонентов он состоит и для каких целей предназначается.

Работа трехфазного асинхронного двигателя

Во время включения в сеть формируется вращающееся магнитное поле. Оно отмечается в статоре и проникает через короткозамкнутую обмотку ротора. В ней переходит в индукцию. После этого, в соответствии с законом Ампера, ротор начинает вращаться. Частота перемещения этого элемента зависит от частоты питающего напряжения и количества магнитных полюсов, представленных парами.

Разность между частотой вращения ротора и магнитного поля статора выражается в виде скольжения. Двигатель именуют асинхронным, потому что частота вращения магнитного поля у него сообразна с частотой вращения ротора. Синхронный двигатель имеет отличия в конструкции. Ротор дополняется магнитом постоянного типа либо электромагнитом. В нём имеются элементы, такие как для запуска беличья клетка и постоянные магниты. Также их роль могут выполнять электромагниты.

В асинхронном двигателе у магнитного поля статора частота вращения совпадает с аналогичным показателем у ротора. Для включения используют асинхронные электродвигатели вспомогательного типа либо ротор с короткозамкнутой обмоткой. Асинхронные двигатели смогли найти широкое применение во всех технических областях.

Особенно это актуально в отношении трехфазных двигателей, характеризующихся простотой конструкции. Они не только доступны по цене, но и надежнее в сравнении с электрическими. Ухода они не требуют почти никакого. Название асинхронный, присвоенное им, обусловлено несинхронным вращением ротора в таком двигателе. Если отсутствует трехфазная сеть, такой двигатель может включаться в сеть однофазного тока.

В составе статора асинхронного электродвигателя присутствует пакет. В нём имеются лакированные листы электротехнической стали, чья толщина составляет 0,5 мм. У них есть пазы, куда уложена обмотка. Три фазы обмотки соединены друг с другом треугольником или звездой, которые смещены на 120 градусов пространственно.

Если речь идет о роторе электродвигателя, в котором имеются контактные кольца в пазах, здесь отмечается ситуация, похожая на обмотку статора. Это актуально, если он включён звездой либо начальные концы фаз соединены тремя контактными кольцами, зафиксированными на валу. Когда двигатель запущен, можно подключить реостат на фазы обмотки для контроля частоты вращения. После успешного разбега контактные кольца коротко замыкаются, а потому обмотка ротора выполняет те же функции, что и в случае с короткозамкнутым изделием.

Современная классификация

По принципу формирования вращающего момента двигатели электрического типа делят на магнитоэлектрические и гистерезисные. Последняя группа отличается тем, что вращающий момент здесь формируется вследствие гистерезиса при чрезмерном намагничивании ротора. Такие двигатели не считаются классическими и не так распространены в промышленности. Наибольшее распространение получили магнитоэлектрические модификации, которые делятся на две большие группы, согласно потребляемой энергии. Это двигатели переменного и постоянного тока. Выпускаются также универсальные модели, которые способны питаться обоими видами электрического тока.

Основные особенности

Было бы правильно называть эти устройства электрическими нефазными. Это обусловлено тем, что фазы переключаются здесь непосредственно в двигателе. За счет этого мотор питается постоянным, как и переменным типами тока, с одинаковым успехом. Эта группа делится по способу переключения фаз и присутствию обратной связи. Они бывают вентильными и коллекторными.

Что касается типа возбуждения, коллекторные двигатели подразделяют на модели с самовозбуждением, моторы с независимым возбуждением от постоянных магнитов и электромагнитов. Первый тип, в свою очередь, классифицируется на моторы с последовательным, параллельным, смешанным возбуждением.

Бесколлекторные, или вентильные изделия, работают от электричества. В них переключение фаз происходит посредством специального электроблока, носящего название инвертора. Процесс этот может оснащаться обратной связью, когда пускают в ход датчик положения ротора либо без обратной связи. Такое устройство можно фактически позиционировать, как аналог асинхронного устройства.

Агрегаты пульсирующего тока

Такой двигатель является электрическим, и питание у него осуществляется пульсирующим электротоком. Конструкционные особенности его схожи с аналогичными особенностями у устройств постоянного тока. Конструктивные отличия его от двигателя с постоянными показателями состоят в присутствии шихтованных вставок для выпрямления переменного тока. Используют его на электровозах со специальными установками. Характерной особенностью является наличие компенсационной обмотки и значительного количества пар полюсов.

Модификации переменного тока

Двигатель представляет собой устройство, питание которого происходит с переменным током. Агрегаты эти бывают асинхронными и синхронными. Различие состоит в том, что в асинхронных машинах магнитодвижущая сила статора перемещается со скоростью вращения ротора. У асинхронного оборудования всегда наблюдается разница между скоростью вращения магнитного поля и ротора.

Синхронный электродвигатель работает от переменного тока. Ротор здесь вращается сообразно движению магнитного поля питающего напряжения. Синхронные электродвигатели делятся на модификации с обмотками возбуждения, с постоянными магнитами, а также на реактивные модификации, гистерезисные, шаговые, гибридные реактивные типы устройств.

Выделяют и так называемый реактивно-гистерезисный тип. Выпускают также модели с шаговыми агрегатами. Здесь определённое положение ротора фиксируется подачей питания на определенные зоны обмотки. Переход в другое положение достигается посредством снятия напряжения с одних обмоток и перемещения его в другие области. Вентильные реактивные модели электрического типа формируют питание обмоток посредством полупроводниковых элементов. Асинхронное устройство имеет частоту вращения ротора, отличную от частоты вращающегося магнитного поля. Она создается питающим напряжением. Такие модели получили на сегодня наибольшее распространение.

Универсальное коллекторное оборудование

Такой агрегат может работать на переменном и постоянном токе. Изготавливают его с последовательной обмоткой возбуждения при показателях мощности до 200 Вт. Статор выполняется из особой электротехнической стали. Обмотка возбуждения осуществляется при постоянном показателе напряжения полностью и частично при переменном показателе. Номинальное напряжение для переменного электротока составляют 127 и 220 В, аналогичные показатели для постоянного параметра равны 110 и 220 В. Находят применение в электроинструментах и бытовых аппаратах.

То, как работает электродвигатель, зависит от его принадлежности к тому или иному типу оборудования. Модификации переменного тока с питанием от промышленной сети 50 Гц не дают получить частоту вращения больше 3000 оборотов в минуту. Вот почему для получения значительных частот используют коллекторный мотор электрического типа. Он к тому же легче и меньше по размерам, нежели устройства с переменными показателями с аналогичной мощностью.

В их отношении используют специальные передаточные механизмы, преобразующие кинематические параметры механизма до приемлемых. При использовании преобразователей частоты и при наличии сети повышенной частоты двигатели переменного тока легче и меньше коллекторных изделий.

Ресурс асинхронных моделей с переменными показателями значительно выше, нежели у коллекторных. Определяется он состоянием подшипников и особенностями обмоточной изоляции.

Синхронный двигатель, у которого есть датчик положения ротора и инвертор, считается электронным аналогом коллекторного двигателя постоянного тока. Фактически он является коллекторным электродвигателем с последовательно включенными обмотками статора. Они идеально оптимизированы для работы с бытовой электросетью. Такую модель, независимо от полярности напряжения, можно вращать в одну сторону, так как последовательное соединение обмоток и ротора гарантирует смену полюсов из магнитных полей. Соответственно, результат остается направленным в одну сторону.

Статор из магнитного мягкого материала применим для работы на переменном токе. Это возможно, если сопротивление в перемагничивании у него незначительное. Чтобы снизить потери на вихревые токи, статор делают из изолированных пластин. Он получается наборным. Его особенностью является то, что потребляемый ток ограничивается за счёт индуктивного сопротивления обмоток. Соответственно, момент двигателя оценочно становится максимальным и варьируется от 3 до 5. Чтобы приблизить к механическим характеристикам двигатели общего назначения, применяются секционные обмотки. Они имеют отдельные выводы.

Примечательно, что для передвижения некоторыми видами бактерий используется электродвигатель из нескольких белковых молекул. Он способен трансформировать энергию электрического тока в форме движения протонов во вращении жгутика.

Синхронная модель возвратно-поступательного движения работает таким образом, что подвижная часть устройства оснащена постоянными магнитами. Они зафиксированы на шторке. Посредством неподвижных элементов постоянные магниты находятся под воздействием магнитного поля и проводят перемещение штока возвратно-поступательным методом.

Принцип работы электродвигателя — HiSoUR История культуры

Электродвигатель представляет собой электромеханический преобразователь (электрическая машина), который преобразует электрическую энергию в механическую. В обычных электродвигателях генерируются магнитные поля с токопроводящими проводниками, взаимные силы притяжения и отталкивания которых приводятся в движение. Таким образом, электродвигатель является аналогом очень аналогичного сконструированного генератора, который преобразует мощность двигателя в электрическую. Электродвигатели обычно генерируют вращающиеся движения, но они также могут использоваться для создания трансляционных движений (линейный привод). Электродвигатели используются для управления многими оборудованием, машинами и транспортными средствами.

Принцип действия
Электродвигатели — это устройства, которые преобразуют электрическую энергию в механическую энергию. Средствами этого преобразования энергии в электродвигателях является магнитное поле. Существуют различные типы электродвигателей, и каждый тип имеет разные компоненты, структура которых определяет взаимодействие электрических и магнитных потоков, которые вызывают силу или крутящий момент двигателя.

Основной принцип заключается в том, что описание того, как сила вызвано взаимодействием точечного электрического заряда q в электрическом и магнитном полях, является законом Лоренца:

где:
q: пунктуальный электрический заряд
E: Электрическое поле
v: скорость частиц
B: плотность магнитного поля

В случае чисто электрического поля выражение уравнения сводится к:

Сила в этом случае определяется только зарядом q и электрическим полем E. Это кулоновская сила действует вдоль проводника, создающего электрический поток, например, в катушках статора индукционных машин или в роторе двигателей постоянного тока.

В случае чисто магнитного поля:

Сила определяется зарядом, плотностью магнитного поля B и скоростью нагрузки v. Эта сила перпендикулярна магнитному полю и направлению скорости нагрузки. Обычно в движении имеется много нагрузок, поэтому удобно переписать выражение в терминах плотности заряда Fv (сила в единице объема):

К продукту 

 он известен как плотность тока J (ампер на квадратный метр):

Тогда полученное выражение описывает силу, возникающую при взаимодействии тока с магнитным полем:

Это основной принцип, объясняющий, как возникают силы в электромеханических системах, таких как электродвигатели. Однако полное описание для каждого типа электродвигателя зависит от его компонентов и конструкции.

Линейный двигатель
Линейный двигатель — это по существу любой электродвигатель, который был «разворачиван», так что вместо создания крутящего момента (вращения) он создает прямолинейную силу вдоль своей длины.

Линейные двигатели чаще всего являются асинхронными двигателями или шаговыми двигателями. Линейные двигатели обычно встречаются во многих роликовых подстаканниках, где быстрое движение безмоторного вагона контролируется рельсом. Они также используются в поездах маглева, где поезд «летает» над землей. В меньших масштабах, в 1985 году эскалатор HP 7225A использовал два линейных шаговых двигателя для перемещения пера вдоль осей X и Y.

электромагнетизм

Сила и момент
Основная цель подавляющего большинства мировых электродвигателей состоит в том, чтобы электромагнитно индуцировать относительное перемещение в воздушном зазоре между статором и ротором для получения полезного крутящего момента или линейной силы.

Согласно закону силы Лоренца сила обмоточного проводника может быть задана просто:

или в более общем плане, для обработки проводников с любой геометрией:

Наиболее общие подходы к вычислению сил в двигателях используют тензоры.

Мощность
Где rpm — скорость вала, а T — момент, механическая мощность двигателя Pem определяется,

в британских единицах с Т, выраженным в фунтах,

 (лошадиная сила), и,

в единицах СИ с угловой скоростью вала, выраженной в радианах в секунду, и Т, выраженной в Ньютонометрах,

 (Вт).

Для линейного двигателя с силой F, выраженной в ньютонах и скоростью v, выраженной в метрах в секунду,

 (Вт).

В асинхронном или асинхронном двигателе соотношение между скоростью двигателя и мощностью воздушного зазора, пренебрегая скин-эффектом, определяется следующим:

 , где

Rr — сопротивление ротора
r 2 — квадрат тока, индуцированного в роторе
s — проскальзывание двигателя; т.е. разница между синхронной скоростью и скоростью скольжения, которая обеспечивает относительное движение, необходимое для индукции тока в роторе.

Назад emf
Так как обмотки якоря постоянного тока или универсального двигателя движутся через магнитное поле, они имеют индуцированное в них напряжение. Это напряжение имеет тенденцию противостоять напряжению питания двигателя и поэтому называется «назад электродвижущей силой (ЭДС)». Напряжение пропорционально скорости движения двигателя.Задняя ЭДС двигателя плюс падение напряжения на внутреннем сопротивлении обмотки и щетках должны быть равны напряжению на щетках. Это обеспечивает фундаментальный механизм регулирования скорости в двигателе постоянного тока. Если механическая нагрузка увеличивается, двигатель замедляется; результаты обратной волны в нижней части спины, и больше тока извлекается из питания. Этот увеличенный ток обеспечивает дополнительный крутящий момент для баланса новой нагрузки.
В компьютерах с переменным током иногда полезно учитывать источник обратной волны emf в машине; в качестве примера это вызывает особую озабоченность по поводу тесного регулирования скорости асинхронных двигателей на VFD.

потери
Потери двигателя связаны главным образом с резистивными потерями в обмотках, потерями в сердечнике и механическими потерями в подшипниках, а также возникают аэродинамические потери, особенно там, где присутствуют охлаждающие вентиляторы.

Потери также возникают при коммутации, искровых механических коммутаторах и электронных коммутаторах, а также рассеивают тепло.

КПД
Для расчета эффективности двигателя механическая выходная мощность делится на электрическую входную мощность:

 ,

где 

 является эффективность преобразования энергии,  электрическая входная мощность, и  механическая выходная мощность:

где 

 это входное напряжение,  входной ток, T — выходной крутящий момент, и  — выходная угловая скорость. Аналитически можно получить точку максимальной эффективности. Обычно он составляет менее 1/2 крутящего момента.

Различные регулирующие органы во многих странах внедрили и внедрили законодательство, поощряющее производство и использование электродвигателей с более высокой эффективностью.

Коэффициент добротности
Эрик Лайтвейт предложил метрику, чтобы определить «доброту» электродвигателя: 

Куда:

 коэффициент добротности (коэффициенты выше 1, вероятно, будут эффективными)
 — площади поперечного сечения магнитной и электрической цепи
 представляют собой длины магнитных и электрических цепей
 является проницаемость сердечника
 — это угловая частота, с которой двигатель

Из этого он показал, что наиболее эффективные двигатели, вероятно, будут иметь относительно большие магнитные полюса. Однако это уравнение относится только к моделям без ПМ.

Параметры производительности

Момент затяжки моторов
Все электромагнитные двигатели, которые включают в себя упомянутые здесь типы, вызывают крутящий момент от векторного произведения взаимодействующих полей. Для расчета крутящего момента необходимо знать поля в воздушном зазоре. Как только они были установлены путем математического анализа с использованием FEA или других инструментов, крутящий момент можно вычислить как интеграл всех векторов силы, умноженных на радиус каждого вектора. Ток, текущий в обмотке, создает поля, а для двигателя с использованием магнитного материала поле не линейно пропорционально току. Это затрудняет вычисление, но компьютер может выполнить многие расчеты.

Как только это будет сделано, цифра, связывающая ток с крутящим моментом, может использоваться как полезный параметр для выбора двигателя. Максимальный крутящий момент для двигателя будет зависеть от максимального тока, хотя это, как правило, будет использоваться только до тех пор, пока термические соображения не будут иметь приоритет.

При оптимальном проектировании в пределах заданного ограничения насыщения ядра и для заданного активного тока (т. Е. Крутящего момента), напряжения, числа пар полюсов, частоты возбуждения (т. Е. Синхронной скорости) и плотности потока воздушного зазора все категории электродвигателей или генераторы будут демонстрировать практически такой же максимальный непрерывный крутящий момент вала (т. е. рабочий крутящий момент) в заданной области воздушного зазора с обмотками и глубиной заднего железа, которая определяет физические размеры электромагнитного сердечника. В некоторых приложениях требуется крутящий момент за максимальный рабочий крутящий момент, такой как короткие всплески крутящего момента для ускорения электромобиля от остановки. Всегда ограниченные насыщением магнитного сердечника или безопасным повышением температуры и напряжением, способность к крутящим моментам за пределы максимального рабочего момента значительно отличается между категориями электродвигателей или генераторов.

Емкость для всплесков крутящего момента не следует путать с возможностью ослабления поля. Ослабление поля позволяет электрической машине работать за пределы заданной частоты возбуждения. Ослабление поля выполняется, когда максимальная скорость не может быть достигнута за счет увеличения приложенного напряжения. Это относится только к двигателям с регулируемыми по току полям и, следовательно, не может быть достигнуто с помощью двигателей с постоянными магнитами.

Электрические машины без топологии трансформаторной схемы, такие как WRSM или PMSM, не могут реализовать всплески крутящего момента выше максимального расчетного момента без насыщения магнитного сердечника и любого увеличения тока как бесполезного. Кроме того, блок ПМСМ с постоянными магнитами может быть поврежден непоправимо, если попытки всплесков крутящего момента превышают максимальный крутящий момент.

Электрические машины с топологией трансформаторной схемы, такие как индукционные машины, индукционные двухкомпонентные электрические машины, а также индукционные или синхронные машины с двунаправленным раневым ротором (WRDF), демонстрируют очень высокие всплески крутящего момента, поскольку активный ток, индуцированный ЭДС, на любом стороны трансформатора противостоят друг другу и, таким образом, не влияют на плотность магнитного потока магнитного сердечника, связанного с трансформатором, что в противном случае привело бы к насыщению ядра.

Электрические машины, которые полагаются на индукционные или асинхронные принципы, замыкают один порт схемы трансформатора, и в результате реактивный импеданс трансформаторной цепи становится доминирующим по мере увеличения скольжения, что ограничивает величину активного (то есть реального) тока. Тем не менее реализуются всплески крутящего момента, которые в два-три раза превышают максимальный расчетный крутящий момент.

Синхронная двухсторонняя машина (BWRSDF) с бесколлекторным раневым ротором является единственной электрической машиной с истинно двухполярной топологией трансформаторной схемы (т.е. оба порта независимо возбуждены без короткого замыкания). Известно, что топология схемы с двумя портированными трансформаторами нестабильна и требует многофазного узла щетки скольжения для распространения ограниченной мощности на комплект обмотки ротора. Если бы имелись прецизионные средства для мгновенного регулирования угла крутящего момента и скольжения для синхронной работы во время движения или генерации при одновременном обеспечении бесщеточной мощности на намотке ротора, активный ток машины BWRSDF не зависел бы от реактивного сопротивления схемы трансформатора и значительно превышающие максимальный рабочий крутящий момент и намного превосходящие практические возможности любого другого типа электрической машины. Рассчитаны крутящие моменты, превышающие восьмикратный рабочий крутящий момент.

Плотность непрерывного крутящего момента
Постоянная плотность крутящего момента обычных электрических машин определяется размером зоны воздушного зазора и глубиной заднего железа, которые определяются степенью мощности набора обмоток якоря, скоростью машины и достижимыми характеристиками воздушно- плотность потока зазоров до насыщения ядра. Несмотря на высокую коэрцитивность постоянных магнитов неодима или самария-кобальта, постоянная плотность крутящего момента практически одинакова среди электрических машин с оптимально разработанными намотками арматуры. Непрерывная плотность крутящего момента относится к способу охлаждения и допустимого периода эксплуатации перед разрушением при перегреве обмоток или повреждении постоянным магнитом.

Другие источники утверждают, что различные топологии e-machine имеют разную плотность крутящего момента. Один источник показывает следующее:

Тип электрической машины Удельная плотность крутящего момента (Нм / кг)
SPM — бесщеточный переменного тока, токовая проводимость 180 ° 1,0
SPM — бесщеточный переменного тока, токовая проводимость 120 ° 0.9-1.15
IM, асинхронная машина 0,7-1,0
IPM, внутренняя машина с постоянными магнитами 0,6-0,8
VRM, машина с удвоенным показателем сопротивления 0,7-1,0

где — удельная плотность крутящего момента нормализована до 1,0 для SPM — бесщеточный переменного тока, токовая проводимость 180 °, SPM — машина для поверхностного постоянного магнита.

Плотность крутящего момента примерно в четыре раза больше для электродвигателей, которые охлаждаются жидкостью, по сравнению с воздушными охлаждением.

Источник сравнения постоянного тока (DC), асинхронных двигателей (IM), синхронных двигателей с постоянными магнитами (PMSM) и переключаемых двигателей с сопротивлением (SRM) показал:

Характеристика Округ Колумбия Я PMSM SRM
Плотность крутящего момента 3 3,5 5 4
Удельная мощность 3 4 5 3,5

Другой источник отмечает, что синхронные машины с постоянными магнитами до 1 МВт имеют значительно более высокую плотность крутящего момента, чем индукционные машины.

Непрерывная плотность мощности
Непрерывная плотность мощности определяется продуктом непрерывной плотности крутящего момента и постоянным диапазоном крутящего момента электрической машины.

Специальные магнитные двигатели

ротационный

Безрулевой или бесколлекторный роторный двигатель
Ничто в принципе ни одного из двигателей, описанных выше, не требует, чтобы железные (стальные) части ротора фактически вращались. Если мягкий магнитный материал ротора выполнен в виде цилиндра, то (за исключением эффекта гистерезиса) крутящий момент действует только на обмотки электромагнитов. Воспользовавшись этим фактом, используется бесконтактный или безредукторный двигатель постоянного тока, специализированный вариант постоянного двигателя постоянного тока. Оптимизированные для быстрого ускорения, эти двигатели имеют ротор, который построен без какого-либо железного сердечника. Ротор может иметь форму намоточного цилиндра или самонесущую конструкцию, содержащую только магнитную проволоку и связующий материал. Ротор может помещаться внутри магнитов статора; магнитно-мягкий неподвижный цилиндр внутри ротора обеспечивает обратный путь для магнитного потока статора. Вторая компоновка имеет корзину намотки ротора, окружающую магниты статора. В этой конструкции ротор помещается внутри магнитно-мягкого цилиндра, который может служить корпусом для двигателя, а также обеспечивает обратный путь для потока.

Поскольку ротор намного легче по массе, чем обычный ротор, образованный из медных обмоток на стальных ламинатах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени в течение одного мс. Это особенно верно, если на обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, чтобы действовать как теплоотвод, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом. Перегрев может быть проблемой для бесконтактных двигателей постоянного тока. Современное программное обеспечение, такое как Motor-CAD, может помочь увеличить тепловой КПД двигателей, хотя и находится на стадии проектирования.

Среди этих типов — типы дисков-роторов, более подробно описанные в следующем разделе.

Вибрирующий сигнал сотовых телефонов иногда генерируется крошечными цилиндрическими типами полей с постоянными магнитами, но существуют также дискообразные типы, которые имеют тонкий многополярный магнит на диске, и преднамеренно неуравновешенную формованную пластиковую роторную структуру с двумя связанными бесколлекторными катушками. Металлические щетки и плоский коммутатор переключаются на катушки ротора.

Связанные приводы с ограниченным ходом не имеют сердечника и связанной катушки, размещенной между полюсами тонких постоянных магнитов с высоким потоком. Это быстрые позиционеры для жестких дисков (жестких дисков). Хотя современный дизайн значительно отличается от современного громкоговорителя, он все еще свободно (и неправильно) называется структурой «звуковой катушки», поскольку некоторые более ранние жесткие диски с дисковым накопителем перемещаются по прямым линиям и имеют структуру привода, громкоговорителя.

Блин или осевой роторный двигатель
Печатный якорь или двигатель блинчика имеют обмотки в виде диска, работающего между массивами магнитов с высоким потоком. Магниты расположены в окружности, обращенной к ротору, с промежутком между ними, чтобы образовать осевой воздушный зазор. Эта конструкция широко известна как двигатель блинчика из-за ее плоского профиля. У технологии было много фирменных наименований с момента ее создания, например ServoDisc.

Печатная арматура (первоначально сформированная на печатной плате) в печатном двигателе якоря выполнена из перфорированных медных листов, которые ламинируются вместе с использованием передовых композитов для образования тонкого жесткого диска.Печатная арматура имеет уникальную конструкцию в мире мостового мотора, поскольку она не имеет отдельного кольцевого коммутатора. Щетки запускаются непосредственно на поверхности якоря, что делает весь дизайн очень компактным.

Альтернативным методом изготовления является использование намотанной медной проволоки, уложенной плоской с центральным обычным коммутатором, в форме цветка и лепестка. Обмотки обычно стабилизируются с помощью электрических систем эпоксидной заливки. Это наполненные эпоксиды, которые имеют умеренную, смешанную вязкость и длительное время гелеобразования. Они выделяются низкой усадкой и низкой экзотермией и обычно UL 1446 признаются в качестве заливающего компаунда, изолированного по 180 ° C, класса H.

Уникальным преимуществом бесщеточных двигателей постоянного тока является отсутствие зубцов (изменения крутящего момента, вызванные изменением притяжения между железом и магнитами). Паразитные вихревые токи не могут образовываться в роторе, поскольку он абсолютно невозможен, хотя железные роторы ламинируются. Это может значительно повысить эффективность, но контроллеры с переменной скоростью должны использовать более высокую скорость переключения (& gt; 40 кГц) или постоянный ток из-за пониженной электромагнитной индукции.

Эти двигатели были первоначально изобретены для привода ведущих магнитных ленточных накопителей, где минимальное время для достижения рабочей скорости и минимальной остановки было критическим. Масляные моторы широко используются в высокопроизводительных сервоуправляемых системах, роботизированных системах, промышленной автоматизации и медицинских устройствах. Благодаря разнообразию доступных конструкций технология используется в приложениях от высокотемпературных военных до недорогих насосов и базовых сервоприводов.

Другой подход (Magnax) — использовать один статор, зажатый между двумя роторами. Одна такая конструкция обеспечивала максимальную мощность 15 кВт / кг, устойчивую мощность около 7,5 кВт / кг. Этот беспилотный двигатель с осевым потоком имеет более короткий путь потока, удерживая магниты дальше от оси. Конструкция позволяет иметь нулевой обмотки; 100 процентов обмоток активны. Это усиливается благодаря использованию медной проволоки прямоугольного сечения. Двигатели могут быть сложены для параллельной работы.Нестабильность сводится к минимуму за счет того, что два диска ротора накладывают равные и противоположные силы на диск статора. Роторы соединены непосредственно друг с другом через кольцо вала, отменяя магнитные силы.

Двигатели Magnax имеют диаметр от 15 до 5,4 метра (5,9 дюйма на 17 футов 8,6 дюйма).

Серводвигатель
Сервомотор — это двигатель, который часто продается как полный модуль, который используется в системе управления с обратной связью по положению или скорости.Сервомоторы используются в таких применениях, как станки, пленочные плоттеры и другие технологические системы. Двигатели, предназначенные для использования в сервомеханизме, должны иметь хорошо документированные характеристики для скорости, крутящего момента и мощности. Кривая скорости и крутящего момента очень важна и имеет высокое соотношение для серводвигателя. Также важны динамические характеристики отклика, такие как индуктивность обмотки и инерция ротора; эти факторы ограничивают общую производительность петли сервомеханизма. Большие, мощные, но медленно реагирующие серво-петли могут использовать обычные двигатели переменного или постоянного тока и системы привода с обратной связью по положению или скорости на двигателе. По мере увеличения требований к динамическому реагированию используются более специализированные конструкции двигателей, такие как бесконтактные двигатели.Превосходные характеристики мощности и ускорения электродвигателей переменного тока по сравнению с двигателями постоянного тока имеют тенденцию поддерживать синхронные приводы с постоянным магнитом, BLDC, индукционные и SRM-приводы.

Сервосистема отличается от некоторых применений шагового двигателя тем, что обратная связь по положению постоянно, пока двигатель работает. Шаговая система по своей сути работает с разомкнутым контуром — полагаясь на двигатель, чтобы не «пропустить шаги» для краткосрочной точности — с любой обратной связью, такой как «домашний» переключатель или датчик положения, являющийся внешним по отношению к двигательной системе. Например, при запуске типичного компьютерного принтера с точечной матрицей его контроллер превращает привод шагового двигателя печатающей головки в его левый предел, где датчик положения определяет исходное положение и останавливается. Пока питание включено, двунаправленный счетчик в микропроцессоре принтера отслеживает положение печатающей головки.

Шаговый двигатель
Шаговые двигатели являются часто используемым двигателем, когда требуются точные вращения. В шаговом двигателе внутренний ротор, содержащий постоянные магниты или магнитно-мягкий ротор с выступающими полюсами, управляется набором внешних магнитов, которые переключаются электронным способом. Шаговый двигатель можно также рассматривать как крест между электродвигателем постоянного тока и ротационным соленоидом. Когда каждая катушка включается поочередно, ротор выравнивается с магнитным полем, создаваемым обмоткой возбужденного поля. В отличие от синхронного двигателя, при его применении шаговый двигатель не может вращаться непрерывно; вместо этого он «шагает» — начинается, а затем быстро останавливается снова — от одного положения к другому, когда обмотки возбуждения возбуждаются и обесточиваются последовательно. В зависимости от последовательности ротор может поворачиваться вперед или назад, и он может в любое время изменять направление, останавливаться, ускоряться или замедляться.

Простые драйверы шагового двигателя полностью активируют или полностью обесточивают обмотки возбуждения, приводя ротор к «зубчатому колесу» к ограниченному числу положений;более сложные драйверы могут пропорционально управлять мощностью обмоток поля, позволяя роторам располагаться между точками зубчатого колеса и тем самым вращаться чрезвычайно плавно. Этот режим работы часто называют микрошагом. Управляемые компьютером шаговые двигатели являются одной из самых универсальных форм позиционирующих систем, особенно в части цифровой сервоуправляемой системы.

Шаговые двигатели можно легко поворачивать под определенным углом дискретными шагами, и, следовательно, шаговые двигатели используются для позиционирования головки чтения / записи в дисководах гибких дисков. Они использовались с той же целью в компьютерных дисках в эпоху до гигабайта, где точность и скорость, которые они предлагали, были достаточными для правильного позиционирования головки чтения / записи на жестком диске.По мере увеличения плотности дисков ограничения скорости и скорости шаговых двигателей сделали их устаревшими для жестких дисков — ограничение точности сделало их непригодными для использования, а ограничение скорости сделало их неконкурентоспособными, поэтому новые жесткие диски используют системы с головным приводом с голосовой катушкой. (Термин «звуковая катушка» в этой связи является историческим, он относится к структуре в типичном (коническом) громкоговорителе. Эта структура использовалась некоторое время для размещения головок. Современные приводы имеют поворотную катушку, катушки качания назад и вперед, что-то вроде лопасти вращающегося вентилятора. Тем не менее, как звуковая катушка, современные проводники катушки привода (магнитный провод) движутся перпендикулярно силовым линиям магнитного поля.)

Шаговые двигатели использовались и по-прежнему часто используются в компьютерных принтерах, оптических сканерах и цифровых фотокопировальных устройствах для перемещения оптического сканирующего элемента, каретки печатающей головки (точечной матрицы и струйных принтеров) и валиков или подающих роликов. Аналогично, многие компьютерные плоттеры (которые с начала 1990-х годов были заменены крупноформатными струйными и лазерными принтерами) использовали вращающиеся шаговые двигатели для движения пера и валика; типичными альтернативами здесь были либо линейные шаговые двигатели, либо серводвигатели с аналоговыми системами управления с замкнутым контуром.

Так называемые кварцевые аналоговые наручные часы содержат наименьшие обычные шаговые двигатели; они имеют одну катушку, набирают очень мало энергии и имеют постоянный магнитный ротор. Такой же двигатель работает от кварцевых часов с батарейным питанием. Некоторые из этих часов, например, хронографы, содержат более одного шагового двигателя.

Тесно связанные с проектированием трехфазные синхронные двигатели переменного тока, шаговые двигатели и SRM классифицируются как тип двигателя с переменным сопротивлением. Шаговые двигатели были и остаются часто используемыми в компьютерных принтерах, оптических сканерах и компьютерах с числовым программным управлением (ЧПУ), таких как маршрутизаторы, плазменные резцы и токарные станки с ЧПУ.

Немагнитные двигатели
Электростатический двигатель основан на притяжении и отталкивании электрического заряда.Обычно электростатические двигатели сочетаются с обычными моторами на катушках.Обычно они требуют высоковольтного источника питания, хотя очень маленькие двигатели используют более низкие напряжения. Обычные электродвигатели вместо этого используют магнитное притяжение и отталкивание и требуют большого тока при низких напряжениях. В 1750-е годы первые электростатические двигатели были разработаны Бенджамином Франклином и Эндрю Гордоном. Сегодня электростатический двигатель часто используется в микроэлектромеханических системах (МЭМС), где их приводные напряжения составляют менее 100 вольт, а движущиеся заряженные пластины намного легче изготавливать, чем катушки и железные сердечники. Кроме того, молекулярный механизм, который управляет живыми клетками, часто основан на линейных и вращающихся электростатических двигателях.

Пьезоэлектрический двигатель или пьезомотор — это тип электродвигателя, основанный на изменении формы пьезоэлектрического материала при приложении электрического поля.Пьезоэлектрические двигатели используют обратный пьезоэлектрический эффект, при котором материал производит акустические или ультразвуковые колебания для создания линейного или вращательного движения. В одном механизме удлинение в одной плоскости используется для того, чтобы сделать ряд растяжек и удерживание положения, подобно тому, как движется гусеница.

В двигательной силовой установке с электрическим приводом используется технология электродвигателей для запуска космических аппаратов в космическом пространстве, причем большинство систем основано на электрическом питании пропеллента на высокой скорости, причем некоторые системы основаны на принципах электродинамической привязки движений к магнитосфере.

Поделиться ссылкой:

  • Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
  • Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Pinterest (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Tumblr (Открывается в новом окне)
  • Нажмите, чтобы поделиться на LinkedIn (Открывается в новом окне)
  • Нажмите, чтобы поделиться в WhatsApp (Открывается в новом окне)
  • Нажмите, чтобы поделиться в Skype (Открывается в новом окне)
  • Нажмите, чтобы поделиться в Telegram (Открывается в новом окне)
  • Нажмите, чтобы поделиться на Reddit (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Pocket (Открывается в новом окне)

Related

как работает простой мотор

Как работает простой двигатель?

Этот простой электродвигатель работает за счет силы магнитного поля F = IL x B . Ток проходит по катушке так, что он указывает одно направление на один конец петли и другое направление на другой конец петли. Магнитное поле в обоих этих пятнах направлено в одном направлении.

Как работает двигатель простое объяснение?

Основная идея электродвигателя очень проста: вы подаете в него электричество на одном конце, а ось (металлический стержень) вращается на другом конце, давая вам мощность для привода какой-то машины .… Когда электрический ток начинает ползти по проводу, он создает вокруг него магнитное поле.

Как работает физика простого мотора?

Простой электродвигатель может быть построен из катушки с проволокой, которая может свободно вращаться между двумя противоположными магнитными полюсами. Когда через катушку протекает электрический ток, катушка испытывает силу и движется. Направление тока должно меняться каждые пол-оборота, иначе катушка снова остановится.

Как работает двигатель шаг за шагом?

Как работают простой двигатель и простой генератор?

Генератор преобразует механическую энергию в электрическую, а двигатель наоборот – преобразует электрическую энергию в механическую.Оба устройства работают из-за электромагнитной индукции , когда напряжение индуцируется изменяющимся магнитным полем.

Как крутится двигатель?

Внутри электродвигателя постоянные магниты установлены на кольце, окружающем катушку проволоки. Когда выключатель прибора включен, по проводу текут электроны, превращая его в электромагнит. Силы притяжения и отталкивания постоянных магнитов вокруг него заставляют электромагнит вращаться.

Что делают щетки в двигателе?

Угольные щетки, или щетки для электродвигателей, играют важную роль в двигателях и генераторах, выступая в качестве электрических проводников .Это достигается за счет пропускания электрического тока между неподвижным и вращающимся проводами двигателя. Угольная щетка может иметь один или несколько угольных блоков и один или несколько шунтов или клемм.

Как двигатель производит электричество?

Электродвигатель — это электрическая машина, преобразующая электрическую энергию в механическую. Большинство электродвигателей работают за счет взаимодействия между магнитным полем двигателя и электрическим током в проволочной обмотке для создания силы в виде крутящего момента, приложенного к валу двигателя .

Как работает моторный эффект?

Провод с током создает магнитное поле . Это может взаимодействовать с другим магнитным полем, вызывая силу, толкающую провод под прямым углом. Это называется моторным эффектом.

Как работают щетки в электродвигателе?

Угольные щетки работают , уменьшая повреждение двигателя, проводя ток между неподвижной и подвижной частями двигателя . Вместо того, чтобы неотъемлемая часть машины изнашивалась в результате этого процесса, это легко заменяемые детали, которые предназначены для изнашивания.

Для чего нужен стартер?

Пускатель двигателя обеспечивает защиту, сначала контролируя электрическую мощность вашего устройства или оборудования в начальной точке его работы (когда вы включаете его или он задействуется). С этого момента стартер продолжает защищать вашу систему, работая как отказоустойчивый.

Каковы преобразования энергии простого электродвигателя?

Электродвигатель преобразует электрическую энергию в механическую энергию .Простой электродвигатель состоит из четырех частей: Коллектор состоит из двух полукруглых кусков металла. Он проводит ток от щеток к коммутатору.

Как работает простой генератор?

Электрогенераторы работают по принципу электромагнитной индукции . Проводящая катушка (медная катушка, плотно намотанная на металлический сердечник) быстро вращается между полюсами подковообразного магнита. … Магнитное поле будет мешать электронам в проводнике, вызывая внутри него электрический ток.

Каков принцип работы двигателя?

Принцип работы электродвигателя основан на проводнике с током, который создает вокруг себя магнитное поле . Проводник с током расположен перпендикулярно магнитному полю так, что на него действует сила.

Как якорь в электродвигателе продолжает вращаться?

Якорь установлен на подшипниках и может свободно вращаться. Он установлен в магнитном поле, создаваемом постоянными магнитами или током, проходящим через катушки провода , которые называются катушками возбуждения.Когда ток проходит через катушку якоря, на катушку действуют силы, приводящие к вращению.

Как работает двигатель постоянного тока?

В простом двигателе постоянного тока используется стационарный набор магнитов в статоре и катушка с протекающим по ней током для создания электромагнитного поля, совмещенного с центром катушки. … Коммутатор позволяет поочередно подавать питание на каждую катушку якоря, создавая постоянную вращающую силу (известную как крутящий момент).

Как возникает вращение в электродвигателе?

Магнитные поля заставляют двигатели вращаться.… Катушка провода с током в магнитном поле стремится вращаться. Это основа электродвигателя. Сила, действующая на проводник в магнитном поле, вызывает вращение катушки в электродвигателе.

Что означает, если двигатель бесщеточный?

Бесщеточный двигатель — это электродвигатель постоянного тока (DC), который работает без механических щеток и коллектора традиционного щеточного двигателя . Он имеет явные преимущества перед щеточным двигателем и более экономичен в долгосрочной перспективе, хотя первоначальные затраты выше.

Что делает якорь в двигателе?

В якоре электродвижущая сила создается относительным движением якоря и поля. Когда машина или двигатель используются в качестве двигателя, эта ЭДС противодействует току якоря, и якорь преобразует электрическую энергию в механическую в виде крутящего момента и передает его через вал.

Как работают контактные кольца?

КАК РАБОТАЕТ КОНТАКТНОЕ КОЛЬЦО? Токосъемное кольцо пропускает электрические сигналы и энергию через вращающийся интерфейс, используя скользящие электрические контакты .Эти контакты обычно представляют собой вращающееся кольцо и стационарную щетку или грязесъемник, который скользит по поверхности кольца во время вращения.

Может ли двигатель быть генератором?

Как щеточные, так и бесщеточные двигатели постоянного тока могут работать в качестве генераторов . Тем не менее, есть несколько важных моментов, которые следует учитывать при проектировании привода.

При вращении двигателя вырабатывается электричество?

Электродвигатель действует противоположно электрическому генератору. Вместо того, чтобы превращать механическую энергию в электричество, электродвигатель потребляет электричество и преобразует его в механическую энергию .… Хотя электродвигатели могут быть пьезоэлектрическими, электростатическими или магнитными, в подавляющем большинстве современных двигателей используются магниты.

Какой двигатель вырабатывает электричество?

Очень большой a.c. Генераторы на электростанциях называются генераторами переменного тока. В них вращается узел катушек возбуждения, приводимый в движение турбиной, и называется ротором. Катушки якоря, в которых создается выходное напряжение, удерживаются в рамке вне ротора и остаются неподвижными; это статор.

Как работает электродвигатель кс3?

Электродвигатели используют силы, создаваемые магнитными полями, для создания вращательного движения . Если вы поместите отрезок провода в магнитное поле и пропустите через него постоянный ток (например, от батареи), провод будет двигаться. Это называется моторным эффектом.

Как работают детали электродвигателя?

Конструкции электродвигателей

могут сильно различаться, хотя в основном они состоят из трех основных частей: ротора, статора и коллектора .Эти три части используют силы притяжения и отталкивания электромагнетизма, заставляя двигатель постоянно вращаться, пока он получает постоянный электрический ток.

Что такое двигательный эффект и как его можно продемонстрировать?

Двигательный эффект — это термин, используемый , когда проводник с током в присутствии магнитного поля испытывает силу . Простая экспериментальная демонстрация покажет вам, что это правда. Поместите провод, подключенный к блоку питания, между полюсами подковообразного магнита.Включите питание и провод движется.

Почему искрят щетки электродвигателя?

Вибрация самой машины может вызвать искрение щеток и в конечном итоге привести к повреждению коллектора. Такая вибрация может быть вызвана дисбалансом якоря, плохим фундаментом или другими механическими неисправностями. Это также может произойти из-за неисправных подшипников.

Какова функция разрезного кольца в электродвигателе?

Разрезное кольцо используется для изменения направления тока катушки .Ток катушки должен быть изменен на противоположное, чтобы она продолжала вращаться в том же направлении. В результате направление пары, вращающей катушку, после каждого полуоборота остается прежним, и катушка продолжает вращаться в том же направлении.

Что делают щетки в стартере?

Кисти. Щетки проходят по секции коммутатора в задней части корпуса, соприкасаясь с контактами коммутатора и проводя электричество .

Что такое стартер и как он работает?

При повороте ключа зажигания на стартер подается питание, и электромагнит внутри корпуса срабатывает .Это вытолкнет стержень, к которому прикреплена шестерня. Шестерня встречается с маховиком, и стартер крутит. Это раскручивает двигатель, всасывая воздух (а также топливо).

Как устроен стартер?

Кнопка «Вернуться к началу»

Как работает электродвигатель? Пэт Суонсон

Целью этой статьи будет краткое объяснение того, как работает двигатель.Короче говоря, электродвигатель «просто» преобразует электрическую энергию в механическую.
Электродвигатель буквально везде. От маленьких вентиляторов, которые вы слышите в своем компьютере, до устройства открывания двери в вашем гараже, до системы отопления в вашем доме, есть десятки элементов, на которые мы полагаемся каждый день, используя электродвигатель. Исторически они сыграли неотъемлемую роль в превращении машин, позволивших осуществить промышленную революцию. По мере того, как они становятся меньше и эффективнее, наряду с аккумуляторной технологией, мы продолжим видеть, как они заменяют двигатель внутреннего сгорания.По данным Министерства энергетики США, 62,6% промышленной электроэнергии в США потребляется электродвигателями.
Так как, черт возьми, они работают, спросите вы…
Мы все понимаем, как работают магниты, верно? Магниты имеют положительный и отрицательный полюс. Однополюсные отталкиваются, а противоположные притягиваются. Силы одноименных полюсов создают движение в электродвигателе.

Существует связь между электричеством, магнетизмом и движением.(А) Когда ток проходит по электрическому проводу, он создает вокруг себя магнитное поле. (B) Когда вы закручиваете провод, вы создаете небольшой электромагнит… обратите внимание на поляризацию, происходящую подобно традиционному магниту, упомянутому выше, с определенными Северным и Южным полюсами. (C) В 1820 году Эрстед Стерджен обнаружил, что, когда вы наматываете проволоку на железный сердечник, вы усиливаете силу этого магнитного поля.

Теперь, когда мы понимаем основное поведение магнитных полей и то, как электричество может их создавать, давайте посмотрим, как эта технология использовалась для разработки электродвигателя.

Так выглядит статор трехфазного асинхронного двигателя переменного тока. Красная, желтая и синяя катушки представляют собой три отдельные фазы, поступающие от промышленной энергосистемы.
Думайте о каждой из этих петель как об отдельном независимом электромагните.

Современная промышленная энергетика состоит из 3 отдельных фаз с одинаковыми синусоидальными волнами, каждая из 3 волн смещена на 120 градусов друг от друга, как показано ниже.По мере того, как отдельные фазы циклически проходят через свои волновые формы, их электромагниты возбуждаются в 3 разных промежутка времени, создавая вращающееся магнитное поле.

А как же ротор… механическая часть мотора?
Асинхронные двигатели имеют так называемый короткозамкнутый ротор. Глядя на него ниже, вы можете увидеть, откуда он получил свое название. Это похоже на колесо, внутри которого мог бы пробежать грызун, если бы оно было полым… а это не так.

Ротор состоит из стального сердечника с алюминиевыми или медными стержнями. Алюминий является более экономичным выбором по сравнению с медью. Слева вверху показан пример заполненного алюминием ротора…

Вместо того, чтобы оснащать ротор отдельными стержнями, в большинстве асинхронных двигателей мощностью менее 500 л.с. используются литые роторы.Расплавленный алюминий или медь создают стержни… вы можете увидеть, как эти стержни формируются на разрезе ниже. Выступы, выступающие с обоих концов, действуют как лопасти вентилятора, которые помогают выравнивать внутреннюю температуру внутри двигателя. Добавьте вал, и теперь у вас есть двигатель, вращающийся в сборе.

Давайте теперь все это соберем… Вставьте вращающийся узел в статор.

Когда вы возбуждаете статоры, вращая магнитное поле, напряжение индуцируется на стержнях ротора, создавая магнитное поле в роторе.Это тот же принцип, что и при зарядке телефона в беспроводном зарядном устройстве. Теперь подумайте о том, как одноименные полюса в обычном магните отталкиваются друг от друга. Помните, что магнитное поле в статоре двигателя вращается, это вращающееся поле толкает ротор под напряжением.

Вот так асинхронный двигатель превращает электрическую энергию в механическую. Просто… Верно?

Электродвигатель

— Введение, работа, детали и использование

В начале 1800-х годов Майкл Фарадей раскрывал аспекты и использование электричества.

Электродвигатель, в целом хорошо известный как двигатель, является одним из самых больших достижений в области науки. Жизнь, которую мы ведем сегодня, связана с изобретением двигателей, иначе мы использовали бы электричество только для того, чтобы зажечь лампочку. Электродвигатель – это устройство, преобразующее электрическую энергию в механическую. Проще говоря, электродвигатель — это устройство, используемое для производства вращательной энергии.

Принцип работы электродвигателя

Электродвигатель работает по принципу, когда катушка помещается в магнитное поле и через нее проходит ток, что приводит к вращению катушки.

Работа электродвигателя

Теперь давайте начнем с работы электродвигателя. Схематическое изображение электродвигателя показано ниже.

Прежде чем мы поймем, как это работает, давайте посмотрим на части электродвигателя. Базовая конструкция электродвигателя состоит из прямоугольного провода, двух сильных магнитов и аккумулятора. Если нас спросят, каковы два основных компонента электродвигателя, ответом будут магниты для создания магнитного поля и катушка для демонстрации эффекта магнитного поля.

Детали электродвигателя

  • Прямоугольная катушка ABCD.

  • Два сильных магнита, которые могут быть любого типа, будь то подковообразный или стержневой магнит. Они используются для создания сильного магнитного поля.

  • Разрезные кольца используются для вращения прямоугольной катушки.

  • Щетки используются в качестве контакта между разрезными кольцами.

Рабочий

  • Теперь при пропускании электрического тока через прямоугольную катушку ABCD.Мы замечаем, что ток между плечами BC и AD параллелен магнитному полю, тогда как ток между AB и CD перпендикулярен магнитному полю. Поэтому магнитное поле будет действовать только на плечи AB и CD.

  • Согласно правилу левой руки Флеминга, в плече АВ сила направлена ​​вниз, а магнитное поле направлено с севера на юг. Точно так же в руке CD направление силы направлено вверх.

  • Следовательно, силы в плечах AB и CD направлены в противоположные стороны, это приведет к вращению прямоугольной катушки ABCD.

  • После половины оборота кольцо Q соприкоснется со щеткой X, а кольцо P соприкоснется с Y, это приведет к изменению направления тока.

  • Поскольку направление тока изменилось, направление сил в плечах AB и CD также изменится, поэтому катушка продолжает вращаться в том же направлении.

После изучения двигателей обычно возникает вопрос, каково использование электродвигателей.Электродвигатели широко используются в большинстве бытовых приборов, таких как вентиляторы, миксеры и т. д.

Применение электродвигателей

Типы электродвигателей

Три основных типа электродвигателей: двигатели постоянного тока, двигатели переменного тока и другие двигатели специального назначения.

Ниже перечислены подтипы и пояснения к двигателям постоянного и переменного тока, а также двигателям специального назначения:

(A) Двигатель постоянного тока: Электродвигатель, который используется для преобразования постоянного электрического тока в механическую работу, называется двигателем постоянного тока.Различные типы двигателей постоянного тока включают шунтирующий двигатель постоянного тока, двигатель с независимым возбуждением, серийный двигатель, двигатель постоянного тока с постоянными магнитами и составной двигатель.

  1. Шунтирующий двигатель постоянного тока. Подобно обмоткам якоря и обмоткам возбуждения, обмотки шунтирующего двигателя постоянного тока соединены параллельно; эта параллельная связь называется шунтом, а обмотка называется шунтирующей обмоткой.

  2. Двигатель с независимым возбуждением. В этом типе двигателя обмотки якоря сделаны более прочными для создания большего потока, а соединение между статором и ротором построено с использованием различных источников питания.Электродвигатель с независимым возбуждением управляется из каскада.

  3. Двигатель постоянного тока — обмотки ротора в этом типе двигателя соединены последовательно. Двигатель постоянного тока работает по простому закону электромагнетизма. Электромагнитный закон гласит, что для создания электродвижущей силы электромагнитное поле приводится во взаимодействие с электрической цепью. Электромагнитный закон приводит к вращательному движению двигателя. Этот тип двигателя в основном используется в автомобилях или лифтах в качестве стартеров.

  4. Двигатель постоянного тока с постоянными магнитами. Двигатель постоянного тока с постоянными магнитами или постоянный магнит поставляется со встроенным магнитом, который постоянно находится внутри двигателя. Этот магнит обеспечивает формирование крайне необходимого для работы электродвигателя магнитного поля.

  5. Составной двигатель постоянного тока. Составной двигатель постоянного тока представляет собой сочетание последовательного двигателя постоянного тока и шунтирующего двигателя постоянного тока. Поскольку в этом двигателе присутствуют как последовательная, так и шунтирующая обмотки, пуск и ротор соединены друг с другом через соединение последовательной и шунтирующей обмотки.

(B) Двигатель переменного тока: AC в двигателе переменного тока означает переменный ток, который используется для его работы. Этот тип двигателя обычно состоит из внешней и внутренней частей; внешний статор состоит из катушек, через которые пропускается переменный заряд или ток для создания вращения в магнитном поле. В то время как внутренняя часть ротора соединена с выходным валом, который генерирует второе магнитное поле при вращении. Двумя основными типами двигателей переменного тока являются синхронный двигатель и асинхронный двигатель.

Ниже приведены пояснения по работе двух типов двигателей переменного тока:

  1. Асинхронный двигатель. Асинхронный двигатель — это тип двигателя переменного тока, который работает на асинхронной скорости; поэтому его также называют асинхронным двигателем. Этот двигатель использует электромагнитную индукцию для преобразования электрической энергии в механическое движение двигателя. Существует два типа асинхронных двигателей: двигатель с короткозамкнутым ротором и двигатель с фазной обмоткой.

  2. Синхронный двигатель- Синхронный двигатель работает от трехфазной сети.Статор генерирует ток вращающегося поля, от которого также зависит работа ротора. Когда точность вращения очень высока, эти типы двигателей можно использовать в робототехнике и автоматике.

(C) Двигатель специального назначения: Проще говоря, двигатели специального назначения включают все другие типы двигателей, кроме двигателей переменного тока и двигателей постоянного тока общего назначения. Некоторыми из широко используемых двигателей специального назначения являются шаговые двигатели, бесщеточные двигатели постоянного тока, гистерезисные двигатели и реактивные двигатели.

Ниже приведены пояснения по работе этих двигателей специального назначения:

  1. Шаговый двигатель. Эффективной альтернативой устойчивому вращению является шаговое вращение, которое может быть обеспечено шаговыми двигателями. Мы знаем, что угол поворота любого ротора составляет 180 градусов. Однако в шаговых двигателях этот угол поворота делится на несколько шагов, например, 9 шагов по 20 градусов. Некоторые приложения шаговых двигателей включают генераторы, плоттеры, изготовление схем и инструменты управления технологическим процессом.

  2. Бесщеточный двигатель постоянного тока. Бесщеточные двигатели постоянного тока были разработаны для достижения высокого качества работы при меньшем занимаемом пространстве. Эти типы двигателей меньше, чем двигатели переменного тока. Отсутствие коммутатора и токосъемного кольца восполняется имплантацией контроллера в шаговый двигатель.

  3. Двигатель с гистерезисом. Двигатель с гистерезисом имеет самую уникальную работу из всех двигателей. Это синхронный двигатель, в котором вращательная сила в роторе создается с использованием гистерезиса и вихревых токов.Движение в роторе достигается за счет вращающегося потока обмотки статора.

  4. Реактивный двигатель. Этот тип двигателя представляет собой однофазный синхронный двигатель и обычно применяется в генераторах сигналов и регистраторах. Вспомогательная обмотка обеспечивает стабильную скорость двигателя.

Знаете ли вы?

Электрогенераторы – это оборудование, работающее в обратном направлении. Электрогенераторы производят электричество за счет вращения.

Как работает электродвигатель? — Урок для детей

Индукция и правило правой руки

Физики используют правило, называемое правилом правой руки , которое говорит нам, как протекающий электрический ток влияет на магнитное поле вокруг него.Это правило гласит, что если вы направите большой палец правой руки в направлении потока электричества, то вокруг него будет создано магнитное поле, которое будет двигаться в направлении ваших сгибающихся пальцев. Это так же просто, как поднять палец вверх (для правой руки)!

Правило правой руки описывает взаимодействие электрического и магнитного полей.

Этот процесс создания магнитного поля вокруг потока электричества называется индукцией .Индукцию можно использовать для управления направлением магнитного поля внутри электродвигателя. Всякий раз, когда мы используем электричество для создания движения, мы делаем электродвигатель. Майкл Фарадей и Уильям Стерджен были первыми английскими учеными, которые использовали индукцию для создания двигателя. Идею также независимо открыл американский ученый Джозеф Генри.

Создание движения

Магнитные поля могут создавать движение, прилагая силу. Эта сила является причиной того, что магниты прилипают к вашему холодильнику.Возможно, вы слышали выражение «противоположности притягиваются». Особенно это касается магнитов. В магните обычно есть два «полюса». Мы называем их «северным» и «южным» полюсами. Они возникают на противоположных концах магнита и притягиваются друг к другу. Если вы поместите северный конец одного магнита рядом с южным концом другого магнита, они будут стягиваться или притягиваться. Но если вы поместите северный конец одного магнита рядом с северным концом другого магнита или южный конец рядом с другим южным концом, они будут отброшены или оттолкнуты.Противоположности притягиваются, а симпатии отталкиваются.

Когда мы пропускаем электричество по проводу, оно создает магнитное поле в соответствии с правилом правой руки, которое вы узнали выше. Если мы поместим рядом с этим проводом два магнита, они будут либо притягивать, либо отталкивать провод, в зависимости от того, каким путем мимо них течет электричество. Мы можем использовать этот факт для создания движения.

Если мы поместим петлю провода с электрическим током в магнитное поле (как показано на анимации ниже), сторона рядом с северным полюсом испытает силу вверх, а сторона рядом с южным полюсом испытает силу вниз.Это заставит петлю начать вращаться. Если бы течение шло в другую сторону, эти силы были бы противоположными (из-за правила правой руки).

Анимация электродвигателя. Петля вращается за счет магнитной силы. Стрелки в центре указывают направление магнитного поля.

На каждом конце проволочной петли расположены щетки, замыкающие цепь, с батареей, обеспечивающей электричество.На анимации выше кисти — это серые полумесяцы, обведенные красным и синим цветом. Каждый раз, когда проволочная петля поворачивается наполовину, щетки меняются местами. Это гарантирует, что электрический ток будет течь в одном и том же направлении каждый раз, когда петля проходит мимо магнитов, и, следовательно, магнитные силы будут продолжать вращать петлю в том же направлении, пока течет электричество.

Это основная конструкция всех электродвигателей. Когда мы используем электричество и магниты для создания вращательного движения, мы можем использовать это движение для питания всевозможных устройств!

Итоги урока

Электрический ток вызывает создание магнитного поля в процессе индукции .Направления электрического потока и магнитного поля подчиняются правилу правой руки . Электродвигатели используют магниты для взаимодействия с магнитным полем вокруг провода, что создает движение. Щеточная конструкция электродвигателя была открыта независимо друг от друга несколькими учеными и по сей день используется во многих бытовых приборах!

Electric Motors 101 — Технический информационный документ AVID

Электродвигатели повсюду: от бытовых приборов, таких как зубная щетка, холодильник и телефон, до самолетов, поездов и автомобилей, которые мы используем в наших ежедневных поездках на работу.С момента изобретения электродвигателя в 1834 году инженеры стремились усовершенствовать машину. Сегодня технологии электродвигателей более разнообразны, чем когда-либо, с многочисленными категориями, подтипами и отдельными топологиями двигателей. Но как работают эти двигатели? Что делает каждый тип двигателя таким уникальным? Более того, почему одни двигатели более популярны в электромобилях, чем другие? Вот некоторые из вопросов, на которые мы попытаемся ответить в этом документе AVID.

Во-первых, давайте начнем с основ.Все электродвигатели работают на магнитах, и, как знает каждый, кто когда-либо играл с магнитами, когда вы соединяете северный полюс (N) и южный полюс (S), магниты прилипают друг к другу, но когда вы соединяете N и N, или S и S вместе, они отталкиваются. В электродвигателе мы создаем ту же силу электромагнитной реакции в воздушном зазоре между ротором двигателя и статором. Для этого нам нужны два магнитных поля; на самом деле у нас внутри электродвигателя много магнитных полюсов, создающих множество одновременных реакций.Чтобы создать непрерывное движение, мы должны включать и выключать эти магнитные поля с высокой частотой, одновременно притягивая и отталкивая. Это высокочастотное переключение создает электродвижущую силу (ЭДС), заставляющую двигатель вращаться и создающую крутящий момент.

Ротор (слева) и статор (справа) бесщеточного двигателя AVID с радиальным магнитным потоком

Первое магнитное поле исходит от статора двигателя, названного так потому, что он неподвижен и не движется. Статор состоит из массива небольших электромагнитов, созданных путем намотки проводящего провода, обычно медного, вокруг зубца особой формы, изготовленного из магнитопроводящего материала.Когда по этим проводам проходит электрический ток, это создает магнитное поле, окружающее электромагнит.

Второе магнитное поле создается ротором двигателя, который часто является основной точкой различия между типами электродвигателей, но всегда будет основным движущимся компонентом двигателя. В низкотехнологичных «щеточных» электродвигателях роторы двигателей механически коммутируются с помощью угольных щеток, которые движутся по коммутационному кольцу. Когда двигатель вращается, щетка передает электрический ток через различные катушки, намотанные на ротор, которые образуют электромагниты.Однако проблема с такими двигателями заключается в том, что они не очень эффективны, а щетки изнашиваются. Поэтому бесщеточные двигатели становятся все более популярными в наши дни.

Коллекторный двигатель постоянного тока.

Наиболее распространенным бесщеточным двигателем является асинхронный двигатель. Здесь электрический ток индуцируется в роторе двигателя, что иногда называют конструкцией с беличьей клеткой (названной в честь медных стержней, которые действуют как катушка в трансформаторе). Магнитный поток статора создает отстающее магнитное поле ротора, создавая ЭДС.Асинхронные двигатели повсеместно используются в промышленности, поскольку основные принципы их работы известны с конца 1800-х годов, когда Галилео Феррарис успешно продемонстрировал свой асинхронный двигатель. Асинхронные двигатели также называют асинхронными двигателями, потому что, хотя в статоре создается магнитное поле, которое вращается синхронно с источником переменного тока, скорость вращения ротора всегда ниже, чем частота питания статора. Поскольку клетка ротора фактически является вторичной обмоткой, в роторе индуцируется ток, который создает магнитное поле, противоположное магнитному полю статора, и создает крутящий момент.Чтобы индуцировать ток ротора, всегда должна быть разница в скорости вращения между ротором и источником переменного тока.

Несмотря на все свои положительные стороны, асинхронные двигатели не так уж распространены для дорожных электромобилей, если не считать их использования Tesla в своих электромобилях Roadster и Model S. Асинхронные машины широко не используются, потому что они относительно тяжелые и не так хороши, как другие типы двигателей с низкоскоростным крутящим моментом, что приводит к относительно большим машинам. Однако преимущество заключается в том, что вы можете контролировать напряженность магнитного поля в роторе двигателя.Если вы можете пожертвовать массой и объемом, асинхронные двигатели имеют низкую стоимость и не зависят от редкоземельных магнитов.

Конструкция асинхронного двигателя с «беличьей клеткой»

Далее следуют двигатели с постоянными магнитами (ПМ). В этом типе двигателей, как следует из названия, мы встраиваем редкоземельные магниты в ротор, чтобы создать набор полюсов с постоянными магнитами. Мы создаем сильное магнитное поле с помощью специальных магнитов, в которых используются легирующие элементы из редкоземельных металлов для улучшения их характеристик. Магниты могут располагаться либо на поверхности ротора (в двигателях с ПМ), либо встроены в ротор (в двигателях с ПМ).Двигатели SPM относительно просты для понимания; однако IPM может быть немного сложнее. Ротор будет изготовлен из ферромагнитного материала и будет использоваться для концентрации магнитного потока путем вырезания в нем прорезей для создания пути потока. Магниты обычно располагаются в конфигурации V, что позволяет концентрировать поле, обеспечивая более сильное и концентрированное магнитное поле, чем было бы возможно с машиной с поверхностным магнитом.

Конфигурации магнитов SPM и IPM Двигатели

IPM стали наиболее распространенными двигателями в силовых агрегатах электромобилей из-за их более высокой удельной мощности по сравнению с асинхронными двигателями.Кроме того, возможность управления реактивным крутящим моментом повышает эффективность ездового цикла в более широком диапазоне рабочих точек (хотя и за небольшую потерю пикового КПД двигателя). Когда такие бренды, как Tesla, говорят о «гибридных реактивных двигателях» или «двигателях с частичными постоянными магнитами» в своих моделях 3, они имеют в виду именно это. По сути, это та же технология / топология двигателя, которую можно найти в Nissan Leaf, Chevy Bolt и Renault Zoe, и это лишь некоторые из них.

Одним из недостатков двигателей с постоянными магнитами является то, что магнитное поле ротора является фиксированным, что не всегда желательно в таких приложениях, как приводная система электромобиля, где у вас есть широкий диапазон рабочих скоростей и условий нагрузки.Однако одной интересной возможностью было бы создание дополнительного магнитного потока с использованием эффекта магнитного сопротивления ротора, в этом случае можно использовать дополнительный ток статора для создания соответствующего дополнительного магнитного поля в роторе, работающем со встроенными постоянными магнитами. Этим эффектом сопротивления можно управлять, давая элемент управления магнитным полем ротора.

Двигатель AVID EVO является одним из примеров двигателя
SPM.

Наконец, существуют полностью переключаемые реактивные двигатели, в машинах этого типа в роторе нет постоянного магнита, так как все магнитное поле ротора создается эффектом магнитного сопротивления.Теоретически этот тип машины может быть недорогим, поскольку он устраняет необходимость в редкоземельных магнитах, но на практике производительность приходится на компромиссы с точки зрения низкой удельной мощности и высокой пульсации крутящего момента, а также проблемы с производственными допусками в конструкции ротора. ограничили их потребление.

Конструкции электродвигателей постоянно оптимизируются и совершенствуются, а более высокая удельная мощность для более легких и компактных двигателей означает, что производителям необходимо улучшить охлаждение и управление температурой в двигателе из-за омических потерь и потерь в железе, вызванных теплом от электрических двигателей. и магнитные поля внутри ротора.

Большое внимание также уделяется снижению производственных затрат на машину как за счет уменьшения содержания материалов, так и за счет улучшения производственных процессов. Это привело к разработке таких технологий, как обмотка со шпилькой или квадратным стержнем и концентрированная обмотка, обе из которых направлены на улучшение коэффициента заполнения медью в двигателе и уменьшение выступа обмотки на статоре. Эти технологии не только легко автоматизировать для крупносерийного массового производства, но благодаря им производители могут снизить как вес, так и стоимость материалов двигателя.

В общем, признано, что с системой трансмиссии электромобиля стоит инвестировать немного больше в поштучную стоимость двигателя и его инвертора, чтобы улучшить производительность и снизить вес, поскольку это повышает эффективность и, в конечном итоге, запас хода батареи. . Таким образом, хотя оптимизация затрат на конкретный технологический двигатель важна, это не обязательно будет самый дешевый двигатель в целом, который будет наиболее успешным, а скорее двигатель с наиболее конкурентоспособным общим пакетом.

Дополнительная информация

Если вы хотите узнать больше о технологии электродвигателей, послушайте 30-й выпуск обучающего подкаста AVID, чтобы услышать, как доктор медицинских наук AVID Райан Моган обсуждает различные технологии двигателей в современных электромобилях!

 

Как работает электродвигатель?

Знаете ли вы, что в вашем доме может быть более пятидесяти электродвигателей, спрятанных внутри простых гаджетов, которыми вы пользуетесь? Невероятно, но мало что известно об этих важных аксессуарах, используемых в электроинструментах и ​​бытовой технике.

В этой статье мы рассмотрим детали электродвигателя и принцип его работы.

Что такое электродвигатель?

Электродвигатель представляет собой устройство, предназначенное для преобразования электрической энергии в механическую. Его работа противоположна генератору, который преобразует механическую энергию в электричество.

Почти каждое электронное устройство, генерирующее механическое движение при работе, оснащено электродвигателем. Некоторые приборы, содержащие двигатели, включают блендеры, вентиляторы, тестомесы, холодильники, сушилки, стиральные машины, кондиционеры, дисководы, электроинструменты, гибридные автомобили и электромобили.

Детали электродвигателя

Двигатель имеет различные рабочие части, которые обеспечивают питание и координируют вращательное движение по желанию.

Детали электродвигателя

Источник: Engineering Projects

Ниже приведены основные части простого электродвигателя: в систему

Коллектор

На дальнем конце катушки находится коммутатор, представляющий собой металлическое кольцо, разделенное на две части.Всякий раз, когда катушка достигает половины оборота, коммутатор меняет направление электрического тока внутри катушки. Таким образом, оба конца катушек движутся в одном направлении и ось непрерывно вращается.

 

Ротор/якорь 

Ротор — это компонент двигателя, обеспечивающий механическое движение вала и всех присоединенных к нему аксессуаров. Ротор помещается внутри статора и содержит набор медных проводов, намотанных на ось.

Ротор обеспечивает вращение оси.В результате протекания электрического тока в катушку создается магнитное поле, которое толкает магнитное поле статора. Это позволяет оси вращаться.

Щетки

Подключаются к обеим клеммам источника питания, чтобы обеспечить подачу электроэнергии к коммутатору. Щетки изготовлены из графита и находятся на противоположном конце, где ротор выходит из корпуса.

Магнит возбуждения/статор

Это неподвижная магнитная часть, создающая вокруг себя электромагнитное поле.Различные статоры могут иметь различную конфигурацию, но статоры представляют собой постоянные магниты или состоят из рядов магнитов, окружающих нижний край корпуса двигателя. Для уменьшения потерь энергии на сердечнике статора имеются тонкие металлические пластины.

Как работает электродвигатель

Большинство электродвигателей работают по принципу электромагнитной индукции, при котором электрический ток, протекающий по проводу, намотанному на магнит, создает электрическое поле. В результате создаваемого электромагнитного поля создается сила, которая вращает вал двигателя, заставляя его вращаться.

«Объяснение электромагнитной индукции» Академии Хана:

https://www.khanacademy.org/science/in-in-class10th-physics/in-in- Magnetic-effects-of-electric-current/electromagnetic -induction/v/electromagnetic-induction-faradays-experiments

В упрощенном объяснении электрический ток может течь по любому проводу, который является хорошим проводником электричества. Когда электричество течет по проводу, оно создает сильное магнитное поле. Если вы наденете проволоку в виде катушки вокруг железного стержня, вокруг стержня создастся магнитное поле.Поскольку стержень имеет два противоположных полюса, добавление других магнитов рядом с дорогой вызовет непрерывное вращательное движение.

Следовательно, в электродвигателе ток проходит через катушку, которая намагничивается, поскольку она намотана на магнит. Когда катушка прикреплена к одному концу вала и все еще подвешена над магнитным полем, магнитные силы на другом конце вала создают силу, достаточную для вращения вала.

Объяснение на YouTube: Как работает электродвигатель постоянного тока

Источник: Brilliant.org

Типы электродвигателей

Существует два основных типа электродвигателей, а именно двигатели постоянного тока (DC) и двигатели переменного тока (AC). Хотя двигатели могут работать как на постоянном, так и на переменном токе, обычно используются двигатели с питанием от переменного тока, поскольку они требуют минимального обслуживания.

 

Двигатель постоянного тока

Это был первый тип двигателя, использовавшийся до двигателя переменного тока. Самое лучшее в двигателе постоянного тока — это то, что вы можете контролировать скорость, регулируя количество энергии.Они бывают самых разных напряжений, наиболее распространенными из которых являются 12 В и 24 В. Они обычно встречаются в небольших электронных приборах, подъемниках, лифтах и ​​электромобилях.

Преимущества двигателей постоянного тока
  • Обладают более высоким пусковым моментом
  • Широкий диапазон настроек скорости
  • Простота установки
  • Имеют возможность быстрого запуска, ускорения или реверсирования

Изображение двигатель

Источник: Research Gate

Двигатели переменного тока

Они обеспечивают большую гибкость в эксплуатации по сравнению с двигателями постоянного тока.Они также имеют приводы с различной скоростью и просты в обслуживании.

Преимущества двигателей переменного тока
  • Вы можете контролировать скорость ускорения
  • Имеют регулируемый предел крутящего момента
  • Они потребляют мало энергии при запуске
  • Рабочая скорость регулируется

Изображение двигателя переменного тока

Источник: Instrumentation Forum

Как работают электродвигатели — BikeHike

Электродвигатели работают путем преобразования электрической энергии в механическую для создания движения.Сила создается внутри двигателя за счет взаимодействия между магнитным полем и обмоткой переменного (AC) или постоянного (DC) тока. Электродвигатели имеют множество применений.

Как работает электродвигатель физика?

Электродвигатель преобразует электрическую энергию в физическое движение. Электродвигатели генерируют магнитные поля с помощью электрического тока через катушку. Затем магнитное поле вызывает силу с магнитом, которая вызывает движение или вращение, приводящее в движение двигатель.

Как работают электродвигатели насосов?

Электродвигатель вращается с относительно постоянной скоростью, вращая насос, проходит вал, соединенный с защитным кожухом. Энергия подается к расположенному ниже оборудованию по электрическим проводам, прикрепленным к трубкам, жидкость поступает в работающий насос.

Как электричество крутит двигатель?

Электродвигатели используют магниты для преобразования электричества в движение. Внутри электродвигателя постоянные магниты установлены на кольце, окружающем катушку проволоки.Когда выключатель прибора включен, электроны текут по проводу, превращая его в электромагнит.

Каковы основные части электродвигателя?

Основные сведения о двигателе Независимо от типа двигателя, он состоит из трех основных частей: статора, коммутатора и ротора. Вместе они используют электромагнетизм, чтобы заставить двигатель вращаться. Пока двигатель получает постоянный ток, двигатель работает.

Как работает электродвигатель класса 10?

Электродвигатель работает по принципу, когда катушка помещается в магнитное поле и через нее проходит ток, что приводит к вращению катушки.

Как вращается двигатель?

Проводник с током в магнитном поле создает силу, которая вращает ротор. верхний проводник («а») якорной петли движется влево и тянет нижний проводник («b») вправо. Эти две силы вращают якорь, прикрепленный к ротору.

Из каких 6 частей состоит электродвигатель?

Эти шесть компонентов включают: 1) Ротор. Ротор — это движущаяся часть вашего электродвигателя.3) Подшипники. Ротор вашего электродвигателя поддерживается подшипниками, которые позволяют ему вращаться вокруг своей оси. 4) Обмотки. 5) Воздушный зазор. 6) Коммутатор. Что общего у всех этих компонентов?

Что такое принцип работы двигателя постоянного тока?

Двигатель постоянного тока — это двигатель, который преобразует постоянный ток в механическую работу. Он работает по принципу закона Лоренца, который гласит, что «проводник с током, помещенный в магнитное и электрическое поле, испытывает силу».И эта сила — сила Лоренца.

Какой двигатель используется в лифтах?

Лифты предпочтительны с контактным кольцом переменного тока или составным двигателем постоянного тока. В случае однофазной установки предпочтение отдается коллекторным двигателям. Электронное управление частотно-регулируемым приводом используется в новейших конструкциях лифтов.

Как работает насос?

Насосы работают, создавая вакуум, в котором давление окружающего воздуха выталкивает жидкость. Все насосы работают, создавая области низкого давления.В центробежном насосе центробежная сила ускоряет воду к внешней стороне рабочего колеса, создавая низкое давление в глазу или центре рабочего колеса.

Почему двигатель постоянного тока используется в промышленности?

Для промышленных применений, требующих постоянного низкоскоростного крутящего момента или точной регулировки скорости, двигатели постоянного тока, вероятно, будут лучшим выбором. Их легче обслуживать, они обеспечивают превосходный контроль скорости и устраняют проблемы, вызванные гармоническими эффектами.

Почему электродвигатели вращаются?

Электрический ротор.Они работают, используя принципы электромагнетизма, которые показывают, что сила применяется, когда электрический ток присутствует в магнитном поле. Эта сила создает крутящий момент на проволочной петле, находящейся в магнитном поле, что заставляет двигатель вращаться и выполнять полезную работу.

Сколько типов электродвигателей существует?

Существует не менее дюжины различных типов электродвигателей, но есть две основные классификации: переменного тока (AC) или постоянного тока (DC).То, как обмотки в двигателях переменного и постоянного тока взаимодействуют друг с другом, создавая механическую силу, создает дополнительные различия в каждой из этих классификаций.

Может ли двигатель генерировать электричество?

Вы можете использовать практически любой двигатель для выработки электрического тока, если он правильно подключен и вы следуете определенным правилам его использования. Современные асинхронные двигатели переменного тока довольно просто подключить в качестве генераторов переменного тока, и большинство из них начнет генерировать электричество при первом использовании.

Из каких 7 частей состоит электродвигатель?

Различные части электродвигателя и их функции Источник питания — в основном постоянного тока для простого двигателя. Полевой магнит — может быть постоянным магнитом или электромагнитом. Якорь или ротор. Коммутатор. Кисти. Ось.

Какие существуют 2 типа двигателя?

Двумя основными типами двигателей переменного тока являются асинхронные двигатели и синхронные двигатели. Асинхронный двигатель (или асинхронный двигатель) всегда зависит от небольшой разницы в скорости между вращающимся магнитным полем статора и скоростью вращения вала ротора, называемой скольжением, чтобы индуцировать ток ротора в обмотке переменного тока ротора.

Какое правило используется в моторе?

Различие между правилом правой и левой руки Правило левой руки Флеминга используется для электродвигателей, а правило правой руки Флеминга — для электрических генераторов.

Что такое электродвигатель со схемой?

В электродвигателе прямоугольная катушка ABCD помещена между двумя магнитами в полюсах N и S. Теперь через нее непрерывно протекает ток. Когда ток проходит через катушку, он создает вокруг себя магнитное поле.Два магнитных поля взаимодействуют и заставляют катушку вращаться.

Что такое электродвигатель и его принцип?

Электродвигатель: Электродвигатель — это устройство, преобразующее электрическую энергию в механическую. Принцип: Электродвигатель (двигатель постоянного тока) работает по принципу, когда электрический ток проходит через проводник, помещенный нормально в магнитное поле.

Что такое электродвигатель Каков принцип работы электродвигателя?

Электродвигатель работает по принципу: когда прямоугольную катушку помещают в магнитное поле и через нее пропускают ток, на катушку действует сила, которая непрерывно вращает ее.

Добавить комментарий

Ваш адрес email не будет опубликован.