Как работает датчик: Как работает датчик движения — устройство и принцип действия, схема, разновидности и сферы применения

Содержание

Мобильная диагностика: как работают датчики уровня кислорода, пульса, ЭКГ и шума | Смарт-часы и фитнес-браслеты | Блог

Непростой 2020 год показал, что за здоровьем надо тщательно следить даже при самой невероятной занятости. Тем более, что развитие технологий позволяет делать это при помощи смартфона, умных часов или фитнес-браслета. Комбинация различных датчиков и софта может контролировать ряд важных параметров и делать выводы: все ли в порядке или стоит запланировать визит к врачу.

Всплеск интереса к повседневному контролю здоровья случился после появления на рынке «умных» часов и браслетов. Разработчики с самого начала встраивали в них не только акселерометр и/или гироскоп с навигационным приемником, но и датчики контроля сердечных ритмов. Сейчас в такие устройства ставят несколько дополнительных чипов, позволяющих узнать о своем организме много полезного.

Давайте разберемся, какие датчики применяются в «умных» гаджетах, что они умеют и насколько точным получается результат измерений.

Акселерометр и гироскоп

Изначально эти датчики устанавливали в смартфоны. Когда появились «умные» часы и браслеты, их также оснастили такими чипами: на работе акселерометра, например, построена одна из основных задач всех «умных» гаджетов — подсчет количества шагов.

Сейчас все настолько привыкли к тому, что акселерометр и гироскоп есть в мобильных устройствах, что не видят между ними разницы. Тем более, что функции этих датчиков реализуются одной микросхемой. На самом деле разница есть. Если коротко, то акселерометр реагирует на ускорение предмета, а гироскоп — на изменение его положения в пространстве. Поэтому с помощью акселерометра можно, например, понять, нужно ли сменить ориентацию экрана смартфона или посчитать шаги. А с помощью гироскопа — точно определить положение тела.

Зачем это нужно в мобильной диагностике? С подсчетом шагов все ясно — это контроль здорового образа жизни. Но это больше относится к фитнесу. А как это помогает в плане наблюдений за своим самочувствием? 

Дело в том, что связка акселерометра и гироскопа обеспечивает работу функции, способной определить, что владелец устройства упал.

«Умный» гаджет на основании резкого изменения показаний датчиков делает вывод, что пользователю необходима помощь, и автоматически вызовет экстренные службы, например, скорую или полицию. Зачем это нужно? Например, гаджет оперативно вызовет врачей, если с вами случится какая-то неприятность на улице. А при инсульте и инфаркте очень важно, чтобы квалифицированная медицинская помощь была оказана как можно быстрее.

К примеру, такая функция реализована в Apple Watch. По умолчанию она активируется у пожилых пользователей, также можно ее включить вручную.

Кстати, обратите внимание, что наличие акселерометра вместе с гироскопом позволяет получать более точные результаты тренировок: гироскоп точно распознает такие вещи, как бег на месте или прыжки, и понимает, когда вы идете пешком, а когда бежите.

Датчик пульса

Датчик пульса — первое устройство для мобильной диагностики, появившееся в носимых гаджетах. Он предназначен для контроля сердечных ритмов в состоянии покоя и при физической нагрузке. На основании собранной статистики можно оценить состояние здоровья и понять, оптимальны ли нагрузки на тренировках или, если имеются какие-либо заболевания, сориентироваться, не пора ли обратиться к специалисту.

Измерения пульса

Датчики пульса, используемые в мобильных гаджетах, работают на основе оптической технологии — фотоплетизмографии (PPG). Смысл ее заключается в следующем. При сокращении сердечной мышцы в кровеносных сосудах изменяется кровяное давление и происходит изменение интенсивности капиллярного кровотока. Увеличившееся количество крови в сосуде поглощает больше поступающего света. Если подать поток света определенной интенсивности, то на основании прошедшего через ткань или отраженного сигнала можно сделать вывод об изменениях анализируемой среды: например, подсчитать количество «всплесков» кровотока в минуту и сделать вывод о частоте пульса.

В мобильных гаджетах подсчет пульса реализуется на основе как прошедшего через ткань света (в компактных пульсоксиметрах), так и отраженного — в «умных» часах и фитнес-браслетах. В них светодиод, размещенный на внутренней стороне устройства, испускает свет,который отражается от тканей запястья и поступает на фотодатчик, регистрирующий уровень отраженного сигнала. 

Для подсветки используется светодиод зеленого цвета (525 нм). Зеленый цвет излучения выбран потому, что является наиболее контрастным к красному цвету крови, согласно цветовому кругу Иттена, а следовательно, лучше всего поглощается. 

«Умные» гаджеты регистрируют пульс автоматически (по расписанию) или по желанию пользователя. На основании измеренных значений они построят красивые графики в мобильных или десктопных приложениях, которые помогут следить за уровнем пульса: контролировать выход за установленные пределы, наблюдать процесс в динамике за определенные интервалы времени. В целом с этой задачей мобильные устройства справляются хорошо.

Измерения артериального давления

Раз датчик пульса анализирует сердечные ритмы на основе изменений кровотока и давления, то логично предположить, что с его помощью можно не только посчитать пульс, но и измерить давление.

Это на самом деле так. На основании данных, полученных от датчика пульса, программа может рассчитать величину артериального давления.

Но проблема заключается в том, что для того, чтобы получить близкий к реальному результат, необходимо выполнить калибровку устройства под конкретного пользователя. В противном случае измерение давления будет корректным только для тех, у кого оно находится на нормальном уровне, и еще не проявились возрастные изменения или проблемы, связанные с различными заболеваниями. Поэтому, если вы хотите с помощью «умных» гаджетов контролировать еще и давление, ищите модель с настройкой измерений под владельца. 

Датчик ЭКГ

Еще более интересная вещь в плане контроля здоровья — датчик электрокардиографии (ЭКГ). Дело в том, что о работе сердца можно судить не только по изменениям кровотока в сосудах, но и по электрическим сигналам, которые возникают в процессе работы этого органа. И эта информация точнее и информативнее.  Электрокардиограмма, полученная специалистом медицинского центра, позволяет сделать выводы о работе сердца и его здоровье.

Для этого на руки, ноги и грудную клетку устанавливают электроды, а результат интерпретирует компьютер. 

Точно такой же датчик ЭКГ, только миниатюрных размеров, сейчас устанавливают в ряд мобильных устройств. Например, начиная с 4-го поколения, датчик ЭКГ имеется в Apple Watch. Но с мобильными датчиками существует ряд проблем.

Дело в том, что в профессиональном медицинском оборудовании обычно используют 10-12 датчиков, минимум шесть из них размещают в области сердца. А носимое мобильное устройство крепится на запястье. То есть, оно удалено от сердца на большое расстояние. И датчиков в таких устройствах значительно меньше.

Например, в Apple Watch их всего два: один размещен в Digital Crown, второй вместе с датчиком пульса установлен на внутренней стороне.

Поэтому точность ЭКГ, снятого с помощью мобильного устройства, не настолько высока, чтобы делать серьезные клинические выводы. Тем не менее, даже такой точности достаточно, чтобы определить мерцательную аритмию, показывающую, что визит к врачу откладывать не стоит.

Еще один важный момент — работа функции ЭКГ должна пройти проверку надзорных органов в разных странах. На момент написания статьи у Apple, например, получено разрешение для использования функции ЭКГ на территории США. В России Росздравнадзор сертифицировал ее буквально несколько дней назад. В остальном мире она официально отключена, хотя датчики в устройствах имеются. Остается только надеяться, что вопрос рано или поздно решится и полезная функция будет разблокирована.

Датчик уровня шума

Еще одна занятная функция, которая имеется, например, в Apple Watch — измерение уровня шума. Датчик регистрирует уровень фонового шума и, если он в течение некоторого времени превышает пороговое значение, гаджет выдает уведомление и предлагает покинуть место с высоким уровнем шума.

Полезна ли такая функция? Да, поскольку ВОЗ обращает внимание на то, что значительное количество людей подвергается риску потерять слух из-за сильного шумового воздействия в местах развлечений. Вы, наверное, замечали, что после того, как выходишь с рок-концерта или из клуба, некоторое время все слышно словно сквозь вату. Вот от таких «сюрпризов» датчик шума вас и защитит. Если, конечно, вы сами захотите защищаться.

Датчик уровня кислорода в крови

Теперь поговорим о новомодном датчике, которым мобильные устройства начали оснащать недавно. Это датчик определения уровня кислорода в крови. В свете коронавирусной инфекции, ставшей главной темой 2020 года, эта функция оказалась чуть ли не самой рекламируемой.

Нужно отметить, что, помимо наблюдений за своим состоянием в свете последних событий, контроль за уровнем кислорода в крови интересен и в других случаях: недостаток кислорода приводит к таким нехорошим вещам, как дыхательная недостаточность, одышка, головные боли и так далее.

Медики измеряют уровень кислорода в крови с помощью небольших приборов — пульсоксиметров. Внешне они напоминают прищепку с экраном, которая крепится на палец и выдает информацию о пульсе и степени насыщения кислородом артериальной крови. По этой причине датчики уровня кислорода в крови также называют датчиками SpO2.

Расшифровывается эта аббревиатура так:

  • S - степень сатурации (насыщения) кислородом.
  • P — пульс.
  • O2- кислород.

Нормальной считается величина сатурации от 95 до 100%, показания ниже 90% говорят о наличии проблем.

В пульсооксиметре датчик измерения уровня кислорода работает следующим образом. В приборе установлен светодиод, излучающий сигналы инфракрасного диапазона и красного цвета, а также фотодетектор, фиксирующий, какая часть светового потока прошла через ткани пальца с капиллярными сосудами. Аналогичный способ используется и в умных гаджетах.

Только фотодетектор принимает не прошедший через ткани, а отраженный от них сигнал, так как браслет или часы крепятся на запястье. На основании уровня отраженного сигнала приложение, встроенное в гаджет, делает оценку сатурации и выводит на дисплей измеренное значение.

Такие датчики есть в новой серии Apple Watch, а также в ряде фитнес-браслетов, например, Honor Band 5 и Huawei Band 4 PRO.

Точность измерений и их использование для диагностики

Все перечисленные измерения — сердечных ритмов, ЭКГ и уровня кислорода — работают в мобильных гаджетах в упрощенном режиме. Они имеют уровень погрешности, не позволяющий использовать их как медицинские диагностические приборы. Это написано в документации ко всем «умным» часам и фитнес-трекерам, но, тем не менее, на этом стоит дополнительно заострить внимание.

К примеру, датчик уровня кислорода может ошибаться на несколько процентов, причем значение может колебаться, как в большую, так и в меньшую сторону. Также результаты измерений изменятся в том случае, если браслет или часы неплотно прилегали к вашему запястью, либо потому что резко похолодало.

Поэтому производители и специалисты обращают внимание, что все данные, полученные с мобильных датчиков, могут использоваться для общего контроля здоровья и оценки динамики состояния организма. Они не предназначены для постановки диагнозов и не являются медицинскими приборами. Для профессионального осмотра необходимо использовать специализированную технику. 

Вместе с тем, нельзя не отметить и то, что имеется очевидная польза от использования датчиков в мобильной технике. Спортсмены и просто любители активного образа жизни успешно контролируют процесс тренировоки объемы нагрузок. А те, кому пришло время внимательнее относиться к своему здоровью, собирают статистику, показывающую общую картину изменений, и могут ее соотнести со своим самочувствием.

Анализ собранной статистики позволит вовремя заметить, если что-то пошло не так, и своевременно обратиться к врачу, например, при наличии сердечно-сосудистых заболеваний. Поэтому во многих случаях использование мобильной диагностики интересно, полезно и даже необходимо.

принцип работы, устройство, какие бывают, как проверить, как выбрать

При упоминании прибора под названием «датчик движения», в первую очередь возникают ассоциации с охраной банков, музеев и секретных объектов. Воображение рисует картинку пересекающихся лазерных лучей, через которые виртуозно пробирается шпион или грабитель.

Отчасти, это верно, поскольку некоторые виды датчиков обнаружения движения используются в охранных комплексах. Однако по мере удешевления технологии, эти устройства стали доступными для широких масс. Тем более что принцип работы датчика движения никогда не являлся секретом, и от использования его в домашних условиях удерживала только высокая стоимость.

Для чего нужен датчик движения

В шпионских боевиках он показан, как грозный страж, включающий пулеметы при проникновении на важный объект. Может быть, такая система и существует, проверять не будем. На самом деле, датчики движения регистрируют любые виды перемещения объектов, и сообщают информацию в некую электронную систему.

Что происходит дальше

В зависимости от того, как устроен алгоритм работы, после срабатывания сенсора может произойти следующее:

  • включение (отключение) освещения;
  • запуск вентиляции;
  • начало (прекращение) работы некоего механизма;
  • включение отопительной системы;
  • срабатывание охранной тревоги;
  • старт видеозаписи;
  • передача информации на центральный пульт управления объектом либо механизмом.

Список можно продолжить, но из него уже понятно назначение прибора: любые его разновидности предназначены для подключения некоего алгоритма при появлении в секторе обзора предмета или живого организма.

Принцип действия датчика движения

За исключением механических приспособлений, вроде натянутой проволоки или веревки (такие типы датчиков движения существовали до изобретения электричества), сенсоры представляют собой электронное устройство. Для того чтобы обнаружить перемещение объекта, необходимо работа по принципу радара. Собственно, радары и эхолокаторы — это разновидности вышеупомянутых датчиков, только покрупнее масштабом. Принцип работы бытового (гражданского) датчика движения также основан на пересечении любого вида излучения. По принципу работы с сигналом, сенсоры бывают трех видов:

  • Прерывающие (линейные): в основе излучатель линейного сигнала (как правило, лазерный луч), и приемник. Пока фотодатчик фиксирует излучение — прибор в состоянии покоя. При пересечении луча движущимся объектом — устройство подает сигнал.Преимущество такой технологии в простоте реализации. Недостаток — одиночный луч легко обойти. Кроме того, такой сенсор состоит из двух частей, что не всегда удобно.
  • Отражающие (объемные): в основе лежит принцип работы радара. Излучатель посылает рассеянный или концентрированный сигнал (по выбору заказчика). Если на его пути нет препятствия, датчик в состоянии покоя. Любой попавший в сектор действия предмет, отразит часть излучения.Отраженные волны улавливаются приемником, установленным в том же корпусе, и сенсор переводится в состояние тревоги. Преимущества: широкий сектор обзора, удобно монтировать (электроника в одном корпусе), возможность настройки. Недостаток: нужно отсекать ложные срабатывания, иначе прибор будет функционировать невпопад.
  • Пассивные: сами ничего не излучают. Как же работают такие датчики движения? Их чувствительные сенсоры улавливают волны, испускаемые другими предметами. Преимущество — простота и дешевизна, отсутствие ненужного волнового фона. Недостаток: улавливают только одушевленные предметы (люди, животные). Большинство сенсоров этого типа настроены на тепловой фон живых существ.

Какой прибор выбрать? Зависит от задач. Для защиты или фиксации появления объекта в коридоре или некоем портале (дверь, проем, окно), подойдет прерывающий комплект сенсоров. Если необходимо зафиксировать перемещение в замкнутом пространстве или на территории — лучше выбрать отражающий или объемный датчик.

Именно по этому принципу работают популярные датчики движения для включения (выключения) света. Только при попадании объекта в сектор действия, не срабатывает сигнал тревоги, а включается освещение.

Информация: Экономистами подсчитано, сколько электроэнергии сохраняет использование датчиков движения для автоматического включения света. Деньги, затраченные на приобретение этого оборудования, окупаются в течение 1–2 лет.

Правда, есть несколько оговорок:

  • использование сенсора для освещения разумно только на территориях (в помещениях), где редко находятся люди;
  • при многократном подключении (отключении), люминесцентные и спиральные лампы быстро выходят из строя: лучше использовать LED или галогеновые светильники.

Устройство и технологии датчика движения

  • Начнем с прерывающих. Как мы уже знаем, прибор состоит из излучателя и приемника. Простейшая реализация — фото пара с линзой, формирующей направленный луч. Однако подобные устройств не применяются уже несколько десятков лет. Какой датчик можно считать современным? Тот, который использует когерентный или поляризованный луч. То есть, лазер.

    Для справки: Лазерный луч может быть видимым или невидимым. Это расширяет возможности прибора при использовании в охранных системах.

    Вариантов исполнения два: в одном корпусе или с разделенным приемником и передатчиком. В первом случае необходимо электрическое объединение двух узлов в единую электрическую систему. Второй вариант использует отражающую поверхность, и луч возвращается в приемный сенсор, расположенный рядом с излучателем.

    Для улицы такое исполнение не подойдет, слишком много потенциальных предметов для срабатывания (птицы, животные). Поэтому необходимо дублировать лучи, расположенные на расстоянии (чтобы не было ложных срабатывания на малые объекты).

  • Отражающие также являются излучателями, со своим приемником в корпусе. По использованию волн, делятся на три группы:
    • Как работает микроволновый датчик движения? Он излучает СВЧ волны, которые формируют вокруг него некий фон из волн высокой частоты. Они отражаются от предметов, и «мозг» датчика запоминает объемную картинку в виде уровня излучения в разных плоскостях. При появлении внутри этого фона постороннего предмета, уровень отраженного излучения меняется. Это фиксируется приемником, и включается сигнал оповещения. После исчезновения объекта, датчик возвращается в состояние покоя.
    • Еще один похожий вариант — электромагнитный сенсор. Регистрирует изменение магнитного поля при попадании в сектор объемных предметов. Чувствительность ниже, высокая зависимость от помех.
    • Ультразвук. Практическое его применение мы знаем по прибору УЗИ, который применяется в медицине. Бывают и другие варианты использования: датчики движения. Генератор ультразвука постоянно испускает УЗ волны в заданном секторе. Проверить (засечь) работу прибора сложно, поэтому эти виды сенсоров популярны в охранных системах. При возникновении препятствия, звуковые волны возвращаются и регистрируются приемником. Происходит срабатывание датчика.

    Несмотря на высокое качество и скрытность, эти виды сенсоров применяются и в системах автоматического включения освещения.

    Информация: Единственное ограничение — нежелательно применение на объектах с домашними животными. Некоторые особи негативно реагируют на ультразвук.

    Такие датчики отлично работают в помещении и на улице. Выглядят они по-разному, но обязательно с цилиндрическим окошком в корпусе.

  • Пассивные инфракрасные системы редко применяются в охранной сигнализации, зато активно работают с источниками освещения. Задайтесь вопросом: как выбрать датчик движения для включения света? Он не должен регистрировать неодушевленные предметы (например, автомобили) и птиц с животными. При этом прибор обязан фиксировать появление в зоне действия человека. Получаем единственно верное решение: приемник инфракрасного излучения. Сенсор настраивается на тепло человеческого организма и соответствующий размер источника излучения. Для этого чувствительный инфракрасный сенсор располагается за специальной линзой Френеля, концентрирующей тепло в одной точке. Далее сигнал поступает в электронный блок управления, оснащенный вспомогательными модулями:07
    • реле времени задерживает момент включения от случайных кратковременных срабатываний;
    • сумеречный выключатель отключает прибор в светлое время суток;
    • блок ступеней переключения настраивается под определенный размер «объекта», чтобы кошки и птицы не включали свет.
  • Комбинированные приборы сочетают в себе сенсоры разных типов, и применяются для решения особо ответственных задач, где не допускаются ошибки в срабатывании.

Можно ли изготовить такой прибор самому, и как его отключить

Любой домашний умелец задается вопросом: как сделать датчик движения своими руками? Саму электросхему управления собрать несложно. Проблема в источнике и приемнике излучения. Проще использовать готовый излучатель волн, просто интегрируя его в свой проект. Наиболее удачными являются датчики для систем на базе Arduino.

Еще одна популярная самоделка — лазерная указка с фотоприемником, размещенным на линии пересечения. Но это не более чем развлечение: для серьезных задач такой прибор не подходит.

Еще одна мысль, которая приходит в некоторые беспокойные головы: как отключить датчик движения.

Важное предупреждение: Информация не предназначена для криминального применения!

Если отключение связано с режимом использования — нет проблем. Просто отсоедините сенсор от блока питания, и он перестанет включать свет. Например, когда объект закрыт. В остальных случаях поступайте так (не для злого умысла):

  • инфракрасные сенсоры заклеиваются металлическим скотчем;
  • микроволновый прибор перестает принимать сигналы, если покрыть окошко прозрачным лаком из аэрозольного баллончика;
  • УЗ датчик экранируется только металлом или металлизированным скотчем в 2–3 слоя.

В любом случае, информация о том, что на объекте не работает датчик движения, будет зарегистрирована владельцем. Кроме того, прежде чем вам удастся отключить сенсор, ваше появление будет зафиксировано.

Какой датчик выбрать

О производителе мы не говорим, это личное предпочтение каждого. Исходя из информации в данной статье, вы можете выбрать тип сенсора по виду излучения, подходящий для ваших целей.

Совет: Не пытайтесь получить высокие показатели качества от прибора в нижнем ценовом сегменте.

Равно как и нет смысла искать универсальный датчик: тип определяется условиями применения.

Видео по теме

Хорошая реклама

 

Инфракрасный датчик - ИК-датчик: разновидности, принцип работы, подключение, применение, особенности

Использование электронных устройств регистрирующих изменения каких-либо физических параметров, позволяет в автоматическом режиме контролировать работу многих приборов и механизмов. Инфракрасные датчики применяются именно для этих целей, но с появлением «умных» устройств, сфера применения изделий значительно расширилась.

В этой статье будет подробно рассмотрен принцип работы сенсора, реагирующего на ИК-излучение, а также приборов, в которые устанавливаются изделия этого типа.

Что представляет собой ИК-датчик

Ик датчики — это устройства, способные реагировать на фоновое инфракрасное излучение. Прибор регистрирует любое тепловое излучение. Это значит, что сработать такое устройство может не только при нахождении в зоне действия датчика теплокровных животных или человека, но и даже на перемещающийся неодушевлённый предмет.

Инфракрасный тепловой датчик может использоваться в различных условиях. Если эксплуатация осуществляется в местах, где устройство может подвергнуться физическому воздействию, то его изготавливают в защищённом корпусе. В различных гаджетах, например в смартфонах, ИК-детектор размещается на передней панели, чтобы обеспечить возможность реагирования сенсора на движение рук владельца телефона.

Принцип работы ИК датчика

Инфракрасные датчики могут иметь различную конструкцию, а принцип работы таких устройств может отличаться в зависимости от способа регистрации инфракрасного излучения. В такие приборы могут устанавливаться активные или пассивные ИК-элементы, а также комбинация этих двух типов детекторов ИК-излучения.

Активные

Работа активных датчиков похожа на систему радарного обнаружения самолётов, но только в инфракрасном диапазоне. Система этого типа состоит из двух основных элементов: генератора и приёмника ик-излучения.  Первый элемент излучает сигнал в инфракрасном диапазоне, а второй — обрабатывает отражённый сигнал.

Если в зоне действия системы этого типа появляется какое-либо движение, то происходит доплеровский сдвиг частоты, на который и реагирует приёмник сигнала. Благодаря высокой степени чувствительности таких сенсоров они получили большее распространение, но по этой же причине такие устройства часто срабатывают ложно, например, при качании ветвей деревьев во время сильного ветра.

Пассивные

Пассивные устройства состоят только из приёмников сигнала. Излучателя в таких приборах нет, но благодаря высокой чувствительности сенсоров и применению линзы Френаля, удаётся добиться высоких результатов по обнаружению инфракрасного излучения, как в помещениях, так и на открытых площадках. Оптическая система разбивает детектируемое пространство на большое количество отдельных частей, что позволяет электронной системе сопоставлять уровень ИК излучения, исходящего из разных точек пространства. При обнаружении значительных расхождений в уровне излучения прибор срабатывает, и сигнал о наличии движения передаётся в систему звукового оповещения.

В качестве сенсора в пассивных устройствах используются пироэлектрические преобразователи. В приборе применяется чётное количество полупроводниковых элементов. Это необходимо, чтобы разделить между собой сигнал, поступающий от различных секторов линзы.

Комбинированные

В комбинированных инфракрасных системах применяются одновременно активный и пассивный датчики. Таким образом значительно снижается количество ложных срабатываний, ведь для включения электрического света, сирены сигнализации или других устройств необходимо получить «добро» от обоих сенсоров.

Комбинированные инфракрасные детекторы не лишены недостатков. Если по тем или иным причинам, какой либо датчик не сработает при наличии движения в зоне действия устройства, то подобные действия не приведут к срабатыванию охранной или пожарной системы.

Где купить

Различные компоненты систем безопасности легко доступны для приобретения в специализированных магазинах вашего города. Но существует другой вариант, который недавно получил ещё и значительные улучшения. Долго ждать посылку из Китая больше не требуется: в интернет-магазине АлиЭкспресс появилась возможность отгрузки с перевалочных складов, расположенных в различных странах. Например, при заказе вы можете указать опцию «Доставка из Российской Федерации».

Переходите по ссылкам и выбирайте:

Применение в охранных и пожарных сигнализациях

Наиболее часто инфракрасные датчики применяются в охранных системах. Наличие движения легко определяется как пассивными, так и активными устройствами. Сигнализации этого типа являются достаточно надёжными, что позволяет оперативно передавать информацию о возможном нарушении периметра на звуковое устройство или на пульт охраны. Аналогичным образом действуют приборы, установленные перед раздвижными дверьми супермаркетов. При выявлении движения детектор включает электрическое реле привода электродвигателя.

Способность эффективно регистрировать инфракрасное излучение является незаменимым в противопожарных системах. При обнаружении открытого огня или значительного нагрева, такая система также начинает подавать тревожный сигнал либо включает автоматическую установку пожаротушения. Противопожарные ИК-устройства широко используются в заводских залах, на объектах, где хранятся взрывоопасные и легковозгораемые вещества.

Противопожарные устройства этого типа имеют серьёзные недостатки. Ложное срабатывание датчика может произойти в результате воздействия прямых или отражённых солнечных лучей, а также тепловых приборов. По этой причине инфракрасные детекторы пламени часто объединяются в системы, в которых используются иные принципы обнаружения возгораний.

Как известно, не бывает дыма без огня. По этой причине, установить факт возгорания можно с помощью миниатюрные инфракрасных устройств, с помощью которых регистрируется наличие газообразных продуктов горения. Приборы этого типа также имеют излучатель и приёмник ИК-излучения, но только в этом случае они располагаются напротив. Дым, проходя через инфракрасный луч, отражает большую часть сигнала. Приёмник, в свою очередь, регистрируют «недостачу» и включает электрическую цепь звукового устройства или системы пожаротушения.

Применение ИК-датчиков в быту и на производстве

В современных приборах и на производственных установках инфракрасные датчики используются для дистанционного управления, передачи информации, измерения расстояния, скорости и температуры.

Для регулировки температуры

При организации многих технологических процессов важно поддерживать температуру в заданных пределах. Механические устройства имеют значительные погрешности, поэтому если необходимо регулировать нагрев или охлаждение веществ с точностью до 0.1˚С, применяются специальные инфракрасные устройства. Такие приборы, объединённые в электрическую цепь с микропроцессорной платой, могут изменять температурный режим в автоматическом режиме.

Основное достоинство таких устройств заключается в возможности дистанционного измерения тепловых показателей. Например, при выплавке стали благодаря использованию инфракрасных пирометров можно точно определить температуру без непосредственного контакта с жидким металлом.

Температурные инфракрасные датчики могут быть выполнены в виде портативного устройства. Благодаря наличию низкого уровня искажения, такие изделия используются, в том числе, в качестве медицинских приборов для моментального определения температуры тела человека.

Инфракрасные ПДУ

Принцип работы пульта дистанционного управления также основан на инфракрасном излучении. На передающем сигнал устройстве устанавливается передатчик, который, при нажимании какой-либо кнопки, посылает зашифрованный сигнал на приёмник. Принявшее сигнал устройство обрабатывает полученную информацию и выполняет необходимое действие.

В современных устройствах принимающий сигнал от ПДУ датчик представляет собой объединённый в одном корпусе чувствительный элемент и усилитель. Таким образом экономится место на печатной плате, а также решается проблема, при необходимости, быстрой замены приёмного устройства.

Инфракрасные датчики в системах дистанционного управления позволяют организовать эффективный способ передачи информации на небольшом расстоянии. Среди основных плюсов такого способа можно назвать высокие показатели помехоустойчивости. Направленность системы в одну сторону является её серьёзным недостатком, но, при необходимости, можно увеличить угол эффективного использования ПДУ с помощью отражения от зеркальных поверхностей.

Датчик расстояния

Излучая и улавливая инфракрасный луч можно достаточно точно измерить расстояние от датчика к неподвижному объекту. Специальные устройства, выполняющие такую функцию состоят из ИК-светодиода и принимающего отражённое излучение сенсора.

Чувствительный элемент генерирует электрическое напряжение, величина которого зависит от угла падения отражённого инфракрасного луча. Эта зависимость, при измерении расстояния в определённых значениях, линейна. При удалении ИК-приёмника от объекта, напряжение уменьшается. Процессор обрабатывает сигнал от приёмника и выводит на дисплей значение расстояния либо активирует какую-либо электрическую систему.

Приобрести инфракрасные датчики  можно в Москве, а также на Алиэкспресс либо других аналогичных торговых площадках.

Счётчик оборотов двигателя

Во многих системах оборудованных двигателями возникает необходимость вести подсчёт оборотов вращения подвижных частей силовых агрегатов. Механические устройства для этой цели уже давно не используются по причине отсутствия устойчивости к износу.

Инфракрасные датчики являются отличной заменой таким приборам.

Принцип работы бесконтактного устройства подсчёта оборотов очень прост:

  • Инфракрасный луч направляется на вращающееся колесо, в котором имеется прорезь.
  • После совершения полного оборота луч свободно проходит через отверстие и регистрируется приёмником.
  • Процессор осуществляет подсчёт частоты электрических импульсов и выводит значение на цифровой дисплей.

Если по каким либо причинам такую конструкцию инфракрасного подсчёта частоты вращения невозможно реализовать на практике, то на валу размещают светоотражающий материал, который будет возвращать ИК-луч после каждого полного оборота.

Подключение датчика

Если монтаж инфракрасного датчика осуществляется своими руками, то прежде чем организовать подключение, необходимо ознакомиться с основными правилами установки таких устройств. Наиболее часто такие устройства устанавливаются самостоятельно для автоматического включения света в комнате либо для автоматического запуска уличных светильников, работающих от солнечных батарей.

Работа по подключению ИК датчика выполняется в такой последовательности:

  • Правильно подобрать место для установки. Чувствительный элемент лучше регистрирует движения, осуществляемые поперёк контролируемой области. Высота монтажа зависит от модели датчика (2.5–4.0 м).
  • Отключить электричество в доме и подвести провода от щитка или распределительной коробки к месту подсоединения датчика.
  • Снять защитную пластиковую оболочку детектора.
  • Подключить проводники к устройству согласно схеме указанной в инструкции или на самом приборе.
  • Установить датчик на заранее подготовленное место, используя встроенный пружинный фиксатор.
  • Проверить и настроить инфракрасный выключатель.

Большая часть производимых датчиков имеет встроенные элементы регулировки времени свечения лампы и порога срабатывания. На плате переменные резисторы обозначаются соответственно TIME и LUXE.

Чувствительность устройства следует настроить в первую очередь. Для этой цели необходимо установить регулировку времени свечения лампы на минимальное значение. Затем, вращением регулятора чувствительности в различные положения, подобрать наиболее подходящий режим работы осветительного прибора.

Когда чувствительность датчика будет настроена, следует установить реле времени на наиболее подходящий промежуток работы осветительного прибора.

Установку сигнализаций и пожарного оборудования следует доверить квалифицированным специалистам. Ошибки в монтаже таких устройств могут обойтись значительно дороже стоимости услуг профессионального монтажника.

Вывод

Инфракрасные датчики являются недорогими, надёжными устройствами, с помощью которых можно сделать свою жизнь более безопасной и комфортной. Покупка таких изделий в проверенных местах и правильный монтаж оборудования позволят прослужить системам этого типа в течение многих лет без необходимости проведения ремонта и замены основных компонентов.

Видео по теме

принцип работы, схемы подключения, характеристики

В современных станках и высокоточном оборудовании, где важно контролировать положение конструктивных элементов устанавливается индуктивный датчик. Для чего применяется данное устройство, какие разновидности и способы подключения существуют, как оно работает, мы рассмотрим в данной статье.

Назначение

Индуктивный датчик предназначен для контроля перемещения рабочего органа без непосредственного контакта с ним. Основной сферой применения для него является станочное оборудование, точные медицинские приборы, системы автоматизации технологических процессов, измерения и контроля формы изделия. В соответствии с положениями п.2.1.1.1 ГОСТ Р 50030.5.2-99 это датчик, который создает электромагнитное поле в области чувствительности и обладает полупроводниковым коммутатором.  

Сфера  применения индуктивных датчиков во многом определяется их высокой надежностью и устойчивостью к воздействию внешних факторов. На их показания и работу не влияют многие факторы окружающей среды: влага, оседание конденсата, скопление пыли и грязи, попадание твердых частиц. Такие особенности обеспечиваются их устройством и конструктивными данными.

Устройство

Развитие сегмента радиоэлектроники привело не только к совершенствованию первоначальных механизмов, но и к возникновению принципиально новых индуктивных датчиков. В качестве примера рассмотрим один из простейших вариантов (рисунок 1):

Рис. 1. Устройство индуктивного датчика

Как видите на рисунке, в его состав входят:

  • магнитопровод или ярмо (1) – предназначен для передачи электромагнитного поля от генератора в зону чувствительности;
  • катушка индуктивности (2) – создает переменное электромагнитное поле при протекании электрического тока по виткам;
  • объект измерения (3) – металлический якорь, вводимый или перемещаемый в области чувствительности, неметаллические предметы не способные влиять на состояние электромагнитного поля, поэтому они не используются в качестве детектора;
  • зазор между объектом измерения и основным магнитопроводом (4) – обеспечивает меру  взаимодействия в качестве магнитного диэлектрика, в зависимости от модели датчика и способа перемещения  может оставаться неизменным или колебаться в заданном диапазоне;
  • генератор (5) — предназначен для генерации электрического напряжения заданной частоты, которое будет создавать переменное магнитное поле в заданной области.

Принцип работы

Принцип действия индуктивного датчика заключается в способности электромагнитного поля изменять свои параметры, в зависимости от значения магнитной проводимости на пути протекания потока. В основе его работы лежит классический вариант катушки, намотанной на сердечник.

Рис. 2. Магнитное поле в состоянии покоя

При протекании электрического тока I по виткам этой катушки генерируется магнитное поле (см. рисунок 2), результирующий вектор магнитной индукции B которого определяется по правилу Правой руки. При движении магнитного поля по сердечнику, ферромагнитный материал обеспечивает максимальную пропускную способность. Но, как только линии магнитной индукции попадают в воздушное пространство, магнитная проводимость существенно ухудшается и часть поля рассеивается.

Рис. 3. Магнитное поле при введении объекта срабатывания

При внесении в область действия поля индуктивного датчика объекта срабатывания (рисунок 3), изготовленного из металла, напряженность линий индукции резко изменяется. В результате чего усиливается поток и меняется его значение, а это, в  свою очередь, приводит к изменению электрической величины в цепи катушки за счет явления взаимоиндукции. На практике этот сигнал слишком мал, поэтому для расширения предела измерения индуктивного датчика в их схему включается усилитель.

Расстояние срабатывания и объект воздействия

В зависимости от конструкции и принципа действия индуктивного датчика объект воздействия может иметь вертикальное или горизонтальное перемещение относительно самого измерителя. Однако реакция сенсора на начало движения контролируемого объекта может начинаться не сразу, что обуславливается номинальным расстоянием, при котором обеспечивается зона чувствительности датчика и техническими параметрами объекта.

Рис. 4. Область и объект срабатывания

Как видите на рисунке 4, в первом положении контролируемый объект находится на таком удалении, где электромагнитные линии не достигают его поверхности. В таком случае с индуктивного датчика сигнал сниматься не будет, так как он не фиксирует перемещения в зоне чувствительности. Во втором положении контролируемый объект уже пересек расстояние срабатывания и вошел в чувствительную зону. В результате взаимодействия с объектом на выходе датчика появится соответствующий сигнал.  

Также расстояние срабатывания будет зависеть от геометрических размеров, формы и материала. Следует заметить, что в качестве объекта срабатывания индуктивного датчика применяются только металлические предметы, но от конкретного типа будет отличаться и момент перехода датчика в противоположное состояние, что изображено на диаграмме:

Рис. 5. Зависимость расстояния срабатывания от материала

Виды

На практике существует огромное разнообразие индуктивных датчиков, всех их можно разделить на две большие категории, в зависимости от рода питающего тока – переменного и постоянного.  В зависимости от состояния контактов в соответствии с таблицей 1 р.3 ГОСТ Р 50030.5.2-99 индуктивные датчики бывают:

  • замыкающий – при перемещении контролируемого объекта происходит перевод во включенное положение;
  • размыкающий – в случае воздействия индуктивный датчик переводит контакты в отключенное положение;
  • переключающий – одновременно объединяет оба предыдущих варианта, за одну коммутацию переводит один вывод во включенное, второй, в отключенное положение.

По количеству измерительных цепей индуктивные датчики подразделяются на одинарные и дифференциальные. Первый из них обладает одной катушкой и одной цепью измерения. Второй тип подразумевает наличие двух сенсоров, измерительные цепи которых включаются в противофазу для сравнения показаний.

Рис. 6. Одинарый и дифференциальный датчик

По способу передачи данных индуктивные датчики подразделяются на аналоговые, электронные и цифровые. В первом случае применяются те же катушки и ферромагнитные сердечники. Электронные используют триггер Шмидта вместо ферромагнетиков для получения гистерезисной составляющей. Цифровые выполняются в формате печатных плат на микросхемах. Помимо этого виды подразделяются по количеству выводов датчика: два, три, четыре или пять.

Характеристики (параметры)

При выборе индуктивного датчика для решения конкретной задачи руководствуются параметрами цепи, в которых он будет функционировать и основной логикой схемы. Поэтому обязательно проверяется соответствие их параметров:

  • напряжение питания – определяет допустимый минимум и максимум разности потенциалов, при которой индуктивный датчик нормально работает;
  • минимальный ток срабатывания – наименьшее значение нагрузки, при котором произойдет переключение;
  • расстояние срабатывания – допустимый промежуток удаления, при котором будет происходить коммутация;
  • индуктивное и магнитное сопротивление – определяет проводимость электрического тока и линий магнитной индукции для конкретной модели;
  • поправочный коэффициент – применяется для внесения поправки, в зависимости от дополнительных факторов;
  • частота переключений – максимально возможное количество раз коммутации в течении секунды;
  • габаритные размеры и способ установки.

Примеры подключения на схемах

Конструктивные особенности индуктивных датчиков определяют количество их выводов и способ дальнейшего подключения. В виду того, что существует четыре наиболее распространенных типа, рассмотрим примеры схем их подключения.

Двухпроводных датчиков индуктивности

Рис. 7. Схема подключения двухпроводного датчика

Как видите на схеме выше, двухпроводные индуктивные датчики применяются исключительно для непосредственной коммутации нагрузки: контакторов, пускателей, катушек реле в качестве электронного выключателя. Это наиболее простая схема и модель, но работа конкретной модели сильно зависит от параметров подключаемой нагрузки.

Трехпроводных датчиков индуктивности

Рис. 8. Схема подключения трехпроводного датчика индуктивности

В трехпроводной схеме присутствует два вывода на питание самого индуктивного датчика, а третий, предназначен для подключения нагрузки к нему. По способу коммутации их подразделяют на PNP и NPN, первый вид коммутирует положительный вывод, откуда и происходит название, второй тип коммутирует отрицательный вывод.

Четырехпроводных датчиков индуктивности

Рис. 9. Схема подключения четырехпроводного датчика индуктивности

По аналогии с предыдущим датчиком, четырехпроводный также использует два вывода 1 и 3 для получения питания. А вот 2 и 4 вывод используется для подключения нагрузки с той разницей, что коммутация для обеих нагрузок будет противоположной.

Пятипроводных датчиков индуктивности

Рис. 10. Схема подключения пятипроводного датчика индуктивности

В пятипроводном индуктивном датчике два вывода применяются для подачи напряжения на чувствительный элемент датчика, в рассматриваемом примере это 1 и 3. Два вывода 2 и 4 подают питание на разные нагрузки, а управляющий вывод 5 позволяет выбирать различные режимы работы и менять логику переключений.

Преимущества и недостатки

В сравнении с другими типами сенсорных устройств индуктивные датчики продолжают занимать весомую нишу, наращивая темпы внедрения в различные сферы промышленности и отрасли народного хозяйства. Такое частое применение объясняется рядом весомых преимуществ:

  • высокая надежность за счет простой конструкции и отсутствия подвижных контактов;
  • может функционировать как от бытовой сети, так и от специальных генераторов, преобразователей и прочих источников питания;
  • способны обеспечивать значительную мощность на выходе — порядка нескольких десятков Ватт;
  • характеризуются высокой чувствительностью в зоне измерения.

Но, вместе с тем, существуют и недостатки индуктивных датчиков, которые не позволяют использовать их повсеместно. Среди наиболее существенных минусов являются громоздкие размеры, не позволяющие монтировать их в любых устройствах. Также к недостаткам относится зависимость параметров работы от температурных и других факторов, вносящих поправку на точность.

Использованная литература

  • Алейников А.Ф., Гридчин В.А., Цапенко М.П. «Датчики» 2001
  • Келим Ю. М. «Типовые элементы систем автоматического управления» 2002.
  • В.В. Литвиненко, А.П. Майструк. «Автомобильные датчики, реле и переключатели» 2004
  • Соснин Д. А. «Автотроника. Электрооборудование и системы бортовой автоматики современных легковых автомобилей» 2001

Датчик движения: что это такое и как работает?

Электронный датчик движения что такое? Ответ очевиден – чувствительный прибор, как правило, из класса устройств систем безопасности. Правда, есть также конструкции, предназначенные, к примеру, для управления источниками освещения и другими устройствами. Работа датчика движения строится по принципу генерации сигнала в случае обнаружения какого-либо движения в границах контролируемой зоны. Приборы делаются на базе разных технологий. Применение таких чувствительных сенсоров становится всё более востребованным и не только в хозяйственно-промышленной сфере, но также в сфере бытовой. Рассмотрим, какие выпускаются устройства, а также примеры использования.

СОДЕРЖИМОЕ ПУБЛИКАЦИИ :

Типичное исполнение детекторов движения

Рассматриваемые датчики классифицируются в зависимости от способа обнаружения движения объекта. Существуют две классификации приборов:

  1. Активные.
  2. Пассивные.

Детекторы активного действия

Детекторы активного действия являются устройствами, функционирующими по принципу радарной схемы. Этот тип приборов излучает радиоволны (микроволны) в границах контролируемой зоны. Микроволны отражаются от существующих объектов и принимаются сенсором датчика движения.

Детекторы АД

Упрощённая схематика конструкции сенсора активного действия: 1 – источник (передатчик) микроволнового излучения; 2 – приёмник отражённого микроволнового сигнала; 3 – сканируемый объект

Если в зоне контроля обнаруживается движение в момент трансляции датчиком микро-излучения, создаётся эффект — доплеровский (частотный) сдвиг волны, который воспринимается вместе с отражённым сигналом.

Этот фактор сдвига указывает на то, что волна отразилась от движущегося объекта. Будучи электронным устройством, датчик сканирования движения способен вычислить такие изменения и отправить электрический сигнал:

  • в систему сигнализации,
  • на переключатель света,
  • на другие устройства,

схематично подключенные к датчику обнаружения движения.

Активные микроволновые датчики сканирования движения, в основном используются, к примеру, на автоматически работающих дверях торговых центров. Но вместе с тем этот тип приборов удачно подходит для домашних охранных систем или коммутации внутреннего освещения.

Этот вид электроники не подходит для коммутации наружного освещения или аналогичных применений. Обусловлено это массовостью активных объектов в условиях улицы, которые постоянно двигаются.

Например, движение ветвей деревьев от ветра, перемещение мелких животных, птиц и даже крупных насекомых, фиксируются активным сенсором, что приводит к ошибке срабатывания.

Детекторы пассивного действия (PIR – passive infrared)

Пассивные датчики движения – полная противоположность активным сенсорам. Пассивные системы ничего не посылают. Попросту обнаруживают инфракрасную энергию.

Пассивный ДД

Конструктивное исполнение сенсора пассивного типа: 1 – Мульти объектив; 2 – Оптический фильтр; 3 – счетверённый инфракрасный элемент; 4 – металлический корпус; 5 – инфракрасное излучение; 6 – стабилизированный источник питания; 7 – усилитель; 8 — компаратор

Инфракрасные (тепловые) уровни энергии воспринимаются пассивными детекторами, непрерывно сканирующими область контроля или объект.

Учитывая, что инфракрасное тепло излучается не только от живых организмов, но также от любого объекта с температурой выше абсолютного нуля, можно сделать выводы о пригодности применения.

Эти датчики обнаружения движения не были бы эффективными, если бы их можно было активировать маленьким животным или насекомым, которое перемещается в диапазоне обнаружения.

Однако большинство существующих пассивных датчиков допустимо настроить на восприятие движение так, чтобы контролировать объекты с определенным уровнем испускаемого тепла. Например, прибор вполне можно настроить только на восприятие людей.

Сенсоры гибридной (комбинированной) конструкции

Комбинированный (гибридный) технологический датчик сканирования движения представляет собой систему комбинации активной и пассивной схемы. Такая электроника активирует действие только в случае обнаружения движения и той и другой схемой.

Комбинированные системы видятся полезными под применение в модулях сигнализации, так как уменьшают вероятность срабатывания на ложных тревогах.

Вместе с тем, эта технология обладает своими недостатками. Комбинированный прибор не в состоянии обеспечить такой же уровень безопасности, как отдельно взятые PIR и СВЧ-датчики.

Это очевидно, поскольку сигнал тревоги срабатывает только при обнаружении движения активным и пассивным датчиками одновременно.

Допустим, если злоумышленнику удастся каким-то способом предотвратить обнаружение одним из датчиков комбинированного прибора, движение останется незамеченным.

Соответственно, сигнал тревоги не будет отправлен на микропроцессор центральной системы сигнализации. На сегодня самым популярным типом комбинированных датчиков считается конструкция, где объединяются схемы PIR и микроволнового датчика.

Исполнение датчиков движения

Датчики сканирования на движение, разработанные и выпускаемые на текущий момент времени, обладают различными формами и габаритными размерами. Ниже приводятся несколько примеров исполнения устройств.

Пассивные инфракрасные конструкции (PIR) — пример

Одна из широко используемых конструкций, которые применяются в составе схем домашних системах безопасности.

Пассивные инфракрасные детекторы нацелены на отслеживание изменения уровня инфракрасной энергии, вызванного движением объектов (человека, домашних животных и т. п.).

Пассивный PIR

Распространённая конструкция пассивного сенсора, которая отличается простейшей электронной схемой и не создаёт затруднений при подключении. Используются всего три электрических контакта

Сканеры пассивного действия  изменчивостью источников тепла и солнечного света, поэтому детектор движения PIR более подходит для обнаружения движения внутри помещений или в иной закрытой среде.

Активные инфракрасные датчики — пример

Активные инфракрасные детекторы используют структуру двунаправленной передачи. Одна сторона – передатчик, используется для испускания инфракрасного луча.

Другая сторона – приемник, используется для приема инфракрасного сигнала. Действие тревоги происходит при обнаружении прерывания луча, связывающего две точки.

Активный ИД

Пример однолучевого активного детектора обнаружения подвижек. Между тем существуют конструкции более сложной конфигурации, благодаря которым есть возможность решать различные задачи

Активные датчики сканирования движения типа «Infra Red Beam» в основном устанавливаются снаружи (в условиях улицы).

Обнаружение происходит благодаря  использованию теории передатчика и приемника. Важно, чтобы инфракрасный луч проходил через зону сканирования и доходил до приемника.

Ультразвуковой детектор — пример

Датчики сканирования движения с помощью ультразвука выпускаются конструкциями, способными работать как в активном, так и в пассивном режиме. Теоретически ультразвуковой детектор действует по принципу передачи-приёма.

ДД Ультразвук

Один из примеров конструкции на основе ультразвука. Универсальные системы, которыми поддерживается функциональность как в активном, так и в пассивном режимах

Посылаются высокочастотные звуковые волны, которые отражаются от предметов и воспринимаются сканирующим приёмным устройством прибора. Если последовательность звуковых волн прерывается, активный ультразвуковой датчик подаёт сигнал тревоги.

Применение датчиков обнаружения движения

Некоторые из ключевых применений детекторов, когда необходимо отслеживать движение:

  • аварийные сигналы вторжения
  • управление автоматическими воротами,
  • переключение освещения на входе,
  • аварийное освещение безопасности,
  • туалетные сушилки рук,
  • автоматическое открывание дверей и др.

Ультразвуковые датчики используются для управления камерой слежения жилой недвижимости или, например, для съемки живой природы.

Инфракрасные сенсоры применяются для подтверждения наличия продуктов на конвейерных лентах

Ниже приведён практический пример использования датчиков активного и пассивного обнаружения движения.

Контроллер уровня жидкости на ультразвуковых датчиках

На приведенной ниже схеме показано, как контроллер (из набора Arduino) управляет уровнем жидкости, используя ультразвуковой датчик движения. Система работает, обеспечивая точные уровни жидкости в баке, управляя двигателем, определяя заданные пределы жидкости.

Контроллер

Практический пример реализации задачи на базе ультразвукового прибора и популярного набора Arduino, наглядно демонстрирующий ультразвуковой датчик движения что такое и как работает

Когда жидкость в резервуаре достигает нижнего и верхнего пределов, ультразвуковой датчик движения обнаруживает эти пределы и посылает сигналы на микроконтроллер. Микроконтроллер запрограммирован таким образом, чтобы управлять реле, которым в свою очередь управляется двигатель насоса. За основу берутся сигналы предельных условий, заданных на ультразвуковом датчике движения.

Датчик движения и автоматическое открывание дверей на PIR

Как и в приведенной выше системе, автоматическая система открывания дверей с использованием датчика движения PIR. В этом случае обнаруживается присутствие людей и выполняется операция с дверьми (открытие или закрытие).

Дверные ДД

Другая схема, где задействован уже прибор пассивного действия. Здесь также используется популярный конструктор Arduino – инструмент удобный для экспериментов и построения реальных электронных систем

Детектором PIR обнаруживается присутствие людей, после чего отправляется сигнал обнаружения движения микроконтроллеру. В зависимости от сигналов от датчика PIR, микроконтроллер управляет двигателем дверей в режимах прямого и обратного хода с помощью IC-драйвера.


 

Датчик абсолютного давления (ДАД): как это работает

На чтение 10 мин. Просмотров 28.1k. Опубликовано

Датчик абсолютного давления (ДАД или manifold absolute pressure — MAP) используется блоком управления двигателем (ЭБУ) для расчёта нагрузки двигателя. Датчик генерирует сигнал, который пропорционален вакууму во впускном коллекторе. ЭБУ использует этот входной сигнал, вместе с несколькими другими, для расчета правильного количества топлива для впрыска в цилиндры.

Общая информация

Когда двигатель работает под нагрузкой, вакуум на впуске падает, т. к. дроссель открывается широко. Двигатель всасывает больше воздуха, что требует бОльшего количества топлива для поддержания соотношения топливо-воздушной смеси.

Фактически, когда ЭБУ считывает сигнал большой нагрузки от ДАД, это обычно приводит к тому, что топливная смесь становится немного богаче, чем обычно, поэтому двигатель может производить больше энергии. В то же время блок управления слегка изменяет угол опережения зажигания (УОЗ), чтобы предотвратить детонацию, которая может повредить двигатель и снизить производительность.

Когда условия меняются и автомобиль движется под небольшой нагрузкой, накатом или замедляясь, от двигателя требуется меньше мощности. Дроссельная заслонка открыта немного или может быть закрыта, что приводит к увеличению вакуума на впуске.

Датчик MAP обнаруживает это. ЭБУ обедняет топливную смесь и изменяет момент зажигания, чтобы уменьшить расход топлива.

Где находится датчик абсолютного давления

ДАД может располагаться в нескольких местах в зависимости от марки и модели автомобиля. MAP сенсор может быть установлен на моторном щите, внутреннем крыле или впускном коллекторе.

Соединение датчика производится непосредственно через отверстие в коллекторе или с помощью штуцера и шланга.

На двигателях с турбонаддувом датчик абсолютного давления чаще всего устанавливается непосредственно на впускной коллектор.

Как работает ДАД

Датчики MAP называются датчиками абсолютного давления в коллекторе, а не датчиками вакуума на впуске, поскольку они измеряют давление (или его отсутствие) внутри впускного коллектора. Когда двигатель не работает, давление внутри впускного коллектора такое же, как и внешнее атмосферное давление.

Когда двигатель запускается, внутри коллектора создается вакуум за счет движения поршней и ограничением, создаваемым дроссельной заслонкой. При полностью открытом дросселе при работающем двигателе вакуум на впуске падает почти до нуля, а давление внутри впускного коллектора снова почти равно внешнему атмосферному давлению.

Атмосферное давление обычно варьируется от 700 до 800 мм ртутного столба (93 – 105 кПа) в зависимости от вашего местоположения и климатических условий. Переводя в фунты на квадратный дюйм значение атмосферного давления будет равно 14,7 psi (pound-force per square inch).

Атмосферное давление, скриншот с яндекса

Вакуум внутри впускного коллектора двигателя, для сравнения, может варьироваться от нуля до 70 кПа или более в зависимости от условий эксплуатации.

Вакуум на холостом ходу всегда высокий и обычно составляет 50 – 65 кПа (от 400 до 500 мм рт. ст.) в большинстве транспортных средств. Самый высокий уровень вакуума возникает при торможении с закрытым дросселем. Поршни пытаются всасывать воздух, но закрытый дроссель перекрывает подачу воздуха, создавая высокий вакуум во впускном коллекторе (обычно на 13-17 кПа выше, чем на холостом ходу).

Когда дроссель внезапно открывается, как при ускорении, двигатель всасывает большое количество воздуха, и вакуум падает до нуля. Затем вакуум медленно поднимается, когда дроссель закрывается.

Когда ключ зажигания включается первый раз, прежде чем запустить двигатель, блок управления проверяет показания ДАД, чтобы определить атмосферное (барометрическое) давление.

Таким образом, датчик MAP может выполнять функцию датчика атмосферного давления (BARO). Затем ЭБУ использует эту информацию для регулировки воздушно-топливной смеси, чтобы компенсировать изменения давления воздуха из-за высоты и / или погоды.

Некоторые автомобили используют отдельный барометрический датчик для этой цели, а другие используют комбинированный, который измеряет оба давления и называется BMAP.

Читайте также: Датчик температуры охлаждающей жидкости — как работает, проблемы, как проверять.

На двигателях с турбонаддувом ситуация немного сложнее, потому что при наддуве на самом деле может быть положительное давление во впускном коллекторе. Но датчику MAP это неважно, потому что он просто контролирует абсолютное давление внутри впускного коллектора.

На двигателях с электронной системой впрыска «скорость-плотность» воздушного потока оценивается, а не измеряется непосредственно датчиком воздушного потока. Контроллер анализирует сигнал ДАД, а также обороты двигателя, положение дроссельной заслонки, температуру охлаждающей жидкости и температуру окружающего воздуха, чтобы оценить, сколько воздуха поступает в двигатель.

Блок управления также может принимать во внимание сигнал обогащения / обеднения от датчика кислорода и положение клапана EGR, прежде чем вносить необходимые поправки в воздушно-топливную смесь. Этот подход к управлению топливом не так точен, как в системах, использующих датчик массового расхода воздуха (ДМРВ), но в тоже время он не так сложен и не слишком дорог.

Смотрите видео о том, как работает датчик абсолютного давления в коллекторе:

Другое преимущество систем с ДАД состоит в том, что они менее чувствительны к утечкам вакуума. Любой воздух, который попадает в двигатель после ДМРВ, является «неизмеренным» и нарушает баланс, необходимый для поддержания соотношения воздушно-топливной смеси.

В системе с MAP датчиком, он обнаружит небольшое падение вакуума, вызванное утечкой воздуха, и контроллер компенсирует это, добавляя больше топлива.

На многих двигателях GM, которые имеют датчик массового расхода воздуха (MAF), датчик MAP также используется в качестве резервного в случае потери сигнала воздушного потока и для контроля работы клапана EGR. Отсутствие изменений в сигнале датчика MAP, когда включен клапан рециркуляции EGR, указывает на неисправность системы.

Как устроен ДАД

По выходному сигналу датчики абсолютного давления бывают:

  • С аналоговым выходом — широко используются. Их напряжение пропорционально нагрузке двигателя.
  • С цифровым выходом — используются в таких системах, как Ford EEC IV. Цифровой MAP сенсор посылает сигналы прямоугольной формы с определенной частотой. Когда нагрузка увеличивается, частота также увеличивается, и время между импульсами (миллисекунды) уменьшается. Блок управления очень быстро реагирует на цифровой сигнал, потому что нет необходимости преобразовывать его из аналогового.

Датчик MAP состоит из двух камер, разделенных гибкой диафрагмой. Одна камера является «эталонным воздухом» (она может быть герметична или соединена с атмосферой), а другая — соединена с впускным коллектором прямым соединением или с помощью резинового шланга.

Чувствительная к давлению электронная схема внутри датчика MAP контролирует движение диафрагмы и генерирует сигнал напряжения, который изменяется пропорционально давлению. Это производит аналоговый сигнал напряжения, который обычно колеблется от 1 до 5 вольт.

Аналоговые датчики MAP имеют трехпроводной разъём: заземление, опорное напряжение 5 В от ЭБУ и сигнальное напряжение. Выходное напряжение обычно увеличивается, когда дроссель открывается и вакуум падает.

ДАД, который выдаёт 1 или 2 вольта на холостом ходу, может показывать от 4,5 вольт до 5 вольт при полностью открытой дроссельной заслонке. Выход обычно изменяется от 0,7 до 1,0 вольт на каждые 15 кПа изменения вакуума.

Признаки неисправности ДАД

Неисправный датчик MAP имеет серьезные последствия для контроля топлива, выбросов выхлопных газов автомобиля и экономии топлива. Симптомы плохого или неисправного ДАД включают в себя:

Увеличение расхода топлива

Датчик MAP, который измеряет высокое давление во впускном коллекторе, указывает ЭБУ на высокую нагрузку двигателя. Это приводит к увеличению впрыска топлива в двигатель.

Это, в свою очередь, увеличивает расход топлива. Это также увеличивает количество выбросов углеводородов и окиси углерода из автомобиля в окружающую атмосферу. Углеводороды и окись углерода являются одними из химических компонентов смога.

Недостаток мощности

Датчик MAP, который измеряет низкое давление во впускном коллекторе, указывает ЭБУ на низкую нагрузку двигателя. Блок управления реагирует уменьшением количества топлива, впрыскиваемого в двигатель.

Хотя вы можете заметить увеличение расхода топлива, вы также заметите, что ваш двигатель не такой мощный, как прежде. При уменьшении подачи топлива в двигатель температура в камере сгорания увеличивается. Это увеличивает количество NOx (оксидов азота) в двигателе. NOx также является химическим компонентом смога.

Увеличение токсичности выхлопных газов

Неисправный датчик MAP приведет к тому, что ваш автомобиль не пройдет проверку выхлопных газов на техосмотре. Выбросы из выхлопной трубы могут показывать высокий уровень углеводородов, высокий уровень NOx, низкий уровень CO2 или высокий уровень окиси углерода.

Проверка датчика абсолютного давления

Во-первых, убедитесь, что разрежение в коллекторе двигателя на холостом ходу соответствует техническим характеристикам. Вакуум может быть необычно низким из-за подсоса воздуха, задержки зажигания, ограничения выхлопа (засоренный катализатор) или утечки EGR (клапан EGR не закрывается на холостом ходу).

Слабое разрежение на впуске или избыточное противодавление в выхлопной системе могут обмануть датчик MAP, указывая на наличие нагрузки на двигатель. Это может привести к обогащению топливной смеси.

С другой стороны, ограничение на впуске воздуха (например, загрязнённый воздушный фильтр) может привести к превышению нормальных показаний вакуума. Это приведет к тому, что MAP сенсор будет передавать сигнал о низком уровне нагрузки и, возможно, к состоянию обедненной смеси.

Исправный ДАД должен показывать атмосферное давление при повороте ключа зажигания до запуска двигателя. Это значение можно посмотреть с помощью диагностического сканера или адаптера ELM327 с программой Torque и сравнить с фактическим показанием атмосферного давления, чтобы увидеть, совпадают ли они. Текущее атмосферное давление можно посмотреть на сервисе Яндекса.

Проверьте вакуумный шланг датчика на наличие изломов или утечек. Затем используйте ручной вакуумный насос, чтобы проверить сам ДАД на герметичность. Датчик должен держать вакуум. Любая утечка говорит о необходимости замены MAP сенсора.

Неполадка датчика давления, потеря сигнала из-за проблем с проводкой или сигнал датчика, выходящий за пределы нормального напряжения или диапазона частот, обычно устанавливают диагностический код неисправности (DTC) и включают индикатор Check Engine.

Проверка сканером OBD2

На автомобилях после 1996 года могут диагностироваться коды ошибок OBD II с P0105 по P0109. Это будет указывать на неисправность в цепи датчика MAP.

Выходное напряжение MAP датчика можно считывать в реальном времени и сравнивать со спецификациями. По сути, вы должны увидеть быстрое и резкое изменение сигнала датчика давления, когда дроссель на холостом ходу открывается и закрывается. Отсутствие изменений будет указывать на неисправность датчика или проводки.

Если показания датчика низкие или отсутствуют совсем, нужно проверить опорное напряжение, приходящее на датчик. Оно должно быть очень близко к 5 вольтам. Также проверьте заземление. Если опорное напряжение низкое — проверьте жгут проводов и разъём, возможен плохой контакт, повреждение или коррозия.

Диагностические сканеры также отображают «рассчитанное значение нагрузки», которое можно использовать для определения, работает ли датчик MAP или нет.

Значение нагрузки рассчитывается с использованием входных данных от ДАД, датчика положения дроссельной заслонки (ДПДЗ / TPS), ДМРВ и частоты вращения двигателя. Значение должно быть низким на холостом ходу и высоким — когда двигатель находится под нагрузкой. Отсутствие изменения значения или превышение нормальных показаний на холостом ходу может указывать на проблему с датчиком абсолютного давления, ДПДЗ или ДМРВ.

Проверка мультиметром

Датчик давления также может быть испытан на стенде путем подачи вакуума с помощью ручного вакуумного насоса. Выходной сигнал должен падать, начиная с 5 вольт опорного напряжения. Вместо насоса можно использовать пустой медицинский шприц через шланг.

Таблица для проверки датчика давления аналогового типа:

Приложенный вакуум, мБарНапряжение, вольтПоказания ДАД, Бар
04.3 – 4.91.0 ± 0.1
2003.20.8
4003.20.6
5001.2 – 2.00.5
6001.00.4

Таблица показаний ДАД атмосферного двигателя:

СостояниеНапряжение, вольтПоказания ДАД, БарВакуум, Бар
Полностью открытый дроссель4.351.0 ± 0.10
Зажигание включено4.351.0 ± 0.10
Холостой ход1.50.28 – 0.550.72 – 0.45
Двигатель остановлен1.00.20 – 0.250.80 – 0.75

Таблица показаний ДАД турбированного двигателя:

СостояниеНапряжение, вольтПоказания ДАД, БарВакуум, Бар
Полностью открытый дроссель2.21.0 ± 0.10
Зажигание включено2.21.0 ± 0.10
Холостой ход0.2 – 0.60.28 – 0.550.72 – 0.45

Выходное напряжение аналогового датчика MAP может быть измерено непосредственно с помощью мультиметра или осциллографа. Частотный сигнал цифрового ДАД также может быть считан с помощью цифрового мультиметра, если он имеет функцию измерения частоты, или осциллографа. Измерительные провода приборов должны быть подключены к сигнальному выводу и заземлению.

НЕ ИСПОЛЬЗУЙТЕ обычный вольтметр для проверки цифрового датчика Ford BP / MAP, так как это может повредить электронику внутри датчика. Этот тип ДАД может быть диагностирован только с помощью цифрового мультиметра в режиме измерения частоты, осциллографом или диагностическим прибором.

Что такое датчики цифровых фотоаппаратов

Цифровая камера использует массив из миллионов крошечных световых полостей или «фотосайтов» для записи изображения. Когда вы нажимаете кнопку спуска затвора камеры и начинается экспозиция, каждая из них открывается для сбора фотонов и сохранения их в виде электрического сигнала. По окончании экспозиции камера закрывает каждый из этих фотосайтов, а затем пытается оценить, сколько фотонов попало в каждую полость, измеряя силу электрического сигнала.Затем сигналы количественно оцениваются как цифровые значения с точностью, определяемой битовой глубиной. Результирующая точность затем может быть снова снижена в зависимости от того, какой формат файла записывается (0–255 для 8-битного файла JPEG).

Массив полостей Световые полости

Однако на приведенной выше иллюстрации создаются только изображения в оттенках серого, поскольку эти полости не могут различить, сколько в них содержится каждого цвета. Для захвата цветных изображений над каждой полостью должен быть установлен фильтр, который пропускает только определенные цвета света.Практически все современные цифровые камеры могут захватывать только один из трех основных цветов в каждой полости, и поэтому они отбрасывают примерно 2/3 падающего света. В результате камера должна аппроксимировать два других основных цвета, чтобы каждый пиксель имел полный цвет. Наиболее распространенный тип массива цветных фильтров называется «массивом Байера», как показано ниже.

Цветной фильтр Фотосайты с цветными фильтрами

Массив Байера состоит из чередующихся рядов красно-зеленых и зелено-синих фильтров. Обратите внимание на то, что массив Байера содержит в два раза больше зеленых датчиков, чем красных или синих датчиков.Каждый основной цвет не занимает равную долю от общей площади, потому что человеческий глаз более чувствителен к зеленому свету, чем красный и синий свет. Избыточность с зелеными пикселями дает изображение, которое кажется менее зашумленным и имеет более мелкие детали, чем можно было бы получить, если бы каждый цвет обрабатывался одинаково. Это также объясняет, почему шум в зеленом канале намного меньше, чем в двух других основных цветах (см. Пример в разделе «Что такое шум изображения»).

Исходная сцена
(показана с 200%) Что видит ваша камера
(через массив Байера)

Примечание. Не все цифровые камеры используют массив Байера, однако это, безусловно, наиболее распространенная установка.Например, датчик Foveon улавливает все три цвета в каждом месте пикселя, тогда как другие датчики могут захватывать четыре цвета в аналогичном массиве: красный, зеленый, синий и изумрудно-зеленый.

BAYER DEMOSAICING

«Демозаика» Байера - это процесс преобразования этого массива основных цветов Байера в окончательное изображение, которое содержит полную цветовую информацию в каждом пикселе. Как это возможно, если камера не может напрямую измерять полный цвет? Один из способов понять это - вместо этого думать о каждом массиве 2x2 красного, зеленого и синего цветов как о единой полноцветной полости.

Это будет работать нормально, однако большинство камер предпринимают дополнительные шаги для извлечения еще большей информации об изображении из этого цветового массива. Если бы камера считала, что все цвета в каждом массиве 2x2 попали в одно и то же место, то она могла бы достичь только половины разрешения как в горизонтальном, так и в вертикальном направлениях. С другой стороны, если камера вычисляла цвет, используя несколько перекрывающихся массивов 2x2, то она могла бы достичь более высокого разрешения, чем было бы возможно с одним набором массивов 2x2.Следующая комбинация перекрывающихся массивов 2x2 может использоваться для извлечения дополнительной информации об изображении.

Обратите внимание, как мы не вычисляли информацию об изображении на самых краях массива, поскольку предполагали, что изображение продолжается в каждом направлении. Если бы на самом деле это были края массива резонаторов, то здесь вычисления были бы менее точными, так как пикселей больше нет со всех сторон. Тем не менее, это обычно незначительно, поскольку информация на самых краях изображения может быть легко обрезана для камер с миллионами пикселей.

Существуют и другие алгоритмы демозаики, которые могут извлекать немного большее разрешение, создавать изображения с меньшим шумом или адаптироваться для наилучшего приближения изображения в каждом месте.

ДЕМОЗАЙЗИРОВКА АРТЕФАКТОВ

Изображения с мелкомасштабными деталями, близкими к пределу разрешения цифрового сенсора, иногда могут обмануть алгоритм демозаики, давая нереалистичный результат. Наиболее распространенным артефактом является муар (произносится «море-ай»), который может проявляться в виде повторяющихся узоров, цветовых артефактов или пикселей, расположенных в нереалистичном лабиринтном узоре:


Вторая фотография на ↓ 65% от размера выше

Выше показаны две отдельные фотографии - каждая с разным увеличением.Обратите внимание на появление муара во всех четырех нижних квадратах, в дополнение к третьему квадрату первой фотографии (тонкий). И лабиринтные, и цветные артефакты можно увидеть в третьем квадрате уменьшенной версии. Эти артефакты зависят как от типа текстуры, так и от программного обеспечения, используемого для создания файла RAW цифровой камеры.

Однако даже с теоретически совершенным сенсором, который мог бы улавливать и различать все цвета на каждом фотосъекте, все равно мог появляться муар и другие артефакты. Это неизбежное следствие любой системы, которая производит выборку непрерывного сигнала в дискретных интервалах или точках.По этой причине практически каждый фотографический цифровой датчик включает в себя так называемый оптический фильтр нижних частот (OLPF) или фильтр сглаживания (AA). Обычно это тонкий слой непосредственно перед датчиком, который эффективно размывает любые потенциально проблемные детали, разрешение которых меньше разрешения датчика.

КОМПЛЕКТЫ MICROLENS

Вы можете задаться вопросом, почему на первой диаграмме в этом руководстве не размещены полости непосредственно рядом друг с другом. Сенсоры реальных камер на самом деле не имеют фотосайтов, которые покрывают всю поверхность сенсора.Фактически, они могут покрывать только половину общей площади для размещения другой электроники. Каждая полость показана с небольшими пиками между ними, чтобы направить фотоны в ту или иную полость. Цифровые камеры содержат «микролинзы» над каждым фотоснимком для улучшения их способности собирать свет. Эти линзы аналогичны воронкам, которые направляют фотоны в фотосайт, где в противном случае фотоны не использовались бы.

Хорошо спроектированные микролинзы могут улучшить сигнал фотонов на каждом фотосъекте и впоследствии создать изображения с меньшим шумом при том же времени экспозиции.Производители камер смогли использовать улучшения в конструкции микролинз для уменьшения или поддержания шума в новейших камерах с высоким разрешением, несмотря на то, что они имеют меньшие фотосайты, из-за сжатия большего количества мегапикселей в той же области сенсора.

Дополнительную информацию о сенсорах цифровых фотоаппаратов можно найти на сайте:
Размеры сенсоров цифровых фотоаппаратов: как они влияют на фотографию?

Как работают оптические датчики уровня жидкости

Как работают наши оптические датчики уровня жидкости

Привет, я Пэдди Шеннон.Технический директор SST Sensing.

Сегодня я просто собираюсь быстро продемонстрировать наши оптические датчики уровня жидкости и просто показать вам, насколько они универсальны.

Традиционно, когда вы хотите измерить или обнаружить жидкость, и именно это делают эти датчики, они определяют, является ли датчик воздухом или жидкостью.

Традиционная технология - поплавковый выключатель. Поплавковый выключатель довольно большой, обычно они примерно такого размера. Они должны выступать в воздух там, где вы хотите измерять жидкость, и у них есть движущиеся части.

И, конечно же, наличие движущихся частей всегда является проблемой, потому что они изнашиваются, могут заклинивать или ломаться, или, возможно, они могут замерзнуть и застрять на месте.

Наши оптические датчики уровня жидкости обычно очень маленькие. Вот один из них, который прикреплен к тестеру, который будет гудеть и загораться светодиодом, когда он влажный. И вы видите, что это один из самых маленьких датчиков.

Вот этот кусочек, просто конус. Это и есть настоящая чувствительная подсказка. Что происходит внутри, у нас есть инфракрасный светодиод и инфракрасный фототранзистор.

Свет от инфракрасного светодиода выходит, отражается от внутренней поверхности конуса и возвращается к детектору, когда сенсор находится в воздухе. И это из-за разницы в показателе преломления пластика, из которого изготовлен корпус из атмосферы снаружи.

Но когда мы помещаем его в жидкость, а это действительно любая жидкость, большая часть этого света уходит. Мы видим, что меньший сигнал возвращается к детектору и микропроцессору внутри сенсора, он смотрит на него и говорит, что теперь я должен быть в жидкости.И соответственно изменяет состояние выхода.

Итак, протестируем здесь. В первую очередь вода. Мы видим, что это сработало.

А вот масло растительное. Это тоже работает.

Тогда у нас есть антифриз.

А еще у нас есть тормозная жидкость.

И, наконец, мы очень довольны тем, что можем определять молоко.

В настоящее время традиционное обнаружение молока затруднено, поскольку оно является отражающим материалом, а значит, отражающей жидкостью.Молоко представляет собой отражающую жидкость, и проблема с молоком, как правило, с этим типом оптического датчика заключается в том, что, когда свет попадает в молоко, он отражается от всех частиц жира и возвращается обратно, а датчик считает, что он снова находится в воздухе. .

Но с помощью умного программного обеспечения, которое мы разработали для этого датчика, он может надежно определять молоко. Так что все очень просто, датчики очень универсальны, и вы можете это увидеть, и я продемонстрирую это еще раз.

Им достаточно обнаружить небольшое количество жидкости, чтобы датчик действительно сработал.

В отличие от поплавкового выключателя, который фактически должен был бы подниматься отсюда сюда. Для чего потребуется довольно большое количество жидкости.

Таким образом, они отлично подходят для обнаружения действительно небольших утечек жидкости, например, в шкафах. Мы продаем много датчиков в телекоммуникационные шкафы, где мы обнаруживаем момент попадания дождевой воды в шкаф, чтобы кто-то мог пойти и починить ее, прежде чем произойдет повреждение внутренней части электроники.

Они также работают от -40 ° C до 140 ° C.Всевозможных форм и размеров, разной длины кабеля. Мы делаем соединители разных стилей, разные материалы, которые подходят для разных химикатов.

Включая стеклянные насадки, которые, очевидно, чрезвычайно прочные и могут работать практически с любыми жидкостями и очень едкими кислотами.

Вот и все, датчики уровня жидкости SST. Очень универсален, очень надежен.

Распиновка, конфигурация и принцип работы датчика импульсов

Характеристики

  • Биометрический датчик частоты пульса или датчик частоты пульса
  • Датчик типа Plug and Play
  • Рабочее напряжение: + 5В или +3.3В
  • Потребление тока: 4 мА
  • Встроенная схема усиления и шумоподавления.
  • Диаметр: 0,625 дюйма
  • Толщина: 0,125 дюйма

Предупреждение : Этот датчик не является медицинским и не одобрен FDA. Он предназначен исключительно для хобби-проектов / демонстраций и не должен использоваться для приложений, критичных для здоровья.

Конфигурация контактов

Номер контакта

Имя контакта

Цвет провода

Описание

1

Земля

Черный

Подключен к заземлению системы

2

Vcc

Красный

Подключите к + 5В или +3.Напряжение питания 3В

3

Сигнал

фиолетовый

Пульсирующий выходной сигнал.

Как работает датчик пульса

Работа датчика пульса / сердечного ритма очень проста. Датчик имеет две стороны, на одной стороне размещен светодиод вместе с датчиком внешней освещенности, а на другой стороне у нас есть некоторые схемы.Эта схема отвечает за усиление и шумоподавление. Светодиод на передней панели датчика расположен над веной человеческого тела. Это может быть кончик вашего пальца или ушной вкладыш, но его следует размещать прямо на вене.

Теперь светодиод излучает свет, который падает прямо на вену. В венах кровь течет только тогда, когда сердце работает, поэтому, если мы будем следить за потоком крови, мы сможем также контролировать сердцебиение. Если поток крови обнаружен, датчик внешней освещенности будет улавливать больше света, поскольку они будут отражаться кровью, это незначительное изменение принимаемого света анализируется с течением времени, чтобы определить удары нашего сердца.

Как использовать датчик пульса

Использовать датчик пульса просто, но правильное его расположение имеет значение. Так как вся электроника на датчике открыта напрямую, рекомендуется также покрыть датчик горячим клеем, виниловой лентой или другими непроводящими материалами. Также не рекомендуется прикасаться к этим датчикам мокрыми руками. Плоская сторона датчика должна быть помещена поверх вены и слегка прижата к ней, обычно для достижения этого давления используются зажимы или липучки.

Чтобы использовать датчик, просто запитайте его, используя контакты Vcc и заземления, датчик может работать как при +5 В, так и при 3,3 В. После подачи питания подключите вывод сигнала к выводу АЦП микроконтроллера, чтобы отслеживать изменение выходного напряжения. Если вы используете плату для разработки, такую ​​как Arduino, вы можете использовать легко доступный код, который значительно упростит работу. Обратитесь к таблице данных внизу страницы для получения дополнительной информации о том, как подключить датчик к Arduino и как его установить.Схемы датчика, код и эскиз обработки можно получить на странице продукта Sprakfun.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *