Как проверить микроконтроллер на работоспособность – Проверка PIC микроконтроллера. Создаем робота-андроида своими руками [litres]

Проверка PIC микроконтроллера. Создаем робота-андроида своими руками [litres]

Проверка PIC микроконтроллера

На приведенной схеме видно, что для обеспечения работы микроконтроллера требуется очень небольшое количество дополнительных деталей. Прежде всего необходим резистор смещения, присоединенный к выводу 4 (MCLR), кварцевый резонатор на частоту 4 МГц с двумя конденсаторами по 22 пФ и источник питания 5 В.

На выходе устройства подключены два светодиода, соединенные последовательно с ограничительными резисторами. Они позволят оценить нам правильность работы микроконтроллера. Соедините компоненты без помощи пайки на макетной плате в соответствии со схемой на рис. 6.15. Готовое устройство будет иметь вид, подобный изображенному на рис. 6.16.

Рис. 6.15. Схема

Рис. 6.16. Схема, смонтированная на макетной плате

Хотя спецификация на ИС 16F84 утверждает, что микроконтроллер способен работать в интервале напряжений от 2 до 6 В, я предпочел использование стабилизированного источника питания 5 В. Стабилизатор напряжения включает регулятор напряжения на ИС 7805 и два конденсатора фильтра.

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

022-Тестовая прошивка для AVR микроконтроллеров (проверка работоспособности портов).

Вот и пришло время для первой прошивки. Данная прошивка является тестовой. Она не производит ни каких полезных действий, кроме дрыганья ножками по определенному алгоритму. Этой прошивкой можно проверить работоспособность всего микроконтроллера и портов ввода-вывода в частности.

Чтобы проверить микроконтроллер необходимо загрузить прошивку и посмотреть, что происходит на ножках. «Смотреть» можно или мультиметром, или простым пробником – светодиод последовательно с резистором 300 Ом – 1 кОм. Без резистора проверять не стоит – можно спалить порт ввода-вывода. Уровни сигналов на ножках меняются с «1» через «Z»-состояние в «0» и обратно. «Z» состояние введено в последовательность для контроля работоспособности порта в режиме входа.

Тестовая прошивка для микроконтроллера ATMega48/88/168.
Алгоритм работы прошивки ATMega48/88/168 показан на картинке (микроконтроллер установлен на макетной плате ATMega48/88/168, описанной ранее).

Микроконтроллер работает от внутреннего генератора, поэтому нет необходимости во внешнем кварце. Ножки 9 и 10 (подключение внешнего кварца) не задействованы, на случай если там окажется внешний кварц. Также не задействованы ножки 1 (сброс) и 21(опорное напряжение для АЦП). Проверить работоспособность можно двумя способами (смотри рисунок) — смотреть изменение уровня сигналов относительно земли (GND) или относительно ножки питания (VCC).

022M48.zip (5502 Загрузки)

Фьюзы для тестовой прошивки ATMega48/88/168

Как прошить микроконтроллер >

 

Тестовая прошивка для микроконтроллера ATTiny2313.
Алгоритм работы прошивки ATTiny2313 показан на картинке (микроконтроллер установлен на макетной плате ATTiny2313, описанной ранее).

Микроконтроллер работает от внутреннего генератора, поэтому нет необходимости во внешнем. Ножки 4 и 5 (подключение внешнего кварца) не задействованы на случай если там окажется внешний кварц. Также не задействована ножка 1 (сброс). Проверить работоспособность можно двумя способами — смотреть изменение уровня сигналов относительно земли (GND) и относительно ножки питания (VCC).
022-T2313.zip (6405 Загрузок)

Фьюзы для тестовой прошики ATTiny2313

Как прошить микроконтроллер >

 

Тестовая прошивка для микроконтроллера ATTiny13.
Алгоритм работы прошивки ATTiny13 показан на картинке (микроконтроллер установлен на макетной плате ATTiny13, описанной ранее).

Микроконтроллер работает от внутреннего генератора (внешний большая роскошь для этого микроконтроллера, поэтому даже не рассматриваем). Естественно, не задействована ножка 1 (сброс). Проверяем работоспособность так же, как и у предыдущих микроконтроллеров.

022-T13.zip (5544 Загрузки)

Фьюзы для тестовой прошики ATTiny13

Как прошить микроконтроллер >

 

Проверка работоспособности «Z»-состояния портов ввода-вывода.

«Z»-состояние это состояние когда ножка сконфигурирована на вход и на ней нет ни какого уровня (она как-бы болтается в воздухе ни к чему не подключена). Для того чтобы проконтролировать наличие такого состояния можно воспользоваться резисторным делителем. При уровне «1» на делителе будет напряжение питания +5v, при уровне «0» — земля 0v, а при «Z»-состоянии порт ввода-вывода перестанет вмешиваться в работу делителя и он поделит напряжение питания и мы получим +2.5v.

ФАЙЛЫ:
022-AVR-tests.zip (4107 Загрузок)

(Visited 19 018 times, 4 visits today)

www.getchip.net

Проверка работоспособности портов AVR — DRIVE2

На собиралось несколько микроконтроллеров ATtiny13, ATtiny44 после разных опытов с подозрением на сожженный порт. Начал искать в интернете как можно их проверить. Нашел на одном сайте , как можно проверить работоспособность ног программным путем.
Накидал схему.

схема проверки. Проверочный щуп нужен для соединения схемы с проверочной ногой МК.

Так как у автора не было прошивки на ATtiny44 прошивки, то написал свою под ATtiny44 и ATtiny13.
Для проверки портов, МК нужно прошить выложенной в низу блога прошивкой. Фьюзы по умолчанию. Нога Reset не проверяется и во фьюзах не отключена. Но если есть желание, то в программе предусмотрена проверка и этого порта. Стоит отключить его во фьюзах и все. Но если отключить Reset, то придется реанимировать МК с помощью доктора.
Коротко о работе. Прошивка дергает положение всех ног на микроконтроллере одновременно, кроме питания и земли. Т.е. сначала выход -> вход -> положение Z. И так по кругу. При проверки выхода и входа, сделал не большие задержки, так как визуально видно если светодиод зажегся на выходе или входе, значит порт, соответственно на выход или вход работает. При работающем входе, подключённый светодиод к +5В анодом и катодом к проверяемой ножке МК, должен загореться, т.к. данная ножка МК в положении земли. Выход аналогично. Положение Z — тут уже другая история. Это положение ноги микроконтроллера когда она висит в воздухе. Т.е. не имеет положения.

При положении Z, если запитать данную схему от +5В, и подсоединить мультиметр на средний контакт как на видео, то на цешке должно быть напряжение в половину питающего напряжения. Если так, то порт полностью рабочий. Так как цешка не успевала уловить напряжение на ноге в положение Z, то увеличил задержку почти до двух секунд. На виде видно, что мультиметр справляется.

Видео работы

Файлы для скачивания (прошивка, плата)

Всем мира!

4 года Метки: проверка на работспособность avr, работоспособность портов avr, порты avr

www.drive2.ru

022-Тестовая прошивка для AVR микроконтроллеров (проверка работоспособности портов).

Вот и пришло время для первой прошивки. Данная прошивка является тестовой. Она не производит ни каких полезных действий, кроме дрыганья ножками по определенному алгоритму. Этой прошивкой можно проверить работоспособность всего микроконтроллера и портов ввода-вывода в частности.
Чтобы проверить микроконтроллер необходимо загрузить прошивку и посмотреть, что происходит на ножках. «Смотреть» можно или мультиметром, или простым пробником – светодиод последовательно с резистором 300 Ом – 1 кОм. Без резистора проверять не стоит – можно спалить порт ввода-вывода. Уровни сигналов на ножках меняются с «1» через «Z»-состояние в «0» и обратно. «Z» состояние введено в последовательность для контроля работоспособности порта в режиме входа.

Тестовая прошивка для микроконтроллера ATMega48/88/168.
Алгоритм работы прошивки ATMega48/88/168 показан на картинке (микроконтроллер установлен на макетной плате ATMega48/88/168, описанной ранее).

Микроконтроллер работает от внутреннего генератора, поэтому нет необходимости во внешнем кварце. Ножки 9 и 10 (подключение внешнего кварца) не задействованы, на случай если там окажется внешний кварц. Также не задействованы ножки 1 (сброс) и 21(опорное напряжение для АЦП). Проверить работоспособность можно двумя способами (смотри рисунок) – смотреть изменение уровня сигналов относительно земли (GND) или относительно ножки питания (VCC).
022-M48.HEX V1.0 [277 bytes] - Тестовая прошивка для ATMega48/88/168

Фьюзы для тестовой прошивки ATMega48/88/168

Как прошить микроконтроллер >

Тестовая прошивка для микроконтроллера ATTiny2313.

Алгоритм работы прошивки ATTiny2313 показан на картинке (микроконтроллер установлен на макетной плате ATTiny2313, описанной ранее).

Микроконтроллер работает от внутреннего генератора, поэтому нет необходимости во внешнем. Ножки 4 и 5 (подключение внешнего кварца) не задействованы на случай если там окажется внешний кварц. Также не задействована ножка 1 (сброс). Проверить работоспособность можно двумя способами – смотреть изменение уровня сигналов относительно земли (GND) и относительно ножки питания (VCC).
022-T2313.HEX V1.0 [259 bytes] - Тестовая прошивка для ATTiny2313

Фьюзы для тестовой прошики ATTiny2313

Как прошить микроконтроллер >

Тестовая прошивка для микроконтроллера ATTiny13.
Алгоритм работы прошивки ATTiny13 показан на картинке (микроконтроллер установлен на макетной плате ATTiny13, описанной ранее).

Микроконтроллер работает от внутреннего генератора (внешний большая роскошь для этого микроконтроллера, поэтому даже не рассматриваем). Естественно, не задействована ножка 1 (сброс). Проверяем работоспособность так же, как и у предыдущих микроконтроллеров.

022-T13.HEX V1.0 [240 bytes] - Тестовая прошивка для ATTiny13

Фьюзы для тестовой прошики ATTiny13

Как прошить микроконтроллер >

Проверка работоспособности «Z»-состояния портов ввода-вывода.

«Z»-состояние это состояние когда ножка сконфигурирована на вход и на ней нет ни какого уровня (она как-бы болтается в воздухе ни к чему не подключена). Для того чтобы проконтролировать наличие такого состояния можно воспользоваться резисторным делителем. При уровне «1» на делителе будет напряжение питания +5v, при уровне «0» – земля 0v, а при «Z»-состоянии порт ввода-вывода перестанет вмешиваться в работу делителя и он поделит напряжение питания и мы получим +2.5v.

ФАЙЛЫ:
022-AVR-tests - Исходники тестовых прошивок

ATMega48/88/168, ATTiny13, ATTiny2313, Начинающим, Отладка

rfanat.qrz.ru

022-Тестовая прошивка для AVR микроконтроллеров (проверка работоспособности портов).

Вот и пришло время для первой прошивки. Данная прошивка является тестовой. Она не производит ни каких полезных действий, кроме дрыганья ножками по определенному алгоритму. Этой прошивкой можно проверить работоспособность всего микроконтроллера и портов ввода-вывода в частности.
Чтобы проверить микроконтроллер необходимо загрузить прошивку и посмотреть, что происходит на ножках. «Смотреть» можно или мультиметром, или простым пробником – светодиод последовательно с резистором 300 Ом – 1 кОм. Без резистора проверять не стоит – можно спалить порт ввода-вывода. Уровни сигналов на ножках меняются с «1» через «Z»-состояние в «0» и обратно. «Z» состояние введено в последовательность для контроля работоспособности порта в режиме входа.

Тестовая прошивка для микроконтроллера ATMega48/88/168.
Алгоритм работы прошивки ATMega48/88/168 показан на картинке (микроконтроллер установлен на макетной плате ATMega48/88/168, описанной ранее).

Микроконтроллер работает от внутреннего генератора, поэтому нет необходимости во внешнем кварце. Ножки 9 и 10 (подключение внешнего кварца) не задействованы, на случай если там окажется внешний кварц. Также не задействованы ножки 1 (сброс) и 21(опорное напряжение для АЦП). Проверить работоспособность можно двумя способами (смотри рисунок) – смотреть изменение уровня сигналов относительно земли (GND) или относительно ножки питания (VCC).
022-M48.HEX V1.0 [277 bytes] - Тестовая прошивка для ATMega48/88/168

Фьюзы для тестовой прошивки ATMega48/88/168

Как прошить микроконтроллер >

Тестовая прошивка для микроконтроллера ATTiny2313.
Алгоритм работы прошивки ATTiny2313 показан на картинке (микроконтроллер установлен на макетной плате ATTiny2313, описанной ранее).

Микроконтроллер работает от внутреннего генератора, поэтому нет необходимости во внешнем. Ножки 4 и 5 (подключение внешнего кварца) не задействованы на случай если там окажется внешний кварц. Также не задействована ножка 1 (сброс). Проверить работоспособность можно двумя способами – смотреть изменение уровня сигналов относительно земли (GND) и относительно ножки питания (VCC).
022-T2313.HEX V1.0 [259 bytes] - Тестовая прошивка для ATTiny2313

Фьюзы для тестовой прошики ATTiny2313

Как прошить микроконтроллер >

Тестовая прошивка для микроконтроллера ATTiny13.
Алгоритм работы прошивки ATTiny13 показан на картинке (микроконтроллер установлен на макетной плате ATTiny13, описанной ранее).

Микроконтроллер работает от внутреннего генератора (внешний большая роскошь для этого микроконтроллера, поэтому даже не рассматриваем). Естественно, не задействована ножка 1 (сброс). Проверяем работоспособность так же, как и у предыдущих микроконтроллеров.
022-T13.HEX V1.0 [240 bytes] - Тестовая прошивка для ATTiny13

Фьюзы для тестовой прошики ATTiny13

Как прошить микроконтроллер >

Проверка работоспособности «Z»-состояния портов ввода-вывода.

«Z»-состояние это состояние когда ножка сконфигурирована на вход и на ней нет ни какого уровня (она как-бы болтается в воздухе ни к чему не подключена). Для того чтобы проконтролировать наличие такого состояния можно воспользоваться резисторным делителем. При уровне «1» на делителе будет напряжение питания +5v, при уровне «0» – земля 0v, а при «Z»-состоянии порт ввода-вывода перестанет вмешиваться в работу делителя и он поделит напряжение питания и мы получим +2.5v.

ФАЙЛЫ:
022-AVR-tests - Исходники тестовых прошивок

ATMega48/88/168, ATTiny13, ATTiny2313, Начинающим, Отладка

rfanat.ru

Проверка работоспособности шим-контроллера.

                Шим-контроллер считают «сердцем» источников питания, но предварительно нужно проверить и другие компоненты блока питания выполнив стандартную последовательность действий по ремонту блока питания (БП):

1) В выключен­ном состоянии источник внимательно осмотреть (особое внимание обра­тить на состояние всех электролитических конденсаторов - они не должны быть вздуты).

2) Проверить исправность предохранителя и элементов входного фильтра БП.

3) Прозвонить на короткое замыкание или обрыв диоды выпрями­тельного моста (эту операцию, как и многие другие, можно выполнить, не вы­паивая диоды из платы). При этом в остальных случаях надо быть уверен­ным, что проверяемая цепь не шунтируется обмотками трансформатора или резистором (в подозрительных случаях, элемент схемы необходимо выпаивать и проверять отдельно).

4) Проверить исправность выходных цепей: электролитических конденсаторов низкочастотных филь­тров, выпрямительных диодов и диодных сборок.

5) Проверить силовые транзисторы высокочастотного преобразователя и тран­зисторов каскада управления. Обязательно проверить возвратные диоды, включенные параллельно электродам коллектор-эмиттер силовых транзисторов.

Эти действия, дают положительный результат в обнаружении только следствия неработоспособности всего блока, но причина неисправности в большинстве случаев находится гораздо глубже. Например, неисправность силовых транзисторов может быть следствием: неисправности цепей схемы за­щиты и контроля, нарушения цепи обратной связи, неисправности ШИМ-преобразователя, выхода из строя демпфирующих RC-цепочек или, межвитковый пробой в силовом трансформаторе. Поэтому, если удается найти неисправный элемент, то желательно пройти все этапы проверок, перечисленные выше (т. к. предохранитель сам по себе ни­когда не сгорает, а пробитый диод в выходном выпрямителе становится причиной «смерти» ещё и силовых транзисторов высокочастотного преобразователя).

В качестве шим-контроллера («сердца» источников питания) долгое время использовали микросхему  TL494, а затем и ее аналоги (MB3759, KA7500B … KA3511, SG6105 и др.). Проверку работоспособности такой микросхемы, например, TL494 (рис. 1) можно произвести, не включая блок питания. При этом микросхему необходимо запитать от вне­шнего источника напряжением +9В..+20В. Напряжение подается на вывод 12 относительно выв. 7 - желательно через маломощный выпрямительный диод. Все измерения тоже должны проводиться относительно выв. 7. При подаче питания на микросхему контролируем напряжение на выв. 5. Оно должно быть +5В (±5%) и быть стабильным при изменении напряжения питания на выв. 12 В пределах   +9В..+20В. В противном случае не исправен внутренний стабилизатор напряжения микросхемы. Далее осциллогра­фом смотрим напряжение на выв. 5. Оно должно быть пилообразной формы амплитудой 3,2 В (рис. 2). Если сигнал отсутствует или иной формы, то проверить целостность конденсатора и резистора, подключенных к выв. 5 и выв. 6, соответственно. В случае исправности этих элементов микросхему необходимо заменить. После этого проверяем наличие управляющих сигна­лов на выходе микросхемы (выв. 8 и выв. 11). Они должны соответствовать осциллограммам, приведенным на рис. 2. Отсутствие этих сигналов так же говорит о неисправности микросхемы. В случае успешного прохождения ис­пытаний микросхема считается исправной.

 

Рис. 1

Рис. 2

al-tm.ru

ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Ремонт ЖК ТВ

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Сервис мануал

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных форумах по ремонту техники, после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. Читайте тут как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме - это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR подробнее здесь.

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо транзистор тестер, правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани. 

Фото - вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по маркировке цветными кольцами, нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Проверка транзистора мультиметром

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод описан тут. У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. Мосфеты, полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении. 

   

Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко. 

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост. 

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте, шокирует - им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода. 

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего  каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего  каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы - AKV.

   Форум по ремонту

   Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ


radioskot.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о